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Abstract: A graded quiver with superpotential is a quiver whose arrows are assigned

degrees c ∈ {0, 1, · · · ,m}, for some integer m ≥ 0, with relations generated by a su-

perpotential of degree m− 1. Ordinary quivers (m = 1) often describe the open string

sector of D-brane systems; in particular, they capture the physics of D3-branes at local

Calabi-Yau (CY) 3-fold singularities in type IIB string theory, in the guise of 4d N = 1

supersymmetric quiver gauge theories. It was pointed out recently that graded quivers

with m = 2 and m = 3 similarly describe systems of D-branes at CY 4-fold and 5-fold

singularities, as 2d N = (0, 2) and 0d N = 1 gauge theories, respectively. In this work,

we further explore the correspondence between m-graded quivers with superpotential,

Q(m), and CY (m + 2)-fold singularities, Xm+2. For any m, the open string sector of

the topological B-model on Xm+2 can be described in terms of a graded quiver. We

illustrate this correspondence explicitly with a few infinite families of toric singulari-

ties indexed by m ∈ N, for which we derive “toric” graded quivers associated to the

geometry, using several complementary perspectives. Many interesting aspects of su-

persymmetric quiver gauge theories can be formally extended to any m; for instance,

for one family of singularities, dubbed C(Y 1,0(Pm)), that generalizes the conifold sin-

gularity to m > 1, we point out the existence of a formal “duality cascade” for the

corresponding graded quivers.
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1 Introduction

The mathematical concept of a quiver—that is, a directed graph consisting of nodes and

arrows between nodes—has proven very fruitful in string theory and in supersymmetric

field theory, starting with the seminal work of Douglas and Moore [1]. Broadly speaking,

“ordinary” quivers are often used to describe the structure of half-BPS states in theories

with 8 real supersymmetries. In particular, they can conveniently describe half-BPS

systems of D-branes in type II string theory; schematically, the quiver nodes represent

a set of mutually supersymmetric D-brane, and the arrows between nodes represent

the supersymmetry-protected open string modes.

A rich class of quivers arises from considering D3-branes probing Calabi-Yau (CY)

3-fold singularities in type IIB [2–14]. More generally, we may consider Dp-branes

transverse to CY (m + 2)-fold singularities, with p = 5 − 2m. That is, we consider a

IIB background:

R6−2m ×Xm+2 , (1.1)

with Xm+2 a local CYm+2 singularity, and with D(5− 2m)-branes along the transverse

space, which sit at the singularity—from the point of view of Xm+2, those branes are

point-like probes. For m = 1, the low-energy theory on the four-dimensional D3-brane

worldvolume is described by a 4d N = 1 supersymmetric gauge theory. More generally,

if we consider m = 0, 1, 2, 3, we obtain gauge theories in dimension d = 6, 4, 2, 0 with
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the following amounts of supersymmetry:

m 0 1 2 3

Xm+2 CY2 CY3 CY4 CY5

SUSY 6d N = (0, 1) 4d N = 1 2d N = (0, 2) 0d N = 1

(1.2)

The low-energy field theories have 23−m real supercharges.

1.1 Graded quiver gauge theories

While a set of N transverse D-branes at a smooth point of Xm+2 would give rise to a

U(N) gauge theory on its worldvolume, the D-branes at the singularity “fractionate”

into marginally-bound constituents, the so-called fractional branes. Each type of frac-

tional brane supports its own gauge group. For our purpose, a quiver gauge theory is a

gauge theory with a gauge group:

U(N1)× U(N2)× · · · × U(Nn) . (1.3)

We assign a gauge group U(Ni) to each node i of an abstract quiver; the (6 − 2m)-

dimensional gauge fields Aµ,i sit in vector multiplets Vi of the appropriate supersym-

metry algebra. Open strings stretched between fractional branes give rise to matter

fields in the quiver gauge theory, in adjoint or bifundamental representations of the

unitary gauge groups in (1.3). For m = 0, the matter fields sit in hypermultiplets of 6d

N = (0, 1) supersymmetry, and the corresponding quiver arrows are unoriented; in this

case, X2 is an ADE singularity, and the corresponding quivers are affine ADE quivers

[1]. For m = 1, we have a 3-fold X3 and matter fields are in chiral multiplets of 4d

N = 1 supersymmetry, corresponding to oriented arrows of an “ordinary” quiver. For

m = 2 and m = 3, the matter fields can sit in either chiral or fermi multiplets of 2d

N = (0, 2) and 0d N = 1 supersymmetry, respectively. For m = 2, the chiral multiplets

give rise to oriented arrows, while the fermi multiplets give rise to unoriented arrows.

For m = 3, both the chiral and fermi multiplets correspond to oriented arrows.

The 2d and 0d gauge theories are conveniently described within the larger frame-

work of graded quivers (with superpotential). A graded quiver is a quiver together with

a grading of the arrows by a “quiver degree:”

c ∈ {0, 1, · · · ,m} . (1.4)

The grading simply keeps track of the different types of matter fields. We denote the

various arrows, or “fields,” by:

Φ
(c)
ij : i −→ j , c = 0, 1, · · · , nc − 1 , nc ≡

⌊
m+ 2

2

⌋
, (1.5)
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When m is even, the arrows of maximal degree, nc − 1 = m
2

, are unoriented. All other

arrows are oriented. For every arrow of the form (1.5), we posit a “conjugate” arrow

of degree m− c and opposite orientation, denoted by:

Φ
(m−c)
ji ≡ (Φ

(c)
ij ) . (1.6)

This is interpreted as the CPT conjugate fields in the supersymmetric gauge theory.

Importantly, the graded quivers can have a superpotential, which encodes interac-

tions amongst matter fields in the gauge theory. We will come back to that important

point later on. This perspective on supersymmetric quiver gauge theories was recently

developed in [15]. Related works include [16–18].

Gauge theory quivers have been most studied in the case of Xm+2 a toric local CY

(see e.g. [2–8, 10–14, 19–25]). Various powerful tools become available in this case. We

will review them in §1.3.

As far as the D-brane setup (1.1) goes, we are limited to m ≤ 3 by the critical

dimension, d = 10, of type II string theory. From the perspective of graded quivers,

however, there is no reason to stop at m = 3. While there is no supersymmetric field

theory interpretation of general graded quivers, 1 they still have a natural interpretation

as describing fractional branes at a CYm+2 singularity, as we now explain.

1.2 From B-branes on Xm+2 to graded quivers Q(m)

By themselves, graded quivers with m ≤ 3 do not encode the full low-energy quantum

field theory on the transverse D-branes. Instead, they encode some half-BPS “holo-

morphic” information [26] which is protected by supersymmetry. In type IIB string

theory, that information is preserved by the topological B-twist.

Let us, then, focus on the B-model of the local Calabi-Yau Xm+2. Conveniently,

this maps the problem of analyzing D-branes at a CY singularity to a purely algebraic

problem, since the B-model is independent of the Kähler moduli of Xm+2. The D-branes

of the B-model, denoted by E , are called B-branes. They are described as objects in

the bounded derived category of coherent sheaves (the B-brane category, for short) of

the variety Xm+2 [27–30]:

E ∈ Db(Xm+2) . (1.7)

For most purposes here, we can think of E as a coherent sheaves with compact support.

At this level of description, there is no restriction on m: the B-model is well-defined

on any Calabi-Yau variety.

1 Formally, a graded quiver with m > 3 would correspond to a “field theory” in d = 6 − 2m < 0,

with nc distinct types of matter fields, and with some “superpotential” interactions amongst them.
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A point-like brane at a smooth point p ∈ Xm+2 is described by the skyscraper sheaf

Op. When we bring Op to the singularity, it is expected to fractionate into marginally

stable constituents:

Op ∼= E1 ⊕ · · · ⊕ En . (1.8)

The B-branes Ei are the fractional branes. They correspond to the nodes of a quiver.

In the main text, we will discuss their identification in a few explicit examples, in the

case of toric singularities that admit crepant resolutions.

The open strings between B-branes are described as morphism in the B-brane

category. Algebraically, they are the Ext groups elements:

φ
(d)
ij ∈ ExtdXm+2

(Ej, Ei) . (1.9)

We review some of the necessary algebraic geometry in Appendix A. Here, we just note

that Ext groups are indexed by a degree:

d ∈ {0, 1, · · · ,m+ 2} . (1.10)

The degree corresponds to the BRST charge in the B-model. On a Calabi-Yau (m+2)-

fold, we have the isomorphism:

ExtdXm+2
(Ej, Ei) ∼= Extm+2−d

Xm+2
(Ei, Ej) , d = 0, · · · ,m+ 2 , (1.11)

known as Serre duality. The elements of Ext0 ∼= Hom are identified with “vector

multiplets” at the quiver nodes. By assumption, we must have:

Ext0
Xm+2

(Ej, Ei) ∼= Extm+2
Xm+2

(Ei, Ej) ∼= Cδij (1.12)

for a consistent set of fractional branes. The other Extd group elements (1.9), with

degree d 6= 0,m+ 2, are identified with the “matter field” arrows in a graded quiver:

φ
(d)
ij ←→ Φ

(d−1)
ij . (1.13)

Note that the quiver and Ext degrees are related by c = d− 1.

In this way, in principle, one can associate a graded quiver Q(m) to any local CY

singularity, of any complex dimension:

Xm+2 ←→ Q(m) . (1.14)

The most non-trivial part of the correspondence is the identification of the “interac-

tions” in either description. On the graded quiver side, there exists a quiver “super-

potential” of degree m − 1. On the B-brane side, this corresponds to the A∞ algebra

satisfied by open string disk correlators.
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Based on the known results for m = 0, 1 [31, 32], one would expect that there

exists an equivalence of derived categories between Db(Xm+2) and some suitable derived

category of representations of Q(m). This is indeed the case, as shown by Lam in [33].

In this paper, our goal is to flesh out the basic correspondence (1.14) explicitly, at

a “physical” level of rigor, in a few families of geometries {Xm+2}m∈N. Given a singular

CY variety Xm+2, the procedure to obtain a graded quiver with superpotential Q(m)

from the B-branes on Xm+2 is as follows:

(i) Find a consistent set of fractional branes, {Ei}. This gives the nodes of the quiver.

(ii) Compute all the Ext groups (1.9) between fractional branes. Using the corre-

spondence (1.13), draw the quiver arrows, with their quiver degrees. 2

(iii) Compute the quiver superpotential from the A∞ products between Ext group

elements. (We will explain this last point in later sections.)

While the above procedure is very general and can be applied, in principle, to any

singular Calabi-Yau variety, explicit computations in the B-brane category tend to be

technically challenging. Moreover, the first step is problematic, since we do not have, in

general, an efficient method to find a “consistent set” of fractional brane in the B-brane

category. In fact, such sets are by no means uniquely determined by the variety Xm+2.

Different choices of fractional branes can lead to different quivers, which corresponds

to “field theory dualities” (in particular, “Seiberg dualities”) when m ≤ 3. In general,

we expect that any such distinct quivers for a given singularity are related by quiver

mutations—see Appendix B for a review of graded quiver mutations [15].

1.3 Toric geometry to the rescue

Fortunately, when Xm+2 is a toric local Calabi-Yau, there exist alternative methods

for associating a quiver to the singularity. We now review them briefly and point the

interested reader to the references for detailed expositions.

A first approach, which is actually not restricted to toric geometries, consists of

realizing Xm+2 as a partial resolution of another geometry for which the quiver theory

is easy to determine. A standard choice for such parent theory is an appropriate

Cm+2/(ZN1 × · · · × ZNm+1) orbifold. As we will elaborate in §2.2, partial resolution

translates into higgsing of the quiver. Applications of this strategy to m = 1 and

m = 2 can be found in [2–4, 20]. While this method allows for a systematic derivation

2We only draw half of the arrows, as in (1.5). The other half of the arrows is given implicitly by

the “conjugation” map (1.6).
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of the quiver theories for the desired geometries, it does not fully exploit all the structure

associated to toric geometries.

The connection between toric CYm+2’s and the corresponding quivers on D(5−2m)-

branes, for m = 0, 1, 2, 3, was significantly simplified with the introduction of a class

of brane configurations that are related to the original D-branes at singularities by

T-duality along m + 1 directions. For m = 1, 2 and 3, these brane constructions are

brane tilings [11, 13], brane brick models [21, 22, 34] and brane hyperbrick models [24],

respectively. 3 These configurations consist of stacks of D(6 − m)-branes suspended

within the voids of an NS5-brane that wraps a holomorphic hypersurface. 4 This

surface is m-complex dimensional and is defined as the vanishing locus of the Newton

polynomial associated to the toric diagram,

P (x1, · · · , xm+1) = 0 , (1.15)

with xi ∈ C∗, i = 1, · · · ,m+1. Most of the non-trivial structure of these configurations

lives on an (m + 1)-torus, defined by the coamoeba projection of the xi coordinates.

For many purposes, it is often sufficient to consider the “skeletons” of these brane

configurations. For brane tilings, these are bipartite graphs on T2; for brane brick

models, they are tessellations of T3; and so on. In all these cases, there is a simple

dictionary relating the brane setups to the corresponding quiver gauge theories.

These constructions can be formally extended to m > 3 [36].We collectively refer

to them as generalized dimers. Via graph dualization, they are in one-to-one corre-

spondence with periodic quivers on Tm+1 which, likewise, fully encode both the quivers

and the superpotentials of the “field theories.”

As we will explain in §2.2, given one of these brane setups, finding the correspond-

ing Xm+2 is reduced to a combinatorial problem, which is a huge simplification with

respect to alternative approaches. Conversely, there are various efficient procedures for

constructing generalized dimers—equivalently, quiver theories with superpotentials—

starting from the corresponding toric Xm+2. One way to do this is by using mirror

symmetry. This method was developed for m = 1 in [37] and for m = 2 in [34, 38],

where its extension to higher m was also outlined.

In this paper, we focus on toric varieties. For each infinite family of examples,

we present a convenient toric method to derive graded quivers with superpotential for

Xm+2, and discuss some of their interesting properties. We then proceed to check those

results with an explicit B-brane computation, following the three steps above. The

B-model computation provides a strong check of those recently devised toric methods.

3The corresponding constructions for m = 0 are the well-known elliptic models [35].
4For m = 3, the suspended branes are actually Euclidean D4-branes.
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This paper is organized as follows. In section 2, we review the relevant aspects of

graded quivers and of the B-brane category, and we spell out the relation between the

two approaches. In section 3, we illustrate our methods in the simplest example, that

of flat space Cm+2. In section 4, we consider an orbifold singularity, Cm+2/Zm+2. In

section 5, we consider a family of singularities, dubbed Y 1,0(Pm), which reduces to the

conifold singularity for m = 1. In section 6, we consider a third family of singularities,

dubbed F(m)
0 , which reduces to an orbifold of the conifold for m = 1. Appendix A

contains a pedagogical summary of the algebraic geometry techniques that we will

need for our B-model computations. Appendix B reviews order m + 1 mutations of

m-graded quivers.

2 Graded quivers and B-branes

In this section, we first review the concept of a graded quiver with superpotential, as

developed in [15], building on mathematical ideas in [39, 40]. We then discuss the

relation between so-called “toric” quivers and toric singularities (while referring to [36]

for further discussion). 5 Finally, we discuss the derivation of the graded quiver from

the B-model on the CY singularity.

2.1 Graded quiver algebra

A graded quiver Q(m) = (Q0, Q1) consist of a set of nodes indexed by some integers i,

and of arrows Φ between nodes:

Q0 = {i} = {1, · · · , n} , Q1 = {Φ} . (2.1)

Each arrow is assigned a quiver degree:

c ∈ {0, · · · ,m} , (2.2)

for some integer m ∈ N. We denote an arrow from i to j, of degree c, by:

Φ
(c)
ij : i→ j . (2.3)

The product of arrows is given by concatenation:

ΦijΦjkΦkl · · · (2.4)

Here the arrow degrees are left implicit. A closed path is a product of arrows that

comes back to itself, in the obvious way. The degree of a path is the sum of the degrees

5Throughout the paper, we will use the term toric quiver as a synonym of what is usually referred

to as a toric phase. Toric phases are those that can be fully captured by periodic quivers on Tm+1.
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of its component arrows. We call the degree-zero arrows the “chiral fields,” since they

correspond to chiral multiplets in supersymmetric quiver gauge theories (when m ≤ 3).

A path of chiral fields has degree zero.

The path algebra is the algebra of paths generated by arrows, with the above product

and the obvious formal sum. The freely-generated path algebra is denoted by CQ. We

will soon introduce relations amongst paths.

CPT invariance. We restrict ourselves to a particular kind of graded quiver, such

that every arrow Φ of degree d has an “opposite” or “conjugate,” Φop ≡ Φ, of degree

m−d and opposite orientation, as anticipated in (1.6). We can then pair all the arrows

according to: (
Φ

(c)
ij , Φ

(m−c)
ji

)
, Φ

(m−c)
ji ≡ (Φ

(c)
ij ) . (2.5)

This is a choice of polarization of the path algebra. A very convenient choice of polar-

ization, which we use when drawing quivers explicitly, is to choose Φ(c) for the arrows

of degrees c = 0, · · · , nc − 1, with:

nc =

⌊
m+ 2

2

⌋
, (2.6)

and Φ
(m−c)

for their conjugate. In that case, one draws quivers with arrows of degrees

0 to nc−1 only. The number (2.6) is the number of “arrow types” in the graded quiver,

also called the “arrow colors” [40].

We may call the arrows of degree c ∈ {0, · · · ,m} the “matter fields.” The re-

quirement that every arrow has a conjugate corresponds to CPT invariance in quiver

gauge theories. 6 Note that, when m is even, the arrows of degree nc − 1 = m
2

are

“self-conjugate,” and the choice of polarization into arrows Φ and Φ, namely:
(

Φ
(m

2
)

ij , Φ
(m

2
)

ji

)
, (2.7)

is arbitrary. For m = 0 and m = 2, this corresponds to the fact that the 6d hypermul-

tiplets and the 2d fermi multiplets, respectively, are self-conjugate.

Gauge fields. Let us also introduce arrows from a node to itself:

ei : i→ i , ēi : i→ i , (2.8)

for each node, of degree −1 and m+1, respectively. 7 We may call ei and ei the “gauge

fields”—they are identified with vector multiplets in quiver gauge theories.

6Conjugate arrows will always be implicit in the quiver diagrams that we will present. They are

not independent objects, but can be derived from the corresponding unconjugated ones.
7The arrow ei is denoted by li in [15], and its “opposite” ei is introduced here for future convenience.
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Superpotential relations. We introduce relations on the path algebra through a

“graded quiver superpotential:”

W = W (Φ) , deg(W ) = m− 1 . (2.9)

This imposes relations on the path algebra, of the form ∂ΦW = 0. The superpotential

is a linear function of closed paths of matter fields, of degree m − 1. It is clear from

the grading that, for any fixed m, there can only be a finite number of arrows of degree

c > 0 in each closed path. On the other hand, the number of chiral multiplets Φ(0) is

unbounded, a priori. For instance, at low m we have:

m = 1 : W = W (Φ(0)) ,

m = 2 : W = Φ(1)J(Φ(0)) + Φ
(1)
E(Φ(0)) ,

m = 3 : W = Φ(1)Φ(1)H(Φ(0)) + Φ(2)F (Φ(0)) ,

(2.10)

schematically. The functions W (Φ(0)), J(Φ(0)), E(Φ(0)) and H(Φ(0)), F (Φ(0)) are holo-

morphic functions of the chiral fields. They correspond to the 4d N = 1, 2d N = (0, 2),

and 0d N = 1 superpotentials, respectively. This obviously generalizes to any m:

W = Φ(c1) · · ·Φ(ck)Fc1,··· ,ck(Φ
(0)) , c1 + · · ·+ ck = m− 1 , (2.11)

schematically, 8 though there is no supersymmetric field theory interpretation for m>3.

Kontsevitch bracket condition. There is an important condition we should impose

on W , which can be written as:

{W,W} = 0 , ⇔
∑

Φ

∂W

∂Φ

∂W

∂Φ
= 0 , (2.12)

where the sum is over all the fields Φ, for a given polarization (2.5). Here, {f, g} denotes

the Kontsevitch bracket on the path algebra. It is defined as:

{f, g} =
∑

Φ

(
∂f

∂Φ

∂g

∂Φ
+ (−1)(|f |+1)|Φ|+(|g|+1)|Φ|+|Φ||Φ|+1 ∂f

∂Φ

∂g

∂Φ

)
. (2.13)

Let us note that the condition (2.12) holds for any choice of polarization. The Kontse-

vitch bracket is a natural generalization of the Poisson bracket on a graded path algebra

that admits a polarization.

8In general, we can have distinct paths of degree-zero chiral fields connecting each field of higher

degree in the closed loop.
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Differential and superpotential. Given the superpotential above, one can define

a differential, d, of degree −1, acting on paths. We have the Leibniz rule:

d(fg) = (df)g + (−1)|f ||g|fdg , (2.14)

with |f | denoting the degree of the path f . The differential is given explicitly on the

quiver fields by:

de = −e⊗ e ,

dΦ =
∂W

∂Φ
+ (−1)|Φ|Φ⊗ e− e⊗ Φ ,

dΦ =
∂W

∂Φ
+ (−1)|Φ|Φ⊗ e− e⊗ Φ ,

de =
∑

Φ

(−1)|Φ|
(
Φ⊗ Φ− Φ⊗ Φ

)
+ (−1)m+1e⊗ e− e⊗ e .

(2.15)

This is obviously of degree −1 since W has degree m− 1 and |Φ| = m− |Φ|. One can

check that this is a differential:

d2 = 0 , (2.16)

provided that (2.12) is satisfied.

Representations of the quiver algebra and anomaly-free constraint. Given

a quiver algebra, we may want to study its representations. Recall that a quiver

representation consists of a vector space Vi ∼= CNi assigned to each node i, and of

explicit homomorphisms Φ
(0)
ij : Vi → Vj (that is, fixed Ni × Nj matrices such that all

the quiver relations are satisfied).

In physics, the positive integers Ni are the ranks of the unitary gauge group (1.3)

in a quiver gauge theory. The choice of homomorphism Φ(0) is a choice of “vacuum

expectation values (VEVs)” for the chiral multiplets. Not every choice of rank is

physically acceptable. There are certain constraints on the allowed choices of ranks,

the generalized anomaly cancellation conditions [15], which we will review in section

§2.5 below.

It is always a good idea to distinguish between the algebra and its representations.

In this work, most of our discussion will be focused on the general “abstract” quiver,

not on a particular representation. In the B-model, a particular quiver representation

corresponds to a particular bound state of D-branes, and the anomaly cancellation

condition is a tadpole cancellation condition for the RR flux (at least in the physical

setup with m ≤ 3).
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2.2 Toric graded quivers and toric singularities

A central theme of this paper is the connection between m-graded quivers and CYm+2

singularities. This connection goes in both directions and can be addressed from mul-

tiple viewpoints.

The CYm+2 variety arises from the quiver as its classical moduli space. Generalizing

the m ≤ 3 cases, for which the quivers have a gauge theory interpretation, we define

the classical moduli space as the center of the Jacobian algebra with respect to fields

of degree m − 1, i.e. of next to maximal degree. The mathematical results in [41]

imply that it is sufficient to consider the algebra obtained by quotienting only by the

corresponding relations:
∂W

∂Φ(m−1)
= 0 , ∀Φ(m−1) . (2.17)

Note that, in the special case m = 2, the field Φ(1) here denotes both Φ(1) and Φ
(1)

;

they are the fermi and anti-fermi multiplets, in the 2d N = (0, 2) gauge theory.

Since the superpotential has degree m − 1, the terms which are relevant for the

relations in (2.17) are gauge invariants of the generic form Φ(m−1)P (Φ(0)), with P (Φ(0)

a holomorphic function of chiral fields. Borrowing the nomenclature used in the m = 2

and 3 cases, we refer to these terms as J-terms. 9 Therefore, the relations (2.17) consist

entirely of chiral fields. For m ≤ 3, chiral fields are the only superfields with scalar

components, hence their relevance for the moduli space. Focusing on the center of the

algebra corresponds to considering closed loops—in the gauge theory language, this is

the restriction to gauge invariant fields.

Toric CY singularities. In this paper, we focus on toric Calabi-Yau singularities,

and their toric partial resolutions. A toric CY singularity Xm+2 can be described in

terms of its toric diagram Γ, a convex polytope in Zm+1. Let us denote the points of

the toric diagram by:

{v1 , · · · , vd} ∈ Γ ⊂ Zm+1 . (2.18)

This includes internal points—points inside the polytope. Including all the internal

points allows us to discuss toric resolutions straightforwardly. Recall that, given the

toric diagram, the toric fan is the set of vectors wi = (vi, 1) ∈ Zm+2. The Kähler

quotient description of the singularity (also known as GLSM [42]) is given by:

Xm+2
∼= Cd//U(1)d−m−2 , zi ∼ ei

∑
a αaQ

a
i zi , (Qa) = ker(w1, · · · , wd) , (2.19)

9Strictly speaking, J-term usually refers to the holomorphic function P (Φ(0)). We will use the name

for the entire Φ(m−1)P (Φ(0)) term in the superpotential. For m = 1, this corresponds to standard

superpotential terms.
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with (w1, · · · , wd) seen as (m + 2) × d matrix—here, (zi) ∈ Cd, i = 1, · · · , d, are the

“GLSM fields,” and a = 1, · · · , d−m− 2 runs over the “GLSM gauge group.”

Toric superpotential condition. To any given toric CYm+2 singularity, we can

associate a graded quiver Q(m) that satisfies an additional toric condition, generalizing

the well-known m = 1 and m = 2 cases [8, 20]. More precisely, there always exists

at least one such “toric quiver,” and other quivers are expected to be related to it by

mutations. The toric condition is a condition on the superpotential: every field Φ(m−1)

of degree m− 1 should appear in exactly two J-terms, with opposite signs. Namely,

W = Φ(m−1)P (Φ(0))− Φ(m−1)Q(Φ(0)) + . . . , (2.20)

where the dots indicate terms that do not contain Φ(m−1). In other words, the “vacuum

equations” (2.17) take a simple form (path1)=(path2). This form of the superpotential

underlies the relationship between these theories and toric geometries.

Concepts such as periodic quivers on Tm+1 (and their dual brane tilings, brane

brick models, and higher dimensional generalizations), perfect matchings, etc., can be

generalized to arbitrary m. These issues will be studied in detail in a forthcoming paper

[36]. Here, let us just quote one of the results, which we will exploit for computing

moduli spaces.

Given a toric graded quiver Q(m) with superpotential W , we can define perfect

matchings for arbitrary m, as follows. A perfect matching p is a collection of arrows in

Q(m) satisfying two conditions:

• p contains precisely one arrow from each term in W .

• For every arrow Φ(c) in Q(m), either Φ(c) or its conjugate Φ
(m−c)

is in p.

This generalizes the definition of perfect matchings for brane tilings [11] and of brick

matchings for brane brick models [21].

We can regard perfect matchings as variables in terms of which the fields in the

quiver can be expressed. In particular, the map between perfect matching variables

and chiral fields is given by:

Φ
(0)
i =

∏

µ

pPiµµ with Piµ =

{
1 if Φ

(0)
i ∈ pµ ,

0 if Φ
(0)
i /∈ pµ ,

(2.21)

where i runs over the chiral fields and µ runs over perfect matchings. The Piµ can be

regarded as entries in the so-called P -matrix. This change of variables is extremely
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powerful, since it trivializes the relations (2.17). There is then a one-to-one correspon-

dence between perfect matchings and “GLSM fields” in a (possibly redundant 10) toric

description (2.19) of the CYm+2. Perfect matchings are therefore mapped to points in

the toric diagram. The Zm+1 coordinates for each perfect matching are easily deter-

mined from the intersections between the chiral fields it contains and the fundamental

cycles of the (m+ 1)-torus on which the corresponding periodic quiver lives.

In this way, the determination of the moduli space is significantly simplified, reduc-

ing to the combinatorial problem of determining perfect matchings. Moreover, efficient

methods for finding perfect matchings, analogous to the Kasteleyn matrices for brane

tilings, exist for all m [36].

Partial resolution and higgsing. Partial resolution of a toric CYm+2 corresponds to

removal of points in the toric diagram, and can be used to connect different geometries.

At the level of the quiver theory, this process maps to “higgsing” by non-zero “VEVs”

for certain chiral fields, where we have extended the physical nomenclature used for

low m in the obvious way.

The map between chiral and GLSM fields, encoded by the P -matrix, provides a

systematic procedure for identifying the chiral fields that acquire non-zero VEVs in

order to achieve a desired partial resolution. In general, given a partial resolution, the

choice of VEVs that realize it might not be unique. This procedure is a straightforward

generalization of the one for CY3 and CY4 cases. We refer the reader to [2–4, 20] and

references therein for in depth discussions of these cases. Later in the paper, we will

investigate the connection between infinite families of geometries and the associated

quiver theories via partial resolution.

2.3 B-branes, Ext groups and A∞ algebra

Let us now consider the B-model on a local CYm+2 singularity Xm+2. The B-branes

are objects in the derived category of coherent sheaves on Xm+2, as in (1.7). In all the

examples that we consider, there will exist a crepant resolution of the singularity:

π : X̃m+2 → Xm+2 , (2.22)

with X̃m+2 a smooth local Calabi-Yau. Then, all the B-branes of interest will be

coherent sheaves with compact support on complex submanifolds of X̃m+2. Intuitively,

we simply have D-branes wrapping all possible closed complex cycles.

Since the B-model is independent of Kähler deformations, the B-brane category on

X̃m+2 must be equivalent to the B-brane category on the singularity Xm+2, but the

10If the GLSM description is redundant, there are several perfect matchings for the same point in

the toric diagram.
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former is generally much simpler to describe. In all our examples, the smooth resolution

is the total space of a vector bundle E:

X̃m+2
∼= Tot (E → Bm+2−r) , r = rank(E) , (2.23)

over Bm+2−r, a compact Kähler surface of complex dimension m+2−r; in the simplest

case, we have the canonical line bundle over Bm+1. Then, the B-branes on X̃m+2 can

be described more simply in terms of sheaves on Bm+2−r.

The “fractional branes,” denoted by:

{Ei}ni=1 , (2.24)

are distinguished B-branes which “generate” the derived category Db(X̃m+2), in some

physical sense. 11 In the setup (2.23), a good set of fractional brane can be obtained

from any strongly exceptional collection of sheaves on Bm+2−r [16, 43–47]. The open

string states between two B-branes E and F are identified with the generators of the

Ext groups [27–30]:

Extd
X̃m+2

(E ,F) , d = 0, · · · ,m+ 2 . (2.25)

The interactions amongst these open string modes are encoded in a A∞ algebra. Let

us define the graded vector space:

A ∼= ⊕i,j ⊕m+2
d=0 Extd

X̃m+2
(Ej, Ei) , (2.26)

of all the Ext groups elements amongst the fractional branes. One can define the

multi-products mk on the Ext algebra A:

mk : A⊗k → A , (2.27)

of degree 2− k. They satisfy the A∞ relations [48]:
∑

p+q+r=k

(−1)r+pqmk+1−p(1
⊗r ⊗mp ⊗ 1⊗q) = 0 , ∀k > 0 , (2.28)

Note that, in particular, m1 is a differential—that is, (m1)2 = 0, andm2 is an associative

product. The Ext algebra A is a minimal A∞ algebra, meaning that m1 = 0 identically.

There also exists a natural trace map:

γ : A→ C , (2.29)

11Here we are being voluntarily vague. A better definition of fractional branes can be given if we

are provided with a stability structure on Db(X̃m+2), which does depend on the Kähler moduli (in

physics, that is the central charge of the D-branes). The fractional branes are obtained by marginal

decay of the point-like brane Op at the singularity.
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of degree −m − 2. This is used, in particular, to map to top Ext elements of degree

m+ 2 to elements of Ext0 ∼= Hom.

The multi-productsmk on the Ext algebra can be computed in the following manner

[16, 49]. Given any A∞ algebra Ã, let us denote by H•(Ã) to be the cohomology of

m1. If Ã has no multiplications beyond m2, it turns out that one can define an A∞
structure on H•(Ã) in such a way that there exists an A∞ map [49, 50]:

f : H•(Ã)→ Ã , (2.30)

with f1 equal to a particular representation H•(Ã) ↪→ Ã, in which cohomology classes

map to (noncanonical) representatives in Ã, and such that m1 = 0 in the A∞ algebra

on H•(Ã). One can then use the consistency conditions satisfied by elements of an A∞
map to solve algebraically for the higher products on H•(Ã).

In the B-brane description, the algebra Ã is the algebra of complexes of coherent

sheaves, with chain maps between complexes. In that construction, m1 is identified

with the BRST charge of the B-model. The “physical” open string states then live

in the cohomology H•(Ã), which gives us the derived category Db(X)—see [51] for a

thorough review. The minimal A∞ algebra:

A ≡ H•(Ã) (2.31)

is precisely the Ext algebra. In the examples discussed in this paper, each B-brane will

correspond to a single coherent sheaf, which can be represented in the derived category

by a locally-free resolution. The Ext elements can then be represented by chain maps

between resolutions, modulo chain homotopies. The m2 products in A are given by

chain map composition. The higher products can be computed by the procedure that

we just outlined.

In Appendix A, we explain more thoroughly how to perform these computations

explicitly.

2.4 From Ext groups to quiver fields

The relation between the quiver algebra and the Ext algebra was explained by Aspinwall

and Katz in [49], in the physical context of D3-branes at CY 3-folds (m = 1). The

general case is discussed by Lam [33], in a purely mathematical context.

Here, we follow the physical argument of [49]. In that language, the quiver fields Φ

are sources for the open string vertex operators in the B-model. Given the open string

mode φ ∈ A of degree |φ|, there is a one-form descendent φ(1) of degree |φ| − 1. Then,

to every φ ∈ A, one can associate a “spacetime field” Φ̃ of degree |Φ̃| = 1− |φ|, which
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acts as a source for φ in the B-model:

S → S +
∑

φ

Φ̃φ(1) . (2.32)

Due to our choice of notation for the graded quivers Q(m), following [15], we find it

convenient to define the “quiver field” Φ of degree |Φ| = −|Φ̃|, so that:

|Φ| = |φ| − 1 . (2.33)

The explains the relation between quiver fields and Ext elements given in (1.13) in the

introduction. 12

Algebraically, the graded quiver algebra, V , and the Ext algebra, A, are related

as follows [49]. Let V denote the path algebra modulo the quiver relations, and let

Ṽ denote the same vector space but with the degrees c exchanged with −c. (That is,

Φ ∈ V and Φ̃ ∈ Ṽ . Let also Ṽ [1] denote the vector space Ṽ with all degrees decreased

by one, and let s : Ṽ → Ṽ [1] denote the corresponding map of degree −1. Then, A is

simply the dual of Ṽ [1]:

A =
(
Ṽ [1]

)∗
. (2.34)

Then, it turns out that the A∞ relations (2.28) on A are equivalent to the existence of

the differential d, (2.15), on V [33, 49].

Mapping nodes and arrows. As anticipated in the introduction, we can assign a

graded quiver Q(m) to a CY singularity. More precisely, we work with a particular

crepant resolution X̃m+2. We should also insist on the fact that the quiver is really

associated to a particular set of fractional branes. A different choice of fractional branes

can lead to a different quiver.

Let us now spell out the B-brane-to-quiver correspondence. First of all, of course,

the quiver nodes are in one-to-one correspondence with the fractional branes:

node i ←→ Ei (2.35)

In the case of a singularity that admits a crepant resolution as in (2.23), the number of

fractional branes (and thus, the number of nodes in the quiver) is equal to χ(Bm+2−r),

the Euler character of the Kähler base Bm+2−r—physically, this is because we should

have a basis of wrapped branes that generates the full even-homology lattice.

12As we just explained, a more natural definition of the quiver degree would be minus the degree

that we use in this paper. This is the conventions used, for instance, in [33]. (Also in [16].) In our

present conventions, the quiver degree is equal to minus the BRST degree of the B-model.
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Secondly, all the quiver arrows Φ of degree |Φ| = c correspond to Ext-group ele-

ments x of degree |φ| = c+ 1:

φ
(d)
ij ∈ Extd

X̃m+2
(Ej, Ei) ←→ Φ

(c)
ij , with c = d− 1 ∈ {0, 1, · · · ,m} . (2.36)

Of course, Serre duality (1.11) corresponds to the pairing (2.5) of quiver arrows. Note

that we identify the arrow Φij with the Ext element φij.
13 The quiver algebra elements

of quiver degrees −1 and m+ 1 correspond to e and e, respectively. The fact that each

element is a loop attached to a single node is a property that we assume of any “allowed

fractional branes,” namely:

Ext0(Ei, Ej) = Extm+2(Ej, Ei) = δijC . (2.37)

These groups are identified with the “vector multiplets” in supersymmetric quiver gauge

theories.

The quiver superpotential. The graded quiver superpotential takes the general

form:

W =
∑

closed paths p

αp Φ
(c1)
i1i2

Φ
(c2)
i2i3
· · ·Φ(c1)

isi1
, (2.38)

The sum is over all closed paths,

p = Φ
(c1)
i1i2

Φ
(c2)
i2i3
· · ·Φ(cs)

isi1
with

s∑

l=1

cl = m− 1 , (2.39)

which consists of s concatenated arrows of any degrees cl ∈ {0, · · · ,m}, subject to the

above constraint—that is, here Φ denotes both the fields Φ and their “conjugates” Φ. 14

The superpotential couplings are given by open string disk correlators:

αp =
〈
φ

(c1+1)
i1i2

φ
(c2+1)
i2i3

· · ·φ(cs+1)
isi1

〉
. (2.40)

More explicitly, they are given in terms of the multi-products on A, according to:

αp = γ
(
m2

(
φ

(c1+1)
i1i2

, ms−1(φ
(c2+1)
i2i3

, · · · , φ(cs+1)
isi1

)
))

. (2.41)

Note that αp has degree 0, by construction.

13Note that φ
(d)
ij correspond to a morphism from Ej to Ei. While the product of arrows is by

concatenation, the product of two Ext elements correspond to the composition of maps. In our

conventions, we then have the convenient relations:

ΦijΦjk ←→ m2(φij , φjk) ≡ φij ◦ φjk .

14Notice that while the sum in (2.38) is formally over all closed paths of degree m − 1, not all of

them are necessarily in the superpotential since the corresponding coefficients αp may vanish.
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2.5 Anomaly-free conditions on the quiver ranks

To conclude this section, let us state the anomaly-free condition, alluded to above,

in full generality [15]. Consider a graded quiver Q(m) (not necessarily toric), with an

assignment of ranks Ni ∈ N to the nodes i ∈ Q0. Let us denote by N (Φ
(c)
ij ) the number

of arrows from i to j of degree c. Then, the generalized anomaly-free conditions for m

odd are:

∑

j

Nj

nc−1∑

c=0

(−1)c
(
N (Φ

(c)
ji )−N (Φ

(c)
ij )
)

= 0 , ∀i , if m ∈ 2Z + 1 . (2.42)

Here, for each fixed i, the sum over j is over all nodes in the quiver (including i), and

nc was defined in (2.6). For m even, instead, we have the conditions:

∑

j

Nj

nc−1∑

c=0

(−1)c
(
N (Φ

(c)
ji ) +N (Φ

(c)
ij )
)

= 2Ni , ∀i , if m ∈ 2Z . (2.43)

For m = 0, 1, 2, 3, these conditions coincide with the cancellation of non-abelian anoma-

lies for the corresponding d = 6, 4, 2, 0 gauge theories with gauge group
∏

i U(Ni).

Using the correspondence between quiver arrows and Ext group generators, the

anomaly-free conditions have a simple expression in the B-brane language. Namely, for

a configuration of Ni fractional branes of each type Ei, we should impose [16]:

∑

j

Nj

m+2∑

d=0

(−1)ddim Extd
X̃m+2

(Ei, Ej) = 0 , ∀i . (2.44)

This is interpreted as a “generalized tadpole cancellation condition” for a given set of

fractional branes.

In the special case of toric quivers, we always have the “regular branes” with rank

assignment Ni = N , ∀i. In that case, a factor of N factorizes out of the anomaly-free

condition, and (2.44) becomes a statement about the set of fractional branes. All the

examples that we will consider below satisfy those conditions with Ni = N .

3 Flat space: the Cm+2 graded quiver

The simplest local Calabi-Yau (m+ 2)-fold is flat space, Cm+2. Its toric diagram is the

minimal simplex in Zm+1, namely:

v0 = (0, . . . , 0) ,

v1 = (1, 0, 0, . . . , 0) , v2 = (0, 1, 0, . . . , 0) , . . . , vm+1 = (0, 0, . . . , 0, 1) .
(3.1)
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• The quiver contains m + 2 nodes.

• In addition, there are bifundamental fields �
(c)
i,i+c+1 of degree 0  c  m/2. The

bifundamental indices are correlated with the degree. As in the unorbifolded case,

�
(c)
i,i+c+1 transforms in the antisymmetric (c+1)-index representation of SU(m+2).

• Once again, for even m, the multiplicity of the unoriented degree m/2 fields is

only half the dimension of the corresponding representation.

2.3 Consistency Checks

• Generalized anomaly cancellation

• Kontsevich bracket

• Moduli space

3 The F
(m)
0 Family

3.1 The Geometries

We now introduce a new family of geometries, which we denote F
(m)
0 , corresponding to

the a�ne cones over (CP1)m+1. The toric diagram for F
(m)
0 is the (m + 1)-dimensional

polytope consisting of the following points.

(0, . . . , 0)

(±1, 0, . . . , 0)
...

(0, . . . , 0, ±1)

(3.1)

This family contains and naturally generalizes some interesting geometries. In partic-

ular, its first members are:

F
(0)
0 = C2/Z2

F
(1)
0 = F0

F
(2)
0 = Q1,1,1/Z2

(3.2)

whose toric diagrams are shown in Figure ??.

This is an extremely interesting family of geometries because, for m > 0, they give

rise to multiple toric phases related by the corresponding order m + 1 dualities. The

m = 1 [] and 2 [] cases have been extensively studied in the literature
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Figure 2. Toric diagrams for F
(m)
0 with m = 0, 1, 2.

whose toric diagrams are shown in Figure 2.

This is an extremely interesting family of geometries because, for m > 0, they give
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m = 1 [] and 2 [] cases have been extensively studied in the literature

C2/Z2

C3/Z3

C4/Z4

(3.3)

As already mentioned, the periodic quivers for these theories are rather simple,

although hard to visualize due to their high dimensionality beyond m = 2. The expo-

nential growth of the number of gauge groups makes their ordinary quivers look rather

complicated. However, we consider it is instructive to explicitly present the quivers for

m = 2 and 3.

3.2 Consistency Checks

• Generalized anomaly cancellation

• Kontsevich bracket

• Moduli space

• F
(m)
0 ! F

(m�1)
0 ⇥ C partial resolution
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Figure 1: Toric diagrams for Cm+2 with m = 0, 1, 2.

The toric diagrams for m ≤ 3 are shown in Figure 1. As a warm up exercise, we

consider the graded quiver associated to Cm+2. We first derive it using the algebraic

dimensional reduction procedure introduced in [15]. We then verify this result by a

direct B-brane computation.

3.1 Algebraic dimensional reduction

Let us quickly review algebraic dimension reduction. This corresponds to replacing the

underlying CY singularity Xm+2 by a product space of the form:

Xm+2 → Xm+3 = Xm+2 × C . (3.2)

The effect on the corresponding graded quiver,

Q(m) → Q(m+1) , (3.3)

is a generalization of the T2 dimensional reduction of supersymmetric gauge theories.

The quiver diagram transforms as follows:

m m+ 1

nodei → nodei + adjoint chiral Ψ
(0)
ii

Φ
(c)
ij → Ψ

(c)
ij + Ψ̃

(c+1)
ij

(3.4)

where 0 ≤ c ≤
⌊
m
2

⌋
. This table also applies when i = j, namely when the theory we

start with contains adjoint fields. It is interesting to consider more carefully what (3.4)

implies for the undirected fields of degree m
2

that can be present in theories with even

m:
even m m+ 1

Φ
(m

2
)

ij → Ψ
(m

2
)

ij + Ψ̃
(m

2
+1)

ij = Ψ
(m

2
)

ij + Ψ̃
(m

2
)

ji

(3.5)
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Thus, for each conjugate pair of arrows of degree m
2

in Q(m), we get two pairs of arrows

of degree m
2

in Q(m+1). (For instance, for m = 0, one 6d hypermultiplet gives rise to

one 4d hypermultiplet, which is equivalent to two chiral multiplet arrows of opposite

orientations.)

Let W(m) denote the original superpotential of Q(m), and let W(m+1) be the one

for the dimensionally reduced quiver Q(m+1). There are two types of contributions to

Wm+1:

1) Dimensional reduction of terms in Wm. Schematically, for any term in Wm

we have a series of terms in Wm+1 of the form:

m m+ 1

Φ
(c1)
i1i2

Φ
(c2)
i2i3

. . .Φ
(ck)
iki1

→
Ψ̃

(c1+1)
i1i2

Ψ
(c2)
i2i3

. . .Ψ
(ck)
iki1

+ Ψ
(c1)
i1i2

Ψ̃
(c2+1)
i2i3

. . .Ψ
(ck)
iki1

+ . . . + Ψ
(c1)
i1i2

Ψ
(c2)
i2i3

. . . Ψ̃
(ck+1)
iki1

.

(3.6)

2) New terms involving adjoints. In addition, Wm+1 contains a new class of

terms. For every arrow Φ
(c)
ij in the original quiver, we introduce the following pair

of superpotential terms in the dimensionally reduced one:

Ψ
(0)
ii Ψ

(c)
ij Ψ̃

(m−c−1)
ji − Ψ̃

(m−c−1)
ji Ψ

(c)
ij Ψ

(0)
jj . (3.7)

These rules fully determine the “dimensionally reduced” quiver with superpotential,

Q(m+1).

3.2 The graded quivers

Using dimensional reduction, we can construct the field content and superpotential for

Cm+2 starting from C2, which has a single node with a single unoriented arrow from

the node to itself and no superpotential.

Quiver. For every m, the quiver is given as follows:

• It consists of a single node.

• In addition, there are adjoint fields Φ(c,c+1) of degree 0 ≤ c ≤
⌊
m
2

⌋
. Here we

have introduced a superindex notation in which Φ(c;k) indicates an arrow with

degree c and transforming in the k index totally antisymmetric representation of

the global SU(m + 2) symmetry. This notation might seem excessive for these

simple theories, but it will turn useful for some of the computations and more

general geometries to be discussed later. Each field Φ(c,c+1) thus transforms in

the antisymmetric (c+ 1)-index representation of SU(m+ 2).
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Figure 2: Quivers for Cm+2. The quivers for m = 0, 1, 2, 3 correspond to maximally

supersymmetric Yang-Mills theory in d = 6, 4, 2, 0. The multiplicities of fields, i.e. the

dimensions of the representations for the SU(m + 2) global symmetry, are indicated

on the arrows. For m even, the multiplicity of the outmost (unoriented) line is half

the dimension of the corresponding representation. Black, red, green, blue and purple

arrows represent fields of degree 0, 1, 2, 3 and 4, respectively.

• For even m, the multiplicity of the unoriented degree-m
2

fields is half the dimension

of the corresponding representation. We can regard the full representation as built

out of both Φ(m
2

) and Φ̄(m
2

), which have the same degree.

Figure 2 shows these quivers up to m = 9.

Superpotential. Following dimensional reduction, all W terms are cubic. The su-

perpotential terms are given by cubic terms of degree m− 1 combined into SU(m+ 2)

invariants. In order to write the superpotential for general m, we introduce a conven-

tion in which the products of fields include the contraction SU(m+ 2) indices and are
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explicitly given by

(A
(c1,k1)
1 · · ·A(cn,kn)

n )αk+1···αm+2 ≡ 1∏
i ki!

εα1···αm+2A
(c1,k1)
1;α1···αk1

· · ·A(cn,kn)
n;αk−kn+1···αk , (3.8)

where k =
∑

i ki is the total number of SU(m + 2) indices before contractions. Any

such term with
∑
ki = m + 2 is manifestly SU(m + 2) invariant. The superpotential

can then be compactly written as

W =
∑

i+j+k=m+2

Φ(j−1;j)Φ(k−1;k)Φ̄(m+1−j−k;m+2−j−k) . (3.9)

Since we sum over terms such that i + j + k = m + 2, the degrees of the fields in the

superpotential terms are given by partitions (including 0) of (m−1) into three integers.

3.3 B-model computation

We can also understand the Cm+2 quiver in terms of B-branes, as in [16]. There is a

single “fractional brane” in flat space, the skyscraper sheaf over a point p, Op. Without

loss of generality, we take p to be the origin of Cm+2. The Koszul resolution at point p

is:

0 - Ωm+2 f
- Ωm+1 f

- · · · f
- Ω0 r

- Op - 0 , (3.10)

where Ω is the cotangent bundle of flat space, and r is the restriction map at the origin.

Lastly, f : Ωk → Ωk−1 is the vector field:

f =
∑

µ

zµ
∂

∂zµ
, (3.11)

acting by interior derivative, with zµ the holomorphic coordinates of flat space.

3.3.1 Quiver fields

The quiver fields can be computed as the chain maps between two copies of this res-

olution. The generators φµ of the Ext1(Op,Op) group, corresponding to chirals, are

elements of Č0(Hom1(Op,Op)). There are m + 2 of them, transforming in the funda-

mental representation of SU(m+ 2). φµ is explicitly given by the chain map

Ωm+2 - Ωm+1 - · · · - Ω1 - Ω0

Ωm+2 - Ωm+1

∂
∂zµ ?

- Ωm

∂
∂zµ
?

- · · · - Ω0

∂
∂zµ ?
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The vector field ∂
∂zµ

again acts by interior derivative.

The generator of the other Ext groups are given by the antisymmetric composition

of these basic elements. There are
(
m+2
k

)
generators of Extk(Op,Op), given explicitly

by:

φµ1···µk =
1

k!
φµ1 ◦ φµ2 ◦ · · · ◦ φµk . (3.12)

If we allow 0 ≤ k ≤ m + 2, this contains both the generators φ and their Serre dual

φ. To mimic the notation that is natural for the more complicated example of later

sections, we will write φµ1···µk for k ≤ m+2
2

and φ̄µ1···µk for k ≥ m+2
2

, including the

arbitrary choice of some pairing:

(
φ
µ1,··· ,µm+2

2 , φ
µ1,··· ,µm+2

2

)
, (3.13)

when m is even. In that case, the number of arrows φ(m+2
2

) is half the dimensions of the
m+2

2
-index representation, since the full representation is spanned by these arrows and

their Serre dual arrows. The Serre dual of φµ1···µk is the generator φ̄µk+1···µm+2 , which

satisfies:

φµ1···µk ◦ φ̄µk+1···µm+2 = φ̄µ1···µm+2 . (3.14)

3.3.2 Superpotential

The superpotential can be computed straightforwardly. Since we defined higher Ext

generators as compositions of Ext1 generators, composing them gives:

m2(φµ1···µj , φµj+1···µk) = φµ1···µk ,

m2(φµ1···µj , φ̄µj+1···µk) = φ̄µ1···µk ,

m2(φ̄µ1···µj , φ̄µj+1···µk) = φ̄µ1···µk .

The definition (3.12) is valid both for the Čech cohomology classes as well as for their

explicit representatives, therefore all f2 are trivially zero. Hence all higher products

vanish.

Thus, all the superpotential terms present are the cubic terms we postulated before.

We can compute the coefficients straightforwardly using (3.14). They are

γ(m2(m2(φµ1···µj , φµj+1···µk), φ̄µk+1···µm+2)) = εµ1···µm+2 ,

in agreement with (3.9).
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• The quiver contains m + 2 nodes.

• In addition, there are bifundamental fields �
(c)
i,i+c+1 of degree 0  c  m/2. The

bifundamental indices are correlated with the degree. As in the unorbifolded case,

�
(c)
i,i+c+1 transforms in the antisymmetric (c+1)-index representation of SU(m+2).

• Once again, for even m, the multiplicity of the unoriented degree m/2 fields is

only half the dimension of the corresponding representation.

2.3 Consistency Checks

• Generalized anomaly cancellation

• Kontsevich bracket

• Moduli space

3 The F
(m)
0 Family

3.1 The Geometries

We now introduce a new family of geometries, which we denote F
(m)
0 , corresponding to

the a�ne cones over (CP1)m+1. The toric diagram for F
(m)
0 is the (m + 1)-dimensional

polytope consisting of the following points.

(0, . . . , 0)

(±1, 0, . . . , 0)
...

(0, . . . , 0, ±1)

(3.1)

This family contains and naturally generalizes some interesting geometries. In partic-

ular, its first members are:

F
(0)
0 = C2/Z2

F
(1)
0 = F0

F
(2)
0 = Q1,1,1/Z2

(3.2)

whose toric diagrams are shown in Figure ??.

This is an extremely interesting family of geometries because, for m > 0, they give

rise to multiple toric phases related by the corresponding order m + 1 dualities. The

m = 1 [] and 2 [] cases have been extensively studied in the literature
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Figure 3: Toric diagrams for Cm+2/Zm+2 with m = 0, 1, 2.

4 The Cm+2/Zm+2 orbifolds

As a first family of non-trivial CY singularities, let us consider the orbifolds Cm+2/Zm+2,

with the cyclic group acting on flat space as:

zi ∼ e
2πi
m+2 zi , i = 1, · · · ,m+ 2 , (zi) ∈ Cm+2 . (4.1)

This singularity can be resolved to a local Pm+1. We thus have:

Xm+2
∼= Cm+2/Zm+2 , X̃m+2

∼= Tot
(
O(−m− 2)→ Pm+1

)
. (4.2)

Let us first derive the quiver by toric methods. We will then discuss B-branes on the

resolution X̃m+2.

4.1 The toric geometries

The (m+1)-dimensional toric diagrams for these geometries contain the following m+3

points:

v0 = (0, . . . , 0) ,

v1 = (1, 0, 0, . . . , 0) ,

v2 = (0, 1, 0, . . . , 0) ,
...

vm+1 = (0, 0, . . . , 0, 1) ,

vm+2 = (−1,−1, . . . ,−1) . (4.3)

The toric diagrams for the first few values of m are shown in Figure 3.

4.2 The graded quivers

The quivers and superpotentials can be determined by standard orbifolding [1] of the

Cm+2 quivers discussed above.
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Quiver. Figure 4 shows these quivers up to m = 9. 15 For each type of field, we have

indicated the corresponding SU(m + 2) representation. For even m, the multiplicities

of degree m
2

fields are actually half the dimension of these representations. In summary:

• The quiver contains m+ 2 nodes, that we will indexed by i = 0, · · · ,m+ 1.

• The quiver consists of bifundamental fields Φ
(c,c+1)
i,i+c+1 of degree 0 ≤ c ≤

⌊
m
2

⌋
, where

we have used the superindex notation introduced for Cm+2. The bifundamental

indices are correlated with the degree. As in the unorbifolded case, Φ
(c)
i,i+c+1

transforms in the antisymmetric (c+ 1)-index representation of SU(m+ 2).

• For even m, now the multiplicity of the unoriented degree m
2

fields is only equal

to the full dimension of the corresponding representation.

Superpotential. Using the convention for contracting SU(m+2) indices introduced

in (3.8), the superpotential is given by

W =
∑

i+j+k<m+2

Φ
(j−1;j)
i,i+j Φ

(k−1;k)
i+j,i+j+kΦ̄

(m+1−j−k;m+2−j−k)
i+j+k,i . (4.4)

Below, we will perform various non-trivial checks of the proposed quiver theories.

Similar tests will be presented for all the infinite families of theories considered in this

paper. We will then independently derive these quiver theories using the B-model.

4.2.1 Generalized anomaly cancellation

Let us verify that the quivers introduced above satisfy the generalized anomaly cancel-

lation condition discussed in §2.5. Let us assume that the ranks of all nodes are equal

to N . Then, for a Cm+2/Zm+2 orbifold, the contribution to the anomaly at any node

due to the arrows in the quiver is equal to:

aarrows = N
m∑

c=0

(−1)c
(
m+ 2

c+ 1

)
= N(1 + (−1)m) , (4.5)

which is precisely the condition for cancellation of anomalies. It is straightforward to

show that the only solution to the anomaly cancellation conditions corresponds to equal

ranks, as we have assumed. The theories considered in coming sections will exhibit a

richer behavior in that respect.

15The first members of this family have already appeared in the literature. The m = 0 and 1 cases

are well known. For early references on m = 2, 3, 4, see [15, 19, 20, 24].
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Figure 4: Quivers for the Cm+2/Zm+2 orbifolds. Black, red, green, blue and purple

correspond to degree 0, 1, 2, 3 and 4, respectively.
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4.2.2 Kontsevich bracket

Let us now compute the Kontsevich bracket {W,W} for the superpotential in (4.4)

and check that it vanishes. To do so, we need to take into account the rule for cyclic

permutations of arrows. Consider a cycle A
(c;k)
i,j B

(d;l)
j,i , where A

(c;k)
i,j and B

(d;l)
j,i are mono-

mials of arrows. Note that the difference between the number of SU(m + 2) indices

and the degree of a monomial is equal to the number of arrows in it. The commutation

relation is:

A(c;k)B(d;l) = (−1)cd+klB(d;l)A(c;k) . (4.6)

The superpotential has degree m−1 and m+2 indices, so any term in it can be written

as A
(m−1−c;m+1−c)
i,j Φ

(c;c+1)
j,i , with A

(m−1−c;m+1−c)
i,j a quadratic monomial and Φ

(c;c+1)
j,i an

arrow. We then have:

A
(m−1−c;m+1−c)
i,j Φ

(c;c+1)
j,i = (−1)m+1−cΦ(c;c+1)

j,i A
(m−1−c;m+1−c)
i,j . (4.7)

The derivatives we need for the Kontsevich bracket are

∂W

∂Φ
(j−1;j)
i,i+j

=
∑

k<i

(−1)j+kΦ̄
(m+1−j−k;m+2−j−k)
i+j,i−k Φ

(k−1;k)
i−k,i

+
∑

k<m+2−i−j
(−1)j+mΦ

(k−1;k)
i+j,i+j+kΦ̄

(m+1−j−k;m+2−j−k)
i+j+k,i (4.8)

and

∂W

∂Φ̄
(m+1−j;m+2−j)
i+j,i

=
∑

k<j

Φ
(j−1;j)
i,i+k Φ

(k−1;k)
i+k,i+j . (4.9)

Using these results, we compute:

{W,W} = 2
∑

i,j|j>1;i+j<m+2

∂W

∂Φ̄
(m+1−j;m+2−j)
i+j,i

∂W

∂Φ
(j−1;j)
i,i+j

. (4.10)

To simplify the resulting expression we use that fact that all terms in {W,W} have

degree m−2 and m+2 global symmetry indices. For a monomial B
(m−2−c;m+1−c)
i,j Φ

(c;c+1)
j,i

in {W,W} we then have:

B
(m−2−c;m+1−c)
i,j Φ

(c;c+1)
j,i = (−1)m+1Φ

(c;c+1)
j,i B

(m−2−c;m+1−c)
i,j . (4.11)

Using this rule, it is straightforward to verify that {W,W} = 0.
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4.3 Moduli space

We can verify that the moduli space of the quiver indeed corresponds to Cm+2/Zm+2,

using perfect matchings. Below we present the main results, namely the field content

of the perfect matchings and how they are mapped to points in the toric diagram. Such

detailed information not only confirms that the moduli space corresponds to the desired

geometry, but can also be used, for example, to identify the graded quiver counterpart

of partial resolutions. We will study examples of partial resolutions in §5.4 and §6.5.

Let us consider how perfect matchings give rise to the toric diagram in (4.3). It

is convenient to divide the perfect matchings according to how they transform under

the global SU(m+ 2) symmetry. We consider this approach, which is primarily based

on the global symmetry, to be illuminating. It is of course also straightforward to

determine the perfect matchings by direct application of their definition and to find

their positions in the toric diagram from the intersections between their chiral fields

and the boundaries of a unit cell in the corresponding periodic quiver.

Internal Point. The internal point of the toric diagram, v0 = (0, . . . , 0), is the only

one that is invariant under SU(m+2). This implies that all perfect matchings that are

invariant under SU(m+ 2) correspond to this point. We label these perfect matchings

by si, i = 1, . . . ,m+ 2. They are given by:

Perfect matching Chirals Additional fields

s0 Φ̄
(0;1)
m+1,0 Φ̄

(m+1−k+j;m+2−k+j)
k,j (k > j)

si (1 ≤ i ≤ m+ 1) Φ
(0;1)
i−1,i Φ

(k−j−1;k−j)
j,k (j < i and j < k)

Φ̄
(m+1−k+j;m+2−k+j)
k,j (k > j ≥ i)

(4.12)

We have indicated the chiral field content separately, since it is what matters for the

moduli space. From the expression of the superpotential (4.4), s0 is evidently a perfect

matching. All the si can be determined by the following simple rule. Given an unbarred

field Φ
(k−j−1;k−j)
j,k , it is in the perfect matching iff j < i; otherwise, its conjugate is in

the perfect matching. It is straightforward to verify that this results in a collection of

fields which covers each term in the superpotential exactly once.

Corners. The SU(m + 2) symmetry permutes the corners vµ, µ = 1, . . . ,m + 2,

of the toric diagram. Thus, the perfect matching associated to any corner breaks

the SU(m + 2) down to SU(m + 1) × U(1). In order to find the perfect matching

corresponding to a corner it is sufficient to consider how a given representation of

SU(m + 2) decomposes under SU(m + 1). Since this breaking corresponds to picking

a particular SU(m + 2) fundamental index µ, this behavior is very simple: Φ
(k−1;k)
i,i+k
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decomposes into two representation, Φ
(k−1;k;µ)
i,i+k and Φ(k−1;k;�µ), of SU(m + 1). They are

in the (k− 1)− and k-index antisymmetric representations of SU(m+ 1), respectively.

Explicitly:

(Φ
(k−1;k;µ)
i,i+k )ν1···νk−1

= (Φ
(c;k)
i,i+k)µν1···νk−1

(Φ
(k−1;k;�µ)
i,i+k )ν1···νk = (Φ

(c;k)
i+k,k)ν1···νk νj 6= µ

(4.13)

Similarly, Φ̄
(m+1−k;m+2−k)
i+k,i decomposes into two representations and, in keeping with

our convention of making all quantum numbers explicit, the conjugate of Φ
(k−1;k;µ)
i,i+k is

Φ̄(m+1−k;m+2−k;�µ). Under this breaking, the terms in the superpotential decompose as

Φ
(j−1;j;µ)
i,i+j Φ

(k−1;k;�µ)
i+j,i+j+kΦ̄

(m+1−j−k;m+2−j−k;�µ)
i+j+k,i

Φ
(j−1;j)
i,i+j Φ

(k−1;k)
i+j,i+j+kΦ̄

(m+1−j−k;m+2−j−k)
i+j+k,i → + Φ

(j−1;j;�µ)
i,i+j Φ

(k−1;k;µ)
i+j,i+j+kΦ̄

(m+1−j−k;m+2−j−k;�µ)
i+j+k,i

+ Φ
(j−1;j;�µ)
i,i+j Φ

(k−1;k;�µ)
i+j,i+j+kΦ̄

(m+1−j−k;m+2−j−k;µ)
i+j+k,i

(4.14)

Hence we see that, for every µ, we get a perfect matching pµ containing the following

fields:

Perfect matching Chirals Additional fields

pµ Φ
(0;1;µ)
i,i+1 Φ

(k−1;k;µ)
i,i+k

Φ̄
(0;1;µ)
m+1,0 Φ̄

(m+1−k;m+2−k;µ)
i+k,i

(4.15)

In summary, the perfect matchings give rise to the toric diagrams in (4.3), confirm-

ing that the moduli spaces of these quiver theories are indeed the desired Cm+2/Zm+2

orbifolds.

4.4 B-model computation

Let us now consider the B-model on the Cm+2/Zm+2 orbifold. This orbifold admits a

crepant resolution as the total space of the canonical line bundle over Pn:

X̃m+2 = Tot(O(−m− 2)→ Pm+1) . (4.16)

The following set of sheaves form a strongly exceptional collection on Pm+1:
{

Ωm+1(m+ 1)[m+ 1] , Ωm(m)[m] , · · · , Ω(1)[1] , O
}
. (4.17)

Denoting by i the embedding i : Pm+1 → X̃m+2, the m + 2 fractional branes on (4.16)

can be written as: 16

{
Ej ≡ i∗Ω

j(j)[j]
∣∣ 0 ≤ j ≤ m+ 1

}
. (4.18)

16To correctly compute the morphisms below, it is important to take into account the derived-

category shifts [j] in the definitions of the the fractional branes on Xm+2. Recall that the complex

E•[j] denotes the complex E• shifted to the left by j units.
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With these B-branes at hand, we are ready to determine the quiver. The map between

Ext groups and quiver fields was discussed in §2.4. The Ext group elements correspond

to the chain maps between the Koszul resolutions of a pair of these sheaves. A sheaf

of the form i∗F , with F a sheaf on Pm+1, has a Koszul resolution:

0 - F(n+ 1)
vµe

m+2
µ - F - i∗F - 0 , (4.19)

where vµ is the O(−m− 2) fiber coordinate in the chart Uµ. We refer to Appendix A

for an explanation of our notations, and for additional background material that will

be used extensively below.

4.4.1 Quiver fields

The simplest arrows are the generators of Ext1(Ei+1, Ei). There generators, denoted by

φµi,i+1, are elements of Č0(Hom1(Ei+1, Ei)) and are explicitly given by the maps:

Ωi+1(n+ i+ 2) - Ωi+1(i+ 1)

Ωi(n+ 1 + i)

ϕµ

?
- Ωi(i)

−ϕµ

?

Here, ϕµ are the global sections of Ω∗(−1), which are computed in Appendix A—see

equation (A.31). Thus, we reproduce the chiral fields (of vanishing quiver degree) of

the quiver:

φµi,i+1 ∈ Ext1(Ei+1, Ei) ←→ Φ
(0;1)
i,i+1 , (4.20)

in the fundamental of SU(m+ 2).

The generators of Extk(Ei+k, Ei) take a similar form, using the global sections given

in (A.32). The generators lie in the Čech cohomology Č0(Homk(Ei+k, Ei)) and can be

defined to be the antisymmetric composition of k generators of Ext1(Ei+1, Ei):

φµ1µ2···µk
i,i+k =

1

k!
φ

[µ1

i,i+1 ◦ φµ2

i+1,i+2 ◦ · · · ◦ φµk]
i+k−1,i+k ←→ Φ

(k−1;k)
i,i+k . (4.21)

As expected, these arrows transform in the k-index antisymmetric representation of

SU(m + 2). The B-model computation thus reproduces exactly the arrows of the

Cm+2/Zm+2 toric quiver presented in §4.2.

We now compute the Serre duals of these arrows, which correspond to the conjugate

fields in the quiver. These computations are useful for determining the superpotential,

since some of the terms might involve conjugate fields. In the present case, the Serre
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duals can also be computed easily starting from the generators of Ext1(E0, Em+1). They

are φ̄µm+1,0 ∈ Čm+1(Hom−m(E0, Em+1)) and given by the maps:

O(m+ 2) - O

Ωm+1(2m+ 3) - Ωm+1(m+ 1)

ϕ̄µ

?

where the sections ϕ̄µ are given in (A.36). The Serre duals of the other arrows (4.21)

can be found by composition of these maps with φµi,i+1. Explicitly, they are given by:

φ̄
µ1···µm+2−k
i+k,i =

(m+ 1− i− k)!

(m+ 2− k)!i!
φ

[µ1···µm+1−i−k
i+k,m+1 ◦ φ̄µm+2−i−k

m+1,0 ◦ φµm+3−i−k···µm+2−k]
0,i . (4.22)

4.4.2 Superpotential

Since we have defined higher Ext groups by composition of maps used to define Ext1

groups, the product m2 (itself given by composition) can be determined straightfor-

wardly. We find:

m2(φ
µ1···µj
i,i+j , φ

µk+1···µk+l

k,k+l ) = δi+j,kφ
µ1···µk+l

i,k+l . (4.23)

Note that this relation holds not only between cohomology classes, but also between

the explicit representatives we have defined. Hence,

f2(φ
µ1···µj
i,i+j , φ

µk+1···µk+l

k,k+l ) = 0 . (4.24)

Similarly, using our definition of Serre duals, we can compute that

m2(φ̄
µ1···µm+2−j
i+j,i , φ

µm+1−j ···µm+2+l−j
k,k+l ) = δi,kφ̄

µ1···µm+2−l−j
i+j,i+l

m2(φ
µ1···µj
i,i+j , φ̄

µj+1···µm+2+j−l
k+l,k ) = δi+j,k+lφ

µ1···µn+1+k−i
i,k (4.25)

These are the only non-zero m2 products. In addition, all the f2’s vanish, which means

that there are no higher products. The last piece of information we need, in order

to write down the superpotential, is the canonical pairing γ. Taking into account the

SU(m+ 2) global symmetry, it is given by

γ(m2(φµ1···µk
i,i+k , φ̄

µk+1···µm+2

i+k,i )) = εµ1···µm+2 . (4.26)

Combining all this, the general prescription (2.38)-(2.41) gives the quiver superpoten-

tial:

W =
∑

i+j+k<m+2

εµ1···µm+2

j!k!(m+ 2− j − k)!
Φ
µ1···µj
i+j+k,i+kΦ

µj+1···µj+k
i+k,i Φ̄

µj+k+1···µm+2

i,i+j+k , (4.27)

which is in perfect agreement with (4.4).
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5 The Y 1,0(Pm) family

Our second family of singularities is a particular generalization of the conifold singu-

larity X3 = C0. As we will see, the corresponding graded quivers share some rather

interesting properties with the celebrated Klebanov-Witten quiver that describes D3-

branes at C0 [52].

5.1 The toric geometries

There exist very interesting infinite families of CYm+2 singularities given by the real

cone over certain (2m + 3)-real dimensional Sasaki-Einstein manifolds, with explicitly

known metrics, known as Y p,q, with the integers p > 0, 0 ≤ q < p and p, q mutually

prime [53]:

Xm+2 = C
(
Y p,q(Bm)

)
. (5.1)

The compact manifold Y p,q can be understood as a certain lens space bundle over a

Kähler manifold Bm of complex dimension m. Importantly, C(Y p,q(Bm)) is toric if Bm

is a compact toric variety.

Here, we will focus on the simplest such example, (p, q) = (1, 0) and Bm = Pm,

namely:

Xm+2 = C
(
Y 1,0(Pm)

)
. (5.2)

The toric diagram of this singularity is given by:

v0 = (0, . . . , 0) ,

v1 = (1, 0, 0, . . . , 0) ,

v2 = (0, 1, 0, . . . , 0) ,
...

vm+1 = (0, 0, . . . , 0, 1) ,

vm+2 = (1, 1, · · · , 1, 1) . (5.3)

These geometries possess an SU(m + 1) isometry, which acts on the toric diagram by

permuting the points v1, . . . , vm+1. We then have an SU(m + 1) global symmetry in

the corresponding graded quivers.

Note that the points v0, . . . , vm+1 in (5.3) give rise to the toric diagram for Cm+2,

which is then augmented by a single additional point vm+2. It is hence possible to

connect the quivers in this family to the “flat-space” quivers for Cm+2. In §5.4 below,

we will study this connection in detail.

The singularity (5.2) has a single Kähler parameter, corresponding to a small res-

olution by a Pm:

X̃m+2
∼= Tot

(
O(−m)⊕O(−1) −→ Pm

)
. (5.4)

We will use this resolution (5.4) to study B-branes in §5.6.
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5.2 The graded quivers

Unlike Cm+2 and the Cm+2/Zm+2 orbifolds discussed in §3 and §4, determining the

Y 1,0(Pm) quivers requires a more sophisticated approach than dimensional reduction

and orbifolding. Instead, it is possible to derive these quivers combining a generalization

of 3d printing [25] to CYm+2’s with arbitrary m [54], followed by partial resolution—

that is, higgsing in the quiver. Our focus is on the quiver theories in this family and

their physics. See [25] for a detailed presentation of 3d printing.

First of all, from the normalized volume of the toric diagram, we know that the

Y 1,0(Pm) quiver has m+ 1 nodes. 17 In addition, the quivers have an SU(m+ 1) global

symmetry.

The entire family admits an interesting recursive construction. C(Y 1,0(Pm+1)) can

be obtained by starting from C(Y 1,0(Pm)) and performing 3d printing to produce images

of two of the points in the toric diagram, as follows:

(0, . . . , 0) → (0, . . . , 0, 0) + (0, . . . , 0, 1)

(1, . . . , 1) → (1, . . . , 1, 0) + (1, . . . , 1, 1)
(5.5)

where the vectors in the first column are (m+1)-dimensional, while the ones in the sec-

ond column are (m+ 2)-dimensional. Next, removing the point (1, . . . , 1, 0) via partial

resolution, produces the toric diagram for C(Y 1,0(Pm+1)). The field theory counter-

parts of these operations generates the Y 1,0(Pm+1) quivers starting from Y 1,0(Pm). The

initial step is Y 1,0(Pm), which has m + 1 nodes. The 3d printing lift of two points in

the toric diagram generates a quiver with 2m + 2 nodes. The final partial resolution

corresponds to a higgsing with non-zero VEVs for m bifundamental chiral fields, which

reduces the number of quiver nodes to m+ 2 and produces the Y 1,0(Pm+1) quiver. Fig-

ure 5 illustrates this process at the level of the geometry for the Y 1,0(P1) → Y 1,0(P2)

transition. In this case, the intermediate step corresponds to the so-called H4 theory,

which was studied in [25, 55].

We can use the previous method to generate the first members of this family, up

to m = 4. This information, combined with the SU(m + 1) global symmetry and a

few other consistency conditions (that we discuss below) is sufficient to identify the

Y 1,0(Pm) quivers for arbitrary m. In the following, we first present the result of the

procedure we just outlined, and we then explicitly verify that these quiver theories have

the correct geometry as their moduli space.

Quiver. Let us label the m + 1 nodes with an index i = 0, . . . ,m. The quiver

contains the following arrows, which transform in representations of the global SU(m+

17It is also easily understood from the B-model on (5.4), since χ(Pm) = m+ 1.

– 33 –



The toric singularity:

Xm+2 = C
�
Y p,q(Pm)

�
(3.4)

has a simple toric description. The toric diagram is given by the following m+2 external

points in the Zm+1 lattice:

v1 = (1, 0, · · · , 0, 0) , v2 = (0, 1, · · · , 0, 0) , · · · , vm = (0, 0, · · · , 1, 0) ,

vm+1 = (�1,�1, · · · ,�1, p + q) ,

v0 = (0, 0, · · · , 0, 0) ,

vp = (0, 0, · · · , 0, p) . (3.5)

Correspondingly, we have the minimal GLSM (Kahler quotient) description:

D1 D2 · · · Dm Dm+1 D0 Dp

U(1) p p · · · p p �mp + q �p� q
(3.6)

where we identified the GLSM fields z0, · · · , zp and the toric divisors D1, · · · , Dp.

3.2 The Y 1,0(Pm) Geometries

A nice limiting case is (p, q) = (1, 0). For m = 1, we have the conifold CY3 singularity

C0:

C
�
Y 1,0(P1)

� ⇠= C0 , (3.7)

as is clear from the toric and GLSM descriptions. The general case has the simple

GLSM description with U(1) gauge group:

D1 D2 · · · Dm Dm+1 D0 Dp

U(1) 1 1 · · · 1 1 �m �1
(3.8)

which describes all the resolutions of the singularity: there is a single Kahler parameter,

corresponding to a small resolution by a Pm. (There is no internal point in the toric

diagram, so there is no exceptional divisor.) The resolved space is:

Xm+2
⇠= Tot

⇣
O(�m)�O(�1) �! Pm

⌘
(3.9)

C
�
Y 1,0(P1)

�
= C0 (3.10)

C
�
Y 1,0(P2)

�
(3.11)
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7 Ext Algebra and Quivers 25

7.1 Cn+1/Zn + 1 25

1 Introduction

H4 (1.1)

2 Infinite Families of Theories

We will illustrate our ideas in three infinite families of gauge theories for toric CYm+2

singularities.1 These families will be introduced in the three coming sections. We will

present all of them using the same template:

• We will first introduce the geometries.

• For each of the families, we will discuss one approach for deriving the correspond-

ing gauge theories. The topological B-model will provide an alternative procedure

for doing so. In general, there are multiple ways of deriving the gauge theories.

Interestingly, the families we will introduce serve to illustrate a wide range of

methods.

• We will then introduce the gauge theories, namely the quivers and the poten-

tials. We will show that the theories satisfy the consistency checks of generalized

anomaly cancellation and vanishing of the Kontsevich bracket for the potential.

• Using the combinatorial tools discussed in §??, we will show that the moduli

spaces of the gauge theories indeed correspond to the desired geometries. This is

an independent verification of the proposed gauge theories.

• We will also investigate additional properties of some these families, such as

connections to other theories via partial resolution and interesting behavior under

mutations.

1For brevity, throughout the paper we will use the term gauge theory as a synonym of graded quiver

with potential. We will do so even for m > 3 for which, as explained earlier, there is no gauge theory

interpretation.
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3d printing partial 
resolution 

Figure 5: Generation of the toric diagram for C(Y 1,0(P2)). Starting from the conifold,

two points of the toric diagram are lifted by 3d printing. Finally, another point is

removed by partial resolution.

1) symmetry:

Xm,0 : m
1−−−−−−−−−→

(0)
0 ,

Xi+1,i : i+ 1
1−−−−−−−−−→

(0)
i , 0 ≤ i ≤ m− 1 ,

Λ
(k−1;k)
i,i+k : i

(m+1
k )−−−−−−−−−→

(k−1)
i+ k , 0 ≤ i ≤ m− 1; 1 ≤ k ≤ m− i ,

Γ
(k+1;k+1)
i,i+k : i

(m+1
k+1)−−−−−−−−−→

(k+1)
i+ k , 1 ≤ i ≤ m− 1; 0 ≤ k ≤ m− i , (5.6)

The subscripts, which should be taken mod(m + 1), indicate the nodes connected by

the arrows, which are bifundamental or adjoint depending on whether the two indices

are different or the same. Xm,0 and Xi+1,i are chirals (i.e., of quiver degree 0). They

are also singlets under the SU(m + 1) global symmetry. For the rest of the arrows,

we use a notation with two superindices similar to the one of §3.2 and §4.2. The first

integer is the degree of the field. All of these arrows transform in the j-index totally

antisymmetric representation of SU(m+1). The second integer in the superscript is this

j. In (5.6), the numbers over the arrows indicate the dimension of the corresponding

SU(m + 1) representations, and the numbers below are the degrees. Finally, in (5.6)

we have allowed degrees to go over nc − 1 =
⌊
m
2

⌋
, since this permits a more compact

presentation of the field content. It is straightforward to restrict to fields with degree

c ≤ nc − 1 by conjugating arrows whenever necessary.

We introduce the following notation for conjugate fields, which makes all their
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quantum numbers explicit:

(Xm,0) = X0,m ,
(

Λ
(k−1;k)
i,i+k

)
= Λ

(m+1−k;m+1−k)

i+k,i ,

(Xi+1,i) = X i,i+1 ,
(

Γ
(k+1;k+1)
i,i+k

)
= Γ

(m−1−k;m−k)

i+k,i .
(5.7)

The bifundamental indices are simply flipped. The degree c transforms as c→ m− c.
Finally the number j of SU(m + 1) fundamental indices in the totally antisymmetric

representation goes to m+ 1− j. Note that the representations with j and m+ 1− j
have the same dimension and are conjugate to each other, as expected.

Figure 6 shows the quivers for 1 ≤ m ≤ 6. In this figure we adopted the convention

in which the degrees of the fields, c, are restricted to the range c ≤
⌊
m
2

⌋
, as explained

in §2. For those fields in (5.6) with c >
⌊
m
2

⌋
, we consider their conjugates. Nodes 0

and m are identical, up to conjugation of all the fields in the quiver. The rest of the

nodes, 1 to m− 1, are all equivalent.

Let us consider the behavior of these quivers under mutations, which are reviewed

in Appendix B. Interestingly, node 0 is the only toric node of the quiver for m > 1. By

this, we mean that it is the only node with two incoming chiral arrows, which results in

a toric phase when mutated. Similarly, node 1 is an inverse toric node, i.e. we obtain a

toric phase when acting on it with the inverse mutation. We plan to carry out a more

detailed investigation of the mutations of these quivers in future work.

For m = 1 we have the conifold quiver. In this case, the naive SU(2) global

symmetry is enhanced to SU(2)× SU(2), with the two chiral fields that go from node

1 to node 0 combining to form a doublet of the new SU(2). The m = 2 quiver (with

its superpotential) first appeared in the mathematical literature in [33]; see also [18].

Superpotential. Let us now consider the superpotential of this family of graded

quivers. To determine it, we will again be guided by the global SU(m+ 1) symmetry.

As in (3.8), we define a product of arrows in which the SU(m+1) indices are contracted:

(A
(c1;k1)
1 · · ·A(cn;kn)

n )αk+1···αm+1 ≡ 1∏
i ki!

εα1···αm+1A
(c1;k1)
1;α1···αk1

· · ·A(cn;kn)
n;αk−kn+1···αk , (5.8)

where k =
∑

i ki and the αµ’s are fundamental SU(m+1) indices. With this convention,

any such term with a total of m + 1 indices is an SU(m + 1) invariant. All the

superpotential terms we will write have this property.
The superpotential consists of cubic terms W3 and quartic terms W4. The cubic
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Figure 6: Quivers for Y 1,0(Pm) with 1 ≤ m ≤ 6. Black, red, green and blue arrows

represent fields of degree 0, 1, 2 and 3, respectively.

terms are:

W3 =
m∑

i=2

i−1∑

k=0

s1(i, k)Xi,i−1Γ̄
(m−k−1;m−k)
i−1,i−1−k Λ

(k;k+1)
i−1−k,i

+

m∑

i=2

m−i∑

k=1

s2(i, k)Xi,i−1Λ
(k−1;k)
i−1,i−1+kΓ̄

(m−k;m+1−k)
i−1+k,i

+
m−1∑

i=1

i−1∑

k=1

m−1−i∑

j=k

s3(i, j, k)Λ
(k−1;k)
i−k,i Γ̄

(m−j−1;m−j)
i,i−j Γ

(j−k+1,j−k+1)
i−j,i−k

+
m−1∑

i=1

i−1∑

k=1

m−i−1∑

j=0

s4(i, j, k)Λ
(k−1;k)
i−k,i Γ

(j+1;j+1)
i,i+j Γ̄

(m−j−k−1;m−j−k)
i+j,i−k

+
m∑

i=1

i−1∑

k=1

m−i∑

j=1

s5(i, j, k)Λ
(k−1;k)
i−k,i Λ

(j−1;j)
i,i+j Λ̄

(m+1−j−k;m+1−j−k)
i+j,i−k , (5.9)
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while the quartic terms are:

W4 =
m∑

k=1

s6(k)Xk,k−1Λ
(m−k,m−k+1)
k−1,m Xm,0Λ

(k−1;k)
0,k

+
m−1∑

k=1

m−1−k∑

j=0

s7(j, k)Γ
(j+1;j+1)
k,k+j Λ

(m−k−j−1;m−k−j)
k+j,m Xm,0Λ

(k−1;k)
0,k , (5.10)

where s7, · · · , s7 are signs, which we will fix momentarily by requiring that the Kontse-

vich bracket {W,W} vanishes. Note that, for m = 1, the only non-trivial term in W is

the first line of W4, giving us W = X10Λ
(0;1)
01 X10Λ

(0;1)
01 , which reproduces the well-known

quadratic superpotential of the conifold quiver.

5.2.1 Generalized anomaly cancellation

Let us start by assuming that the ranks of all the nodes are equal to N and check that,

in this case, the quivers we propose satisfy the generalized anomaly-free conditions. We

normalize all the anomalies by N . For node 0 the contribution of the arrows to the

anomaly is given by:

a0,arrows = (−1)m2 +
m∑

k=1

(−1)m−k
(
m+ 1

k

)

= (−1)m2 + [1 + (−1)m+1]

= 1 + (−1)m (5.11)

Due to the aforementioned symmetry between nodes 0 and 1, the anomaly for node 1

follows a very similar computation. For nodes 2 to m the contributions to the anomaly

of fields of different degrees are as follows:

Xi+1,i, X̄i−1,i : 1 + (−1)m

Λ
(k−1;k)
i−k,i :

∑i
k=1(−1)m+1−k(m+1

k

)
= (−1)m + (−1)m−i

(
m
i

)

Λ̄
(m+1−k;m+1−k)
i+k,i :

∑m−i
k=1 (−1)k+1

(
m+1
k

)
= 1− (−1)m−i

(
m
m−i
)

Γ̄
(m−k−1;m−k)
i+k,i :

∑m−i−1
k=0 (−1)k+1

(
m+1
k+1

)
= −1 + (−1)m−i

(
m
m−i
)

Γ
(k+1;k+1)
i−k,i :

∑i−1
k=0(−1)m+1−k(m+1

k+1

)
= −(−1)m − (−1)m−i

(
m
i

)

(5.12)

Summing these contributions, at node i we have

ai,arrows = 1 + (−1)m . (5.13)
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We conclude that the anomaly cancellation condition is satisfied for all nodes in the

quiver.

Anomaly-free fractional branes. Interestingly, there are more general solutions

to the rank assignments that satisfy the anomaly cancellation conditions. A thorough

study of this issue is beyond the scope of this paper, and it will be investigated else-

where. Here, we just quote the result and consider some of its implications. The space of

anomaly-free rank assignments for Y 1,0(Pm) is 2-dimensional and can be parametrized

as follows:

(N0, . . . , Nm) = N(1, . . . , 1) +M(0, 1, 2, . . . ,m) , (5.14)

with N and M integers. Borrowing the nomenclature from m ≤ 3, we will say that the

(1, . . . , 1) vector corresponds to regular branes, while more general ranks correspond to

the inclusion of (anomaly-free) fractional branes. 18 Interestingly, all members of the

Y 1,0(Pm) admit a single type of anomaly-free fractional brane. This behavior generalizes

the well-known example of Y 1,0(P1), i.e. the conifold. It is also reminiscent of what

happens for the infinite family of Y p,q theories in 4d [10], all of which have a single type

of anomaly-free fractional brane.

5.2.2 Kontsevich bracket

With the convention introduced in the previous section, we can write any SU(m + 1)

invariant term in the superpotential as A
(m−1−c;m+1−k)
i,j Ψ

(c;k)
j,i , with A

(m−1−c;m+1−k)
i,j a

monomial and Ψ
(c;k)
j,i an individual SU(m+ 1) multiplet of arrows. We then have

∂

∂Ψ
(c;k)
j,i

(A
(m−1−c;m+1−k)
i,j Ψ

(c;k)
j,i ) = A

(m−1−c;m+1−k)
i,j . (5.15)

As in (4.6), for a cycle A
(c;k)
i,j B

(d;l)
j,i , with

(c;k)
i,j and B

(d;l)
j,i monomial of arrows, the com-

mutation relation is

A
(c;k)
i,j B

(d;l)
j,i = (−1)cd+klB

(d;l)
j,i A

(c;d)
i,j . (5.16)

Since every term in the superpotential has degree m − 1 and a total of m + 1

SU(m + 1) indices, for the superpotential term we wrote above this commutation

relation simplifies to

Ai,jΨ
(c;k)
j,i = (−1)m(c+k)Ψ

(c;k)
j,i Ai,j . (5.17)

18This is a standard nomenclature. While it is closely related to our other use of the term fractional

brane, which is a bound state of wrapped branes associated to a single node in the quiver, we are

confident that the distinction between the two meanings will be clear from the context.

– 38 –



The various derivatives we need are given by

∂W

∂Λ
(k−1;k)
i,i+k

= δ0,is6(k)Xk,k−1Λm−k,m−k+1
k−1,m Xm,0 + δi+k,ms6(i+ 1)Xm,0Λ

(i;i)
0,i+1Xi+1,k

+ δ0,i

m−1−k∑

j=0

s7(j, k)Γ
(j+1;j+1)
k,k+j Λm−k−j−1;m−k−j

k+j,m Xm,0

+ δi+k,m

i∑

j=1

s7(i− j, j)Xm,0Λ
(j−1;j)
0,j Γ

(i−j;i−j)
j,i

+ s1(i+ k, i− 1)Xi+k,i+k−1Γ̄
(m−k;m+1−k)
i+k−1,i + (−1)ms2(i− 1, k)Γ̄

(m−k;m+1−k)
i+k,i−1 Xi−1,i

+ (−1)m
i+k−1∑

j=k

s3(i+ k, j, k)Γ̄
(m−j−1;m−j)
i+k,i+k−j Γ

(j−k+1,j−k+1)
i+k−j,i

+ (−1)m
m−i−1∑

j=k

s4(i+ j, j − k, k)Γ
(j−k+1;j−k+1)
i+k,i+j Γ̄

(m−j−1;m−j)
i+j,i

+ (−1)m
m−i∑

j=k+1

s5(i+ k, j − k, k)Λ
(j−k−1;j−k)
i+k,i+j Λ̄

(m+1−j;m+1−j)
i+j,i

+
m−i−k∑

j=k+1

s5(i, k, j − k)Λ̄
(m+1−j;m+1−j)
i+k;i+k−j Λ

(j−k−1;j−k)
i+k−j;i ,

∂W

∂Λ̄
(m+1−k;m+1−k)
i+k,i

=
k−1∑

j=1

s5(i+ j, k − j, j)Λ(j−1;j−1)
i,i+j Λ

(k−j−1;k−j−1)
i+j,i+k ,

∂W

∂Γ̄
(m−k−1;m−k)
i+k,i

= (−1)ms1(i+ k + 1, k)Λ
(k;k+1)
i,i+k+1Xi+k+1,i+k + s2(i, k − 1)Xi,i−1Λ

(k;k+1)
i−1,i+k

+

k−1∑

j=0

s3(i+ k, k, k − j)Γ(j+1,j+1)
i,i+j Λ

(k−j−1;k−j)
i+j,i+k

+

k∑

j=1

s4(i+ j, j − k, j)Λ(j−1;j)
i,i+j Γ

(k−j+1;k−j+1)
i+j,i+k ,

∂W

∂Γ
(k+1;k+1)
i,i+k

=
m−1−i∑

j=1

s3(i+ j, j, j − k)Λ
(j−k−1;j−k)
i+k,i+j Γ̄

(m−j−1;m−j)
i+j,i

+ (−1)m
m−1−i∑

j=0

s4(i, k, j − k)Γ̄
(m−j−1;m−j)
i+k,i+k−j Λ

(j−k−1;j−k)
i+k−j,i

+ (−1)ms7(k, i)Λ
(m−i−k−1;n−i−k)
i+k,m Xm,0Λ

(i−1;i)
0,i . (5.18)
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Since every term in the expansion of {W,W} has degree (m − 2), the commutation

rule for terms in this expansion is

Ãi,jΨ
(c;k)
j,i = (−1)m(k+c)+cΨ

(c;k)
j,i Ãi,j . (5.19)

To determine s1, · · · , s7 we first note that many of them can be made trivial by field

redefinitions. We can fix s6(k) = 1 by redefining Xk,k−1 → ±Xk,k−1 and fix s7(j, k) = 1

by redefining Γi,i+k → ±Γi,i+k. Lastly s1(i, k) can be chosen to be 1 by redefining

Λi,i+k → ±Λi,i+k. After eliminating these we find that Kontsevich bracket is satisfied

for the following choice of signs:

s2(i, k) = (−1)k+1 ,

s3(i, j, k) = (−1)j+1 ,

s4(i, j, k) = (−1)m ,

s5(i, j, k) = (−1)j+m .

(5.20)

5.3 Moduli space

Now, we verify that the proposed graded quivers give rise to the desired moduli spaces

using perfect matchings. We will leave a detailed exposition to [36] and just present

the main results here. First we consider the two points which are invariant under the

SU(m+ 1) global symmetry. The field content of the corresponding perfect matchings

must involve complete representations of SU(m+ 1). They are given by:

Point Chirals Additional fields

v0 Xm,0 Λ̄
(m+1−k;m+1−k)
i+k,i

Γ̄
(m−k−1;m−k)
i+k,i

vm+2 Xi+1,i Λ̄
(m+1−k;m+1−k)
i+k,i

Γ
(k+1;k+1)
i,i+k

(5.21)

Next, let us consider the perfect matchings for vµ, µ = 1, . . . ,m+ 1. As explained

in §5.1, these points are permuted by the SU(m + 1) symmetry. Picking one of them

breaks SU(m + 1) → SU(m) × U(1). Under this breaking, a k-index antisymmetric

representation Ψ(c;k) of SU(m + 1) decomposes into two representations of SU(m),

which we will denote Ψ(c;k;µ) and Ψ(c;k;�µ). Both of them are also antisymmetric and

carry k − 1 and k SU(m) indices, respectively. Explicitly:

Ψ(c;k;µ)
ν1···νk−1

= Ψ(c;k)
µν1···νk−1

Ψ(c;k;�µ)
ν1···νk = Ψ(c;k)

ν1···νk νj 6= µ (5.22)
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Note that the conjugate of Ψ(c;k,µ) is Ψ̄(m−c;m+1−k,�µ) and vice versa. The perfect match-

ings for vµ, µ = 1 . . .m+ 1, are given by:

Point Chirals Additional fields

vµ, µ = 1 . . .m+ 1 Λ
(0;1;µ)
i,i+1 Λ

(k−1;k;µ)
i,i+k , Λ̄

(m+1−k;m+1−k;µ)
i+k,i

Γ̄
(m−k−1;m−k;µ)
i+k,i , Γ

(k+1;k+1;µ)
i,i+k

(5.23)

5.4 Partial resolution C(Y 1,0(Pm))→ Cm+2

Let us now consider yet another check of the proposed quiver theories. Removing the

point vm+2 in the toric diagram corresponds to the partial resolution:

C(Y 1,0(Pm))→ Cm+2 . (5.24)

Figure 7 illustrates this resolution for m = 1, 2. This implies that the graded quivers

associated to these geometries should be connected by higgsing, as we now explain.

The toric singularity:

Xm+2 = C
�
Y p,q(Pm)

�
(3.4)

has a simple toric description. The toric diagram is given by the following m+2 external

points in the Zm+1 lattice:

v1 = (1, 0, · · · , 0, 0) , v2 = (0, 1, · · · , 0, 0) , · · · , vm = (0, 0, · · · , 1, 0) ,

vm+1 = (�1,�1, · · · ,�1, p + q) ,

v0 = (0, 0, · · · , 0, 0) ,

vp = (0, 0, · · · , 0, p) . (3.5)

Correspondingly, we have the minimal GLSM (Kahler quotient) description:

D1 D2 · · · Dm Dm+1 D0 Dp

U(1) p p · · · p p �mp + q �p� q
(3.6)

where we identified the GLSM fields z0, · · · , zp and the toric divisors D1, · · · , Dp.

3.2 The Y 1,0(Pm) Geometries

A nice limiting case is (p, q) = (1, 0). For m = 1, we have the conifold CY3 singularity

C0:

C
�
Y 1,0(P1)

� ⇠= C0 , (3.7)

as is clear from the toric and GLSM descriptions. The general case has the simple

GLSM description with U(1) gauge group:

D1 D2 · · · Dm Dm+1 D0 Dp

U(1) 1 1 · · · 1 1 �m �1
(3.8)

which describes all the resolutions of the singularity: there is a single Kahler parameter,

corresponding to a small resolution by a Pm. (There is no internal point in the toric

diagram, so there is no exceptional divisor.) The resolved space is:

Xm+2
⇠= Tot

⇣
O(�m)�O(�1) �! Pm

⌘
(3.9)

C
�
Y 1,0(P1)

�
= C0 (3.10)

C
�
Y 1,0(P2)

�
(3.11)
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@W

@⇤̄
(m+1�k;m+1�k)
i,i+k

=

i+k�1X

j=i+1

s7(j, i + k � j, j � i)⇤
(i+k�j�1;i+k�j)
i+k,j ⇤

(j�i�1;j�i)
j,i (4.28)

@W

@�
(m�k�1;m�k)
i,i+k

= �i+k,ms1(i)Xm,0�
(m�i;m+1�i)
0,i + (�1)ms2(i� 1, k)⇤

(k;k+1)
i+k,i�1Xi�1,i

+ s3(i + k, k � 1)Xi+k,i+k+1⇤
(k;k+1)
i+k+1,i

+
kX

j=1

s5(i, k, j)�̄
(k�j+1,k�j+1)
i+k,i+j ⇤

(j�1;j)
i+j,i

+ s6(i + j, j, k � j)⇤
(k�j�1;k�j)
i+k,i+j �̄

(j+1;j+1)
i+j,i (4.29)

@W

@�̄
(k+1;k+1)
i+k,i

=
i�2X

j=1

s5(i� j, j + k, j)⇤
(j�1;j)
i,i�j �

(m�j�k�1;m�j�k)
i�j,i+k

+ (�1)m
m�1�iX

j=0

s6(i + k, k, j � k)�
(m�j�1;m�j)
i,i+j ⇤

(j�k�1;j�k)
i+j,i+k

+ (�1)m(1� �1,i)s9(k, i + k)⇤
(i�2;i�1)
i,1 X1,0�

(m�i�k;m+1�i�k)
0,i+k (4.30)

Since every term in the expansion of {W, W} has degree (m � 2), the commutation

rule for terms in this expansion is

Ãi,j 
(c;k)
j,i = (�1)m(k+c)+c 

(c;k)
j,i Ãi,j (4.31)

To determine s1, · · · , s8 we first notice that we can fix s = 1 by redefining X1,0 ! ±X1,0

and fix s1(k) = 1 by redefining �0,k ! ±�0,k s1(i, k). We can also fix s2(i, k) = 1 by

redefining Xi,i+1 ! ±Xi,i+1 and �i,i+k ! ±�i,i+k. Lastly, we can fix s4(j, k) = 1 by

redefining ⇤i+k,k ! ±⇤i+k,k. With these definitions, the vanishing of {W, W} requires

s3(i, k) = (�1)m+k

s5(i, j, k) = �i+j,m(�1)m+k + (1� �i+j,m)(�1)j+k

s6(i, j, k) = (�1)m

s7(i, j, k) = (�1)j

s8(k) = (�1)k

s9(j, k) = (�1)m+k

(4.32)

4.4 Moduli Space

4.5 C(Y (1,0)( m))! Cm+2 Partial Resolution

C3 (4.33)
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Figure 6: F
(m)
0 ! F

(m�1)
0 ⇥ C partial resolution for m = 1, 2.

C4 (4.34)

4.6 A Simple Duality Cascade

A beautiful property of the Y (1,0)( m) theories is that they have a single toric phase

and that they enjoy a remarkably simple duality cascade, generalizing the well-known

cascade for the conifold, which is indeed Y (1,0)( 1) [6]. There is a single toric node,

i.e. a node with two incoming chiral fields, which is node 0. Similarly, node 1 is a toric

node under inverse duality. A duality on node 0 results in the same theory, up to a

cyclic permutation of the node labels. We will now explain how this comes about.

Let us first consider the “flavors”, namely the arrows charged under node 0. Upon

mutating node 0, they transform as follows

Xm,0 ���! X̃0,m

X1,0 ���! X̃0,1

�̄
(k;k)
k,0 ���! ⇤̃

(k�1;k)
k,0

(4.35)

We will use a tilde to indicate the arrows of the mutated quiver. The fields on the right

hand side of the last two rows reproduce the fields charged under node 1 of the original

theory if we relabel nodes as i ! i + 1. This is the first indication that e↵ect of the

mutation is a cyclic permutation of nodes.

Next, let us consider the mesons generated by the mutation. There are two sets of

them, coming from compositions with either Xm,0 or X1,0. They are given by

Xm,0�
(m�k;m+1�k)
0,k ���!  ̃

(m�k;m+1�k)
m,k

X1,0�
(m�k�1;m�k)
0,k+1 ���! �̃

(m�k�1;m�k)
1,k+1

(4.36)

All the arrows in the first set becomes massive while �̃
(0;1)
1,m also gets a mass. The

relevant mass terms in the mutated potential and the terms in the original potential

that give rise to them are:

Term in the original potential Mass Term

X1,0�
(0;1)
0,m Xm,0�

(m�1;m)
0,1  ̃

(m�1;m)
m,1 �̃

(0;1)
1,m

Xm,0�
(m�k;m+1�k)
0,k �

(k�1;k)
k,m  ̃

(m�k;m+1�k)
m,k �̃

(k�1;k)
k,m

(4.37)
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Figure 7: C(Y 1,0(Pm))→ Cm+2 partial resolution for m = 1, 2.

Let us determine that chiral fields that acquire a non-zero VEV in the corresponding

higgsing. Denoting Pm+2 the chiral field content of the perfect matching associated to

the removed point vm+2, from (5.21) we have:

Pm+2 = {Xi+1,i, 1 ≤ i ≤ m} . (5.25)
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From (5.21) and (5.23), we see that these chiral fields only appear in this perfect

matching. This implies that given VEVs to all the chiral fields in (5.25) produces the

desired partial resolution.

We now consider how this higgsing gives rise to the quivers for Cm+2, which were

introduced in §3.2. First, the VEVs for the m bifundamental chiral fields in (5.25) higgs

the m+ 1 nodes in the quiver for C(Y 1,0(Pm)) down to a single node, as expected.

Since the isometries of C(Y 1,0(Pm)) and Cm+2 are SU(m + 1) and SU(m + 2),

respectively, the global symmetry of the quiver theory must be enhanced from SU(m+

1) to SU(m+2) by the higgsing. We note that all the chiral fields in (5.25) are singlets

of SU(m+ 1), which implies that the global symmetry would, at the very least, remain

unbroken.

It is instructive to consider how the remaining fields form SU(m + 2) representa-

tions. It is straightforward, albeit tedious, to verify that the massless matter fields that

survive the higgsing are all the arrows that were initially charged under node 0, except

for X0,m. They are

Xm,0 : 1
1−−−−−−−−→

(0)
0

Λ̄
(k;k)
m+1−k,0 : k

(m+1
k )−−−−−−−−→

(k)
0 1 ≤ k ≤ m (5.26)

We thus have a multiplet of degree k in the k-index totally antisymmetric representation

of SU(m + 1) for every k = 0, . . . ,m. The multiplet of degree k and the conjugate of

the multiplet of degree m − k combine to form a degree k field in the (k + 1)-index

totally antisymmetric representation of SU(m+ 2) for k = 0, . . . m
2

. 19 This is precisely

the field content for Cm+2, as discussed in §3.2.

5.5 A simple duality cascade

A beautiful property of the Y 1,0(Pm) theories is that they have a single toric phase

and that they enjoy a remarkably simple duality cascade, generalizing the well-known

cascade for the conifold [56]. There is a single toric node, i.e. a node with two incoming

chiral fields, which is node 0. Similarly, node m is a toric node under inverse duality.

A duality on node 0 results in the same theory, up to a cyclic permutation of the node

labels. We will now explain how this comes about.

19When m is even, the field of degree k = m
2 coincides with the one of degree m−k. We thus obtain

only half a multiplet for k = m
2 , or the full multiplet by combining it with its conjugate.
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Let us first consider the “flavors”, namely the arrows charged under node 0. Upon

mutating node 0, they transform as follows

Xm,0 −−−→ X̃0,m

X1,0 −−−→ X̃0,1

Λ̄
(k;k)
m+1−k,0 −−−→ Λ̃

(k−1;k)
m+1−k,0

(5.27)

We will use a tilde to indicate the arrows of the mutated quiver. The fields on the

right hand side of the last two rows reproduce the fields charged under node m of the

original theory if we relabel nodes as i→ i−1 mod (m+1). This is the first indication

that effect of the mutation is a cyclic permutation of nodes.

Next, let us consider the mesons generated by the mutation. There are two sets of

them, coming from compositions with either Xm,0 or X1,0. They are given by

X1,0 Λ
(k−1;k)
0,k −−−→ Ψ̃

(k−1;k)
1,k

Xm,0 Λ
(k;k+1)
0,k+1 −−−→ ˜̄Γ

(k;k+1)
m,k+1

(5.28)

All the arrows in the first set becomes massive while ˜̄Γ
(0;1)
m,1 also gets a mass. The relevant

mass terms in the mutated superpotential and the terms in the original superpotential

that give rise to them are:

Term in the original superpotential Mass Term

X1,0Λ
(m−1;m)
0,m Xm,0Λ

(0;1)
0,1 Ψ̃

(m−1;m)
1,m

˜̄Γ
(0;1)
m,1

X1,0Λ
(k−1;k)
0,k Γ̄

(k−1;k)
k,1 Ψ̃

(m−k;m+1−k)
1,k

˜̄Γ
(k−1;k)
k,1

(5.29)

After integrating out the massive fields, the ones that remain and are charged under

node 1 are X̃0,1, X̃2,1 and Λ̃
(k−1;k)
1,k . They correspond exactly to the set of arrows at

toric node 0 in the original theory. The mesons ˜̄Γ
(k−1;k)
m,k+1 for k 6= m− 1 remain massless

and are what is required to turn node m of the mutated quiver into node m− 1 of the

original one.

Both the degree and representation under SU(m+1) global symmetry of the arrows

not charged under nodes 0, 1 or m depend uniformly on the distance between the two

nodes the arrow connects. None of these arrows are affected by mutation and relabeling

i→ i− 1 preserves distances.

In summary, dualizing node 0, we obtain the original quiver, up to an i → i − 1

cyclic relabeling of the nodes. When the nodes are cyclically ordered as in the examples

in Figure 6, the net effect of the mutation is a clockwise rotation of the quiver. While

we have focused on the quiver, it is straightforward to verify that we also obtain the

original superpotential.
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After performing m+ 1 consecutive dualizations on the toric node at each step, we

return to the initial quiver. This sequence of mutations therefore generalizes the notion

of duality cascade to m-graded quivers.
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Figure 8: a) Quiver diagram for Y 1,0(P4). b) Result of the mutation on node 0.

Massive fields are represented by dashed arrows. c) After integrating out massive

fields, we obtain the original quiver, up to an i→ i− 1 cyclic relabeling of the nodes.

This translates into a clockwise rotation of the quiver.

Figure 8 shows the transformation of the quiver for m = 4. The intermediate

step includes the massive fields, which are represented by dashed arrows. Figure 9

shows a period in the cascade for m = 4. We have included the ranks of the gauge

groups associated to the nodes, in the presence of fractional branes, to follow their

evolution. Interestingly, as it occurs in the well-known conifold cascade, the number

of regular branes increases by 1 with every dualization while the number of fractional

branes remains fixed. A full period hence returns to the original quiver with the regular

branes increased by (m + 1)M . For m = 1, duality cascades admit a renormalization

group interpretation. In that context, our choice of dualities corresponds to flowing

towards the UV. The flow towards the IR, and the consequent decrease in the number

of regular branes, is instead obtained by acting with inverse duality on the node that

is toric under it.

5.6 B-model computation

The B-model calculation of the graded quivers with superpotentials for the Y 1,0(Pm)

family is similar to the one in section 4.4, with the notation of Appendix A. The resolved

local Calabi-Yau for this family is:

X̃m+2 = Tot(O(−m)⊕O(−1)→ Pm) . (5.30)

– 44 –



01

2

3

4

1

5

10

10

1

5
1

5

10

10

5 2

1

5

10 10

10

5

3

1
5

10 5

NN + 4M

N + 3M

N + 2M

N +M

04

3

2

1

01

2

3

4

1

5

10

10

1
5

5

1

1
5

10

10

10

10

5 2

1

5

10

10

5

3

1
5

N + 5MN + 4M

N + 3M

N + 2M

N +M

04

3

2

1

04

3

2

1

5

01

5

10

10

10
10

1

5

5

1

1
5

10

10

10

5 2

1

5

10

1

5

N + 5MN + 4M

N + 3M

N + 2M

N + 6M

04

3

2

1

04

3

2

1

5

01

5

10

10

10

1

5
10

5

1

1
5

10
10

10

1

5

10

1
5

5

N + 5MN + 4M

N + 3M

N + 7M

N + 6M

04

3

2

1

04

3

2

1

5

01

5

10

10
10

1

5
10

15

10

10

1

5

10

5

2

1
5

10 5

N + 5MN + 4M

N + 8M

N + 7M

N + 6M

04

3

2

1

Figure 9: A period in the duality cascade for Y 1,0(P4), starting with N regular and

M fractional branes. After each dualization, M remains fixed and N → N +M .

Fractional branes are constructed from the exceptional collection on Pm, given by (4.17)

(with m+ 1 replaced by m), by using the embedding i : Pm → X̃m+2. They are:
{
Ej ≡ i∗Ω

j(j)[j]
∣∣ 0 ≤ j ≤ m

}
. (5.31)

To compute the generators of the Ext groups, we need the Koszul resolution for the

fractional branes. It is given by:

0 - F(m+ 1)

−uµeµ
vµe

m
µ


- F(m)⊕F(1)

(
vµe

m
µ uµeµ

)
- F - i∗F .
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Here, vµ is the coordinate of O(−m) fiber and uµ is the coordinate of O(−1) fiber.

5.6.1 Quiver

The Ext group generators for these fractional branes naturally split into three groups

and an additional generator, in obvious correspondence with the field content indepen-

dently derived in (5.6).

First group. The first group has a description very similar to the generators in the

case of Cm+2/Zm+2. They can be written as the antisymmetric composition of certain

basic Ext1 generators. These are

λµ1µ2···µk
i,i+k ∈ Č0(Homk(Ei+k, Ei)) ,

λµ1µ2···µk
i,i+k =

1

k!
λ

[µ1

i,i+1 ◦ λµ2

i+1,i+2 ◦ · · · ◦ λµk]
i+k−1,i+k . (5.32)

λµ1µ2···µk
i,i+k transform in the k-index antisymmetric representation of SU(m + 1). The

basic generators λµi,i+1, which transform in the fundamental representation of the global

SU(m+ 1) symmetry, are given by the chain map

Ωi+1(m+ i+ 2) - Ωi+1(m+ i+ 1)⊕ Ωi+1(i+ 2) - Ωi+1(i+ 1)

Ωi(m+ i+ 1)

ϕµ

?
- Ωi(m+ i)⊕ Ωi(i+ 1)

(
−ϕµ 0

0 −ϕµ

)

?
- Ωi(i)

ϕµ

?

Again, ϕµ are the global sections of Ω∗(−1) from (A.31). The Serre duals of these

generators are determined along the familiar lines. They are

λ̄
µ1,µ2,··· ,µm+1−k
i+k,i ∈ Čm(Hom2−k(Ei+k, Ei)) ,

λ̄
µ1,µ2,··· ,µm+1−k
i+k,i =

(m− i− k)!i!

(m+ 1− k)!
λ

[µ1µ2···µm−i−k
i+k,m ◦ λ̄µm+1−i−k

m,0 ◦ λµm+2−i−k···µm+1−k]
0,i . (5.33)

With λ̄
µm+1−i−k
m,0 given by the chain map

O(m+ 1) - O(m)⊕O(1) - O

Ωm(2m+ 1) - Ωm(2m)⊕ Ωm(m+ 1) - Ωm(m)

ϕ̄µ

?
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Second group. The second group corresponds to the generators of Č1(Hom0(Ei, Ei+1)).

There is a set of generators xi+1,i. They are singlets under SU(m + 1) defined by the

chain maps

Ωi(m+ i+ 1) - Ωi(m+ i)⊕ Ωi(i+ 1) - Ωi(i)

Ωi+1(m+ i+ 2) - Ωi+1(m+ i+ 1)⊕ Ωi+1(i+ 2)

(
x′

0

)

?
- Ωi+1(i+ 1)

(
0

−x′

)

?

where x ∈ Č1(Ω). This means that locally for each Uµ ∩ Uν there is one form xµν and

this collection satisfies that for any µ, ν and ρ

x′µν + x′νρ + x′ρµ = 0 . (5.34)

Using (A.28), it can be verified that an explicit representative of this cohomology class

is

x′0,i = w−1
0,i dw0,i ,

x′i,j = w−1
i,i dwi,i − w−1

j,j dwj,j . (5.35)

Third group. With this in hand, the third set of Ext generators is

γ
µ1µ2···µk+1

i,i+k ∈ Č1(Homk+1(Ei+k, Ei)) ,
γ
µ1µ2···µk+1

i,i+k = xi,i−1 ◦ λµ1µ2···µk+1

i−1,i+k . (5.36)

Motivated by the computation of λ̄ presented above, in order to calculate the Serre

duals of these arrows we start with the generators of Ext2(E1, Em−1). These generators

are γ̄µνm−1,1 ∈ Čm−1(Hom3−m(E1, Em−1)) and are described by the chain map

Ω(m+ 2) - Ω(m+ 1)⊕ Ω(2) - Ω(1)

Ωm−1(2m) - Ωm−1(2m− 1)⊕ Ωm−1(m)

(
0

r̄µν

)

?
- Ωm−1(m− 1)

(
r̄µν

0

)

?

where r̄µν is an element of Čm−1(Ωm−2 ⊗ O(−2)). Let us consider that r̄ is given by

the ansatz

r̄µν =
1

2
(φµ ◦ κ ◦ φν − φν ◦ κ ◦ φµ) . (5.37)
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We observe that r̄µν ∈ Čm−1(Ωm−2 ⊗O(−2)) iff κ ∈ Čm−1(Ωm). Such a κ corresponds

to a local section of Ωm for every collection of m patches satisfying that for ∩µUµ
∑

µ

(−1)µκµ̂ = 0 , (5.38)

where κµ̂ corresponds to collection with every patch except Uµ. An explicit represen-

tative is

κî = w0,i ∧j w−1
0,jdw0,j ,

κ0̂ =
∑

i

(−1)iw−1
i,i ∧j w−1

j,j dwj,j . (5.39)

γ̄µνm−1,1 allows us to determine the duals for all γ
µ1µ2···µk+1

i,i+k . These are

γ̄
µ1,µ2,··· ,µm−k
i+k,i ∈ Čm−1(Hom1−k(Ei+k, Ei)) ,
γ̄
µ1,µ2,··· ,µm−k
i+k,i = c(i, k)λ

[µ1µ2···µm−i−k−1

i+k,m−1 ◦ γ̄µm−i−kµm+1−i−k
m−1,1 ◦ λµm+2−i−k···µm−k]

1,i . (5.40)

Where:

c(i, k) =
2(m− i− k − 1)!(i− 1)!

(m− k)!
. (5.41)

is just a conventional combinatorial factor.

A lone generator. In addition to these three groups, there is another generator xm,0.

It consists of the following map in Čm(Hom1−m(Em, E0)):

O(m+ 1) - O(m)⊕O(1) - O(1)

Ωm(2m+ 1) - Ωm(2m)⊕ Ωm(m+ 1)

(
0

x̃

)

?
- Ωm(m)

(
−x̃
0

)

?

Proceeding along lines similar to the ones that result in (A.36), we see that an explicit

representative for x̃ is:

x̃ = ∧iw−1
0,i dw0,i . (5.42)

In summary, the x, λ and γ generators correspond precisely to the X, Λ and Γ fields

in (5.6). We have thus recovered the quivers for the entire Y 1,0(Pm) from the B-model.
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5.6.2 Superpotential

Cubic terms. Since we have defined Ext generators as composition of simpler ones, it

is straightforward to determine most of the m2 products. For these pairs of generators,

the f2 vanish. We will mention a few of them here:

m2(λµ1µ2···µk
i,i+k , λ

µk+1µ2···µk+l

j,j+l ) = δi+k,jλ
µ1···µk+l

i,i+k+l ,

m2(xni,i−1, λ
µ1···µk
j,j+k ) = δi−1,jγ

µ1···µk
i,i+k−1 ,

m2(γ
µ1···µk+1

i,i+k , λ
µk+2···µk+l+1

j,j+l ) = δi+k,jγ
µ1···µk+l+1

i,i+k+l . (5.43)

Evaluation of m2(λµ1···µk
i,i+k , xj,j−1) is slightly more involved. We begin by pointing out a

commutation relation:

ϕµ ◦ x′ + x′ ◦ ϕµ = δπ̃µ , (5.44)

where the sheaf πµ is defined to be the element of Č0(O(−1)) such that:

(π̃µ)ν = δµν eν . (5.45)

At the level of Ext generators, this commutation relation gives rise to the relation:

λµi,i+1 ◦ xi+1,i = δπµi,i +Xi,i−1 ◦ λµi−1,i, , (5.46)

where πµ is defined by the chain map:

Ωi(m+ i+ 1) - Ωi(m+ i)⊕ Ωi(i+ 1) - Ωi(i)

Ωi(m+ i+ 1) - Ωi(m+ i)⊕ Ωi(i+ 1)

(
π̃µ

0

)

?
- Ωi(i)

(
0

−π̃µ

)

?

The first term in (5.46) is exact in Čech cohomology and contributes to f2 while the

second term is another generator and hence corresponds to m2.

Composing the above relation with more λ’s give us:

λµ1···µk
i,i+k ◦ xi,i+k−1 = xi,i−1 ◦ λµ1···µk

i−1,i+k−1 +
1

(k − 1)!
δ(π

[µ1

i,i ◦ λµ2···µk]
i,i+k−1) . (5.47)

The right hand side is again in a form that allows us to read off m2 and f2. We obtain:

m2(λµ1···µk
i,i+k , xi+k,i+k−1) = γµ1···µk

i,i+k−1 ,

f2(λµ1···µk
i,i+k , xi+k,i+k−1) = − 1

(k − 1)!
π

[µ1

i,i ◦ λµ2···µk]
i,i+k−1 . (5.48)
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Using γ’s definition composition in (5.36) and composing (5.47) with λµ’s on the right

results in:

m2(λµ1···µk
i,i+k , γ

µk+1···µk+j+1

i+k,i+k+j ) = γ
µ1···µk+j+1

i,i+k+j ,

f2(λµ1···µk
i,i+k , γ

µk+1···µk+j+1

i+k,i+k+j ) = − 1

(k + j)!
π

[µ1

i,i ◦ λ
µ2···µk+j+1]

i,i+k+j . (5.49)

This completes the reproduction of the cubic terms for this family, which were previ-

ously given in (5.9).

Quartic terms. To compute the quartic terms we need another set of non-vanishing

f2. These result from the composition of xm,0 with λ0,k. We start with:

xm,0 ◦ λµ0,1 = δσµm,0 , (5.50)

where σµ is defined by the chain map:

Ω(m+ 2) - Ω(m+ 1)⊕ Ω(2) - Ω(1)

Ωm(2m+ 1) - Ωm(2m)⊕ Ωm(m+ 1)

(
σ̃µ

0

)

?
- Ωm(m)

(
0

−σ̃µ

)

?

σ̃ is an element of Čm−1(Ωm−1) given by:

(σ0)0̂ = 0 ,

(σ0)ĵ = ∧i 6=jw−1
0i dw0i ⊗ e0 ,

(σi)0̂ = w−1
0i ∧j 6=i w−1

0j dw0j ⊗ e0 ,

(σi)ĵ = 0 . (5.51)

Composing λµ2···µk
1,k with (5.50) and doing a bit of algebra gives:

m2(xm,0, λ0,k) = 0 ,

f2(xm,0, λ0,k) = − 1

k!
γ

[µ1

m,1 ◦ λµ2···µk]
1,k . (5.52)

Combining this with the earlier results for f2 in (5.48) we can compute that:

xm,0 ◦ f2(λµ1···µk
0,k , xk,k−1)− f2(Xm,0, λ

µ1···µk
0,k ) ◦ xk,k−1

= λ̄µ1···µk
m,k−1 +

k − 1

k!
δ(γ

[µ1

m,1 ◦ πµ2

1,1 ◦ λµ3···µk]
1,k−1 ) . (5.53)
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Using this, we conclude that:

m3(xm,0, λ
µ1···µk
0,k , xk,k−1) = λ̄µ1···µk

m,k−1 . (5.54)

Similarly combining (5.50) and (5.49) results in:

m3(Xm,0, λ
µ1···µk
0,k , γ

µk+1···µk+j+1

k,k+j ) = λ̄
µ1···µk+j+1

m,k+j . (5.55)

This gives us all the quartic terms in the superpotential. At this point we note that

although f3 is nontrivial, using consideration of global symmetry and the degree con-

straint mentioned earlier it can be shown that it cannot result in any additional terms

in the superpotential. Hence the quartic terms agree with the ones we wrote for graded

quiver.

Absence of higher order terms. In principle, we should continue the computations

to determine whether the superpotential contains higher order terms. These terms

would correspond to gauge invariants of order m− 1. It is a relatively straightforward

exercise to verify that the SU(m + 1) × U(1)m+1 global symmetry, whose existence

follows from the underlying CY geometry and which is already fixed by the previously

computed cubic and quartic terms in the superpotential, rules out any higher order

term.

Summarizing the results in this section, we have recovered the superpotential for

the entire Y 1,0(Pm) family, which was given in (5.9) and (5.10).

6 The F(m)
0 family

Our last class of examples is a family of geometries that we denote F(m)
0 , which corre-

spond to the affine cones over the (P1)m+1, a direct product of m+ 1 P1’s.

6.1 The toric geometries

The toric diagram for F(m)
0 is the (m + 1)-dimensional polytope consisting of the fol-

lowing points.
(0, . . . , 0)

(±1, 0, . . . , 0)
...

(0, . . . , 0,±1)

(6.1)

These geometries have an SU(2)m+1 isometry, which translates into a global symmetry

of the corresponding quiver theories. The Newton polynomials contain 2m + 3 terms,
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of which m + 2 can be scaled to 1. The remaining m + 1 coefficients encode the sizes

of the P1’s. The behavior of the mirror geometry as a function of these coefficients was

studied in detail for m = 1, 2 in [34].

This family contains and naturally generalizes some interesting geometries. In

particular, its first members are:

F(0)
0 = C2/Z2 ,

F(1)
0 = F0 ,

F(2)
0 = C(Q1,1,1/Z2) ,

(6.2)

whose toric diagrams are shown in Figure 10.

• The quiver contains m + 2 nodes.

• In addition, there are bifundamental fields �
(c)
i,i+c+1 of degree 0  c  m/2. The

bifundamental indices are correlated with the degree. As in the unorbifolded case,

�
(c)
i,i+c+1 transforms in the antisymmetric (c+1)-index representation of SU(m+2).

• Once again, for even m, the multiplicity of the unoriented degree m/2 fields is

only half the dimension of the corresponding representation.

2.3 Consistency Checks

• Generalized anomaly cancellation

• Kontsevich bracket

• Moduli space
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Figure 10: Toric diagrams for F(m)
0 with m = 0, 1, 2.

This is an extremely interesting family of geometries because, contrary to the pre-

vious classes of theories, for m > 0 they give rise to multiple toric phases related by the

corresponding order m+ 1 dualities. The m = 1 [8] and 2 [22, 25, 34] cases have been

extensively studied in the literature. In particular, F(1)
0 has 2 toric phases and F(2)

0 has

14 toric phases.

6.2 The graded quivers

A simple way of constructing a toric phase for each of these geometries is by iterative

orbifold reduction [23]. The quiver for F(m)
0 has 2m+1 nodes. This is also clear from the

toric diagram, which doubles its normalized volume every time m is increased by 1, as

well as from the fact that χ((P1)m+1) = 2m+1. For later use, it is convenient to label

the nodes using (m+ 1)-dimensional vectors with 0 or 1 entries, i.e. in binary.

Quiver. The quiver is constructed as follows. Consider two nodes α and β labeled

by vectors ~α and ~β. Let us define

dαβ =
m+1∑

i=1

(βi − αi) . (6.3)
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Then:

• There is an arrow from α to β iff dαβ > 0, i.e. iff βi ≥ αi for all 1 ≤ i ≤ m+ 1.

• The degree of the arrow is

c = dαβ − 1 . (6.4)

• The multiplicity of the arrow is 2c+1. More specifically, the arrow represents 2c+1

fields that transform in the

2β1−α1

1 × 2β2−α2

2 × . . .× 2
βm+1−αm+1

m+1 (6.5)

representation of the SU(2)m+1 global symmetry, where the subindices run over

the different SU(2) factors.

As usual, we can restrict to fields with c ≤ m
2

by conjugating the arrows with c > m
2

.

Superpotential. As for the Cm+2/Zm+2 family, it is possible to show the construc-

tion of these models via iterative orbifold reduction implies that all the terms in the

superpotential are cubic. The superpotential terms are given by cubic terms of degree

m−1 combined into SU(2)m+1 invariants. Once again, it is possible to show that terms

for all possible integer partitions of m − 1 into three integers are present. In fact we

can regard the purely cubic superpotential as the characteristic property of the specific

toric phases of F(m)
0 that we construct.

Let us be more explicit about the superpotential for the F(m)
0 family. From our

previous discussion of the field content, there is an arrow connecting nodes i and j

whenever dij 6= 0. We will consider the arrow Xij which has dij > 0 as the field while

we will write Xji for its conjugate. 20 It is also useful to define a partial ordering

relation � between two nodes by j � i iff dij > 0.

The superpotential can then be written as

W =
∑

i

∑

j�i

∑

k�j
s(i, j, k)XijXjkX̄ki , (6.6)

where we omit SU(2)m+1 indices and their contractions, and the s(i, j, k) are signs that

are necessary for the vanishing of {W,W}. According to (6.4), Xij has degree dij − 1,

Xjk has degree djk − 1 and X̄ki has degree m+ 1− dik. Gauge invariance implies that

dik = dij +djk, which in turn implies that the degree of any such term is equal to m−1

and it is hence present in the superpotential.

20Note the convention we use for this argument is not the usual one in which we restrict to degrees

c ≤ m
2 . For example the arrow directed from (1, 1, · · · , 1) to (0, 0, · · · , 0) is a chiral but in this notation

it will be written as the conjugate of X(0,0,··· ,0),(1,1,··· ,1).
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Periodic quivers

Arguably the simplest representation of theories in the F(m)
0 family is in terms of periodic

quivers on Tm+1. We can imagine the unit cell has length 2 in every direction and

the vector labels we just discussed give the positions of the nodes. Pairs of chiral

fields aligned with the ith direction are the SU(2)i doublets connecting these nodes.

These hypercubic structure is completed with additional arrows that form degree m−1

triangles representing the cubic terms in the superpotential.

6.2.1 Generalized anomaly cancellation

Let us restrict to the case in which all gauge groups have rank N . Let i be a node

having k entries which are zero, in the binary notation. Then, normalizing by N , the

contribution of the arrows to the anomaly at node i is:

aarrows =
∑k

l=1

(
k
l

)
(−1)l−12l +

∑m+1−k
l=1

(
m+1−k

l

)
(−1)m+1−l2l

= −∑k
l=1

(
k
l

)
(−2)l + (−1)m+1

∑m+1−k
l=1 (−2)l

= −[(−1)l − 1] + (−1)m+1[(−1)m+1−l − 1]

= 1 + (−1)m .

(6.7)

Thus, the anomaly-free condition is satisfied.

6.2.2 Kontsevich bracket

Now we will show that {W,W} = 0 when the coefficients in the superpotential are

chosen to be s(i, j, k) = (−1)d(i,j)+md(i,k). First we make a preliminary comment about

the way indices are contracted in the superpotential using the SU(2) invariant tensor

εµν . Note that for any term in the superpotential one of these indices will always be

contracted with a barred field and the other one with an unbarred field. Even though

we do not show these indices in the interest of a clean notation, we will stick to a

convention in which the first index contracts with the unbarred field and the second

one with barred field. Tiptoeing this convention, in the expressions below the first

index of the implicit εµν is free for the derivatives with respect to unbarred fields, while

the second index is free for the derivatives with respect to barred fields.
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With this in mind, the derivatives we need are

∂W

∂X̄ki

=
∑

j|k�j�i
(−1)d(i,j)+md(i,k)XijXjk ,

∂W

∂Xik

=
∑

l|k�i�l
(−1)d(l,i)+md(l,k)(−1)(m−clk)(cli+cik)X̄klXli

+
∑

l|l�k�i
(−1)d(i,k)+md(i,l)(−1)cik(ckl+m−cil)XklX̄li . (6.8)

Here cij is the degree of Xi,j i.e cij = d(i, j)− 1. Working mod 2 for any k � j � i we

have

d(i, j) + d(j, k) + d(i, k) = 0 ⇒ cij + cjk + cik = 1 . (6.9)

Using the fact that cij(cij + 1) = 0 mod 2 for any i, j we get

(−1)clk(cli+cik) = (−1)cik(ckl+cil) = 1 . (6.10)

With these relations {W,W} becomes

∑

i

∑

k�i

∂W

∂X̄ki

∂W

∂Xik

=
∑

i,j,k,l|l�k�j�i
XijXjkXklX̄li

[
(−1)mcik(−1)d(i,k)+d(i,j)+md(i,k)+md(i,l)

+ (−1)(m+1)cil+cij(cjk+ckl+m−cli)(−1)d(j,k)+d(i,j)+md(i,l)+md(j,l)
]
.

(6.11)

Simplifying this expression using the mod 2 relations above, we conclude that {W,W} =

0.

6.3 Moduli space

Now we explain how the perfect matchings indeed give rise to F(m)
0 as the moduli

space. First we turn to the central point of the toric diagram (6.1). Since the origin

is invariant under the global SU(2)m+1 symmetry, the perfect matchings associated to

this point contain full representations of it. There is one such perfect matching which

is immediately evident from the way we have written the superpotential. It consists of

all arrows

{X̄i,j|i � j} . (6.12)

Writing it in terms of barred fields, makes it manifest that this is a perfect matching

due to the form of the superpotential (6.6). The chiral fields in this perfect matching

are in X̄(1,··· ,1),(0,··· ,0) which has dimension 2m+1 and transforms as 21 × · · · × 2m+1.
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The central point contains additional perfect matchings. Indeed we know that for

F
(1)
0 there are 5 perfect matchings corresponding to the central point [8] while F

(2)
0 has

19 [25]. It is straightforward to determine these extra perfect matchings and they will

be presented in a forthcoming work [36]. Their explicit field content is rather involved

and not illuminating for our current discussion.

Next let us consider the corners of the toric diagram, for which xµ = ±1 and all

the other coordinates are zero. SU(2)µ transforms these two points into one another

so picking one of them breaks SU(2)µ → U(1) × U(1). We need to consider how a

representation Xi,j of SU(2)m+1 splits under this reduced symmetry. There are two

cases:

• iµ = jµ. In this case the original multiplet transforms trivially under SU(2)µ and

remains intact. Its conjugate also remains intact.

• jµ − iµ = 1. In this case Xi,j splits into two multiplets: X+
i,j and X−i,j both of

which transform as

2j1−i11 × · · · × 2
jµ−1−iµ−1

µ−1 × 2
jµ+1−iµ+1

µ+1 × · · · × 2
jm+1−im+1

m+1 (6.13)

under the remaining SU(2)m.

We will again choose to make all the quantum numbers explicit so that the con-

jugate of X+
i,j is X̄−j,i.

The superpotential also splits into two parts

W = W0 +W+− . (6.14)

W0 consists of terms which contain no fields charged under SU(2)µ. W+− consists of

terms with two arrows charged under SU(2)µ; one unbarred and one barred. Under

the reduced symmetry, such a term splits as

Xi,jXj,kX̄k,i → X+
i,jXj,kX̄

−
k,i −X−i,jXj,kX̄

+
k,i jµ − iµ = 1 ,

Xi,jXj,kX̄k,i → Xi,jX
+
j,kX̄

−
k,i −Xi,jX

−
j,kX̄

+
k,i kµ − jµ = 1 . (6.15)

With this, it is straightforward to verify that the following collection P+
µ of fields is a

perfect matching

• If jµ − iµ = 1, then P+
µ contains X+

i,j and the conjugate of X−i,j i.e X̄+
j,i. These

arrows cover each term in W+− exactly once and do not cover any term in W0.

• If jµ− iµ = 0, then p−µ contains X̄j,i. These arrows cover each term of W0 exactly

once and do not cover any term in W+−.
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Above we have assumed j � i, which is the condition for the existence of an arrow

between i and j.

The perfect matching P+
µ corresponds to xµ = 1. Its chiral field content, which we

will denote by p+
µ is

p+
µ =

{
X+

(a1,··· ,aµ−10,aµ+1,···am+1),(a1,··· ,aµ−1,1,aµ+1,···am+1)

}
∪
{
X̄+

(1,··· ,1),(0,··· ,0)

}
. (6.16)

Regarding the fields on the right brackets, note that since X−(0,··· ,0),(1,··· ,1) have degree

m, their conjugates X̄+
(1,··· ,1),(0,··· ,0) are indeed chiral fields, i.e. they have degree 0. We

can rewrite (6.16) as

p+
µ =

{
X+

(a1,··· ,aµ−10,aµ+1,···am+1),(a1,··· ,aµ−1,1,aµ+1,···am+1)

}
∪
{
X−(0,··· ,0),(1,··· ,1)

}
. (6.17)

Similarly the perfect matching corresponding to xµ = −1 is the collection P−µ of

the following arrows:

• If jµ − iµ = 1, then P−µ contains X−i,j and the conjugate of X+
i,j i.e X̄−j,i.

• If jµ − iµ = 0, then P−µ contains X̄j,i.

The chiral field content p−µ of this perfect matching is

p−µ =
{
X−(a1,··· ,aµ−10,aµ+1,···am+1),(a1,··· ,aµ−1,1,aµ+1,···am+1)

}
∪
{
X̄−(1,··· ,1),(0,··· ,0)

}
, (6.18)

which can be rewritten as

p−µ =
{
X−(a1,··· ,aµ−10,aµ+1,···am+1),(a1,··· ,aµ−1,1,aµ+1,···am+1)

}
∪
{
X+

(0,··· ,0),(1,··· ,1)

}
. (6.19)

6.4 Examples

The periodic quivers for these theories are rather simple, but they become hard to

visualize beyond m = 2 due to their high dimensionality. The exponential growth

of the number of gauge groups makes their ordinary quivers look rather complicated.

However, we consider it is instructive to explicitly present the quivers for m = 1, 2, 3.

F
(0)
0 is C2/Z2, and its quiver was given in Figure 4.

Figure 11 shows the quiver diagram for F
(1)
0 . This is the well-known phase 2 of F0

(see e.g. [8]).
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Figure 11: Quiver diagram for F
(1)
0 .

The quiver for F
(2)
0 is presented in Figure 12. This is phase L of Q1,1,1/Z2 in

the classification of [25]. The periodic quiver for this phase, which explicitly shows

plaquettes for all the superpotential terms, can be found in the appendix of [25].
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Figure 12: Quiver diagram for F
(2)
0 .

Finally, Figure 13 shows the quiver for F
(3)
0 .
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Figure 13: Quiver diagram for F
(3)
0 .

The field content for this theory can be summarized in the following table:

Field SU(2)4 representation

X(0,a,b,c),(1,a,b,c) 21

X(a,0,b,c),(a,1,b,c) 22

X(a,b,0,c),(a,b,1,c) 23

X(a,b,c,0),(a,b,c,1) 24

Λ(1,1,a,b),(0,0,a,b) 21 × 22

Λ(1,a,1,b),(0,a,0,b) 21 × 23

Λ(1,a,b,1),(0,a,b,0) 21 × 24

Λ(a,1,1,b),(a,0,0,b) 22 × 23

Λ(a,1,1,b),(a,0,0,b) 22 × 22

Λ(a,b,1,1),(a,b,0,0) 23 × 24

Λ(0,0,0,a),(1,1,1,a) 21 × 22 × 23

Λ(0,0,a,0),(1,1,a,1) 21 × 22 × 24

Λ(0,a,0,a),(1,a,1,1) 21 × 23 × 24

Λ(a,0,0,0),(a,1,1,1) 22 × 23 × 24

X(1,1,1,1),(0,0,0,0) 21 × 22 × 23 × 24

(6.20)
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Its superpotential contains the following terms:

WJ =
∑

a,b Λ(1,1,a,b),(0,0,a,b)X(0,0,a,b),(1,0,a,b)X(1,0,a,b),(1,1,a,b)

+Λ(0,0,0,0),(1,1,1,0)X(1,1,1,0),(1,1,1,1)X(1,1,1,1),(0,0,0,0)

+Λ(0,0,0,1),(1,1,1,1)X(1,1,1,1),(0,0,0,0)X(0,0,0,0)(0,0,0,1) ,

WH =
∑

a Λ̄(1,1,1,a)(0,0,0,a)Λ̄(0,0,0,a),(0,1,1,a)X(0,1,1,a),(1,1,1,a)

+Λ̄(0,0,0,0),(1,1,0,0)Λ̄(1,1,0,0),(1,1,1,1)X(1,1,1,1),(0,0,0,0) .

(6.21)

where the global SU(2)4 indices and their contractions have been suppressed. The rest

of terms can be obtained from these by permuting the entries in the vector labels of

nodes. Here we have used the J- and H-term notation for superpotential terms in the

case of m = 3 [15, 24].

6.5 F(m)
0 → F(m−1)

0 × C partial resolution

The underlying geometry implies that there exists an interesting connection between

consecutive members of this family of quiver theories. Removing any corner of the toric

diagram for F(m)
0 results in the toric diagram for F(m−1)

0 ×C, namely the toric diagram

for F
(m−1)
0 plus an additional point. This operation corresponds to the following partial

resolution

F(m)
0 → F

(m−1)
0 × C . (6.22)

Figure 14 illustrates this process in the cases of F
(1)
0 and F

(2)
0 as starting points. As

we now explain, at the level of the quiver such a partial resolution translates into a

higgsing from F(m)
0 to the dimensional reduction of the F

(m−1)
0 theory.

It is convenient to recall the geometric origin of the SU(2)m+1 global symmetry.

The toric diagram for F(m)
0 , which is given by (6.1), is (m+1)-dimensional and contains

2m+1 corners. There is a pair of opposite corners for each direction xµ, µ = 1, . . . ,m+1,

which in turn corresponds to the SU(2)µ factor of the global symmetry. In Figure 14,

we have indicated the correspondence between pairs of corners and global symmetry

factors.

Without loss of generality, let us consider removing p−m+1 (removing any of the

other corners is equivalent by symmetry). Partial resolution maps to a higgsing of the

quiver theory. Based on general considerations, it is natural to expect that deleting this

corner corresponds to giving non-zero VEVs to the 2m chiral fields X−(a1,...,am,0)(a1,...,am,1).

Below we discuss how this expectation turns out to be correct.

Global symmetry. Since we give VEVs to fields that transform exclusively in the

2m+1 representation, we have the following pattern of global symmetry breaking

SU(2)1 × . . .× SU(2)m × SU(2)m+1 → SU(2)1 × . . .× SU(2)m , (6.23)
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• The quiver contains m + 2 nodes.

• In addition, there are bifundamental fields �
(c)
i,i+c+1 of degree 0  c  m/2. The

bifundamental indices are correlated with the degree. As in the unorbifolded case,

�
(c)
i,i+c+1 transforms in the antisymmetric (c+1)-index representation of SU(m+2).

• Once again, for even m, the multiplicity of the unoriented degree m/2 fields is

only half the dimension of the corresponding representation.

2.3 Consistency Checks

• Generalized anomaly cancellation

• Kontsevich bracket

• Moduli space

3 The F
(m)
0 Family

3.1 The Geometries

We now introduce a new family of geometries, which we denote F
(m)
0 , corresponding to

the a�ne cones over (CP1)m+1. The toric diagram for F
(m)
0 is the (m + 1)-dimensional

polytope consisting of the following points.

(0, . . . , 0)

(±1, 0, . . . , 0)
...

(0, . . . , 0, ±1)

(3.1)

This family contains and naturally generalizes some interesting geometries. In partic-

ular, its first members are:

F
(0)
0 = C2/Z2

F
(1)
0 = F0

F
(2)
0 = Q1,1,1/Z2

(3.2)

whose toric diagrams are shown in Figure ??.

This is an extremely interesting family of geometries because, for m > 0, they give

rise to multiple toric phases related by the corresponding order m + 1 dualities. The

m = 1 [] and 2 [] cases have been extensively studied in the literature
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F
(0)
0 ⇥ C = C2/Z2 ⇥ C (3.6)

F
(1)
0 ⇥ C = F0 ⇥ C (3.7)

Periodic Quivers. Arguably the simplest representation of theories in the F
(m)
0 fam-

ily is in terms of periodic quivers Tm+1. We can imagine the unit cell has length 2 in

every direction and the vector labels we just discussed give the positions of the nodes.

Pairs of chiral fields aligned with the ith direction are the SU(2)i doublets connecting

these nodes. These hyper cubic structure is completed with additional arrows that

form degree (m� 1) triangles representing the cubic terms in the potential.

Potential:

As for the Cn+1/Zn+1 family, it is possible to show the construction of these models

via iterative orbifold reduction implies that all potential terms are cubic. The potential

terms are given by cubic terms of degree (m� 1) combined into SU(2)m+1 invariants.
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j�i

X

k�j
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where we omit SU(2)m+1 indices and the s(i, j, k) are signs that are necessary for the
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notation it will be written as the conjugate of X(0,0,··· ,0),(1,1,··· ,1).
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Figure 14: F(m)
0 → F

(m−1)
0 × C partial resolution for m = 1, 2.

namely the SU(2)m+2 factor disappears. This is in precise agreement with the geometric

expectation.

Quiver. The 2m VEVs for bifundamental chirals reduce the number of gauge groups

to a half as follows. The VEV for X−(a1,...,am,0)(a1,...,am,1) higgses the gauge symmetry

associated to nodes (a1, . . . , am, 0) and (a1, . . . , am, 1) to the diagonal subgroup. The

corresponding recombined nodes can be naturally identified by the remaining labels,

i.e. by the vectors (a1, . . . , am). We thus have

(a1, . . . , am, 0)× (a1, . . . , am, 1)→ (a1, . . . , am) . (6.24)

The change in the number of gauge groups is in agreement with the fact that the volume

of the toric diagram is halved by this particular partial resolution.

Let us now study the matter content of the resulting quiver. All fields which are

singlets of SU(2)m+1 survive in the final theory. These fields, now connecting the

recombined nodes, give exactly the matter content of F
(m−1)
0 .

Next, let us consider the fields that transform as doublets of SU(2)m+1 (and maybe

doublets of additional SU(2)µ factors). First, the chiral fields X+
(a1,...,am,0)(a1,...,am,1),

– 61 –



which form SU(2)m+1 doublets with the chiral fields acquiring VEVs, survive in the

final theory. Originally transforming in bifundamental representations, they turn into

adjoints of the corresponding recombined nodes (a1, . . . , am). We can interpret such

adjoint chiral fields as the ones arising from the dimensional reduction of vector multi-

plets.

Finally, combining the cubic superpotential (6.6) with the VEVs for the fields

X+
(a1,...,am,0)(a1,...,am,1) gives rise to masses for all other X− fields, where the superindex

refers to just the SU(2)m+1 quantum number, so they can be integrated out. The

associated X+ fields remain massless and give rise to a copy of the matter content for

F
(m−1)
0 , but with the degrees of fields increased by 1.

Summarizing the previous discussion, the final quiver corresponds to the dimen-

sional reduction of F
(m−1)
0 , as expected from the geometry. It is also straightforward

to verify that this process generates the desired superpotential.

Perfect matchings. From §6.3, we see that the only corner perfect matching that

contains chiral fields acquiring a VEV is p−m+1. This implies that the proposed set of

VEVs precisely remove the corner associated to p−m+1, while all the others remain. It

is also possible to verify that some of the perfect matchings at the origin of the toric

diagram are removed, while others survive. In summary, the proposed higgsing exactly

produces the desired partial resolution.

6.6 B-model computation

The computations for this family follow the same pattern as in previous examples. We

start with the resolution of these singularities as the total space of the canonical line

bundle over (P1)m+1. It is given by:

X̃m+2 = Tot(O(−2,−2, · · · ,−2)→ P1
1 × P1

2 × · · · × P1
m+1) . (6.25)

For m = 0, this coincides with the resolution O(−2)→ P1 of C2/Z2, which we discussed

in §4.4. Since for P1, O(−2) ∼= Ω, the exceptional collection on P1 reads:

{E1 ≡ O(−1)[1] , E0 ≡ O} . (6.26)

An exceptional collection on (P1)m+1 has 2m+1 elements, which are the line bundles:

{
Ei ≡ Ei1 ⊗ Ei2 ⊗ · · · ⊗ Eim+1

∣∣ iµ ∈ {0, 1}
}
. (6.27)

Here, the index i is a binary vector of length m + 1. The sheaves in the exceptional

collection on X̃m+2 are then of the form:

Fi ≡ i∗Ei , (6.28)
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with the embedding i : (P1)m+1 → X̃m+2.

The next step is to find the Koszul resolution of these sheaves. The Koszul reso-

lution for m = 0 is the same as Koszul resolution for m = 0 in (4.19). For general m,

the Koszul resolution is given by: 21

0 - E(2, 2, · · · , 2)
ω
- E - i∗E - 0 , (6.29)

where the map ω is an m+1 fold product of the map vµe
2
µ we found earlier for C2/Z2—

see Appendix A.

6.6.1 Quiver fields

Basic case: m = 0. To compute the generator of Ext groups, it is useful to start

from m = 0. We call ys0,1, with s = ±, the generators of Č0(Hom1(F1,F0)). They are

defined by:

O(1) - O(−1)

O(2)

zs

?
- O

−zs

?

Here, zs correspond to the global sections of O(1) and, as explained earlier, the global

sections of O(p) are determined by homogeneous polynomials of degree p in the homo-

geneous coordinate. Labeling the homogeneous coordinates of P1 by z±, we see that

each of them gives rise to a generator y±0,1, which together transform in the fundamental

representation of the SU(2) global symmetry.

The Serre duals ȳs1,0 are in Č1(Hom0(F1,F0)). They correspond to the chain maps:

O(2) - O

O(1) - O(−1)

z̄s

?

Here the z̄s are generators of Č1(O(−3)). Locally, in the patch where z+ 6= 0, they are:

z̄+ = w−2
+ e3

+ , (6.30)

z̄− = −w−1
+ e3

+ . (6.31)

21The notation E(p1, · · · , pk) denotes the sheaf E tensored with O(p1, · · · , pk).
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w+ is the local coordinate of this patch and, as before, e+ is the basis of O(−1) in this

patch. Composing yt0,1 and ȳs1,0 results in:

ȳs1,0 ◦ yt0,1 = εsty1,1 ,

ys0,1 ◦ ȳt1,0 = −εsty0,0 , (6.32)

with yi,i being the generators of Ext2(Fi,Fi). They are defined by the chain map:

O(−i+ 2) - O(−i)

O(−i+ 2) - O(−i)

z̄0

?

where z̄0 is the sole generator of Č1(O(−2)), given locally by:

z̄0 = w−1
+ e2

+ . (6.33)

General m. It is straightforward to determine the quiver for general m, using the

information we gained for the m = 0 case. Given a pair of fractional branes Fi and Fj,
we consider the following chain maps xsi,j

O(−j1 + 2, · · · ,−jm+1 + 2) - O(−j1, · · · ,−jm+1)

O(−i1 + 2, · · · ,−im+1 + 2)

∏m+1
µ=1 ξ

sµ
µ

?
- O(−i1, · · · ,−im+1)

∏m
µ=1(−1)jµ−iµξ

sµ
µ

?

where ξ
sµ
µ is a global section of O(jµ− iµ). Hence, we can divide the (Fi,Fj) pairs into

two cases:

1. There exists a µ such that jµ = 0 and iµ = 1. In this case, ξ
sµ
µ must be a global

section ofO(−1) over the µth P1. SinceO(−1) has no global sections, Extc(Fj,Fi)
is empty for all c.

2. jµ ≥ iµ for all µ. In this case, the ξ
sµ
µ fall into two classes:

(2.a) If jµ = iµ, then ξ
sµ
µ is a local section of O, so there is only one possibility for

it i.e. 1.
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(2.b) If jµ = 1 and iµ = 0, then ξ
sµ
µ is a global section of O(1). In this case, there

are two possibilities for it: z±µ , i.e. the two homogeneous coordinates of P1
µ.

This also means that xsi,j transforms in the fundamental representation of

the SU(2)µ factor of the global symmetry.

Combining (2.a) and (2.b), we conclude that xs ∈ Č0(Homk(Fi,Fj)) with k =∑
µ(jµ − iµ). There are 2k+1 of these generators.

This completes our derivation of the quiver, which is in perfect agreement with the

one found in §6.2 using generalized orbifold reduction.

Finally, let us compute the Serre duals x̄tj,i of these arrows. They are given by the

chain maps:

O(−i1 + 2, · · · ,−im+1 + 2) - O(−i1, · · · ,−im+1)

O(−j1 + 2, · · · ,−jm+1 + 2) - O(−j1, · · · ,−jm+1)

∏m+1
µ=1 ξ̄

tµ
µ

?

As is occurs for ξ
sµ
µ , ξ̄

tµ
µ only exist for jµ ≥ iµ and we will need to deal with the

corresponding two cases separately:

(a) If jµ = iµ then ξ̄
tµ
µ ∈ Č1(O(−2)), so the only possibility is z̄0

µ. The z̄0 is given in

(6.33) and the subscript indicates that the base is P1
µ.

(b) If jµ = 1 and iµ = 0, then ξ̄
tµ
µ ∈ Č1(O(−3)) and there are two possibilities, namely

ξ̄±µ = z̄±µ . Again the subscript indicates that the base is P1
µ with z̄± defined in

(6.32).

Hence x̄tj,i ∈ Čm+1(Hom1−k(Fi,Fj)) and they are indeed the Serre duals of x̄si,j.

6.6.2 Superpotential

The cubic superpotential terms follow straightforwardly from the composition. Follow-

ing our definition of xsi,j and xtj,k and composing them results in:

m2(xsi,j, x
t
j,k) = xs ti,k . (6.34)

Here the s t in the superscript means that the fundamental SU(2) indices of xi,j and

xj,k are concatenated. Since the f2’s are all trivially zero, there are no higher products.

We then reproduce the superpotential (6.6).
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7 Conclusions

It was recently shown that m-graded quivers with superpotentials provide a mathemat-

ical framework that elegantly unifies the description of minimally SUSY gauge theories

in even dimension [15]. The cases of m = 0, 1, 2, 3 correspond to 6d N = (0, 1), 4d

N = 1, 2d N = (0, 2) and 0d N = 1 field theories, respectively. A rich class of such

theories can be engineered in terms of Type IIB D(5−2m)-branes probing CY (m+2)-

folds. One of the primary motivations for this paper was to establish the physical

significance of m-graded quivers for m > 3. Naively, it may seem that it is physically

impossible to go beyond m = 3, since it would require the gauge theory to live below

0d and the CYm+2 to go beyond the critical dimension of Type IIB string theory. In

this work we have shown that m-graded quivers describe the open string sector of the

topological B-model on CY (m+ 2)-folds, for any m.

To illustrate this correspondence, we constructed toric quivers associated to three

infinite families of toric singularities indexed by m. 22 We first derived these families

using a variety of powerful tools that are available in the toric case, which include:

algebraic dimensional reduction (sometimes combined with orbifolding), orbifold re-

duction, 3d printing and partial resolution. We independently derived all these quiver

theories via B-model computations.

Our results provide the first explicit examples of m-graded quivers with superpo-

tentials for CY (m+ 2)-folds with m > 4. Previously, only a few orbifold examples had

been presented for m = 4 [15] and m = 3 [16, 24, 57, 58]. Quivers for more general

geometries were studied only up to m = 2, both in physics and mathematics.

In this work, we considerably expanded the exploration of quiver theories associated

to CY (m + 2)-folds. Until now, quiver gauge theories were typically studied at fixed

m. For each m (and only for m ≤ 2, so far), one could then consider various infinite

families of geometries and construct their dual quiver gauge theories. In the toric case,

this approach was significantly accelerated by the study of brane tilings (m = 1) and

brane brick models (m = 2). In this work, we have included a new “theory space”

direction to the problem, considering all possible CY dimensions at once. New tools

for studying toric quivers, for any m, will be discussed in [36].

Various interesting aspects of SUSY gauge theories extend to the more general

context of m-graded quivers. For instance, we have shown that some of these theories

admit periodic duality cascades. Generalizing the well-known behavior of the conifold,

we presented explicit examples based on the C(Y 1,0(Pm)) family, in which the number of

22As usual, due to the dualities discussed in Appendix B, the map between geometry and quivers

is not one-to-one. For a given CY singularity, it is possible to start from the quiver we presented and

construct all the corresponding duals, by quiver mutations.
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fractional branes remains constant while the number of regular branes depends linearly

on the step of the cascade. It would be interesting to investigate the significance of such

formal cascades for arbitrary m. Interestingly, gravity duals with a running number of

regular branes exist for systems of branes at CY 4-folds, namely for m = 2 [59]. It would

be interesting to elucidate whether those solutions have a field theoretic interpretation

in terms of cascades of trialities.

It is natural to expect that order m + 1 dualities correspond to mutations of ex-

ceptional collections of B-branes. This expectation is supported by the known m = 1

[44, 45, 60] and m = 2 [16] cases, mirror symmetry [24, 34] and the general discussion

in [15]. We plan to elaborate on this correspondence in the near future.
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A B-model computation of quivers and superpotentials

In this appendix, we provide a brief review of the sheaf computation of quivers and

superpotentials in the B-model. In the main body of the paper, we use the methods

outlined here to derive the quivers and superpotentials for several infinite families of

theories. For more details, the interested reader can consult [29, 49]. For detailed

reviews of B-branes, we refer to [51, 61].

The D-branes compatible with the B-twist of Type II string theory are called B-

branes. Mathematically, these branes, denoted by E , are objects of the derived category

Db(Xm+2) of the (m+ 2)-complex-dimensional target space Xm+2. The B-model open

string states with boundary conditions on the two objects E and F are counted by the

Ext groups:
m+2⊕

d=1

ExtdXm+2
(E ,F) . (A.1)
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Each element of the group (A.1) is interpreted as an open string state “stretched from

the brane E to the brane F .” The OPE relations between open string vertex operators

are encoded in the A∞ structure of the derived category. Thus, the A∞ structure

controls the terms appearing in the “spacetime” superpotential; see [48] and references

therein.

A.1 Ext groups

The B-branes we consider are complex submanifolds of some local Calabi-Yau X̃m+2,

a smooth resolution of the CY singularity Xm+2. Assume S is a complex submanifold

of X̃m+2, and E1 and E2 are holomorphic vector bundles over S. If we denote the

embedding of S in X̃m+2 by i, then the objects in Db(X̃m+2) corresponding to E1 and

E2 are i∗E1 and i∗E2, respectively. The B-model spectrum of open strings between two

D-branes on S, with gauge bundles E1 and E2, is given by:

m+2⊕

d=0

Extd
X̃m+2

(i∗E1, i∗E2) . (A.2)

The Ext groups above are determined by the following spectral sequence [29]:

Ep,q
2 : Hp(S, E∨1 ⊗ E2 ⊗ ∧qNS) ⇒ Extp+q

X̃m+2
(i∗E1, i∗E2) , (A.3)

where NS is the normal bundle of S in X̃m+2. In many cases, the spectral sequence

(A.3) trivializes—that is:

Extd
X̃m+2

(i∗E1, i∗E2) ∼=
⊕

p+q=d

Hp(S, E∨1 ⊗ E2 ⊗ ∧qNS) . (A.4)

In such cases, we can determine the Ext groups by computing cohomology groups. If S

is a direct product of projective spaces, the cohomology groups can be calculated by the

Borel-Weil-Bott theorem [62, 63], which expresses the Ext groups as representations of

the global symmetry.

A.2 A∞ structure

The derived category Db(X̃m+2) is an A∞-category. By definition, an A∞-category

C consists of a collection of objects, Obj(C), a Z-graded vector space of morphisms

HomC(E,F ) for any E,F ∈ Obj(C) and, for every k ≥ 1, k-linear maps:

mk : HomC(Ek−1, Ek)⊗ · · · ⊗ HomC(E0, E1)→ HomC(E0, Ek) , (A.5)
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of degree 2− k, satisfying the A∞ relations:
∑

p,q

(−1)k−p−q+pqmk−p+1(ak, · · · , ap+q+1,mp(ap+q, · · · , aq+1), aq, · · · , a1) = 0 , (A.6)

for every k > 0. We will follow the method proposed in [49] to compute the composition

maps mk of Db(X̃m+2).

Any object in Db(X̃m+2) can be represented by a cochain complex E• of locally-free

sheaves over X̃m+2. For any pair of complexes, the Ext groups Extd
X̃m+2

(E•,F•) can be

viewed as the cohomology of the single complex associated with the double complex

(K•,•, d, δ) with:

Kp,q(E•,F•) = Čp(U ,Homq(E•,F•)) , (A.7)

where Čp(U , ·) denotes the C̆ech cochains of degree p associated with some acyclic

covering U , and Homq denotes the maps of degree q between complexes, i.e.:

Homq(E•,F•) =
⊕

i

Hom(E i,F i+q) . (A.8)

In the double complex (K•,•, d, δ), d is the differential of C̆ech cochains and δ is defined

as follows. Let ∂j and ∂′k be differentials of E j and Fk respectively, then for any∑
i φq,i ∈ Homq(E•,F•) with φq,i ∈ Hom(E i,F i+q), we have:

δqφq,i = ∂′q+i ◦ φq,i − (−1)qφi+1,q ◦ ∂i . (A.9)

For any E• and F•, we associate to every a ∈ Extd
X̃m+2

(E•,F•) an element ι(a) ∈
⊕p+q=dKp,q(E•,F•), such that the cohomology class of ι(a) is a. Then, there exist

maps:

fk : Ext•
X̃m+2

(E•k−1, E•k )⊗ · · · ⊗ Ext•
X̃m+2

(E•0 , E•1 )→ ⊕p,qKp,q(E•0 , E•k ) , (A.10)

of degree 1− k for any k ≥ 1, such that:

f1 = ι , (A.11)

and
∑

r+s+t=k

(−1)r+stfn+1−s(id
⊗r⊗ms⊗id⊗t) =

∑

2≤r≤n
i1+···+ir=k

(−1)wfi1◦fi2◦· · ·◦fir+dfk , (A.12)

where w = (r−1)(i1−1)+(r−2)(i2−1)+ · · ·+(ir−1−1) and ◦ denotes the composition

of maps in ⊕p,qKp,q(•, •). For example, we have:

ιm2 = ι ◦ ι+ df2 , (A.13)
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and

ιm3 = f2(id⊗m2)− f2(m2 ⊗ id) + (ι ◦ f2)− (f2 ◦ ι) + df3 . (A.14)

To compute the A∞ structure, the first step is to find representatives for a basis of

the Ext groups, which in turn defines ι. Then, we can employ (A.12) to compute the

composition maps mk. Specifically, we can use (A.13) to determine m2 and f2, then

use (A.14) to determine m3 and f3 and so forth.

In the theories we consider, the B-branes of interest are of the form:

i∗E , (A.15)

with i the embedding of a complex submanifold S in X̃m+2, and E a holomorphic vector

bundle over S. Suppose that E•l is the Koszul resolution of i∗El:

· · · → E−il → E−i+1
l → · · · → E0

l → i∗El → 0 . (A.16)

Then, Extd
X̃m+2

(i∗E1, i∗E2) is the same as Extd
X̃m+2

(E•1 , E•2 ), so that we can use the method

discussed above to compute the composition maps mk.

A.3 Superpotential

Given a graded quiver with nodes corresponding to coherent sheaves i∗Ej, j = 1, · · · , n,

where n is the number of nodes, we can read off the superpotential from the composition

maps mk. To that end, we fix a basis φ
(d)µ
j2,j1

for each Extd
X̃m+2

(i∗Ej1 , i∗Ej2). Following

the convention described in the main text, we will label the corresponding quiver field

by (Φ
(k−1)
j1,j2

)µ. Note that the Ext generator and the field have conjugate indices and

differ in degree by 1. The label µ runs over the generators. For the examples we are

considering, it coincides with the flavor symmetry index. For each j, Extm+2

X̃m+2
(i∗Ej, i∗Ej)

is 1-dimensional. If φ
(n−k)µ̄

j1,j2
is the generator corresponding to the Serre dual of φ

(k)µ
j2,j1

,

then:

m2(φ
(n−m)µ̄

j1,j2
, φ

(m)µ
j2,j1

) = φ
(n)
j1,j1

, (A.17)

for any j1 and µ. By choosing a basis, we fix the normalization of the trace map

γj : Extm+2

X̃m+2
(i∗Ej, i∗Ej)→ C defined by:

γj(φ
n
j,j) = 1 . (A.18)

For any generator φ
(l)
j,i ∈ Extl

X̃m+2
(i∗Ei, i∗Ej), we consider all the paths connecting nodes

i and j in the quiver. If there exist fields Φ
(n1)
s1,i

,Φ
(n2)
s2,s1 , · · · ,Φ(nk)

j,sk−1
along some path with

k arrows such that:

γi(m2(φ
(n−l)
i,j ,mk(φ

(nk)
j,sk−1

, · · · , φ(n1)
s1,i

))) (A.19)
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is nonzero, then there is a term proportional to:

Φ
(n1−1)
i,s1

· · ·Φ(nk−1)
sk−1,j

Φ
(n−m−1)

j,i , (A.20)

with the coefficient equal to (A.19) in the superpotential. Similarly, if there exist fields

Φ
(n1)
s1,j

,Φ
(n2)
s2,s1 , · · · ,Φ(nk)

i,sk−1
along some path in the opposite direction such that:

γj(m2(φ
(l)
j,i ,mk(φ

(nk)
i,sk−1

, · · · , φ(n1)
s1,j

))) (A.21)

is nonzero, then there is a term proportional to

Φ
(n1−1)
j,s1,

· · ·Φ(nk−1)
sk−1,i

Φ
(l−1)
i,j , (A.22)

with the coefficient equal to (A.21) in the superpotential. Every term in the super-

potential can be computed this way, thus the A∞ structure of the derived category

completely determines the superpotential.

Note that, since γ is only non-zero on Extm+2 generators, and since mk has degree

2− k, the “superpotential coupling” (A.21) is non-zero only if:

l +
k∑

j=1

nj = m+ k . (A.23)

This is simply the ghost-number selection rule for disk correlators in the B-model. It

directly follows that the only terms that can appear in the superpotential have quiver

degree:

deg
(
Φ

(n1−1)
j,s1,

· · ·Φ(nk−1)
sk−1,i

Φ
(l−1)
i,j

)
= l − 1 +

k∑

j=1

(nj − 1) = m− 1 . (A.24)

Hence, the degree constraint for the superpotential of an m-graded quiver is automat-

ically satisfied.

A.4 Sheaves on Pn: a primer

In order to derive the quivers and superpotentials for the geometries considered in this

paper using the technology we have just discussed, it is useful to review some notions

about sheaves on Pn. In the rest of this section, we present several elementary results

about Čech cohomology with sections taking values in such sheaves.

Let us start with the presentation of Pn in the homogeneous coordinates. Starting

from Cn+1, we obtain Pn by identifying:

(z0, · · · , zn) ∼ λ(z0, · · · , zn) . (A.25)
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From this presentation, we can pass on to standard charts on Pn. There are n + 1

of these charts, denoted by Uµ. Uµ covers the complex lines for which zµ 6= 0. We

will denote the ith local coordinate on Uµ by wµ,i, with 1 ≤ i ≤ n. The explicit map

between the two presentations is:

wµ,i =

{
z0
zµ

i = µ ,
zi
zµ

i 6= µ .

A.4.1 Sheaves O(p)

The tautological line bundle, denoted by O(−1), is the sheaf on Pn which assigns to

each point in it the line it represents in Cn+1. We denote the basis of this sheaf on the

chart Uµ by eµ. The transition functions between different charts are then represented

by the equation:

ei = w−1
0,i e0 . (A.26)

The sheaf O(−p), for p > 0, is the sheaf which locally has as its basis the pth tensor

power epµ of eµ. The sheaf O(p), for p > 0, is defined to be the dual sheaf of O(−p). In

particular let e∗µ be the basis of O(1) in the chart µ then the transition functions for it

are determined by:

e∗i = w0,ie
∗
0 . (A.27)

(e∗µ)p form a basis of O(p) in Uµ. Finally, O(0), which is often denoted as O, is the

trivial sheaf.

A.4.2 Tangent and cotangent bundles

One-forms dw0,i form a basis of the cotangent bundle in the µth chart. The transition

matrix can be found using (A.26). We will not reproduce all of them here, but will

mention an identity that will be useful for our calculations, namely:

w−i0,idw0,i = −w−1
i,i dwi,i . (A.28)

Ωp is the pth antisymmetric tensor power of Ω. The transition functions again

follow straightforwardly, albeit tediously, from (A.26). The situation is simplest for

the highest non-trivial power, i.e. Ωn, also called the determinant bundle. Its basis is

∧idwµ,i and the transition function is the determinant of the transition matrix for Ω:

∧jdw0,j = w−n−1
i,i ∧j dwi,j . (A.29)

The tangent bundle Ω∗ is the dual of the cotangent bundle. In the local coordinates of

the chart Uµ, its basis is given by the vector fields ∂
∂wµ,i

. Locally, the action of vector

fields on the differential form is given by contraction or interior derivation.
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A.4.3 Čech cohomology

Next, we turn to the computation of some sheaf-valued Čech cohomology groups on

Pn. We will also organize them into representations of SU(n + 1), with its action on

Pn induced from Cn+1. The most basic of these are Č0, which correspond to the global

section of the said sheaves.

O(−p) has no global sections for p > 0. The same is true for Ωp. However their

dual bundles do have global sections. For O(p) with p ≥ 0, a local section is determined

by a homogeneous polynomial of degree p in the homogeneous coordinates zµ. These

obviously transform in the symmetric (p, 0)-index tensor representation of SU(n + 1),

which has dimension
(
n+1+p

p

)
.

The tangent bundle Ω∗ has (n + 1)2 − 1 global sections. In the homogeneous

coordinates, these are given by:

zµ
∂

∂zν
, (A.30)

with the linear relation
∑

µ zµ
∂
∂zµ

= 0. They transform in the adjoint representation of

SU(n+ 1).

More relevant for us will be the sheaf Ω∗(−1). 23 It has (n + 1) of global sections

transforming in the (0, 1)-index representation of SU(n + 1). Locally in U0, they can

be written as:

ϕ0 = −
∑

i

w0,i
∂

∂w0,i

⊗ e0 ,

ϕi =
∂

∂w0,i

⊗ e0 . (A.31)

The maps between two sheaves E and F form a sheaf denoted by Hom(E,F ). The

sections (A.31) can also be regarded as the global sections of Hom(Ω,O(−1)). More

generally, they can be regarded as global sections of Hom(Ωi+1(j + 1),Ωi(j)).

We can also easily compute the global sections of Hom(Ωi+k(j + k),Ωi(j)). These

are given by antisymmetric compositions of λi defined above and they transform in the

antisymmetric k-index 24 representation of SU(n + 1). Concretely, a basis of them is

given by:

ϕµ1···µk =
1

k!
ϕ[µ1 ◦ ϕµ2 ◦ · · · ◦ ϕµk] . (A.32)

The square brackets represent the antisymmetrization of the indices they enclose.

23For any sheaf F we define F (p) to be F tensored with O(p).
24More formally (0, k), but throughout the paper all the representations we mention are of this form

and we will just write k to simplify the notation.
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A.4.4 Serre duality

Serre duality is one of the most important properties of these sheaf-valued cohomology

groups. In the present case, it is the statement that there is an isomorphism between

Či(E) and Čn−i(E∗(−n− 1))∗.

Let us see how this plays out in the case of Hom(Ωn(n + j),O(j)), which we

computed in the last section. Its dual sheaf is Hom(O(j),Ωn(n + j)) ∼= Ω(n). So, to

exhibit Serre duality we need to find Čn(Ωn(−1)).

An element of Ωn(−1) is a top form with coefficients in O(−1). It being in the nth

Čech cohomology means that it is holomorphic in ∩µUµ, i.e. intersection of all n + 1

charts, but not holomorphic in any intersection of n charts. Let us consider the ansatz

that a member ϕ̄ of this cohomology group is given in the coordinates of U0 by:

ϕ̄ = ∧iwpi0,idw0,i ⊗ e0 . (A.33)

Using (A.26) and (A.29), we see that, in the local coordinates of patch Ui, we can write

ϕ̄ as:

ϕ̄ = (−1)iw
−n−2−∑j pj
i,i dwi,i ∧mj 6=i w

pj
i,jdwi,j ⊗ ei . (A.34)

The holomorphy constraint described above means that:

pi < 0 and −
∑

i

pi < n+ 2 . (A.35)

Hence, there are n+ 1 choices of ϕ̄:

ϕ̄0 = ∧jw−1
0,jdw0,j ⊗ e0 ,

ϕ̄i = w−1
0,i ∧j w−1

0,jdw0,j ⊗ e0 . (A.36)

The dimension n+1 is indeed the one we would have expected from Serre duality. Note

that ϕ̄ transforms in the 1-index representation of SU(n+ 1) which is conjugate to the

representation in which elements of Hom(Ωn(n+ j),O(j)), i.e. ϕi1···in , transform.

B Graded quiver mutations

Graded quivers with superpotentials enjoy order m+1 mutations, which reproduce the

dualities of the corresponding gauge theories for m ≤ 3 and generalize them for m > 3.

In this appendix, we summarize the effect of a mutation on a node, which we identify

as ? [15].
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1. Flavors. As it is standard, we refer to the arrows connected to the mutated node

as flavors. It is possible to take all flavors as incoming into the mutated note, simply by

trading any arrow that is oriented outward for its conjugate. Once this is done, there

is a natural cyclic order for flavors around the node, in which the degree of incoming

arrows increases clockwise, as shown on the left of Figure 15. There can be multiple or

no arrows of a given degree.

0 m 

(0) 

(m-2) 

(m-3) 

(m) (m-1) 

(1) 

(2) (m-4) 

1 

2 

3 

m-1 

m-2 

m-3 

0 m 

(1) 

(m-1) 

(m-2) 

(0) (m) 

(2) 

(3) (m-3) 

1 

2 

3 

m-1 

m-2 

m-3 

★ ★ 

Figure 15: The transformation of flavors upon a mutation on node ? can be imple-

mented as a rotation of the degrees of the arrows.

Under the mutation, the flavors transform as follows:

2. Rotation of the degrees. Replace every incoming arrow i
(c) // ? with the ar-

row i
(c−1) // ? . In terms of the cyclic ordering of flavors previously introduced, this

transformation is elegantly implemented as a clockwise rotation of the degrees of the

flavors while keeping the spectator nodes fixed, as shown in Figure 15.

2. Mesons. The second step in the transformation of the quiver involves the addition

of composite arrows, to which we refer as mesons. For every 2-path i
(0) // ?

(c) // j in

Q, where c 6= m, add a new arrow i
(c)

**? j . In other words, we generate all

possible mesons involving incoming chiral fields. Sometimes, we might chose to repre-

sent the field to be composed with a chiral field as an arrow that goes into the mutated

node. The orientation of both arrows, both incoming, naively seems incompatible for

composition. The general rule above is equivalent to saying that, in such cases, we

use the conjugate of the incoming chiral field for the composition. This phenomenon,

dubbed anticomposition, was first discussed in the physics literature in the context of

quadrality of 0d N = 1 theories [24].
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(0) (c) i j i j 

(c) 

(0) (m-c) i j 

(m-c) 

i j 

★ ★ 

★ ★ 

(a) 

(b) 

Figure 16: a) Composition of arrows into a meson. b) The same process interpreted

as anticomposition.

3. Superpotential. Under mutation, the superpotential transforms according to the

following rules:

3.a) Cubic dual flavors-meson couplings. For every 2-path, i
(0) // ?

(c) // j in

Q, with c 6= m, add the new arrow i
(c) // j in Q and the new cubic term

Φ
(c)
ij Φ

(c+1)
?j Φ

(m)
i? = Φ

(c)
ij Φ

(m−c−1)
j? Φ

(0)
?i to W . Figure 17 shows the general form of

these terms, which are in one-to-one correspondence with the mesons.

(0) (c) i j 

(c) 

i j (m) (c+1) 

(c) 

i j (0) (m-c-1) 

=
 

★ 

★ 

★ 

Figure 17: New cubic terms coupling mesons to dual flavors.

The remaining rules concern pre-existing terms in the superpotential. First of all,

terms that do not go through the mutated noted are not modified. The transformation

of terms that contain the mutated node depends on the degrees of the arrows that are

connected to it in the corresponding cycle.
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3.b) Replace instances of Φ
(0)
i? Φ

(c)
?j in W with the meson Φ

(c)
ij that results from compos-

ing the two arrows.

i1 

(c) 

ik ik-1 

(ck-1) 

(c1) 

(ck-2) 

(0) 

i1 

ik ik-1 

(ck-1) 

(c1) 

(ck-2) 

(c) 

★ ★ 

Figure 18: Mutation of a superpotential term with a 2-path giving rise to a meson.

3.c) Replace instances of Φ
(c)
i? Φ

(d)
?j in W , where c 6= 0 and d is arbitrary with the

product Φ
(c−1)
i? Φ

(d+1)
?j —that is, we write each closed path in W in terms of the

new arrows.

i1 

(d) 

ik ik-1 

(ck-1) 

(c1) 

(ck-2) 

(c) 

(c1) 

(ck-2) 

i1 

(d+1) 

ik ik-1 

(ck-1) 

(c-1) 

★ ★ 

Figure 19: Mutation of a superpotential term with a 2-path that goes through the

mutated node but does not generate a meson.

3.d) Additionally, if there is an incoming chiral arrow Φ
(0)
i0?

at the mutated node, an

additional term in W is generated by duplicating this cycle, replacing instances of

Φ
(c)
i? Φ

(d)
?j with the product of mesons Φ

(c)
ii0

Φ
(d)
i0j

, which follow from (anti)composing

Φ
(c)
i? and Φ

(d)
?j with Φ

(0)
i0?

.
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i1 

(d) 

ik ik-1 

(ck-1) 

(c1) 

(ck-2) 

(c) 

i0 

(0) 

i1 

(d) 

ik ik-1 

(ck-1) 

(c1) 

(ck-2) 

(c) 

i0 ★ ★ 

Figure 20: Mutation of a superpotential term in the presence of an additional chiral

field going intothe mutated node.

3.e) Finally, we can “integrate out” massive arrows, which corresponds to removing

all the 2-cycles that appear in the superpotential while imposing the “equations

of motion” for the corresponding arrows [15].

Note that rules 3.c) and 3.d) become relevant for m ≥ 2.

4. Ranks. Finally, one can study how quiver representations transform under mu-

tations. Let us assign the ranks Ni to the quiver nodes. Then, the rank N? of the

mutated node transforms as:

N ′? = N0 −N? , (B.1)

where N0 indicates the total number of incoming chiral fields. Periodicity of the rank

after (m+ 1) consecutive mutations on the same node requires that, for every node:

if m ∈ 2Z + 1 : 0 = Nm −Nm−1 + . . .−N1 +N0 ,

if m ∈ 2Z : 2N? = Nm −Nm−1 + . . .−N1 +N0 .
(B.2)

This coincides with the generalized anomaly cancellation conditions discussed in §2.5.
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