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In this paper we study the quantum sheaf cohomology of Grassmannians with defor-
mations of the tangent bundle. Quantum sheaf cohomology is a (0,2) deformation of the
ordinary quantum cohomology ring, realized as the OPE ring in A/2-twisted theories. Quan-
tum sheaf cohomology has previously been computed for abelian gauged linear sigma models
(GLSMs); here, we study (0,2) deformations of nonabelian GLSMs, for which previous meth-
ods have been intractable. Combined with the classical result, the quantum ring structure
is derived from the one-loop effective potential. We also utilize recent advances in super-
symmetric localization to compute A/2 correlation functions and check the general result
in examples. In this paper we focus on physics derivations and examples; in a companion
paper, we will provide a mathematically rigorous derivation of the classical sheaf cohomology
ring.
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1 Introduction

Computing nonperturbative corrections to charged matter couplings in heterotic string com-
pactifications is one of the outstanding problems in string compactifications. On the (2,2)
locus, when the gauge connection is determined by the spin connection, charged matter cou-
plings such as the 27

3
and 273 in compactifications to four dimensions are computed by the

A and B model topological field theories, and their values are by now well-understood via
mirror symmetry. Off the (2,2) locus, much less is known.

In principle, charged matter couplings off the (2,2) locus can be computed by the A/2
and B/2 pseudo-topological field theories, and work has been done in that direction, starting
with [1] (motivated by the mirror symmetry analysis of [2]). These twists of a (0,2) nonlinear
sigma model on a space X with bundle E exist when

det E ∼= K±1
X , ch2(E) = ch2(TX).

OPE’s in these pseudo-topological theories define ‘quantum sheaf cohomology’ rings, gener-
alizing ordinary quantum cohomology rings. For example, in A/2 theories, the chiral states
are of the form

⊕H• (X,∧•E∗) ,

and quantum sheaf cohomology encodes nonperturbative quantum corrections to the product
structure on the sheaf cohomology above. This work continued in e.g. [3–18], and culminated
in a description of quantum sheaf cohomology rings on toric varieties with gauge bundles
given by deformations of the tangent bundle, as described physically in GLSMs in [19, 20]
and mathematically in [21, 22]. (See also [23–29] for more recent discussions, and [30] for a
recent discussion of perturbative contributions to Yukawa couplings.)

Although those results are an important step, computing nonperturbative corrections and
quantum sheaf cohomology for compact Calabi-Yau’s with bundles that are not deformations
of tangent bundles remains an open question.

As a stepping-stone towards that goal, we have been considering quantum sheaf cohomol-
ogy on Grassmannians. These have technical complications beyond those of toric varieties,
yet also have enough symmetries to make one hope that a tractable solution exists. In
terms of GLSMs, this involves understanding nonabelian cases, whereas all previous work
in quantum sheaf cohomology in (0,2) models has been in abelian GLSMs. In terms of the
underlying mathematics, this becomes a story about nontrivial sheaves on Quot schemes,
a technical step beyond toric cases, for which the pertinent moduli spaces are again toric
varieties and induced sheaves are locally-free.

In this paper, we will present the results of that program, namely quantum sheaf coho-
mology rings on Grassmannians with deformations of the tangent bundle. Specifically, we
will use one-loop effective action and supersymmetric localization [29, 31–34] arguments to
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derive and discuss the form of the quantum sheaf cohomology ring. For generic deformations
off the (2,2) locus, we will argue that the quantum sheaf cohomology ring can be expressed
as

C
[

σ(1), σ(2), · · ·
]

/
〈

Dk+1, Dk+2, · · · , R(n−k+1), · · · , R(n−1),
R(n) + q, R(n+1) + qσ(1), R(n+2) + qσ(2), · · ·

〉

,

where

Dm = det
(

σ(1+j−i)

)

1≤i,j≤m
,

R(r) =

min(r,n)
∑

i=0

Iiσ(r−i)σ
i
(1),

for Ii the coefficients of the characteristic polynomial of a matrix B defining the deformation.
We discuss how the ring above encodes the ordinary quantum cohomology ring (and the
classical cohomology ring) of the Grassmannian as special cases. We also discuss two sets
of non-generic loci where the expression above fails to hold. Along one, the ‘discriminant
locus’, both the deformed bundle and the corresponding physical theory degenerate. We
give explicit expressions for this locus. In addition, there is a second locus of interest, where
the additive part of the cohomology ring jumps. We derive an expression for this second
‘jumping’ locus.

In a companion paper [35], we will give a mathematical proof of the classical sheaf co-
homology ring corresponding to the q → 0 limit of our quantum sheaf cohomology ring. A
purely mathematical proof of the form of the quantum sheaf cohomology ring on Grassman-
nians with deformations of the tangent bundle, an exercise in sheaf theory on Quot schemes,
is left for the future.

The paper is organized as follows. In section 2, we discuss general issues regarding (0,2)-
deformations on the Grassmannian, its one-loop effective potential on the Coulomb branch
and supersymmetric localization. In section 3, we give a representation for the quantum
sheaf cohomology by making use of our result in [35] and the one-loop effective potential.
We also discuss its applicability: our formula will be valid for generic deformations, but will
break down on certain codimension one subvarieties, which we discuss in detail. We also
check that our quantum sheaf cohomology ring correctly specializes to both the classical and
quantum (ordinary) cohomology rings, as expected on the (2,2) locus where the bundle is
just the tangent bundle. In section 4, we check the given quantum sheaf cohomology ring
in examples. We compute correlation functions using supersymmetric localization, yielding
analogues of Jeffrey-Kirwan-Grothendieck residues on the Coulomb branch, as in [29]. We
also explicitly discuss the codimension-one subvarieties along which our description of the
quantum sheaf cohomology ring breaks down. In appendix A, we give a mathematical
description of the classical sheaf cohomology ring, outlining the approach and results of [35].
In appendix B, we outline how the product structures can be understood as an exercise
in homological algebra, leading to a speculation that ‘quantum sheaf cohomology’ might
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be understood as ‘quantum homological algebra.’ Finally, in appendix C, we outline the
arguments that will appear in [35] in the special case of a deformation defined by B ∝ I, for
which the resulting bundle is isomorphic to the tangent bundle, and the deformation trivial.

In passing, the reader should note that when we speak of “(0,2) chiral rings” or OPE
rings, we are referring to a finite-dimensional truncation of the infinite-dimensional chiral
ring of a (0,2) theory, a truncation which reduces on the (2,2) locus to the ordinary (2,2)
chiral ring. It was argued in [7] that the OPE algebra of this truncation closes into itself, so
it is consistent to refer to this as an OPE ring. In any event, this is the ring in the twisted
theory that physically defines quantum sheaf cohomology.

2 Nonabelian A/2 models

2.1 (0,2) deformation

The gauged linear sigma model can be used to implement various geometric settings. On
the (2,2) locus, the Grassmannian G(k, n) is described by a two-dimensional supersymmetric
U(k) gauge theory with n chirals in the fundamental representation. Let’s denote these chiral
fields by Φi

α, α = 1, · · · , k, i = 1, · · · , n. The (2,2) vector supermultiplet decomposes into a
(0,2) vector multiplet V and a chiral multiplet Σ. The bosonic component of Σ is an adjoint
valued scalar σ. The chiral supermultiplet, Φi

a, decomposes into a (0,2) chiral multiplet
Φi

α = (φi
α, ψ

i
+α) and a (0,2) Fermi multiplet Λi

α = (ψi
−α, F

i
α), obeying

D+Λ
i
α = σβ

αΦ
i
β . (1)

In a (0,2) theory, the covariant derivative of the Fermi superfield can be any function anni-
hilated by the covariant derivative, i.e., (1) is generalized to

D+Λ
i
α = Ei

α, (2)

where E is a holomorphic function of the chiral superfields satisfying

D+E = 0.

In particular, we can deform off the (2,2) locus by taking

D+Λ
i
α = Ai

jσ
β
αΦ

j
β + Bi

j(Trσ)Φ
j
α,

where A and B are n by n matrices. For simplicity, in this paper we will assume A is
invertible, which will guarantee our models can be deformed to the (2,2) locus. In principle,
one could also imagine nonlinear deformations, functions of say

ǫα1···αkΦi1
α1
· · ·Φik

αk
,
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but as conjectured in [4] and later demonstrated in [21, 22, 25, 29], the A/2 model correla-
tion functions and quantum sheaf cohomology ring relations are independent of nonlinear
deformations, so we only consider linear deformations.

The left moving fermion is now a section of the vector bundle φ∗E , where E is a vector
bundle on G(k, n) defined by the short exact sequence

0→ S ⊗ S∗ g
→ V ⊗ S∗ → E → 0, (3)

where g can be represented as

ωβ
α 7→ Ai

jω
β
αx

j
β + ωβ

βB
i
jx

j
α.

The dual of (3) is

0→ E∗
i
→ V∗ ⊗ S

f
→ S∗ ⊗ S → 0, (4)

where f can be represented as

tαi 7→ tαi f
i
β = tαi A

i
jx

j
β + δαβ t

γ
iB

i
jx

j
γ .

Our goal is to study the quantum sheaf cohomology ring

⊕
r>0
Hr(G(k, n),∧rE∗).

The number of bundle moduli is equal to h1(X,End TX). In the case at hand, X =
G(k, n), and TX = S∗ ⊗ Q, where S is the universal vector bundle and Q is the universal
quotient bundle. Applying the Borel-Weil-Bott theorem, one can compute

h1(G(k, n),End TG(k, n)) =

{

n2 − 1 1 < k < n− 1,
0 else.

In other words, projective spaces have no tangent bundle moduli, but other Grassmannians
do. Let us see how this number emerges from our description of the deformation.

Our description above encodes moduli in the two n × n matrices A, B. The invertible
matrix A can be transformed into the identity matrix using a GL(n) field redefinition, so
that in effect only one matrix (B, or rather BA−1) encodes the moduli. However, the overall
trace in B is trivial, and does not define any bundle deformations, which we can see as
follows. Without loss of generality, take A to be the identity. Denote by i the imbedding
of S in V. Given a local section of V∗ ⊗ S = Hom(V,S), denoted by t, f(t) can be written
as ti + Tr(tBi)Ik×k, where Ik×k is the k × k identity matrix. If t is in the kernel of f and
B = εIn×n, then

ti+ ε Tr(ti) Ik×k = 0. (5)

Taking the trace, we get
(1 + εk) Tr(ti) = 0.
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For generic ε, this implies Tr(ti) = 0, but then ti = 0 by (5). This means t is in the kernel
of f0 (f with B = 0). The converse is also true. We conclude that E∗ ∼= Ω, the holomorphic
cotangent bundle, when B = εIn×n. Thus, we see the number of nontrivial deformations is
n2 − 1, encoded in B (or BA−1 if A is nontrivial), modulo an overall trace.

Not all n × n matrices define a vector bundle through equation (3). In fact, in [35], we
show that a B-deformation fails to give rise to a vector bundle on G(k, n) if and only if there
exist k eigenvalues of B (or BA−1, if A is nontrivial) that sum to −1. Physically, if this
condition is satisfied, then the GLSM develops a noncompact branch, independent of the
value of the Fayet-Iliopoulos parameter. In any event, this criterion gives us the discriminant
locus along which the A/2 correlation functions diverge.

2.2 One-loop effective potential

We will derive the quantum sheaf cohomology ring relations from the one-loop effective
potential on the Coulomb branch, which we review in this section.

For the GLSM corresponding to G(k, n), the gauge group is U(k), which is generically1

broken to U(1)k along the Coulomb branch. For σ the adjoint-valued field in the (2,2) vector
multiplet, Take σa, a = 1, · · · , k, to be the components of σ in the Cartan subalgebra. These
will act as coordinates along the Coulomb branch. On this branch, the charge for Φi

a is δba
under the b-th U(1). Notice that all the Φi

a’s with the same a have the same charges under
all the U(1)’s. For fixed a, we can rewrite (2) as

D+Λ
i
a = Ei

j(σa)Φ
j
a,

where the n× n matrix Ei
j is given by

Ei
j(σa) = σaA

i
j + Tr(σ)Bi

j

for general A, or for A taken to be the identity,

Ei
j(σa) = σaδ

i
j + Tr(σ)Bi

j.

According to [1], the one-loop effective J function is

J̃a = − ln
[

−q−1 det(Ea)
]

. (6)

1 For our computations, we will be able to essentially ignore loci with enhanced gauge symmetry. For
example, in supersymmetric localization computations, residues vanish along such loci, because of e.g. factors
of the form

∏

a 6=b

(σa − σb)

in the numerator of the integrand. As a result, such loci do not contribute to our computations, and will be
ignored in this paper.
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(Here a minus sign is inserted to comply with the convention in mathematical literature, this
corresponds to an overall shift in the theta angle.) The equations of motion are J̃a = 0 for
each a, or more simply, for each a,

det(E(σa)) = det(σaA+ Tr(σ)B) = −q (7)

for general matrices A.

2.3 Supersymmetric localization

We shall check the predictions for the quantum sheaf cohomology ring by computing corre-
lation functions in examples, using supersymmetric localization. Now, it is not known how
to apply supersymmetric localization to an untwisted (0,2) theory, but in this paper we are
concerned with a twist of the (0,2) theory, known as the A/2 model. In a (0,2) nonlinear
sigma model on a space X with bundle E , we can understand the A/2 twist as follows.
Before the twist, the right moving fermion ψ+ is a section of K1/2 ⊗ φ∗TX , and the left

moving fermion λ− is a section of K
1/2
⊗ φ∗E∗, where K is the canonical line bundle of the

worldsheet. In an A/2 twisted nonlinear sigma model [1], for example, we have

ψi
+ ∈ Γ(φ∗T 1,0X),

ψ ı̄
+ ∈ Γ(K ⊗ φ∗T 0,1X),

λa− ∈ Γ(K ⊗ φ∗E∗),

λā− ∈ Γ(φ∗E
∗
),

with the chiral ring being isomorphic to

⊕
r>0
Hr(X,∧rE∗).

In the UV GLSM for the Grassmannian G(k, n), the gauge-invariant chiral ring opera-
tors are of the form Tr σk for integers k and σ the bosonic field of the chiral multiplet in
the adjoint representation. We will express these in terms of symmetric polynomials in com-
muting elements forming a basis along the Coulomb branch, denoted σa = σ1, σ2, · · · , σk.
A/2 correlation functions of symmetric polynomials in the σa then suffice to determine the
quantum sheaf cohomology associated with the chiral ring. In terms of these commuting
elements, the bosonic potential becomes of the form

∑

i,a

|Ai
jσaφ

j
a + Bi

j(Trσ)φ
j
a|

2

=
∑

i,a

φ
j

aφ
k
a

(

Ai
jσa + Bi

j(Trσ)
)∗ (

Ai
kσa + Bi

k(Tr σ)
)

=
∑

i,a

φ
j

aφ
k
a(E

i
j,a)

∗Ei
k,a

9



where
Ei

j,a = Ai
jσa + Bi

j(Tr σ)

The Yukawa couplings have the form

−ψ
j

−aψ
i
+aE

i
j,a + c.c..

These couplings – the bosonic potential and Yukawa couplings – define what amount to
σ-dependent masses that play a crucial role in the one-loop partition function in supersym-
metric localization.

Supersymmetric localization in the A/2 model for (0,2) theories given by deformations
of (2,2) theories was recently discussed in [29]. From the results there,

Z1−loop =
k
∏

a=1

(

1

det Ẽ(σa)

)

where

Ẽi
j(σa) = Ai

jσa + Bi
j

(

∑

b

σb

)

This implies that for any polynomial f in σa, a = 1, · · · , k, the correlation functions off the
(2,2) locus should have the form

〈f(σ)〉 =

1

k!

∑

m1,··· ,mk∈Z

JKG− Res

{

(−1)(n−1)
∑

miq
∑

mi

(

∏

a6=b

(σa − σb)

)

k
∏

a=1

(

1

det Ẽ(σa)

)

mi+1

f(σ)

}

,

(8)

where ‘JKG’ denotes the Jeffrey-Kirwan-Grothendieck residues defined in [29].

In principle, given the A/2 correlation functions, the quantum sheaf cohomology ring
is defined in the same way as the ordinary quantum cohomology. If we take a basis ei for
⊕
r>0
Hr(G(k, n),∧rE∗) as a vector space, and a dual basis êi in the sense that

〈eiêj〉 = δij ,

the generating relations read

σ =
∑

i

〈σei〉êi

for any σ. More to the point, the quantum (sheaf) cohomology ring relations define identities
in the correlation functions: if in the ring, some quantity R is set to zero, then any correlation
function containing R should vanish. We will use localization to check the ring structure in
examples in section 4.
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3 Ring structure of quantum sheaf cohomology

The quantum sheaf cohomology ring is the OPE ring of an A/2-twisted theory, just as the
ordinary quantum cohomology ring is the OPE ring of an A-twisted theory – quantum sheaf
cohomology is the (0,2) generalization of ordinary quantum cohomology. In this section
we will describe it for Grassmannians with deformations of the tangent bundle, and give a
physics-based derivation.

Also, so far we have given results for general deformation matrices A and B, but as
previously observed, the matrix A is redundant. In the rest of this paper, we will assume
without loss of generality that A is the identity. The general case can be reconstructed by
replacing B (in results derived for A = I) with BA−1.

3.1 Gauge-invariant operators

The Coulomb branch arguments given in the last section, both one-loop effective actions and
supersymmetric localization, involve for a U(k) gauge theory a set of k mutually commuting
fields σ1, · · · , σk which act as local coordinates on the Coulomb branch. However, these
individually are not quite invariant under U(k), as there is still a residual Weyl group action.

The complete group invariants are symmetric polynomials in σ1, · · · , σk, and these can
be naturally associated to Young diagrams, via what are known as Schur polynomials (see
[36][chapter 6] or [37][appendix B] for an introduction). For example, if k = 2, then

σ = σ1 + σ2,

σ = σ2
1 + σ2

2 + σ1σ2,

σ = σ3
1 + σ2

1σ2 + σ1σ
2
2 + σ3

2 ,

σ = σ1σ2,

σ = σ2
1σ2 + σ1σ

2
2,

σ = σ2
1σ

2
2,

and so forth. Each polynomial is homogeneous, of degree equal to the number of boxes in
the Young diagram.

As we will see in detail in appendix A and [35], Young diagrams as above correspond
mathematically to elements of sheaf cohomology groups

H• (G(k, n),∧•E∗) ,

for E the pertinent tangent bundle deformation, which arise in nonlinear-sigma-model-based
analyses. For example, there is a well-known correspondence between generators of coho-
mology of the Grassmannian G(k, n) of fixed degree, and Young diagrams that fit inside
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a k × (n − k) box. (Young diagrams that extend outside of that box would correspond
mathematically to cohomology classes of too-high degree, which classically vanish.)

Now, for the purposes of describing the ring, including all the Young diagrams is re-
dundant, as there are relations between their products. For example, in the k = 2 case
above,

σ2 = σ2
1 + 2σ1σ2 + σ2

2 = σ + σ ,

and so σ is determined algebraically by σ2 and σ . More generally, the symmetric

polynomials corresponding to any Young diagram that extends past the first row can be
expressed algebraically in terms of Young diagrams that run along the first row only. This
is known as the Giambelli formula (see e.g. [36][section 9.4]), which for a Young diagram λ,
reads

σλ = det
(

σ(λi+j−i)

)

1≤i,j≤r

for r the number of boxes in λ, λi the number of boxes in the ith row, and σ(n) corresponding
to a Young diagram with one horizontal row of n boxes, e.g.

σ(1) = σ , σ(2) = σ , σ(3) = σ ,

and so forth, in conventions in which σ(m) = 0 for m < 0, and is 1 if m = 0. For example,
the Giambelli formula says

σ = det

[

σ σ
1 σ

]

= σ2 − σ ,

which we verified explicitly above. For another example,

σ = det





σ σ σ
1 σ σ
0 0 1



 = σ σ − σ ,

which is easily checked.

Altogether, the classical cohomology ring of the Grassmannian G(k, n) can be expressed
in terms of generators corresponding to Young diagrams with only a single horizontal row,
as [38–43]

C
[

σ(1), · · · , σ(n−k)

]

/ 〈Dk+1, · · · , Dn〉 , (9)

where
Dm = det

(

σ(1+j−i)

)

1≤i,j≤m
,

in conventions in which σ(m) = 0 if m < 0 or m > n − k, as each Dm should only be
constructed from the available generators.

It should be mentioned that the classical cohomology ring can also be written in the
presentation

C
[

σ(1), · · · , σ(k)
]

/ 〈Dn−k+1, · · · , Dn〉 .
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These two presentations define equivalent rings. When describing the ordinary cohomology
ring of the Grassmannian, it is often convenient to think of the generators as Chern classes:
Chern classes of the universal quotient bundle in (9, and Chern classes of the universal
subbundle above (see e.g. [42]). For the ordinary cohomology ring, they can be related by
transposing Young diagrams, though that description is not symmetric in the quantum case.
In any event, in this paper we will primarily refer back to presentation (9).

Now, we are interested in computing both quantum and (0,2) modifications to the clas-
sical Grassmannian cohomology ring structure, so a priori, it might happen that Young
diagrams extending past the first row are needed. Nevertheless, it turns out that they are
not, the quantum sheaf cohomology ring can be determined solely by Young diagrams along
the first row only.

As a special case, the standard result for the ordinary quantum cohomology ring of
G(k, n) is (e.g. [38–43])

C
[

σ(1), · · · , σ(n−k)

]

/
〈

Dk+1, · · · , Dn−1, Dn − (−)n−k−1q
〉

,

or, in terms of the other presentation of the classical cohomology ring,

C
[

σ(1), · · · , σ(k)
]

/
〈

Dn−k+1, · · · , Dn − (−)k−1q
〉

.

3.2 Quantum sheaf cohomology ring

We will see that the quantum sheaf cohomology ring (the OPE ring of the A/2 twist) of a
(0,2) deformation of the Grassmannian G(k, n) is given generically by

C
[

σ(1), σ(2), · · ·
]

/
〈

Dk+1, Dk+2, · · · , R(n−k+1), · · · , R(n−1),
R(n) + q, R(n+1) + qσ(1), R(n+2) + qσ(2), · · ·

〉

,
(10)

specializing for k = 1 to

C
[

σ(1), σ(2), · · ·
]

/
〈

Dk+1, Dk+2, · · · , R(n) + q, R(n+1) + qσ(1), · · ·
〉

,

and for k = n− 1 to

C
[

σ(1), σ(2), · · ·
]

/
〈

Dn, Dn+1, · · · , R(2), · · · , R(n−1), R(n) + q, R(n+1) + qσ(1), · · ·
〉

,

where

Dm = det
(

σ(1+j−i)

)

1≤i,j≤m
,

R(r) =

min(r,n)
∑

i=0

Iiσ(r−i)σ
i
(1),

13



for Ii the coefficients of the characteristic polynomial of B, given by

det(tI +B) =
n
∑

i=0

In−it
i

For example, I0 = 1, independent of B, but the other Ii depend upon B. In particular,

I1 = trB, In = detB.

In passing, it will sometimes be helpful to define a generalization of R(r). For a Young
diagram µ, we define Rµ to be

Rµ = det















R(µ1) R(µ1+1) R(µ1+2) · · · R(µ1+k−1)

σ(µ2−1) σ(µ2) σ(µ2+1) · · · σ(µ2+k−2)

σ(µ3−2) σ(µ3−1) σ(µ3) · · · σ(µ3+k−3)
...

. . .

σ(µk−k+1) σ(µk−k+2) σ(µk−k+3) · · · σ(µk)















.

In the special case that the Young diagram µ consists of a single horizontal row of r boxes,
which we would label (r), note that

Rµ = R(r),

and it is in this sense that Rµ generalizes R(r).

The description of the ring above holds generically in the space of tangent bundle defor-
mations, but does break down along certain loci. Specifically, the description of the classical
sheaf cohomology ring, described by the limit q → 0, breaks down along

X ∪ Vn−k+1 ∪ Vn−k+2 ∪ · · · ,

where X is the discriminant locus of the tangent bundle deformation (meaning, the locus
where the bundle degenerates), and Vm is a locus defined by Rm, as follows. First, for every
Young diagram µ of size |µ| = m, such that µ1, the number of boxes in the first row, is
greater than n − k, and no column has more than k boxes, expand the determinant below
in a sum of Schur polynomials for Young diagrams of the same size:

Rµ =
∑

ν

Cm
µνσν ,

where |ν| = m = |µ|. In this fashion, we define a matrix (Cm
µν). Then, we define Vm to be

the locus where the rank of the (not necessarily square) matrix (Cm
µν) drops.

Along the Vm for
n− k + 1 ≤ m ≤ k(n− k),

14



the Vm define loci where the dimensions of the sheaf cohomology groups may jump. For
m > k(n − k), the Vm merely define loci where the presentation breaks down, where the
given relations may not suffice, but the dimensions of the sheaf cohomology groups do not
jump.

A derivation of this locus is outlined in appendix A. It is useful to note that the locus
above is codimension at least one, and so the presentation of the classical sheaf cohomology
ring is pertinent for generic tangent bundle deformations.

It is also important to notice that the locus above does not intersect the (2,2) locus. On
the (2,2) locus, where B = 0 and R(n) = σ(n), from the Giambelli formula Rµ = σµ, and so
we see that along the (2,2) locus, Cm

µν = δµν , whose rank does not drop, and so Vm is the
empty set. Thus, Vm never intersects the (2,2) locus, and neither does the discriminant.

In passing, note that the result above is consistent with claims of [7] that in a sufficiently
small neighborhood of the (2,2) locus, the OPE’s can be consistently defined within the
topological subsector.

We conjecture that for m > k(n − k), the loci Vm are all identical to one another and
to the discriminant locus, so that the total number of components of the locus where the
quantum sheaf cohomology ring relations break down in some fashion is finite. We will see
this in examples later, though we do not yet have a general proof for all cases.

So far we have described the loci along which the presentation of the classical sheaf
cohomology ring degenerates. The degeneration loci of the presentation of the quantum
sheaf cohomology ring are not completely understood by us at present, though we conjecture
that the same loci Vm are involved, as we shall see in examples later.

In the remainder of this section, we will check that the ansatz above correctly specializes
to the ordinary classical and quantum cohomology rings. We will derive the quantum sheaf
cohomology ring above from the one-loop effective action later in section 3.3.

3.2.1 Specialization to ordinary classical cohomology

First, as one extreme, let us reduce to the classical cohomology ring of G(k, n). Here, B = 0
and q = 0. In this case,

R(r) = σ(r),

and the quantum sheaf cohomology ring above becomes

C
[

σ(1), σ(2), · · ·
]

/
〈

Dk+1, Dk+2, · · · , σ(n−k+1), σ(n−k+2), · · ·
〉

,

or more simply,
C
[

σ(1), · · · , σ(n−k)

]

/ 〈Dk+1, Dk+2, · · · 〉 .
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This is almost identical to the presentation of the ordinary cohomology ring of the Grass-
mannian given in equation (9), except that here the relations involve all D’s of degree greater
than n, rather than going only toDn. However, we can establish that the two sets of relations
are equivalent, as follows.

We will show that Dn+1 and all higher relations are linear combinations of the relations
{Dk+1, · · · , Dn}, so that the ring presented above is equivalent to (9). To do this, we expand
down the first column of the determinant in the Giambelli formula to derive the recursion
relation

σ(ℓ,1,··· ,1) = σ(ℓ)Dm − σ(ℓ+1,1,··· ,1)

where σ(ℓ,1,··· ,1) denotes the Schur polynomial associated to a Young tableau with ℓ boxes
in the first row and 1 box in the next m rows, and σ(ℓ+1,1,··· ,1) denotes a similar Schur
polynomial, albeit associated to a Young diagram with m− 1 rows with one box. Applying
this recursively, one can quickly show

Dn+1 = σ(1)Dn − σ(2)Dn−1 + · · · + (−)n−k+1σ(n−k)Dk+1 + (−)n−kσ(n−k+1,1,··· ,1). (11)

However, from the Giambelli formula, σ(n−k+1,1,··· ,1) is given by a determinant whose first
row vanishes (since it involves σ’s all of which are outside the range of the generators),
hence σ(n−k+1,1,··· ,1) = 0. Thus, we see that Dn+1 is a linear combination of the relations
{Dk+1, · · · , Dn}, and one can similarly demonstrate the same result for all Dm for m > n.
In this fashion, we see that the ring above is isomorphic to the ordinary cohomology ring of
the Grassmannian given in equation (9).

3.2.2 Specialization to ordinary quantum cohomology

Next, let us verify that the quantum sheaf cohomology ring (10) reduces to the ordinary
quantum cohomology ring of the Grassmannian G(k, n) along the (2,2) locus. This is the
case B = 0, but q 6= 0. As before,

R(r) = σ(r),

and so the quantum sheaf cohomology ring above becomes

C
[

σ(1), σ(2), · · ·
]

/
〈

Dk+1, Dk+2, · · · , σ(n−k+1), · · · , σ(n−1),
σ(n) + q, σ(n+1) + qσ(1), · · ·

〉

,
(12)

specializing for k = 1 to

C
[

σ(1), σ(2), · · ·
]

/
〈

D2, D3, · · · , σ(n) + q, σ(n+1) + qσ(1), · · ·
〉

,

and for k = n− 1 to

C
[

σ(1), σ(2), · · ·
]

/
〈

Dn, Dn+1, · · · , σ(2), · · · , σ(n−1), σ(n) + q, σ(n+1) + qσ(1), · · ·
〉

.
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The expression above for the quantum cohomology ring is not yet in a standard form,
and can be simplified to such a form. First, we show that, for ℓ > 1,

Dn+ℓ = 0, (13)

in the sense that it is redundant, defining no new relations, and hence can be removed from
the presentation above. This can be proved by induction on ℓ. First, we will need a small
identity. By expanding the determinant in the definition of Dm across the first row, (and
then expanding the determinant of each submatrix along the first column), we find

Dm = σ(1)Dm−1 − σ(2)Dm−2 + · · · + (−)mσ(m−1)D1 + (−)m+1σ(m).

Now, we proceed with the induction. For ℓ = 1, we have

Dn+1 = σ(1)Dn + · · ·+ (−)n−k+1σ(n−k)Dk+1 + (−)n−k+2σ(n−k+1)Dk

+ · · ·+ (−)nσ(n−1)D2 + (−)n+1σ(n)D1 + (−)n+2σ(n+1),

= (−)n+1(σ(n)D1 − σ(n+1)),

= (−)nq(D1 − σ(1)) = 0,

where we have used the ring relations

Dk+1 = Dk+2 = · · · = 0, σ(n−k+1) = · · · = σ(n−1) = 0.

Next, assume that (13) is true for all ℓ 6 m. When m < k, we have

Dn+m+1 = σ(1)Dn+m − σ(2)Dn+m−1 + · · ·+ (−)n+m−k+1σ(n+m−k)Dk+1 +

(−)n+m−k+2σ(n+m−k+1)Dk + · · ·+ (−)n+1σ(n)Dm+1 + · · ·+ (−)n+m+2σ(n+m+1),

= (−)n+1σ(n)Dm+1 + · · ·+ (−)n+m+2σ(n+m+1),

= (−)nq
(

Dm+1 − σ(1)Dm + · · ·+ (−)m+1σ(m+1)

)

= 0.

When m > k, we have

Dn+m+1 = σ(1)Dn+m − σ(2)Dn+m−1 + · · ·+ (−)nσ(n−1)Dm+2

+(−)n+1σ(n)Dm+1 + · · ·+ (−)n+m+2σ(n+m+1),

= (−)n+1σ(n)Dm+1 + · · ·+ (−)n+m+2σ(n+m+1),

= (−)nq(Dm+1 − σ(1)Dm + · · ·+ (−)m+1σ(m+1)) = 0.

Thus, we have shown (13).

Next, using the relations
σ(n+ℓ) = −qσ(ℓ),

we can express the σ(i)’s with i > n − k as polynomials of q and σ(i)’s with i 6 n − k, and
so we can rewrite the ring in terms of generators

σ(1), · · · , σ(n−k).
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Finally, we derive an expression for Dn. Starting with

Dn = σ(1)Dn−1 − σ(2)Dn−2 + · · ·+ (−)n−kσ(n−k−1)Dk+1 + (−)n−k−1σ(n−k)Dk

(−)n−k+2σ(n−k+1)Dk−1 + · · ·+ (−)nσ(n−1)D1 + (−)n+1σ(n),

we use the ring relations

Dk+1 = · · · = Dk(n−k) = 0, σ(n−k+1) = · · · = σ(n−1) = 0

and the fact that
n− 1 ≤ k(n− k)

to simplify Dn to
Dn = (−)n−k−1σ(n−k)Dk + (−)n+1σ(n),

which using further ring relations can be written as

Dn = (−)n−k−1σ(n−k)Dk + (−)nq.

Finally, let us simplify the ring presentation (12). We have shown that inside that quotient
ring, Di is redundant for i > n, and given our expression for Dn above, it is straightforward
to see that the ring (12) can be reduced to

C
[

σ(1), · · · , σ(n−k)

]

/ 〈Dk+1, · · · , Dn−1, Dn + (−)nq〉 , (14)

where the “Dn” above is the ‘classical’ Dn, namely

(−)n−k−1σ(n−k)Dk

in the notation of (12). This new presentation is a standard representation of the quantum
cohomology ring of G(k, n) (see e.g. [38–43]).

3.3 Derivation from one-loop effective action

In this section we will describe how the quantum sheaf cohomology ring relations can be
computed from the one-loop effective action, and in the next section we will check our
results against A/2 correlation functions computed via supersymmetric localization. (The
classical sheaf cohomology ring relations will be derived mathematically in the companion
paper [35]; a purely mathematical derivation of the quantum sheaf cohomology ring relations
here is left for future work.)

Before computing quantum sheaf cohomology for general bundle deformations, we shall
begin by deriving the ordinary quantum cohomology, along the (2,2) locus, from the one-loop
effective action, as a warm-up exercise.
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As before, let us take the diagonal elements of the σ field to be σi, i = 1, · · · , k. On the
(2,2) locus, where B = 0, we see from the one-loop effective potential (6) that the σi obey
equation (7), or more simply

σn
i = −q, i = 1, · · · , k.

Because these equations are of order n, all relations with order lower than n are not affected,
i.e.

σ(i) = 0, i = n− k + 1, · · · , n− 1.

Then, for example, from

σ(n−1)σ1 =
∑

α1+···+αk=n

α1 6=0

σα1

1 · · ·σ
αk

k = 0,

we get

σ(n) =
∑

α1+···+αk=n

σα1

1 · · ·σ
αk

k =
∑

α2+···+αk=n

σα2

2 · · ·σ
αk

k .

Similarly, from σ(n−2)σ1 = 0, we have

σ(n−1) =
∑

α2+···+αk=n−1

σα2

2 · · ·σ
αk

k .

Then σ(n−1)σ2 = 0 shows that

σ(n) =
∑

α3+···+αk=n

σα3

3 · · ·σ
αk

k .

This procedure stops in k − 1 steps, and we get our first quantum corrected relation

σ(n) = σn
k = −q. (15)

To derive the equation above, we arbitrarily made use of σ1, · · · , σk−1; by picking a different
set of k − 1 σi’s, we arrive at equation (15) for each value of k.

We can use the same method to deduce the higher order relations, for example

σ(n)σ1 = −qσ1 =
∑

α1+···+αk=n+1

α1 6=0

σα1

1 · · ·σ
αk

k ,

which implies

σ(n+1) =

(

∑

α2+···+αk=n+1

σα2

2 · · ·σ
αk

k

)

− qσ1.

Repeatedly using lower order relations leads to

σ(n+1) = −qσ1 − qσ2 − · · · − qσk = −qσ(1).
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Similarly, one can compute
σ(n+l) = −qσ(l), l > 1.

In this fashion, we find that the one-loop effective action implies a quantum cohomology
ring of the form (12), which we show in section 3.2.2 matches standard presentations of the
ordinary quantum cohomology ring.

So far we have shown how one-loop effective action arguments can be used to derive the
ordinary quantum cohomology ring along the (2,2) locus. Next we shall leave the (2,2) locus
and consider more general (0,2) cases by turning on a nonzero B deformation.

First, we note that the relations

Dk+1 = Dk+2 = · · · = 0

are trivially satisfied for all σ(k) constructed as Schur polynomials in k variables σ1, · · · , σk.
It remains to derive the relations

R(n−k+1) = · · · = R(n−1) = 0, R(n) = −q, R(n+1) = −qσ(1), · · ·

For any n× n matrix B, the quantum corrected relations are encoded in

det(E(σα)) = det(σαI + Bσ(1)) = −q (16)

due to the one-loop effective potential (6). Note that, by definition of Ii we have

det(E(σa)) =
n
∑

i=0

Iiσ
i
(1)σ

n−i
a . (17)

Again, the relations with dimension smaller than n do not receive quantum corrections, i.e.
the relations

R(n−k+1) = R(n−k+2) = · · · = R(n−1) = 0 (18)

still hold in the quantum case. Now let’s compute the relation at order n. First, note

R(n−1)σ1 =
n−1
∑

i=0

Iiσ(n−i−1)σ
i
(1)σ1 =

n−1
∑

i=0

Ii






σ(n−i) −

∑

|α|=n−i

α1=0

σ[α]






σi
(1) = 0,

where σ[α] denotes σα1

1 σα2

2 · · ·σ
αk

k , α is the corresponding multi-index, and we have used the
relation R(n−1) = 0. This implies that

R(n) =
n
∑

i=0

Iiσ(n−i)σ
i
(1) =

n
∑

i=0

Ii







∑

|α|=n−i

α1=0

σ[α]






σi
(1).
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Similarly, R(n−2)σ1 = 0 implies

R(n−1) =
n−1
∑

i=0

Ii







∑

|α|=n−i−1

α1=0

σ[α]






σi
(1),

and R(n−1)σ2 = 0 leads to

R(n) =

n
∑

i=0

Ii







∑

|α|=n−i

α1=α2=0

σ[α]






σi
(1).

Because we have k − 1 relations in (18), induction shows that this procedure allows us to
eliminate σ1 through σk−1 in the expression of Rn, i.e.

R(n) =

n
∑

i=0

Iiσ
n−i
k σi

(1),

which is equal to −q due to (16) and (17). Thus the relation at order n is

R(n) + q = 0. (19)

We can follow the same procedure to compute the quantum correction to R(n+1). Since now
there are k relations at hand including (19), all the σi dependence can be eliminated except
those proportional to q. One can compute

R(n+1) + qσ(1) = 0. (20)

In general, we can show

R(n+ℓ) = −qσ(ℓ−1)P1 + qσ(ℓ−2)P2 − qσ(ℓ−3)P3 + · · ·+ (−)kqσ(ℓ−k)Pk, (21)

where ℓ > 0 and Pi is the elementary symmetric polynomial of order i in σ1, · · · , σk. Again,
we define σ(s) = 0 when s < 0 in the above formula. From the fact that

k
∏

i=1

(1 + σit)
−1 =

∞
∑

j=0

(−)jσ(j)t
j

k
∏

i=1

(1 + σit) =
k
∑

j=0

Pjt
j ,

we have
σ(ℓ) − σ(ℓ−1)P1 + σ(ℓ−2)P2 + · · ·+ (−)kσ(ℓ−k)Pk = 0,
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which implies
R(n+ℓ) + qσ(ℓ) = 0, ℓ > 0. (22)

Actually, (22), or equivalently (21), can be proved by induction with the same method as
for R(n) and R(n+1). Indeed, if we assume (22) is true for l replaced with any positive integer
smaller than l, we get

R(n+ℓ−1)σ1 =
n
∑

i=0

Ii







∑

|α|=n+ℓ−i

α1 6==0

σ[α]






σi
(1),

must match
−qσ(ℓ−1)σ1,

(by the inductive assumption) and hence, if we define Es,t to be the elementary polynomial
of order t in σ1, · · · , σs, for 0 6 s 6 k and t 6 s, then

R(n+ℓ) =

n
∑

i=0

Ii







∑

|α|=n+ℓ−i

α1=0

σ[α]






σi
(1) − qσ(ℓ−1)E1,1.

Let’s suppose that

R(n+ℓ−s) =
n
∑

i=0

Ii







∑

|α|=n+ℓ−s−i

α1=···=αu−s=0

σ[α]






σi
(1) − qσ(ℓ−s−1)Eu−s,1 + qσ(ℓ−s−2)Eu−s,2+

· · ·+ (−)u−sqσ(ℓ−t)Eu−s,u−s

(23)

for any u 6 t < k and 0 6 s 6 u (we have seen this is true for t = 1). Starting with

R(n+ℓ−t) =
n
∑

i=0

Ii







∑

|α|=n+ℓ−t−i

α1=0

σ[α]






σi
(1) − qσ(ℓ−t−1)σ1,

which is obtained from R(n+ℓ−t−1)σ1 = −qσ(ℓ−t−1)σ1, induction on s shows (23) is valid for
u 6 t + 1 and s 6 u. Thus we can take u = k and s = 0 in (23) to get

R(n+ℓ) = −qσ(ℓ−1)Ek,1 + qσ(ℓ−2)Ek,2 + · · ·+ (−)kqσ(ℓ−k)Ek,k,

which is exactly (21), hence proving (22).
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4 Examples

In this section, we will perform consistency tests on the quantum sheaf cohomolgy ring (10)
by using supersymmetric localization to compute A/2 correlation functions in examples, and
check that the predictions of the quantum sheaf cohomology ring are consistent with those
correlation functions.

In each example, we will begin by describing correlation functions and quantum cohomol-
ogy along the (2,2) locus, and will generalize to (0,2). Furthermore, in all our (0,2) examples,
we will take B to be diagonal:

B = diag(b1, · · · , bn)

on G(k, n). The methods of this paper apply to general B; however, the resulting formulas
for general B are rather complex, and it suffices to consider the special case of B diagonal
for the purposes of illustrative examples.

We will begin by looking at examples of projective spaces as special cases of the con-
struction described here, and then will turn to Grassmannians which are not projective
spaces.

4.1 G(1, 3)

The Grassmannian G(1, 3) is the projective space P2, so any tangent bundle deformation is
trivial – the tangent bundle is rigid. Nevertheless, this example and G(2, 3) will serve as
simple prototypes for later results.

Let us begin by computing correlation functions on the (2,2) locus. Since G(1, 3) is
described by a U(1) gauge theory, there is only a single σ field. Here, the localization
formula (8) implies that classical (two-point) correlation functions are given by

〈f(σ)〉 = JKG− Res

{

1

σ3
1

f(σ)

}

,

which trivially reduces to the ordinary one-dimensional residue. The only nonvanishing
classical correlation function is given by

〈σ2〉 = 1 = 〈σ 〉

Similarly, the one-instanton contributions to correlation functions are given by

〈f(σ)〉 = JKG− Res

{

q

σ6
1

f(σ)

}

,
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which is again an ordinary contour integral about σ = 0. Clearly the only nonvanishing
correlation function in the one-instanton sector is

〈σ5〉 = q,

and so we read off the quantum cohomology relation

σ3 = σ = q.

This reproduces the quantum cohomology ring of P2, given by

C[x]/(x3 − q).

After the (trivial) (0,2) deformation, classical correlation functions take the form

〈f(σ)〉 = JKG− Res

{(

1

det Ẽ(σ)

)

f(σ)

}

,

where the JKG residue is trivially an ordinary residue, and

Ẽ(σ) = (I +B)(σ)

for the case we shall consider, hence

det Ẽ(σ) = σ3 det(I +B).

The only nonzero classical correlation function is

〈σ2〉 = 〈σ 〉 =
1

det(I +B)
.

Similarly, in the one-instanton sector,

〈f(σ)〉 = JKG− Res

{

q

(

1

det Ẽ(σ)

)2

f(σ)

}

,

where again the JKG residue is an ordinary residue at σ = 0, and the only nontrivial
correlation function is

〈σ5〉 =
1

(det(I +B))2
.

From the structure of these correlation functions, as well as the one-loop effective action,
one can read off that the quantum ring relation is given by

det Ẽ(σ) = q
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or equivalently
σ3 = σ det(I +B) = q.

By a simple redefinition of q, the resulting ring is identical to that on the (2,2) locus, as
expected for a trivial bundle deformation.

Now, let us compare to the prediction of the quantum sheaf cohomology ring (10). In
this case, the ring should be given by

C
[

σ(1), σ(2), · · ·
]

/
〈

D2, · · · , R(3) + q, R(4) + qσ(1), · · ·
〉

= C
[

σ(1)
]

/
〈

R(3) + q
〉

.

In writing the above, we have used the fact that

D2 = σ2
(1) − σ(2),

hence σ(2) (and, similarly, higher σ(i)) are redundant, and also the consequence

R(3+ℓ) + qσ(ℓ) = σ(ℓ)
(

R(3) + q
)

,

which makes the higher R(n) relations redundant. Finally, note that

R(3) =
3
∑

i=0

Iiσ(3−i)σ
i,

=

(

3
∑

i=0

Ii

)

σ3,

= (det(I +B))σ3,

Clearly, this ring precisely matches the relation derived above.

Let us conclude by computing the locus on which the sheaf cohomology jumps, defined
by

V3 ∪ V4 ∪ V5 ∪ · · ·

as described in section 3.2. Since G(1, 3) is a projective space, and projective spaces admit
no tangent bundle deformations, we should recover no more than the discriminant locus, but
this will be both a good consistency test as well as an explicit demonstration of the V ’s.

We begin by computing V2+ℓ. There is only one Young diagram with 2+ ℓ boxes, at least
two along the first row, and none in later rows, namely (2 + ℓ), and trivially

R(2+ℓ) = (1 + I1 + I2 + I3)σ(2+ℓ) = σ(2+ℓ) det(1 +B).

Thus, for any V2+ℓ, the matrix Cµν is a 1× 1 matrix, with single component

det(1 +B),
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and so we see that for all ℓ ≥ 1, the locus V2+ℓ coincides with the discriminant locus. Thus,
there are no new components, as expected from the fact that (for B not in the discriminant
locus) the tangent bundle deformations are all trivial.

It is easy to see that a nearly identical argument holds for G(1, n), that all of the loci
Vn−k+ℓ for such Grassmannians are copies of the discriminant locus.

4.2 G(2, 3)

Before moving on to Grassmannians with nontrivial bundle deformations, let us look at a
different presentation of P2, as a U(2) gauge theory rather than a U(1) gauge theory.

As before, let us first examine the (2,2) locus. In this theory, the classical (two-point)
functions are given by

〈f(σ)〉 =
1

2!
JKG− Res

{

(−)(σ1 − σ2)
2 1

σ3
1

1

σ3
2

f(σ)

}

,

or explicitly,

〈σ2
1〉 = −

1

2!
,

〈σ1σ2〉 = +
2

2!
,

〈σ2
2〉 = −

1

2!
,

using the fact that the JKG residue in this case is just iterated ordinary residues at σ2 = 0
and σ1 = 0. We interpret the σi’s on the (2,2) locus as Chern roots of the universal subbundle
S. In that language, the degree two cohomology is generated by

σ = σ1 + σ2,

corresponding to a (1,1) form on P
2, and the degree four cohomology is generated by

σ = σ1σ2,

corresponding to a (2,2) form on P2. As a consistency check, note that

〈σ 〉 = 〈σ1σ2〉 6= 0,

as expected since σ should correspond to a top-form.
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Furthermore, as all the contributing Schubert cells are associated with subdiagrams of
the k × (n− k) box

there is a relation
σ = 0

which we can check explicitly. In terms of Schur polynomials,

σ = σ2
1 + σ2

2 + σ1σ2

and it is immediate that
〈σ2

1〉 + 〈σ1σ2〉 + 〈σ
2
2〉 = 0

Note in passing that with the relation σ = 0, we have that σ2 = σ , as expected for

the cohomology ring of P2.

Thus, in this fashion we can interpret the σ1,2 and see the cohomology of G(2, 3) = P2 in
the correlation functions above.

Next, let us turn to the formal (0,2) deformations of this theory. Now, ultimately because
the tangent bundle of P2 has no nontrivial deformations, we should get isomorphic results,
but this is a good warm-up exercise for nontrivial examples later.

Here, classical correlation functions have the form

〈f(σ)〉 =
1

2!
JKG− Res

{

(−)(σ1 − σ2)
2

(

1

det Ẽ(σ1)

)(

1

det Ẽ(σ2)

)

f(σ)

}

where
Ẽ(x) = Ix + B(σ1 + σ2).

The JKG residue above is computed as iterated ordinary residues, by first summing the
residues about

σ1 = −σ2
b1

1 + b1
, −σ2

b2
1 + b2

, −σ2
b3

1 + b3
,

corresponding to the zeroes of det Ẽ(σ1), and then taking the residue about σ2 = 0.

Define

∆ = 2
∏

i<j

(1 + bi + bj),

= 2
(

1 + 2I1 + I21 + I2 + I1I2 − I3
)

,
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then

〈σ2
1〉 = ∆−1 [−1 − 2I2 − 2I1] ,

〈σ1σ2〉 = ∆−1 [2 + 2I2 + 2I1] ,

〈σ2
2〉 = ∆−1 [−1 − 2I2 − 2I1] = 〈σ2

1〉,

or equivalently

〈σ 〉 = 〈σ2
1〉 + 〈σ1σ2〉 + 〈σ

2
2〉,

= ∆−1 [−2I2 − 2I1] ,

〈σ2 〉 = 〈σ2
1〉 + 2〈σ1σ2〉 + 〈σ

2
2〉,

= 2∆−1,

〈σ 〉 = 〈σ1σ2〉,

= ∆−1 [2 + 2I2 + 2I1] ,

where

I3 = b1b2b3 = detB,

I2 =
∑

i<j

bibj ,

I1 =
∑

i

bi = trB.

Now, the quantum sheaf cohomology ring predicted by (10) is of the form

C
[

σ(1), σ(2), · · ·
]

/
〈

D3, D4, · · · , R(2), R(3) + q, R(4) + qσ(1), · · ·
〉

.

The relations
R(2) = D3 = D4 = · · · = 0

allow one to write σ(2) and all higher σ(r) as linear combinations of powers of σ(1), so that
there is, in effect, only one generator. As the tangent bundle of G(2, 3) = P2 is rigid,
the quantum sheaf cohomology ring should be, for nondegenerate cases, isomorphic to the
ordinary quantum cohomology ring of P2, so indeed only one generator is expected.

Now,

R(2) =
2
∑

i=0

Iiσ(2−i)σ
i
(1),

= σ(2) + (I1 + I2)σ
2
(1),
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and

R(3) =
3
∑

i=0

Iiσ(3−i)σ
i
(1),

= σ(3) + I1σ(2)σ(1) + (I2 + I3)σ
3
(1).

Note that, with a bit of algebra, the relations

D3 = 0 = R(2) = R(3) + q

can be solved for σ(2) and σ(3) to derive the relation

(1 + 2I1 + I2 − I3 + I1(I1 + I2))σ
3
(1) = −q. (24)

Thus, for generic tangent bundle degenerations, we recover the ordinary quantum cohomol-
ogy ring relation for P2, up to an irrelevant scaling. The coefficient of σ3

(1) vanishes on the

discriminant locus {∆ = 0} (which matches the V3 locus, as we shall see later).

We can see the ring relations in the correlation functions above as follows. First, note
that already in the classical correlation functions,

〈R(2)〉 = 〈σ 〉+ (I1 + I2)〈σ
2 〉 = ∆−1 [−2(I1 + I2) + (I1 + I2)(2)] = 0,

as one would expect from the ring relations above. On the (2,2) locus, R(2) specializes to
σ , and so this becomes the relation σ = 0 discussed earlier.

Now, let us compute the V loci described in section 3.2, where the dimensions of the
classical sheaf cohomology groups jump and our description of the quantum sheaf cohomology
ring breaks down. As G(2, 3) is a projective space, and projective spaces admit no nontrivial
tangent bundle deformations, we should find that the V loci contain nothing more than the
discriminant locus.

First, we compute V2. For this, there is only one Young diagram with two boxes total
and more than one box in the first row, namely (2). We write

R(2) = R = σ(2) + (I1 + I2)σ
2
(1) = σ(2) (1 + I1 + I2) + σ(1,1) (I1 + I2) .

Define the matrix
(

C2
µν

)

= [1 + I1 + I2, I1 + I2] ,

so that
[

R(2)

]

=
(

C2
µν

)

[

σ(2)
σ(1,1)

]

,

then the locus V2 is defined to be the locus on which (C2
µν) drops rank. However, that would

require
1 + I1 + I2 = 0 = I1 + I2,
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which has no solutions, therefore V2 is the empty set.

Next, we compute V3. Here, there are two Young diagrams with three boxes total and
more than one box in the first row, namely (3) and (2, 1). We compute

R(3) = R = σ(3) + I1σ(2)σ(1) + (I2 + I3)σ
3
(1),

= σ(3) (1 + I1 + I2 + I3) + σ(2,1) (I1 + 2I2 + 2I3) ,

and

R(2,1) = R = det

[

R(2) R(3)

1 σ(1)

]

= σ(1)R(2) − R(3),

= σ(3) (−I3) + σ(2,1) (1 + I1 − 2I3) .

Thus, the matrix (C3
µν) is given by

(

C3
µν

)

=

[

1 + I1 + I2 + I3 I1 + 2I2 + 2I3
−I3 1 + I1 − 2I3

]

,

, and the locus V3 is then defined as

V3 = {det(C3
µν) = 0}.

It is straightforward to check that this locus matches the discriminant locus X = {∆ = 0}.

With a little algebra, it is straightforward to verify that the ring relation (24) can be
rewritten as

(detC3
µν)σ

3
(1) = −q,

so that we see the V3 locus is interpreted in this case as the locus where the quantum ring
relations become ill-defined (which is also the discriminant locus).

Now, let us compute the locus V4. Proceeding as above, we find




R(4)

R(3,1)

R(2,2)



 = (C4
µν)





σ(4)
σ(3,1)
σ(2,2)



 ,

where

(C4
µν) =





1 + I1 + I2 + I3 I1 + I2 + I3 I2 + 2I3
0 1 I1 + I2
−I3 −1 − I3 1− I2 − 2I3





and in particular we find
detC4

µν = detC3
µν ,

so that the locus
V4 = V3 = {∆ = 0}.

As the discriminant locus already appears to exhaust the ways in which the quantum coho-
mology ring can degenerate, this result should not be surprising.
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4.3 G(2, 4)

4.3.1 (2,2) theory

Let’s first compute the correlation functions for the (2,2) theory engineering G(2, 4). By
computing the correlation functions, we want to explicitly show that

R(3) = σ = 0, R(4) + q = σ + q = 0,

as implied by our general result. The four-point correlation functions in the theory are given
by

〈f(σ)〉 =
1

2!
JKG− Res

{

−(σ1 − σ2)
2 1

σ4
1

1

σ4
2

f(σ)

}

The Jeffrey-Kirwan-Grothendieck residues in this case are merely iterated ordinary contour
integrals about σ1 = 0 and σ2 = 0, i.e.

〈f(σ)〉 =
1

2!

∮

dσ2

∮

dσ1

{

−(σ1 − σ2)
2 1

σ4
1

1

σ4
2

f(σ)

}

It is straightforward to show that

〈σ4
1〉 = 0, 〈σ3

1σ2〉 = −
1

2!
,

〈σ2
1σ

2
2〉 = +

2

2!
, 〈σ1σ

3
2〉 = −

1

2!
,

〈σ4
2〉 = 0.

Now, let us interpret this in terms of the cohomology of G(2, 4). In principle, the coho-
mology classes correspond to Young tableaux sitting inside the 2× (4− 2) box

and so in particular are given by

σ = σ1 + σ2

σ = σ2
1 + σ2

2 + σ1σ2

σ = σ1σ2

σ = σ2
1σ2 + σ1σ

2
2

σ = σ2
1σ

2
2
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with relations, for example

σ = σ3
1 + σ3

2 + σ2
1σ2 + σ1σ

2
2 = 0

Let us check that the relation R3 = σ = 0 is encoded in the correlation functions
above. Since it involves third-order powers, and the correlation functions involve fourth-
order powers, we need to multiply by single copies of σ1, σ2. In other words, we claim the
following statements should be true:

〈σ1σ 〉 = 0 = 〈σ2σ 〉

Explicitly,

〈σ1σ 〉 = 〈σ1(σ
3
1 + σ3

2 + σ2
1σ2 + σ1σ

2
2)〉

= 〈σ4
1〉+ 〈σ1σ

3
2〉+ 〈σ

3
1σ2〉+ 〈σ

2
1σ

2
2〉

and it is easy to check that this does indeed vanish. One can similarly verify 〈σ2σ 〉 = 0.

Correlation functions in the one-instanton sector are of the form

〈f(σ)〉 =
1

2!
JKG− Res

{

q(σ1 − σ2)
2 1

σ8
1

1

σ4
2

f(σ)

}

+
1

2!
JKG− Res

{

q(σ1 − σ2)
2 1

σ4
1

1

σ8
2

f(σ)

}

(where the JKG residues again reduce to iterated ordinary contour integrals about σ1 = 0
and σ2 = 0), from which we compute that the nonvanishing correlation functions are

〈σ5
1σ

3
2〉 = q/2 = 〈σ7

1σ2〉, 〈σ
6
1σ

2
2〉 = −q,

〈σ3
1σ

5
2〉 = q/2 = 〈σ1σ

7
2〉, 〈σ

2
1σ

6
2〉 = −q.

Using the fact that

σ = σ4
1 + σ3

1σ2 + σ2
1σ

2
2 + σ1σ

3
2 + σ4

2,

we compute
〈σ 〉 = 0

〈σ4
1σ 〉 = 0 = 〈σ4

2σ 〉

〈σ3
1σ2σ 〉 = q/2 = 〈σ1σ

3
2σ 〉

〈σ2
1σ

2
2σ 〉 = −q

From the expressions
σ = σ3

1σ2 + σ2
1σ

2
2 + σ1σ

3
2
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σ = σ2
1σ

2
2

we get
〈σ σ 〉 = 0

〈σ σ 〉 = 0

〈σ σ 〉 = −q

Thus we see the relation R(4) is valid because σ = 〈σ σ 〉 · 1 = −q. The other

relation at fourth order can be read off immediately,

σ = σ σ − σ = q.

4.3.2 (0,2) theory

We can study the (0,2) theories following the same procedure. Again, after absorbing a sign
in q, the localization formula (8) reads

〈f(σ)〉 =

1

2!

∑

m1,··· ,mk∈Z

JKG− Res

{

(−q)
∑

mi ((−)(σ1 − σ2))
2
∏

a=1

(

1

det Ẽ(σa)

)

mi+1

f(σ)

}

,

where

Ẽi
j(σa) = δijσa + Bi

j

(

∑

b

σb

)

.

In this case, the JKG residue gives us the following iterated residue prescription for
generic bj :

1. First, we perform a contour integral over σ1, summing over the residues at the four
loci

σ1 = −σ2
bj

1 + bj

for j ∈ {1, 2, 3, 4}, corresponding to the roots of det Ẽ(σ1),

2. then, we perform a contour integral over σ2, taking the residue at σ2 = 0.
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In this case, the results for the classical correlation functions (m1 = 0 = m2) are as follows:

〈σ4
1〉 = ∆−1

[

I1 + 2I21 + 4I1I2 − 2I3 + 2I22 + 2I1I3 − 4I4 + 2I2I3 − 2I1I4
]

,

〈σ3
1σ2〉 = ∆−1

[

−1 − 3I1 − 2I21 − 3I2 − 4I1I2 − 2I22 − I3 − 2I1I3 + 4I4 − 2I2I3 + 2I1I4
]

,

〈σ2
1σ

2
2〉 = ∆−1

[

2 + 4I1 + 2I21 + 4I2 + 4I1I2 + 2I3 − 4I4 + 2I22 + 2I1I3 + 2I2I3 − 2I1I4
]

,

〈σ1σ
3
2〉 = 〈σ3

1σ2〉,

〈σ4
2〉 = 〈σ4

1〉,

or

〈σ 〉 = 〈σ4
1〉 + 〈σ

3
1σ2〉 + 〈σ

2
1σ

2
2〉 + 〈σ1σ

3
2〉 + 〈σ

4
2〉,

= 2∆−1
[

−I2 + I21 + 2I2I1 − 2I3 + I22 − 2I4 + I1I3 − I1I4 + I2I3
]

,

〈σ2 〉 = 〈σ4
1〉 + 2〈σ3

1σ2〉 + 3〈σ2
1σ

2
2〉 + 2〈σ1σ

3
2〉 + 〈σ

4
2〉,

= ∆−1
[

2 + 2I1 + 2I21 + 4I1I2 − 2I3 − 4I4 + 2I22 + 2I1I3 + 2I2I3 − 2I1I4
]

,

〈σ σ 〉 = 〈σ4
1〉 + 2〈σ3

1σ2〉 + 2〈σ2
1σ

2
2〉 + 2〈σ1σ

3
2〉 + 〈σ

4
2〉,

= ∆−1 [−2I1 − 4I2 − 4I3] ,

〈σ2 σ 〉 = 〈σ4
1〉 + 3〈σ3

1σ2〉 + 4〈σ2
1σ

2
2〉 + 3〈σ1σ

3
2〉 + 〈σ

4
2〉,

= ∆−1 [2− 2I2 − 2I3] ,

〈σ4 〉 = 〈σ4
1〉 + 4〈σ3

1σ2〉 + 6〈σ2
1σ

2
2〉 + 4〈σ1σ

3
2〉 + 〈σ

4
2〉,

= ∆−1 [4 + 2I1] ,

〈σ 〉 = 〈σ3
1σ2〉 + 〈σ

2
1σ

2
2〉 + 〈σ1σ

3
2〉,

= ∆−1
[

−2I1 − 2I2 − 2I21 + 4I4 − 2I22 − 2I3I1 − 2I3I2 + 2I1I4 − 4I2I1
]

,

〈σ 〉 = 〈σ2
1σ

2
2〉,

= ∆−1
[

2 + 4I1 + 2I21 + 4I2 + 4I1I2 + 2I3 − 4I4 + 2I22 + 2I1I3 + 2I2I3 − 2I1I4
]

,

where the characteristic polynomials of B are given explicitly as

I1 =
∑

i

bi = trB,

I2 =
∑

i<j

bibj ,

I3 =
∑

i<j<k

bibjbk,

I4 = b1b2b3b4 = detB,
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and

∆ = 2
∏

i<j

(1 + bi + bj) ,

= 2
(

1 + 3I1 + 3I21 + 2I2 + I31 + 4I1I2 + 2I21I2 + I22 + I1I3 − 4I4 + I1I
2
2

+I21I3 + I1I2I3 − 4I1I4 − I
2
1I4 − I

2
3

)

.

We see the discriminant locus is given by ∆ = 0, this is consistent with our general result
in [35], which says that the B-deformation fails to define a vector bundle on G(k, n) if and
only if there exits k eigenvalues of B whose sum is −1.

Now, the quantum sheaf cohomology ring for this model is predicted by (10) to be

C
[

σ(1), σ(2), · · ·
]

/
〈

D3, D4, · · · , R(3), R(4) + q, R(5) + qσ(1), · · ·
〉

,

where

R(3) =
3
∑

i=0

Iiσ(3−i)σ
i
(1),

= σ(3) + I1σ(2)σ(1) + (I2 + I3)σ
3
(1),

R(4) =
4
∑

i=0

Iiσ(r−i)σ
i
(1),

= σ(4) + I1σ(3)σ(1) + I2σ(2)σ
2
(1) + (I3 + I4)σ

4
(1).

As a consistency test, it is straightforward to check that the relations above are reflected
in the correlation functions. For example, the classical correlation functions are easily demon-
strated to obey

〈σ D3〉 = 〈D4〉 = 〈σ R(3)〉 = 0.

Now, we also have the relation R(4) = −q, which for the purely classical correlation functions
implies

〈R(4)〉 = 0,

which is also easily checked to be true. By including instanton sectors, one can see the full
quantum-corrected relation, as we shall discuss next.

The relation R(4) = −q can be derived from the quantum cohomology ring relation
derived from the Jeffrey-Kirwan-Grothendieck residue expression, namely,

det Ẽ(σ1) = −q = det Ẽ(σ2),

where
Ẽ(x) = Ix + B(σ1 + σ2).
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Now, it is straightforward to expand

det Ẽ(x) = x4 + I1(σ1 + σ2)x
3 + I2(σ1 + σ2)

2x2 + I3(σ1 + σ2)
3x + I4(σ1 + σ2)

4

so

〈det Ẽ(σ1)〉 = 〈σ4
1〉(1 + I1 + I2 + I3 + 2I4) + 〈σ3

1σ2〉(I1 + 2I2 + 4I3 + 8I4)

+ 〈σ2
1σ

2
2〉(I2 + 3I3 + 6I4),

= 〈det Ẽ(σ2)〉,

which implies

2R(4) −R3σ = σ (1 + I1 + I2 + I3 + 2I4) + 〈σ 〉(−1 + I2 + 3I3 + 6I4)

+ 〈σ 〉(−I1 + 2I3 + 4I4) = −2q,

or simply R(4) + q = 0 as expected.

Now, let us turn to the interpretation of the loci Vm in this example. First, consider the
V3 locus. It is straightforward to compute

[

R(3)

]

= [1 + I1 + I2 + I3, I1 + 2I2 + 2I3]

[

σ(3)
σ(2,1)

]

,

hence

V3 = {1 + I1 + I2 + I3 = 0 and I1 + 2I2 + 2I3 = 0} ,

= {I2 + I3 = +1, I1 = −2}.

Note that this locus does not intersect the (2,2) locus, as expected on general grounds, as
the Ii never all become zero.

Next, we compute the V4 locus. It is straightforward to compute

[

R(4)

R(3,1)

]

= (C4
µν)





σ(4)
σ(3,1)
σ(2,2)



 ,

where

(C4
µν) =

[

1 + I1 + I2 + I3 + I4 I1 + 2I2 + 3I3 + 3I4 I2 + 2I3 + 2I4
−I4 1 + I1 + I2 − 3I4 I1 + I2 − 2I4

]

.

LetM12,M13,M23 denote the three 2×2 submatrices of (C4
µν) formed by omitting a column,

then the locus V4 is defined as

V4 = {M12 = 0 =M13 =M23}.
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For completeness, we also list here results for V5 and V6. First, V5 is computed from the
relation





R(5)

R(4,1)

R(3,2)



 =
(

C5
µν

)





σ(5)
σ(4,1)
σ(3,2)





for

(C5
µν) =





1 + I1 + I2 + I3 + I4 I1 + 2I2 + 3I3 + 4I4 I2 + 3I3 + 5I4
0 1 + I1 + I2 + I3 I1 + 2I2 + 2I3
−I4 −I3 − 4I4 1 + I1 − 2I3 − 5I4



 ,

and V6 is computed from the relation









R(6)

R(5,1)

R(4,2)

R(3,3)









=
(

C6
µν

)









σ(6)
σ(5,1)
σ(4,2)
σ(3,3)









for (C6
µν) given by









1 + I1 + I2 + I3 + I4 I1 + 2I2 + 3I3 + 4I4 I2 + 3I3 + 6I4 I3 + 3I4
0 1 + I1 + I2 + I3 + I4 I1 + 2I2 + 3I3 + 3I4 I2 + 2I3 + 2I4
0 −I4 1 + I1 + I2 − 3I4 I1 + I2 − 2I4
−I4 −I3 − 4I4 −I2 − 3I3 − 6I4 1− I2 − 2I3 − 3I4









.

At least when B is diagonal, it is straightforward to check that

det(C5) = det(C6) = ∆,

or equivalently,
V5 = V6 = X,

consistent with our expectation that for m larger than the dimension of the Grassmannian,
Vm matches the discriminant locus.

4.4 G(2, 5)

In the previous sections we described the results for the Grassmannian G(2, 4). Although
this is not a projective space, it can be described as a hypersurface in a projective space, so
in this section we give one additional nonabelian example, one which is not related or dual
to an abelian GLSM, to demonstrate the results. Specifically, in this section we will consider
the theory for G(2, 5).
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4.4.1 (2,2) theory

The (classical) six-point correlation functions are given by

〈f(σ)〉 =
1

2!
JKG− Res

{

(−)(σ1 − σ2)
2 1

σ5
1

1

σ5
2

f(σ)

}

.

We can compute these as iterated ordinary contour integrals about σ1 = 0 and σ2 = 0. It is
straightforward to show that

〈σ6
1〉 = 0, 〈σ5

1σ2〉 = 0,

〈σ4
1σ

2
2〉 = −

1

2!
, 〈σ3

1σ
3
2〉 = +

2

2!
,

〈σ2
1σ

4
2〉 = −

1

2!
, 〈σ1σ

5
2〉 = 0,

〈σ6
2〉 = 0.

All the nonzero cohomology classes should be defined by Young diagrams fitting inside
the 2× 3 box

Using the correlation functions above, it is straightforward to compute the ring relations

σ = σ4
1 + σ3

1σ2 + σ2
1σ

2
2 + σ1σ

3
2 + σ4

2 = 0

σ = σ4
1σ2 + σ3

1σ
2
2 + σ2

1σ
3
2 + σ1σ

4
2 = 0

σ = σ4
1σ

2
2 + σ3

1σ
3
2 + σ2

1σ
4
2 = 0

which matches the ring relations one expects from the cohomology theory. In each case,
one multiplies in arbitrary powers of σ1, σ2 to get a six-point function, and in each case,
the sum amounts to a scan through values that sum to zero. The top-form, described by
σ = σ3

1σ
3
2, has nonzero vev, as expected.

Correlation functions in the one-instanton sector are of the form

〈f(σ)〉 =

1

2!
JKG− Res

{

q(σ1 − σ2)
2 1

σ10
1

1

σ5
2

f(σ)

}

+
1

2!
JKG− Res

{

q(σ1 − σ2)
2 1

σ5
1

1

σ10
2

f(σ)

}

,

from which one can compute the nonzero correlation functions at order 11 to be

〈σ9
1σ

2
2〉 =

q

2
, 〈σ8

1σ
3
2〉 = −q, 〈σ

7
1σ

4
2〉 =

q

2
,

〈σ4
1σ

7
2〉 =

q

2
, 〈σ3

1σ
8
2〉 = −q, 〈σ

2
1σ

9
2〉 =

q

2
.

38



Thus we see
〈σ σ 〉 = −q, 〈σ σ 〉 = −q,

which impies
R(5) + q = 0, R(6) + qσ = 0

because
〈σ 〉 = 1, 〈σ σ 〉 = 1.

4.4.2 (0,2) theory

Next, let us consider the (0,2) theory defined by deformations of the tangent bundle.

In this case, classical correlation functions are given by

〈f(σ)〉 =

1

2!
JKG− Res

{

(−)(σ1 − σ2)
2

(

1

det Ẽ(σ1)

)(

1

det Ẽ(σ2)

)

f(σ)

}

,

and for B diagonal, computing much as in previous examples, we find:

〈σ6
1〉 = ∆−1

[

−I21 + I2 − 2I31 + I1I2 + I3 + 3I22 + 4I1I3 − I4 − 6I21I2 − 6I1I
2
2 − 4I21I3

+10I2I3 − 8I1I2I3 − 2I32 + 7I23 − 4I22I3 + 5I4I1 − 5I5 + 4I1I5

+8I21I5 + 9I4I2 − 2I1I
2
3 − 2I2I

2
3 − 2I1I2I4 − 2I22I4 + 11I3I4 − 2I2I3I4

+4I24 + 2I1I
2
4 + I2I5 + 8I1I2I5 + 2I22I5 − 2I3I5 − 2I4I5

]

,

〈σ5
1σ2〉 = ∆−1

[

I1 + 3I21 + 2I31 + 5I1I2 − 2I3 + 6I21I2 + 2I22 + I1I3 − 4I4 + 6I1I
2
2

+4I21I3 − 5I1I4 − 5I5 + 2I32 − 2I23 + 8I1I2I3 − 4I2I4 − 14I1I5

+4I22I3 + 2I1I
2
3 + 2I1I2I4 − 6I3I4 − 8I21I5 − 6I2I5 + 2I2I

2
3 + 2I22I4

−4I24 − 8I1I2I5 + 2I3I5 + 2I2I3I4 − 2I1I
2
4 − 2I22I5 + 2I4I5

]

,

〈σ4
1σ

2
2〉 = ∆−1

[

−1− 4I1 − 5I21 − 4I2 − 2I31 − 10I1I2 − 2I3 − 6I21I2 − 5I22 − 6I1I3 + 3I4

−6I1I
2
2 − 4I21I3 − 6I2I3 + 3I1I4 + 13I5 − 2I32 − 8I1I2I3 − I

2
3 + I2I4

+20I1I5 − 4I22I3 − 2I1I
2
3 − 2I1I2I4 + 3I3I4 + 8I21I5 + 9I2I5 − 2I2I

2
3

−2I22I4 + 4I24 + 8I1I2I5 − 2I3I5 − 2I2I3I4 + 2I1I
2
4 + 2I22I5 − 2I4I5

]

,

〈σ3
1σ

3
2〉 = ∆−1

[

2 + 6I1 + 6I21 + 6I2 + 2I31 + 12I1I2 + 4I3 + 6I21I2 + 6I22 − 2I4 + 8I1I3

+6I1I
2
2 − 16I5 + 4I21I3 + 8I2I3 − 2I1I4 + 2I32 − 22I1I5 + 8I1I2I3

+2I23 + 4I22I3 + 2I1I
2
3 + 2I1I2I3 − 2I3I4 − 2I21I5 − 10I2I5 + 2I2I

2
3

+2I22I4 − 4I24 − 8I1I2I5 + 2I3I5 + 2I2I3I4 − 2I1I
2
4 − 2I22I5 + 2I4I5

]

,
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〈σ2
1σ

4
2〉 = 〈σ4

1σ
2
2〉, 〈σ1σ

5
2〉 = 〈σ5

1σ2〉, 〈σ
6
2〉 = 〈σ6

1〉,

where

∆ = 2
∏

i<j

(1 + bi + bj),

and

I5 = b1b2b3b4b5 = detB,

I4 =
∑

i<j<k<ℓ

bibjbkbℓ,

I3 =
∑

i<j<k

bibjbk,

I2 =
∑

i<j

bibj ,

I1 =
∑

i

bi = trB.

The quantum sheaf cohomology ring (10) in this case is given by

C
[

σ(1), σ(2), · · ·
]

/
〈

D3, D4, · · · , R(4), R(5) + q, R(6) + qσ(1), · · ·
〉

,

where

R(4) =

4
∑

i=0

Iiσ(4−i)σ
i
(1),

= σ(4) + I1σ(3)σ(1) + I2σ(2)σ
2
(1) + (I3 + I4)σ

4
(1),

R(5) =

5
∑

i=0

Iiσ(5−i)σ
i
(1),

= σ(5) + I1σ(4)σ(1) + I2σ(3)σ
2
(1) + I3σ(2)σ

3
(1) + (I4 + I5)σ

5
(1),

R(6) =
5
∑

i=0

Iiσ(6−i)σ
i
(1),

= σ(6) + I1σ(5)σ(1) + I2σ(4)σ
2
(1) + I3σ(3)σ

3
(1) + I4σ(2)σ

4
(1) + I5σ

6
(1).

As a consistency test, it is straightforward to check that the relations above are reflected
in the correlation functions. For example, the classical correlation functions are easily demon-
strated to obey

〈σ3 D3〉 = 〈σ2 D4〉 = 〈σ D5〉 = 〈D6〉 = 〈σ2 R(4)〉 = 0.
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(Other vanishings of classical correlation functions are also implied by the ring relations; for
example, in the line above, one could replace any instance of σ2 with σ to get another
vanishing correlation function. Our intent above is merely to list some examples, not to list
every possible example.)

In addition, we can also use the classical correlation functions to check the classical limits
of the relations

R(5) = −q, R(6) = −qσ(1).

In particular, it is straightforward to show that the classical correlation functions obey

〈σ R(5)〉 = 0 = 〈R(6)〉,

verifying the classical limit of the relations above.

One of the relations should be the classical limit of the quantum cohomology ring relation
derived from the Jeffrey-Kirwan-Grothendieck residue expression, namely,

det Ẽ(σ1) = q = det Ẽ(σ2)

where
Ẽ(x) = Ix + B(σ1 + σ2)

As before, it is straightforward to expand

det Ẽ(x) = x5 + I1(σ1+σ2)x
4 + I2(σ1+σ2)

2x3 + I3(σ1+σ2)
3x2 + I4(σ1+σ2)

4x+ I5(σ1+σ2)
5

so, for example,

det Ẽ(σ1) = σ5
1(1 + I1 + I2 + I3 + I4 + I5) + σ4

1σ2(I1 + 2I2 + 3I3 + 4I4 + 5I5)

+ σ3
1σ

2
2(I2 + 3I3 + 6I4 + 10I5) + σ2

1σ
3
2(I3 + 4I4 + 10I5)

+ σ1σ
4
2(I4 + 5I5) + σ5

2(I5)

From this we derive

σ (1 + I1 + I2 + I3 + I4 + 2I5) + σ (−1 + I2 + 2I3 + 4I4 + 8I5)

+ σ (−I1 − I2 + I3 + 5I4 + 10I5) = 2q

It is straightforward to check, via multiplication by σ1,2, that the classical limit of the relation
above is indeed a property of the correlation functions given in this section.

5 Conclusions

In this paper we have presented a proposal for the quantum sheaf cohomology ring of Grass-
mannians with deformations of the tangent bundle. We derived this proposal from one-loop
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effective actions, and checked it in examples in which correlation functions were computed
with supersymmetric localization. We also discussed where this proposal is valid: on codi-
mension one subvarieties of the space of tangent bundle deformations, not intersecting the
(2,2) locus, our proposal breaks down. We discussed those loci explicitly, and computed
them in examples.

There are a number of questions that remain to be addressed. One question concerns the
role of duality. In an ordinary Grassmannian, G(k, n) is the same space as G(n− k, n), and
both ordinary and quantum cohomology of Grassmannians have presentations which respect
that symmetry. By contrast, for tangent bundle deformations, our presentation is not yet
symmetric. For example, the ring relations for G(1, n) take a very different form from those
of G(n− 1, n). Strictly speaking, the B deformations encoded in

0 −→ S∗ ⊗ S −→ S∗ ⊗ V −→ E −→ 0,

for E a deformation of the tangent bundle on G(k, n), dualize to deformations encoded in

0 −→ Q∗ ⊗Q −→ Q⊗ V ∗ −→ E ′ −→ 0

on G(n − k, n), but the second sequence above does not have a simple physical realization,
and it is not immediately obvious how to translate this into a parameter map.

Another open matter concerns the loci Vm. We conjecture that on G(k, n), for m >
k(n− k), the Vm are all identical to one another and to the discriminant locus, so that there
are only finitely many components of the locus on which the quantum sheaf cohomology ring
relations break down, but we do not yet have a proof.

Another open matter involves mathematical derivations. A purely mathematical deriva-
tion of the classical sheaf cohomology ring will appear in [35]. An analogous mathematical
derivation of the quantum sheaf cohomology ring would technically involve sheaf theory
manipulations on Quot schemes, and is left for the future.
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A Mathematical representation

In this appendix we will summarize some of the ideas that will appear in [35], including how
representatives of sheaf cohomology of deformations of the tangent bundle of G(k, n) can be
represented by Young diagrams.

First, in order to determine the ring relations at order r, we take the rth exterior power
of (4),

0→ ∧rE∗ → ∧r(V∗ ⊗ S)→ ∧r−1(V∗ ⊗ S)⊗ (S∗ ⊗ S)→ ∧r−2(V∗ ⊗ S)⊗ Sym2(S∗ ⊗ S)

→ · · · → V∗ ⊗ S ⊗ Symr−1(S∗ ⊗ S)→ Symr(S∗ ⊗ S)→ 0.

Breaking up the exact sequence above into r short exact sequences, we get a connecting map

δr : H
0(Symr(S∗ ⊗ S)) −→ Hr(∧rE∗)

by composing the connecting maps associated with all the short exact sequences. Thus the
ring relations are encoded in the kernel of δr.

Now, Symr(S∗ ⊗ S) can be written as a direct sum in the form

⊕
µ
(KµS

∗ ⊗KµS) ,

where each µ is some Young diagram standing for an irreducible representation of U(k) and
Kµ is the corresponding Schur functor. The direct sum ranges over all the Young diagrams
with r boxes and at most k rows. Since

KµS
∗ ⊗KµS ∼= Hom(KµS, KµS),

and each H0(KµS
∗ ⊗KµS) is one-dimensional, a basis for H0(Symr(S∗ ⊗ S)) can be taken

to be
{σµ | µ is a Young diagram with r boxes and at most k rows },

where σµ is the identity bundle map on KµS.

The product on
⊕
r>0
H0 (Symr(S∗ ⊗ S))

is defined to be the tensor product of bundle maps. Because

KλS ⊗KµS =
⊕

ν

NλµνKνS,

we see
σλ ⊗ σµ =

⊕

ν

Nλµνσν . (25)
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The numbers Nλµν are determined by the Littlewood-Richardson rule. Nλµν is the number
of ways the Young diagram λ can be expanded to the Young diagram ν by a strict µ-
expansion. Note that (25) would remain unchanged if one replaced each bundle map σµ with
the Schur polynomial corresponding to µ, and the tensor product with the usual product of
polynomials. This implies that the sheaf cohomology

⊕
r>0
H0(Symr(S∗ ⊗ S))

is isomorphic to the ring of symmetric polynomials with k variables, which are just the
diagonal elements of the σ field, as described in section 3.1. Let’s denote this ring by A(k).

Because the connecting map

δ : A(k) −→ ⊕
r>0
Hr( ∧rE∗)

(given as the sum of all δr’s) is a surjective homomorphism of C-algebras as proved in [35],
to determine the ring structure of the latter, we only need to find ker(δ), the kernel of the
connecting map. Thus we see, the sheaf cohomology has the following representation

⊕
r>0

Hr (G(k, n),∧rE∗) ∼= A(k)/ ker(δ). (26)

As in the text, we shall denote by σ(r) the Schur polynomial corresponding to the Young
diagram with r boxes in a row. In [35], we have shown that, for a generic B deformation,
ker(δ) is generated by R(r), r = n− k + 1, · · · , where

R(r) =

min{r,n}
∑

i=0

Iiσ(r−i)σ
i
(1), (27)

and Ii is the ith characteristic polynomial of B, which is defined through

det(tI +B) =

n
∑

i=0

In−it
i.

This gives us the classical sheaf cohomology. (In appendix C, we give a toy model of the
mathematical arguments for general cases that will appear in [35], and mathematically derive
ring relations for trivial bundle deformations B ∝ I.) In section 3.3, we derive the quantum
sheaf cohomology for generic deformations from the one-loop effective action. The conclusion
is, when quantum corrections are taken into account, we should replace ker(δ) with the ideal
generated by

R(r) + qσ(r−n), (28)

r = n− k + 1, · · · , and σ(m) is defined to be zero when m < 0.

44



In section 3.2, we describe the quantum sheaf cohomology ring explicitly. Since

Rµ ∈
〈

R(n−k+1), R(n−k+2), · · ·
〉

,

for Young diagrams µ with more than n−k boxes in the first row and no more than k boxes
in any column, our description of the ring structure suggests that the space

Wm = SpanC {Rµ |µ1 > n− k, |µ| = m}

is in ker(δm) for each m > n− k.

If the Rµ’s are linearly independent, we see

dimWm = dimker(δm|B=0),

thus Wm = ker(δm). Our description is complete if this is true for all m > n− k.

If, on the other hand, there is some m, such that the Rµ’s are linearly dependent, then
Wm is only a proper subspace of ker(δm). This situation occurs along a locus Vm with
codimension at least one in the moduli space. If we expand Rµ in terms of σν , we get

Rµ =
∑

|ν|=m

Cm
µν σν

with some constants Cm
µν depending on B. For fixed m, Cm

µν form a matrix. So by definition,
Vm is the common zero locus of all the p minors of this matrix, where p is the number of
Young tableaux whose first row has more than n− k boxes and with no more than k boxes
in any column. Thus, along this locus, the dimension of the ring, and the dimensions of
the corresponding sheaf cohomology groups, might jump, so we exclude this locus from our
discussion of the quantum sheaf cohomology ring.

Now, since Vm is defined by the kernel of δm, which maps into degree m cohomology of
G(k, n), the dimensions of the sheaf cohomology groups we are interested in can potentially
jump along the loci Vm for

n− k + 1 ≤ m ≤ k(n− k),

as there is no cohomology of degree greater than the dimension of the Grassmannian. Along
loci Vm for m > k(n − k), our description of the quantum sheaf cohomology ring may be
incomplete, but the dimensions of the sheaf cohomology groups cannot jump.

As a practical matter, we can phrase this in terms of two different representations of the
classical sheaf cohomology ring, as follows. One way to present the classical sheaf cohomology
ring is

C
[

σ(1), · · · , σ(k(n−k))

]

/
〈

Dk+1, · · · , R(n−k+1), · · · , R(k(n−k)), Sk(n−k)+1(k)
〉

,
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where Sr(k) is the ideal of degree r terms in k variables. This presentation of the classical
sheaf cohomology ring is valid on

M−
(

X ∪ Vn−k+1 ∪ · · · ∪ Vk(n−k)

)

whereM is the space of all B deformations, X is the discriminant locus along which any k
eigenvalues of B become −1 (equivalent to the locus {∆ = 0} for the ∆ appearing explicitly
in correlation functions), and Vr is defined as above. Along the Vr for the degrees above, the
dimensions of the sheaf cohomology groups may potentially jump.

A second presentation of the same classical sheaf cohomology ring is

C
[

σ(1), σ(2), · · ·
]

/
〈

Dk+1, Dk+2, · · · , R(n−k+1), R(n−k+2), · · ·
〉

,

which is closer to the form we have adopted in these notes for the quantum sheaf cohomology
ring. This presentation is valid on

M− (X ∪ Vn−k+1 ∪ · · · ∪ · · · ) .

In this case, the Vr for
n− k + 1 ≤ r ≤ k(n− k)

define loci along which the classical sheaf cohomology groups might jump, and the Vr for
r > k(n− k) define loci along which the dimensions of the sheaf cohomology groups cannot
jump, but, for which the presentation above may not be accurate, as additional relations
may be required.

B Products via homological algebra

It is possible to see at least the classical product structure on the (2,2) locus in homological
algebra, by identifying sheaf cohomology groups with Ext groups and interpreting in terms
of extensions of bundles, an idea also discussed in [21, 22]. In this appendix, we will look
at that structure in simple cases, first describing how products in the ordinary cohomology
of the Grassmannian can be computed via homological algebra, and later outlining some of
the machinery needed to do analogous computations in the (0,2) case. We will not use this
machinery elsewhere in this paper, but we felt it sufficiently interesting to include here as an
appendix. Furthermore, because of its existence, we speculate that perhaps ‘quantum sheaf
cohomology’ can be understood as a ‘quantum homological algebra’.

Let us begin on the (2,2) locus, and describe products in the ordinary cohomology of a
Grassmannian via homological algebra. On the (2,2) locus, as is well-known, the cohomology
of G(k, n) is generated by Chern classes of the (dual of the) universal subbundle S. In that
spirit, we can identify c1 with an element of Ext1(S∗, Q∗), corresponding to the complex

0 −→ Q∗ −→ V ∗
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resolving S∗, where Q is the universal quotient bundle and V is a vector space, G(k, n) =
G(k, V ). As a consistency check, note that there is a natural map

Ext1(S∗, Q∗) −→ H1(S ⊗Q∗ ⊗ S ⊗ S∗ ⊗Q⊗Q∗) = H1
(

Ω1 ⊗ End T
)

,

which displays how to map Ext1(S∗, Q∗) to the sheaf cohomology group containing the Atiyah
class of the tangent bundle, and is ultimately the reason that the identification of c1 with an
element of the Ext group above is sensible.

Recall from section 3.1 the product

σ2 = σ + σ .

We can understand this in the present language as follows. The product σ2 should be
understood as

(c1)
2 ∈ Ext2 (S∗ ⊗ S∗, Q∗ ⊗Q∗) ,

corresponding to the resolution of S∗ ⊗ S∗ below,

0 −→ Q∗ ⊗Q∗ −→ Q∗ ⊗ V ∗ +Q∗ ⊗ V ∗ −→ V ∗ ⊗ V ∗ −→ S∗ ⊗ S∗ −→ 0,

given by squaring the resolution of S∗. This naturally decomposes into the sum of the
following two resolutions:

0 −→ ∧2Q∗ −→ Q∗ ⊗ V ∗ −→ Sym2V ∗ −→ Sym2S∗ −→ 0, (29)

and
0 −→ Sym2Q∗ −→ Q∗ ⊗ V ∗ −→ ∧2V ∗ −→ ∧2S∗ −→ 0. (30)

If we identify the resolution (29) with

σ ∈ Ext2
(

Sym2S∗,∧2Q∗
)

,

and the resolution (30) with

σ ∈ Ext2
(

∧2S∗, Sym2Q∗
)

,

then we recover
σ2 = σ + σ .

As a consistency check, note that in the language of Atiyah classes, the cohomology
classes above should live in

H2
(

Ω2 ⊗ EndT
)

= H2
(

∧2(S ⊗Q∗)⊗ S ⊗ S∗ ⊗Q⊗Q∗
)

,

and as
∧2(S ⊗Q∗) = ∧2S ⊗ Sym2Q∗ + Sym2S ⊗ ∧2Q∗,
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we see that both σ and σ naturally map into H2(Ω2 ⊗ EndT ), as expected.

Now, let us turn to the (0,2) case. Here, we have a deformation E of the tangent bundle
defined by a short exact sequence

0 −→ E∗ −→ V ∗ ⊗ S −→ S∗ ⊗ S −→ 0.

Applying Hom(O,−) to the sequence above, one gets

0→ Hom(O,S∗ ⊗ S)
δ
−→ Ext1(O, E∗).

In the rest of this section, we will begin to outline some of the machinery needed to
compute classical sheaf cohomology rings via homological algebra.

Note that from the construction of the connecting morphism, one finds that2 for any
ϕ ∈ Hom(O,S∗ ⊗ S), one has δ(ϕ) = [Eϕ] ∈ Ext1(O, E∗), where

Eϕ : 0→ E∗ → Z → O → 0

is constructed from the pullback diagram

Z

��

// O

ϕ

��

V∗ ⊗ S // S∗ ⊗ S

,

which fits in
0 // E∗ // Z

��

// O

ϕ

��

// 0

0 // E∗ // V∗ ⊗ S // S∗ ⊗ S // 0

.

Applying the functor Sym2 to O
ϕ
−→ S∗ ⊗ S, we get the induced map

O
Sym2ϕ
−−−−→ Sym2(S∗ ⊗ S).

It is easy to construct the induced extension sequence following the method in last section,
and there is no difficulty to do similar things for any map O → Symr(S∗ ⊗ S).

Now denote the image of Id : KλS → KλS inH0(KλS
∗⊗KλS) and Hom(O, KλS

∗⊗KλS)
by κλ. We strongly suspect, but have not carefully checked, that

• The multiplication κ1 ·κ1 · · · ··κ1 := Symrκ1 agrees with the ring structure of H•(∧•E∗).

2See the remark after Theorem III.5.2 of [44].
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• The multiplication κα · κβ = Φ(κα ⊗ κβ) agrees with the ring structure of H•(∧•E∗),
where Φ is the symmetrization map

Sym|α|(S∗ ⊗ S)⊗ Sym|β|(S∗ ⊗ S)→ Sym|α|+|β|(S∗ ⊗ S).

Now, let us sketch out some computations in the case n = 2.

Let ϕ1, ϕ2 ∈ Hom(O,S∗ ⊗ S), ϕ = ϕ1 ⊗ ϕ2 ∈ Hom(O, Sym2(S∗ ⊗ S)). We want to
compare Eϕ1

· Eϕ2
with E2

ϕ ∈ Ext2(O,∧2E∗).

Note that for i = 1, 2 we have

Eϕi
: 0→ E∗ → Fi → O → 0

and tensoring with E∗, we have

0→ E∗ ⊗ E∗ → F2 ⊗ E
∗ → E∗ → 0.

This gives
0 // E∗ ⊗ E∗

��

// F2 ⊗ E
∗

��

// E∗ // 0

Ẽϕ2
: 0 // ∧2E∗ // F̃2

// E∗ // 0

,

where the first square is a push-out diagram defining F̃2.

So we can define Eϕ1
· Eϕ2

as Eϕ1
· Ẽϕ2

which is represented by

0→ ∧2E∗ → F̃
2
→ F1 → O → 0.

On the other hand, for ϕ we have Eϕ represented by

0→ ∧2E∗ → ∧2(V∗ ⊗ S)→ F → O → 0.

We claim that [Eϕ1
· Eϕ2

] = [Eϕ] in Ext2(O,∧2E∗).

We can see this as follows. Recall that two n-extensions H0 and Hm are equivalent iff
they are connected by some morphisms of complexes: H0 → H1 ← H2...← Hm, where each
Ha → Hb, (a, b) = (i, i+ 1) or (a, b) = (i+ 1, i) is of the form

0 // B // Ea
n

//

��

... // Ea
1

//

��

A // 0

0 // B // Eb
n

// ... // Eb
1

// A // 0 .

(31)
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Let Z = V∗ ⊗ S and End = End(S) = S∗ ⊗ S. We need to show that there exist maps
α and β such that all squares in the following diagram are commutative:

0 // E∗ ⊗ E∗ //

��

F2 ⊗ E
∗ //

��

F1
// O // 0

0 // ∧2E∗ // F̃2
//

β
��
✤

✤

✤

F1
p1

//

α

��
✤

✤

✤

O // 0

0 // ∧2E∗ // ∧2Z // F
p2

//

��

O //

��

0

0 // ∧2E∗ // ∧2Z // Z ⊗ End // Sym2End // 0

(32)

For α, notice that we have a map α0 : F1 → Z ⊗ End constructed as in

F1
//

��

O

ϕ1⊗1
��

Z ⊗O //

��

End⊗O

1⊗ϕ2

��

Z ⊗ End // End⊗ End

s
��

.

Z ⊗ End // Sym2End

Also, the composition of the maps of second column is exactly ϕ. Since the square at the
lower right corner of (32) is a pull-back square, there exists α such that α0 factors through
α.

Similarly, we can construct F2 ⊗ E
∗ → ∧2Z canonically via:

E∗ ⊗ E∗ // F2 ⊗ E
∗

��

E∗ ⊗ E∗ // Z ⊗ E∗

��

E∗ ⊗ E∗ //

��

Z ⊗Z

��

.

∧2E∗ // ∧2Z

Since the square at the upper left corner of (32) is a push-forward square, there exists β such
that β0 factors through β.
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Now it suffices to prove that the central square of (32) is commutative. But we have
already know that the second and third rows of (32) are exact. So the commutativity of the
central square is the consequence of that of

F̃2
//

��

S1
1

��

∧2Z // S2
1

and S1
1

//

��

F1

��

S2
1

// F

,

where Si
1 = Ker pi, i = 1, 2.

Next, we turn to general n.

We want to prove the following diagram is commutative:

(H0(Symr(End)), H0(Symr(End))) //

��

H0(Symr+s(End))

��

(Hr(∧rE∗), Hs(∧sE∗)) //Hr+s(∧r+sE∗)

.

We do so by identifying it with

(Hom(O, Symr(End)),Hom(O, Syms(End))) //

��

Hom(O, Symr+s(End))

��

(Extr(O,∧rE∗),Exts(O,∧sE∗)) // Extr+s(O,∧r+sE∗)

. (33)

We claim that the diagram (33) is commutative. We can see this as follows. Take
ϕ1 ∈ Hom(O, Symr(End)), ϕ2 ∈ Hom(O, Syms(End)). Define the multiplication

Hom(O, Symr(End))×Hom(O, Syms(End)) → Hom(O, Symr+s(End))
(ϕ1, ϕ2) 7→ ϕ

,

where ϕ is defined by the composition

O
ϕ1⊗1
−−−→ Symr(End)⊗O

1⊗ϕ2

−−−→ Symr(End)⊗ Syms(End)
symmetrize
−−−−−−→ Symr+s(End).

Up to a minus sign, we have a sequence Eϕ2
representing ∆(ϕ2) ∈ Exts(O,∧sE∗)

Eϕ2
: 0 // ∧sE∗ // ... // F2

//

��

O //

ϕ2

��

0

0 // ∧sE∗ // ... // Z ⊗ Syms−1End // SymsEnd // 0

(34)
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and similarly we have Eϕ1
and Eϕ for ∆(ϕ1) and ∆(ϕ), with the pull-back sheaf F2 replaced

by F1 and F respectively.

Tensoring (34) with ∧rE∗, we get

0 // ∧sE∗ ⊗ ∧rE∗ //

��

∧sZ ⊗ ∧rE∗ //

��

... // F2 ⊗ ∧
rE∗ // ∧rE∗ // 0

Ẽϕ1
: 0 // ∧r+sE∗ // F̃2

// ... // F2 ⊗ ∧
rE∗ // ∧rE∗ // 0

(35)
where the first square is a push-out diagram.

To verify [Eϕ1
· Eϕ2

] = [Eϕ] in Extr+s(O,∧r+sE∗), we break the sequence Eϕ into

0→ Sr → ...→ Z ⊗ Symr+s−1End→ Symr+sEnd→ 0

and
0→ ∧r+sE∗ → ∧r+sZ → ...→ Sr → 0.

As a first step, we show that squares in the last two rows of the following diagram are
commutative:

0 // ∧sE∗ ⊗ ∧rE∗ //

��

∧sZ ⊗ ∧rE∗ //

��

... // F2 ⊗ ∧
rE∗ // ∧rE∗ // 0

0 // ∧r+sE∗ // F̃2
//

βs

��
✤

✤

✤

... // F2 ⊗ ∧
rE∗ //

β1

��
✤

✤

✤

∧rE∗ //

β0

��
✤

✤

✤

0

0 // ∧r+sE∗ // ∧r+sZ // ... // ∧r+1Z ⊗ Syms−1End // Sr
// 0

To see this, we first need to define the maps βj , j = 0, ..., s. Since the upper left square
is a push-out square, to define βs it suffices to find a map βs,0 such that

∧sE∗ ⊗ ∧rE∗ //

��

∧sZ ⊗ ∧rE∗

βs,0

��

∧r+sE∗ // ∧r+sZ

commutes. But we have a canonical choice of βs,0, namely

∧sZ ⊗ ∧rE∗ → ∧sZ ⊗ ∧rZ → ∧r+sZ

with obvious maps. For j = s− 1, s− 2, ..., 2, βj is the canonical map

∧jZ ⊗ ∧rE∗ ⊗ Syms−jEnd → ∧r+jZ ⊗ Syms−jEnd
u⊗ v ⊗ w 7→ u ∧ v ⊗ w
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and it is easy to see that squares with vertical maps in {βj |j = s − 1, s − 2, ..., 2} are
commutative.

To see that the square containing βs and βs−1 is commutative, we use the diagram

0 // ∧sE∗ ⊗ ∧rE∗ //

β′
s+1

��

∧sZ ⊗ ∧rE∗
ds

//

β′
s

��

∧s−1Z ⊗ ∧rE∗ ⊗ End

β′
s−1

0 // ∧r+sE∗ // F̃2
d̃s

//

βs

��

∧s−1Z ⊗ ∧rE∗ ⊗ End

βs−1

��

0 // ∧r+sE∗ // ∧r+sZ
Ds

// ∧r+s−1Z ⊗ End

. (36)

By the commutativity of the lower right square and the square containing ds and Ds, βs−1 ◦
d̃s ◦ β

′
s = βs−1 ◦ β

′
s−1 ◦ ds = Ds ◦ βs ◦ β

′
s.

Since F̃2 is a push-out, and β ′
s+1 is surjective, so is β̃ ′

s. Hence we have βs−1 ◦ d̃s = Ds ◦βs.
Hence the square containing βs and βs−1 is commutative.

Now we define β1, β0. They are canonically defined by the second and third columns of
the following diagram:

∧2Z ⊗ Syms−2End⊗ ∧rE∗ //

��

F2 ⊗ ∧
rE∗ //

��

∧rE∗

��

∧2Z ⊗ Syms−2End⊗ ∧rE∗ //

��

Z ⊗ Syms−1End⊗ ∧rE∗ //

��

SymsEnd⊗ ∧rE∗

��

∧r+2Z ⊗ Syms−2End // ∧r+1Z ⊗ Syms−1End // ∧rZ ⊗ SymsEnd.

Commutativity of squares involving β1, β0 are obvious.

The next step is to show that squares in the first two rows of the following diagram are
commutative:

∧rE∗ ⊗O �

�

//

β0

��

∧rZ ⊗O //

αr

��
✤

✤

✤

... // F1 ⊗O // //

α1

��
✤

✤

✤

O

Sr
�

�

// ∧rZ ⊗ SymsEnd // ... // F // //

α′
1

��

O

ϕ
��

Sr
�

�

// ∧rZ ⊗ SymsEnd // ... // Z ⊗ Symr+s−1End // // Symr+sEnd

.
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For j = r, r− 1, ..., 2, αj is defined by (∧jZ ⊗ Symr−jEnd)⊗O
1⊗ϕ2

−−−→ (∧jZ ⊗ Symr−jEnd)⊗

SymsEnd
symmetrization
−−−−−−−−→ ∧jZ ⊗ Symr+s−jEnd, where symmetrization is the restriction of the

projection End⊗r+s−j → Symr+s−jEnd to Symr−jEnd⊗SymsEnd ⊂ End⊗r+s−j. The squares
involving them are obviously commutative.

The following diagram and the universal property of F defines α1.

F1 ⊗O //

��

O ⊗O

ϕ1⊗1

��

Z ⊗ Symr−1End //

��

SymrEnd⊗O

1⊗ϕ2

��

Z ⊗ Symr−1End⊗ SymsEnd //

��

SymrEnd⊗ SymsEnd

��

.

Z ⊗ Symr+s−1End // Symr+sEnd

Then an argument dual to the one regarding (36) shows that the square containing α1 and
α2 is commutative.

Combining the two steps above, we have constructed a morphism of complexes, which
shows the desired equality of extension classes in view of (31).

C Some identities for trivial deformations

In this section we will mathematically derive ring relations in the special case of a trivial
(0,2) deformation defined by a nonzero B ∝ I. For reasons discussed in section 2, this
deformation does not change the tangent bundle. This is, in essence, a toy model of the
mathematical arguments for general cases that will appear in [35].

The idea is to run the relations in the ordinary cohomology ring of the Grassmannian,
through the isomorphism between the ‘deformed’ tangent bundle and the standard presen-
tation of the tangent bundle, to get a prototype for the classical sheaf cohomology ring
relations in more general cases.

To this end, we define a map

h : S∗ ⊗ S −→ S∗ ⊗ S
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that makes the diagram

0 // S∗ ⊗ S //

h
��

S∗ ⊗ V // E //

∼=
��

0

0 // S∗ ⊗ S // S∗ ⊗ V // T // 0

commute, where E is, formally, the bundle corresponding to the (trivial) deformation B = εI.
By inspection,

h(x) = x+ εσ(1),

and h extends to higher symmetric powers of S∗ ⊗ S in the obvious way.

In the ordinary cohomology of G(k, n), the only nonzero cohomology classes correspond
to Young diagrams inside a k × (n− k) box. Young diagrams extending outside of that box
should correspond to vanishing cohomology classes, and define relations in the cohomology
ring. To that end, we will consider relations defined by Young diagrams with one row of
boxes, extending outside of the k × (n− k) box.

To that end, when B = εI, we claim that

h(σ(r)) =

r
∑

i=0

(

k + r − 1

i

)

σ(r−i)σ
i
(1)ε

i. (37)

For notational reasons, as we will be mixing Schur polynomials σµ corresponding to
Young diagrams and Coulomb branch basis elements σa, which could become confusing, in
this appendix we will use the notation xa rather than σa for Coulomb basis elements to help
distinguish the two.

Then,

σ(r) =
∑

α1+α2+···+αk=r

xα1

1 x
α2

2 · · ·x
αk

k ,

h(σ(r)) =
∑

α1+α2+···+αk=r

(x1 + εσ(1))
α1 · · · (xk + εσ(1))

αk ,

=
∑

α1+α2+···+αk=r

[(

α1
∑

i1=0

(

α1

i1

)

xα1−i1
1 σi1

(1)ε
i1

)

· · ·

(

αk
∑

ik=0

(

αk

ik

)

xαk−ik
k σik

(1)ε
ik

)]

,

=
∑

α1+α2+···+αk=r

α1
∑

i1=0

· · ·

αk
∑

ik=0

(

α1

i1

)

· · ·

(

αk

ik

)

xα1−i1
1 · · ·xαk−ik

k σi1+···+ik
(1) εi1+···+ik .
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The coefficient of εiσi
(1), which we denote by gi, is

gi =
∑

α1+α2+···+αk=r

∑

i1+···+ik=i

(

α1

i1

)

· · ·

(

αk

ik

)

xα1−i1
1 · · ·xαk−ik

k ,

=
∑

β1+β2+···+βk=r−i

∑

i1+···+ik=i

(

β1 + i1
i1

)

· · ·

(

βk + ik
ik

)

xβ1

1 · · ·x
βk

k .

From the combinatorial formula

∑

i1+···+ik=i

(

β1 + i1
i1

)(

β2 + i2
i2

)

· · ·

(

βk + ik
ik

)

=

(

β1 + β2 + · · ·+ βk + k − 1 + i

i

)

,

we get

gi =
∑

β1+β2+···+βk=r−i

(

β1 + β2 + · · ·+ βk + k − 1 + i

i

)

xβ1

1 · · ·x
βk

k ,

=

(

r − i+ k − 1 + i

i

)

∑

β1+β2+···+βk=r−i

xβ1

1 · · ·x
βk

k ,

=

(

k + r − 1

i

)

σ(r−i),

and

h(σ(r)) =
r
∑

i=0

giσ
i
(1)ε

i =
r
∑

i=0

(

k + r − 1

i

)

σ(r−i)σ
i
(1)ε

i.

With some combinatorics one can then show

h(σ(r)) =

k+r−n−1
∑

j=0

min{n+j,r}
∑

i=j

εj
(

k + r − n− 1

j

)

Ii−jσ(r−i)σ
i
(1). (38)

Now, we then claim that the kernel of the connecting map

k(n−k)
⊕

r=0

H0
0 (G(k, n), Sym

r(S∗ ⊗ S)) −→ H∗(G(k, n),∧∗E∨)

can be generated by R(r), r = n− k + 1, n− k + 2, · · · , where

R(r) =

min{r,n}
∑

i=0

Iiσ(r−i)σ
i
(1),

with Ii, i = 0, 1, · · · , n, the characteristic polynomials of B.
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To show this, first note that the Giambelli formula

σλ = det









σ(λ1) σ(λ1+1) · · · σ(λ1+k−1)

σ(λ2−1) σ(λ2) · · · σ(λ2+k−2)

. . . . . . . . . . .
σ(λk+k−1) σ(λk+k) · · · σ(λk)









implies
h(σλ) = h(σ(λ1))F1 + h(σ(λ1+1))F2 + · · ·+ h(σ(λ1+k−1))Fk, (39)

where the Fi’s are polynomials of the σ(j)’s. If h(σλ) is in the kernel of the connecting
map, then λ1 > n − k + 1. Thus, h(σ(r)), r = n − k + 1, · · · , k(n − k) generate the kernel.
Furthermore, one can write (38) as

h(σ(r)) =

k+r−n−1
∑

j=0

εj
(

k + r − n− 1

j

)





min{n,r−j}
∑

i=0

Iiσ(r−j−i)σ
i
(1)



 σj
(1),

=

k+r−n−1
∑

j=0

εj
(

k + r − n− 1

j

)

σj
(1)Rr−j ,

for r = n−k+1, · · · , k(n−k), which implies that the R(r)’s generate the kernel, as claimed.

References

[1] S. Katz, E. Sharpe, “Notes on certain (0,2) correlation functions,” Commun. Math.
Phys. 262 (2006) 611-644, arXiv: hep-th/0406226.

[2] A. Adams, A. Basu, S. Sethi, “(0,2) duality,” Adv. Theor. Math. Phys. 7 (2003) 865-
950, hep-th/0309226.

[3] J. Guffin, S. Katz, “Deformed quantum cohomology and (0,2) mirror symmetry,” JHEP
1008 (2010) 109, arXiv: 0710.2354.

[4] J. McOrist, I. Melnikov, “Half-twisted correlators from the Coulomb branch,” JHEP
0804 (2008) 071, arXiv: 0712.3272.

[5] E. Sharpe, “Notes on correlation functions in (0,2) theories,” pp. 93-104 in String
geometry (Snowbird, 2004), American Math. Soc., Providence, Rhode Island, 2004,
hep-th/0502064.

[6] E. Sharpe, “Notes on certain other (0,2) correlation functions,” Adv. Theor. Math.
Phys. 13 (2009) 33-70, hep-th/0605005.

57



[7] A. Adams, J. Distler, M. Ernebjerg, “Topological heterotic rings,” Adv. Theor. Math.
Phys. 10 (2006) 657-682, hep-th/0506263.

[8] M.-C. Tan, “Two-dimensional twisted sigma models and the theory of chiral differential
operators,” Adv. Theor. Math. Phys. 10 (2006) 759-851, hep-th/0604179.

[9] M.-C. Tan, “Two-dimensional twisted sigma models, the mirror Chiral de Rham
complex, and twisted generalized mirror symmetry,” JHEP 0707 (2007) 013, arXiv:
0705.0790.

[10] I. Melnikov, S. Sethi, “Half-twisted (0,2) Landau-Ginzburg models,” JHEP 0803 (2008)
040, arXiv: 0712.1058.

[11] I. Melnikov, “(0,2) Landau-Ginzburg models and residues,” JHEP 0909 (2009) 118,
arXiv: 0902.3908.

[12] M. Kreuzer, J. McOrist, I. Melnikov, R. Plesser, “(0,2) deformations of linear sigma
models,” arXiv: 1001.2104.

[13] J. Guffin, E. Sharpe, “A-twisted heterotic Landau-Ginzburg models,” J. Geom. Phys.
59 (2009) 1581-1596, arXiv: 0801.3955.

[14] I. Melnikov, R. Plesser, “A (0,2) mirror map,” JHEP 1102 (2011) 001, arXiv:

1003.1303.

[15] P. Aspinwall, I. Melnikov, R. Plesser, “(0,2) elephants,” arXiv: 1008.2156.

[16] J. McOrist, “The revival of (0,2) linear sigma models,” Int. J. Mod. Phys. A26 (2011)
1-41, arXiv: 1010.4667.

[17] J. Guffin, “Quantum sheaf cohomology, a precis,” arXiv: 1101.1305.

[18] J. McOrist, I. Melnikov, “Old issues and linear sigma models,” arXiv: 1103.1322.

[19] J. McOrist, I. Melnikov, “Half-twisted correlators from the Coulomb branch”, JHEP
0804 (2008) 071, arXiv: 0712.3272.

[20] J. McOrist, I. Melnikov,“Summing the instantons in half-twisted linear sigma model”,
JHEP 0902 (2009) 026, arXiv: 0810.0012.

[21] R. Donagi, J. Guffin, S. Katz, E. Sharpe, “A mathematical theory of quantum sheaf
cohomology,” Asian J. Math. 18 (2014) 387-418, arXiv: 1110.3751.

[22] R. Donagi, J. Guffin, S. Katz, E. Sharpe, “Physical aspects of quantum sheaf cohomol-
ogy for deformations of tangent bundles of toric varieties,” Adv. Theor. Math. Phys.
17 (2013) 1255-1301, arXiv: 1110.3752.

58



[23] I. Melnikov, S. Sethi, E. Sharpe, “Recent developments in (0,2) mirror symmetry,”
SIGMA 8 (2012) 068, arXiv: 1209.1134.

[24] R. Garavuso, E. Sharpe, “Analogues of Mathai-Quillen forms in sheaf cohomology
and applications to topological field theory,” J. Geom. Phys. 92 (2015) 1-29, arXiv:
1310.5754.

[25] R. Donagi, Z. Lu, I. Melnikov, “Global aspects of (0,2) moduli spaces: toric va-
rieties and tangent bundles,” Comm. Math. Phys. 338 (2015) 1197-1232, arXiv:

1409.4353.

[26] E. Sharpe, “A few recent developments in 2d (2,2) and (0,2) theories,” contribution to
the proceedings of String-Math 2014, arXiv: 1501.01628.

[27] C. Anghel, “Quantum sheaf cohomology on surfaces of general type I: construction of
stable omalous bundles,” arXiv: 1509.05031.

[28] Z. Lu, “A correlator formula for quantum sheaf cohomology,” arXiv: 1511.09158.

[29] C. Closset, W. Gu, B. Jia, E. Sharpe, “Localization of twisted N = (0, 2) gauged linear
sigma models in two dimension,” arXiv: 1512.08058.

[30] S. Blesneag, E. Buchbinder, P. Candelas, A. Lukas, “Holomorphic Yukawa couplings
in heterotic string theory,” arXiv: 1512.05322.

[31] F. Benini, S. Cremonesi,“Partition functions of N = (2, 2) gauge theories on S2 and
vortices”, Commun. Math. Phys. 334 (2014) 1483-1527, arXiv: 1206.2356.

[32] N. Doroud, J. Gomis, B. Le Floch, S. Lee, “Exact results in D = 2 supersymmetric
gauge theories,” JHEP 1305 (2013) 093, arXiv: 1206.2606.

[33] C. Closset, S. Cremonesi, D. Park, “The equivariant A-twist and gauge linear sigma
models on the two-sphere”, JHEP 1506 (2015) 076, arXiv: 1504.06308.

[34] F. Benini, A. Zaffaroni, “A topologically twisted index for three-dimensional super-
symmetric theories,” JHEP 1507 (2015) 127, arXiv: 1504.03698.

[35] J. Guo, Z. Lu, E. Sharpe, arXiv:1605.01410.

[36] W. Fulton, Young tableaux, London Math. Society Student Texts 35, Cambridge Uni-
versity Press, 1997.

[37] B. Jia, E. Sharpe, R. Wu, “Notes on nonabelian (0,2) theories and dualities,” JHEP
1408 (2014) 017, arXiv: 1401.1511.

[38] A. S. Buch, “Quantum cohomology of Grassmannians”, math/0106268.

59



[39] A. S. Buch, A. Kresch, H. Tamvakis, “Gromov-Witten invariants on Grassmannians”,
math/0306388.

[40] H. Tamvakis, “Gromov-Witten invariants and quantum cohomology of Grassmanni-
ans,” math/0306415.

[41] A. Bertram, “Quantum Schubert calculus,” alg-geom/9410024.

[42] E. Witten, “The Verlinde algebra and the cohomology of the Grassmannian,” pp.
357-422 in Geometry, topology, and physics (Cambridge, 1993), International Press,
Cambridge, Massachusetts, 1995, hep-th/9312104.

[43] B. Siebert, G. Tian, “On quantum cohomology rings of Fano manifolds and a formula
of Vafa and Intriligator,” alg-geom/9403010.

[44] P. J. Hilton, U. Stammbach, A course in homological algebra, Graduate Texts in Math.,
volume 4, Springer-Verlag, New York, 1997.

60


	1 Introduction
	2 Nonabelian A/2 models
	2.1 (0,2) deformation
	2.2 One-loop effective potential
	2.3 Supersymmetric localization

	3 Ring structure of quantum sheaf cohomology
	3.1 Gauge-invariant operators
	3.2 Quantum sheaf cohomology ring
	3.2.1 Specialization to ordinary classical cohomology
	3.2.2 Specialization to ordinary quantum cohomology

	3.3 Derivation from one-loop effective action

	4 Examples
	4.1 G(1,3)
	4.2 G(2,3)
	4.3 G(2,4)
	4.3.1 (2,2) theory
	4.3.2 (0,2) theory

	4.4 G(2,5)
	4.4.1 (2,2) theory
	4.4.2 (0,2) theory


	5 Conclusions
	6 Acknowledgements
	A Mathematical representation
	B Products via homological algebra
	C Some identities for trivial deformations
	References

