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REVISITING MIXED GEOMETRY

QUOC P. HO AND PENGHUI LI

ABSTRACT. We provide a uniform construction of “mixed versions” or “graded lifts” in the sense of Beilinson–
Ginzburg–Soergel which works for arbitrary Artin stacks. In particular, we obtain a general construction of
graded lifts of many categories arising in geometric representation theory and categorified knot invariants.
Our new theory associates to each Artin stack of finite type Y over Fq a symmetric monoidal DG-category
Shvgr,c(Y) of constructible graded sheaves on Y along with the six-functor formalism, a perverse t-structure,
and a weight (or co-t-)structure in the sense of Bondarko and Pauksztello. This category sits in between
the category Shvm,c(Yn) of constructible mixed ℓ-adic sheaves in the sense of Beilinson–Bernstein–Deligne–
Gabber for any Fqn -form Yn of Y and the category Shvc(Y) of constructible ℓ-adic sheaves on Y, compatible
with the six-functor formalism, perverse t-structures, and Frobenius weights.

Classically, mixed versions were only constructed in very special cases. However, the category Shvgr,c(Y)
agrees with those previously constructed when they are available. For example, for any reductive group
G with a fixed pair T ⊂ B of a maximal torus and a Borel subgroup, we have an equivalence of monoidal
DG weight categories Shvgr,c(B\G/B) ≃ Chb(SBimW ), where Chb(SBimW ) is the monoidal DG-category of
bounded chain complexes of Soergel bimodules and W is the Weyl group of G.
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1. INTRODUCTION

1.1. Motivation. Frobenius weights in the theory of mixed ℓ-adic sheaves developed by Deligne and
Beilinson–Bernstein–Deligne–Gabber [Del80,BBDG18] have long played an important role in geometric
representation theory. This went back to the works of Beilinson, Ginzburg, and Soergel [BG86,BGS96]
to more recent developments by Achar, Bezrukavnikov, Lusztig, Riche, Rider, Yun, and others [AR13,
BY13,Rid13,LY20], to name a few. In these cases, Frobenius weights provide an extra grading, allow-
ing one to realize combinatorially defined categories with a grading, such as the category of Soergel
bimodules, with geometrically defined categories, such as the category of mixed sheaves on B\G/B
(up to some modification). Such a grading is indispensible to formality results and Koszul duality phe-
nomena in geometric representation theory. But its importance extends beyond representation theory.
For example, in [Kho07], Khovanov used Soergel bimodules to construct a triply-graded link homology
(also known as HOMFLY-PT homology), categorifying HOMFLY-PT knot polynomials. Frobenius weights
thus made their way into the theory of categorified knot invariants as well via the works of, for example,
Webster–Williamson, Shende–Treumann–Zaslow, and Trinh [WW17,STZ17,Tri21].

In all of these cases, to match geometric and combinatorially defined categories, a “mixed version”
(a.k.a. “graded lift”) of the category of sheaves (on the geometric side) has to be constructed via some
artificial “cooking” (in the words of Romanov–Williamson, see [RW21]), necessary to kill non-trivial
extensions between pure objects of the same weights. Due to Frobenius’ non-semisimplicity, a funda-
mental problem already over a point, the mixed version is not simply the category of mixed sheaves in
the sense of [BBDG18]. Roughly speaking, the construction of a mixed version, which is usually subtle
and technical, involves picking a collection Purc(Y) of (constructible) semi-simple complexes on a stack
Y of interest and show that the homotopy category of chain complexes K b(Purc(Y)) recovers a known
object previously combinatorially defined.1 However, to relate it back to the usual sheaf theory, known
techniques, which rely on Tate geometry,2 only work in very special cases. Moreover, the construction
K b(Purc(−)) loses most of the functoriality that makes the geometric language powerful: we no longer
know how to pull (resp. push) along non-smooth (resp. non-proper) morphisms. This problem is not
easy to fix: preservation of semi-simplicity is part of the Tate conjecture, which is still wide open.

1For example, when Y = B\G/B, we obtain the homotopy category of Soergel bimodules.
2We loosely use the term Tate geometry to refer to the situation where the space involved has a nice stratification by affine

spaces and the sheaves involved satisfy some strong purity condition.
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The goal of this paper is to provide a uniform construction of mixed versions or graded lifts of the
usual category of sheaves.3 Namely, our theory associates to each scheme/stack Y over Fq a triangulated
(in fact,DG-)category Shvgr(Y)

ren (resp. Shvgr,c(Y)) of graded sheaves (resp. constructible graded sheaves)
on Y, along with the six-functor formalism, a perverse t-structure, and a weight (or co-t-)structure in the
sense of Pauksztello and Bondarko [Pau08,Bon10]. As part of the definition of a weight structure, pure
objects are semi-simple. In particular, we have a decomposition theorem similar to, but in some sense,
more convenient than [BBDG18]. Moreover, the weight complex functor of [Bon10, Sos19, Aok20]
provides a comparison wt : Shvgr,c(Y) → Chb(hShvgr,c(Y)

♥w ), where Chb(hShvgr,c(Y)
♥w ) is the DG-

category of bounded chain complexes in the underlying homotopy category hShvgr,c(Y)
♥w of the weight

heart Shvgr,c(Y)
♥w , which plays the role of Purc(Y).

More precisely, for any Fq-form Yn of Y, Shvgr,c(Y) fits into the following diagram

Shvm,c(Yn) Shvgr,c(Y) Shvc(Y)

Chb(hShvgr,c(Y)
♥w )

grYn
oblvgr

wt

where grYn
and oblvgr are compatible with all of the six-functor formalism, the perverse t-structures,

and Frobenius weights. In special cases, such as the case of B\G/B, Shvgr,c(Y)
♥w is classical, i.e.,

Shvgr,c(Y)
♥w ≃ hShvgr,c(Y)

♥w ,4 and the weight complex functor wt is an equivalence of categories. In
fact, Shvgr,c(Y)

♥w ≃ hPurc(Y) in this case,5 see Proposition 5.6.12, and we obtain a functor

Chb(hPurc(Y))
oblvgr ◦wt

−1

−−−−−−→ Shvc(Y)

which realizes the former as a graded lift of the latter, recovering the classical constructions of graded
lifts.6

By Proposition 5.6.12, the classical condition on Shvgr,c(Y)
♥w is equivalent to a certain Hom-purity

condition on the category of mixed sheaves. In turns, Hom-purity itself can be established using, for
example, Tate geometry when that is available as it has already been done. However, the graded lift
Shvgr,c(Y) exists in general and when Shvgr,c(Y)

♥w is not classical, it is in fact a genuinely new cate-
gory not available previously. We do this by circumventing the Frobenius non-semisimplicity problem:
instead of picking semi-simple objects in the category, we systematically semi-simplify the Frobenius
actions at the categorical level. Consequently, functoriality comes for free and known results in the
theory of mixed ℓ-adic sheaves have direct translations in our setting.

As mentioned above, in writing this paper, we are motivated by questions from geometric represen-
tation theory and categorified knot invariants. To demonstrate this, we will conclude the paper with
a streamlined proof of the fact that Shvgr,c(B\G/B) is equivalent to the DG-category of bounded chain
complexes of Soergel bimodules Chb(SBimW ), matching the geometrically and combinatorially defined
versions of Hecke categories. More generally, we expect that the theory developed in this paper will
have a much wider applicability. In particular, in forthcoming papers, we will utilize the robust theory
of graded sheaves developed here

(i) to compute the categorical trace and Drinfeld center of Hecke categories, using the techniques
of Ben-Zvi, Nadler, and Preygel [BN09,BNP17];

3In fact, we need a slightly smaller category than the category of sheaves. This technical point will, however, be ignored in
the introduction. See §5.6 for more precise statements.

4See §5.1.3 for a more detailed discussion.
5Since we work within the framework of DG-/∞-categories, there is a Hom-space rather than a Hom-set between any two

objects in our categories. Roughly speaking, under Dold–Kan, “negative Ext’s” are part of the Hom-spaces. Moreover, the process
of taking the underlying homotopy category means that we forget these negative Ext’s. In this sense, for example, our hPurc
corresponds to Purc in the literature.

6See also Footnote 3.
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(ii) to upgrade Bezrukavnikov’s theorem on the two geometric realizations of affine Hecke alge-
bras [Bez16] to the graded setting; and

(iii) to categorify quantum groups using geometry.
The first two items, due to their proximity to the last section §6 of the current paper, will be elaborated
in more details in §2.

Remark 1.1.1. Recently, in [SW18, SVW18], Soergel, Virk, and Wendt used the theory of motives and
weight structures to construct graded lifts of various categories in geometric representation theory that
also avoids the adhoc step of taking K b(Purc(−)). At a technical level, the main difference between
the two approaches is that the results of [SW18, SVW18] are formulated using the theory of motives
whereas ours make use of mixed ℓ-adic sheaves.

On the one hand, their theory is much more sophisticated and can be applied to other cohomology
theories, such as K-theory, [Ebe19, ES21a]. On the other hand, we have full and direct access to all
of the powerful results and techniques of mixed ℓ-adic sheaves, already used in geometric representa-
tion theory. More importantly, they deal only with (equivariant) mixed Tate motives on spaces with a
Whitney–Tate stratification while our theory works for any Artin stacks. For example, while their theory
is sufficient to deal with B\G/B and the nilpotent cone, it is not enough to deal with G

G (with the adjoint
action), a natural object in the theory of character sheaves, see [SVW18, §1.11]. In fact, this is one
of the main motivations for us in writing the current paper. Finally, note that the general existence of
the analog of the perverse t-structure on the triangulated categories of mixed motives depends on the
standard conjectures of algebraic cycles, which are wide open.

1.2. Conventions. Throughout the paper, we fix k1 = Fq where q is a fixed power of a fixed prime p.
More generally, for any positive integer n, we use kn = Fqn to denote the degree n field extension of
k1. We also use k = Fq to denote the algebraic closure of Fq. A scheme/stack defined over kn will be
written as Xn. We will use Xn′ to denote its base change to kn′ and X its base change to k.

All schemes that appear in the paper are separated and of finite type. All stacks are Artin, of finite
type, and have affine stabilizers. For any field F, we use SchF (resp. StkF) to denote the category
of schemes (resp. stacks) over F, satisfying the conditions above. Unless otherwise specified, F ∈
{kn, k}n∈Z = {Fqn ,Fq}n∈Z in this paper. We also use ptF ∈ SchF to denote the final object. Following
the convention written in the above paragraph, we also use ptn to denote Spec kn = SpecFqn and
pt= Spec k = SpecFq.

Unless otherwise specified, by a category, we always mean an∞-category (or more precisely, an
(∞, 1)-category). Given a triangulated/stable∞-category C equipped with a t-structure, the heart of
the t-structure is denoted by C♥. Similarly, the heart of a weight structure is denoted by C♥w . We will
also use C♥t to denote the heart of a t-structure on C to emphasize the t-structure, especially when a
weight structure is also present. Lastly, categories and functors are derived by default.

1.3. The main results.

1.3.1. Abstract theory. For each stackY ∈ Stkk, we construct a symmetric monoidal DG-category Shvgr,c(Y)
of constructible graded sheaves on Y along with its “large” cousin, the category of renormalized graded
sheaves Shvgr(Y)

ren ≃ Ind(Shvgr,c(Y)), where Ind denotes the process of taking ind-completion, i.e.,
formally adding all filtered colimits.

For any kn-form Yn ∈ Stkkn
of Y, we have

Shvgr(Y)
ren ≃ Shvm(Yn)

ren ⊗Shvm(ptn)
Vectgr .

Here, Vectgr := Fun(Z,Vect) denotes the category of graded chain complexes of vector spaces over Qℓ
and Shvm(Yn)

ren := Ind(Shvm,c(Yn)) where Shvm,c(Yn) is the (derived) category of constructible mixed
ℓ-adic sheaves over Yn in the sense of [BBDG18,LO09]. Moreover, the tensor product is the one defined
by Lurie, where Shvm(Yn)

ren is tensored over Shvm(ptn) via pulling back and the symmetric monoidal
functor Shvm(ptn) → Vectgr is obtained by turning Frobenius weights into a grading. In particular,
Shvgr(pt) ≃ Vectgr, which is semi-simple.
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In fact, we take this as the definition of Shvgr(Y)
ren, see Definition 4.4.2, and prove that this definition

is independent of the choice of a kn-form, see Theorem 4.7.12. Moreover, the category Shvgr,c(Y) is
defined to be the full subcategory of Shvgr(Y)

ren spanned by compact objects.

Remark 1.3.2. While the small category of constructible sheaves is more explicit, dealing with its large
cousin is unavoidable since, for example, the push-forward functor between stacks does not preserve
constructibility most of the time.

Remark 1.3.3. For any stack Y ∈ Stkk, there is also the usual category Shv(Y) obtained, for instance, by
using descent via a smooth atlas S→ Y where S ∈ Schk.7 However, for many purposes, this category is
not what we want: even in the simplest case Y= BGm, the classifying stack of the multiplicative group
Gm, the constant sheaf on Y is not compact in Shv(Y). See Example 4.1.12. Note, however, that the
distinction between renormalized and usual is only relevant for stacks.

The functoriality for the renormalized sheaf theory is similar to that of the usual sheaf theory and
the two are closely related. To distinguish between the two, we will include the subscript ren in the no-
tations of the various pull and push functors when working with renormalized sheaves. Note, however,
that when applied to constructible sheaves, functors on the two sides are identified in a precise sense.
This is reviewed in §4.1.8 and subsequent subsubsections.

By construction, Shvgr(Y)
ren is tensored over Vectgr and moreover, this structure is compatible with

usual operations of sheaves. We have the following result that compares graded sheaf theory and the
theory of usual/mixed sheaves.

Theorem 1.3.4 (Proposition 4.5.5 and Lemma 4.7.16). Let Y ∈ Stkk and Yn ∈ Stkkn
a kn-form of Y.

Then, we have a sequence of symmetric monoidal functors

Shvm(Yn)
ren

grYn

−−→ Shvgr(Y)
ren

oblvgr
−−−→ Shv(Y)ren

where oblvgr is conservative. Moreover, these functors are compatible various pull and push functors along

fn : Yn→ Zn and its base change to k, f : Y→ Z.

Even though Shvgr,c(Y) is defined in an abstract way, one can understand it quite explicitly. Namely,
its objects are direct summands of finite colimits of objects in the essential image of grYn

. Moreover,
given Fn,Gn ∈ Shvm,c(Yn),

HomShvgr(Y)ren(grYn
(Fn),grYn

(Gn)) ∈ Vect

is simply the Frobenius weight 0 part of the mixed-Hom complex, see Proposition 4.6.2. This simple,
but important, observation allows us to show that Shvgr,c(Yn) has a transversal weight and t-structures
in the sense of [Bon12]. See Theorem 5.4.3 for a quick review.

Theorem 1.3.5 (Theorem 5.4.8). For any Y ∈ Stkk, Shvgr,c(Y) is equipped with a weight and a t-structure

such that the t-structure is transversal to the weight structure.

This t-structure will be referred to as the perverse t-structure, whose heart is the category of graded

perverse sheaves Pervgr,c(Y) := Shvgr,c(Y)
♥t .

Moreover, the weight and t-structures are compatible with various functors as expected. For instance,
we have the following results. Many similar results are established in §5.5.

Proposition 1.3.6 (Proposition 5.5.1). Let Yn ∈ Stkkn
and Y its base change to k. Then, the functors

Shvm,c(Yn)
gr
−→ Shvgr,c(Y)

oblvgr
−−−→ Shvc(Y)

preserves and reflects t-structures with respect to the perverse t-structures. Namely, for any n and any

F ∈ Shvgr,c(Y), F ∈ Shvgr,c(Y)
t≤n (resp. F ∈ Shvgr,c(Y)

t≥n) if and only if oblvgr(F) ∈ Shvc(Y)
t≤n (resp.

oblvgr(F) ∈ Shvc(Y)
t≥n). We have a similar statement for gr.

7We ignore Frobenius action/mixedness since it is not relevant for current discussion.
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Proposition 1.3.7 (Proposition 5.5.2). Let Y and Yn be as above. The functor gr : Shvm,c(Yn)→ Shvgr,c(Y)
preserves and reflect weights, where we use Frobenius weights on Shvm,c(Yn) and our weight structure on

Shvgr,c(Y). Namely, for any k and F ∈ Shvm,c(Y), then F ∈ Shvm,c(Y)
w≤k (resp. F ∈ Shvm,c(Y)

w≥k) if and

only if gr(F) ∈ Shvgr,c(Y)
w≤k (resp. gr(F) ∈ Shvgr,c(Y)

w≥k).

We will now relate our theory and previous attempts in the literature. Let Shv∞,c(Y) denote the
smallest full triangulate subcategory of Shvc(Y) containing the essential image of Shvm,c(Ym) under
pullbacks for all km-forms of Y (for all m). We show that this category inherits the perverse t-structure
from Shvc(Y) whose heart is denoted by Perv∞,c(Y).

Theorem 1.3.8 (Corollaries 5.6.7 and 5.6.8). Pervgr,c(Y) is a graded version of Perv∞,c(Y) in the sense

of [BGS96, Defn. 4.3.1.(1)].
Shvgr,c(Y) is a mixed version of Shv∞,c(Y) in the sense of [Rid13, Defn. 4.2].

1.3.9. Application to Hecke categories and Soergel bimodules. We conclude the paper with an application
to representation theory. Let G be a reductive group with a fixed pair T ⊆ B of Borel B and a maxi-
mal torus. Let W be the Weyl group of G and consider the monoidal DG-category of bounded chain
complexes of Soergel bimodules Chb(SBimW ). We show that this category has a natural geometric
incarnation using graded sheaves.

Theorem 1.3.10 (Theorem 6.4.1). We have an equivalence of monoidal categories

Shvgr,c(B\G/B) ≃ Chb(SBimW ).

As graded sheaves interact seamlessly with the usual theory of sheaves/mixed sheaves, the theorem
above is obtained by readily using known results about B\G/B proved earlier in [Soe90,BY13].

1.4. An outline of the paper. In §2 we outline some of the applications we have in mind for the theory
of graded sheaves. The mathematical content of the paper starts in §3 where we review the necessary
background regarding DG-categories. This is followed by §4 where the categories of graded sheaves are
constructed and their formal properties are established. In §5, using the theory developed by Bondarko
in [Bon12], we show that the category of constructible graded sheaves on any Artin stack admits a
transversal weight and t-structures. We show that the weight structure is compatible with Frobenius
weights in the theory of mixed sheaves and that the t-structure is compatible with the perverse t-
structure of [BBDG18]. Finally, in §6, we show that the category of constructible graded sheaves on
the finite Hecke stack B\G/B is equivalent, as a monoidal DG category, to Chb(SBimW ), the category
of bounded chain complexes of Soergel bimodules.

2. FUTURE WORK

We will now describe some of the applications we have in mind which will be visited in subsequent
papers. In what follows, statements are listed under “Theorem (in progress)” and “Expectation.” The
former implies that we have a strategy, or in some case, even a fairly complete proof whereas the latter
means that we are confident about the general shape of the statement but have not thought through
the details.

2.1. Trace and center of Soergel bimodules. For a monoidal DG-category A, the categorical trace and
the categorical center (or Drinfeld center) of A are Tr(A) := A⊗A⊗Aop A and Z(A) := HomA⊗Aop(A,A),
respectively. There are canonical maps tr : A→ Tr(A) and z : Z(A)→A.

In [BN09], Ben-Zvi and Nadler identify both the trace and center of the unmixed, i.e., non-graded,
Hecke category Shv(B\G/B) with the category Chu(G) of unipotent character sheaves.8 We will apply
their argument in the graded setting to obtain the following theorem.

8Strictly speaking, they work with D-modules. However, a variant of their argument also yields the result in the ℓ-adic sheaves
setting.
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Theorem 2.1.1 (in progress). The trace Tr(Shvgr,c(B\G/B)) and Drinfeld center Z(Shvgr,c(B\G/B)) of

Shvgr,c(B\G/B) coincide and are identified with the full subcategory of Shvgr,c(
G
G ) generated by the image

of Shvgr,c(B\G/B) under the horocycle correspondence

(2.1.2)
G
B

B\G/B G
G

This category, denoted by Chu
gr(G), will be referred to as the category of graded unipotent character sheaves.

Under this identification, the natural functors tr : Shvgr,c(B\G/B)→ Chu
gr(G) and z : Chu

gr(G)→ Shvgr,c(B\G/B)

are mutually adjoints and are given by going through the correspondence above in the appropriate direc-

tions.

Combined with the identification Shvgr,c(B\G/B) ≃ Chb(SBimW ) of Theorem 6.4.1, we obtain the
following result.

Corollary 2.1.3 (in progress). The trace Tr(Chb(SBimW )) and Drinfeld center Z(Chb(SBimW )) coincide

and are equivalent to Chu
gr(G). Moreover, we have the following pair of adjoint functors

tr : Chb(SBimW )⇄ Chu
gr(G) : z .

The category of ungraded unipotent character sheaves Chu(G) is explicitly calculated by the second
author in [Li18]. We will give a similar description in the graded case. For simplicity, we will now
assume that G = GLn, and hence, W = Sn.

Theorem 2.1.4 (in progress). We have an equivalence of DG-categories

Tr(Chb(SBimSn
)) ≃ Z(Chb(SBimSn

)) ≃Qℓ[Sn]⋉Qℓ[x1, . . . , xn,α1, . . . ,αn]-perfgr

with x i and αi living in degree (2,2) and (2,1), respectively, where the first (resp. second) number denotes

weight (resp. cohomological) degree.

Note that the algebra appearing on the right hand side, up to a Koszul dual and forgetting degree and
weight, is precisely the endomorphism algebra of the Procesi bundle on the Hilbert scheme of n points
on A2. We will thus further identify the trace/center of Chb(SBimSn

) with the category of coherent
sheaves on the Hilbert scheme of n points on A2, appropriately sheared. The relation between Hilbert
scheme of points, Soergel bimodules, and triply graded HOMFLY-PT link homology appear as the main
conjecture of [GNR21].

One of the key ingredients for Theorem 2.1.4 is the formality of the Grothendieck–Springer sheaf
of the group G, [Li18]. We will use it to deduce the formality of graded version of the Grothendieck–
Springer sheaf as well. Note that by definition, the Grothendieck–Springer sheaf is simply tr(1). There-
fore, the argument sketched above gives a proof of the following conjecture of Gorsky–Hogancamp–
Wedrich, which is important in the study of derived annular link invariants.

Conjecture 2.1.5 ([GHW20]). The DG-algebra EndTr(Chb(SBimW ))
(tr(1)) is formal.

2.2. Graded affine Hecke category and Langlands duality. Let Ǧ denote the Langlands dual group
of G. A theorem of Kazhdan–Lusztig and independently of Ginzburg provides an isomorphism between
the affine Hecke algebra of G and the K-group of equivariant coherent sheaves on the Steinberg variety
of Ǧ

(2.2.1) Haff ≃ KǦ×Gm
(St).

Let LG be the loop group of G, and I ⊂ LG the Iwahori subgroup. Then, Bezrukavnikov proved
in [Bez16] that we have an equivalence of monoidal categories

(2.2.2) Shvc(I\LG/I)≃ Coh(St/Ǧ).
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Strictly speaking, (2.2.2) is not a categorification of (2.2.1). Indeed, to recover the isomorphism
(2.2.1) by passing to K-groups, one has to consider a graded version of (2.2.2). In fact, it was expected
in [Bez16, §11.1] that an “appropriately defined mixed version” of Shv(I\LG/I)9 will yield the graded
version. The theory of graded sheaves developed in this paper provides an answer to this question.
Indeed, the techniques developed by Bezrukavnikov can be transported to our setting and we will
prove the following result.

Theorem 2.2.3 (in progress). There is an equivalence of monoidal DG-categories

Shvgr,c(I\LG/I) ≃ Coh(St/(Ǧ ×Gm)).

By the general formalism of weight structure, the K-group on the LHS is isomorphic to the split
K-group of the weight heart, which is easily identified with the affine Hecke algebra Haff. Therefore,
taking K-group of Theorem 2.2.3 gives (2.2.1) precisely.

Note that Shvgr,c(B\G/B) is naturally a full subcategory of Shvgr,c(I\LG/I). On the other hand,
Coh(St/(Ǧ×Gm)) is equivalent to a certain category of matrix factorizations, see [AG15, Appendix H].
We thus expect that the theorem above is closely related to a conjecture of Oblomkov–Rozanksy [OR20,
Conjecture 7.3.1] stating that there is an equivalence between Chb(SBim) and a certain category of
matrix factorizations.

Remark 2.2.4. Since the weight heart Shvgr,c(I\LG/I)♥w is classical, it follows that Shvgr,c(I\LG/I)

is equivalent to the more familiar DG-category of bounded chain complexes of pure objects, which
is the DG-category Chb(SBimfW ) of bounded chain complexes of affine Soergel bimodules, mirroring
Theorem 6.4.1.10 The work of Ben-Zvi–Nadler–Preygel [BNP17] could then be used to get a handle on
the trace and Drinfeld center of Chb(SBimfW ) by using the coherent incarnation, i.e., the RHS of the
equivalence in Theorem 2.2.3.

2.2.5. We will also consider a graded version the monodromic Bezrukavnikov’s equivalence. Let I0 ⊂ I

denote the (pro-)unipotent radical, and Shvu
gr,c(I0\LG/I0) ⊂ Shvgr,c(I0\LG/I0) be the full subcategory

consisting of unipotent-monodromic sheaves, i.e., it is the full subcategory generated by the essential
image of the pullback along I0\LG/I0→ I\LG/I . On the other hand, denote Stǧ = ěg×ǧěg the Lie algebra
version of Steinberg variety, and Coh(Stǧ/(Ǧ × Gm))St ⊂ Coh(Stǧ/(Ǧ × Gm)) the full subcategory of
coherent sheaves supported on St.

Theorem 2.2.6 (in progress). There is an equivalence of DG-categories

Shvu
gr,c(I0\LG/I0) ≃ Coh(Stǧ/(Ǧ ×Gm))St.

Remark 2.2.7. Unlike the case of Shvgr,c(I\LG/I), the weight heart Shvgr,c(I0\LG/I0)
♥w is not classical

and hence, Shvgr,c(I0\LG/I0) is a genuinely new category. Despite the apparently easier statement of
Theorem 2.2.3, we expect that its proof should more naturally go through Theorem 2.2.6 as this is the
case for the ungraded situation [Bez16, §9.3.1].

2.2.8. Following [BN07], we expect to recover from this an ungraded version of the Koszul duality
proved in [BGS96,BY13]. As explained in [BN12], this can be done using periodic localization.

The category on the RHS admits an action of Perf(BGa/Gm) (viewed as an algebra object in Perf(BGm)-
module categories), given by the presentation of the Steinberg stack as the unipotent loop space of
B̌\Ǧ/B̌. Moreover, its periodic localization can be identified with a certain category of D-modules
D(B̌\Ǧ/B̌). On the LHS, the group Gm naturally acts on I0\LG/I0 by loop rotation. This induces an
action of Shvu

gr,c(Gm) ≃ Perf(BGa/Gm).
11 Its periodic localization can be identified as a certain category

of sheaves on U\G/U .

Expectation 2.2.9. The equivalence in Theorem 2.2.6 is naturally compatible with Perf(BGa/Gm)-
actions, and therefore induces an ungraded version of Koszul duality after periodic localization.

9Or more precisely, its monodromic version below, see also Remark 2.2.7.
10See also Propositions 5.6.12 and 6.1.5 for where the classical-ness is established in the finite case.
11This is an equivalence of algebras over Shvgr,c(pt) ≃ Perf(BGm).
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2.2.10. Following Soergel [Soe01] and Ben-Zvi–Nadler [BN07], the above statements can be extends
to Real groups, and could lead to a categorification of Langlands duality for real groups. We shall
not review the story here but simply remark that Shvgr(K\G/B) (and its monodromic variant) gives
a geometric construction of the graded category of Harish-Chandra modules, as expected in [BV21,
Remark 5.5].

3. GENERALITIES ON DG-CATEGORIES

DG-categories play an instrumental role in the paper. While there are many different ways to think
about DG-categories, we find the one worked out in [GR17, Vol. I, Chap. 1, §10] the most well-
documented and most convenient to use, despite the fact that it is based on formidable machinery
of∞-categories developed in [Lur17a, Lur17b]. For example, as far as we know, relative tensors of
categories, which already appear in the definition of the category of graded sheaves, are only developed
in this context. More generally, constructions involving limits and colimits can be performed in a much
more streamlined way in this setting.

Having said that, since the machinery is packaged in such a convenient and intuitive way, most of
it can be taken as a black box. This section thus provides a quick review the important aspects of the
theory that are used throughout the paper, focusing on DG-categories, module categories, and relative
tensors thereof. We do not aim to review all the concepts used in the paper as it is impossible to do
so. Rather, the main goal is introduce the notations, to provide intuition, and to familiarize the readers
with the language and references of the subject. We do, however, hope that even for readers who are
unfamiliar with the theory, this section still provides sufficient background to follow the main ideas of
the paper. We note that most results we recall below hold true in more generality than the way we
phrase it. We choose to forfeit generality to keep things simple; the interested readers can consult the
accompanying references.

Most of the materials written here are either developed in [Lur17a,GR17] or are direct consequences
of the results therein. Because of that, no proof will be given here. This is with the exception of §3.5
where we prove an induction formula for the enriched Hom-spaces, crucial in our study of graded
sheaves. Although the result seems to be well-known among experts, we cannot find a proof in the
literature.

Throughout this section, we fix a field Λ of characteristics 0. For the purpose of constructing the
theory of graded sheaves, Λ = Qℓ. However, results stated in this section hold for any field Λ of
characteristic 0. Thus, except for this section, all DG-categories appearing in this paper are linear over
Qℓ.

3.1. Stable presentable categories. We will now quickly review the main features of stable presentable
(∞-)categories.

3.1.1. ∞-categories. The theory of ∞-category is indispensible for our purposes. The theory was
developed in great details in [Lur17b,Lur17a], but shorter accounts exist, see [GR17, Vol. I, Chap. 1]
and [Cis19]. One virtue of the theory is that, in the words of [Cis19],∞-categories allow for a union
between category theory and homotopical algebra. For example, (homotopical) limits and colimits,
which are ubiquitous in homotopical algebra, is a natural part of the theory of∞-categories.

We let Spc denote the∞-category of spaces, or∞-groupoids. For any∞-category C, and c1, c2 ∈ C,
we use HomC(c1, c2) to denote the space of homomorphisms between c1 and c2 in C. Hom being a space,
rather than just a set, is one of the main distinguishing features of the theory of∞-categories compared
to classical category theory.

In this paper, unless otherwise specified, by a category, we always mean an∞-category. A classical
category, i.e., a 1-category, can be viewed as an∞-category where the Hom-space is now just a discrete
set.

3.1.2. Presentable categories. Roughly speaking, a presentable category is a “large” category (i.e., the
collection of objects forms a class rather than a set) but is, in a precise sense, “generated” by a set
of objects. The theory is worked out in details in [Lur17b, §5.5]. We let PrL denote the category of
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presentable categories where morphisms are continuous functors, i.e., they commute with colimits. For
C,D ∈ PrL , we use Funcont(C,D) ⊆ Fun(C,D) to denote the full subcategory consisting of continuous

functors, i.e., those that commute with colimits.12

Presentable categories enjoy many nice features. For example, they admit all (small) limits and col-
imits [Lur17b, Def. 5.5.0.1 and Cor. 5.5.2.4] and they satisfy the adjoint functor theorem [Lur17b, Cor.
5.5.2.9]. Moreover, PrL itself admits small limits and colimits [Lur17b, §5.5.3] as well as a sym-
metric monoidal structure (also known as the Lurie tensor product), [Lur17a, Prop. 4.8.1.15] (see
also [GR17, Vol. I, Chap. 1, Thm. 6.1.2]). The category Spc is the unit of the symmetric monoidal
structure on PrL .

3.1.3. Due to the importance of this tensor product, let us quickly recall its characterization. Let C
and D be presentable categories. Then, C⊗D is initial among presentable categories E which receive
a functor from C ×D that is continuous in each variable. In particular, for any such E, the category
of continuous functors from C ⊗D to E is identified with the category of functors C×D → E that is
continuous in each variable. We thus have a canonical functor C ×D → C ⊗D that is continuous in
each variable. For c ∈ C and d ∈ D, we write c ⊠ d to denote the image of (c, d) ∈ C×D under this
functor.

3.1.4. Stable categories. The language of∞-category allows for an elegant formulation of triangulated
categories which are called stable (∞-)categories, [Lur17a, Defn. 1.1.1.9]. More precisely, an ∞-
category C is stable if

– It is pointed, i.e., it has a 0 object (which is both final and initial).
– Every morphism f : X → Y in C can be completed into a pullback and a pushout square,

respectively, as follows

(3.1.5)
F X

0 Y

f and
X 0

Y C

f

We call the first (resp. second) square a fiber (resp. co-fiber) sequence. Moreover, F and C are
referred to as the fiber and co-fiber of f , respectively.

– The squares in (3.1.5) above are simultaneously pullback and pushout squares.13

3.1.6. Despite the simple formulation, the homotopy category hC of a stable category C is a triangu-
lated category [Lur17a, Thm. 1.1.2.14 and Rmk. 1.1.2.15]. Moreover, in this language,

F ≃ coCone(X → Y ) ≃ Cone(X → Y )[−1] and C ≃ Cone(X → Y )

where F and C are as in (3.1.5). In other words, these squares become distinguished triangles in the
resulting triangulated category.

3.1.7. Let C and D be stable categories. We use Funex(C,D) to denote the full subcategory of Fun(C,D)
consisting of functors preserve pullbacks, or equivalently, pushouts. It is easy to see that these functors
also preserve finite limits and colimits.

We let PrL,st denote the full subcategory of PrL consisting of stable presentable categories. It is closed
under limits, colimits, and the tensor products in PrL . The category Sptr of spectra is the unit of the
symmetric monoidal structure on PrL,st. For C,D ∈ PrL,st, Funcont(C,D) consists of continuous functors
that also preserve small colimits.

12Note that this differs from the convention used in [GR17] where continuous functors are required to commute with only
filtered colimits. However, when working in the setting of stable categories and exact functors, which is where all our categorical
constructions happen, there is no difference between the two [GR17, Vol. I, Chap. 1, §5.1.6].

13More generally, pullback squares and pushout squares are the same in a stable category [Lur17a, Prop. 1.1.3.4].
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3.1.8. Compact generation. Among the presentable stable categories, compactly generated ones are
particularly manageable. Fortunately, all of the stable categories appearing in this paper are of this
type. We start by reviewing the notion of compactness and generation.

An object c in a category C is said to be compact if

HomC(c,−) : C→ Spc

commutes with filtered colimits. We let Cc denote the full subcategory of C containing compact objects.
Let C ∈ PrL,st. A collection of objects {cα} in C is said to generate if

HomC(cα, c[i]) = 0,∀α,∀i = 0,1, . . . ⇒ c ≃ 0.

A category C ∈ PrL,st is said to be compactly generated if it admits a set of compact generators.

3.1.9. Ind-completion. Given any small stable category C0, we let Ind(C0) denote the smallest full-
subcategory of Fun(Cop

0 ,Spc) that contains the image of C0 under the Yoneda embedding and is closed
under all filtered colimits. Equivalently, we can define Ind(C0) to be the full-subcategory containing all
functors that preserve finite limits (or equivalently, fiber products) [Lur17b, Cor. 5.3.5.4] or [GR17, Vol.
I, Chap. 1, Def. 7.1.3].

We call Ind(C0) the ind-completion of C0. It has the following universal property: for any stable
category D that admits all (small) colimits (for example, when D is stable presentable),

Funcont(Ind(C0),D) ≃ Funex(C0,D).

In other words, continuous functors out of Ind(C0), a large category, is determined by its restriction to
C0, a small category.

3.1.10. Ind(C0) is stable, presentable, and compactly generated. Moreover, the Yoneda embedding
C0 → Ind(C0) factors through Ind(C0)

c and the essential image of C0 forms a collection of compact
generators of Ind(C0). Furthermore, all elements in Ind(C0)

c are direct summands of (the Yoneda
embeddings of) objects in C0 [GR17, Vol. I, Chap. 1, Lem. 7.2.4]. In other words, Ind(C0)

c is the
idempotent completion of C0.

By [GR17, Vol. I, Chap. 1, Lem. 7.2.4.(3’)], all compactly generated categories C are of the form
Ind(C0) for some C0.

We record the following relation between continuity of functors and compactness.

Lemma 3.1.11 ([GR17, Vol. I, Chap. 1, Lem. 7.1.5]). Let F : C→ D be a functor in PrL,st and FR its

right adjoint (which exists by the adjoint functor theorem). Suppose that C is compactly generated. Then

FR is continuous if and only if F preserves compactness, i.e., F sends Cc to Dc .

3.1.12. Compact generation of tensors. Tensor products of compactly generated categories are them-
selves compactly generated.

Proposition 3.1.13 ([GR17, Vol. I, Chap. 1, Prop. 7.4.2]). Let C,D ∈ PrL,st such that they are both

compactly generated. Then, C⊗D is compactly generated by objects of the form c0⊠ d0 where c0 ∈ C
c and

d0 ∈D
c .

3.2. Module categories and enriched Hom-spaces.

3.2.1. Algebra and module objects. For any symmetric monoidal category A, we use ComAlg(A) to
denote the category of commutative algebra objects in A. For any such commutative algebra A ∈
ComAlg(A), we use ModA(A) to denote the category of A-module objects in A. See [GR17, Vol. I,
Chap. 1, §3] for a more detailed discussion.

The Lurie tensor product on PrL,st allows us to talk about commutative algebra objects in PrL,st and
modules over such an object. In other words, it makes sense to talk about ComAlg(PrL,st) and for any
A ∈ ComAlg(PrL,st), we can talk about A-module categories, which form a category ModA(Pr

L,st). For
brevity’s sake, unless confusion is likely to happen, we will write ModA to denote ModA(Pr

L,st) in the
situation above.
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3.2.2. Let us quickly unwind the definitions. A commutative algebra object A ∈ ComAlg(PrL,st) is a
symmetric monoidal stable presentable category such that the tensor product A×A→ A is continuous
in each variable (which induces a continuous functor A ⊗A → A). We will use multA : A⊗A→ A

(and sometimes, also multA : A×A→A) to denote the operation of taking the tensor product. In other
words, for a, b ∈A, a⊗ b :=multA(a, b) =multA(a⊠ b).

3.2.3. Similarly, an M ∈ModA is equipped with a “multiplication” map A×M→M that is continuous
on each variable (and hence, induces a continuous functor A ⊗M → M) along with higher compati-
bilities. We will use actA,M : A⊗M→M (and sometimes, also actA,M : A×M→M) to denote the
action of A on M given by the module structure. For a ∈ A and m ∈ M, we will also use a ⊗ m to
denote a⊗m := actA,M(a, m) = actA,M(a⊠m).

Since A is symmetric monoidal, a left-module structure is the same as a right-module structure.
Thus, in the above, we also sometimes use m⊗ a to denote the action.

When F : A → B is a symmetric monoidal functor between symmetric monoidal category. Then
B obtains the structure of an A-module. In particular, for a ∈ A and b ∈ B, we can talk about a ⊗
b = F(a) ⊗ b, where the first and second tensor products come from the A-module structure and
the monoidal structure on B, respectively. Similarly to the above, since the monoidal structures are
symmetric, we will also write b⊗ a = b⊗ F(a).

3.2.4. Lax functors. Let A ∈ ComAlg(PrL,st) and M,N ∈ModA. Then one can talk about left/right-lax
A-module functors F : M→ N [GR17, Vol. I, Chap. 1, §3.5.1]. Roughly speaking, if F is left-lax, then
for any a ∈ A, m ∈M, we have a natural map

F(a⊗m)→ a⊗ F(m).

Similarly, if F is right-lax, we have a map in the opposite direction. These maps are equivalences if F

is a strict (rather than lax) functor of A-modules.

Lemma 3.2.5 ([Lur17a, Cor. 7.3.2.7] or [GR17, Vol. I, Chap. 1, Lem. 3.5.3]). Let A,M,N be as above

and F : M⇄ N : G a pair of adjoint functors. Then, the structure on F of a left-lax functor of A-modules

is equivalent to the structure on G of a right-lax functor of A-modules.

3.2.6. EnrichedHom-spaces. For any (∞-)category C and two objects c1, c2 ∈ C, recall thatHomC(c1, c2) ∈
Spc denotes the the space of maps between c1 and c2. The theory of module categories allows for a richer
notion of Hom-space that we will now turn to.

Let A ∈ ComAlg(PrL,st) and M ∈ ModA. For any two objects m, n ∈M, we consider the following
functor

Aop→ Spc

a 7→ HomM(a⊗m, n).

By assumption, this functor preserves limits and hence, by presentability of all categories involved, we
know that this functor is representable [Lur17b, Prop. 5.5.2.2.]. We denote the representing object
HomA

M
(m, n), the A-enriched Hom-space between m and n. This object is also called the relative inner

Hom in [GR17, Vol. I, Chap. 1, §3.6].

3.2.7. By definition, we have

(3.2.8) HomM(a⊗m, n) ≃ HomA(a,HomA
M
(m, n)).

In particular, evaluating at a = 1A, the monoidal unit of A, we recover the usual Hom-space from the
A-enriched one

HomM(m, n) ≃ HomA(1A,HomA
M
(m, n)).

3.2.9. Equation (3.2.8) also implies that for any m ∈M, we have a pair of adjoint functors

A M.
−⊗m

HomA
M
(m,−)
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3.2.10. When M = A, then for any a1, a2 ∈ A, we obtain the inner-Hom: HomA
A
(a1, a2) ∈ A. For

brevity’s sake, we will omit the superscript A and simply write HomA(a1, a2).

3.2.11. Relative tensors of module categories. Let A ∈ ComAlg(PrL,st) and M,N ∈ModA. Then, one can
form the relative tensor ([Lur17a, §4.4] and [GR17, Vol. I, Chap. 1, §4.2.1])

M⊗A N = |M⊗A⊗• ⊗N| ∈ModA .

Here, M⊗A⊗• ⊗N denotes the simplicial object obtained by the two-sided bar construction, and | − |
denotes the geometric realization of a simplicial object (i.e., taking colimit). This construction equips
ModA with the structure of a symmetric monoidal category.

We have canonically defined functors

M×N→M⊗N→M⊗A N.

For m ∈M and n ∈ N, we write m⊠A n ∈M⊗A N to denote the image of (m, n) ∈M×N under this
functor. When no confusion is likely to occur, we will simply write m⊠ n ∈M⊗A N for m⊠A n.

3.2.12. Compact generation of relative tensors. We have the following generalization of Proposition 3.1.13.

Proposition 3.2.13 ([GR17, Vol. I, Chap. 1, Prop. 8.7.4]). Let A ∈ ComAlg(PrL,st) and M,N ∈ModA
such that A,M,N are all compactly generated. Suppose that

A⊗A→A, A⊗N→N, M⊗A→M

preserve compactness. Then, the functor M⊗N→M⊗AN also preserves compactness. Moreover, M⊗AN

is compactly generated by objects of the form m0 ⊠ n0 where m0 ∈M
c and n0 ∈N

c .

3.3. Duality. We will review basic general pattern of duality. The most important concept is that of a
dualizable object. This is an important finiteness condition in a monoidal category and which frequently
appears in knot theory and topological quantum field theory. The materials presented in this section
come from [GR17, Vol. I, Chap. 1, §4].

3.3.1. Dualizability. Let A ∈ ComAlg(PrL,st) and a ∈A. Then, we obtain an endofunctor a⊗− : A→A.
We say that a admits a dual a∨ if a∨ ⊗− is adjoint to a⊗−. In this case, we say that a is dualizable.

Note that most of [GR17, Vol. I, Chap. 1, §4] distinguishes between left and right duals (or dualiz-
ability), which correspond to specifying precisely which adjoint (i.e., left vs. right) we have. However,
in a symmetric monoidal category, the two notions coincide. Indeed, given a dualizable object a ∈ A

with dual a∨, for any b, c ∈A, we have

(3.3.2) HomA(a⊗ b, c) ≃ HomA(b, a∨ ⊗ c)

and
HomA(b, a⊗ c) ≃ HomA(a

∨ ⊗ b, c).

3.3.3. Dual object and internal-Hom. Just as in linear algebra, dual objects, in general, can be expressed
as the (internal) Hom into the monoidal unit object. Let a ∈ A be a dualizable object as above. By
§3.2.6, for any b, c ∈A, we have

(3.3.4) HomA(a⊗ b, c) ≃ HomA(b,HomA(a, c)).

Comparing with (3.3.2), we get
HomA(a, c) ≃ a∨ ⊗ c.

In particular, taken c = 1A, we get
a∨ ≃HomA(a, 1A).

Moreover, the functor HomA(a,−) ≃ a∨ ⊗− commutes with both limits and colimits.

3.4. Rigidity. Rigid monoidal categories are stable monoidal categories which exhibit strong finiteness
properties and behave extremely nicely with respect to duality and module category structures. In the
stable categorical context, it was introduced in [GR17, Vol. I, Chap. 1, §9] which is the reference for
this subsection.
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3.4.1. Compactly generated rigid symmetric monoidal categories.

Definition 3.4.2. Let A ∈ ComAlg(PrL,st) such that A is compactly generated. We say that A is rigid if
– The monoidal unit 1A is compact.
– The functor multA sends Ac ×Ac to Ac , i.e., it preserves compactness.
– Every compact object of A is dualizable.

We note that rigidity, in general, does not require the category involved to be compactly generated
nor the monoidal structure to be symmetric. The general definition can be found at [GR17, Vol. I, Chap.
1, Def. 9.1.2]. However, we do not need this generality in the paper. The fact that this is equivalent to
the above is [GR17, Vol. I, Chap. 1, Lem. 9.1.5].

Example 3.4.3. We let Vect denote the (∞-)derived category of chain complexes of vector spaces over
a field Λ. The category Vect has a natural symmetric monoidal structure. It is compactly generated with
compact objects being perfect complexes. In fact, it is compactly generated by Λ. From this description,
we see that Vect is a compactly generated rigid symmetric monoidal category.

Example 3.4.4. Let Vectgr denote the category of graded chain complexes. Formally speaking, let Z be
the discrete category with the underlying set of objects given by the set of integers. Then, Vectgr =
Fun(Z,Vect). We think of objects in Vectgr as graded chain complexes. Informally, any V ∈ Vectgr is of
the form V =
⊕

i∈Z Vi where Vi is the i-th graded component of V .
Vectgr has a natural symmetric monoidal structure given by Day convolution [Lur17a, §2.2.6]. More

informally, given V,W ∈ Vectgr,
(V ⊗W )k =
⊕

i+ j=k

Vi ⊗Wj .

Vectgr is compactly generated with compact objects being graded chain complexes supported on
finitely many degrees and each graded degree is perfect. Any compact object V ∈ (Vectgr)c is dualizable
with dual given by (V∨)i = (V−i)

∨. From this description, it we see that Vectgr is a compactly generated
rigid symmetric monoidal category.

For V ∈ Vect, we will also abuse notation and view it as an object in Vectgr where V is placed in degree
0. For any V ∈ Vectgr and k ∈ Z, we write V 〈k〉 to denote a grading shift of V , i.e., (V 〈k〉)n = Vn+k. In
particular, for V ∈ Vect, V 〈k〉 denotes the object in Vectgr obtained by putting V put in graded degree
−k. The category Vectgr is compactly generated by {Λ〈k〉}k∈Z.

3.4.5. Interaction with lax functors. Lax functors between module categories over a rigid monoidal
category are automatically strict.

Lemma 3.4.6 ([GR17, Vol. I, Chap. 1, Lem. 9.3.6]). Let A be a rigid monoidal category. Any continuous

right-lax or (left-lax) functor between A-module categories is strict.

Combining this result and Lemma 3.2.5, we obtain the following result.

Corollary 3.4.7. Let A be a rigid monoidal category, M,N ∈ ModA. Let F : M ⇄ N : G be a pair of

adjoint functors between the underlying categories. Then, the following are equivalent

(i) F is a left-lax functor of A-modules.

(ii) G is a right-lax functor of A-modules.

(iii) F is a strict functor of A-modules.

(iv) G is a strict functor of A-modules.

3.4.8. Interaction with compactness. Let A ∈ ComAlg(PrL,st) and M ∈ ModA. Then, an object m ∈M
is said to be compact relative to A if

HomA

M
(m,−) : M→A

commutes with filtered colimits (equivalently, all colimits) [GR17, Vol. I, Chap. 1, Def. 8.8.2].
The situation is especially nice when A is rigid.

Lemma 3.4.9 ([GR17, Vol. I, Chap. 1, Lem. 9.3.4]). Let A be a rigid monoidal category and M ∈ModA.

Then, m ∈M is compact if and only if it is compact relative to A.
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3.4.10. Compact generation of relative tensors. When A is rigid, relative tensors of compactly generated
A-modules are always compactly generated.

Lemma 3.4.11 ([GR17, Vol. I, Chap. 1, Lem. 9.3.2]). LetA be a rigid monoidal category andM ∈ModA.

Then, actA,M : A⊗M→M admits a continuous right adjoint.

Combining with Lemma 3.1.11 and Proposition 3.1.13, we obtain the following

Corollary 3.4.12. Let A and M be as in Lemma 3.4.11. Suppose that A and M are compactly generated.

Then A⊗M→M preserves compactness.

Combining with Proposition 3.2.13, we get

Corollary 3.4.13. Let A ∈ ComAlg(PrL,st) that is rigid and compactly generated. Let M,N ∈ ModA be

compactly generated as well. Then, M ⊗ N → M ⊗A N preserves compactness. Moreover, M ⊗A N is

compactly generated by objects of the form m0 ⊠ n0 where m0 ∈M
c and n0 ∈N

c .

3.5. An induction formula for enriched Hom-spaces. Relative tensor products over a compactly gen-
erated rigid symmetric monoidal category are quite explicit. Corollary 3.4.13 gives us a set of compact
generators. But in fact, enriched Hom-spaces are also explicit.

Proposition 3.5.1. LetA be a compactly generated rigid symmetric monoidal category, M,N ∈ModA that

are both compactly generated. Then, M⊗A N is compactly generated. Moreover, for (m0, n0) ∈M
c ×Nc

and (m, n) ∈M×N,

HomA
M⊗AN

(m0 ⊠ n0, m⊠ n) ≃HomA
M
(m0, m)⊗HomA

N
(n0, n).

Proof. From §3.2.9, we have a pair of adjoint functors

(3.5.2) A N.
−⊗n0

HomA
N
(n0,−)

By Lemma 3.4.9, we know that the right adjoint HomA
N
(n0,−) is continuous. Moreover, since −⊗ n0

is compatible with A-module structures on both sides, so is HomA
N
(n0,−), by Corollary 3.4.7. Thus,

applying M⊗A − to the above, we obtain the following pair of adjoint functors

(3.5.3) M M⊗A N.
−⊠n0

idM⊗HomA
N
(n0 ,−)

Here, idM⊗HomA
N
(n0,−) is the functor given by

m⊠ n 7→ m⊗HomA
N
(n0, n),

where HomA
N
(n0, n) ∈A and we have used the A-module structure on M to form the tensor, see §3.2.3.

Similarly to (3.5.2), we have the following pair of adjoint functors

A M.
m0⊗−

HomA
M
(m0 ,−)

Composing this with (3.5.3), we obtain a pair of adjoint functors

A M⊗A N.
−⊗(m0⊠n0)

HomA
M
(m0 ,−⊗HomA

N
(n0 ,−))

Now, note that

(3.5.4) HomA
M
(m0,−⊗HomA

N
(n0,−)) ≃HomA

M
(m0,−)⊗HomA

N
(n0,−)

since HomA
M
(m0,−) is compatible with A-module structures by Corollary 3.4.7. On the other hand,

−⊗(m0⊠n0) also admits a right adjoint given by HomA
M⊗AN

(m0⊠n0,−), again by §3.2.9. This implies
that for all m⊠ n ∈M⊗A N, we have

HomA
M⊗AN

(m0 ⊠ n0, m⊠ n) ≃HomA
M
(m0, m)⊗HomA

N
(n0, n)

as desired. �
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We have the following variant of the proposition above.

Proposition 3.5.5. Let F : A→ B be a symmetric monoidal functor between compactly generated rigid

symmetric monoidal categories. Let M ∈ ModA. Then, for (b0, m0) ∈ B
c ×Mc and (b, m) ∈ B×M, we

have (see the end of §3.2.3 for the notation)

HomB
B⊗AM

(b0 ⊠m0, b ⊠m) ≃HomB(b0, b)⊗HomA
M
(m0, m)

≃HomB(b0, b)⊗ F(HomA
M
(m0, m)).

In particular, if we let FM : M→B⊗A M be the natural functor, i.e., FM(m) = 1B ⊠m, then

HomB
B⊗AM

(FM(m0), FM(m)) ≃ F(HomA
M
(m0, m)).

Proof. The second part follows from the first part by noticing that HomB(1B, 1B) ≃ 1B.
The proof of the first part is similar to the one above. Namely, we have the following pair of adjoint

functors

B B⊗A M.
−⊗(b0⊠m0)

HomB(b0 ,−)⊗HomA
M
(m0 ,−)

On the other hand, −⊗(b0⊠m0) also admits a right adjoint given by HomB
B⊗AM

(b0⊠m0,−), by §3.2.9.
Thus, for all (b, m) ∈B×M, we have

HomB

B⊗AM
(b0 ⊠m0, b ⊠m) ≃HomB(b0, b)⊗HomA

M
(m0, m)

as desired. �

Corollary 3.5.6. In the situation of Proposition 3.5.5, suppose further that F is conservative. Then, FM|Mc

is also conservative.

Proof. We will show that if m ∈Mc such that m 6≃0 then FM(m) 6≃0. Now, note that m 6≃0 if and only
if HomA

M
(m, m) 6≃0. But since

HomB
B⊗AM

(FM(m), FM(m)) ≃ F(HomA
M
(m, m))

and F is conservative, this is equivalent to HomB
B⊗AM

(FM(m), FM(m)) 6≃0. This is itself equivalent to
FM(m) 6≃0. Hence, we are done. �

3.6. DG-categories. The theory of DG-categories fits nicely in the framework of stable categories re-
viewed above. The materials in this subsection are from [GR17, Vol. I, Chap. 1, §10].

A DG-category is a stable presentable category equipped with a module structure over Vect, i.e.,
it is an object in ModVect = ModVect(Pr

L,st). We let DGCatpres,cont = ModVect denote the category of
DG-categories with morphisms being continuous functors (compatible with Vect-module structures).

As already seen above, DGCatpres,cont is a symmetric monoidal category where the tensor structure
is given by relative tensor over Vect. In this paper, given C,D ∈ DGCatpres,cont, we will never take the
“absolute tensor” C⊗D. On the other hand, we will make extensive use of the relative tensors C⊗VectD.
Because of that, from this point forward, following [GR17, Vol. I, Chap. 1, §10.6], for we will adopt
the following convention

– When C,D ∈ DGCatpres,cont, C⊗D is used to denote C⊗Vect D. Moreover, for c ∈ C and d ∈D,
c ⊠ d is used to denote the element in C⊗Vect D.

– For c1, c2 ∈ C where C ∈ DGCatpres,cont, HomC(c1, c2) is used to denote HomVect
C
(c1, c2). In

particular, HomC(c1, c2) = HomVect(Λ,HomC(c1, c2)).
– All functors between DG-categories are, unless otherwise specified, compatible with the Vect-

module structures.
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3.7. Large vs. small categories. Up to now, we have been working with large categories, in the
sense that the collection of objects is not a set. As mentioned above, working in this context allows
many convenient theorems regarding existence of adjoints and limits/colimits to hold true. On the
other hand, working with small categories is usually more concrete. In fact, familiar constructions
in representation theory usually involve small categories rather than large ones. In this sense, large
categories could be viewed as a technical device: we usually perform our construction in the large
category setting whenever it is convenient to do so, and then extract the small category out of that.

We will now review constructions involving small categories and how they are related to those in
the large category setting.

3.7.1. Small DG-categories. Let DGCatidem,ex denote the category whose objects are idempotent com-
plete stable infinity categories, equipped with an action of Vectc , and whose morphisms are given by
exact functors (i.e., functors that commute with finite limits and colimits) compatible with the action of
Vectc . Unless otherwise specified, all small DG-categories in the current paper belong to DGCatidem,ex.

The procedure of taking Ind-completion provides a functor

Ind : DGCatidem,ex→ DGCatpres,cont .

The essential image of Ind is precisely those DG-categories that are compactly generated. Indeed,
given such a category C, the full subcategory Cc spanned by the set of compact objects is an object of
DGCatidem,ex. Moreover, Ind(Cc) ≃ C when C is compactly generated, see also §3.1.10.

3.7.2. Tensors of small DG-categories. Similarly to [BFN10, Prop. 4.4], DGCatidem,ex admits a symmetric
monoidal structure given by

C1 ⊗C2 := (Ind(C1)⊗ Ind(C2))
c , C1,C2 ∈ DGCatidem,ex .

Moreover, the functor Ind is symmetric monoidal. In particular, when C1,C2 ∈ DGCatpres,cont are com-
pactly generated,

(C1 ⊗C2)
c = Cc

1 ⊗C
c
2.

Using this monoidal structure, it is possible to make sense of ComAlg(DGCatidem,ex). Namely, A ∈
ComAlg(DGCatidem,ex) is a symmetric monoidal small DG-category such that the tensor product is com-
patible with the Vectc-action and with finite colimits in each variable. For such A, it is also possible to
make sense of ModA(DGCatidem,ex). Given A ∈ ComAlg(DGCatidem,ex), we will also use the notation
ModA := ModA(DGCatidem,ex) when no confusion is likely to occur. Note that this notation is similar
to the one introduced in §3.2.1; however, the fact that A is small should be clear from the context.

3.7.3. Module structures on large vs. small categories. For A ∈ ComAlg(DGCatpres,cont) and M ∈ModA
such that A is rigid compactly generated and M is compactly generated, Corollary 3.4.12 implies that
Mc ∈ModAc . Moreover, by continuity, the A-module structure on M is obtained by ind-extending the
Ac -module struture on Mc .

3.7.4. Relative tensors of small DG-categories. Similarly to the above, but in the relative setting, let
A ∈ ComAlg(DGCatpres,cont) be compactly generated and rigid, and M,N ∈ ModA that are compactly
generated. Then, we define

Mc ⊗Ac N
c = (M⊗A N)c .

Here, the LHS is performed in DGCatidem,ex using the tensor product described above.

3.7.5. Enriched Hom. Let A0 ∈ ComAlg(DGCatidem,ex) and M0 ∈ ModA0
(DGCatidem,ex), then we can

make sense of A := Ind(A0)-enriched Hom-spaces between objects in M0 by embedding M0 ,→M :=
Ind(M0) and use the discussion above for presentable categories. Here, the A-module structure on M

is obtained by left Kan extending A0 ⊗M0→M0 along A0 ⊗M0→A⊗M.
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4. GRADED SHEAVES: CONSTRUCTION AND FORMAL PROPERTIES

In this section, we will construct the category of graded sheaves on schemes/stacks and prove their
formal properties (see §1.2 for our conventions regarding schemes/stacks). In preparation for the
construction, we start, in Sections 4.1 to 4.3, with a brief review of the theory of ℓ-adic sheaves and
mixed sheaves on stacks in the form that is useful for our purposes. We construct the category of graded
sheaves in §4.4 and study their functoriality in §4.5. The streamlined construction of the category of
graded sheaves mean that six-functor formalism carries over to the graded setting in a straightforward
manner. In §4.6, we study the Hom-spaces between graded sheaves. Despite being an easy application
of §3.5, the result in this subsection serves as the foundation for most of the important results concerning
graded sheaves in this paper. Possibly most interestingly, we show in §4.7 that in a precise sense, the
category of graded sheaves is invariant under extensions of scalars. In other words, for a stack Yn

defined over ptn = SpecFqn , the category of graded sheaves on it only depends on Y, the base change
of Yn to Fq. Finally, in §4.8, we explain how the results of [LZ17a,LZ17b] can be used to upgrade our
theory of graded sheaves to a functor out of the category of correspondences on stacks. This captures all
the base change isomorphisms in a homotopy coherent way, which is useful when one wants to construct
an∞-monoidal category using convolutions, a pattern often seen in geometric representation theory.

4.1. ℓ-adic sheaves. We start with a quick review of the theory of ℓ-adic sheaves. The materials pre-
sented here are developed in details in [Gai15,GL19,HRS21] and [AGK+20, Appendix C.4].

4.1.1. ℓ-adic sheaves on schemes. For any scheme S ∈ SchF (see §1.2), we let Shv(S) denote the ind-
completion of the category Shvc(S) of constructible ℓ-adic (Qℓ) sheaves on S. In other words, we have

Shv(S) = Ind(Shvc(S)) and Shvc(S) = Shv(S)c .

For example, for pt ∈ Schk, where, following our conventions in §1.2, k = Fq, Shv(pt) = Vect and
Shvc(pt) = Vectc . Here, Vect denotes the DG-category of chain complexes of vector spaces over Qℓ, and
Vectc the full subcategory spanned by compact objects, which are perfect complexes.

Note that since all functors in the six-functor formalism respect constructibility, the resulting functors
between the large categories (i.e., after ind-completion) are obtained by ind-extension. Thus, all of
these functors are continuous and compactness preserving.

Using the pullback functors (−)∗ and (−)!, we obtain

Shv? : SchopF → DGCatpres,cont

where ? is either ∗ or !. Similarly, for the small versions, we have

Shv?
c

: SchopF → DGCatidem,ex .

4.1.2. ℓ-adic sheaves on stacks. Right Kan extending Shv? along Sch
op
F ,→ Stk

op
F , we obtain

Shv? : StkopF → DGCatpres,cont .

More concretely, for Y ∈ StkF,

Shv?(Y) = lim
S∈Sch

op
F/Y

Shv(S),

where the transition functors are either (−)∗ or (−)!. Since the property of satisfying descent is preserved
by right Kan extension [Gai11, Prop. 6.4.3], the new sheaf theories satisfy smooth descent. In particular,
if h : Y → Y is a smooth atlas where Y is a scheme, then

(4.1.3) Shv?(Y) = Tot(Shv?(Čech•(Y /Y)))

where Čech•(Y /Y) is the (simplicial) Čech nerve of the covering Y → Y, and Tot is the procedure of
taking totalization, i.e., limit, of a co-simplicial object.
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4.1.4. As in [Gai11, Prop. 11.4.3], for any Y ∈ StkF, Shv
!(Y) ≃ Shv∗(Y). This is essentially due to the

fact that the diagram used to compute the totalization (4.1.3) for the two theories are equivalent, given
by a shift. Thus, we will simply write Shv(Y) from now on. In particular, for f : Y→ Z a morphism in
StkF, we have functors

(4.1.5) f ∗, f ! : Shv(Z)→ Shv(Y).

By construction, f ∗ is continuous, and thus, has a right adjoint f∗. f ! is co-continuous, inherited from
same property of (−)! functors between schemes, and thus has a left adjoint f!.

14

Remark 4.1.6. Let PreStkF = Fun(Sch
op
F ,Spc) be the category of prestacks. The same considerations

yield two sheaf theories Shv! and Shv∗ on prestacks, which are useful, for instance, in the studies of
affine Grassmannians as well as their factorizable versions. In this generality, however, (4.1.5) does not
always hold. We will revisit this theory in a subsequent paper.

4.1.7. By [GR17, Vol. I, Chap. 1, Prop. 2.5.7], we obtain a alternative description of Shv!(Y) from
(4.1.3)

Shv(Y) = |Shv(Čech•(Y /Y))|,

where we now use the (−)!-functor to move between different schemes. Moreover, | − | denotes the
procedure of taking geometric realization, i.e., colimit, of a simplicial object. Since all the functors used
in the colimit preserve compactness, the category Shv(Y) is compactly generated with a set of compact
generators given by h!(Shvc(Y )), by [DG15, Cor. 1.9.4]. It is important that the colimit is taken inside
DGCatpres,cont.

4.1.8. Ind-constructible sheaves on stacks. The constant sheaves on most stacks are not compact, see
Example 4.1.12 below. On the other hand, it is constructible. The renormalization procedure described
in this subsubsection enlarges the category of sheaves so that constructible sheaves become compact
in this new category. The difference between the renormalized version and the usual version is parallel
to the difference between coherent complexes and perfect complexes, or more precisely, between ind-
coherent sheaves and quasi-coherent sheaves since we are working in the large category setting. A
more detailed discussion can be found in [AGK+20, Appendix C.4].

Definition 4.1.9. For Y ∈ StkF, we let Shvc(Y) denote the full-subcategory of Shv(Y) consisting of
constructible objects, defined to be those whose pullbacks along s : S → Y either via s∗ or s! are com-
pact/constructible for any scheme S.

We use Shv(Y)ren := Ind(Shvc(Y)) to denote the renormalized category of sheaves on Y.

Remark 4.1.10. When Y is a scheme rather than a stack, Shv(Y) and Shv(Y)ren coincide by construction.

Lemma 4.1.11. Let Y ∈ StkF and h : Y → Y a smooth atlas. Then F ∈ Shv(Y) is constructible if and only

if h∗F or h!F is constructible.

Proof. We will prove the statement for h∗; the one for h! is done analogously. The only if direction is
clear by definition. We will now prove the if direction.

Let f : S→ Y be an arbitrary morphism, where S ∈ SchF. Consider the following pullback square

S ×Y Y Y

S Y

hS

f ′

h

f

where hS is a smooth surjective map between schemes. Since h∗
S

f ∗F ≃ f ′∗h∗F is constructible, so is
f ∗F and we are done. �

14 f ! is in fact also continuous. Thus, it also has a right adjoint. However, this right adjoint is rarely used and in particular,
we do not make use of this functor in this paper.
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By definition, Shvc(Y) ≃ (Shv(Y)
ren)c since Shvc(Y) is easily seen to be idempotent complete. Unlike

the case of schemes, however, Shvc(Y) is in general different from Shv(Y)c , i.e., constructibility and
compactness do not necessarily coincide for a general stack Y (see Example 4.1.12 below).

Example 4.1.12. Consider the constant sheaf Qℓ,BGm
∈ Shv(BGm) which is evidently constructible. It is,

however, not compact in Shv(BGm). Indeed, to see that, it suffices to show that

π∗ =HomShv(BGm)
(Qℓ,BGm

,−) : Shv(BGm)→ Shv(pt) ≃ Vect

does not commute with filtered colimits, where π : BGm→ pt is the structure map. Consider

HomShv(BGm)
(Qℓ,BGm

,Qℓ,BGm
) = π∗Qℓ,BGm

≃Qℓ[β]

where β is in cohomological degree 2. Let

F = colim(Qℓ,BGm

β
−→Qℓ,BGm

[2]
β
−→ · · · ) ∈ Shv(BGm).

Let h : pt→ BGm be the canonical map. Then, by descent, h∗ is continuous and conservative, i.e., it
does not kill any object. But we see that

h∗F = colim(Qℓ
β
−→Qℓ[2]

β
−→ · · · ) ≃ 0.

Hence, by conservativity of h∗, F = 0, which means

π∗ colim(Qℓ
β
−→Qℓ[2]

β
−→ · · · ) ≃ π∗F ≃ 0.

On the other hand,

colim(π∗Qℓ,BGm

β
−→ π∗Qℓ,BGm

[2]
β
−→ · · · ) =Qℓ[β ,β−1] 6≃ 0≃ π∗ colim(Qℓ,BGm

β
−→Qℓ,BGm

[2]
β
−→ · · · )

and we are done.

4.1.13. ren and unren. The categories Shv(Y) and Shv(Y)ren are related by a pair of adjoint functors
ren ⊣ unren which we will now turn to. For more details, see [AGK+20, Appendix C.4].

First, note that compact objects in Shv(Y) are constructible, i.e., Shv(Y)c ⊂ Shvc(Y). Thus, by ind-
extension, we obtain a continuous functor

ren : Shv(Y)→ Shv(Y)ren.

Similarly, the functor Shvc(Y) ,→ Shv(Y) induces a continuous functor

unren : Shv(Y)ren→ Shv(Y).

These two functors form a pair of adjoints ren ⊣ unren.
By definition, we have the following commutative diagrams

Shv(Y)c

Shv(Y) Shv(Y)ren
ren

Shvc(Y)

Shv(Y) Shv(Y)ren
unren

4.1.14. t-structures. The categories Shv(Y) and Shv(Y)ren are naturally equipped with a standard and
a perverse t-structure, both obtained from ind-extending the corresponding t-structure on the full sub-
category of compact objects, see [AGH19, Prop. 2.13] or [Lur18, Lem. C.2.4.3]. Moreover, the functor
unren, restricted to the bounded below subcategories, induces an equivalence of categories [AGK+20,
Appendix C.4.1], i.e.

unren|Shv(Y)ren,+ : Shv(Y)ren,+ ≃−→ Shv(Y)+.
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4.1.15. Functoriality of ind-constructible sheaves on stacks. Since pulling back along any morphism f :
Y→ Z in StkF preserves constructibility, we automatically get continuous functors f !

ren and f ∗ren obtained
by ind-extending the restrictions of f ! and f ∗ to the constructible full-subcategories.15 By construction,
f ∗ren is continuous, and hence, it admits a right adjoint, denoted by f∗,ren. Moreover, since f ∗ren preserves
compactness by definition, f∗,ren is also continuous.

When f! preserves constructibility (for example, when f is representable), we have a pair of adjoint
functors

f! : Shvc(Y)⇄ Shvc(Z) : f !.

Ind-extending these, we obtain also a pair of adjoint functors

f!,ren : Shv(Y)ren⇄ Shv(Z)ren : f !
ren.

Note that in this case, both f !
ren and f!,ren are continuous.

f ∗ and f ∗ren are t-exact with respect to the standard t-structures. Hence, f∗ and f∗,ren, being the right
adjoints, are left t-exact with respect to the standard t-structures. In particular, f∗ and f∗,ren preserve
eventual co-connectivity (the property of being bounded below). Since the (−)! functor for schemes
preserve eventual co-connectivity, so is f ! and f !

ren (between stacks).

4.1.16. Renormalized vs. usual functors. We will now compare the various pullback/pushforward func-
tors with their renormalized counterparts. Let f : Y→ Z in StkF. We have the following (a priori not
necessarily commutative) diagram, where parallel arrows are adjoints

Shv(Y) Shv(Y)ren

Shv(Z) Shv(Z)ren

ren

f∗

unren

f∗,ren

ren

f ∗

unren

f ∗ren

Proposition 4.1.17. We have an equivalence of functors f ∗ ◦ unren ≃ unren ◦ f ∗ren. Moreover, for any

F ∈ Shvc(Y) ⊆ Shv(Y)ren, we have a natural equivalence

f∗(unren(F)) ≃ unren( f∗,ren(F)).

Proof. For the first statement, note that since all functors are continuous, it suffices to prove the state-
ment when restricted to Shvc(Z). But then, it follows from the definition of f ∗ren.

For the second, we first define a functor

f•,ren : Shvc(Y)→ Shv(Z)+ ,→ Shv(Z)ren,

as the following composition

Shvc(Y)
f∗
−→ Shv(Z)+ ≃ Shv(Z)ren,+ ,→ Shv(Z)ren.

Ind-extending, we obtain a (eponymous) continuous functor

f•,ren : Shv(Y)ren→ Shv(Z)ren.

By construction, for any F ∈ Shvc(Y), unren( f•,ren(F)) ≃ f∗(unren(F)). It thus remains to show that
f•,ren ≃ f∗,ren. Or equivalently, it suffices to show that f•,ren is the right adjoint of f ∗ren.

To do that, we produce a natural equivalence

HomShv(Z)ren(F, f•,renG) ≃ HomShv(Y)ren( f
∗
renF,G), ∀F ∈ Shv(Z)ren,∀G ∈ Shv(Y)ren.

15Note that on stacks, f ∗ and f ! do not necessarily preserve compactness. See Example 4.1.12.
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In fact, since the functors involved are continuous, it suffices to assume that F and G are constructible.
But now, we conclude using the following sequence of equivalences

HomShv(Z)ren(F, f•,renG) ≃ HomShv(Z)+(F, f∗G)

≃ HomShv(Y)+( f
∗F,G)

≃ HomShv(Y)ren,+( f ∗renF,G)

≃ HomShv(Y)ren( f
∗
renF,G)

where we made used of the fact that unren induces an equivalence between the bounded below parts
of the usual and renormalized categories, see §4.1.14. �

Remark 4.1.18. If f ∗ preserves compactness or equivalently, if f∗ is continuous (for example, when f

is representable), then the right adjoints in the diagram above commute in general, i.e., f∗ ◦ unren ≃
unren ◦ f∗,ren. Indeed, this follows from Proposition 4.1.17, using continuity of f∗.

As a result, the left adjoints also commute, i.e., ren ◦ f ∗ ≃ f ∗ren ◦ ren.

4.1.19. Now, when f! preserves constructibility, consider the following (a priori not necessarily com-
mutative) diagram

Shv(Y) Shv(Y)ren

Shv(Z) Shv(Z)ren

ren

f!

unren

f!,ren

ren

f !

unren

f !
ren

Lemma 4.1.20. Consider f as in Proposition 4.1.17. Then unren ◦ f !
ren ≃ f ! ◦ unren.

Moreover, if f! preserves constructibility (so that f!,ren is defined), then f! ◦unren≃ unren◦ f!,ren. In this

case, switching to the left adjoints of the previous statement also yields an equivalence f!,ren ◦ ren≃ ren ◦ f!.

Proof. For the first statement, if F ∈ Shvc(Z), the definition of f !
ren implies that unren( f !

ren(F)) ≃

f !(unren(F)). But since all functors involved are continuous, the same conclusion applies to all F ∈
Shv(Z).

The second statement is proved similarly. �

Remark 4.1.21. Due to Proposition 4.1.17, when working with constructible sheaves, there is no am-
biguity between f ∗, f∗ and their renormalized versions f ∗ren, f∗,ren, respectively. By Lemma 4.1.20, the
same statement also applies to f ! vs. f !

ren in general, and also to f! vs. f!,ren when f! preserves con-
structibility. Therefore, in these situations, when working with constructible sheaves, we will use the
two versions interchangeably.

4.1.22. Symmetric monoidal structures. For each S ∈ SchF, Shv(S) is equipped with a symmetric monoidal
structure given by tensor products of sheaves. This tensor product preserves compactness, or equiva-
lently (since we are working with schemes), constructibility. Moreover, for any f : S → T in SchF, f ∗

is symmetric monoidal.
This structure induces symmetric monoidal structures on Shv(Y) and Shv(Y)ren for any Y ∈ StkF.

Moreover, for any f : Y → Z in StkF, f ∗ and f ∗ren are symmetric monoidal. In particular, Shv(Y) and
Shv(Y)ren are equipped with the structures of module categories over Shv(ptF) ≃ Shv(ptF)

ren.

4.2. Mixed sheaves. Working over a finite field kn = Fqn , the theory of ℓ-adic sheaves has a “refine-
ment” using weights of Frobenius.

4.2.1. Mixed sheaves on schemes. Following [BBDG18, §5.1.5], for a scheme Xn ∈ Schkn
, we let Shvm,c(Xn)

denote the category of constructible mixed complexes, which is a full subcategory of Shvc(Xn).
16 We

let
Shvm(Xn) := Ind(Shvm,c(Xn))

16The category Shvm,c(Xn) is written as Db
m(Xn) in [BBDG18].
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and obtain a fully faithful embedding

Shvm(Xn) ,→ Shv(Xn).

4.2.2. The case of a point. The category Shvm(ptn) consists of complexes of continuous Frobenius mod-
ules whose eigenvalues are algebraic numbers of absolute values (qn)

w/2. The category Shvm(ptn) thus
breaks up into a direct sum of categories

Shvm(ptn)≃
⊕
w∈Z

Shvm(ptn)w.

In particular, for V ∈ Shvm(ptn), we have a natural decomposition

V ≃
⊕
w∈Z

Vw

where Vw has naive weight w, i.e., all eigenvalues have absolute values (qn)
w/2.

Remark 4.2.3. We caution the reader here that Vw does not have weight w in the sense of [BBDG18].
For example, consider Qℓ ∈ Shvm(ptn). Then, Qℓ[−2] has weight 2 in the sense of [BBDG18] but naive

weight 0 in the sense above.

4.2.4. The category Shvm(ptn) is thus equipped with a symmetric monoidal functor, given by forgetting
the Frobenius module structure (but still remembering the naive weights)

(4.2.5) gr : Shvm(ptn)→ Vectgr = Fun(Z,Vect).

In the notation above, gr(V ) =
⊕

w∈Z gr(V )w where gr(V )w = Vw and, as the notation suggests, is put
in graded degree w.

We can think of this functor as semi-simplifying the Frobenius action. Though simple, it plays a
crucial role in our construction of the category of graded sheaves. In fact, we will see that Shvgr(ptn) ≃
Vectgr.

4.2.6. Mixed sheaves on stacks. For Yn ∈ Stkkn
, we let Shvm(Yn) denote the full subcategory of Shv(Yn)

consisting of those F whose ∗-, or !-, pullback along sn : Sn → Yn for any Sn ∈ Schkn
is mixed. Since

mixedness is preserved under pullbacks [BBDG18, §5.1.6], it suffices to check mixedness on a stack by
pulling back to a smooth atlas as in Lemma 4.1.11. See also [Sun12b, Prop. 2.8 and Rmk. 2.12].

This description also implies that the category Shvm(Yn) could also be obtained by right Kan extend-
ing the corresponding theory for schemes as in §4.1.2, where Shv is replaced by Shvm.

Similarly to §4.1.8, we let Shvm,c(Yn) denote the full subcategory of Shvm(Yn) consisting of con-
structible objects. Moreover, we let Shvm(Yn)

ren := Ind(Shvm,c(Yn)) be the associated compactly gener-
ated category. By construction, we also have a fully faithful embedding Shvm(Yn)

ren ,→ Shvm(Yn).

4.2.7. Functoriality. Tensor products and the various pullback and pushforward functors preserve mixed-
ness. Indeed, it is proved for the case of schemes in [BBDG18, §5.1.6] and the case of stacks follows by
a spectral sequence argument, see, for example [Sun12b, Thm. 2.11 and Rmk. 2.12]. Thus, Shvm(Yn),
Shvm,c(Yn), and Shvm(Yn)

ren are symmetric monoidal. Moreover, for any morphism f : Y′
n
→ Yn be-

tween objects in Stkkn
, the various pullback and pushforward functors coming from f preserve mixed-

ness, whenever these functors are defined. In particular, using the structure map π : Yn → ptn =

Spec kn = SpecFqn , we obtain symmetric monoidal functors

π∗ : Shvm(ptn)→ Shvm(Yn) and π∗ren : Shvm(ptn)→ Shvm(Yn)
ren.

These functors equip Shvm(Yn) and Shvm(Yn)
ren with structures of objects in ComAlg(ModShvm(ptn)

).

Remark 4.2.8. In the rest of the paper, we will work exclusive with the mixed version. All functors on
sheaves are thus understood to operate on the mixed level by default.
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4.3. Shvm(ptn)-module structures. We have seen above that Shvm(Yn) and Shvm(Yn)
ren admit Shvm(ptn)-

module structures for any Yn ∈ Stkkn
. We will now show that all the usual functors are compatible with

this structure and deduce various consequences from this fact.
We note that a large part of the materials here has been treated more systematically in [LZ17b,

LZ17a], which will actually be used in §4.8 to obtain finer homotopy coherence structures for our sheaf
theory, Using [GR17], the discussion below is a slightly different take of [LZ17b, LZ17a], included for
the sake of completeness, especially for readers who are not familiar with [LZ17b, LZ17a] or are not
interested the finer homotopy coherence aspects of correspondences.

4.3.1. The case of schemes. We start with the case of schemes. The arguments used here are the same
as [GR17, Vol. I, Chap. 6]. We only indicate the main ideas here. The interested reader should
consult [GR17, Vol. I, Chap. 6] for more details.

Throughout, we will make use of the following observation.

Lemma 4.3.2. Shvm(ptn) is a compactly generated rigid symmetric monoidal category.

Proof. Shvm(ptn) is compactly generated, by definition, see §4.1. Compact objects are perfect Qℓ com-
plexes with continuous Ẑ-action with integral weights. The tensor product clearly preserves compact-
ness. Finally, compact objects are all dualizable, whose duals are simply Qℓ-linear duals. �

Lemma 4.3.3. Let f : Yn → Zn where Yn, Zn ∈ Schkn
. Then, the functors f ∗, f∗, f !, and f! are strict

functors of Shvm(ptn)-modules.

Proof. By definition, the functor f ∗ is a strict functor of Shvm(ptn)-modules. By rigidity of Shvm(ptn),
and by the fact that f∗ is continuous, we know that the right adjoint f∗ is also strict, see Corollary 3.4.7.

We turn to the pair f! ⊣ f !. We will treat the case f !; the claim for f! follows from Corollary 3.4.7.

We factor f as Yn

j
−→ Y n

f̄
−→ Zn where j is an open embedding and f̄ is proper. Then, f ! ≃ j!◦ f̄ ! ≃ j∗◦ f̄ !.

Now, f̄ ! is a right adjoint to f̄! = f̄∗, which is a strict functor of Shvm(ptn)-modules. Moreover, the case
of j! = j∗ already follows from the above. Arguing as in [GR17, Vol. I, Chap. 5] using [GR17, Vol. I,
Chap. 7, Thm. 5.2.4], we see that this structure is independent of the choice of a factorization and we
are done. �

4.3.4. The case of stacks. We will now move to the case of stacks.

Proposition 4.3.5. Let f : Yn → Zn where Yn,Zn ∈ Stkkn
. Then, the functors f ∗, f∗, f !, and f! have the

structures of strict functors of Shvm(ptn)-modules. Moreover, the same statements apply to the renormalized

sheaf theory.

Proof. Using Lemma 4.3.3, we can define Shvm on stacks by right Kan extending along Sch
op
kn
→ Stk

op
kn

the following functor

Shv?
m : Schop

kn
→ModShvm(ptn)

instead of the one in §4.1.2; see also the discussion in §4.2.6. The resulting object agrees with the
category Shvm(Yn) defined above since the forgetful functor ModShvm(ptn)

→ DGCatpres,cont, being a right
adjoint, commutes with limits. In particular, for f : Yn→ Zn in Stkkn

, f ∗ and f ! upgrade to strict func-
tors of Shvm(ptn)-modules. By rigidity of Shvm(ptn) and Corollary 3.4.7, we obtain the corresponding
statements for f∗ and f! as well.

The desired conclusion also holds for the renormalized versions f ∗ren and f !
ren since the Shvm(ptn)-

module structures on Shvm(−)
ren is obtained by ind-extending the Shvm,c(pt)-module structures on

Shvm,c(−) (see §3.7.3) and f ∗ren and f !
ren are constructed by ind-extending the corresponding functors

on the constructible part. By the rigidity of Shvm(ptn) and the fact that f∗,ren is continuous, we obtain the
statement for f∗,ren. Finally, when f! preserves constructibility (for example, when f is representable),
we have a pair of adjoint functors f!,ren ⊣ f !

ren, which implies the same statement for f!,ren as well. �
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4.3.6. Shvm(ptn)-enriched Hom. By the discussion in §3.2.6, for any F,G ∈ Shvm(Yn)
ren (resp. F,G ∈

Shvm(Yn)), we can consider the internal Hom (which is usually called the sheaf Hom in the literature),

HomShvm(Yn)
ren(F,G) ∈ Shvm(Yn)

ren (resp. HomShvm(Yn)
(F,G) ∈ Shvm(Yn))

as well as the Shvm(ptn)-enriched Hom. To keep things less cluttered, we will use the following notation
to denote the Shvm(ptn)-enriched Hom

(4.3.7) Homm
Shvm(Yn)

ren(F,G) :=Hom
Shvm(ptn)

Shvm(Yn)
ren(F,G) ∈ Shvm(ptn),

and similarly for the non-renormalized, i.e., usual, version.
In what follows, we will mostly focus on the renormalized case due to the applications we have in

mind. In most cases, however, the proof for the usual version is verbatim.

4.3.8. Internal Hom and Shvm(ptn)-enriched Hom are related in the expected way by the following
lemma.

Lemma 4.3.9. Let Yn ∈ Stkkn
and F,G ∈ Shvm(Yn)

ren (resp. F,G ∈ Shvm(Yn)). Then

π∗,renHomShvm(Yn)
ren(F,G) ≃Homm

Shvm(Yn)
ren(F,G)

(resp. π∗HomShvm(Yn)
(F,G) ≃Homm

Shvm(Yn)
(F,G))

Here π : Yn→ ptn denotes the structure map.

Proof. We will prove the statement for the renormalized sheaf theory. The proof of the other case is the
same. For any V ∈ Shvm(ptn), we have the following sequence of natural equivalences which yield the
desired conclusion by Yoneda lemma

HomShvm(ptn)
(V,π∗,renHomShvm(Yn)

ren(F,G))

≃ HomShvm(Yn)
ren(π∗renV ⊗F,G)

≃ HomShvm(Yn)
ren(V ⊗F,G)(4.3.10)

≃ HomShvm(ptn)
(V,Homm

Shvm(Yn)
ren(F,G)).

In (4.3.10), the tensor denotes the action of Shvm(ptn) on Shvm(Yn)
ren, and the equivalence there is

due to how the action is defined, i.e., via π∗ren. �

We also have the following expected result.

Proposition 4.3.11. Let f : Yn→ Zn be a representable smooth morphism in Stkkn
, andF,G ∈ Shvm(Zn)

ren.

Then, we have a natural equivalence

f ∗renHomShvm(Zn)
ren(F,G) ≃HomShvm(Yn)

ren( f ∗renF, f ∗renG).

Proof. Since f is smooth, f ∗ren coincides with f !
ren, up to a cohomological shift. Thus, f ∗ren admits a left

adjoint, f̃!,ren that differs from f!,ren by a cohomological shift. In particular, f̃!,ren satisfies base change
theorem and projection formula.17 Note that representability of f is used to guarantee the existence of
f!,ren.

17Base change theorem for f!,ren follows from the usual setting (i.e., non-renormalized): one restricts to compact objects,
which lives in the usual setting, and then ind-extend, since all functors are continuous. As in the usual proof, projection formula
is a consequence of base change theorem and Künneth formula. See also [LZ17b, Cor. 6.2.3]
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Let T ∈ Shvm(Y)
ren be any test object. The desired conclusion follows from Yoneda lemma and the

equivalences below

HomShvm(Yn)
ren(T, f ∗renHomShvm(Zn)

ren(F,G))

≃ HomShvm(Zn)
ren( f̃!,renT,HomShvm(Zn)

ren(F,G))

≃ HomShvm(Zn)
ren( f̃!,ren(T)⊗F,G)

≃ HomShvm(Zn)
ren( f̃!,ren(T ⊗ f ∗renF),G)

≃ HomShvm(Yn)
ren(T ⊗ f ∗renF, f ∗renG)

≃ HomShvm(Yn)
ren(T,HomShvm(Yn)

ren( f ∗renF, f ∗renG)).

�

Remark 4.3.12. The same statement as in Proposition 4.3.11 also holds for the usual sheaf theory, except
that we do not need to require f to be representable. This is because f! always exists.

Corollary 4.3.13. Let Yn ∈ Stkkn
and F,G ∈ Shvm,c(Yn). Then, both

HomShvm(Yn)
(F,G) and HomShvm(Yn)

ren(F,G)

are also constructible.

Proof. When Yn is a scheme, this is well-known as it is part of the six-functor formalism. Note that for
schemes, the two sheaf theories coincide.

For a general Yn, by Lemma 4.1.11, to show that HomShvm(Yn)
(F,G) is constructible, it suffices to

show that its pullback to a smooth atlas is constructible. But then, Remark 4.3.12 allows us to reduce
to the scheme case and the desired conclusion follows.

Since HomShvm(Yn)
(F,G) ∈ Shvm,c(Yn), we can view it as an element of Shvm(Yn)

ren. To show that
HomShvm(Yn)

ren(F,G) is constructible, it suffices to show that we have an equivalence

HomShvm(Yn)
ren(F,G) ≃HomShvm(Yn)

(F,G)

as objects in Shvm(Yn)
ren. But now, for any T ∈ Shvm,c(Yn), we have

HomShvm(Yn)
ren(T,HomShvm(Yn)

(F,G))

≃ HomShvm,c(Yn)
(T,HomShvm(Yn)

(F,G))

≃ HomShvm(Yn)
(T,HomShvm(Yn)

(F,G))

≃ HomShvm(Yn)
(T ⊗F,G)

≃ HomShvm,c(Yn)
(T ⊗F,G)

≃ HomShvm(Yn)
ren(T ⊗F,G)

≃ HomShvm(Yn)
ren(T,HomShvm(Yn)

ren(F,G)),

where we have used the fact that ⊗ preserves constructibility in the fourth equivalence. This implies
that for all T ∈ Shvm(Yn)

ren,

HomShvm(Yn)
ren(T,HomShvm(Yn)

(F,G)) ≃ HomShvm(Yn)
ren(T,HomShvm(Yn)

ren(F,G)).

We conclude the proof by Yoneda lemma. �

4.4. The construction. We now construct the category of graded sheaves.

4.4.1. The construction. We start with the definition of the category of graded sheaves.

Definition 4.4.2. For Yn ∈ Stkkn
, we let Shvgr(Yn) := Shvm(Yn) ⊗Shvm(ptn)

Vectgr and Shvgr(Yn)
ren :=

Shvm(Yn)
ren⊗Shvm(ptn)

Vectgr be the categories of graded sheaves and, respectively, renormalized graded
sheaves on Yn. Here, the symmetric monoidal functor gr : Shvm(ptn)→ Vectgr of (4.2.5) is used to form
the relative tensor.

The full-subcategory of graded constructible sheaves Shvgr,c(Yn) is defined to be the full subcategory
spanned by the compact objects Shvgr(Yn)

ren,c .
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Direct from the construction, we have the following observation.

Lemma 4.4.3. Let Yn ∈ Stkkn
. Then, Shvgr(Yn),Shvgr(Yn)

ren ∈ ComAlg(Vectgr), i.e., they are symmetric

monoidal DG-categories whose tensor products are compatible with Vectgr-actions. Moreover, we have a

natural symmetric monoidal continuous and compact preserving functor grYn
: Shvm(Yn)

ren→ Shvgr(Yn)
ren

given by grYn
(F) = F⊠Qℓ and similarly for the non-renormalized version.

When Yn is clear from the context or when Yn = ptn, we simply write gr in place of grYn
.

A couple of remarks are in order.

Remark 4.4.4. Due to the applications we have in mind, we will, from now on, restrict ourselves to the
renormalized case. As we already saw above, this case is equipped with better functoriality compared
to the non-renormalized one. Note that many of the results below can also be proved in the same way
for the non-renormalized case. And of course, in the case of schemes, there is no distinction between
renormalized and non-renormalized theory. Thus, for Sn ∈ Schkn

, we can simply write Shvgr(Sn) to
mean either one of the two theories.

Remark 4.4.5. By definition, an object Yn ∈ Stkkn
is equipped, as part of the definition, with a structure

map Yn → ptn = SpecFqn . It is this map that allows us to equip Shvm(Yn)
ren with the structure of

a Shvm(ptn)-module used in the definition of Shvgr(Yn)
ren. It is important to note that the resulting

category of graded sheaves Shvgr(Yn)
ren is sensitive to this structure.

For example, consider pt2 = SpecFq2 . It can be viewed as an object of either Stkk2
or Stkk1

. We thus
have two categories

Shvm(pt2)⊗Shvm(pt1)
Vectgr and Shvm(pt2)⊗Shvm(pt2)

Vectgr ≃ Vectgr .

It is easy to see that these two categories are distinct. For example, using Proposition 4.6.2 below, one

can see that the the Vectgr-enriched Hom of the constant sheaf in two cases are different: Q
2

ℓ
for the

first case and Qℓ for the second. This should not be surprising since roughly speaking, the first category
is related to pt2 ×pt1

pt≃ pt⊔ pt.
Because of this, when using the notation Shvgr(Yn)

ren, unless specified otherwise, the subscript n in
Yn is used to indicate the fact that we are viewing Yn as an object in Stkkn

in defining the category of
graded sheaves.

Remark 4.4.6. Instead of the construction Shvgr(Yn)
ren = Shvm(Yn)

ren ⊗Shvm(ptn)
Vectgr, which has the

effect of remembering only the weights, we could instead construct the category of ω-graded sheaves
Shvω(Yn)

ren := Shvm(Yn)
ren ⊗Shvm(ptn)

Vectω. Here, Vectω is the category of chain complexes indexed

by the set of algebraic integers with (complex) absolute values (qn)
w/2 for w ∈ Z, i.e., those numbers

that can appear as eigenvalues of Frobenius actions on objects in Shvm(ptn), see also [BBDG18, §5.1.5].
Moreover, the symmetric monoidal functor Shvm(ptn) → Vectω forgets the Frobenius action but still
remembers the eigenvalues. This construction thus literally means semi-simplifying Frobenius actions.
Note also that Shvm(ptn)→ Vectgr factors through this functor.

All results in this paper can be made to work with this variant in a straightforward manner. Since
taking trace of Frobenius forgets non-semisimplicity behaviors, the usual Grothendieck–Lefschetz trace
formula also factors through this construction. For the applications we have in mind, however, we are
primarily interested in the weight grading rather than the actual eigenvalues. Moreover, dealing with
gradings somewhat simplifies the notation and the exposition. We will, as a result, not pursue this line
of investigation in the current paper.

4.4.7. Grading shifts. Recall from Example 3.4.4 that an object V ∈ Vectgr could be written as a direct
sum V = ⊕nVn where Vn ∈ Vect is placed in graded degree n. For any integer k, we use V 〈k〉 to denote
a grading shift of V , i.e., V 〈k〉n = Vn+k. For F ∈ Shvgr(Yn)

ren, we write F〈k〉 := F⊗Qℓ〈k〉, where Qℓ〈k〉

is Qℓ placed in graded degree −k.
This notation is compatible Tate twist. Namely, if F ∈ Shvm(Y)

ren, then

gr(F(k)) ≃ gr(F)〈2k〉
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where the factor 2 is due to the fact that the sheaf Qℓ(−1) ∈ Shvm(ptn) has weight 2.
From Corollary 3.4.13, we know that Shvgr,c(Yn) is compactly generated by F ⊠ Qℓ〈k〉 for F ∈

Shvm,c(Y) and k ∈ Z. But this is equivalent to F(k/2)⊠Qℓ = gr(F(k/2)). Thus, the image of Shvm,c(Yn)

under gr compactly generates Shvgr(Yn)
ren.

4.5. Functoriality. We will now study functoriality of graded sheaves, which follows in a straightfor-
ward manner from that of mixed sheaves.

4.5.1. Pull and push functors. Let f : Yn→ Zn where Yn,Zn ∈ Stkkn
. Then, recall that we have functors

f ∗ren, f !
ren : Shvm(Zn)

ren→ Shvm(Yn)
ren and f∗,ren : Shvm(Yn)

ren→ Shvm(Zn)
ren

where f ∗ren ⊣ f∗,ren. Moreover, when f! preserves constructibility, f !
ren admits a left adjoint f!,ren.

By Proposition 4.3.5, all of these functors are strict functors of Shvm(ptn)-modules. Thus, applying
−⊗Shvm(ptn)

Vectgr, we obtain functors

f ∗ren, f !
ren : Shvgr(Zn)

ren→ Shvgr(Yn)
ren and f∗,ren : Shvgr(Yn)

ren→ Shvgr(Zn)
ren

where f ∗ren ⊣ f∗,ren. As above, when f! (for mixed sheaves) preserves constructibility, f !
ren admits a left

adjoint f!,ren. Note that to avoid clutter, we do not include in the notation of the various pull and push
functors any extra decoration to specify that we are operating with graded sheaves.

4.5.2. Compatibility with functoriality for mixed/non-mixed sheaves. The various pull and push functors
for graded sheaves are compatible with those on mixed/non-mixed sheaves in a precise sense.

4.5.3. Let Yn ∈ Stkkn
and Y ∈ Stkk its base change to k. Let hY : Y → Yn and h : pt → ptn denote

the canonical maps, and πn : Yn → ptn and π : Y→ pt denote the structure maps. Then, we have the
following commutative diagram in ComAlg(DGCatpres,cont), where in the bottom right, Vect≃ Shv(pt)

Shvm(Yn)
ren Shv(Y)ren

Shvm(ptn) Vectgr Vect

h∗
Y,ren

π∗n,ren

h∗

gr oblvgr≃⊕

π∗ren

Here, oblvgr denotes the functor of taking the direct sum of all graded components.
This implies the following lemma.

Lemma 4.5.4. In the situation above, the functor grYn
: Shvm(Yn)

ren → Shvgr(Yn)
ren of Lemma 4.4.3

fits into the following commutative diagram in ComAlg(DGCatpres,cont) where the square on the left is a

pushout square in ComAlg(DGCatpres,cont)

Shvm(Yn)
ren Shvgr(Yn)

ren Shv(Y)ren

Shvm(ptn) Vectgr Vect

h∗
Y,ren

grYn oblvgr,Yn

π∗
n,ren

h∗≃oblvFrobn

gr

π∗
n,ren

oblvgr

π∗ren

As before, when Yn is clear from the context, we will also use oblvgr to denote oblvgr,Yn
.

Compatibility between grYn
and various pull and push functors is given in the following result.
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Proposition 4.5.5. Let fn : Yn → Zn where Yn,Zn ∈ Stkkn
, f : Y→ Z its base change to k, hY : Y→ Yn

and hZ : Z→ Zn the canonical maps. Then we have the following commutative diagrams

Shvm(Yn)
ren Shvgr(Yn)

ren Shv(Y)ren

Shvm(Zn)
ren Shvgr(Zn)

ren Shv(Z)ren

h∗
Y,ren

grYn oblvgr,Yn

h∗
Z,ren

grZn

f ∗n,ren (resp. f !
n,ren)

oblvgr,Zn

f ∗n,ren (resp. f !
n,ren) f ∗ren (resp. f !

ren)

and

Shvm(Yn)
ren Shvgr(Yn)

ren Shv(Y)ren

Shvm(Zn)
ren Shvgr(Zn)

ren Shv(Z)ren

h∗
Y,ren

grYn

fn∗,ren (resp. fn!,ren)

oblvgr,Yn

fn∗,ren (resp. fn!,ren) f∗,ren (resp. f!,ren)

h∗
Z,ren

grZn
oblvgr,Zn

Note that here, the (−)!,ren case is only defined when f! preserves constructibility.

Proof. The left squares in the diagrams above commute by naturality of

grC : C→ C⊗Shvm(ptn)
Vectgr, C ∈ModShvm(ptn)

.

Moreover, the outer square also commutes by smooth base change, and are compatible with the module
structures over Shvm(ptn) and Vect. By the factorization

Shvm(ptn)→ Vectgr→ Vect,

the commutativity of the squares on the right follows from universal property of “tensoring up.” �

Remark 4.5.6. Similarly, for any Yn ∈ Stkkn
, we have functors

Shvm(Yn)
ren

grω
Yn

−−→ Shvω(Yn)
ren

oblvgrω
Yn

−−−−→ Shv(Y)ren.

where Shvω(Yn)
ren is described in Remark 4.4.6.

Beilinson communicated the following observation to us. Let Am = Qℓ[t] ∈ ComAlg(Shvm(ptn))

where Frobenius acts by t 7→ t + 1 and A ∈ ComAlg(Shv(pt)) its pullback to Shv(pt). Then, one
can show that Shvω(ptn) ≃ ModAm

(Shvm(ptn)), which implies, more generally, that Shvω(Yn)
ren ≃

ModAm
(Shvm(Yn)

ren). Under this equivalence, grω
Yn

is identified with Shvm(Yn)
ren Am⊗−
−−−→ModAm

(Shvm(Yn)
ren)

and oblvgrω
Yn

factors as follows

ModAm
(Shvm(Yn)

ren)
oblvm
−−→ModA(Shv(Y)

ren)
−⊗AQℓ
−−−→ Shv(Y)ren,

where the commutative algebra map A→ Qℓ is given by sending t 7→ 0. We will not make use of this
in the current paper.

4.5.7. Base change results. Other functorial properties of graded sheaves also follow from the corre-
sponding results for mixed sheaves in a straightforward manner.

Theorem 4.5.8. The theory of graded sheaves satisfies projection formula and smooth and proper base

change. Namely,



30 QUOC P. HO AND PENGHUI LI

(i) Projection formula: Let f : Yn → Zn be a morphism in Stkkn
such that f!,ren is defined (for

example, when f! for mixed sheaves preserves constructibility). Then, for any F ∈ Shvgr(Yn)
ren,G ∈

Shvgr(Zn)
ren, we have a natural equivalence

f!,ren(F⊗ f ∗renG) ≃ f!,renF⊗G.

(ii) Consider the following Cartesian square in Stkkn

Y′
n

Yn

Z′
n

Zn

v′

h′

v

h

– Proper base change: When v!,ren and v′!,ren are defined then we have a natural equivalence of

functors h∗renv!,ren ≃ v′!,renh′∗ren.

– Smooth base change: When h is smooth, we have a natural equivalence of functors h∗renv∗,ren ≃

v′∗,renh′∗ren.

– Smooth base change (variant): We have an equivalence of functors h!
renv∗,ren ≃ v′∗,renh′!ren.

Proof. Since all functors involved are continuous and all categories involved are compactly generated,
it suffices to check on a set of compact objects. It thus remains to show that these statements hold for
constructible mixed sheaves, viewed as objects in the category of renormalized mixed sheaves.

All operations in the projection formula and proper base change statement preserve constructibility.
Thus, the usual results for mixed sheaves imply those in the renormalized categories. For the last
two statements involving smooth base change, we note that even though renormalized ∗-pushforward
functors do not preserve constructibility, they do preserve the property of being bounded below in the
usual t-structure (in fact, they are left t-exact). Similarly, the renormalized ∗-pullback functors also
preserve the property of being bounded below, since they are t-exact. Now, the functor unren induces
an equivalence between the full subcategories of bounded below objects in the usual and renormalized
categories of sheaves. Proposition 4.1.17 and Lemma 4.1.20 then allow us to apply the usual smooth
base change theorem for mixed sheaves and the proof concludes. �

4.5.9. Smooth descent. Like Shvm, the sheaf theory Shvgr satisfies smooth descent.

Proposition 4.5.10. Shvgr satisfies smooth descent. I.e., let Zn → Yn be a smooth morphism in Stkkn

and let Čech•(Zn/Yn) be the associated Čech nerve. Then the pullback functor (either ∗ or !) induces an

equivalence of categories

Shvgr(Yn) ≃ Tot(Shvgr(Čech
•(Zn/Yn))).

Similarly, Shvgr,c also satisfies smooth descent, i.e., we have

Shvgr,c(Yn) ≃ Tot(Shvgr,c(Čech
•(Zn/Yn))).

Proof. Since Vectgr is compactly generated, it is also dualizable as a presentable stable ∞-category,
by [GR17, Vol. I, Chap. 1, Prop. 7.3.2]. Since Shvm(ptn) is rigid, Vectgr is also dualizable as an object
in ModShvm(ptn)

, by [GR17, Vol. I, Chap. 1, Prop. 9.4.4]. But now, the relative tensor −⊗Shvm(ptn)
Vectgr

commutes with limits, by [GR17, Vol. I, Chap. 1, §4.3.2]. Hence, descent for mixed sheaves imply that
for graded sheaves

Shvgr(Yn)

≃ Shvm(Yn)⊗Shvm(ptn)
Vectgr

≃ Tot(Shvm(Čech
•(Zn/Yn)))⊗Shvm(ptn)

Vectgr

≃ Tot(Shvm(Čech
•(Zn/Yn))⊗Shvm(ptn)

Vectgr)

≃ Tot(Shvgr(Čech
•(Zn/Yn))).

Since pulling back preserves compactness by construction, the second statement follows from the first.
�
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Remark 4.5.11. The same proof shows that Shvgr, as a functor out of Stkop
kn

, can be obtained by right

Kan extending Shvgr as a functor out of Schop
kn

.

Remark 4.5.12. Shvgr(−)
ren does not satisfy smooth descent. In fact, Shv(−)ren already fails to satisfy

descent. Consider the canonical morphism h : pt→ BGm as in Example 4.1.12. If Shv(−)ren satisfied
smooth descent, h∗ren would be conservative, i.e., it would not kill any object. This is, in fact, not the
case.

As in Example 4.1.12, let π : BGm→ pt denote the structure morphism and

F = colim(Qℓ
β
−→Qℓ[2]

β
−→Qℓ[4]

β
−→ · · · ).

Since π∗ren preserves compactness, π∗,ren is continuous. Proposition 4.1.17 and the calculation in Exam-
ple 4.1.12 implies that

π∗,renF ≃ colim(π∗,renQℓ
β
−→ π∗,renQℓ[2]

β
−→ π∗,renQℓ[4]

β
−→ · · · ) ≃Qℓ[β ,β−1] 6≃0.

In particular, F 6≃0.
On the other hand, as in Example 4.1.12, h∗ren(F) ≃ 0.

4.5.13. Verdier duality. The category of mixed sheaves is equipped with a duality functor

DVer : Shvm,c(Yn)
≃
−→ Shvm,c(Yn)

op

which is compatible with the linear dual on a point, which is a symmetric monoidal functor

(−)∨ : Shvm,c(ptn)→ Shvm,c(ptn)
op.

We thus get an induced functor

Shvm,c(Yn)⊗Shvm,c(ptn)
Shvm,c(ptn)

op→ Shvm,c(Yn)
op,

and hence, a functor

Shvm,c(Yn)⊗Shvm,c(ptn)
Shvm,c(ptn)

op ⊗Shvm,c(ptn)
op Vectgr,c,op→ Shvm,c(Yn)

op ⊗Shvm,c(ptn)
op Vectgr,c,op

Note that the RHS is equivalent to

(Shvm,c(Yn)⊗Shvm,c(ptn)
Vectgr,c)op ≃ Shvgr,c(Y)

op

since (−)op is a symmetric monoidal auto-equivalence of DGCatidem,ex. Moreover, we have the following
sequence of functors to the LHS

Shvgr,c(Y) ≃ Shvm,c(Yn)⊗Shvm,c(ptn)
Vectgr,c

id⊗(−)∨

−−−−→ Shvm,c(Yn)⊗Shvm,c(ptn)
Vectgr,c,op

≃ Shvm,c(Yn)⊗Shvm,c(ptn)
Shvm,c(ptn)

op ⊗Shvm,c(ptn)
op Vectgr,c,op

We thus obtain the corresponding Verdier duality functor for graded sheaves

DVer : Shvgr,c(Y)
≃
−→ Shvgr,c(Y)

op,

compatible with the duality functor (−)∨ on Vectgr.

4.5.14. Unwinding the definition, we see that for F ⊠ V ∈ Shvgr,c(Y) where F ∈ Shvm,c(Yn) and V ∈

Vectgr,c , DVer(F⊠ V ) ≃ DVer(F)⊠ V ∨. It is also easy to see that we get all the expected properties of the
Verdier duality functor for graded sheaves from the Verdier duality functor for mixed sheaves.
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4.6. (Graded) Hom-spaces between graded sheaves. We will now study the Hom-spaces, both Vect
and Vectgr-enriched, inside Shvgr(Yn)

ren. Following Lemma 4.3.9, we will employ the following notation
to denote the Vectgr-enriched Hom

Hom
gr
Shvgr(Yn)

ren(F,G) :=HomVectgr

Shvgr(Yn)
ren(F,G) ∈ Vectgr .

In particular, when Yn = ptn and V,W ∈ Vectgr ≃ Shvgr(ptn), we write

Hom
gr
Vectgr(V,W ) :=HomVectgr

Vectgr(V,W ) ∈ Vectgr

to denote the internal Hom.
We start with the following counterpart of Lemma 4.3.9, whose proof is identical to Lemma 4.3.9

and hence, will be omitted.

Lemma 4.6.1. Let Yn ∈ Stkkn
and F,G ∈ Shvgr(Yn)

ren. Then,

π∗,renHomShvgr(Yn)
ren(F,G) ≃Hom

gr
Shvgr(Yn)

ren(F,G).

The next result concerns computation of Hom between graded sheaves.

Proposition 4.6.2. Let Yn ∈ Stkkn
, (Fc , Vc) ∈ Shvm,c(Yn) × Vect

gr,c, and (F, V ) ∈ Shvm(Yn)
ren × Vectgr.

Then,

Hom
gr
Shvgr(Yn)

ren(Fc ⊠ Vc ,F⊠ V ) ≃Hom
gr
Vectgr(Vc , V )⊗ gr(Homm

Shvm(Yn)
ren(Fc ,F)).

Consequently,18

(4.6.3) HomShvgr(Yn)
ren(gr(Fc),gr(F)) ≃ gr(Homm

Shvm(Yn)
ren(Fc ,F))0 ≃Homm

Shvm(Yn)
ren(Fc ,F)0,

where the subscript 0 denotes the graded 0 part, or equivalently, the naive weight 0 part.19

Proof. The first part is an application of Proposition 3.5.5.
For the second part, from the definition of enriched Hom, we conclude via the following sequence

of equivalences

HomShvgr(Yn)
ren(gr(Fc),gr(F))

≃HomVectgr(Qℓ,Hom
gr
Shvgr(Yn)

ren(gr(Fc),gr(F)))

≃HomVectgr(Qℓ,grHomm
Shvm(Yn)

ren(Fc ,F))

≃ grHomm
Shvm(Yn)

ren(Fc ,F)0

≃Homm
Shvm(Yn)

ren(Fc ,F)0,

where the second equivalence is due to the first part. �

Corollary 4.6.4. Let Yn ∈ Stkkn
, Fn,Gn ∈ Shvm(Yn)

ren where Fn is compact, Y,F,G their base changes to

pt= Spec k, and h : Y→ Yn the canonical map. Then, oblvgr,Yn
(see Lemma 4.4.3) induces a map

HomShvgr(Yn)
ren(gr(Fn),gr(Gn))→HomShv(Y)ren(F,G)

which realizes the former as a direct summand of the latter. In particular, if

α ∈ H0(HomShvgr(Yn)
ren(gr(Fn),gr(Gn))),

then it is 0 if and only if its image in HomShv(Y)ren(F,G) is 0.

Proof. The second statement is a direct consequence of the first. The first statement is itself a conse-
quence of (4.6.3) and the fact that

HomShv(Y)ren(F,G) ≃ oblvFrobn
Homm

Shvm(Y)ren
(Fn,Gn).

�

18Recall that for a DG-category C, HomC denotes the Hom-complex between two objects. See §3.6.
19See also §4.2.2 for the notation.
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4.7. Invariance under of extensions of scalars. The relative tensor − ⊗Shvm(ptn)
Vectgr used in the

definition of Shvgr(Yn)
ren can be thought of as a categorical way to base change Yn to k (while still

remembering some weight information). Thus, at least intuitively, we should expect that Shvgr(Yn)
ren

is invariant under base changing Yn to Ym ∈ Stkkm
. This is the content of Proposition 4.7.9 below. By a

spreading argument, this implies that Shvgr(−)
ren is a sheaf theory on Stkk, see Theorem 4.7.12.

4.7.1. Consider f : ptm→ ptn where m≥ n, which induces a symmetric monoidal functor

f ∗ : Shvm(ptn)→ Shvm(ptm),

compatible with the functor to Vectgr. Namely, we have the following commutative diagram of symmet-
ric monoidal categories

Shvm(ptn) Shvm(ptm)

Vectgr
grptn

f ∗

grptm

This induces a natural functor

Shvgr(ptn)→ Shvgr(ptm)

that is an equivalence of categories. In fact, both sides are naturally identified with Vectgr and under
this identification, the resulting functor is an identity functor.

4.7.2. We will now consider the general case. Let Yn ∈ Stkkn
and consider the following pullback

square

Ym Yn

ptm ptn

πm

g

πn

f

which induces the following commutative square of categories, where all functors are symmetric monoidal

Shvm(Ym)
ren Shvm(Yn)

ren

Shvm(ptm) Shvm(ptn)

g∗ren

π∗
m,ren π∗

n,ren

f ∗

The diagram above induces a morphism in ComAlg(ModShvm(ptm)
)

(4.7.3) g̃∗ren :gShvm(Yn)
ren := Shvm(Yn)

ren ⊗Shvm(ptn)
Shvm(ptm)→ Shvm(Ym)

ren.

Lemma 4.7.4. g̃∗ren is fully faithful.

Proof. It suffices to show that for any F,G ∈ Shvm,c(Yn) and V,W ∈ Shvm,c(ptm), g̃∗ren induces an equiv-
alence

Hom
Shvm(ptm)

gShvm(Yn)
ren
(F⊠ V,G⊠W ) ≃Hom

Shvm(ptm)

Shvm(Ym)
ren(V ⊗ g∗renF,W ⊗ g∗renG)

where the tensors on the right come from the Shvm(ptm)-module structure of Shvm(Ym)
ren.
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We have

Hom
Shvm(ptm)

gShvm(Yn)
ren
(F ⊠ V,G⊠W )

≃HomShvm(ptm)
(V,W )⊗ f ∗Hom

Shvm(ptn)

Shvm(Yn)
ren(F,G)(Proposition 3.5.5)

≃HomShvm(ptm)
(V,W )⊗ f ∗πn∗,renHomShvm(Yn)

ren(F,G)(Lemma 4.3.9)

≃HomShvm(ptm)
(V,W )⊗πm∗,reng∗renHomShvm(Yn)

ren(F,G)(smooth base change)

≃HomShvm(ptm)
(V,W )⊗πm∗,renHomShvm(Ym)

ren(g∗renF, g∗renG)(Proposition 4.3.11)

≃HomShvm(ptm)
(V,W )⊗Hom

Shvm(ptm)

Shvm(Ym)
ren(g

∗
renF, g∗renG)(Lemma 4.3.9)

≃Hom
Shvm(ptm)

Shvm(Ym)
ren(V ⊗ g∗renF,W ⊗ g∗renG)

where the last equivalence is as in (3.5.4), using Corollary 3.4.7. �

Lemma 4.7.5. g̃∗ren is essentially surjective.

Proof. The functor g̃∗ren fits into the following diagram of adjoints

(4.7.6) Shvm(Yn)
ren gShvm(Yn)

ren Shvm(Ym)
rencan

g∗ren

canR

g̃∗ren

g̃∗,ren

g∗,ren

Here, can is used to denote the canonical functor. All the functors above admit right adjoints since
they are all continuous; in fact, the right adjoint are also continuous since the left adjoints preserve
compactness. We have g∗ren = g̃∗ren ◦ can by construction, and hence, passing to right adjoints, we also
have g∗,ren = canR ◦ g̃∗,ren.

To show that g̃∗ren is essentially surjective, it suffices to show that any object F ∈ Shvm(Ym)
ren can be

obtained as a colimit of objects in (the essential image of)gShvm(Yn)
ren.

Now, note that on the one hand, by base change,

g∗reng∗,renF ≃ F⊕r ,

for some r ∈ Z. In particular, F is a retract of g∗reng∗,renF, and hence,

F ≃ colim(g∗reng∗,renF
e
−→ g∗reng∗,renF

e
−→ g∗reng∗,renF

e
−→ · · · )

where e is an idempotent which projects to one F factor.
On the other hand, (4.7.6) implies that

g∗reng∗,renF ≃ g̃∗ren can canR g̃∗,renF = g̃∗renG

where G= cancanR g̃∗,renF ∈gShvm(Yn)
ren. Hence,

F ≃ colim( g̃∗renG
e
−→ g̃∗renG

e
−→ g̃∗renG

e
−→ · · · ),

and the proof concludes. �

As a consequence of the two lemmas above, we obtain the following statement.

Proposition 4.7.7. Let Yn ∈ Stkkn
and Ym its base change to km. Let g : Ym → Yn be the canonical map

and g̃∗ren be defined as in (4.7.3). Then, g̃∗ren is an equivalence of objects in ComAlg(ModShvm(ptm)
)

g̃∗ren : Shvm(Yn)
ren ⊗Shvm(ptn)

Shvm(ptm)
≃
−→ Shvm(Ym)

ren,

i.e., it is an equivalence of symmetric monoidal categories, compatible with the Shvm(ptm)-module struc-

tures on both sides.
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4.7.8. From g̃∗ren, we obtain the following sequence of equivalences in ComAlg(ModVectgr)

Shvgr(Yn)
ren ≃ Shvm(Yn)

ren ⊗Shvm(ptn)
Vectgr

≃ Shvm(Yn)
ren ⊗Shvm(ptn)

Shvm(ptm)⊗Shvm(ptm)
Vectgr

≃gShvm(Yn)
ren ⊗Shvm(ptm)

Vectgr

g̃∗ren⊗idVectgr
−−−−−−→

≃
Shvm(Ym)

ren ⊗Shvm(ptm)
Vectgr(Proposition 4.7.7)

≃ Shvgr(Ym)
ren,

whose composition is denoted by ḡ∗ren. Proposition 4.7.7 implies that ḡ∗ren is also an equivalence and we
have the following result.

Proposition 4.7.9. Let Yn ∈ Stkkn
and Ym its base change to km. Let g : Ym → Yn be the canonical map

and ḡ∗ren be defined as above. Then, ḡ∗ren is an equivalence of objects in ComAlg(ModVectgr)

ḡ∗ren : Shvgr(Yn)
ren ≃−→ Shvgr(Ym)

ren,

i.e., it is an equivalence of symmetric monoidal categories, compatible with the Vectgr-module structures

on both sides.

Remark 4.7.10. It is important to note that in forming Shvgr(Ym)
ren, we are viewing Ym as an object in

Stkkm
; see also Remark 4.4.5. In particular, the functor ḡ∗ren defined above does not fall into the purview

of §4.5 since over there, we pull and push along maps of geometric objects defined over the same base.

4.7.11. By our finiteness condition, any Y ∈ Stkk is a pullback of some Yn ∈ Stkkn
, see [LM00, Chap.

4] or [KP21, Thm. 2.1.13]. If Yn1
∈ Stkkn1

and Y′
n2
∈ Stkkn2

such that they both pullback to Y over
pt = Spec k, then there exists m≫ 0 such that their pullbacks to ptm agree. Moreover, any morphism
f : Y→ Z between objects in Stkk is already defined over some kn.

Thus, by Proposition 4.7.9, we can view Shvgr(−)
ren as a sheaf theory on Stkk. In particular, it makes

sense to talk about Shvgr(Y)
ren for any Y ∈ Stkk, equipped with the usual six-functor formalism described

above. This can be made precise in the following theorem.

Theorem 4.7.12. We can attach for each Y ∈ Stkk the category of graded sheaves Shvgr(Y)
ren ∈ ComAlg(ModVectgr)

on Y. Moreover, for each f : Y→ Z where Y,Z ∈ Stkk, we have the usual functors f ∗ren, f∗,ren, f !
ren, where

f ∗ren ⊣ f∗,ren. When f! (for Shv(−)) preserves constructibility, f !
ren admits a left adjoint f!,ren.

Proof. By [KP21, Thm. 2.1.13],

(4.7.13) Stkk ≃ colim
n

Stkkn

where functors Stkkn
→ Stkk and Stkkn

→ Stkkm
are given by base changes. Here, the colimit is taken

over the partially ordered set of finite extensions of k1, which is a filtered system. Moreover, Proposi-
tion 4.7.9 furnishes us with compatible functors

· · · Stkkn
Stkkn′

Stkkn′′
· · ·

ModVectgr

where Stkkn
→ ModVectgr encodes the ∗-pushforward functor. (4.7.13) then implies that we obtain a

functor

Stkk →ModVectgr ,

which encodes the ∗-pushforward functor of graded sheaves on stacks over pt= Spec k. The rest of the
pull/push functors are obtained similarly. �
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4.7.14. Change of notation. The construction of Shvgr(−)
ren on Stkk above implies that all the proper-

ties that we have proved earlier for Shvgr(−)
ren on Stkkn

automatically carry over. Thus, everywhere
Shvgr(Yn)

ren is used, we can replace it by Shvgr(Y)
ren. From this point onward, we will thus uniformly

use notations that reflect this. For example, instead of writing grYn
: Shvm(Yn)

ren → Shvgr(Yn)
ren, we

will write grYn
: Shvm(Yn)

ren→ Shvgr(Y)
ren.

4.7.15. We end this subsection with the following useful lemma.

Lemma 4.7.16. The functor oblvgr : Shvgr,c(Y)→ Shvc(Y) is conservative.

Proof. We factor oblvgr as follows

(4.7.17) Shvgr(Y)
ren ≃ Shvm(Yn)

ren ⊗Shvm(ptn)
Vectgr→ Shvm(Yn)

ren ⊗Shvm(ptn)
Vect ,→ Shv(Y)ren

where the last functor is fully faithful for the same reason as Lemma 4.7.4. It thus remains to show that

Shvgr,c(Y)→ Shvm(Yn)
ren ⊗Shvm(ptn)

Vect

is conservative. But this is the content of Corollary 3.5.6 and the proof concludes. �

Remark 4.7.18. Together with Proposition 3.5.5, the sequence (4.7.17) also implies that for (Fc ,G) ∈
Shvgr,c(Y)× Shvgr(Y)

ren, we have the following expected equivalences
⊕

k∈Z

HomShvgr(Y)ren
(Fc ,G〈k〉)

≃
⊕

k∈Z

Hom
gr
Shvgr(Y)ren

(Fc ,G)k

=: oblvgr(Hom
gr
Shvgr(Y)ren

(Fc ,G))

≃HomShv(Y)ren(oblvgr(F
c),oblvgr(G)).

4.8. Functoriality via correspondences. We will now describe how Shvgr(−)
ren can be enhanced to

a functor out of the category of correspondences in Stkk. This structure encodes various base change
results of Theorem 4.5.8 in a homotopy coherent way, which allows us to construct monoidal struc-
tures coming from convolutions. This is necessary since we are dealing with∞-categories, where all
compatibilities, such as associativity and commutativity, contain an infinite amount of data. The state-
ments in this subsection are thus technical in nature. Fortunately, due to the way the theory of graded
sheaves is set up, everything we need follows from the usual theory of ℓ-adic sheaves and has already
been established in [LZ17a, LZ17b]. The readers who are only interested in monoidal structures on
triangulated categories can safely skip this subsection.

4.8.1. Category of correspondences. Let C be any∞-category. The∞-category Corr(C) of correspon-
dences in C is defined in [GR17, Vol. I, Chap. 7]. We will quickly recall the ideas here. Roughly
speaking, Corr(C) has the same collection of objects as C. Moreover, given c1, c2 ∈ C, a morphism from
c1 to c2 is given by the following diagram in C

(4.8.2)

c c1

c2

v

h

where c ∈ C, and where compositions are given by Cartesian squares.
More generally, let vert and horiz be two collections of morphisms in C such that vert (resp. horiz)

is closed under pulling back along a morphism in horiz (resp. vert). Then, we let Corr(C)vert,horiz be the
(non-full) subcategory of Corr(C) containing the same collection of objects but morphisms are given by
(4.8.2) such that v ∈ vert and h ∈ horiz. We will also write Corr(C)all,all to denote Corr(C) where all
means all morphisms are allowed.

When C is closed under finite products such that vert and horiz are stable under these products,
Corr(C)vert,horiz is equipped with a symmetric monoidal structure given by taking products.
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We use Cvert and Choriz to denote the (non-full) subcategories of C where only morphisms in vert and
horiz, respectively, are allowed. Then, we have natural functors

Cvert→ Corr(C)vert,horiz and C
op
horiz→ Corr(C)vert,horiz.

These functors are symmetric monoidal with respect to the finite product monoidal structures, if they
are available.

4.8.3. Let S be any∞-category. Then a functor Φ : Corr(C)vert,horiz→ S induces two functors

(4.8.4) Φvert : Cvert→ S and Φhoriz : Cop
horiz→ S.

Moreover, for each Cartesian square in C

c′ c

d ′ d

h′

v′ v

h

where v, v′ ∈ vert and h,h′ ∈ horiz, we are given (as part of the data of Φ) an equivalence

Φvert(v
′) ◦Φhoriz(h

′)
≃
−→ Φhoriz(h) ◦Φvert(v),

which has the same form as the usual base change results. The functor Φ encodes this base change
equivalence along with all the homotopy coherence data.

4.8.5. Suppose that S is symmetric monoidal andCorr(C)vert,horiz is equipped with a symmetric monoidal
structure as above. Then, a lax symmetric monoidal functor Φ : Corr(C)vert,horiz → S induces lax sym-
metric monoidal structures on Φvert and Φhoriz. In particular, for any c1, c2 ∈ C, we are given a morphism

Φ(c1)⊗Φ(c2)
⊠
−→ Φ(c1 × c2).

Moreover, this morphism is natural in c1 and c2 via both Φvert and Φhoriz. This is the shape that our sheaf
theory will take.

4.8.6. Mixed sheaves as functors out of the category of correspondences. The theory developed in [LZ17b,
LZ17a] provides us with a right-lax symmetric monoidal functor

(4.8.7) Shv∗m,! : Corr(Stkkn
)all,all→ModShvm(ptn)

which sends each Yn ∈ Stkkn
to Shvm(Yn) and which encodes ∗-pullback (resp. !-pushforward) along all

maps as well as the proper base change theorem for mixed sheaves. Note that the right-lax symmetric
monoidal structure encodes the procedure of taking box-tensor

Shvm(Y1)⊗ Shvm(Y2)
⊠
−→ Shvm(Y1 × Y2), for all Y1,Y2 ∈ Stkkn

as well its compatibility with !-pushforwards (Künneth formula) and ∗-pullbacks. Here, for Fi ∈
Shvm(Yi), i ∈ {1,2},

F1 ⊠F2 := p∗1F1 ⊗ p∗2F2

where pi : Y1 × Y2→ Yi denotes the projection onto the i-th factor.

Remark 4.8.8. Note that the theory of ℓ-adic sheaves developed in [LZ17a] is different from the one in
[GL19,Gai15,HRS21]. However, the two theories agree on the subcategories of constructible sheaves,
which is what we use to construct the renormalized sheaf theory. Moreover, the general results of
[LZ17b] can take as input the results of [GL19, Gai15, HRS21] and yield the desired correspondence-
functoriality as already done in [LZ17a]. We thank Y. Liu for pointing this out to us. See also [Cho21]
where the general theory of [LZ17a] is used to obtain correspondence-functoriality for motivic homo-
topy theory.

Before continuing, we need the following definition.
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Definition 4.8.9. A morphism f : Y → Z in Stkkn
is said to be universally constructible with respect

to the ∗-pushforward functor (resp. !-pushforward functor) if for all Z′ → Z in StkF, fZ′ ,∗ (resp. fZ′ ,!)
preserves constructibility, where fZ′ : Z

′ ×Z Y→ Z′ is the base change of f to Z′. We also say that f is
UC∗ (resp. UC!) in this case.

A morphism f : Y→ Z in Stkk is said to be UC∗ (resp. UC!) if f is the pullback of a UC∗ (resp. UC!)
morphism in Stkkn

.

Remark 4.8.10. The property of being UC∗ or UC! is stable under pullbacks and finite extensions of
scalars. This allows one to make sense of the second part of the definition above.

Remark 4.8.11. Representable maps are UC∗ and UC!. However, there are more UC∗ and UC! mor-
phisms than just these. For example, consider BGa → ptn where Ga = Spec kn[t] is the additive group
scheme over kn.

4.8.12. The functor (4.8.7) restricts to a functor

Shv∗m,! : Corr(Stkkn
)UC!,all→ModShvm(ptn)

which induces the following right-lax symmetric monoidal functor by restricting to the full subcategories
of constructible sheaves

Shv∗m,c,! : Corr(Stkkn
)UC!,all→ModShvm,c(ptn)

.

Taking Ind, which is symmetric monoidal, we obtain a right-lax symmetric monoidal functor

(4.8.13) Shvren,∗
m,! : Corr(Stkkn

)UC!,all→ModShvm(ptn)
,

which encodes the renormalized !-pushforward functors along UC!-morphisms and ∗-pullback functors
along all morphisms.

4.8.14. To formulate the dual we need the following result.

Proposition 4.8.15. Let fi : Yi → Zi be morphisms in Stkkn
, where i ∈ {1,2}. Then, fi,∗,ren satisfy

Künneth; namely, the following diagram,

Shvm(Y1)
ren ⊗ Shvm(Y2)

ren Shvm(Y1 × Y2)
ren

Shvm(Z1)
ren ⊗ Shvm(Z2)

ren Shvm(Z1 ×Z2)
ren

⊠

f1,∗,ren⊗ f2,∗,ren ( f1× f2)∗,ren

⊠

which a priori commutes up to a 2-morphism given by

f1,∗,renF1 ⊠ f2,∗,renF2→ ( f1 × f2)∗,ren(F1 ⊠F2), for all Fi ∈ Shvm(Yi)
ren, i ∈ {1,2},

is actually commutative, i.e., the canonical morphism above is an equivalence.

Proof. Since all functors are continuous, it suffices to assume that Fi ∈ Shvm,c(Yi) ⊂ Shvm(Yi)
+, i ∈

{1,2}. By Proposition 4.1.17, combined with the fact that renormalized *-pushforward functors are left
exact and unren induces an equivalence Shvm(−)

ren,+ ≃−→ Shvm(−)
+, we can work with non-renormalized,

i.e., usual, sheaves and functors. By smooth base change and descent, it suffices to prove the statement
when Zi ’s are schemes. But then, the result is proved in [GL19, Theorem 3.4.5.1]. �

Remark 4.8.16. The analogous result for the renormalized !-pullback functors can be shown in an
analogous way.

Now, using [GR17, Vol. I, Chap. 12], we can pass (4.8.7) to right adjoints and obtain a weakly
right-lax symmetric monoidal functor

Shv!
m,∗ : Corr(Stkkn

)all,all→ModShvm(ptn)
.

Here, weakly right-lax symmetric monoidal means that the transformation

Shvm(Y1)⊗ Shvm(Y2)
⊠
−→ Shvm(Y1 × Y2)
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is only natural in Y1 and Y2 in a lax way, i.e., up to a 2-morphism, see also [GR17, Vol. I, Chap. 10,
§3.2.1]. Applying the regularization procedure of [Pre12, Thm. 4.3.6, Lem. 4.6.1] (which is a formal
way to formulate the passage from Shvm(−) to Shvm(−)

ren), we obtain a weakly right-lax symmetric
monoidal functor

(4.8.17) Shvren,!
m,∗ : Corr(Stkkn

)all,all→ModShvm(ptn)
.

By Proposition 4.8.15 and Remark 4.8.16, we know that Shvren,!
m,∗ is actually a right-lax symmetric

monoidal functor.

Remark 4.8.18. Without using the regularization machinery of [Pre12], we can obtain the following
right-lax symmetric monoidal functor in a more straightforward way

Shvren,!
m,∗ : Corr(Stkkn

)UC∗,all→ModShvm(ptn)
,

following §4.8.12. This suffices for the applications in §6.

4.8.19. Graded sheaves as functors out of the category of correspondences. Composing (4.8.13) and (4.8.17)
with

ModShvm(ptn)

−⊗Shvm(ptn )
Vectgr

−−−−−−−−−→ModVectgr

and using §4.7, we obtain the following corresponding results for graded sheaves.

Theorem 4.8.20. We have a right-lax symmetric monoidal functor

Shvren,∗
gr,! : Corr(Stkk)UC!,all→ModVectgr

which, in particular, encodes the renormalized !-pushforward functors along UC!-morphisms and renor-

malized ∗-pullback functors along all morphisms.

Similarly, we have a right-lax symmetric monoidal functor

Shvren,!
gr,∗ : Corr(Stkk)all,all→ModVectgr

which, in particular, encodes the renormalized ∗-pushforward and renormalized !-pullback functors along

all morphisms.

We also have “small category” versions of the two functors above

Shv∗gr,c,! : Corr(Stkk)UC!,all→ModVectgr,c ,

Shv!
gr,c,∗ : Corr(Stkk)UC∗,all→ModVectgr,c .

4.8.21. We also have the following variant.

Theorem 4.8.22. We have a right-lax symmetric monoidal functor

(4.8.23) Shvren,∗
gr,∗ : Corr(Stkk)all,sm→ModVectgr

which, in particular, encodes the renormalized ∗-pushforward functors along all morphisms and renormal-

ized ∗-pullback functors along smooth morphisms.

Similarly, we have a right-lax symmetric monoidal functor

(4.8.24) Shvren,∗
gr,∗ : Corr(Stkk)pr,all→ModVectgr

which, in particular, encodes the renormalized ∗-pushforward functors along proper morphisms and renor-

malized ∗-pullback functors along all morphisms.

We also have “small category” versions of the two functors above

Shv∗gr,c,∗ : Corr(Stkk)pr,all→ModVectgr,c ,

Shv∗gr,c,∗ : Corr(Stkk)UC∗ ,sm→ModVectgr,c .
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Proof. By the adjunction f ∗ren ⊣ f∗,ren and the smooth and proper base change results of Theorem 4.5.8,
the statements in the theorem, without the right-lax symmetric monoidal structures, are direct conse-
quences of the universal property of the categories of correspondences proved in [GR17, Vol. 1, Chap.
7, §3] after ignoring non-invertible 2-morphisms.20 A variant of this result but with right-lax symmetric
monoidal structures and only invertible 2-morphisms are proved in [LZ17b, §3.2]. Note that the latter
uses the language of multisimplicial sets rather than correspondences. However, the two formulations
are the same, see [LZ17b, §6.1] and [GR17, Vol. 1, Part. III, §1.3]. �

5. GRADED SHEAVES: WEIGHT STRUCTURE AND PERVERSE t-STRUCTURE

In this section, we construct a perverse t-structure and a weight structure on the category of con-
structible graded sheaves Shvgr,c(Y) for any Y ∈ Stkk. Unlike previous sections, we work exclusively with
small categories here. In particular, unless otherwise specified, DG-categories appearing in this section
are assumed to be small and idempotent complete; see also §3.7. It is mostly due to convenience since
most of the available literatures on weight structures, including our main source for this section [Bon12],
operate in this setting. It is expected that this restriction on size can be lifted [Bon12, Rmk. 1.2.3].21

However, we will not pursue this direction, as it is not needed for the applications we have in mind.
We will review the basics of weight structures in §5.1. This is followed by technical preparations

needed to actually construct a perverse t-structure and a weight structure on Shvgr,c(Y). More specifi-
cally, in §§5.2 and 5.3, we will construct categories of pure graded perverse sheaves of a given weight
and show that these categories generate the whole category of constructible graded sheaves in a pre-
cise sense. The actual construction is given in §5.4, which follows directly from the work of Bon-
darko [Bon12]. In §5.5, various expected results regarding the interactions between the weight/t-
structure and functoriality of graded sheaves are established. These results follow naturally from the
standard ones for mixed sheaves. Finally, in §5.6, we describe connections between our construction
and various notions and constructions in the mixed geometry literature.

Since we work mostly with constructible sheaves in this section, in situations where there is no
difference between the usual pull/push functors and their renormalized versions, we will, for brevity’s
sake, omit ren from the notation, see also Remark 4.1.21.

We note that the term weight is used to refer to either the Frobenius weight structures on mixed
sheaves in the sense of [BBDG18] or to weights in the sense of weight structure (on an arbitrary cat-
egory) in the sense of [Bon10, Pau08]. When we want to emphasize the former, we will use the term
Frobenius weight.

5.1. A quick review of weight structures. We will now give a brief review of weight structures (or
co-t-structures) as discovered independently by Pauksztello and Bondarko [Pau08, Bon10]. For more
modern treatments, using the language of stable∞-categories, the readers may consult [Sos19,Aok20,
ES21b], which are our main sources for this subsection. Note that the indexing convention used in
these papers is the reverse of that in [Bon10] but is the same as the one in [Bon12]. We will follow the
convention used in [Bon12, Sos19, Aok20, ES21b]. We note that the proofs of all of the results stated
here can easily be found in these papers.

Definition 5.1.1. A weight structure on a stable∞-category C is the data of two retract-closed full
additive subcategories (Cw≤0,Cw≥0) such that

(i) Cw≥0[1] ⊆ Cw≥0 and Cw≤0[−1] ⊆ Cw≤0. We write

Cw≥n := Cw≥0[n] and Cw≤n := Cw≤0[n].

20Note that non-invertible 2-morphisms do not appear in our definition of the category of correspondences. In contrast,
[GR17] allows non-invertible morphisms. Thus, to obtain our result from theirs, we just remove non-invertible 2-morphisms
from the answer.

21[Lur18, Lem. C.2.4.3] or [AGH19, Prop. 2.13] allows one to Ind-extend a t-structure on a small stable∞-category C to
one on Ind(C). A similar statement but for weight structures can be found in [Bon21, Thm. 4.1.2].
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(ii) If c ∈ Cw≤0 and d ∈ Cw≥1, then22

π0 HomC(c, d) ≃ 0.

(iii) For any object of c ∈ C, we have a cofiber sequence

w≤0c→ c→ w≥1c

where w≤0c ∈ Cw≤0 and w≥1c ∈ Cw≥1. Such a sequence is called a weight truncation of c.23

We will use the term weight category to refer to a stable∞-category equipped with a weight structure.
We say that a weight structure on C is bounded if

C≃
⋃
n

(Cw≥−n ∩ Cw≤n).

We let Catw
∞ and Catw,b

∞ denote the∞-categories of weight categories and bounded weight cate-
gories, respectively.

Remark 5.1.2. Note that the definition of a weight structure on a stable∞-category C does not use any
∞-categorical data. Thus, we could equivalently define what it means to have a weight structures on
a triangulated category and then state that a weight structure on a stable∞-category C is that on its
homotopy category hC. This approach is taken, for example, in [Aok20], and is parallel to how [Lur17a]
defines a t-structure.

5.1.3. The heart of a weight structure. Let C be a stable∞-category equipped with a weight structure.
We let C♥w := Cw≤0 ∩ Cw≥0 denote the weight heart of the weight structure. An object c ∈ C is said to
be pure of weight n if c ∈ C♥w[n] ≃ Cw=n.

Unlike the case of t-structures described in [Lur17a, Rmk. 1.2.1.12], C♥w is not necessarily classical,
i.e., C♥w is different from its homotopy category hC♥w . In more concrete terms, let c, d ∈ C♥w . Then,
HomC(c, d) might have non-trivial higher homotopy groups. In the setting of DG-categories, being
non-classical means HomC(c, d) might have non-vanishing negative24 cohomology groups. On the
other hand, HomC(c, d) can only concentrate in non-positive degrees in general. Indeed, for any n≥ 1,
d[n] ∈ Cw=n ⊆ C≥1, and hence, by Definition 5.1.1.(ii),

Hn(HomC(c, d)) ≃ H0(HomC(c, d[n])) ≃ π0 HomC(c, d[n]) ≃ 0.

The situation is thus dual to the case of t-structures: elements in the weight heart have no “positive”
homomorphism whereas elements in the t-heart, which is always classical, have no “negative” homo-
morphism.

5.1.4. The weight heart C♥w is an additive∞-category in the sense that it has all finite products and
co-products and moreover, its homotopy category hC♥w is an additive category in the usual sense. In
particular, finite products and co-products in C♥w coincide. See [GGN16, §2] and [Lur18, Appx. C.1.5]
for a more detailed discussion of additive∞-categories.

We use Catadd∞ to denote the∞-category of additive∞-categories.

5.1.5. As mentioned above, when C is equipped with a t-structure, the t-heart C♥t is classical. In
particular, if c, d ∈ C, π0 HomC(c, d[n]) ≃ 0 for all n< 0. In the DG-category setting, this is equivalent
to saying that HomC(c, d) ∈ Vect concentrates in non-negative cohomological degrees. The heart of a
weight structure C♥w satisfies a dual condition. Namely, it is easy to see from Definition 5.1.1.(i) and
(ii) that for c, d ∈ C♥w , π0 HomC(c, d[n]) ≃ 0 for all n > 0. In the DG-settings, this is equivalent to
saying that HomC(c, d) ∈ Vect concentrates in non-positive cohomological degrees.

Remark 5.1.6. The statements above regarding DG-categories could have also been stated more gener-
ally for stable∞-categories using Hom-spectra instead of Vect-enriched ones. However, this generality
is not needed in the paper and we expect that the readers are more likely to be familiar with Vect.

22When C is a DG-category, this condition is equivalent to saying that H0(HomC(c, d)) = 0.
23Note that unlike the case of t-structures, weight truncations are not canonical.
24Negative because we are using cohomological indexing convention.
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5.1.7. From additive∞-categories to weight categories. The procedure of taking the weight heart forms
a functor

(−)♥w : Catw∞→ Catadd∞ .

It is possible to go the other direction as well using the (−)fin construction, which we will now briefly
review for the reader’s convenience. We note that for our purposes, it is enough to know the existence
of such a functor. For more details, see [ES21b, §2.2.7].

Let A ∈ Catadd∞ . Consider the stable∞-category Â := Fun×(Aop,Sptr) consisting of functors that
preserves finite products, i.e., those that turn finite co-products in A to products in the category Sptr of
spectra. The Yoneda lemma furnishes a fully faithful embedding A→ Â. Let Afin be the smallest stable
∞-subcategory of Â containing the image of A. The category Afin is equipped with a natural weight
structure.

Theorem 5.1.8 ([ES21b, Thm. 2.2.9]). We have an adjoint pair

(−)fin : Catadd∞ ⇄ Catw,b
∞ : (−)♥w .

Moreover,

(i) the right adjoint (−)♥w is fully faithful, and

(ii) the adjoint pair restricts to a pair of mutually inverse equivalences of∞-categories of idempotent

complete∞-categories on both sides.

5.1.9. Weight complex functor. Let A be a classical additive category. Then, we can form a stable∞-
category of bounded chain complexes Chb(A), see [Lur17a, §1.3.1]. Its homotopy category is the
homotopy category K b(A) of bounded chain complexes in A. The category Chb(A) is equipped with
a natural weight structure where weight truncations are given by stupid/brutal truncations of com-
plexes, [Bon10, §1.1]. This is a proto-typical example of a weight structure. Note that for the axioms
of Definition 5.1.1 to hold, the differentials in Chb(A) is homological, i.e., they decrease the indices.

5.1.10. For any C ∈ Catw,b
∞ , there exists a weight complex functor

(5.1.11) wt : C→ Chb(hC♥w ),

see [Sos19, Cor. 3.5] and [ES21b, Expl. 5.1.7]. This functor is the image of the natural functor
C♥w → hC♥w under the following equivalence, coming from Theorem 5.1.8

HomCatadd∞
(C♥w ,hC♥w ) ≃ HomCatw,b

∞
(C,Chb(hC♥w)).

In particular, when C♥w is classical, i.e., C♥w ≃ hC♥w , then the weight complex functor induces an
equivalence of categories C ≃ Chb(hC♥w).

Remark 5.1.12. The construction of the weight complex functor given in [Sos19, Cor. 3.5] is an∞-
categorical enhancement of the one given in [Bon10, §3], which has a more concrete description. Given
an object c ∈ C where C is a bounded weight category, by Definition 5.1.1.(iii), there exists a (non-
canonical) finite filtration c• of c, such that the i-th associated graded piece assgri(c•) is pure of weight
i. Thus, assgri(c•)[−i] is pure of weight 0, i.e., assgri(c•)[−i] ∈ C♥w . A standard construction in
homological algebra, [Lur17a, Defn. 1.2.2.2 and Rmk. 1.2.2.3], gives us a chain complex

· · · → assgri+1(c•)[−(i + 1)]→ assgri(c•)[−i]→ assgri−1(c•)[−(i − 1)]→ ·· ·

The content of the weight complex functor is that this complex (up to homotopy) is canonical in c even
though the weight filtration is not canonical.

We note that this construction takes the same shape as the construction of the chromatographic
complex in [WW17, §3.5], which is not known to be a functor. As we will see, their construction can be
realized as the composition of the canonical functor Shvm,c(Yn)→ Shvgr,c(Y) and the weight complex
functor on Shvgr,c(Y). In particular, this shows that the procedure of taking chromatographic complex
is a functor.
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5.1.13. Compatibility with monoidal structures. Let C be a bounded weight category, equipped with
a compatible monoidal structure in the sense that Cw≤0 and Cw≥0 are closed under tensor products.
Here, the monoidal structure can be symmetric or not. In fact, more generally, C can be En-monoidal
in the sense of [Lur17a, §5.4], with E1-monoidal, E2-monoidal, and E∞-monoidal being the usual,
braided, and symmetric monoidal structures, respectively. Such an En-monoidal structure gives rise to
an En-monoidal structure on C♥w and hence, also on (C♥w )fin and (hC♥w)fin ≃ Chb(hC♥w ). We have the
following result.

Theorem 5.1.14 ([Aok20]). Let C be a bounded weight category, equipped with an En-monoidal structure

such that Cw≤0 and Cw≥0 are preserved under tensor products. Then, C♥w , and hence (C♥w )fin and (hC♥w)fin

are equipped with natural En-monoidal structures. Moreover, the following natural functors

C→ (C♥w)fin→ (hC♥w )fin ≃ Chb(hC♥w )

are En-monoidal. In particular, the weight complex functor is En-monoidal.

Remark 5.1.15. The main result of [Aok20] is stated only for symmetric monoidal categories. How-
ever, the same proof works more generally. Indeed, the main tool used is [Nik16], which works more
generally; see also [Nik16, Rmk. 6.11].

5.1.16. The case of Vectgr,c . As mentioned earlier, our goal is to equip Shvgr,c(Y) with a weight structure
and a perverse t-structure for any Y ∈ Stkk. The remainder of this section will be devoted to this goal.
As an warm up exercise, we will now equip Vectgr,c ≃ Shvgr,c(pt) with a bounded weight structure and
a t-structure.

The t-structure is just the usual one, obtained from the usual t-structure on Vectc . The weight
structure is defined as follows: Vectgr,c,w≥0 (resp. Vectgr,c,w≤0) consists of graded perfect chain complexes
A = (Ai) where the i-th graded piece Ai concentrates in cohomological degrees ≤ i (resp. ≥ i). It is
easy to check that the pair Vectgr,c,w≤0 and Vectgr,c,w≥0 satisfies the conditions given in Definition 5.1.1.

From the description above, we see that Vectgr,c,♥w ≃
⊕

i Vect
c,♥t [−i]. Namely, given any A ∈

Vectgr,c,♥w , we have an equivalence A ≃
⊕

i H
i(Ai)〈−i〉[−i]. This is the “baby case” of the decompo-

sition theorem for pure graded sheaves we we will establish in §5.4.
From the description above, it is clear that Vectgr,c,♥w is classical. Thus, the weight complex functor

provides an equivalence of symmetric monoidal categories

Vectgr,c ≃ Chb(Vectgr,c,♥w) ≃
⊕

i

Chb(Vectc,♥t [−i]) ≃
⊕

i

Chb(Vectc,♥t ),

which is evident. Note that the last equivalence is just a re-indexing.

5.2. Pure graded perverse sheaves. This subsection and the next make the necessary preparation to
apply the results of [Bon12] to construct perverse t-structure and a weight structure on the category
Shvgr,c(Y). Throughout, we let Yn ∈ Stkkn

whose base changes to k and km are Y and Ym, respectively,
for any m ∈ nZ>0.

More specifically, we will now construct various categories Pervgr,c(Ym)
w=ν of pure graded perverse

sheaves of a fixed weight w= ν and study their formal properties. In the next subsection, we will show
that these categories together generate Shvgr,c(Y) in the appropriate sense.

5.2.1. For any ν ∈ Z, we define the category of graded perverse sheaves of pure weight ν to be

(5.2.2) Pervgr,c(Ym)
w=ν := Idem(Im(Pervm,c(Ym)

w=ν
grYm

−−→ Shvgr,c(Y)))

where Idem is the functor of taking idempotent completion and Pervm,c(Ym)
w=ν is the full subcategory

of the category of constructible mixed perverse sheaves Pervm,c(Ym) of (Frobenius) weight w = ν, in
the sense of [BBDG18,LO09].25 Since Shvgr,c(Y) is idempotent complete, Pervgr,c(Ym)

w=ν is naturally a
full subcategory of Shvgr,c(Y). The main goal of this subsection is to have a more explicit description of
Pervgr,c(Ym)

w=ν for any m and ν.

25What we write Pervm,c(Ym) is more usually written as Pervm(Ym).
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Remark 5.2.3. Directly from the construction, we see that the endofunctor 〈k〉 : Shvgr(Y)
ren→ Shvgr(Y)

ren

described in §4.4.7 induces an equivalence of categories

Pervgr,c(Ym)
w=ν→ Pervgr,c(Ym)

w=ν−k.

Remark 5.2.4. Note that the term “pure graded perverse sheaves” does not a priori have a meaning.
However, in §5.4, we will construct a perverse t-structure and a weight structure on Shvgr,c(Y) that
make sense of this term. Namely, the t-heart, Pervgr,c(Y), is obtained by assembling Pervgr,c(Ym)

w=ν for
various ν together. Moreover, Pervgr,c(Ym)

w=ν consists precisely of objects in Pervgr,c(Y) of weight ν in
the new weight structure.

5.2.5. Invariance under of extensions of scalars. As Remark 5.2.4 suggests, Pervgr,c(Ym)
w=ν is also inde-

pendent of m. This is indeed the case.

Lemma 5.2.6. Let Y, Yn, and Ym as above. Then, for any ν ∈ Z, Pervgr,c(Yn)
w=ν and Pervgr,c(Ym)

w=ν

coincide as full subcategories of Shvgr,c(Y).

Proof. The proof follows essentially the same strategy as that of Proposition 4.7.7. We have the follow-

ing factorization where the horizontal arrow is given by pulling back along Ym

g
−→ Yn, which preserves

perversity and Frobenius weights since it is a finite étale map26

(5.2.7)

Pervm,c(Yn)
w=ν Pervm,c(Ym)

w=ν

Shvgr,c(Y)

g∗

grYn

grYm

which implies the inclusion Pervgr,c(Yn)
w=ν ⊆ Pervgr,c(Ym)

w=ν as full subcategories of Shvgr,c(Y).
To show that the two coincide, it suffices to show that grYm

(F) ∈ Pervgr,c(Yn)
w=ν for any F ∈

Pervm,c(Ym)
w=ν. As in Lemma 4.7.5, grYm

(F) is a direct summand of grYn
(g∗F)where g∗F ∈ Pervm,c(Yn)

w=ν

since g is finite étale. We are thus done since Pervgr,c(Yn)
w=ν is idempotent complete, by definition. �

As in the case of graded sheaves explained in §4.7.11, for any Y ∈ Stkn, we can define

Pervgr,c(Y)
w=ν := Pervgr,c(Yn)

w=ν ⊂ Shvgr,c(Yn) ≃ Shvgr,c(Y)

where Yn ∈ Stkkn
is any choice such that its base change to pt is Y. Indeed, Lemma 5.2.6 guarantees

that this is well-defined.

5.2.8. Hom estimates and semisimplicity. We will now study morphisms between objects in Pervgr,c(Y)
w=ν

for various ν. As a consequence, we will obtain the fact that Pervgr,c(Y)
w=ν is classical and semi-simple.

Proposition 5.2.9. Let F ∈ Pervgr,c(Y)
w=k and G ∈ Pervgr,c(Y)

w=l . Then, HomShvgr(Y)ren
(F,G) concen-

trates in cohomological degrees [0, k− l]. In particular, when k− l < 0, then HomShvgr(Y)ren
(F,G) ≃ 0.

Proof. By construction, objects in Pervgr,c(Y)
w=ν are direct summands of objects of the form grYn

(F)

whereF ∈ Pervm,c(Yn)
w=ν. It thus suffices to show the statement above forHgr :=HomShvgr(Y)ren

(gr(Fn),gr(Gn))

where Fn ∈ Pervm,c(Yn)
w=k and Gn ∈ Pervm,c(Yn)

w=l . We will use F and G to denote their pullbacks of
Y.

By [Sun12a, Prop. 3.9], we know that Hm := Homm
Shvm(Yn)

ren(Fn,Gn) ∈ Shvm(ptn) has Frobenius
weights ≥ l − k; see also [BBDG18, Prop. 5.1.15] for the scheme version. By definition, this means
Hi(Hm) has Frobenius weights ≥ i + l − k. By Proposition 4.6.2, Hgr is the naive weight 0 part of Hm.
Thus, Hi(Hgr) ≃ 0 when i + l − k > 0 or equivalently, when i > k− l. In other words, we have shown
that Hgr is cohomologically supported on (−∞, k− l].

We know that H :=HomShv(Y)ren(F,G) concentrates in cohomological degrees ≥ 0 since F and G lie
in the heart of a t-structure, namely, the perverse t-structure, of Shv(Y)ren. By Corollary 4.6.4, Hgr is a

26Since we are working with constructible sheaves only, g∗ and g∗ren are the same.
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direct summand of H. Thus, Hgr is also supported in cohomological degrees [0,∞). Combined with
the above, we know that Hgr is supported in cohomological degrees [0, k − l]. �

The following result is a direct consequence of Proposition 5.2.9 above.

Corollary 5.2.10. Let F,G ∈ Pervgr,c(Y)
w=ν. Then, HomShvgr(Y)ren

(F,G) concentrates in cohomological

degree 0. In particular, Pervgr,c(Y)
w=ν is classical (as opposed to being a genuine∞-category) and semi-

simple.

Here, semi-simple means that any exact triangle A→ B → C splits, where A, C ∈ Pervgr,c(Y)
w=ν. This,

in particular, implies that B ∈ Pervgr,c(Y)
w=ν as well since B ≃ A⊕ C.

Proposition 5.2.9 can be slightly strengthened. We start with a lemma involving mixed sheaves.

Lemma 5.2.11. Let F,G ∈ Pervm,c(Yn) of Frobenius weights k and l respectively such that k 6= l. Then,

H0(Homm
Shvm(Yn)

ren(F,G)) ∈ Shvm(ptn)
♥ has no weight 0 component.

Proof. Suppose H0(Homm
Shvm(Yn)

ren(F,G)) has non-zero weight 0-component. Without changing the

weight of G, we can twist it by a sheaf of weight 0 using a Frobenius eigenvalue ofH0(Homm
Shvm(Yn)

ren(F,G)).

We can thus assume that H0(Homm
Shvm(Yn)

ren(F,G)ren)F 6= 0 where F is the Frobenius. We thus obtain a
non-zero morphism ϕ : F→ G between perverse sheaves of different weights. We will show that such
a ϕ cannot exist.

Since F and G have finite filtrations whose associated graded pieces are simple perverse sheaves, we
can assume that F and G themselves are simple, without loss of generality. But then, ϕ being non-zero
implies that ϕ is an isomorphism. This is not possible since they have different weights. The proof thus
concludes. �

Corollary 5.2.12. Let F ∈ Pervgr,c(Y)
w=k and G ∈ Pervgr,c(Y)

w=l such that k and l are distinct. Then,

H0(HomShvgr(Y)ren
(F,G)) ≃ 0.

Proof. As in the proof of Proposition 5.2.9, we can assume that F and G are of the form gr(F) and gr(G)
respectively, where F,G ∈ Pervm,c(Yn) are of weights k and l respectively. Proposition 4.6.2 implies
that H0(HomShvgr(Y)ren(gr(F),gr(G))) is the weight 0 part of H0(Homm

Shvm(Yn)
ren(F,G)), which vanishes by

Lemma 5.2.11. �

Combining Proposition 5.2.9 and Corollary 5.2.12, we obtain the following result.

Theorem 5.2.13. Let F ∈ Pervgr,c(Y)
w=k and G ∈ Pervgr,c(Y)

w=l . Then, HomShvgr(Y)ren(F,G) concentrates

in cohomological degrees (0, k − l] when k 6= l and {0} when k = l. In particular, when k − l < 0, then

HomShvgr(Y)ren
(F,G) ≃ 0.

5.2.14. Orthogonality. Corollary 5.2.12 can be interpreted as a statement about orthogonality between
Pervgr,c(Y)

w=ν for different ν. We will now study the same question but within the same ν, see Propo-
sition 5.2.17 below. We start with the following conservativity lemma.

Lemma 5.2.15. Let Fgr,Fgr ∈ Pervgr,c(Y)
w=ν, F = oblvgr(Fgr), and G = oblvgr(Ggr). Then Fgr ≃ Ggr if

and only if F ≃ G.

Proof. The only if direction is clear. For the if direction, suppose F ≃ G. Then, by Remark 4.7.18,⊕

k∈Z

H0(HomShvgr(Y)ren
(Fgr,Ggr〈k〉)) ≃ H0(HomShv(Y)ren(F,G)).

But unless k = 0, Fgr and Ggr〈k〉 can have no non-trivial morphism between them, by Theorem 5.2.13.
Thus, k = 0, and we obtain an isomorphism

(5.2.16) H0(HomShvgr(Y)ren
(Fgr,Ggr))) ≃ H0(HomShv(Y)ren(F,G)).

In particular, there exists a non-zero ϕgr : Fgr → Ggr such that oblvgr(ϕgr) : F → G is an isomorphism.
The proof concludes by conservativity of oblvgr, see Lemma 4.7.16. �
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Proposition 5.2.17. In the situation of Lemma 5.2.15, suppose further that F,G ∈ Pervc(Y) are simple.

Then

HomShvgr(Y)ren(Fgr,Ggr)≃

¨
Qℓ, when Fgr ≃ Ggr or equivalently, F ≃ G,

0, otherwise.

Proof. By Theorem 5.2.13, we know that HomShvgr(Y)ren(Fgr,Ggr) concentrates in cohomological degree
0. In particular,

HomShvgr(Y)ren(Fgr,Ggr) ≃ H0(HomShvgr(Y)ren(Fgr,Ggr)).

Thus we only need to deal with the cohomological degree 0 part.
By Lemma 5.2.15, Fgr ≃ Ggr if and only if F ≃ G. Moreover, simplicity of F and G implies that

H0(HomShv(Y)ren(F,G)) ≃

¨
Qℓ, when F ≃ G,

0, otherwise.

We thus conclude using (5.2.16). �

5.2.18. Generators. We will now describe the generators of Pervgr,c(Y)
w=ν, which results in an explicit

description of the category. To start, letßPervgr,c(Y)w=ν be the full subcategory of Shvgr,c(Y) spanned
by finite direct sums of objects of the form grYn

(Fn) for Fn ∈ Pervm,c(Yn)
w=ν for some n such that the

pullback of Fn to Y is simple. By construction and Lemma 5.2.6,ßPervgr,c(Y)w=ν is a full subcategory of
Pervgr,c(Y)

w=ν. By Proposition 5.2.17, we obtain

ßPervgr,c(Y)w=ν =
⊕

s∈S

Vectc,♥

where Vectc,♥ is the abelian category of finite dimensional vector spaces and S is the set of simple
perverse sheaves F ∈ Pervc(Y) such that F is the pullback of some (necessarily simple) perverse sheaf
Fn over Yn for some n. It is clear from the description above thatßPervgr,c(Y)w=ν is a semi-simple abelian
category. In particular, it is also idempotent complete.

Theorem 5.2.19. Pervgr,c(Y)
w=ν =ßPervgr,c(Y)w=ν as full subcategories of Shvgr,c(Y). In particular,

Pervgr,c(Y)
w=ν ≃
⊕

s∈S

Vectc,♥

is a semi-simple abelian category, where S is the set of simple perverse sheaves F ∈ Pervc(Y) such that F is

the pullback of some (necessarily simple) perverse sheaf Fn over Yn for some n.

Before proving Theorem 5.2.19, we recall [BBDG18, Prop. 5.3.9.(ii)] below. While the result is
stated for schemes there, the same proof works for stacks. Indeed, the only ingredient is [BBDG18, Prop.
5.1.2], which is also valid for stacks, see also [Sun12a, Proof of Thm. 3.11].

Proposition 5.2.20 ([BBDG18, Prop. 5.3.9.(ii)]). Let Kn ∈ Pervm,c(Yn) be a simple perverse sheaf.

Then, there exists m = nd for some d and Lm ∈ Pervm,c(Ym) such that Kn is the pushforward of Lm under

fmn : Ym → Yn. Moreover, the pullback of Lm to Y is simple.

Proof of Theorem 5.2.19. It remains to show that Pervgr,c(Y)
w=ν ⊆ßPervgr,c(Y)w=ν. Since the latter is

idempotent complete, it suffices to show that gr(Fn) ∈ßPervgr,c(Y)w=ν for any Fn ∈ Pervm,c(Yn)
w=ν.

Since Pervgr,c(Y)
w=ν is semi-simple by Corollary 5.2.10 and since any such Fn has a finite filtration

whose associated graded pieces are simple, gr(Fn) is a finite direct sum of objects of the form gr(Kn)

where Kn ∈ Pervm,c(Yn) is simple. It remains to show that gr(Kn) ∈ßPervgr,c(Y)w=ν.
Let Lm ∈ Pervm,c(Ym) be as in Proposition 5.2.20. Then, by definition, grYm

(Lm) ∈ßPervgr,c(Y).
Moreover, f ∗

mn
Kn ≃ L⊕d

m
. By the factorization (5.2.7), we obtain that

grYn
(Kn) ≃ grYm

(Lm)
⊕d .

Thus, grYn
(Kn) ∈ßPervgr,c(Y)w=ν as desired. �
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5.3. Generation. We will now show that Pervgr,c(Y)
w=ν for all ν together generate Shvgr,c(Y), i.e.,

Shvgr,c(Y) is the smallest full DG-subcategory (or equivalently, full stable∞-subcategory) of Shvgr(Y)
ren

containing Pervgr,c(Y)
w=ν for all ν.

Let C be a triangulated/stable∞-/DG-category and {Si}i∈I , where I is an indexing set, a family of
collections of objects in C or subcategories C. Then, following [Bon12], we use 〈Si〉i∈I to denote the
smallest full triangulated/stable∞-/DG-subcategory of C containing Si for all i. When I is a singleton,
i.e., we simply have one S, then we simply write 〈S〉.

The rest of the current subsection will be devoted to the proof of the following result.

Theorem 5.3.1. The categories Pervgr,c(Y)
w=ν together generate Shvgr,c(Y). More precisely,

Shvgr,c(Y) ≃ 〈Pervgr,c(Y)
w=ν〉ν∈Z.

5.3.2. By definition, 〈Pervgr,c(Y)
w=ν〉 ⊆ Shvgr,c(Y). To prove the other inclusion, it suffices to show

that
(i) 〈Pervgr,c(Y)

w=ν〉ν∈Z contains gr(Fn) for all Fn ∈ Shvm,c(Yn) for some fixed (and hence, all) n,
and

(ii) 〈Pervgr,c(Y)
w=ν〉ν∈Z is idempotent complete.

5.3.3. We will now prove the first item in §5.3.2. Since 〈Pervgr,c(Y)
w=ν〉ν∈Z is closed under extensions,

using the perverse t-structure on Shvm,c(Y), we reduce to the case where Fn ∈ Pervm,c(Yn). By [LO09,
Theorem 9.2], Fn has a weight filtration whose associated graded pieces are pure. This allows us to
further reduce to the case where Fn is a pure perverse sheaf of weight ν for some ν. But then, we are
done since, gr(Fn) ∈ Pervgr,c(Y)

w=ν.

5.3.4. We will prove the second item in §5.3.2 in the remainder of this subsection. It suffices to show
that 〈Pervgr,c(Y)

w=ν〉ν∈[k,l] is idempotent complete for any k ≤ l since 〈Pervgr,c(Y)
w=ν〉ν∈Z is the union

of categories of this form. We will prove this by induction on the length l − k.

5.3.5. Base case. For the base case k = l = ν, consider 〈Pervgr,c(Y)
w=ν〉. Theorem 5.2.19 and Proposi-

tion 5.2.17 imply that
〈Pervgr,c(Y)

w=ν〉 ≃
⊕

s∈S

Vectc ,

which is idempotent complete.

5.3.6. Induction step. Suppose we know that 〈Pervgr,c(Y)
w=ν〉ν∈[k,l] is idempotent complete. We will

show that 〈Pervgr,c(Y)
w=ν〉ν∈[k,l+1] is also idempotent complete. But first, we will need some prepara-

tion.
We start with the following lemma, which is a DG-categorical counterpart of [Bon12, Lem. 1.1.5].

Lemma 5.3.7. Let C be a DG-category and C1, C2 full DG-subcategories of C. Let C◦ = 〈C1,C2〉 be

the smallest full DG-subcategory of C containing C1 and C2. Suppose that for any c1 ∈ C1 and c2 ∈ C2,

HomC(c1, c2) ≃ 0. Then, we have the following adjoint pairs F1 ⊣ G1 and F2 ⊣ G2 fitting into the following

diagram

C1 C◦ C2

F1

G1

F2

G2

such that for any c ∈ C◦, we have an exact triangle

F1G1c→ c→ G2F2c.

Proof. Let D◦ be the full subcategory of C◦ spanned by objects d such that the functor

C
op
1 → Vect

c 7→HomC(F1(−), d).

is representable. Denoting the representing object G1(d), we obtain a functor G1 : D◦ → C1 which is
a partial right adjoint to F1. It is easy to see that D◦ contains C1 and C2: G1(d) = d when d ∈ C1 and
G1(d) = 0 when d ∈ C2. It is also easy to check that D◦ is closed under finite direct sums, shifts, and
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cones, or equivalently, G1 is compatible with these operations. In particular, D◦ = C◦ and hence, G1 is
defined on C◦ as desired.

We have the following pairs of adjoint functors

C1 C◦ ker G1

F1

G1

F2

G2

where ker G1 is the full subcategory of C◦ consisting of objects c ∈ C◦ such that G1(c) ≃ 0, and F2(c) =

Cone(F1G1c→ c). We will now show that ker G1 = C2, which will conclude the proof.
As already seen above, C2 ⊆ ker G1. For the other inclusion, it suffices to show that F2c ∈ C2 for

any c ∈ C◦. For that, note that if we let E◦ be the full subcategory of C◦ consisting of objects c such
that F2c ∈ C2, then E◦ contains C1,C2 and is closed under finite direct sums, shifts, and cones. Thus,
E◦ = C◦ and we are done. �

Lemma 5.3.8. Consider the situation of Lemma 5.3.7. Suppose that C1 and C2 are idempotent complete.

Then, so is C◦ = 〈C1,C2〉.

Proof. Replacing C by its idempotent completion if necessary, we can assume that C is also idempotent
complete without changing C1, C2, or C◦ = 〈C1,C2〉. Let Idem denote the category given in [Lur17b,
Defn. 4.4.5.2]. Consider ρ : Idem→ C◦, which determines an object c ∈ C and a map e : c → c such
that e2 is homotopic to e. Choosing a left cofinal map Z≥0 → Idem, [Lur17b, Prop. 4.4.5.17], we are
reduced to showing that the following diagram

c
e
−→ c

e
−→ c

e
−→ · · ·

has a colimit in C◦.
From Lemma 5.3.7, we obtain functors Z≥0→ Idem→ C1 and Z≥0→ Idem→ C2 given by idempo-

tents e1 = F1G1e on F1G1c and e2[−1] = G2F2e[−1] on G2F2c[−1], fitting into the following diagram

G2F2c[−1] G2F2c[−1] G2F2c[−1] · · ·

F1G1c F1G1c F1G1c · · ·

c c c · · ·

e2[−1] e2[−1] e2[−1]

e1 e1 e1

e e e

where the columns are exact triangles. The colimits of the first two rows are in C◦ and hence, so is the
colimit of the last row. Thus, we are done. �

Remark 5.3.9. The lemmas above hold equally true for stable∞-categories in general. The only change
is that instead of HomC(c1, c2), we need to formulate our statement in terms of spectra-enriched Hom
instead. We do not need this in the current paper.

Back to our induction step, by Theorem 5.2.13, it is easy to see that if we takeC1 = 〈Pervgr,c(Y)
w=ν〉ν∈[k,l]

and C2 = 〈Pervgr,c(Y)
w=l+1〉, then C1,C2 and C = Shvgr,c(Y) satisfy the conditions of Lemma 5.3.8. Con-

sequently, 〈Pervgr,c(Y)
w=ν〉ν∈[k,l+1] is idempotent complete and the induction step concludes.

5.3.10. We have thus finished proving Theorem 5.3.1.

5.4. Weight structure and perverse t-structure. In this subsection, we will finally construct a weight
structure and a perverse t-structure on Shvgr,c(Y) for any Y ∈ Stkk. The preparation done in §§5.2
and 5.3 allows us to apply [Bon12] directly, yielding a transversal weight and t-structure on Shvgr,c(Y).
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5.4.1. Transversal weight and t-structures. We begin by recalling various results from [Bon12].

Definition 5.4.2 ([Bon12, Defn. 1.1.4]). (i) Let C be a triangulated category. We say that a fam-
ily {Ai}i∈Z of full subcategories Ai ⊆ C is semi-orthogonal if for any i, j, HomC(Ai ,A j[∗]) is
supported on ∗ ∈ [0, i − j]. We will say that {Ai}i∈Z is strongly semi-orthogonal if, in addition
to the above, HomC(Ai ,A j) = 0 when i 6= j.27

(ii) We will say that {Ai}i∈Z is generating (in C) if 〈Ai〉i∈Z = C. See §5.3 for the definition of 〈−〉.28

Theorem 5.4.3 ([Bon12, Thm. 1.2.1]). Fix a triangulated category C.

Let {Ai}i∈Z be a family of full subcategories of C. Then the following are equivalent (all weight and

t-structures appearing below are bounded)

(i) Each Ai is abelian semi-simple and {Ai}i∈Z is a strongly semi-orthogonal generating family (see

Definition 5.4.2) in C.

(ii) {Ai}i∈Z is a semi-orthogonal family in C such that if we let Ct≤0 (resp. Ct≥0) be the small-

est extension-closed full subcategory of C containing ∪i∈Z, j≥0Ai[ j] (resp. ∪i∈Z, j≤0Ai[ j]), then

(Ct≤0,Ct≥0) yields a t-structure on C.

(iii) {Ai}i∈Z is a semi-orthogonal family in C such that the smallest extension-closed full subcategory

of C containing ∪i∈ZAi is the heart of a t-structure.

(iv) {Ai}i∈Z is a semi-orthogonal family in C and C has a t-structure whose heart C♥t contains Ai ’s

such that for all X ∈ C♥t there exists an exhaustive separated increasing filtration by subobjects

W≤iX such that W≤iX/W≤i−1X ∈ Ai for all i.

The above conditions are equivalent to the following equivalent conditions

(a) C has a weight and a t-structure, such that for all i ∈ Z and X ∈ C♥t there exists a weight

truncation w≤iX → X → w≥i+1X such that all terms are in C♥t . We call such a truncation a nice
decomposition.

(b) C has a weight and a t-structure such that nice decompositions exist for any object in C♥t . Moreover,

they are functorial in X ∈ C♥t (if we fix i) and the corresponding functors X 7→ w≤iX and X 7→

w≥i+1X are exact (as endo-functors on C♥t ).

(c) C has a weight and a t-structure such that for any X ∈ C♥t and any w≤iX (that is part of a weight

truncation of X), Im(tH0(w≤i X )→ X )→ X extends to a nice decomposition of X .

Moreover the {Ai}i∈Z in the first set of equivalent conditions (indexed by Roman numerals) can be

obtained from the weight and t-structures in the second set of equivalent conditions (indexed by Latin

characters) as follows: Ai = C♥t ∩Cw=i . Namely, Ai consists of objects in the t-heart that has weight i.

Definition 5.4.4. Let C be a triangulated category equipped with a weight w and a t-structure. If w

and t satisfy the (equivalent) conditions of Theorem 5.4.3, we will say that t is transversal to w.

Remark 5.4.5. (i) Note that since weight and t-structures on a stable∞-category is defined as
structures on the underlying triangulated category, all theorems about weight and t-structures
on triangulated category (Theorem 5.4.3 above and Proposition 5.4.6 below, in particular)
apply equally well to stable∞-categories.

(ii) From the proof of Theorem 5.4.3, we see that the weight structure on C is given by the the pair
(Cw≤0,Cw≥0) where Cw≤0 (resp. Cw≥0) is the idempotent-closure in C of the smallest extension-
closed full subcategory of C containing finite direct sum of objects in ∪i∈Z, j,i+ j≤0Ai[ j] (resp.
∪i∈Z, j,i+ j≥0Ai[ j]).

(iii) C♥w is the full subcategory of C spanned by finite direct sums of objects in Ai[−i]’s. In particular,
any X ∈ C♥w is equivalent to

⊕
i H

i(X )[−i] where Hi(X )[−i] ∈ Ai[−i], see [Bon12, Rmk.
1.2.3.2]. This is an analog of the decomposition theorem of [BBDG18].

Proposition 5.4.6 ([Bon12, Prop. 1.2.4]). Let C be a triangulated category equipped with a weight

structure and a t-structure such that t is transversal to w. Then,

27Note that since we are working with a triangulated category C, HomC(−,−) is a set, rather than a space.
28Note that this notion is different from the one discussed in §3.1.8.
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(i) t-truncations X 7→ τ≤iX and X 7→ τ≥iX are weight-exact for any i, i.e., they preserve Cw≥0, Cw≤0,

and hence, C♥w .

(ii) Let X ∈ C and i ∈ Z. Then, X ∈ Cw≤i (resp. X ∈ Cw≥i) if and only if for all j ∈ Z, W≤i+ j
tH j(X ) ≃

tH j(X ) (resp. W≤i+ j−1
tH j(X ) ≃ 0).

(iii) For X ∈ C♥t , denote W≥i+1X := X/W≤i X . We have the following pairs of adjoint functors

Cw≤i ∩ C♥t C♥t Cw≥i+1 ∩C♥t

W≤i

W≥i+1

Moreover, both W≤i and W≥i+1 are exact.

(iv) The functors X 7→W≤i(W≥iX ) and X 7→W≥i(W≤i X ) are canonically isomorphic as functors C♥t →

Ai . For X ∈ C♥t , we write GrW
i

X :=W≤iX/W≤i−1X ∈ C♥t .

(v) For X ∈ C♥w , X ∈ Cw≤i (resp. X ∈ Cw≥ j) if and only if GrW
j

X = 0 for all j > i (resp. j < i).

5.4.7. We will now apply the discussion above to the case of Shvgr,c(Y) where Y ∈ Stkk.

Theorem 5.4.8. For any Y ∈ Stkk, Shvgr,c(Y) is equipped with a weight and a t-structure such that the

t-structure is transversal to the weight structure.

This t-structure will be referred to as the perverse t-structure, whose heart is the category of graded

perverse sheaves Pervgr,c(Y) := Shvgr,c(Y)
♥t .

Proof. Take Ai = Pervgr,c(Y)
w=i as in (5.2.2). Theorems 5.2.13, 5.2.19 and 5.3.1 imply that the family

{Ai}i∈Z satisfies the conditions of Theorem 5.4.3. The proof thus concludes. �

Remark 5.4.9. Theorem 5.4.3 gives another characterization of of Pervgr,c(Y)
w=k defined in (5.2.2).

Namely, Pervgr,c(Y)
w=k = Pervgr,c(Y)∩Shvgr,c(Y)

w=k is precisely the category of graded perverse sheaves
of pure weight k. We will also use Pervgr,c(Y)

♥w to denote Pervgr,c(Y)
w=0, the category of pure graded

perverse sheaves of weight 0.

Remark 5.4.10. The action of Vectgr,c ≃ Shvgr,c(pt) on Shvgr,c(Y) is compatible with the weight and
t-structures involved. Indeed, it suffices to check for a single vector space concentrated in one graded
and cohomological degree. But now, it is easy to see since the action by such an object is simply given by
a combination of taking finite direct sums, cohomological degree shift, and graded degree shifts. As a
result, Vectgr,c,♥w acts on Shvgr,c(Y)

♥w and Vectgr,c,♥t acts on Pervgr,c(Y). Thus, Vectgr,c ≃ Chb(Vectgr,c,♥w)

also acts on Chb(hShvgr,c(Y)
♥w ). Moreover, this action is compatible with the weight complex functors.

5.5. Formal properties. Since Shvgr,c(Y) is equipped with a perverse t-structure, transversal to a
weight structure, all statements in Theorem 5.4.3, Proposition 5.4.6, and Remark 5.4.5 apply to Shvgr,c(Y)
as well. In this subsection, we are interested in the interaction between these structures and those on
the categories of mixed sheaves Yn and constructible sheaves on Y.

The general meta-theorem is that the perverse t-structure on Shvgr,c(Y) is compatible with those on
Shvm,c(Yn) and Shvc(Y). Similarly, the weight structure on Shvgr,c(Y) is compatible with the notion of
weight on Shvm,c(Yn) as defined in [BBDG18, LO09]. Finally, results regarding weights in the theory
of mixed sheaves have natural analogs in the theory of graded sheaves. We will collect some of these
properties below. Our goal is not to be exhaustive; rather, we aim demonstrate how straightforward it
is to adapt known results from the theory of (mixed) sheaves to the graded sheaf setting.

Proposition 5.5.1. Let Yn ∈ Stkkn
and Y its base change to k. Then, the functors

Shvm,c(Yn)
gr
−→ Shvgr,c(Y)

oblvgr
−−−→ Shvc(Y)

preserves and reflects t-structures with respect to the perverse t-structures. Namely, for any n and any

F ∈ Shvgr,c(Y), F ∈ Shvgr,c(Y)
t≤n (resp. F ∈ Shvgr,c(Y)

t≥n) if and only if oblvgr(F) ∈ Shvc(Y)
t≤n (resp.

oblvgr(F) ∈ Shvc(Y)
t≥n). We have a similar statement for gr.
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Proof. We will now show that gr is t-exact, i.e., it preserves the t-structures involved; t-exactness for
oblvgr can be argued similarly. It suffices to show that gr preserves the t-heart. By [LO09, Thm. 9.2],
any mixed perverse sheaf admits a finite filtration whose associated graded pieces are pure perverse
sheaves. Thus, it suffices to show that gr sends pure perverse sheaves to (pure) graded perverse sheaves.
But this follows from the description of the t-heart given in Theorem 5.4.3.(iii) and the definition of
Ai = Pervgr,c(Y)

w=i given in (5.2.2).
Note the general fact that a conservative t-exact functor necessarily reflects the t-structure as well.

The desired conclusion then follows from the conservativity of gr and oblvgr, see Corollary 3.5.6 and Lemma 4.7.16.
�

Proposition 5.5.2. Let Y and Yn be as above. The functor gr : Shvm,c(Yn) → Shvgr,c(Y) preserves and

reflect weights, where we use Frobenius weights on Shvm,c(Yn) and our weight structure on Shvgr,c(Y).

Namely, for any k and F ∈ Shvm,c(Y), then F ∈ Shvm,c(Y)
w≤k (resp. F ∈ Shvm,c(Y)

w≥k) if and only if

gr(F) ∈ Shvgr,c(Y)
w≤k (resp. gr(F) ∈ Shvgr,c(Y)

w≥k).

Proof. Perverse t-truncation is compatible with Frobenius weights on mixed sheaves, by [Sun12a, Thm.
3.5], and is compatible with the transversal weight structure on graded sheaves by Proposition 5.4.6.
Moreover, gr is t-exact, by Proposition 5.5.1. It therefore suffices to consider the case where F is
perverse.

Now, F has a finite filtration whose associated graded pieces are pure perverse sheaves, by [LO09,
Thm. 9.2]. In particular, F has Frobenius weight ≤ k (resp. ≥ k) if and only if all the pure pieces have
Frobeinus weights ≤ k (resp. ≥ k). This allows us to further reduce to the case where F pure. But
then, this follows from the definition of Pervgr,c(Y)

w=k given in (5.2.2) and Remark 5.4.9. �

Remark 5.5.3. Pre-composing the weight complex functor wt : Shvgr,c(Y) → Chb(hShvgr,c(Y)
♥w ) (see

(5.1.11)) with gr, we obtain a functor Shvm,c(Yn) → Chb(hShvgr,c(Y)
♥w ). Due to weight exactness of

gr, Proposition 5.5.2, any (Frobenius) weight filtration on F ∈ Shvm,c(Yn) yields a weight filtration on
gr(F). Hence, using Chr(F) ∈ Chb(hShvm,c(Yn)

w=0) to denote the chromatographic complex of F in
the sense of [WW17, §3.5], we have

gr(Chr(F)) ≃ wt(gr(F)),

see also Remark 5.1.12 for an explicit description of the weight complex functor. This is the precise sense
in which the weight complex functor is compatible with the chromatographic complex construction,
answering the question posed in [WW17, Rmk. 2].

Corollary 5.5.4. The weight structure and perverse t-structure on Shvgr,c(Y) is symmetric with respect

to the Verdier duality functor for graded sheaves. Namely, for any integer n, Verdier duality induces an

equivalence of categories

Shvgr,c(Y)
t≤n

DVer
−−→
≃

Shvgr,c(Y)
t≥−n

Shvgr,c(Y)
w≤n

DVer
−−→
≃

Shvgr,c(Y)
w≥−n.

Proposition 5.5.5. Let f : Y→ Z be a morphism in Stkk. Then, for any k ∈ Z,

(i) f ∗ (resp. f !) : Shvgr,c(Z)→ Shvgr,c(Y) preserves the property of having weight ≤ k (resp. ≥ k).

Moreover, f ∗ and f ! are weight exact when f is smooth.

(ii) f∗ (resp. f!) : Shvgr,c(Y)→ Shvgr,c(Z) preserves the property of having weight ≥ k (resp. ≤ k). In

particular, f∗ ≃ f! is weight-exact when f is proper.

(iii) When f∗ and f! are t-exact when f is an affine open embedding.

(iv) f ∗[d]〈d〉 ≃ f ![−d]〈−d〉 : Shvgr,c(Z) → Shvgr,c(Y) is weight and t-exact when f is smooth of

relative dimension d.

Proof. We will show that f ∗ is weight exact when f is smooth. The rest can be argued in a simi-
lar manner. As before, by Proposition 5.4.6, it suffices to show that f ∗F is pure when F is a pure
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graded perverse sheaf. But we have a complete classification of pure graded perverse sheaves given in
Theorem 5.2.19. The desired result then follows from the corresponding statement about Frobenius
weight under smooth pullbacks, using compatibility between functoriality of graded sheaves and mixed
sheaves, Proposition 4.5.5. �

Proposition 5.5.6. The category Pervgr,c(Y) is Artinian and Noetherian. Simple graded perverse sheaves

are necessarily pure and moreover, F ∈ Pervgr,c(Y) is simple if and only if oblvgr(F) ∈ Pervc(Y) is simple.

Proof. As oblvgr : Shvgr,c(Y)→ Shvc(Y) is t-exact by Proposition 5.5.1 and conservative by Lemma 4.7.16,
Artinian-ness and Noetherian-ness of Pervgr,c(Y) follow from the same properties of Pervc(Y).

Simple objects are necessarily pure since otherwise, the weight filtration will provide a non-trivial
filtration.

Now, let F ∈ Pervgr,c(Y). By conservativity of oblvgr, Lemma 4.7.16, F is simple if oblvgr(F) is.
Conversely, suppose F is simple, we would like to show that oblvgr(F) is also simple. As seen above,
F is necessarily pure. But now, the desired statement follows from the complete description of pure
graded perverse sheaves given in Theorem 5.2.19. �

We also have a version of the decomposition theorem of [BBDG18,Sun12a] in the graded setting.

Theorem 5.5.7. Let F ∈ Shvgr,c(Y)
♥w . Then

(5.5.8) F ≃
⊕

i

pHi(F)[−i] ≃
⊕

i

⊕

k

Gik[−i]

where the direct sums are finite and Gik are simple objects in Pervgr,c(Y)
w=i .

Moreover, if F ≃ grF′ for some F′ ∈ Shvm,c(Yn)
w=0, for some n ∈ Z>0. Then,

(5.5.9) oblvgr(F) ≃
⊕

i

⊕

k

oblvgr Gik[−i]

where Gik are simple perverse sheaves on Y. In other words, the decomposition above is compatible with

the usual decomposition theorem of [BBDG18,Sun12a].

Proof. The first equivalence of (5.5.8) is by Remark 5.4.5.(iii). The second equivalence of (5.5.8) is by
the complete description of simple graded perverse sheaves given in Theorem 5.2.19. Finally, (5.5.9)
is a consequence of (5.5.8) and Proposition 5.5.6. �

Remark 5.5.10. The decomposition in Theorem 5.5.7 above remembers the weights and thus could be
thought of as an enhancement of the usual decomposition theorem.

5.5.11. Intermediate extensions. Intermediate extensions are one of the main reasons that make per-
verse sheaves special. The same construction can be applied to graded perverse sheaves as well. Let
j : U→ X be an open embedding in Stkk and F ∈ Pervgr,c(U). Then, we can form

j!∗F = Im(pH0( j!F)→
pH0( j∗F)).

Due to t-exactness of oblvgr and gr, and the compatibility between functoriality of graded sheaves and
that of (mixed) sheaves, j!∗ is also compatible with the usual intermediate extension functor for (mixed)
sheaves. Namely,

oblvgr ◦ j!∗ ≃ j!∗ ◦ oblvgr and j!∗ ◦ gr ≃ gr ◦ j!∗.

Moreover, standard properties of the intermediate extension functor such as purity preserving and
simplicity preserving etc. also hold in the graded setting. Moreover, these properties can be obtained
easily from corresponding results in the theory of (mixed) sheaves.
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5.5.12. Simple graded perverse sheaves and graded intersection complex. Suppose U is smooth and L ∈
Pervgr,c(U) is a graded local system, i.e., oblvgr(L) is a local system on U, appropriately cohomologically
shifted to make it perverse. Then, we also write ICgr(L) := j!∗L to denote the graded intersection
complex.

More generally, when U is locally closed in X with closure U, and L is as before, we also write
ICgr(L) := j̄∗ j!∗L, where j and j̄ fit into the following diagram

U
j
−→ U

j̄
−→ X.

Proposition 5.5.6 implies that L is irreducible if and on if oblvgr(L) is. We call such an object an
irreducible graded local system. More generally, Theorem 5.2.19 implies the following expected state-
ment.

Proposition 5.5.13. All simple perverse sheaves Pervgr,c(X) are of the form ICgr(L) where L ∈ Pervgr,c(U)
is an irreducible graded local system, appropriately shifted.

5.6. Mixed geometry. As mentioned in the introduction, our theory of graded sheaves is designed to
give a uniform construction of mixed categories in the sense of [BGS96,Rid13]. In this subsection, we
will explain why this is the case. More precisely, Corollaries 5.6.7 and 5.6.8 state that our construction
indeed provides a mixed version in the sense of Beilinson–Ginzburg–Soergel and Rider. Moreover,
Proposition 5.6.12 shows that under some purity condition that is satisfied in those situations considered
classically, our construction gives the same answers as those previously constructed.

5.6.1. Graded sheaves as “mixed versions”. For Y ∈ Stkk, we let Shv∞,c(Y) be the smallest full DG-
subcategory of Shvc(Y) containing the essential images under pullbacks of Shvm,c(Ym) for all km-forms
Ym of Y, for all m. Moreover, let Purc(Y) be the additive full subcategory of Shvc(Y) consisting of semi-
simple complexes F ≃

⊕
i ICi[ki] where ICi ’s are simple perverse sheaves. Similarly, we let Pur∞,c(Y)

be the full subcategory of Purc(Y) consisting of those F such that ICi ’s come from Pervm,c(Yn) for some
n. We note that when Y is a finite orbit stack, Shv∞,c(Y) and Pur∞,c(Y) coincide with Shvc(Y) and
Purc(Y), respectively.29

We have the following characterization of Shv∞,c(Y).

Proposition 5.6.2. Let F ∈ Shvc(Y). Then the following conditions are equivalent

(i) F ∈ Shv∞,c(Y);

(ii) the simple constituents of pHi(F) belongs to Pur∞,c(Y), i.e., they are simple perverse sheaves

coming from Shvm,c(Yn) for some n.

As a consequence, Shv∞,c(Y) is closed under the perverse truncations of Shvc(Y), and hence, it inherits the

perverse t-structure on Shvc(Y).

Proof. Assuming (ii) is satisfied. Then, we can build F from successive extensions of simple IC’s coming
from Shvm,c(Yn) for some n. Thus, F ∈ Shv∞,c(Y) by definition.

Conversely, let F ∈ Shv∞,c(Y). Using Proposition 5.2.20 and the fact that the pullback functor
Shvm,c(Yn) → Shvc(Y) is t-exact with respect to the perverse t-structure, we know that the essential
image of Shvm,c(Yn) satisfies (ii). We conclude by observing that the condition (ii) is closed under finite
direct sums, shifts, and cones. �

Corollary 5.6.3. Pur∞,c(Y) = Purc(Y)∩ Shv∞,c(Y) as full subcategories of Shvc(Y).

Proof. This follows directly from Proposition 5.6.2. �

Corollary 5.6.4. The category Shv∞,c(Y) is idempotent complete.

Proof. Since Shv∞,c(Y) has a bounded t-structure, it is idempotent complete, by [AGH19, Cor. 2.14].
�

29The assertion still holds in the case of ind-finite orbit stacks. However, strictly speaking, we have only discussed the finite
type situation in this paper.



54 QUOC P. HO AND PENGHUI LI

We have yet another characterization of Shv∞,c(Y).

Proposition 5.6.5. The functor oblvgr : Shvgr,c(Y)→ Shvc(Y) factors through Shv∞,c(Y). Moreover, the

resulting functor induces an equivalence of category

Shvgr,c(Y)⊗Vectgr,c Vect
c ≃−→ Shv∞,c(Y).

Proof. By definition, Shvgr,c(Y) is generated as an idempotent complete DG-category by the essential
image of Shvm,c(Ym) for some (in fact, any/all) Fqm -form Ym of Y for some (in fact, any/all) m. Thus,
oblvgr factors through Shv∞,c(Y) and we obtain a functor Shvgr,c(Y) → Shv∞,c(Y). This induces a
functor

Shvgr,c(Y)⊗Vectgr,c Vect
c → Shv∞,c(Y),

which is fully faithful, see also (4.7.17). Since both the source and target are generated, as idempotent
complete DG-categories, by the same collection of objects, the resulting functor is an equivalence of
categories and the proof concludes. �

5.6.6. Let Perv∞,c(Y) := Shv∞,c(Y)
♥t denote the perverse t-heart. Then, oblvgr is an exact functor

oblvgr : Pervgr,c(Y)→ Perv∞,c(Y)

which is faithful, by Remark 4.7.18. Moreover, directly from the construction, we have a canonical
natural equivalence

oblvgr(F〈k〉)
ǫ
−→
≃

oblvgr(F), for all F ∈ Shvgr(Y), k ∈ Z

We thus obtain the following result.

Corollary 5.6.7. The functor oblvgr : Pervgr,c(Y) → Perv∞,c(Y) together with ǫ realizes Pervgr,c(Y) as a

grading on Perv∞,c(Y) in the sense of [BGS96, Defn. 4.3.1.(1)].

Proof. We only need to show that oblvgr preserves semi-simplicity and that irreducible objects of Perv∞,c(Y)

lie in the essential image of oblvgr. For the first property, a stronger statement is true: oblvgr preserves
simplicity, by Proposition 5.5.6. The second property follows from Proposition 5.6.2.(ii). �

Similarly, we also have the following result.

Corollary 5.6.8. Shvgr,c(Y) is a mixed version of Shv∞,c(Y) in the sense of [Rid13, Defn. 4.2].

Remark 5.6.9. The results above have natural variations (with exactly the same proofs) where instead
of Shv∞,c(Y), we consider the smallest full DG-subcategory of Shvc(Y) generated by a collection of
objects coming from Shvm,c(Ym) for some m’s.

5.6.10. Hom-purity and the usual construction. In the above, we discussed how our construction pro-
vides the correct answer in the sense of [BGS96,Rid13]. We will now explain how our construction in
fact also recovers, and hence, generalizes classical constructions.

Before the current paper (with the exception of [SW18,SVW18]), mixed versions are constructed by
hand as the DG-/homotopy category of bounded chain complexes in a chosen collection of semi-simple
objects. In our language, the mixed version was defined to be Chb(hPur∞,c(Y)) where hPur∞,c(Y) is
the underlying homotopy category of Pur∞,c(Y). However, this is only sensible when the mixed Hom
complexes between those objects satisfy some purity condition. What we did above amounts to saying
that a mixed version in fact always exists, free from any extra purity condition.

However, as we will see in Proposition 5.6.12 below, when a purity condition is satisfied, the weight
heart Shvgr,c(Y)

♥w is classical and hence, the weight complex functor of §5.1.9 yields an equivalence of
(weight)DG-categories Shvgr,c(Y) ≃ Chb(Shvgr,c(Y)

♥w ). Moreover, in this case, Shvgr,c(Y)
♥w ≃ hPur∞,c(Y)

and hence, Shvgr,c(Y) ≃ Chb(hPur∞,c(Y)), recovering classical constructions.
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5.6.11. Before stating our result, we note the following fact. By the decomposition theorem for graded
sheaves, Theorem 5.5.7, we have the following factorization

Shvgr,c(Y)
♥w Shv∞,c(Y)

Pur∞,c(Y)
oblv♥w

gr

Moreover, from the definition of Pur∞,c(Y) and the fact that any simple mixed perverse sheaf on Yn

is necessarily pure, we know that oblv♥w

gr is essentially surjective. This justifies the use of the notation
Pur∞,c.

Proposition 5.6.12. Let Y ∈ Stkk and Yn ∈ Stkkn
be any kn-form of Y. Then, the following are equivalent:

(i) Shvgr,c(Y)
♥w is classical.

(ii) For any Fgr,Ggr ∈ Shvgr,c(Y)
♥w , HomShvgr(Y)ren(F

gr,Ggr) ∈ Vect concentrates in cohomological

degree 0.

(iii) For any Fgr,Ggr ∈ Shvgr,c(Y)
♥w , Hom

gr
Shvgr(Y)ren

(Fgr,Ggr) ∈ Vectgr is pure of weight 0, i.e. it con-

centrates in the diagonal or equivalently, the k-graded component concentrates in cohomological

degree k.

(iv) The natural functor h(oblv♥w

gr ) : hShvgr,c(Y)
♥w → hPur∞,c(Y) is an equivalence of categories.

(v) For any ICgr
1 , ICgr

2 ∈ Pervgr,c(Y)
♥w = Pervgr,c(Y)

w=0 that are simple, Hom
gr
Shvgr(Y)ren

(ICgr
1 , ICgr

2 ) ∈

Vectgr is pure of weight 0.

(vi) For any Fn,Gn ∈ Shvm,c(Yn) that is pure of weight 0, Homm
Shvgr(Yn)

ren(Fn,Gn) ∈ Shvm(ptn) is pure

of weight 0.

(vii) For any IC1, IC2 ∈ Pervm,c(Yn)
w=0 that are simple, Homm

Shvgr(Yn)
ren(IC1, IC2) ∈ Shvm(ptn) is pure

of weight 0.

Proof. By definition and the fact that Vect-enriched Hom’s between elements in the weight heart can
only concentrate in non-positive degrees (see §5.1.3), we have (i)⇔ (ii). Moreover, it is easy to see
that (iii) ⇒ (ii), (v), and (vi); and (vi) ⇒ (vii). It remains to prove that (ii) ⇒ (iii), (v) ⇒ (iii), (vii)
⇒ (v), and (iii)⇔ (iv).

For (ii) ⇒ (iii), we note that if Ggr ∈ Shvgr,c(Y)
♥w then so is Ggr〈k〉[k] for any k ∈ Z. Thus, for any

Fgr,Ggr ∈ Shvgr,c(Y)
♥w , assuming (ii), we know that

HomShvgr(Y)ren(F
gr,Ggr〈k〉[k]) ≃Hom

gr
Shvgr(Y)ren

(Fgr,Ggr)k[k] ∈ Vect

concentrates in cohomological degree 0 for any k. (iii) thus follows.
We will now prove that (v)⇒ (iii). By the decomposition theorem for graded sheaves, Theorem 5.5.7,

it suffices to prove (iii) when Fgr and Ggr are of the form ICgr
i
〈ki〉[ki] where ICgr

i
∈ Pervgr,c(Y)

♥w are
simple, i ∈ {1,2}. But by the hypothesis (v), Hom

gr
Shvgr(Y)ren

(ICgr
1 , ICgr

2 ) ∈ Vect
gr is pure of weight 0, and

hence, so is

Hom
gr
Shvgr(Y)ren

(ICgr
1 〈k1〉[k1], IC

gr
2 〈k2〉[k2]) ≃Hom

gr
Shvgr(Y)ren

(ICgr
1 , ICgr

2 )〈k〉[k] ∈ Vect
gr, k = k2 − k1.

We thus obtain (iii).
We will show that (vii) ⇒(v). Assuming (vii), observe that for any IC1, IC2 as in (vii), by Proposi-

tion 4.6.2, Hom
gr
Shvgr(Y)ren

(gr(IC1),gr(IC2)) ∈ Vectgr is pure of weight 0. But now, by (5.2.2) and Theo-

rem 5.2.19, any simple object in Pervgr,c(Y)
♥w is a direct summand of an object of the form gr(IC) where

IC ∈ Pervm,c(Y)
w=0 is simple. The proof thus concludes.

Next, we will show that (iii)⇔ (iv). We already saw above that h(oblv♥w

gr ) is essentially surjective.

Thus, (iv) is equivalent to the fact that h(oblv♥w

gr ) is fully faithful. Let Fgr,Ggr ∈ Shvgr,c(Y)
♥w and F,G ∈



56 QUOC P. HO AND PENGHUI LI

Pur∞,c(Y) their images. We have,

HomhShvgr,c(Y)♥w (F
gr,Ggr) ≃ H0(HomShvgr(Y)ren(F

gr,Ggr))

→
⊕

k

H0(Hom
gr
Shvgr(Y)ren

(Fgr,Ggr)k)(5.6.13)

≃ H0(HomShv(Y)ren(F,G))(Remark 4.7.18)

≃ HomhPur∞,c(Y)
(F,G),

where (5.6.13) is the embedding to the graded degree 0 part. Now, (iv) is equivalent to (5.6.13) being
an equivalent for all Fgr,Ggr ∈ Shvgr,c(Y)

♥w . Consider the above with Ggr replaced by Ggr〈l〉[l] for all
l ∈ Z, we see that (5.6.13) being an equivalent is equivalent to (iii). �

Remark 5.6.14. Note that Pur∞,c(Y), and hence, so is Chb(hPur∞,c(Y)), is endowed with a homolog-
ical shift functor [k] for any k ∈ Z. These inner homological shifts are not to be confused with the
outer homological shifts coming from Chb. When Shvgr,c(Y)

♥w is classical, Proposition 5.6.12 provides
an equivalence of weight categories Shvgr,c(Y) ≃ Chb(hPur∞,c(Y)). Under this equivalence, simulta-
neous graded-degree and homological shifts [k]〈k〉 on the left hand side get translated to the inner

homological shifts [k] on the right hand side.

6. HECKE CATEGORIES

We will now apply the theory developed above to obtain a geometric realization of the DG-category
of bounded chain complexes of Soergel bimodules. More precisely, fixing a reductive group G over k

and subgroups T ⊂ B ⊂ G where T is a maximal torus and B a Borel subgroup, the main result of this
section, Theorem 6.4.1, states that we have an equivalence of monoidal categories

Shvgr,c(B\G/B) ≃ Shvgr,c(BB ×BG BB) ≃ Chb(SBimW ),

compatible with the weight and monoidal structures on both sides, where the weight structure on
Chb(SBimW ) is given by the “stupid” truncation. In particular,

Shvgr,c(B\G/B)
♥w ≃ SBimW .

Here, SBimW is the category of Soergel bimodules attached to the Coxeter system coming from G and
W is the Weyl group of G. The main feature of this section is that known statements about sheaves on
B\G/B can be readily applied to yield the desired result.

We note that thanks to Proposition 5.6.12, known results about Shvm,c(Bn\Gn/Bn) such as those
proved in [BY13] can be applied directly to deduce that Shvgr,c(B\G/B)

♥w is classical and hence

Shvgr,c(B\G/B) ≃ Chb(hPurc(B\G/B)) ≃ Chb(SBimW ),

where the last equivalence has already been proved originally by Soergel in [Soe90]. Note that here, Gn

is a split form of G over Fqn and moreover, Purc and Pur∞,c coincide since B\G/B is a finite orbit stack.
In what follows, however, we take a slightly more direct approach, highlighting which computational
input is necessary.

6.1. Geometric Hecke categories. We will now study the category of constructible graded sheaves on
B\G/B ≃ BB ×BG BB.

6.1.1. Monoidal structure via convolution. Since BB ×BG BB is of the form X ×Y X , it is naturally an
algebra object in Corr(Stkk) where the multiplication map is given by the standard convolution corre-
spondence

BB ×BG BB ×BG BB (BB ×BG BB)× (BB ×BG BB)

BB ×BG BB
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Applying Shvren,∗
gr,! of Theorem 4.8.20, we obtain a monoidal structure on Shvgr(B\G/B)

ren. More pre-
cisely, Shvgr(B\G/B)

ren ∈ Alg(ModVectgr). Note that since the vertical map is proper and the horizontal
map is smooth, we can, equivalently, apply Shvren,∗

gr,∗ of (4.8.23) to obtain the same monoidal structure
on Shvgr(B\G/B)

ren.
For any F1,F2 ∈ Shvgr(B\G/B)

ren, we will use F1 ∗F2 ∈ Shvgr(B\G/B)
ren to denote the convolution

of F1 and F2.

6.1.2. Compatibility with weight structures. In forming the monoidal structure, we pull along smooth
(and representable) morphisms and push along proper morphisms. Thus, the monoidal structure on
Shvgr(B\G/B)

ren restricts to one on Shvgr,c(B\G/B) which is also compatible with the weight structure.
By Theorem 5.1.14, we obtain a monoidal functor

(6.1.3) wt : Shvgr,c(B\G/B)→ Chb(hShvgr,c(B\G/B)
♥w ),

compatible with the action of Vectgr,c , i.e., a morphism in Alg(ModVectgr).

6.1.4. Purity. We will now show that the weight complex functor wt of (6.1.3) is an equivalence of
categories.

Proposition 6.1.5. Shvgr,c(B\G/B)
♥w is classical, i.e., Shvgr,c(B\G/B)

♥w ≃ hShvgr,c(B\G/B)
♥w . As a

result, the weight complex functor gives an equivalence

wt : Shvgr,c(B\G/B)
≃
−→ Chb(Shvgr,c(B\G/B)

♥w )

as objects in Alg(ModVectgr,c ), i.e., they are equivalent as monoidal categories and the equivalence is com-

patible with Vectgr,c-actions.

Proof. The second part follows from the first by §5.1.9. Now, the hypothesis of Proposition 5.6.12.(vi)
is satisfied by [BY13, Lem. 3.1.3 and Lem. 3.1.5.(2)]. The proof thus concludes. �

6.2. Soergel bimodules. We will now quickly recall the definition of the category of Soergel bimodules.
We will make use of the following notation: for any Y ∈ Stkk with the structure map π : Y→ pt, we use

C∗gr(Y) := π∗,renQℓ ∈ ComAlg(Vectgr)

to denote the graded cohomology of Y, where π∗,ren is the pushforward functor of graded sheaves. Note
that this is just the usual cohomology of Y, except that we turn Frobenius weights to the grading in
Vectgr.

6.2.1. We let R⇒ := C∗gr(BT ) ≃ C∗gr(BB). Explicitly,

R⇒ ≃ Sym(X ∗(T )⊗Z Qℓ[−2]〈−2〉),

where X ∗(T ) is the co-character lattice of T . Namely, R⇒ is a polynomial algebra generated by rankX ∗(T )

many variables, put in graded degree 2 and cohomological degree 2.
Let sh⇒ and sh⇐ be monoidal auto-equivalences of Vectgr given by30

sh⇒(V )i = Vi[−i] and sh⇐(V )i = Vi[i], for all V ∈ Vectgr,

Let R := sh⇐(R⇒). Then, sh⇐ and sh⇒ induce equivalences of monoidal categories

sh⇐ : BiModR⇒(Vect
gr)⇄ BiModR(Vect

gr) : sh⇒

where BiMod denotes the category of bimodules.

30Note that the shear functors sh⇒ and sh⇐ are only monoidal rather than symmetric monoidal.
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6.2.2. Let W denote the Weyl group of G. Then, W acts on T , and hence, on R⇒ and R. The category of
Soergel bimodules SBimW is a full subcategory of BiModR(Vect

gr,♥) (and hence, also of BiModR(Vect
gr))

spanned by finite direct sums of graded degree shifts of direct summands of objects of the form

R⊗Rs1 R⊗Rs2 · · · ⊗Rsk R

for any sequence of simple reflections si ∈ W . Equivalently, SBimW is the smallest full subcategory of
BiModR(Vect

gr,♥) containing R⊗Rs R for all simple reflections s ∈ W and is closed under taking tensor
products, graded degree shifts, finite direct sums, and direct summands.

We define SBim⇒
W

:= sh⇒(SBimW ), which is a full subcategory of BiModR⇒(Vect
gr). As above, we

have mutually inverse equivalences of monoidal categories

sh⇐ : SBim⇒
W
⇄ SBimW : sh⇒ .

Note also that this implies that SBim⇒
W

is also a classical category which is closed under simultaneous
shifts [n]〈n〉 for any n ∈ Z.

6.2.3. Finally, we letChb(SBimW ) andChb(SBim⇒
W
) denote the corresponding monoidal DG-categories

of bounded chain complexes of Soergel bimodules. We have mutually inverse equivalences of monoidal
categories

sh⇐ : Chb(SBim⇒
W
)⇄ Chb(SBimW ) : sh⇒ .

These functors are easily seen to be compatible with Vectgr,c-actions.

6.3. Shvgr(BG)ren as a category of modules. We will now relate the category Shvgr(BG)ren and the
category ModC∗gr(BG)(Vect

gr) of graded modules over its graded cohomology C∗gr(BG). The material is

standard and well-known. In the ungraded setting, a version of this also appeared in [WW08].

6.3.1. Identification of categories.

Proposition 6.3.2. Let G be any connected algebraic group and π : BG → pt the structure map. Then,

the functor of taking global sections π∗,ren induces an equivalence of symmetric monoidal Vectgr-module

categories πenh
∗,ren fitting into the following commutative diagram

Shvgr(BG)ren

Vectgr ModC∗gr(BG)(Vect
gr)

πenh
∗,ren

π∗,ren

C∗gr(BG)⊗−

π∗ren

oblvC∗gr(BG)

Proof. We have a pair of adjoint functors

π∗ren : Vectgr⇄ Shvgr(BG)ren : π∗,ren ≃Hom
gr
Shvgr(BG)ren

(Qℓ,−),

where π∗ren is symmetric monoidal. We know that π∗ren preserves compactness, and hence, π∗,ren ≃
Hom

gr
Shvgr(BG)ren

(Qℓ,−) is also continuous. Moreover, since G is connected, Shvgr(BG)ren is compactly

generated by the constant sheaf (along with graded degree shifts). As a result, π∗ren generates the
target and hence, by Barr–Beck–Lurie theorem, [Lur17a, Thm. 4.7.4.5], the functor π∗,ren upgrades to
an equivalence of Vectgr-module categories

πenh
∗,ren : Shvgr(BG)ren

≃
−→Modπ∗,renπ∗ren(Vect

gr)

where π∗,renπ
∗
ren is a monad. Since all functors are strict functors of Vectgr-modules, we have an equiv-

alence of functors
π∗,renπ

∗
ren(−) ≃ π∗,renπ

∗
ren(Qℓ)⊗− ≃ C∗gr(BG)⊗−.

where the monad structure on π∗,renπ
∗
ren induces an algebra structure on C∗gr(BG). We thus get an

equivalence of Vectgr-module categories

(6.3.3) πenh
∗,ren : Shvgr(BG)ren

≃
−→ModC∗gr(BG)(Vect

gr).
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The symmetric monoidal structure on Shvgr(BG)ren induces one on ModC∗gr(BG) and hence, by ap-

plying [Lur17a, Cor. 4.8.5.20], we can upgrade the algebra structure on C∗gr(BG) to a commutative
algebra structure such that the tensor product on ModC∗gr(BG)(Vect

gr) is just the relative tensor product

over C∗gr(BG). The equivalence (6.3.3) thus upgrades to a symmetric monoidal equivalence. It remains
to identify the commutative algebra structure on C∗gr(BG) obtained above with the usual one from cup
products.

By construction, the right-lax symmetric monoidal structures on π∗,ren and oblvC∗gr(BG) are compatible

under the identification (6.3.3). In particular, we have an equivalence of commutative algebras

oblvC∗gr(BG)(C
∗
gr(BG)) ≃ π∗,renQℓ.

But now, the commutative algebra structure on the right hand side is precisely given by the cup-product.
Thus, we are done. �

6.3.4. Functoriality. From the construction, suppose h : G → H is a homomorphism of connected
algebraic groups, which induces a morphism h̃ : BG → BH at the level of classifying stacks. Then, we
have a morphism of objects in ComAlg(Vectgr)

C∗gr(BH)→ C∗gr(BG).

A similar argument to Proposition 6.3.2 above yields the following commutative diagram

Shvgr(BG)ren ModC∗gr(BG)(Vect
gr)

Shvgr(BH)ren ModC∗gr(BH)(Vect
gr)

h̃∗,ren

≃

res
C∗gr(BG)

C∗gr(BH)

≃

In other words, pushing forward is identified with restriction of scalar res
C∗gr(BG)

C∗gr(BH)
along C∗gr(BH) →

C∗gr(BG). Passing to left adjoints, we see that the pullback functor h̃∗ren is identified with induction
−⊗C∗gr(BH) C

∗
gr(BG).

Proposition 6.3.5. In the situation of Proposition 6.3.2, we have an equivalence of categories

Shvgr(BG × BG)ren ≃ BiModC∗gr(BG)(Vect
gr).

Moreover, the monoidal product on BiModC∗gr(Vect
gr) is identified with the usual convolution monoidal struc-

ture on Shvgr(BG × BG)ren.

Proof. This follows from the discussion above. Indeed, the monoidal structure on Shvgr(BG × BG)ren

is given by applying (4.8.23) to the following the correspondence below, where we pull along the
horizontal map and push along the vertical map

BG × BG × BG BG × BG × BG × BG

BG × BG

p13

id×∆×id

By the discussion above, in terms of BiModC∗gr(BG)(Vect
gr), this is identified with the relative tensor

−⊗C∗gr(BG) − and the proof concludes. �

6.4. Equivalence of categories. As promised, we will prove the following result.

Theorem 6.4.1. We have an equivalence of monoidal categories

Shvgr,c(B\G/B) ≃ Chb(SBim⇒
W
) ≃ Chb(SBimW ).
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Due to Proposition 6.1.5, it suffices to show that we have an equivalence Shvgr,c(B\G/B)
♥w ≃ SBim⇒

W
.

Note that, in particular, this implies that the equivalence stated in Theorem 6.4.1 is compatible with
the weight structures.

The rest of this subsection is devoted to the proof of this statement.

6.4.2. Construction of functor. Consider the following commutative diagram (along with its higher ana-
log, where we consider higher powers of BB × BB and BB ×BG BB)

(6.4.3)
BB ×BG BB × BB ×BG BB BB ×BG BB ×BG BB BB ×BG BB

BB × BB × BB × BB BB × BB × BB BB × BB

where the first square is Cartesian. Pushing forward, we obtain a monoidal functor

Shvgr,c(B\G/B)
♥w ,→ Shvgr(B\G/B)

ren→ Shvgr(BB × BB)ren ≃ BiModR⇒(Vect
gr),

We will show that this functor factors through

(6.4.4) Shvgr,c(B\G/B)
♥w SBim⇒

W
BiModR⇒(Vect

gr)
S

S̃

and moreover, the functor S is an equivalence.

6.4.5. Factoring the functor. For each w ∈ W , we let Xw = B\BwB/B denote the Schubert stack asso-
ciated to w and X w its closure in B\G/B. By the decomposition theorem for graded sheaves, Theo-
rem 5.5.7, for any F ∈ Shvgr,c(B\G/B)

♥w , we have a finite decomposition

F ≃
⊕

w,i

ICX w
[ni]〈ni〉.

Thus, to show the factorization (6.4.4), it suffices to show that S̃ sends ICX w
to an object in SBim⇒

W
.

When w1, w2 ∈W such that ℓ(w1w2) = ℓ(w1)+ℓ(w2), the morphism X w1
∗X w2
→ X w1w2

is birational,

where X w1
∗ X w2

⊂ BB ×BG BB ×BG BB is the closed substack corresponding to the preimage of X w1
×

X w2
⊂ BB ×BG BB × BB ×BG BB under the top left map of (6.4.3). Thus, ICX w1 w2

is a direct summand

of ICX w1
∗ ICX w2

. Note that comparing to [BY13, Prop. 3.2.5], we do not need to invoke Frobenius-
semisimplicity.

Since S̃ is monoidal, the discussion above implies that it suffices to show that S̃ sends ICX s
to an

object in SBim⇒
W

for any simple reflection s ∈W . In this case, X s is smooth. Moreover, it is a classical
computation that the cohomology of X s is simply (R⊗Rs R)⇒ which belongs to SBim⇒

W
by definition. We

thus obtain the factorization (6.4.4).
Note that this discussion also implies that the functor S is essentially surjective.

6.4.6. Fully-faithfulness. To show that S is an equivalence of categories, it remains to show that S is
fully-faithful. However, this is a consequence of [BY13, Prop. 3.1.6] and how Hom is computed in the
category of graded sheaves, see Proposition 4.6.2. The proof of Theorem 6.4.1 concludes.
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