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New conformal field theory from N = (0, 2) Landau-Ginzburg model
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By studying the infra-red fixed point of an N = (0, 2) Landau-Ginzburg model, we find an
example of modular invariant partition function beyond the ADE classification. This stems from
the fact that a part of the left-moving sector is a new conformal field theory which is a variant of
the parafermion model.

Dedicated to the academic achievements of Tohru Eguchi and Sung-Kil Yang

INTRODUCTION

A 2d CFT is endowed with an infinite-dimensional Lie
algebra [1], and modular invariance further constrains
its spectrum on the torus [2]. Consequently, a number
of models have been exactly solved. (For instance, see
[3].) In an RCFT, a modular invariant partition function
consists of finitely many pairs I of left- and right-moving
characters of chiral algebras A⊗A

Z =
∑

(i,i)∈I

Nii χ
A
i ⊗ χA

i
. (1)

If we write MA
ij

� {χj} and (MA
ij
)∗

� {χj} for actions of

M ∈ SL(2,Z) on the spaces of the left and right-moving
characters [4], then the modular invariance requires

MA
ijNjj(M

A
ji
)∗ = Nii .

As a result, modular invariant partition functions of
SU(2)k WZNW models and unitary Virasoro minimal
models admit the celebrated ADE classifications [5–8].
If a CFT is described by a non-chiral coset model [9]
involving SU(2) and U(1), its modular invariant parti-
tion function fits into the ADE classification. As such,
one can find modular invariant partition functions for
parafermion (PF) models SU(2)k/U(1)k [10] and N = 2
minimal models (MMs) (SU(2)k × U(1)2)/U(1)k+2 [11].
Furthermore, with N = (2, 2) supersymmetry, Landau-
Ginzburg (LG) models with ADE quasi-homogeneous su-
perpotential are described by the MMs of corresponding
ADE type in the infra-red (IR) limit [12, 13].

On the other hand, the class of N = (0, 2) LG models
is much richer because firstly they are chiral in general
and secondly there is more freedom due to the E- and
J-terms [14, §6]. Therefore, it is natural to ask how IR
CFTs incorporate the richness of N = (0, 2) LG models
by encoding the information of the E- and J-terms.

In this article, we make a modest step towards under-
standing the LG/CFT correspondence with N = (0, 2)

supersymmetry by studying the IR fixed point of a cer-
tain N = (0, 2) LG model along the line of [15]. We will
obtain its modular invariant partition function, which
turns out to be beyond the ADE classification. Careful
analysis of the Hilbert space will show that a part of the
left-moving sector is described by a new CFT which is a
close cousin of the parafermion model.

LG/CFT CORRESPONDENCE

To begin with, we describe theN = (0, 2) LG model we
focus on. It is a theory of two chiral multiplets φ1, φ2 and
two Fermi multiplets ψ1, ψ2 with interactions determined
by a superpotential

W = ψ1(φ
4
1 + φ22) + ψ2φ

2
1φ2 . (2)

The E-term is set to zero. This theory is called Class 2.b
with k = 4 in [16].
Since the numbers of chiral and Fermi multiplets

are equal, the vanishing of the gravitational anomaly
Tr γ3 = c − c = 0 guarantees the equality of the left-
and right-moving central charges. Furthermore, the c-
extremization [17] calculates

c = c =
75

27
, (3)

where the R-charges of all the multiplets are listed in
the following table. There is also a left-moving U(1)ℓ

φ1 φ2 ψ1 ψ2

U(1)R
5

27

10

27

7

27

7

27

U(1)ℓ 1 2 −4 −4

global symmetry with ’t Hooft anomaly 27. Therefore,
these data suggest that, in the IR fixed point, the right-
moving sector is the N = 2 MM25 with level k = 25, and
the left-moving sector is the U(1) 27

2

WZNW model with

level k = 27/2 and a CFT of central charge 16/9. It is
tempting to identify the CFT of central charge 16/9 with
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the parafermion model PF25 of level 25 as in [15], and we
will indeed write a modular invariant partition function
using characters of PF25 in the next section. However, as
we will see later, it is not exactly the PF25, but a certain
variant of the PF25.
Let us extract more information about the IR CFT

from the UV data. Since an elliptic genus is protected
under the RG flow [18], it can be computed from the
information of the LG model. We evaluate it in the NS-
NS sector

EG(τ, z) = TrNSNS(−1)F qL0−
c
24 yJ0e−β(L0−

1

2
J0)

= q−
25

216

θ(y−4q17/27; q)2

θ(yq5/54; q)θ(y2q5/27; q)
.

(4)

where θ(x; q) =
∏∞
i=0

(
1− xqi

) (
1− qi+1/x

)
, and J0 is

the U(1)ℓ charge. Note that q = e2πiτ , y = e2πiz.
Among chiral primary states (L0 = J0/2) in the right-

moving sector that contribute to the elliptic genus, the
state subject to L0 = q/2 in the left-moving sector form
the topological heterotic ring Htop [19, 20] where q is
equal to the U(1)R charge rφ for a chiral field and rψ− 1
for a Fermi field. Since the numbers of chiral and Fermi
multiplets are equal in the LG theory, it receives con-
tributions only from chiral multiplets with L0 = J0/2,
which is isomorphic to the Jacobi ring of the J-term

Htop = C[φ1, φ2]/(φ
4
1 + φ22, φ

2
1φ2)

∼= Span[φi1]
5
i=0 ⊕ Span[φ2, φ1φ2] .

(5)

In fact, the holomorphic part of the stress-energy tensor
[18, 21] is written as

T =

2∑

a=1

[(
1− rφa

2

)
∂φa∂φa −

rφa

2
φa∂

2φa

]
(6)

+

2∑

a=1

[
i

2
(1 + rψa)ψa∂ψa −

i

2
(1− rψa) ∂ψaψa

]
,

and the OPE of a generator ofHtop with the stress-energy
tensor shows that it is a primary state with L0 = J0/2.

MODULAR INVARIANT PARTITION
FUNCTION

Our goal is to find the modular invariant partition
function of the IR CFT in the NS-NS sector as the fol-
lowing form

Z = TrNSNS q
L0−

c
24 yJ0qL0−

c
24 xJ0 (7)

=
∑

wts

N
SU(2)

ℓℓ
N

U(1)

νλβ
χPF25

ℓ,ν (τ)χ
U(1) 27

2

λ (τ, z) · χMM25

ℓ,β
(τ , w)

which is consistent with the elliptic genus (4), where q =
e−2πiτ , x = e−2πiw and ‘wts’ stands for all the weights

labeled by l, l, ν, λ, β. To obtain an elliptic genus from
a partition function, we fix the right-moving sector to
be chiral primary states (L0 = J0/2) only from which
the elliptic genus receives contributions. Then, we insert

(−1)F or equivalently (−1)2(L0−L0) in each term of the
left-moving sector [22].
For this purpose, we shall find the modular invariant

combination of U(1) WZNW characters by following [15,
23]. In fact, the quadratic forms given by U(1) levels are
rationally equivalent

diag

(
27

2
, 27

)
= RT diag(25, 2)R

where

R =
1

10

(
2 10

25 −10

)
.

This rational equivalence gives rise to an identity among
theta functions

χU(1)25
µ (τ, 2u+ 10v)(χ

U(1)2
0 + χ

U(1)2
2 )(τ, 25u− 10v)

=

27×10−1∑

i=0

{
χ
U(1)

27×102

2

2µ+50i (τ, u)χ
U(1)

27×102

10µ−20i (τ, v)

+ χ
U(1))

27×102

2

2µ+50i (τ, u)χ
U(1)

27×102

10µ−20i+27×102 (τ, v)

}

≡
∑

λ′,ρ′

Aµλ′ρ′ χ
U(1)

27×102

2

λ′ (τ, u) χ
U(1)

27×102

ρ′ (τ, v) .

Furthermore, there is another identity of theta functions

χ
U(1) 27

2

λ (τ, 10u) χU(1)27
ρ (τ, 10v)

=
∑

i1,i2∈Z10

χ
U(1)

27×102

2

10(λ+27i1)
(τ, u) χ

U(1)
27×102

10(ρ+54i2)
(τ, v)

≡
∑

λ′,ρ′

Bλρλ′ρ′ χ
U(1)

27×102

2

λ′ (τ, u) χ
U(1)

27×102

ρ′ (τ, v) .

From these identities, one can construct the U(1) modu-
lar invariant tensor by

N
U(1)

νλβ
=
∑

λ′,β′

Aν,λ′,β′Bλ,β,λ′,β′ ,

which satisfies

(M
U(1)25
ν′ν )∗M

U(1)27/2
λ′λ N

U(1)

νλβ
M

U(1)27

ββ
′ = N

U(1)

ν′λ′β
′ ,

for all M ∈ SL(2,Z). More explicitly, one can write

Z =
∑

wts

N
SU(2)

ℓℓ
χPF25

ℓ,5m (τ)χ
U(1) 27

2

27m−5n
2

(τ, z) · χMM25

ℓ,n
(τ , w)

(8)
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where the summation over weights runsm ∈ Z10, n ∈ Z54

and ℓ, ℓ ∈ Z26.
Next, we need to determine the SU(2) modular invari-

ant tensor N
SU(2)

ℓℓ
. For the SU(2) level k = 25, only the

diagonal (type-A) combination N
SU(2)

ℓℓ
= δℓℓ is listed in

the ADE classification [5–8]. However, with the diago-
nal SU(2) combination, one can check that the partition
function would not realize the elliptic genus (4).
To circumvent this situation, we need to relax some of

the assumptions in [5–8] for the classification. We notice
that the following matrix commutes with all the modular
matrices MSU(2)

Nnd
ℓℓ

=(δ2,ℓ − δ14,ℓ + δ20,ℓ)(δ2,ℓ − δ14,ℓ + δ20,ℓ)

+ (δ5,ℓ − δ11,ℓ + δ23,ℓ)(δ5,ℓ − δ11,ℓ + δ23,ℓ)

where the indices range ℓ, ℓ ∈ Z26. Then, we set

N
SU(2)

ℓℓ
= δℓℓ −

1

3
Nnd
ℓℓ

. (9)

This clearly violates the assumption that Nii in (1)
are non-negative integer multiplicities, which has been
adopted in the literature including [5–8]. However, if we
use (9) in (8), the partition function is a formal series of
(q, y, q, x) with non-negative integer coefficients and it is
moreover consistent with the elliptic genus (4). We claim
that it is the partition function of the IR CFT.

HILBERT SPACE AND A NEW CFT P̃F25

To demystify the multiplicities (9) with negative frac-
tional numbers, let us investigate the Hilbert space of
the IR CFT. To this end, we denote by V PF25

ℓ,m a high-
est weight representation of PF25. In addition, by taking
the direct sum of s = 0 and s = 2 weight of U(1)2, we
write by V MM25

ℓ,m a highest weight representation of MM25

in the NS sector. There are isomorphisms of irreducible
modules

V PF25

ℓ,m
∼= V PF25

ℓ,50−m
∼= V PF25

25−ℓ,m+25

V MM25

ℓ,m
∼= V MM25

ℓ,54−m
∼= V MM25

25−ℓ,m+27 .

First, we note an identity of the parafermion characters

3 =

4∑

m=0

χPF25

2,10m − χPF25

14,10m + χPF25

20,10m

=

4∑

m=0

χPF25

5,10m+5 − χPF25

11,10m+5 + χPF25

23,10m+5 ,

(10)

which counts the number of primary states |ℓ,m〉PF25

with conformal dimension hPF25

ℓ,m = 2/27 in PF25:

|ℓ,m〉PF25
= |2, 0〉, |20, 20〉, |20, 30〉, or

|ℓ,m〉PF25
= |23, 25〉, |5, 5〉, |5, 45〉 . (11)

Hence, roughly speaking, the non-diagonal part of (9)
adds or eliminates a certain linear combination of these
states to or from V PF25

ℓ,m .
To see how the spectrum is organized, we compare the

diagonal spectrum

Hdiag =
⊕

ℓ,m,n

V PF25

ℓ,5m ⊗ V
U(1) 27

2

27m−5n
2

⊗ V
MM25

ℓ,n (12)

where N
SU(2)

ℓℓ
= δℓℓ with the information of the Hilbert

space of the IR CFT obtained from the LG model. Note
that the diagonal spectrumHdiag contains primary states
of PF25 ×U(1) 27

2

×MM25

|5s, 5s〉PF25
⊗ | − s〉U(1) 27

2

⊗ |5s,−5s〉MM25
,

|5s, 50− 5s〉PF25
⊗ | − s〉U(1) 27

2

⊗ |5s,−5s〉MM25
,

(13)

which obey the condition L0 = J0/2 = L0. Here we have
s = 0, 1, . . . , 5 and the states in the first and second line
are identical to the vacuum state when s = 0. Thus,
there are ten primary states subject to the condition in
Hdiag whereas the topological heterotic ring (5) of the IR
CFT is eight-dimensional as a vector space.
Hence, the diagonal spectrum (12) is not the actual

Hilbert space. To realize the ring structure of Htop in
(5), let us suppose that φ1 and φ2 in Htop respectively
correspond to

|5, 5〉PF25
+ |5, 45〉PF25

and

|10, 10〉PF25
− |10, 40〉PF25

.
(14)

Here and in what follows, we suppress the parts of
U(1)27/2 and MM25 of (13). Then the fusion rule tells us
that φ21φ2 corresponds to

|20, 20〉PF25
− |20, 30〉PF25

(15)

in (13), which is decoupled from the spectrum due to the
equation of motion. In addition, there is no generator in
Htop corresponding to

|5, 5〉PF25
− |5, 45〉PF25

(16)

in (13). Thus, the IR CFT excludes these two states, (15)
and (16), and the identification of (14) with φ1 and φ2 as
well as the fusion rule indeed reproduces the topological
heterotic ring (5).
On the other hand, one can show that φ21∂φ2 ∼

−2φ1φ2∂φ1 is a primary in the IR CFT from the OPE
with the stress-energy tensor (6) up to the equations
of motion (∂W/∂φi = 0 = ∂W/∂ψi and their complex
conjugates). Moreover, φ21∂φ2 and its descendants con-
tribute to the elliptic genus by

(χPF25

|20,20>−|20,30> − 1)χ
U(1)27/2
−4 = (χPF25

20,20 − 1)χ
U(1)27/2
−4

= (q + 3q2 + 6q3 + 12q4 + 21q5 + · · · )χU(1)27/2
−4 .
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Ignoring the U(1)27/2 part, the subtraction by one means
the omission of (15), and the primary φ21∂φ2 contributes
to q1 whereas the subsequent higher order terms count
its descendants. This implies that although the IR
CFT is not endowed with the parafermionic symmetry
SU(2)25/U(1)25, it is still a character of a module of the
Virasoro algebra in the left-moving sector. Similarly, it
is easy to check from the OPE that φ31∂φ2 ∼ −2φ2∂φ1
is also a primary in the IR CFT, and the contribu-
tion from its conformal family to the elliptic genus is

(χPF25

|5,5>−|5,45> − 1)χ
U(1)27/2
−1 .

Furthermore, an explicit computation using (10) shows
that the elliptic genus (4) receives all the contributions
from the part of ℓ = 5, n = −5 in Hdiag except the states
(15) and (16), and their U(1)27/2 descendants. Indeed,
the Hilbert space is organized at the IR fixed point in
such a way that the states (15) and (16) are excluded
in the PF25 part but it preserves the Virasoro symmetry
and the modular invariance. Denoting the CFT of central
charge 16/9 by P̃F25, the ℓ = 5, 20 parts of the Hilbert
space are isomorphic to the quotient spaces

HP̃F25

5
∼=

4⊕

m=0

V PF25

5,10m+5

/
C(|5, 5〉 − |5, 45〉) ,

HP̃F25

20
∼=

4⊕

m=0

V PF25

20,10m

/
C(|20, 20〉 − |20, 30〉) ,

as vector spaces graded by L0.
In order to keep the modular invariance, one needs to

arrange the primary states (11) of PF25 according to the
non-diagonal part of (9):

HP̃F25

2
∼=

4⊕

m=0

V PF25

2,10m

/
C|2, 0〉 ,

HP̃F25

23
∼=

4⊕

m=0

V PF25

23,10m+5

/
C|23, 25〉 ,

HP̃F25

14
∼= C(|20, 20〉+ |20, 30〉)⊕

4⊕

m=0

V PF25

14,10m ,

HP̃F25

11
∼= C(|5, 5〉+ |5, 45〉)⊕

4⊕

m=0

V PF25

11,10m+5 .

(17)

Here, ∼= means an isomorphism as vector spaces graded
by L0. For the other ℓ 6= 2, 5, 11, 14, 20, 23, they are
isomorphic to those of PF25

HP̃F25

ℓ
∼=

4⊕

m=0

V PF25

ℓ,10m+5(ℓ mod 2) .

All in all, the Hilbert space of the IR CFT is then
expressed as

H =
⊕

ℓ,n

HP̃F25

ℓ ⊗ V
U(1) 27

2

27ℓ−5n
2

⊗ V
MM25

ℓ,n , (18)

whose generating function is (8) with (9). This explains
the reason why the partition function (8) with (9) is a
formal power series with non-negative integer coefficients.
If we restrict the right-moving sector to be chiral primary
states, we have

H
∣∣
L0=J0/2

=
⊕

ℓ

HP̃F25

ℓ ⊗ V
U(1) 27

2

16ℓ ,

which exactly reproduces the elliptic genus (4) by appro-
priately including signs. In fact, under the equations of
motion, the conformal families of two primaries ψi∂φ1
(i = 1, 2) contribute to (4)

(χPF25

2,0 − 1)χ
U(1)27/2
5

= (2q + 3q2 + 6q3 + 10q4 + 18q5 + · · · )χU(1)27/2
5 .

(19)

For ℓ = 23, those of two primaries ψiφ
2
1(∂φ2)

2 (i = 1, 2)

yield the contribution (χPF25

23,25 − 1)χ
U(1)27/2
17 . In addition,

the conformal family of a primary ψ1ψ2 combines the
two irreducible characters of PF25 into one “irreducible”
character of P̃F25

(1 + χPF25

14,20 + χPF25

14,30)χ
U(1)27/2
8

= (1 + 2q + 4q2 + 10q3 + 20q4 + 38q5 + · · · )χU(1)27/2
8 .

In a similar fashion, that of a primary ψ1ψ2φ1φ2(∂φ1)
2

gives the contribution (1 + χPF25

11,5 + χPF25

11,45)χ
U(1)27/2
14 .

Hence, this provides a strong evidence that the graded
vector spaces (17) are decomposed into modules of the

Virasoro algebra and P̃F25 preserves the conformal sym-
metry. In conclusion, the N = (0, 2) LG model flows
to

(
P̃F25 ×U(1) 27

2

)
⊗
(
SU(2)25 ×U(1)2

U(1)27

)
,

and the modular invariant Hilbert space (18) on a torus
is decomposed into modules of the left-moving Virasoro
algebra and the right-moving N = 2 super-Virasoro al-
gebra.

DISCUSSIONS

We find the modular invariant partition function be-
yond the ADE classification [5–8] because a part of the

left-moving sector is the new CFT P̃F25 obtained by
breaking the parafermionic symmetry of PF25. Certainly,
more investigation needs to be carried out to understand
P̃F25. In particular, it is desirable to determine two
“irreducible” characters of the primaries ψi∂φ1 (resp.

ψiφ
2
1(∂φ2)

2) in P̃F25 whose sum is equal to χPF25

2,0 − 1

in (19) (resp. χPF25

23,25 − 1).
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In [16], N = (0, 2) LG models with the same left and
right central charges ≤ 3 have been classified. In the
classification of [16], IR CFTs of Class 2.a with superpo-
tential

ψ1(φ
m
1 + φn2 ) + ψ2φ1φ2 , m, n ∈ Z>0 ,

are described by diagonal modular pairing of PFs and
U(1) WZNWmodels in the left-moving-sector andN = 2
MMs in the right-moving sector [15]. This is because
their topological heterotic rings are simple and it does
not contain a mixed generator like φ1φ2. Like in our ex-
ample, the topological heterotic rings of the other classes
in [16] are more complicated, and we observe that their el-
liptic genera cannot be realized by characters of PFs and
U(1) WZNW models except our example (2). (Another
exception is Class 2.b with k = 3, but it is equivalent to
N = (2, 2) MM of type E7.) It is expected that the left-
moving sectors of IR CFTs would be unknown ones so
that it requires further study to understand how J-terms
of N = (0, 2) LG models are encoded in IR CFTs. It is
also worth mentioning that the condition of the same left
and right-moving central charges in [16] is rather special
in N = (0, 2) LG models, and a vast class of general
N = (0, 2) LG models are waiting to be investigated.

Since A.B. Zamolodchikov has identified the LG/CFT
correspondence [24], it has given drastically new insights
in quantum field theories and mathematical physics. This
article just takes a peek at the LG/CFT correspondence
with N = (0, 2) supersymmetry, but we hope that our
example shows its fertility and will intensify further study
on it.

ACKNOWLEDGMENTS

S.N. has first come across 2d CFT through a little gem
[25] presented by T.Eguchi and S.-K.Yang. Their works
including articles and textbooks in Japanese have been an
inspiration to him. This paper intersects with their inter-
ests so that it is dedicated to their academic achievements
with admiration and gratitude. We thank D.Yokoyama
for collaboration at the initial stage of this project.
We are grateful to I.Gahramanov, Y.Nakayama, D.Pei,
P.Putrov, D.Roggenkamp and E.Sharpe for discussion
and correspondence, and especially to M.Dedushenko for
sending a private note based on [18] for a consistency
check of chiral primary states. S.N. is indebted to Fu-
dan University for providing him an opportunity to teach
2d CFT during which he came up with the idea of this
project. S.N. also thanks IHES, Mittag Leffler Institute,
and QGM at Aarhus University for warm hospitality
where a part of the work was carried out. We acknowl-
edge the support from NSFC Grant No.11850410428.

Notations

Here, we summarize convention and definitions nec-
essary in this article. U(1)k and SU(2)k characters are
given by

χU(1)k
m (τ, z) =

Θm,k(τ, z)

η(τ)
,

χ
SU(2)k
ℓ (τ, z) =

Θℓ+1,k+2(τ, z)−Θ−(ℓ+1),k+2(τ, z)

Θ1,2(τ, z)−Θ−1,2(τ, z)
,

where η(τ) = q
1

24

∏∞
m=1(1 − qm) is the Dedekind eta-

function and the theta function is defined as

Θm,k(τ, z) ≡
∑

n∈Z

qk(n+
m
2k )

2

yk(n+
m
2k ) .

The weights of U(1)k and SU(2)k run over m =
0, . . . , 2k − 1 and ℓ = 0, . . . , k, respectively. It is well-
known that the modular group SL(2,Z) is generated by
T and S, and a T -transformation on characters of a chiral
algebra A is always diagonalizable

χA
r (τ + 1) = e2πi(hr−c/24)χA

r (τ) ,

where hr is the conformal dimension of the corresponding
highest weight state. Under the S-transformation, the
characters of Ak = U(1)k, SU(2)k are transformed as

χAk
r

(
− 1

τ
,
z

τ

)
= e

iπkz2

2τ

∑

r′

SAk

rr′χ
Ak

r′ (τ, z) ,

where

S
SU(2)k
ℓ,ℓ′ ≡

√
2

k + 2
sin

(
π(ℓ + 1) (ℓ′ + 1)

k + 2

)
,

S
U(1)k
m,m′ ≡ 1√

2k
e−2πimm′

2k .

A character of a coset model A/B can be computed
via a branching rule

V A
ℓ =

⊕

m

V B
m ⊕ V

A/B
ℓ,m

where V A
ℓ and V B

m are highest weight representations of
the chiral algebra A and B, respectively. By defining the

string function c
(k)
ℓ,m [10]

χ
SU(2)k
ℓ (τ, z) =

∑

m∈Z2k

c
(k)
ℓ,m(τ)Θm,k(τ, z) ,

a character of the parafermion is then expressed as

χPFk

ℓ,m (τ) = η(τ)c
(k)
ℓ,m(τ) ,

where ℓ +m ∈ 2Z, and otherwise χPFk

ℓ,m = 0. Note that

the characters obey χPFk

ℓ,m = χPFk

ℓ,2k−m = χPFk

k−ℓ,m+k.
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In addition, a character of the N = 2 minimal model
in the NS sector [11] is given by

χMMk

ℓ,m (τ, z) =
∑

r∈Z2k

c
(k)
ℓ,r (τ)Θ(k+2)r−km,k(k+2)

(
τ

2
,

z

k + 2

)

where the weights s = 0, 2 of U(1)2 are summed. Note
that the weights are subject to ℓ+m ∈ 2Z, and otherwise
χMMk

ℓ,m = 0. Note that the characters satisfy χMMk

ℓ,m =

χMMk

ℓ,2(k+2)−m = χMMk

k−ℓ,m+k+2.
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