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We further develop the asymptotic analytic approach to the study of scattering diagrams. We do so by analyzing the

asymptotic behavior of Maurer–Cartan elements of a differential graded Lie algebra constructed from a (not-necessarily

tropical) monoid-graded Lie algebra. In this framework, we give alternative differential geometric proofs of the consistent

completion of scattering diagrams, originally proved by Kontsevich–Soibelman, Gross–Siebert and Bridgeland. We also

give a geometric interpretation of theta functions and their wall-crossing. In the tropical setting, we interpret

Maurer–Cartan elements, and therefore consistent scattering diagrams, in terms of the refined counting of tropical

disks. We also describe theta functions, in both their tropical and Hall algebraic settings, in terms of distinguished flat

sections of the Maurer–Cartan-deformed differential. In particular, this allows us to give a combinatorial description of

Hall algebra theta functions for acyclic quivers with non-degenerate skew-symmetrized Euler forms.

1 Introduction

1.1 Motivation

The notion of a scattering diagram was introduced by Kontsevich–Soibelman [18] and Gross–Siebert [16] in
their studies of the reconstruction problem in Strominger–Yau–Zaslow mirror symmetry [27]. In this setting,
scattering diagrams encode and control the combinatorial data required to consistently glue local pieces of the
mirror manifold. Since their introduction, scattering diagrams have found important applications to integrable
systems [19], cluster algebras [14], enumerative geometry [15] and combinatorics [26], amongst other areas.
Motivated by Fukaya’s approach to the reconstruction problem [13], an asymptotic analytic perspective on
scattering diagrams was developed in [8]. In this paper, we further develop this approach to give a differential
geometric approach to refined and Hall algebra scattering diagrams.

The most basic form of scattering diagrams is closely related to the Lie algebra of Poisson vector fields
on a torus, and a number of conjectures in the theory of cluster algebras were proved using scattering diagram
techniques in [14]. For many applications, it is necessary to study quantum, or refined, variants of scattering
diagrams, in which the torus Lie algebra is replaced by the so-called quantum torus Lie algebra or, more
generally, by an abstract monoid-graded Lie algebra satisfying a tropical condition [19, 14, 22]. For example,
refined scattering diagrams were shown to be related to the refined tropical curve counting of Block–Göttsche [1]
by Filippini–Stoppa [12] and Mandel [22], which also appear in study of K3 in [21]. These refined curve counts are
also related to the refined enumeration of real plane curves by Mikhalkin [25], to higher genus Gromov–Witten
invariants [4, 3] and reconstruction of quantum mirror manifold [2] by Bousseau.

A further generalization of scattering diagrams was introduced by Bridgeland [6] under the name h-complex.
Here h is a (not-necessarily tropical) monoid-graded Lie algebra. The flexibility of allowing non-tropical Lie
algebras allows one to define, for example, scattering diagrams based on the motivic Hall–Lie algebra of a
three dimensional Calabi–Yau category. Bridgeland showed that each quiver with potential (Q,W ) defines a
consistent h-complex with values in the motivic Hall–Lie algebra, the wall-crossing automorphisms of the h-
complex encoding the motivic Donaldson–Thomas invariants of (Q,W ). Under mild assumptions, the (refined)
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cluster scattering diagram of (Q,W ) is then obtained by applying a Hall algebra integration map to this h-
complex. Using these ideas, Bridgeland was able to connect scattering diagrams to the geometry of the space of
stability conditions on the triangulated category associated to (Q,W ).

In [13], Fukaya suggested that much of the combinatorial behavior of instanton corrections to the B-side
complex structure which arise near the large volume limit could be described in terms of the asymptotic limit of
Maurer–Cartan elements of the Kodaira–Spencer differential graded (dg) Lie algebra. In the context of scattering
diagrams, this idea was made precise and put into practice in [8], where it was shown that the asymptotic
behavior of Maurer–Cartan elements of a certain dg Lie algebra admits an alternative interpretation in terms of
consistent classical scattering diagrams. Moreover, the passage from an initial scattering diagram to its consistent
completion, a procedure which exists due to works of Kontsevich–Soibelman [18, 19] and Gross–Siebert [16], can
be understood in terms of the perturbative construction of Maurer–Cartan elements. These ideas were pursued
in the setting of toric mirror symmetry to study the deformation theory of the Landau–Ginzburg mirror of a
toric surface X and its relation to tropical disk counting in X [9].

1.2 Main results

In this paper we further develop the asymptotic approach to illustrate how refined (or more generally tropical)
and Hall algebraic (or non-tropical) scattering diagrams, as well as the relevant theta functions, are controlled
by asymptotic limits of Maurer–Cartan elements. To describe our results, we require some notation. Let M be
a lattice of rank r and let N = HomZ(M,Z). Write MR = M ⊗Z R and NR = N ⊗Z R. Let σ ⊂MR be a strictly
convex cone and set M+

σ = (M ∩ σ) \ {0}. Let h be a M+
σ -graded Lie algebra, which for the moment we assume

to be tropical (Definition 2.1).
Following [8, 9], we consider differential forms on MR which depend on a parameter } ∈ R>0. Let W0

∗ be
the dg algebra of such differential forms which approach a bump form along a closed tropical polyhedral subset
P ⊂MR as }→ 0. See Figure 1. The subspace W−1

∗ ⊂ W0
∗ of differential forms which satisfy lim}→0 α = 0 is a

dg ideal and

H∗ :=
⊕

m∈M+
σ

(
W0
∗/W−1

∗
)
⊗C hm

is a tropical dg Lie algebra. Our goal is to construct and interpret Maurer–Cartan elements of H∗.

Fig. 1. A bump form concentrating along P .

Our first result relates Maurer–Cartan elements of H∗ to the counting of tropical disks in MR. Let Din

be an initial scattering diagram. To each wall w of Din, whose support is a hyperplane Pw of MR and whose
wall-crossing factor is log(Θw), we associate the term

Πw := −δPw log(Θw) ∈ H∗.

Here δPw is an ~-dependent 1-form which concentrates along Pw as }→ 0. We take Π =
∑

w∈Din
Πw as input

data to solve the Maurer–Cartan equation. Our first main result, whose proof uses a modification of a method
of Kuranishi [20], describes a Maurer–Cartan element Φ constructed perturbatively from Π using a propagator
H (see Section 4.1.1).

Theorem (See Theorems 4.8 and 4.12). The Maurer–Cartan element Φ can be written as a sum over tropical
disks L in (MR,Din),

Φ =
∑
L

1

|Aut(L)|
αLgL.

Here αL is a 1-form concentrated along PL ⊂MR, the locus traced out by the stop of L as it varies in its
moduli, and gL is the Block–Göttsche-type multiplicity of L. Moreover, when dimR(PL) = r − 1, there exists a
polyhedral decomposition PL of PL such that, for each maximal cell σ of PL, there exists a constant cL,σ such
that lim}→0

∫
%
αL = −cL,σ for any affine line % intersecting positively with σ in its relative interior.

Furthermore, if we generically perturb the scattering diagram Din, then cL,σ = 1, so that the limit
lim}→0

∫
%
αL is a count of tropical disks.
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In Section 4.2 we associate to the Maurer–Cartan element Φ a scattering diagram D(Φ). The walls of D(Φ)
are labeled by the maximal cells σ of the polyhedral decompositions PL and have wall-crossing automorphisms
exp(

cL,σ
|Aut(L)|gL). The diagram D(Φ) extends Din and is in fact a consistent scattering diagram; see Proposition

4.14. In this way, we obtain an enumerative interpretation of the consistent completion of Din.
Next, we turn to theta functions. Let C be a cone satisfying σ ⊂ C ⊂MR with associated monoid Y = C ∩M

and let A be a Y -graded algebra with a graded h-action. The dg Lie algebra H∗ acts naturally on the dg algebra

A∗ :=
⊕
m∈Y

(
W0
∗/W−1

∗
)
⊗C Am. (1)

Given a Maurer–Cartan element Φ ∈ H∗, it is natural to study the space of flat sections Ker(dΦ) of the deformed
differential dΦ = d+ [Φ, ·]. The algebra structure on A∗ induces an algebra structure on Ker(dΦ). The following
result describes the wall-crossing behavior of the }→ 0 limit of flat sections.

Theorem (See Theorem 4.15). Let s ∈ Ker(dΦ) and Q,Q′ ∈MR \ Supp(D(Φ)). Then, for any path γ ⊂
MR \ Joints(D) from Q to Q′, we have

lim
}→0

sQ′ = Θγ,D( lim
}→0

sQ),

where Θγ,D(Φ) is a wall-crossing factor and sQ′ , sQ are the restrictions of s to Q, Q′, respectively.

To connect with theta functions, we work in the square zero extension dg Lie algebra H∗ ⊕A∗[−1] where,
for each m ∈ Y , we perturbatively solve the Maurer–Cartan equation with input Π + zm. The resulting Maurer–
Cartan element is of the form Φ+ θm, with Φ as above and θm ∈ Ker(dΦ). On the other hand, associated to
m ∈ Y is the (standard) theta function

ϑm,Q :=
∑

broken lines γ
ending at (m,Q)

aγ

defined in terms of broken lines ending at (m,Q), that is, piecewise linear maps γ : (−∞, 0]→MR which bend
only at the walls of D(Φ). Each broken line γ has an associated weight aγ ∈ A.

Theorem (See Theorem 4.20). The equality

lim
}→0

θm(Q) = ϑm,Q

holds for all Q ∈MR \ Supp(D(Φ)), where θm(Q) denotes the value of θm at Q.

Finally, in Section 4.4 we study the above constructions in the setting of non-tropical Lie algebras. One
advantage of the differential geometric approach of this paper is that it is applicable to non-generic cases without
perturbing Din. With a mild commutativity condition on the wall-crossing automorphisms of the walls of Din

which, for example, is satisfied in the Hall algebra setting, we obtain new results in the non-tropical case, where
perturbation of Din is not possible. Theorem 4.26 generalizes to the non-tropical setting the construction of a
Maurer–Cartan element Φ from an initial scattering diagram Din and associates to Φ a consistent completion
of Din. We also prove that the completed scattering diagram is equivalent to that constructed algebraically
by Bridgeland [6]. Moreover, we construct, for each n ∈ N+

σ , a theta function θn ∈ Ker(dΦ) as a perturbative
Maurer–Cartan element and prove that it agrees with Bridgeland’s Hall algebra theta function [6].

In Section 4.4.5 we restrict attention to the case in which the Lie algebra is the motivic Hall–Lie algebra
of an acyclic quiver. In this case, there is a canonical choice for the propagator H, leading to a combinatorial
formula for Φ and θn in terms of tropical disks.

Theorem (See Theorem 4.29). Let h be the Hall–Lie algebra of an acyclic quiver with non-degenerate skew-
symmetrized Euler form. Then Φ can be written as a sum over labeled trees,

Φ =
∑
k≥1

∑
L∈LTk

ML(NR,Din)6=∅

1

|Aut(L)|
αLgL,

and θn can be written as a sum over marked tropical trees,

θn =
∑
k≥1

∑
J∈MTk(n)
PJ 6=∅

1

|Aut(J)|
αJaJ .

Moreover, θn is related to Bridgeland’s Hall algebra theta function ϑn,Q by ϑn,Q = θn(Q).



4 N. C. Leung, Z. Ma, M. B. Young

Here LTk and MTk(n) are the sets of labeled, respectively marked, k-trees and gL, aJ are Hall algebraic
Block–Göttsche-type multiplicities. The formula for θn can be regarded as a replacement for a description of
ϑn,Q in terms of Hall algebra broken lines. Indeed, it was recently shown by Cheung and Mandel [11] that,
contrary to Bridgeland’s theta functions, Hall algebra theta functions which are defined in terms of Hall algebra
broken lines do not, in general, satisfy the wall-crossing formula.

This paper is organized as follows. In Section 2 we review some definitions and results on refined tropical
counting and scattering diagram from [22]. In Section 3 we recall some analytic results from [8, 9] on the
behaviour of differential forms as }→ 0, and introduce the dg Lie algebra H∗. The main results of this paper
are contained in Section 4. In Sections 4.1 and 4.2 we extend the techniques of [8, 9] so as to apply to refined
scattering diagrams associated to tropical h, thereby relating the latter to Maurer–Cartan elements Φ ∈ H1. In
Section 4.3 we study the relation between broken line theta functions and Maurer–Cartan elements. In Section
4.4 we generalize some of the results of the previous section to the non-tropical case of a motivic Hall–Lie algebra
h.
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2 Scattering diagrams and theta functions

We collect background material on scattering diagrams and theta functions. Fix a lattice M of rank r with
dual lattice N = HomZ(M,Z). Write 〈·, ·〉 : M ×N → Z for the canonical pairing. Let MR = M ⊗Z R and
NR = N ⊗Z R.

2.1 Tropical Lie algebras and scattering diagrams

Following [14, 22], we recall the definition of scattering diagrams. Compared to [22], the roles of M and N are
reversed.

2.1.1 Tropical Lie algebras

Fix a strictly convex polyhedral cone σ ⊂MR. Let Mσ = σ ∩M and M+
σ = Mσ \ {0}. For each k ∈ Z>0, set

kM+
σ = {m1 + · · ·+mk | mi ∈M+

σ }.
Let h =

⊕
m∈M+

σ
hm be a M+

σ -graded Lie algebra over C. For each k ∈ Z>0, set h≥k =
⊕

m∈kM+
σ
hm.

Then h<k := h/h≥k is a nilpotent Lie algebra. Associated to the pro-nilpotent Lie algebra ĥ := lim←−k h
<k is the

exponential group Ĝ := exp(ĥ). Similarly, for each m ∈M+
σ , set h

‖
m =

⊕
k≥1 hkm and ĥ

‖
m =

∏
k∈Z>0

hkm ⊂ ĥ

with associated exponential group Ĝ
‖
m.

To define theta functions, we require a second (not necessarily strictly) convex polyhedral cone C (MR
which contains σ. Let Y = C ∩M be the corresponding monoid. Suppose that h acts on a Y -graded C-algebra
A =

⊕
m∈Y Am by derivations so that hm ·Am′ ⊂ Am+m′ . Then A≥k :=

⊕
m∈kM+

σ +Y Am is a graded ideal of

A. Set A<k = A/A≥k and Â = lim←−k A
<k. There is an induced action of ĥ, and hence also of Ĝ, on the algebra

Â.

Remark 1. There are alternative way to define Â when C = MR. For example, we can let A′ :=
⊕

m∈Mσ
Am

and Â′ = lim←−k(A′)<k where (A′)<k := (A′)/(A′)≥k and (A′)≥k :=
⊕

m∈kM+
σ
Am as above, and then take Â :=

A⊗A′ Â′.

More generally, given a sublattice L ⊂M , let hL =
⊕

m∈L∩M+
σ
hm and AL =

⊕
m∈L∩Y Am with associated

completions ĥL and ÂL.
Let K ⊂M be a saturated sublattice which satisfies the following conditions:

1. hK is a central Lie subalgebra of h.

2. The induced hK-action on A is trivial.

3. The induced h-action on AK is trivial.
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Denote by πK : M →M := M/K the canonical projection and by N := M
∨
↪→ N the embedding of M

∨
into

N as the orthogonal K⊥.
The following assumption will be used in Section 2.2.

Assumption 1 ([22]). 1. The monoid Y satisfies M = πK(Y ).

2. There is a fan structure on MR and a piecewise linear section ϕ : MR →MR of πK which satisfies ϕ(0) = 0
and Y = ϕ(M) + (K ∩ Y ).

3. We are given elements zϕ(m) ∈ Aϕ(m), m ∈M , which satisfy

(a) zϕ(0) = 1,

(b) for any a ∈ ÂK \ {0} and m ∈M , we have azϕ(m) 6= 0, and

(c) for any m ∈M , we have Aϕ(m)+Y ∩K = zϕ(m)AK .

Definition 2.1. The Lie algebra h is called tropical if, for each pair (m,n) ∈M+
σ ×N satisfying 〈m,n〉 = 0, it

is equipped with a subspace hm,n ⊂ hm. These subspaces are required to satisfy

1. hm,0 = {0} and hm,kn = hm,n for each k 6= 0,

2. [hm1,n1 , hm2,n2 ] ⊂ hm1+m2,n, where n = 〈m2, n1〉n2 − 〈m1, n2〉n1, and

3. hm1,n ·Am2
= {0} if 〈m2, n〉 = 0.

We call such Lie algebras tropical because scattering diagrams values in these Lie algebras are amenable
to study using techniques from tropical geometry. A similar definition is introduced in [22, §2.1]. Examples of
tropical and non-tropical Lie algebras can be found in [22, Example 2.1]. See also Section 4.4.1. Unless mentioned
otherwise, we will assume that h is tropical.

Observe that if (m,n) ∈M+
σ ×N with 〈m,n〉 = 0, then h

‖
m,n :=

⊕
k∈Z>0

hkm,n is an abelian Lie subalgebra

of h
‖
m. Denote by ĥ

‖
m,n the completion of h

‖
m,n.

Finally, given a commutative unital C-algebra R, there are R-linear versions of the above definitions. For
example, hR := h⊗C R is a Lie algebra over R which acts on A⊗C R by the R-linear extension of the rule
t1h · t2a = t1t2(h · a). The completion ĥ⊗̂CR acts on Â⊗̂CR. The corresponding exponential group is GR with

completion ĜR. Similarly, there are abelian Lie subalgebras ĥ
‖
m,n,R ⊂ ĥ

‖
m,R and, given a saturated sublattice

L ⊂M , we can form hL,R, AL,R and so on.

2.1.2 Scattering diagrams

We continue to follow [14, 22]. Fix a commutative unital C-algebra R. Recall that r is the rank of M .

Definition 2.2. A wall w (over R) in MR is a tuple (m,n, P,Θ) consisting of

1. a primitive element m ∈M+
σ and an element n ∈ N \ {0} which satisfy 〈m,n〉 = 0,

2. an (r − 1)-dimensional closed convex rational polyhedral subset P of m0 + n⊥ ⊂MR for some m0 ∈MR,
called the support of w, and

3. an element Θ ∈ Ĝm,n,R := exp(ĥ
‖
m,n,R), called the wall-crossing automorphism of w.

A wall w = (m,n, P,Θ) is called incoming if P + tm ⊂ P for all t ∈ R>0. A wall is called outgoing if it is
not incoming. The vector −m is called the direction of w.

Definition 2.3. A scattering diagram D over R is a countable set of walls {(mi, ni, Pi,Θi)}i∈I such that, for

each k ∈ Z>0, the image of log(Θi) in h<k ⊗C R is zero for all but finitely many i ∈ I.

Let k ∈ Z>0. Using the canonical projection ĥR → h<k ⊗C R, a scattering diagram D induces a finite
scattering diagram D<k with wall-crossing automorphisms in exp(h<k ⊗C R).

The support and singular set of a scattering diagram D are

Supp(D) :=
⋃

w∈D

Pw, Joints(D) :=
⋃

w∈D

∂Pw ∪
⋃

w1,w2∈D
dim(w1∩w2)=r−2

Pw1
∩ Pw2

.
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2.1.3 Path ordered products

An embedded path γ : [0, 1]→ NR \ Joints(D) is said to intersect D generically if γ intersects all walls of D

transversally, γ(0), γ(1) /∈ Supp(D) and Im(γ) ∩ Joints(D) = ∅. The path ordered product of such a path is
Θγ,D := lim←−k Θ<k

γ,D, where Θ<k
γ,D :=

∏γ
w∈D<k Θ±w ∈ exp(h<k ⊗C R) is defined in [15, §1.3], where the ± is the

sign of −〈γ′(t), n〉 when γ crosses the wall w = (m,n, P,Θ) at time t.

Definition 2.4. 1. A scattering diagram D is called consistent if Θγ,D = Id for any embedded loop γ
intersecting D generically.

2. Scattering diagrams D1, D2 are called equivalent if Θγ,D1
= Θγ,D2

for any embedded path γ intersecting
both D1 and D2 generically.

The following result is fundamental in the theory of scattering diagrams.

Theorem 2.5 ([18, 16]). Let Din be a scattering diagram consisting of finitely many walls supported on full
affine hyperplanes. Then there exists a scattering diagram S(Din) which is consistent and is obtained from Din

by adding only outgoing walls. Moreover, the scattering diagram S(Din) is unique up to equivalence.

Using asymptotic analytic techniques, an independent proof of the existence part of Theorem 2.5 will be
given in Proposition 4.14.

2.2 Broken lines and theta functions

We follow [22] to define broken lines. Fix a consistent scattering diagram D over R.

Definition 2.6. A broken line γ with end (m, Q) ∈M \ {0} ×MR \ Supp(D) is the data of a partition
−∞ < t0 ≤ t1 ≤ · · · ≤ tl = 0, a piecewise linear map γ : (−∞, 0]→MR \ Joints(D) and elements ai ∈ Ami ⊗C R,
i = 0, . . . , l, with mi 6= 0. This data is required to satisfy the following conditions:

1. a0 = zϕ(m).

2. γ(0) = Q.

3. {t0, . . . , tl−1} ⊆ γ−1(Supp(D)).

4. γ′|(ti−1,ti) ≡ −mi for i = 0, . . . , l, where t−1 := −∞, and all bends mi+1 −mi are non-zero.

5. For each i = 0, . . . , l − 1, set Θi :=
∏

w∈D
γ(ti)∈Pw

Θ
sgn〈mi,nw〉
w ∈ ĜR. Then ai+1 is a homogeneous summand of

Θi · ai.

In the notation of Definition 2.6, we will write aγ for al.

Definition 2.7. The broken line theta function associated to (m, Q) ∈M \ {0} ×MR \ Supp(D) is

ϑm,Q =
∑

End(γ)=(m,Q)

aγ ∈ Â⊗̂CR,

the sum being over all broken lines with end (m, Q). Define also ϑ0,Q = 1.

In the present setting, well-definedness of theta functions was proved in [22]. Observe that ϑm,Q ∈
zϕ(m) + Âϕ(m)+M+

σ
, where Âϕ(m)+M+

σ
is the completion of Aϕ(m)+M+

σ
⊗C R.

Proposition 2.8 ([7, 22]). Under Assumption 1, the following statements hold:

1. For each Q ∈MR \ Supp(D), the set {ϑm,Q}m∈M is linearly independent over ÂK⊗̂CR and, for each

k ∈ Z>0, additively generates A<k ⊗C R over A<kK ⊗C R.

2. Let D = S(Din) and let ρ : [0, 1]→MR \ Joints(D) be a path with generic endpoints which do not lie in
Supp(D). Then the equality ϑm,ρ(1) = Θρ,D(ϑm,ρ(0)) holds for all m ∈M .
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2.3 Tropical disk counting

We recall some definitions from [22], modified so as to incorporate the work of [8]. Fix a scattering diagram
Din = {wi = (mi, ni, Pi,Θi)}i∈I and let gi = log(Θi). Write

gi =
∑
j≥1

gji ∈
(∏
j≥1

hjmi
)
∩ ĥ‖mi,ni , gji ∈ hjmi . (2)

For each l ≥ 0, define commutative rings R = C[{ti | i ∈ I}] and Rl = C[{ti | i ∈ I}]/〈tl+1
i | i ∈ I〉, as in

[15, 22]. There is a ring homomorphism

Rl → R̃l :=
C [{uij | i ∈ I, 1 ≤ j ≤ l}]
〈u2
ij | i ∈ I, 1 ≤ j ≤ l〉

, ti 7→
l∑

j=1

uij .

Definition 2.9. A perturbation D̃in,l of Din over R̃l is a scattering diagram over R̃l consisting of a wall
wiJ = (mi, ni, PiJ ,ΘiJ) for each i ∈ I and J ⊂ {1, . . . , l} with #J ≥ 1 such that

1. each PiJ is a translate of n⊥i and PiJ 6= Pi′J′ unless i = i′ and J = J ′, and

2. the equality log(ΘiJ) = (#J)!g(#J)i

∏
s∈J uis holds.

We follow [8, 12, 15, 24] and introduce tropical disks in Din or D̃in,l.

Definition 2.10. A (directed) k-tree T is the data of finite sets of vertices T̄ [0] and edges T̄ [1], a decomposition

T̄ [0] = T
[0]
in t T [0] t {vout} into incoming, internal and outgoing vertices, and boundary maps ∂in, ∂out : T̄ [1] →

T̄ [0]. This data is required to satisfy the following conditions:

1. The set T
[0]
in has cardinality k.

2. Each vertex v ∈ T [0]
in is univalent and satisfies #∂−1

out(v) = 0 and #∂−1
in (v) = 1.

3. Each vertex v ∈ T [0] is trivalent and satisfies #∂−1
out(v) = 2 and #∂−1

in (v) = 1.

4. We have #∂−1
out(vout) = 1 and #∂−1

in (vout) = 0.

5. The topological realization |T̄ | :=
(∐

e∈T̄ [1] [0, 1]
)
/ ∼, where ∼ is the equivalence relation which identifies

boundary points of edges if their images in T [0] agree, is connected and simply connected.

Two k-trees are isomorphic if there exist bijections between their sets of vertices and edges which preserve

the respective decompositions and boundary maps. Set T
[0]
∞ = T

[0]
in t {vout} and T [1] = T̄ [1] \ ∂−1

in (T
[0]
in ). The edge

eout := ∂−1
out(vout) is called the outgoing edge. The root vertex vr is the unique vertex satisfying eout = ∂−1

in (vr).

Definition 2.11. 1. A labeled k-tree is a k-tree L with a labeling of each edge e ∈ ∂−1
in (L

[0]
in ) by a wall

wie = (mie , nie , Pie ,Θie) in Din and an element me ∈M+
σ such that me = kemie for some ke ∈ Z>0.

2. Fix m ∈M \ {0}. A marked k-tree is a k-tree J with a marked edge ĕ ∈ ∂−1
in (J

[0]
in ) and an associated element

mĕ = ϕ(m), together with a labeling of each edge e ∈ ∂−1
in (J

[0]
in ) \ {ĕ} by a pair (wie ,me), as for labeled

k-trees.

3. A weighted k-tree is a k-tree Γ with a weighting of each incoming edge e ∈ ∂−1
in (Γ

[0]
in ) by a wall

wieJe = (mie , nie , PieJe ,ΘieJe) in D̃in,l and a pair (me, u
~Je), where u

~Je :=
∏
i∈I
∏
j∈Je,i uij ∈ R̃l, such

that me = (#Je)mie and ~Je is an I-tuple of finite subsets of {1, . . . , l} such that Je,ie = Je and Je,j = ∅
for j ∈ I \ {ie}. Moreover, the weights of incoming edges are required to be pairwise distinct.
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The final part of Definition 2.11 will be generalized below so as to allow multiple elements of ~Je to be
non-empty.

Two labeled k-trees are isomorphic if they are isomorphic as k-trees by a label preserving isomorphism,
and similarly for marked and weighted cases. The set of isomorphism classes of labeled, marked and weighted
k-trees will be denoted by LTk, MTk(m) and WTk, respectively.

Let L be a labeled k-tree. Inductively define a labeling of all edges of L by requiring that for a vertex v ∈ L[0]

with incoming edges e1, e2 (so that ∂−1
out(v) = {e1, e2}) and outgoing edge e3, the equality me3 = me1 +me2

holds. A similar procedure applies to marked and weighted k-trees, where in the latter case we also require

u
~Je3 = u

~Je1u
~Je2 . Write mL/J/Γ = meout and u

~JΓ = u
~Jeout .

Definition 2.12. A labeled ribbon k-tree L is a labeled k-tree with a ribbon structure, that is, a cyclic ordering
of ∂−1

in (v) t ∂−1
out(v) for each v ∈ L[0]. A marked ribbon k-tree is defined analogously.

Labeled ribbon k-trees are isomorphic if they are isomorphic as k-trees by an isomorphism which preserves
the ribbon structure and labels. The set of isomorphism classes of labeled ribbon k-trees will be denoted by
LRk. Similarly, MRk(m) and WRk are the sets of isomorphism classes of marked and weighted ribbon k-trees,
respectively. The topological realization of a labeled (or marked, weighted) ribbon k-tree L can be embedded

into the unit disc D so that L[0]
∞ ⊂ ∂D and the ribbon structure of L is induced by the orientation of D. This

embedding is unique up to orientation preserving homeomorphisms of (D, ∂D).

Definition 2.13 ([22]). Given a labeled k-tree L (resp. weighted k-tree Γ), associate to each e ∈ L̄[1] (resp.
e ∈ Γ̄[1]) a pair ±(ne, ge), defined up to sign,∗ with ne ∈ N and ge ∈ hme,ne (resp. ge ∈ hme,ne,R̃l), inductively
along the direction of the tree as follows:

1. Associated to each e ∈ ∂−1
in (L

[0]
in ) (resp. e ∈ ∂−1

in (Γ
[0]
in )) is a unique initial wall wie = (mie , nie , Pie ,Θie)

(resp. wieJe = (mie , nie , PieJe ,ΘieJe)). Set ne = nie and ge = gkeie (resp. ge = g(#Je,ie )ie), where gji is
given by equation (2).

2. At a trivalent vertex v ∈ L[0] (resp. v ∈ Γ[0]) with incoming edges e1, e2 and outgoing edge e3, set
ne3 = 〈me2 , ne1〉ne2 − 〈me1 , ne2〉ne1 and ge3 = [ge1 , ge2 ].

For a labeled (resp. weighted) ribbon tree L (resp. T ), the label (ne, ge) of e ∈ L̄[1] (resp. e ∈ T̄ [1]) can be
defined without the sign ambiguity by requiring that {e1, e2, e3} be clockwise oriented.

Write (nL, gL) or (nΓ, gΓ) for the pair associated to eout. Note that if v ∈ Γ[0] has incoming edges e1, e2 and
outgoing edge e3 and me1 ,me2 ∈MR are linearly dependent, then ne3 = 0 and hence gΓ = 0, as follows from the
vanishing hm,0 = {0}.

Definition 2.14. The core cJ of J ∈ MTk(m) is the directed path of edges ĕ = e0, e1, . . . , el = eout joining ĕ to
eout. Removing cJ results in l disconnected labeled trees L1, . . . , Ll according to the order of attaching to cJ .
We assign aei ∈ Amei inductively along cJ as follows:

1. Associated to the marked edge ĕ is the element zmĕ = zϕ(m).

2. With aei defined, define aei+1
= gLi+1

· aei .

Associated to the edge eout is aJ = aeout ∈ AmJ . We also let εJ =
∏l
i=1 sgn

(
〈−mei−1

, nLi〉
)
.

Definition 2.14 applies without change to marked ribbon trees. Note that the product εJaJ is well-defined
without the specification of a ribbon structure on J .

Given a weighted k-tree Γ and ~s := (se)e∈Γ[1] ∈ (R<0)|Γ
[1]|, the associated realization of Γ is |Γ~s| :=((⊔

e∈∂−1
out(Γ

[0]
in)

(R≤0)e
)
t
(⊔

e∈Γ[1] [se, 0]
))
/ ∼ . Here (R≤0)e is a copy of R≤0 and ∼ is the equivalence relation

which identifies boundary points of edges if their images in Γ[0] agree. For labeled (resp. marked) k-trees L (resp.
J), we allow se = 0 for e ∈ L[1] (resp. e ∈ J [1]).

Definition 2.15. A tropical disk in (MR,Din) (resp. (MR, D̃in,l)) consists of

1. a labeled k-tree L (resp. weighted k-tree Γ), with labeling of e ∈ ∂−1
in (L

[0]
in ) by a wall

wie = (mie , nie , Pie ,Θie) and me ∈M+
σ (resp. labeling of e ∈ ∂−1

in (Γ
[0]
in ) by a wall wieJe,ie

=

(mie , nie , PieJe,ie ,ΘieJe,ie
) and (me, u

~Je)),

∗As the signs of ne3 and ge3 depend on the cyclic ordering e1, e2, e3 in the same way, only ±(ne3 , ge3 ) is defined.
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2. a tuple of parameters ~s = (se)e∈L[1] ∈ (R≤0)|L
[1]| (resp. ~s = (se)e∈Γ[1] ∈ (R<0)|Γ

[1]|), and

3. a proper map ς : |L~s| →MR (resp. ς : |Γ~s| →MR)

such that the following conditions are satisfied:

(i) For each e ∈ ∂−1
in (L

[0]
in ) (resp. e ∈ ∂−1

in (Γ
[0]
in )), we have ς|(R≤0)e

(0) ∈ Pie (resp. ς|(R≤0)e
(0) ∈ PieJe,ie ) and

ς|(R≤0)e
(s) = ς|(R≤0)e

(0) + s(−me) for all s ∈ R≤0.

(ii) For each e ∈ L[1] (resp. e ∈ Γ[1]), we have ς|[se,0]
(s) = ς|[se,0]

(0) + s(−me).

The point ς(vout) := ς|[seout ,0]
(0) ∈MR is called the stop of the tropical disk ς. Given a tropical disk ς

in (MR,Din) (resp. (MR, D̃in,l)), denote by ±(nς , gς) the pair ±(nL, gL) (resp. ±(nΓ, gΓ)) associated to the
underlying labeled (resp. weighted) tree.

One can also define tropical disks in MR of type L, meaning that the underlying labelled k-tree is specified
to L, without specifying a scattering diagram by relaxing condition (i) in Definition 2.15 to

ς|(R≤0)e
(s) = ς|(R≤0)e

(0) + s(−me) for all s ∈ R≤0

and allowing each se to take on the value 0. Tropical disks of type L in MR form a moduli space ML(MR).

Under the identification ML(MR) ∼= R|L
[1]|
≤0 ×MR, the evaluation map ev : ML(MR)→MR, obtained by taking

the stop of tropical disks, is the projection to MR. Similar comments and notation apply to tropical disks in MR
of type Γ.

We denote by ML(MR,Din) (resp. MΓ(MR, D̃in,l)) the set of all tropical disks in (MR,Din) (resp.

(MR, D̃in,l)) when nL 6= 0 (resp. nΓ 6= 0 and u
~JΓ 6= 0) with underlying labeled k-tree L (resp. weighted k-tree Γ).

By definition, ML(MR,Din) and MΓ(MR, D̃in,l) are subsets of ML(MR). Denote their closures by an overbar;

the set ML(MR,Din) is in fact already closed. Define affine subspaces of MR by PL = ev(ML(MR,Din)) and
PΓ = ev(MΓ(MR,Din)). For marked k-tree J with mĕ = ϕ(m), we define set of tropical disks MJ(MR,Din,m)
similarly (allowing se = 0 for e ∈ J [1]), and let PJ = ev(MJ(MR,Din,m)).

When M has rank two, PΓ is a line when k = 1 and is a ray when k > 1. The latter case is illustrated in
Figure 2.

Fig. 2. The affine subspace PΓ from moduli of tropical disks.

Lemma 2.16. If PΓ is non-empty, then it is orthogonal to nΓ.

Proof . We proceed by induction on the cardinality of Γ[0]. In the initial case, Γ[0] = ∅, the only tree is that
with a unique edge and the statement is trivial.

For the induction step, suppose that vr ∈ Γ[0] is adjacent to the outgoing edge eout and incoming edges
e1, e2. Split Γ at vr, thereby obtaining trees Γ1 and Γ2 with outgoing edges e1 and e2 and k1 and k2 incoming
edges, respectively. We have(

MΓ1
(MR, D̃in,l)ev ×ev MΓ2

(MR, D̃in,l)
)
×R≥0 · (−mΓ) ∼= MΓ(MR, D̃in,l),
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implying that PΓ = (PΓ1
∩ PΓ2

) + R≥0 · (−mΓ). By the induction hypothesis, nΓi is orthogonal to PΓi , i = 1, 2,
and hence nΓ is orthogonal to PΓ1

∩ PΓ2
. A direct computation using the definition of nΓ shows that 〈mΓ, nΓ〉 = 0.

The lemma follows.

Definition 2.17. A scattering diagram D̃in,l is called generic if for any weighted trees Γ1, Γ2 such that

u
~JΓ1 · u ~JΓ2 6= 0 and PΓ1 intersects PΓ2 transversally,† the intersection PΓ1 ∩ PΓ2 ⊂MR has codimension two and

is contained in the boundary of neither PΓ1 nor PΓ2 .

A generic perturbation of the D̃in,l of the initial diagram Din will be generic as in the above Definition 2.17
(readers may see [15, 12, 22] for details in various cases). The next result, which was proved by various authors
in increasing levels of generality, relates consistent scattering diagrams to the counting of tropical disks.

Theorem 2.18 ([15, 12, 22]). Let D̃in,l be a generic initial scattering diagram. There is a bijec-

tive correspondence between walls w ∈ S(D̃in,l) and weighted trees Γ with MΓ(MR, D̃in,l) 6= ∅ under
which a wall w = (m,n, P,Θ) corresponds to the weighted tree Γ with (nΓ, PΓ) = (n, P ) and log(Θ) =(∏

e∈∂−1
in (Γ

[0]
in)

(#Je,ie)!
)
gΓu

~JΓ .

3 Pertubative solution of the Maurer–Cartan equation

We introduce a differential graded (dg) Lie algebra whose Maurer–Cartan equation governs the scattering process
from Din to S(Din), or its generic perturbation.

3.1 Differential forms with asymptotic support

We begin by recalling some background material from [8, §4.2.3] and [9, §3.2].
Let U be a convex open subset of MR, or more generally, of an integral affine manifold, as in [9, §3.2].

Introduce the notation Ωk}(U) := Γ(U ×R>0,
∧
k T∨U), where the coordinate of R>0 is }. LetW−∞k (U) ⊂ Ωk}(U)

be the set of k-forms α such that, for each q ∈ U , there exists a neighborhood q ∈ V ⊂ U and constants Dj,V ,
cV such that ‖∇jα‖L∞(V ) ≤ Dj,V e

−cV /} for all j ≥ 0. Similarly, let W∞k (U) ⊂ Ωk}(U) be the set of k-forms α
such that, for each q ∈ U , there exists a neighborhood q ∈ V ⊂ U and constants Dj,V and Nj,V ∈ Z>0 such that
‖∇jα‖L∞(V ) ≤ Dj,V }−Nj,V for all j ≥ 0. The assignment U 7→ W−∞k (U) (resp. U 7→ W∞k (U)) defines a sheaf

W−∞k (resp.W∞k ) on MR. Note thatW−∞k andW∞k are closed under the wedge product, ∇ ∂
∂x

and the de Rham

differential d. Since W−∞k is a dg ideal of W∞k , the quotient W∞∗ /W−∞∗ is a sheaf of dg algebras when equipped
with the de Rham differential.

By a tropical polyhedral subset of U we mean a connected convex subset which is defined by finitely many
affine equations or inequalities over Q.

Definition 3.1. A k-form α ∈ W∞k (U) is said to have asymptotic support on a closed codimension k tropical
polyhedral subset P ⊂ U with weight s, denoted α ∈ Ws

P (U), if the following conditions are satisfied:

1. For any p ∈ U \ P , there is a neighborhood p ∈ V ⊂ U \ P such that α|V ∈ W−∞k (V ).

2. There exists a neighborhood WP ⊂ U of P such that α = h(x,})νP + η on WP , where νP ∈
∧k

NR is the
unique (up to scaling) affine k-form which is normal to P , h(x,}) ∈ C∞(WP ×R>0) and η ∈ W−∞k (WP ).

3. For any p ∈ P , there exists a convex neighborhood p ∈ V ⊂ U equipped with an affine coordinate system
x = (x1, . . . , xn) such that x′ := (x1, . . . , xk) parametrizes codimension k affine linear subspaces of V
parallel to P , with x′ = 0 corresponding to the subspace containing P . With the foliation {(PV,x′)}x′∈NV ,
where PV,x′ = {(x1, . . . , xn) ∈ V | (x1, . . . , xk) = x′} and NV is the normal bundle of P in V , we require
that, for all j ∈ Z≥0 and multi-indices β = (β1, . . . , βk) ∈ Zk≥0, the estimate

∫
x′

(x′)β

(
sup

x∈PV,x′
|∇j(ιν∨Pα)|(x)

)
νP ≤ Dj,V,β}−

j+s−|β|−k
2

holds for some constant Dj,V,β and s ∈ Z, where |β| =
∑

l βl and ν∨P = ∂
∂x1
∧ · · · ∧ ∂

∂xk
.

†Here ‘tranversally’ means that the unique affine subspaces containing PΓ1
and PΓ2

intersect transversally.
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Observe that ∇ ∂
∂xl

Ws
P (U) ⊂ Ws+1

P (U) and (x′)βWs
P (U) ⊂ Ws−|β|

P (U). It follows that

(x′)β∇ ∂
∂xl1

· · · ∇ ∂
∂xlj

Ws
P (U) ⊂ Ws+j−|β|

P (U).

The weight s defines a filtration of W∞k (we drop the U dependence from the notation whenever it is clear
from the context):‡

W−∞k ⊂ · · · ⊂ W−1
P ⊂ W0

P ⊂ W1
P ⊂ · · · ⊂ W∞k ⊂ Ωk}(U).

This filtration, which keeps track of the polynomial order of } for k-forms with asymptotic support on P ,
provides a convenient tool to express and prove results in asymptotic analysis.

Definition 3.2. A differential k-form α is in W̃s
k(U) if there exist polyhedral subsets P1, . . . , Pl ⊂ U of

codimension k such that α ∈
∑l

j=1Ws
Pj

(U). If, moreover, dα ∈ W̃s+1
k+1(U), then we write α ∈ Ws

k(U). For every

s ∈ Z, let Ws
∗(U) =

⊕
kW

s+k
k (U).

We say that closed tropical polyhedral subsets P1, P2 ⊂ U of codimension k1, k2 intersect transversally if
the affine subspaces of codimension k1 and k2 which contain P1 and P2, respectively, intersect transversally.
This definition applies also when ∂Pi 6= ∅.

Lemma 3.3 ([9, Lemma 3.11]). 1. Let P1, P2, P ⊂ U be closed tropical polyhedral subsets of codimension
k1, k2 and k1 + k2, respectively, such that P contains P1 ∩ P2 and is normal to νP1

∧ νP2
. Then

Ws
P1

(U) ∧Wr
P2

(U) ⊂ Wr+s
P (U) if P1 and P2 intersect transversally and Ws

P1
(U) ∧Wr

P2
(U) ⊂ W−∞k1+k2

(U)
otherwise.

2. We have Ws1
k1

(U) ∧Ws2
k2

(U) ⊂ Ws1+s2
k1+k2

(U). In particular, W0
∗ (U) ⊂ W∞∗ (U) is a dg subalgebra and

W−1
∗ (U) ⊂ W0

∗ (U) is a dg ideal.

Remark 2. As mentioned in the introduction,W0
k(U) can be interpreted as the space of bump forms on U which

are concentrated along a codimension k closed tropical polyhedral subset P ⊂ U , while W−1
k (U) is the subspace

of bump forms α which additionally satisfy lim}→0

∫
L
α = 0 for any k-dimensional closed tropical polyhedral

subset L.

3.1.1 Homotopy operators

Let P ⊂ U be a closed tropical polyhedral subset. In the remainder of this section, we study the behavior of
Ws
P (U) under the application of a homotopy-type operator I. To do so, fix a reference tropical hyperplane

R ⊂ U which divides U into U \R = U+ t U−. Fix also an affine vector field v (meaning ∇v = 0) which is not
tangent to R and points into U+.

By shrinking U if necessary, we can assume that, for any p ∈ U , the unique flow line of v in U passing
through p intersects R at a unique point, say x ∈ R. The time t flow along v defines a diffeomorphism§

τ−v : W → U, (t, x) 7→ τ−v(t, x), where W ⊂ R×R is the maximal domain of definition of τ−v. We sometimes
write τ−vt (x) for τ−v(t, x). If it will not lead to confusion, we write τ in place of τ−v.

Let P± = P ∩ U± and define

I(P )+ = (P+ + R≥0 · v) ∩ U, I(P )− = (P− + R≤0 · v) ∩ U.

Define an integral operator I by

I(α)(t, x) =

∫ t

0

ι ∂
∂r

(τ∗(α))(r, x)dr, α ∈ Ws
P (U).

Despite the notation, I depends on the choice of the tropical hyperplane R and the vector field v.

Lemma 3.4 (cf. [9, Lemmas 3.12, 3.15]). Let α ∈ Ws
P (U). Then I(α) ∈ W−∞k−1(U) if v is tangent to P and

I(α) ∈ Ws−1
I(P )+

(U) +Ws−1
I(P )−

(U) otherwise. Moveover, if α ∈ W̃s
k(U) (resp. α ∈ Ws

k(U)), then I(α) ∈ W̃s−1
k−1(U)

(resp. I(α) ∈ Ws−1
k−1(U)).

‡Note that k is equal to the codimension of P ⊂ U .
§The notation τ−v is chosen so as to reduce signs in what follows.
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Using the affine coordinates determined by τ , define a tropical hypersurface i : R→ U , x 7→ (0, x), and an
affine projection p : U → R, (t, x) 7→ x.

Lemma 3.5 (cf. [9, Lemmas 3.13, 3.14]). 1. Let k = codimR(P ⊂ U). For α ∈ Ws
P (U), we have i∗α ∈

Ws
Q(R) if P intersects R transversally, where Q ⊂ R is any codimension k polyhedral subset which con-

tains P ∩R and is normal to i∗νP , and i∗α ∈ W−∞k (R) otherwise. Moreover, the pullback along i is a map
i∗ :Ws

k(U)→Ws
k(R).

2. For α ∈ Ws
P (R), we have p∗α ∈ Ws

p−1(P )(U). Moreover, the pullback along p is a map p∗ :Ws
k(R)→

Ws
k(U).

Finally, we extend the above construction to define an integral operator which retracts U to a chosen
point q0. Consider a chain of affine subspaces {q0} = U0 ⊆ U1 ⊆ · · · ⊆ Ur = U with dimR(Uj) = j. Denote by
ij : Uj → Uj+1 and pj : Uj+1 → Uj the inclusions and affine projections, respectively. Let vj be a constant
affine vector field on Uj+1 which is tangent to the fiber of pj . Composition of the inclusion operators gives
ii,j : Ui → Uj , i < j, and similarly for the projection operators. Let Ij :Ws

k(Uj+1)→Ws−1
k−1(Uj+1) be the integral

operator defined using vj , as above. For the purpose of solving the Maurer–Cartan equation, we will choose q0 to
be an irrational point in U1. While {q0} is not a tropical polyhedral subset of U1, the definition of p∗0,j remains

valid if it is treated as the inclusion of constant functions. The operator I0 defines a map Ws
1(U1)→Ws−1

0 (U1),
even if q0 is irrational. Indeed, each α ∈ Ws

1(U1) can be written as a finite sum
∑

l αl with αl ∈ W̃s
Pl

(U1) for
some rational points Pl of U1 which, in particular, are distinct from q0. It follows that I0(Pl) is still a tropical
subspace of U1.

With the above notation, define an operator I :Ws
∗(U)→Ws−1

∗−1(U) of ∗-degree −1 by

I = p∗1,rI0i
∗
1,r + · · ·+ p∗r−1,rIr−2i

∗
r−1,r + Ir−1. (3)

Write i∗ := i∗0,r for evaluation at q0 and p∗ := p∗0,r.

Proposition 3.6 (cf. [9, Lemma 3.16]). The equality dI + Id = Id− p∗i∗ holds.

3.2 The tropical differential graded Lie algebra

3.2.1 Abstract tropical dg Lie algebras

Consider a M+
σ -graded tropical Lie algebra h acting on a Y -graded algebra A, as in Section 2.1. Fix a convex

open subset U ⊂MR.

Definition 3.7. The tropical dg Lie algebra associated to h is

H∗(U) :=
⊕

m∈M+
σ

(
W0
∗ (U)/W−1

∗ (U)
)
⊗C hm

with differential d(αh) = (dα)h and Lie bracket [αh, α′h′] = (α ∧ α′)[h, h′], where α, α′ ∈ W0
∗ (U)/W−1

∗ (U) and
h, h′ ∈ h.

Denote by Ĥ∗(U) the completion associated to the monoid ideals kM+
σ ⊂M+

σ , k ∈ Z>0. Given a
commutative algebra R, set H∗R(U) = H∗(U)⊗C R and Ĥ∗R(U) = Ĥ∗(U)⊗̂CR. We also introduce the dg Lie
algebra G∗(U) :=

⊕
m∈M+

σ
W0
∗ (U)⊗C hm and its dg Lie ideal I∗(U) :=

⊕
m∈M+

σ
W−1
∗ (U)⊗C hm. Observe that

G∗(U)/I∗(U) ' H∗(U). When U = MR, we will often omit U from the notation.
We will be interested in solving the Maurer–Cartan equation in Ĥ∗ or H∗R, which reads

dϕ+
1

2
[ϕ,ϕ] = 0. (4)

Definition 3.8. The tropical dg algebra associated to A is A∗(U) :=
⊕

m∈Y
(
W0
∗ (U)/W−1

∗ (U)
)
⊗C Am, with

differential d(αf) = (dα)f and product (αf) ∧ (α′f ′) = (α ∧ α′)(ff ′), where α, α′ ∈ W0
∗ (U)/W−1

∗ (U) and f, f ′ ∈
A. As for H∗(U), we can also define Â∗(U) and AR(U).

There is a left H∗(U)-action on A∗(U) given by (αh) · (α′f) := (α ∧ α′)(h · f). As a graded vector space,
the square zero extension dg Lie algebra is (H⊕A[−1])∗(U) := H∗(U)⊕A∗−1(U). The bracket

[h+ f, h′ + f ′] = [h, h′] + h · f ′ − (−1)|h
′||f |h′ · f, h, h′ ∈ H∗(U), f, f ′ ∈ A∗−1(U).
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3.2.2 Homotopy operator

We will solve equation (4) using Kuranishi’s method [20], in which a solution is written as a sum over trivalent
trees. We take U = MR for the remainder of this section.

Fix an affine metric g0 on MR. For each m ∈M+
σ , fix a chain of affine subspaces {pt} = Um0 ⊆ Um1 ⊆ · · · ⊆

Umr = MR. We assume that Um0 is an irrational point of Um1 . Denote by pmj the affine projection determined by
the vector field vmj , with the convention that vmr−1 = −m.

Given these choices, we obtain a homotopy operator Hm :W0
∗ →W0

∗−1 of ∗-degree −1 using equation (3)
(denoted there by I). Let Pm :W0

∗ →W0
0 (Um0 ) be the projection Pm(α) := α|Um0 and let ιm :W0

0 (Um0 )→W0
∗

be given by ιm(α) := α, the embedding of constant functions on MR. As in [8], these operators satisfy

dHm + Hmd = Id− ιmPm,

so that H∗ =
⊕

m Hm is a homotopy retracting W0
∗ to its cohomology H∗(W0

∗ , d) ' W0
0 (Um0 ). Moreover, these

operators descend to the quotient W0
∗/W−1

∗ , thereby contracting its cohomology to C ∼=W0
0 (Um0 )/W−1

0 (Um0 ).

Definition 3.9. 1. For each m ∈M+
σ , let H∗m :=

(
W0
∗/W−1

∗
)
⊗C hm and define the homotopy operator

Hm : H∗m → H∗−1
m by Hm(αh) = Hm(α)h. Denote by H =

⊕
m Hm the induced operator on H∗.

2. Define operators P =
⊕

m Pm and ι =
⊕

m ιm similarly.

Taking inverse limits defines operators on Ĥ∗. Similar definitions apply to H∗R and Ĥ∗R. We can also apply
the construction to the dg Lie algebra H⊕A[−1], obtaining operators H, P and ι.

3.3 Solving the Maurer–Cartan equation

3.3.1 Input of the Maurer–Cartan equation

Consider an initial scattering diagram Din, or its perturbation D̃in,l. We will associate to each wall a term in

Ĥ1 or Ĥ1
R̃l

to serve as inputs to solve the Maurer–Cartan equation.

Consider first Din = {wi = (mi, ni, Pi,Θi)}i∈I , with log(Θi) =
∑

j gji as in equation (2). Consider an affine

function ηi = 〈·, ni〉+ c such that Pi = {x ∈MR | ηi(x) = 0} and set

δPi =
( 1

π}
)1/2

e−(η2
i )/}dηi.

Lemma 3.10 ([8, §4]). We have δPi ∈ W1
Pi

(MR).

Set

Π(i) = −δPi log(Θi) ∈ Ĥ1 (5)

and take Π =
∑

i∈I Π(i) as the input to solve the Maurer–Cartan equation.

If instead we begin with a perturbed diagram D̃in,l, then we have walls wiJ = (miJ , niJ , PiJ ,ΘiJ), leading

to δPiJ ∈ W1
PiJ

(MR) and Π̃ =
∑

i,J Π̃
(i)
J ∈ H1

R̃l
.

3.3.2 Summation over trees

Motivated by Kuranishi’s method [20] of solving the Maurer–Cartan equation of the Kodaira–Spencer dg Lie
algebra, and its generalization to general dg Lie algebras (see [23]), instead of solving equation (4), we first look
for solutions Φ̆ ∈ Ĥ1 of the equation

Φ̆ = Π− 1

2
H[Φ̆, Φ̆]. (6)

In the perturbed setting, we look for solutions
˜̆
Φ ∈ H1

R̃l
of the equation

˜̆
Φ = Π̃− 1

2H[
˜̆
Φ,

˜̆
Φ].

Proposition 3.11. If Φ̆ satisfies equation (6), then Φ̆ satisfies equation (4) if and only if P[Φ̆, Φ̆] = 0. An

analgous statement holds for
˜̆
Φ.

The unique solution Φ̆ of equation (6) can be expressed as a sum over directed trees, as we now recall. An

analogous statement holds for
˜̆
Φ. Further details can be found in [8, §5.1].
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Definition 3.12. Given L ∈ LRk (resp. T ∈ WRk), number the incoming vertices by v1, . . . , vk according
to their cyclic ordering and let e1, . . . , ek be their incoming edges. Define lk,L : (Ĥ∗+1)⊗k → Ĥ∗+1 (resp.

lk,T : (H∗+1

R̃l
)⊗k → H∗+1

R̃l
) so that its value on ζ1, . . . , ζk ∈ Ĥ∗+1

(R̃l)
is given by

1. extracting the component of ζi in H∗+1
mei

(resp. H∗+1
mei

uJei ) and aligning it as the input at vi,

2. then applying m2 at each vertex in L[0] (resp. T [0]), where m2 : Ĥ∗+1 ⊗ Ĥ∗+1 → Ĥ∗+1 is the graded
symmetric operator m2(α, β) = (−1)ᾱ(β̄+1)[α, β], where ᾱ and β̄ denote the degrees of α and β, and finally

3. applying the homotopy operator −H to each edge in L[1] (resp. T [1]).

Having defined lk,L and lk,T , we can write

Φ̆ =
∑
k≥1

1

2k−1

∑
L∈LRk

lk,L(Π, . . . ,Π),
˜̆
Φ =

∑
k≥1

1

2k−1

∑
T ∈WRk

lk,T (Π̃, . . . , Π̃). (7)

It is not hard to see that the sum defining Φ̆ converges in Ĥ∗. The sum defining
˜̆
Φ is finite in H∗

R̃l
because the

maximal ideal of R̃l is nilpotent.

4 Tropical counting and theta functions from Maurer–Cartan solutions

4.1 Tropical counting from Maurer–Cartan solutions

The goal of this section is to relate Maurer–Cartan elements of H1
R̃l

to the counting of tropical disks in

(MR, D̃in,l). Similar results for M of rank two can be found in [9].

4.1.1 A partial homotopy operator

Recall the homotopy operator H =
⊕

m∈M+
σ
Hm from Section 3.2.2. It will be useful to replace Hm with the

partial homotopy operator

Hm(α)(x) :=

∫ 0

−∞
(ι ∂
∂s

(τm)∗(α)(s, x))ds, (8)

where τm : R×MR →MR is the flow with respect to the vector field −m. Given L ∈ LRk (resp. T ∈ WRk), denote
by Lk,L (resp. Lk,T ) the operation obtained by replacing the operator H with H in Definition 3.12 (denoted
there by l instead of L).

The reason for introducing H, Lk,L and Lk,T is that the operator H depends on the choice of a chain of
affine subspaces Um• for each m ∈M+

σ . A drawback of the Um• -independent H is that Hm(α) is defined only
when α is suitably behaved at infinity; see Lemma 4.4. For this reason, additional arguments are required to
verify that the analogues of equation (7) are well-defined and in fact solve the Maurer–Cartan equation; see
Lemma 4.7. An alternative way of proceeding, taken in [8, 9], is to make a careful choice of Um• so as to directly
relate the Maurer–Cartan solution (7) with scattering diagrams.

4.1.2 Modified Maurer–Cartan solutions

In this section we prove that Lk,T (Π̃, . . . , Π̃) is well-defined; the proof for Lk,L(Π, . . . ,Π) is similar.

Given a weighted ribbon k-tree T , denote by MT (MR) ∼= R|T
[1]|

≤0 ×MR the space of tropical disks in MR for
the underlying weighted tree.

Definition 4.1. Given a directed path e = (e0, . . . , el) in T , considered as a sequence of edges, define a

map τ e : R|T
[1]
e |
≤0 ×MR →MR by τ e(~s, x) = τe0s0 ◦ · · · ◦ τ

el
sl

(x), where τ
ej
sj := τ

mej
sj is the diffeomorphism defined

in Section 3.1.1 and T [1]
e is the subset {e0, . . . , el} ⊂ T [1]. The map τ e extends to a map τ̂ e : MT (MR) ∼=

R|T
[1]|

≤0 ×MR → R|T
[1]\T [1]

e |
≤0 ×MR by taking the Cartesian product with R|T

[1]\T [1]
e |

≤0 .
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This definition does not use the ribbon structure of T and so also applies to weighted k-trees. For every
edge e ∈ T̄ [1] \ {eout}, we use that notation e to denote the directed path in T obtained by removing the edge
e from the unique directed path (e, . . . , eout) to the outgoing edge eout.

Recall that the differential form δPi depends on an affine function ηi which vanishes on Pi. Let Ni be the
space of leaves obtained by parallel translation of Pi, equipped with the natural coordinate function ηi. Recall

that associated to each edge e ∈ T [1]
in is a wall wie . Define an affine map

~τ : MT (MR)→
∏
e∈T [1]

in

Nie (9)

by requiring (~τ)∗(ηie) = ηie(τ
e(~s, x)). Write Ix for RT [1]

≤0 × {x}.

Definition 4.2. Assign a differential form νe on R|T
[1]|

≤0 to each e ∈ T̄ [1] recursively as follows. Set νe = 1

if e ∈ ∂−1
in (T [0]

in ). If v is an internal vertex with ∂−1
out(v) = {e1, e2} and ∂−1

in (v) = {e3} such that {e1, e2, e3} is
clockwise oriented, then set νe3 = (−1)|νe2 |νe1 ∧ νe2 ∧ dse3 , where |νe2 | is the cohomological degree of νe2 .

The form νT attached to the edge eout ∈ T [1] is a volume form on R|T
[1]|

≤0 .
The following result can be proved in the same way as [8, Lemma 5.33].

Lemma 4.3. We have (~τ)∗(dηie1 ∧ · · · ∧ dηiek ) = cνT ∧ nT + ε for some c > 0, where nT ∈ N is a 1-form on

MR, ν∨T is the top polyvector field on R|T
[1]|

≤0 dual to νT and ιν∨T ε = 0. In particular, ~τ|Ix is an affine isomorphism
onto its codimension one image C(~τ , x) ⊂

∏
e∈T [1]

in

Nie when nT 6= 0.

The well-definedness of Lk,T (Π̃, . . . , Π̃) depends on the convergence of the integral in the following lemma.

Write αj in place of δPiej Jej
and, for each L > 0, set Ix,L = [−L, 0]T

[1] × {x}. We write e1, . . . , ek for the sequence

of directed paths associated to the k incoming edges (e1, . . . , ek).

Lemma 4.4. 1. The integral

αT (x) := −
∫
Ix

(τ e1)∗(α1) ∧ · · · ∧ (τ ek)∗(αk)

is well-defined. Moreover, αT = 0 if nT = 0 and αT ∈ W−∞1 (MR) if PT = ∅, where PT is defined as in
Section 2.3 by forgetting the ribbon structure of T .

2. The integral αT ,L(x) := −
∫
Ix,L(τ e1)∗(α1) ∧ · · · ∧ (τ ek)∗(αk) uniformly converges to αT (x) for x in any

pre-compact open subset K ⊂MR. Furthermore, (αT − αT ,L) |K ∈ W−∞1 (K) for sufficiently large L.

3. If PT 6= ∅, so that dimR(PT ) = r − 1, and % : (a, b)→MR is an embedded affine line intersecting PT
positively¶ and transversally in its relative interior Intre(PT ), then lim}→0

∫
%
αT = −1.

Proof . Explicitly, the integral αT (x) under consideration is

( 1

π}
)k/2 ∫

Ix
(~τ)∗

(
k∏
j=1

e
−
(
η2
iej

)
/}
dηiej

)
=
( 1

π}
)k/2 ∫

Ix
e
−
(∑k

j=1(τej )∗η2
iej

)
/}

(~τ)∗
(
dηie1 · · · dηiek

)
.

By Lemma 4.3, the only case that we need consider is when nT 6= 0, in which case ~τ|Ix is an affine isomorphism
onto its image C(~τ , x), a codimension one closed affine subspace. The well-definedness of the integral is due to

the fact that
∫
C(~τ,x)

e
−
(∑k

j=1(τej )∗η2
iej

)
/}
µC(~τ,x) <∞ for any affine linear volume form µC(~τ,x) on C(~τ , x). When

PT = ∅, we have 0 /∈ C(~τ , x) for all x ∈MR, which implies αT ∈ W−∞1 (MR).
Notice that ⋂

e∈T [1]
in

{(τ e)∗ηie = 0} = MT (MR, D̃in,l) ⊂MT (MR).

¶Intersecting positively means 〈%′, nT 〉 > 0.
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Furthermore, for any pre-compact subset K ⊂MR and b > 0, there exists an Lb such that (Ix \ Ix,Lb) ∩⋂
e∈T [1]

in

{|(τ e)∗ηie | ≤ b} = ∅ for all x ∈ K, as follows from the fact that ~τ|Ix is an affine isomorphism onto

its image. This implies that αT ,L converges uniformly to αT on K and that (αT − αT ,L)|K ∈ W−∞1 (K) for
sufficiently large L.

Suppose now that PT and % are as in the final statement of the lemma. Consider the affine subspace
I% :=

⋃
t∈(a,b) I%(t) ⊂MT (MR). We have∫

%

αT = −
∫
I%

(τ e1)∗(α1) ∧ · · · ∧ (τ ek)∗(αk) = −
∫
~τ(I%)

α1 ∧ · · · ∧ αk,

where ~τ(I%) ⊂
∏
e∈T [1]

in

Nie . Here we apply Lemma 4.3 to conclude that ~τ is an affine isomorphism onto its image

when PT 6= ∅. Since % intersects PT in Intre(PT ) and D̃in,l is generic, we have 0 ∈ Int(~τ(I%)). Together with the
explicit form of α1 ∧ · · · ∧ αk, we then obtain lim}→0

∫
%
αT = −1.

4.1.3 Relation with tropical counting

The following result is a modification of [8, §5].

Lemma 4.5. For each T ∈ WRk, we have Lk,T (Π̃, . . . , Π̃) =
(∏

e∈∂−1
in (T [0]

in )
(#Je,ie)!

)
αT gT u

~JT .

Proof . We proceed by induction on the cardinality of T [0]. In the initial case, T [0] = ∅, the only tree is that
with a unique edge and there is nothing to prove.

For the induction step, the root vertex vr ∈ T [0] is adjacent to the outgoing edge eout and two incoming
edges, say e1 and e2. Assume that {e1, e2, eout} are clockwise oriented. Split T at vr, thereby obtaining trees T1

and T2 with outgoing edges e1 and e2 and k1 and k2 incoming edges, respectively. By the induction hypothesis,

we can write Lki,Ti(Π̃, . . . , Π̃) =
(∏

e∈∂−1
in ((Ti)[0]

in)
(#Je,ie)!

)
αTigTiu

~JTi , i = 1, 2. We therefore have

Lk,T (Π̃, . . . , Π̃) = −
( ∏
e∈∂−1

in (T [0]
in )

(#Je,ie)!
)
H(αT1

∧ αT2
)[gT1

, gT2
]u
~JT1u

~JT2 .

By definition, gT = [gT1
, gT2

] and u
~JT = u

~JT1u
~JT2 . Finally, the proof of [8, Lemma 5.31] shows that

H(αT1
∧ αT2

) =

∫
Ix

(τ e1)∗(α1) · · · (τ ek)∗(αk) = −αT (x).

Note that the well-definedness of H(αT1 ∧ αT2) is guaranteed by Lemma 4.4.

Lemma 4.6. For each T ∈ WRk, we have αT ∈ W1
PT

(MR) ∩W1
1 (MR) if PT 6= ∅.

Proof . We proceed by induction on the cardinality of T [0]. The initial case, T [0] = ∅, holds by Lemma 3.10.
For the induction step, split T at vr ∈ T [0] to obtain trees T1 and T2, as in the proof Lemma 4.5. We can

assume that each PTi is non-empty and that PT1
, PT2

intersect transversally and generically, as in Definition
2.17. Then Q = PT1

∩ PT2
is a codimension two affine subspace of MR. The induction hypothesis implies

αTi ∈ W1
PTi

(MR) ∩W1
1 (MR) and Lemma 3.3 gives αT1

∧ αT2
∈ W2

Q(MR) ∩W2
2 (MR). Arguing as in the proof

of Lemma 4.5, we find αT = −Hmeout
(αT1

∧ αT2
), which is nonzero only if nT 6= 0. Note that if nT 6= 0, then

−mT = −meout is not tangent to Q.
We would like to apply Lemma 3.4 to conclude our result. However, the operator Hmeout

is slightly different
from that appearing in Lemma 3.4. A modification is therefore required.

To simplify notation, write m = meout . Since m is not tangent to Q, we can assume that the chain Um•
used to define Hm is such that Umr−1 separates MR into M−R and M+

R , −m points into M+
R and Q ⊂M+

R .
With this choice, we obtain a homotopy operator Hm as in Section 3.2.2 which, by Lemma 3.4, satisfies
Hm(αT1 ∧ αT2) ∈ W1

PT
(MR) ∩W1

1 (MR). Since Umr−1 ∩Q = ∅, we find that Hm,L(αT1 ∧ αT2)− Hm(αT1 ∧ αT2) lies

in W−∞1 (MR). It follows that Hm,L(αT1 ∧ αT2) satisfies the desired property.
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Lemma 4.7. The element Φ̃ :=
∑

k≥1
1

2k−1

∑
T ∈WRk Lk,T (Π̃, . . . , Π̃) is well-defined in G∗ ⊗C R̃l. Furthermore, it

solves equation (4).

Proof . Well-definedness of Φ̃ follows from Lemmas 4.4 and 4.5. The same reasoning as Section 3.3.2 then shows
that Φ̃ = Π̃− 1

2H[Φ̃, Φ̃].

We will use Proposition 3.11 to show that Φ̃ solves equation (4). Fix a pre-compact open subset K ⊂MR
and consider the restriction of equation (4) to K. By Lemma 4.4, we may choose L sufficiently large so as

to ensure that the truncation Φ̃L :=
∑

k≥1
1

2k−1

∑
T ∈WRk
u
~JT 6=0

αT ,LgT u
~JT satisfies αT − αT ,L ∈ W−∞1 (K). Indeed,

this is possible because there are only finitely many terms with u
~JT 6= 0 in the expression for Φ̃L, as the

maximal ideal of R̃l is nilpotent. Notice that Φ̃L satisfies Φ̃L = Π̃− 1
2HL[Φ̃L, Φ̃L], where HL :=

⊕
m∈M+

σ
HL,m

and HL,m(α)(x) :=
∫ 0

−L(ι ∂
∂s

(τm)∗(α)(s, x))ds.

Similar to Proposition 3.11, it suffices to show that PL[Φ̃L, Φ̃L] = 0 on K, where PL :=
⊕

m∈M+
σ

PL,m

and PL,m(β) := (τm−L)∗β. Since Φ̃L is a sum over trees, we consider Ti ∈ WRki , i = 1, 2, with u
~JTi 6= 0 and the

associated terms αTi,LgTi , where gTi ∈ hmTi ,nTi ,R̃l
. Join T1 and T2 to give T . It suffices to assume nT 6= 0, since

[gT1
, gT2

] ∈ hmT ,0,R̃l = {0} when nT = 0. If nT 6= 0, then mT is not tangent to PT1
∩ PT2

. We may therefore
choose L sufficiently large so that τmT−L (K) ∩ PT1

∩ PT2
= ∅. As a result, we have (τmT−L )∗(αT1

∧ αT2
) = 0 in

H2
R̃l

(K).

Let Γ ∈ WTk with PΓ 6= ∅. Since the monomial weights u
~Je at incoming edges e ∈ Γ

[1]
in are distinct, there

are, up to isomorphism, exactly 2k−1 ribbon structures on Γ. Note that Lk,T (Π̃, . . . , Π̃) does not depend‖

on the ribbon structure of T , since Π̃ ∈ H1
R̃l

and Π̃ commutes with odd elements of H1
R̃l

. It follows that

Φ̃ =
∑

k≥1

∑
Γ∈WTk Lk,T (Π̃, . . . , Π̃), where T is any ribbon tree whose underlying tree T is Γ. Combining Lemmas

4.5, 4.6 and 4.7, we conclude the following theorem.

Theorem 4.8. The Maurer–Cartan solution Φ̃ ∈ H1
R̃l

of Lemma 4.7 can be expressed as the following sum over
trees:

Φ̃ =
∑
k≥1

∑
Γ∈WTk

MΓ(MR,D̃in,l) 6=∅

αΓ log(ΘΓ).

Here MΓ(MR, D̃in,l) 6= ∅ indicates the existence of a tropical disk in (MR, D̃in,l) of combinatorial type Γ, the
wall-crossing factor ΘΓ is given by

log(ΘΓ) =
( ∏
e∈∂−1

in (Γ
[0]
in)

(#Je,ie)!
)
gΓu

~JΓ

and αΓ is a 1-form with asymptotic support on PΓ which satisfies lim}→0

∫
%
αΓ = −1 for any affine line %

intersecting positively with PΓ.

Theorem 4.8 gives a bijection between tropical disks and summands of Φ̃. Together with Proposition 4.14
below, which relates Maurer–Cartan solutions with consistent scattering diagrams, this provides an alternative
realization of the enumerative interpretation of Theorem 2.18.

4.2 Non-perturbed initial scattering diagram

In this section we study the relationship between Maurer–Cartan elements and non-perturbed scattering
diagrams. We are motivated by the fact that it is not always be possible (or desirable) to perturb the incoming
diagram. This is the case, for example, for Hall algebra scattering diagrams. With appropriate modifications,
we find that most of the results of Sections 4.1.2 and 4.1.3 remain true without perturbation.

Let Din be an initial scattering diagram and consider Lk,L(Π, . . . ,Π) as in Section 4.1. The main difference
between the perturbed and non-perturbed cases is that , when PL 6= ∅, we have dimR(PL) = r − 1 in former
whereas we only have 0 ≤ dimR(PL) ≤ r − 1 in the latter.

To begin, note that the first two parts of Lemma 4.4 remain true in the context of labeled ribbon k-trees
L. However, lim}→0

∫
%
αL need not equal −1, even when dimR(PL) = r − 1. Indeed, we only have 0 ∈ ~τ(I%), as

Lemma 4.9.
‖This can also be deduced from the proof of Lemma 4.5 by observing that the dependence of αT and gT on the ribbon structure
of T cancels out in the formula for Lk,T (Π̃, . . . , Π̃).
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opposed to 0 ∈ Int(~τ(I%)), so the relevant part of the proof of Lemma 4.4 does not apply. The replacement of
the third part of Lemma 4.4 will be given in Lemma 4.11.

For each L ∈ LRk, we have Lk,L(Π, . . . ,Π) = αLgL, with gL as in Definition 2.13.

Proof . This can be proved in the same way as Lemma 4.5.

The next result gives the required modification of Lemma 4.6.

Lemma 4.10. Let L ∈ LRk and let P ⊂MR be the unique codimension one hyperplane which contains PL and
is normal to nL.

1. We have αL ∈ W1
PL

(MR) ∩W1
1 (MR) if dimR(PL) = r − 1 and αL ∈ W1

P (MR) ∩W1
1 (MR) otherwise. In

either case, αL|MR\PL ∈ W
−∞
1 (MR \ PL).

2. If dimR(PL) = r − 1, then there exists a polyhedral decomposition PL of PL such that d(αL)|MR\|P
[r−2]
L | ∈

W−∞2 (MR \ |P [r−2]
L |), where P [l] denotes the set of l-dimensional strata and |P [l]| is the underlying set of

P [l].

Proof . We proceed by induction on the cardinality of L[0]. The initial case, L[0] = ∅, holds by Lemma 3.10.
For the induction step, split L at vr ∈ L[0] to obtain L1 and L2, as in the proof Lemma 4.5. We can assume

that nL 6= 0, as otherwise αL = 0 by Lemma 4.4. By the induction hypothesis, we have αLi ∈ W1
Pi

(MR) ∩
W1

1 (MR), with Pi = n⊥Li containing PLi , i = 1, 2. Since nL 6= 0, P1 and P2 intersect transversally. Applying
Lemma 3.3 then gives αL1 ∧ αL2 ∈ W2

Q(MR) ∩W2
2 (MR), where Q = P1 ∩ P2. We have αT = −Hmeout

(αT1 ∧
αT2

), as in Lemma 4.5. Similar to the proof of Lemma 4.6, since Q−R≥0mL ⊂ P , we can apply Lemma
3.4 to conclude that αL ∈ W1

P (MR) ∩W1
1 (MR). Using the induction hypothesis and the relation PL =

(PL1
∩ PL2

)−R≥0mL, we have (αT1
∧ αT2

)|MR\(PL1
∩PL2

) ∈ W−∞2 (MR \ (PL1
∩ PL2

)), which gives αL|MR\PL ∈
W−∞1 (MR \ PL).

Since αL ∈ W1
1 (MR), we can write dαL =

∑
j βj , where βj ∈ W2

Qj
(MR) for some codimension two polyhedral

subsets Qj ⊂MR. In particular, dαL|MR\
⋃
j Qj
∈ W−∞(MR \

⋃
j Qj) and dαL|MR\PL ∈ W−∞(MR \ PL). Letting

PL be a polyhedral decomposition of PL such that |P [r−2]
L | contains PL ∩

⋃
j Qj , we obtain the desired result.

Lemma 4.11. Let PL be a polyhedral decomposition of PL which satisfies the second part of Lemma 4.10 and

let σ ∈ P [r−1]
L . Then there exists a constant cL,σ > 0 such that lim}→0

∫
%
αL = −cL,σ for any embedded affine

line % which intersects positively and transversally with σ in Intre(σ).

Proof . For any such %, we have lim}→0

∫
%
αL = −

∫
~τ(I%)

α1 ∧ · · · ∧ αk, as in the proof of Lemma 4.4. Although

0 ∈ ~τ(I%) instead of 0 ∈ Int(~τ(I%)), we still have
∫
~τ(I%)

α1 ∧ · · · ∧ αk = −c for some constant c > 0. It remains

to argue that c is independent of %.
Let %1 and %2 be paths as above. Join the end points of %1 and %2 by paths γ0 and γ1 which do not intersect

in PL to form a cycle C. Then lim}→0

∫
γi
αL = 0 and lim}→0

∫
C
αL = lim}→0

∫
D
dαL = 0 for some 2-chain D

with D ∩ |P [r−2]
L | = ∅. It follows that lim}→0

∫
%1
αL = lim}→0

∫
%2
αL.

We claim that Φ :=
∑

k≥1
1

2k−1

∑
L∈LRk Lk,L(Π, . . . ,Π) defines an element of Ĝ∗ which satisfies equation (4)

in Ĥ∗. Indeed, if we consider this claim in G<k,∗ :=W0
∗ ⊗C h<k and H<k,∗ :=

(
W0
∗/W−1

∗
)
⊗C h<k, we will have

a finite number of terms and the proof of Lemma 4.7 applies. The claim then follows by taking limits.
Let L ∈ LTk. Since Lk,L(Π, . . . ,Π) does not depend on the ribbon structure of L, we can make sense of the

sum Lk,L(Π, . . . ,Π). Since the labeling of the incoming edges e ∈ L[1]
in need not be distinct, we have

1

|Aut(L)|
Lk,L(Π, . . . ,Π) =

∑
L=L

1

2k−1
Lk,L(Π, . . . ,Π) (10)

and hence Φ =
∑

k≥1

∑
L∈LTk

1
|Aut(L)|Lk,L(Π, . . . ,Π). Combining the above arguments yields the following

modification of Theorem 4.8.
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Theorem 4.12. The Maurer–Cartan solution Φ ∈ Ĥ∗ can be expressed as a sum over trees,

Φ =
∑
k≥1

∑
L∈LTk

ML(MR,Din) 6=∅

1

|Aut(L)|
αLgL,

with αL ∈ W1
P (MR) ∩W1

1 (MR) for the codimension one affine subspace PL ⊂ P normal to nL.
Furthermore, when dimR(PL) = r − 1, there exists a polyhedral decomposition PL of PL such that, for each

σ ∈ P [r−1]
L , there is a constant cL,σ such that lim}→0

∫
%
αL = −cL,σ for any affine line % intersecting positively∗∗

with σ in Intre(σ)

Definition 4.13. Let Φ be as in Theorem 4.12. Define a scattering diagram D(Φ) as follows. For each

L ∈ LTk with dimR(PL) = r − 1, let σ ∈ P [r−1]
L be a maximal cell with associated constant cL,σ. Define a wall

wL,σ = (mL, nL, PL,σ,ΘL,σ) so that mL and nL are as in the case of weighted k-trees (see Definitions 2.11 and
2.13), PL,σ = σ and ΘL,σ = exp(

cL,σ
|Aut(L)|gL).

We claim that D(Φ) is equivalent to S(Din). We would like to apply the main result of [8] to conclude that
D(Φ) is a consistent extension of Din. However, this result does not apply directly to the present situation, so
must must supply some modifications. Firstly, we have D(Φ)<k = D(Φ<k), where Φ<k is the image Φ in H<k,∗
and D(Φ)<k is the diagram obtained by replacing the wall-crossing automorphisms with their images under

ĥ→ h<k. To prove consistency of D(Φ), it suffices to prove consistency of D(Φ<k) for each k. For the latter,
consider a polyhedral decomposition J (D(Φ<k)) of Joints(D(Φ<k)) such that, for each j ∈ J (D(Φ<k))[r−2], the
intersection PL ∩ j is a facet of j for all labeled trees L with gL 6= 0 ∈ h<k. It suffices to prove consistency at
each joint j.

Let U be a convex neighborhood of Intre(j) such that (U \ j) ∩ PL 6= ∅ only if dimR(PL) = r − 1. There is
a decomposition Φ|U =

∑
(L,σ)∈W Φ(L,σ) + E . Here W is the set of pairs (L, σ) for which dimR(PL) = r − 1 and

σ ∈ PL and σ ∩ Intre(j) 6= ∅. Restricted to U \ j, the summand Φ(L,σ) is equal to 1
|Aut(L)|αLgL. The final term

E =
∑

PL∩U 6=∅
dimR(PL)<r−1

1
|Aut(L)|αLgL satisfies E|U\j = 0, as follows from our assumptions on J (D(Φ<k)) and the fact

that (U \ j) ∩ PL = ∅ for those PL satisfying dim(PL) < r − 1.
Since the sum

∑
(L,σ)∈W Φ(L,σ) satisfies Assumptions I and II of [8, Introduction], the following result can

be proved using the methods of [8]. More precisely, in the present setting, with h not necessarily tropical,
Assumption II amounts to the constancy of the elements log(Θσ); the assumption that log(Θσ) lies in the Lie
algebra h holds automatically in the present set-up.

Proposition 4.14. The scattering diagram D(Φ) is consistent.

By applying Theorem 2.5, we conclude that the scattering diagrams D(Φ) and S(Din) are equivalent.

Similarly, in the perturbed case, D(Φ̃) and S(D̃in,l) are equivalent.

4.3 Theta functions from Maurer–Cartan elements

Let Φ ∈ Ĥ1 be a Maurer–Cartan element. Then dΦ := d+ [Φ,−] is a differential which acts on the graded algebra
Â∗. The space of flat sections of dΦ,

Ker(dΦ) = {s ∈ Â0 | dΦ(s) = 0},

inherits a product from Â∗. Similarly, Ker<k(dΦ) inherits a product from A<k,∗. The goal of this section is to
relate Ker(dΦ) or Ker<k(dΦ) with the theta functions introduced in Section 2.2.

4.3.1 Wall-crossing of flat sections

In this section we prove a wall-crossing formula for flat sections Ker<k(dΦ) (and hence Ker(dΦ)) using arguments
similar to those of [9, Introduction].

Consider a polyhedral decomposition P<k of Supp(D(Φ<k)) with the property that, for every 0 ≤ l ≤ r − 1
and σ ∈ P<k,[l], we have σ ⊂ Pw for some wall w ∈ D(Φ<k) and PL ∩ σ is a facet of σ for every PL with
gL 6= 0 ∈ h<k. Fix a maximal cell σ ∈ P<k,[r−1]. Let U ⊂MR \ |P<k,[r−2]| be a contractible open subset which

∗∗Positivity depends on nL, which is defined up to sign. However, this sign ambiguity cancels with that of gL, as mentioned in
Definition 2.13.
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is separated by Intre(σ) into two connected components, U+ and U−. Associated to σ is the wall-crossing
automorphism

Θσ =
∏

w∈D(Φ<k)
Pw∩U∩σ 6=∅

Θsgn(nw,v)
w ,

where v 6= 0 points into U+. Results from [8, §4.2.1] imply that there is a unique gauge ϕ which solves the
equation

eadϕde−adϕ = dΦ (11)

and satisfies ϕ|U− = 0. Moreover, this gauge is necessarily given by

ϕ =

{
log(Θσ) on U+,
0 on U−.

(12)

In words, Φ behaves like a delta function supported on σ and ϕ behaves like a step function which jumps across
σ.

Let s ∈ Ker<k(Φ). Since Φ<k|U± = 0 ∈ H<k,∗(U±), we have d(s|U±) = 0. We can therefore treat s|U± as a

constant section over U±, which we henceforth denote by s± ∈ A<k.
Using equation (11), the condition dΦ(s) = 0 is seen to be equivalent to the condition that the function

e−adϕ(s), which is defined on U , is d-flat. On the other hand, equation (12) gives

e−adϕ(s) =

{
Θ−1
σ (s+) on U+,

s− on U−.

We therefore conclude that Θσ(s−) = s+. By applying this argument to a path γ crossing finitely many walls
generically in D(Φ<k), we obtain the following wall-crossing formula.

Theorem 4.15. Let s ∈ Ker(dΦ) and Q,Q′ ∈MR\Supp(D(Φ)). Then

sQ′ = Θγ,D(sQ)

for any path γ ⊂MR \ Joints(D) joining Q to Q′, where sQ′ and sQ are restrictions of s to sufficiently small

neighborhoods containing Q and Q′, respectively, and are treated as constant Â0-valued sections.

4.3.2 Theta functions as elements of Ker(dΦ)

In this section we define, for each m ∈M \ {0}, an element θm ∈ Ker(dΦ). We work in the dg Lie algebra
Ĥ ⊕ Â[−1] and solve the Maurer–Cartan equation with input Π + zϕ(m). We are therefore led to consider the
operation Lk,J (Π + zϕ(m), . . . ,Π + zϕ(m)), defined as in Definition 3.12 using the homotopy operator H of Section
4.1.1, except that we insert zϕ(m) at the vertex attached to a marked edge ĕ and insert Π at unmarked edges.

Consider ~τ : MJ (MR)→
∏
e∈J [1]

in \{ĕ}
Nie as in equation (9). We extend Definition 4.2 to marked ribbon

trees J by induction along the core cJ = (e0, . . . , el), with associated labeled ribbon trees L1, . . . ,Ll as in
Definition 2.14. Set νe0 = 1 and suppose that νei is defined. Consider the vertex vi connecting Li+1 and ei to ei+1.

Set νei+1 = (−1)|νei+1
|νLi+1 ∧ νei ∧ dsei+1 if {Li+1, ei, ei+1} is oriented clockwise, and νei = νei ∧ νLi+1 ∧ dsei+1

otherwise. Write νJ for νeout .

Lemma 4.16. The equality (~τ)∗(dηie1 ∧ · · · ∧ dηiek ) = cεJ νJ + ε holds for some c > 0, where εJ is the integer

defined in Definition 2.14, ν∨J is the top polyvector field on R|J
[1]|

≤0 dual to νJ and ιν∨J ε = 0. In particular, when

εJ 6= 0, the restriction ~τ|Ix is an affine isomorphism onto its image C(~τ , x) ⊂
∏
e∈J [1]

in \{ĕ}
Nie , a top dimensional

cone.

Proof . We proceed by induction by splitting J at vr into a labeled tree L1 and a marked tree J2. Assume that
{L1,J2, eout} is oriented clockwise. The induction hypothesis gives

(~τ)∗(dηie1 ∧ · · · ∧ dηiek ) = c(−1)|νJ2
|εJ2

νL1
∧ νJ2

∧ τ∗eout(nL1
) + ε,

with ε as in the statement of the lemma. Since τ∗eout(nL1
) = sgn(〈−meout , nL1

〉)c′dseout for some c′ > 0, this
gives the desired equality.
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Similar to Lemma 4.4, define αJ (x) := (−1)l
∫
Ix(~τ)∗(dηie1 ∧ · · · ∧ dηiek ) where l is the length of the core

cJ = (e0, . . . , el). We then have αJ = 0 if εJ = 0 and αJ ∈ W−∞0 (MR) if PJ = ∅. Moreover, the second
statement of Lemma 4.4 holds, after replacing W−∞1 (K) with W−∞0 (K). Parallel to Lemma 4.9, we have the
following.

Lemma 4.17. The equality Lk,J (Π + zϕ(m), . . . ,Π + zϕ(m)) = αJ aJ , holds, where aJ is as in Definition
2.14.

The argument from the proof of Lemma 4.10 gives the following result.

Lemma 4.18. Let J ∈ MRk(m).

1. We have αJ ∈ W0
PJ

(MR) ∩W0
0 (MR) if dimR(PJ ) = r and αJ ∈ W0

0 (MR) otherwise. In either case,

αJ |MR\PJ ∈ W
−∞
0 (MR \ PJ ).

2. If dimR(PJ ) = r, then there exists a polyhedral decomposition PJ of PJ such that d(αJ )|MR\|P
[r−1]
J | ∈

W−∞1 (MR \ |P [r−1]
J |).

Motivated by the expression appearing in Theorem 4.12, define

θm :=
∑
k≥1

∑
J∈MRk

1

2k−1
Lk,J (Π + zϕ(m), . . . ,Π + zϕ(m)). (13)

By the same reasoning as was used to establish equation (10), we can write

θm =
∑
k≥1

∑
J∈MTk(m)
PJ 6=∅

1

|Aut(J)|
αJaJ

Arguing as in Lemma 4.7, we find that Φ+ θm ∈ Ĥ∗ ⊕ Â∗[−1] is a Maurer–Cartan element or, equivalently,
Φ ∈ Ĥ is Maurer–Cartan element and θm ∈ Ker(dΦ).

The goal of the remainder of this section is to show that θm(Q) = ϑm,Q, where the right hand side is the
broken line theta function. We work inH<N,∗ ⊕A<N,∗[−1] for fixedN . Consider the scattering diagram D(Φ<N ).
Fix J ∈ MTk(m) with εJ 6= 0 and dimR(PJ) = r. Consider the core cJ = (e0, . . . , el) with labeled trees L1, . . . , Ll
attached to it at vertices v1 = ∂in(e1), . . . , vl = ∂in(el). In the case at hand, the map ev : MJ(MR,Din,m)→ PJ
is a diffeomorphism. Consider a polyhedral decomposition PJ of PJ such that

1. Lemma 4.18 is satisfied for PJ , and

2. for any ς with ς(vout) /∈ |P [r−1]
J |, we have ς(vi) /∈ Joints(D(Φ<N )).

If ς is generic, that is satisfying (2) above, then there exist walls wj of D(Φ<N ), defined by Lj with wall-crossing

factor exp(
cwj

|Aut(Lj)|gLj ) as in Definition 4.13, such that ς(vj) ∈ int(wj). Choose a non-decreasing surjection

κ : {1, . . . , l} → {1, . . . , `} such that ς(vj) = ς(vj′) ∈ Supp(wj) = Supp(wj′) if and only if κ(j) = κ(j′). Let
PMi be the permutation group on the set κ−1(i) and let PM(κ) =

∏
i PMi. Then, for each δ ∈ PM(κ), we can

form another marked k-tree δ(J) by permuting the labeled trees Lj attached to the core. Denote by MTk(J) the
PM(κ)-orbit of J and by Iso(κ, J) =

∏
i Isoi(κ, J) ⊆ PM(κ) the stabilizer subgroup of J .

Let γ be the restriction of ς to the interval corresponding to cJ . Lift γ to a broken line by setting a0 = zϕ(m)

and, inductively, ai+1 = gi+1 · ai, where gi+1 is the endomorphism of A<N given by

gi+1 :=
∏

j∈κ−1(i+1)

sgn(〈−mej , nLj 〉)cwj
|Aut(Lj)||Isoi(κ, J)|

gLj . (14)

Recall that aγ := a`. Note that |Isoi(κ, J)| = m1! · · ·ms! if there are s distinct labeled trees in the set
{Lj | κ(j) = i} which appear m1, . . . ,ms times. Hence gi+1 is a homogeneous factor of the product∏
j∈κ−1(i+1) Θ

sgn(〈−mej ,nLj 〉)
wj appearing in Definition 2.6. Figure 3 illustrates the situation.
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Fig. 3. The relationship between the marked tree J and the broken line γ.

Lemma 4.19. Near a generic point Q /∈
⋃
δ∈PM(κ) |P

[r−1]
δ(J) |, the equalities∑

J̆∈MTk(J)

1

|Aut(J̆)|
αJ̆aJ̆ =

1

|Iso(κ, J)|
∑

δ∈PM(κ)

1

|Aut(J)|
αδ(J)aδ(J) = aγ

hold. Here aγ is treated as a constant function near Q.

Proof . Notice that |Aut(J)| = |Aut(J̆)| =
∏l
j=1 |Aut(Lj)| for a marked tree J . Since aδ(J) = aJ , we need only

show that
∑

δ αδ(J) takes the value εJ
∏l
j=1 cwj near Q. Let ji be the minimal element of κ−1(i). Split J

by breaking the edge eji−1 into two to obtain a subtree Ji with eji−1 as the outgoing edge and a tree Ĵi
with incoming edge eji−1. We then have aJ(Q) = aĴi(Q)aJi(vji). We will show that, for each i, the equality∑

δ∈
∏
i′<i PMi′

αδ(Ji) = εJi
∏
j<ji

cwj holds in a neighborhood of ς(vji). We proceed by induction. Therefore we

assume that ` = 1 and treat the case in which all Lj are overlapping walls.
Consider the map ~τc = (τc,1, . . . , τc,l) : (R≤0)|cJ\{e0}| ×MR ' Rl≤0 ×MR →

∏
jMR given by backward flow

τc,j : (R≤0)l ×MR →M l
R by

τc,j(~s, x) = τ
ej
sj ◦ · · · ◦ τelsl (x) = τmJsj+···+sl(x) + sl−1mLl + sl−2(mLl +mLl−1

) + · · ·+ sj(mLl + · · ·+mLj+1).

We have αJ(x) = (−1)l
∫
Rl≤0
×{x}(~τ)∗

(
αL1
∧ · · · ∧ αLl

)
. Define a modified backward flow τ̆ = (τ̆1, . . . , τ̆l) : Rl≤0 ×

MR →M l
R by τ̆j(~s, x) = τmJsj+···+sl(x). Then τ̆ and ~τ are homotopic via h(~s, x, t) = (1− t)~τ(~s, x) + tτ̆(~s, x).

Observe that ∫
∂(Rl≤0

)×{x}×[0,1]

h∗
(
αL1 ∧ · · · ∧ αLl

)
= 0,

since h∗(
∂
∂t ) is tangent to the wall wj and αLj is 1-form on the normal of wj . Since dαLj ∈ W−∞2 (MR \ |P [r−2]

Lj
|)

from Lemma 4.10 and Im(h|Rl≤0
×W×[0,1]) ∩ |P

[r−2]
Lj

| = ∅ in small enough neighborhood W of Q, we can verify

that αJ(x) and (−1)l
∫
Rl≤0
×{x} τ̆

∗(αL1 ∧ · · · ∧ αLl
)

differ near Q by exponentially small terms inW−∞0 . Further,

the reparamaterization sj 7→ sj + · · ·+ sl gives

αJ(x) = (−1)l
∫
−∞<s1≤···≤sl≤0,x

(τmJs1 )∗(αL1
) ∧ · · · ∧ (τmJsl

)∗(αLl).

The permutation group on l letters acts by αδ(J)(x) = (−1)l
∫
−∞<sδ(1)≤···≤sδ(l)≤0,x

(τmJs1 )∗(αL1) ∧ · · · ∧
(τmJsl

)∗(αLl), using which we compute
∑

δ αδ(J)(x) = (−1)l
∏
j

( ∫
−∞<sj≤0,x

(τmJsj )∗(αLj )
)
. Finally, we have∫

−∞<sj≤0,x

(τmJsj )∗(αLj ) = −sgn(〈−mJ , nLj 〉)cwj ,

as in Theorem 4.12.
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For a generic point Q, let MTk(Q,m) ⊂ MTk(m) be the set of marked trees J with Q ∈ PJ . For any
two J, J ′ ∈ MTk(Q,m), notice that either MTk(J) = MTk(J ′) or MTk(J) ∩ MTk(J ′) = ∅. It follows that there is a
decomposition MTk(Q,m) = tJ∈LMTk(J) such that each MTk(J) corresponds to a unique broken line γ via Lemma
4.19. Conversely, given a broken line γ with ends (Q,m), one can construct a marked tree J ∈ MTk(Q,m) with
the restriction of ς to the core cJ being γ, and labeled trees L1, . . . , Ll attached to cJ such that the relation (14)
holds. As a conclusion, we have the following theorem.

Theorem 4.20. For generic Q ∈MR \ Supp(D(Φ)), we have θm(Q) = ϑm,Q, where θm(Q) is the value of θm at
Q.

4.4 Hall algebra scattering diagrams

We investigate non-tropical analogues of the results of Sections 4.1-4.3. Our main case of interest is the Hall
algebra scattering diagrams of [6].

4.4.1 Motivic Hall algebras

We recall the definition of Joyce’s motivic Hall algebra. While Hall algebra scattering diagrams are the main
example of non-tropical scattering diagrams, we will not use anything technical about Hall algebras. We will
therefore be brief. The reader is referred to [17, 5] for details. See also [6, §§4-5].

Let Q be a quiver†† with finite sets of nodes Q0 and arrows Q1. Let M⊕ = Z≥0Q0 be the monoid of
dimension vectors and let M+ = M⊕ \ {0}. For each d ∈M⊕, denote by Rd =

∏
α∈Q1

HomC(Cds(α) ,Cdt(α)) the
affine variety of complex representations of Q of dimension vector d. The reductive group GLd =

∏
i∈Q0

GLdi(C)
acts on Rd by change of basis. The quotient stack Md := Rd/GLd is the moduli stack of representations of
dimension vector d. Set M =

⊔
d∈M⊕Md.

Similarly, given d1, d2 ∈M⊕, letMd1,d2
be the moduli stack of short exact sequences 0→ U1 → U2 → U3 →

0 of representations in which U1 and U3 have dimension vector d1 and d2, respectively. There is a canonical
correspondence

Md1
×Md2

π1×π3←−−−−Md1,d2

π2−→Md1+d2
, (15)

a short exact sequence being sent by π1 × π3 to its first and third terms and by π2 to its second term. The map
π1 × π3 is of finite type while π2 is proper and representable.

Let K0(St/M) =
⊕

d∈M⊕ K0(St/Md), the Grothendieck ring of finite type stacks with affine stabilizers over
M. Push-pull along the correspondence (15) gives K0(St/M) the structure of a M⊕-graded associative algebra,
the motivic Hall algebra of Q. The commutator bracket then gives hQ :=

⊕
d∈M+ K0(St/Md) the structure of

a M+-graded Lie algebra, called the motivic Hall–Lie algebra.

In the setting of scattering diagrams, it is convenient to use a specialization ofK0(St/M). Write St in place of
St/ Spec(C). Cartesian product with Spec(C) makes K0(St/M) into a K0(St)-module. Let Υ : K0(St)→ C(t) be
the unique ring homomorphism which sends the class of a smooth projective variety to the Poincaré polynomial
of its singular cohomology with complex coefficients. Then K0(St/M)⊗K0(St) C(t) becomes a C(t)-algebra, the
Hall algebra of stack functions, and hΥ

Q := hQ ⊗K0(St) C(t) becomes a M+-graded Lie algebra [17]. The Hall

algebra scattering diagram of [6] takes values in the (non-tropical) Lie algebra hΥ
Q .

4.4.2 Non-tropical Maurer–Cartan solutions

We begin by describing an abstract setting in which scattering diagrams can be defined without the tropical
assumption. We largely follow [6], introducing modifications as needed. Let h be a not-necessarily tropical
M+
σ -graded Lie algebra.

We henceforth consider scattering diagrams in NR instead of MR. The relevant modification of Definition
2.2 is as follows.

Definition 4.21. A wall w in NR is a pair (P,Θ) consisting of a codimension one closed convex rational

polyhedral subset P ⊂ NR and an element Θ ∈ ĜP⊥ := exp(ĥP⊥), where P⊥ consists of those m ∈M which are
perpendicular to any n ∈ NR which is tangent to P .

We also require a modified definition of scattering diagrams.

††For simplicity, we restrict attention to the case of trivial potential.
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Definition 4.22. A scattering diagram D consists of data {D<k}k∈Z>0
, where D<k = {(Pα,Θα)}α is a

finite collection of walls with dimR(Pw1 ∩ Pw2) < r − 1 for any two distinct walls w1, w2. The diagrams
D<k+1 (mod h≥k) and D<k are required to be equal up to refinement by taking polyhedral decompositions
of the polyhedral subsets of D<k and by adding walls with trivial wall-crossing automorphisms.

We will henceforth assume that each Pα is rational polyhedral cone. In this case Definition 4.22 agrees with
the notion of a h-complex from [6, §2]. Following [6], fix an ordered basis (f1, . . . , fr) of M , thereby identifying
M with Zr. We take σ =

⊕r
i=1 Z≥0 · fr to be the standard cone and consider Din = {wi = (Pi,Θi)}1≤i≤r with

Pi = f⊥i ⊂ NR. Write gi := log(Θi) =
∑

j>1 gji with gji ∈ hjfi . We assume that [gj1i, gj2i] = 0 for each initial
wall.

Example 4.23. Let Q be a quiver without edge loops. For any i ∈ Q0 and k ∈ Z≥0, the stack Mki is
isomorphic to the classifying stack BGLk(C). Let M〈i〉 =

⊔
k≥0Mki. This is a substack of M and so defines

an element Θi := [M〈i〉 →M] of the dimension-completed motivic Hall algebra. The element Θi satisfies the
above assumptions.

Using the affine structure on NR, we can again define the dg Lie algebras H∗, Ĥ∗ and H<k,∗. The discussions
in Section 3.2 continue to hold without the tropical assumption on h. Let Π =

∑r
i=1 Π(i) with Π(i) as in equation

(5). To define Hm via equation (8), we must first choose a suitable direction vm ∈ NQ \ {0} along which to define
the flow τm. For that purpose, fix a line λ : R→ NR of slope (a1, . . . , ar) ∈ Rr such that λ(0) = (−1, . . . ,−1)
and λ(1) lies in the dual cone int(σ∨). We assume that 0 < a1 < · · · < ar and that {a1, . . . , ar} are algebraically
independent over Q.

Let m ∈M+
σ . Consider the polyhedral decomposition Pm of the hyperplane m⊥ induced by the finite

hyperplane arrangement whose hyperplanes are of the form m⊥1 ∩m⊥, where m1 ∦ m ∈M+
σ and m1 +m2 = m

for some m2 ∈M+
σ . By construction, λ ∩m⊥ is contained in Intre(−i) for some maximal cone i ∈ P

[r−1]
m .

If m = kfi for some k > 0 and 1 ≤ i ≤ r, then we set vm = −kf∨i . Otherwise, we take vm ∈ Intre(i) to be a
rational point.

With the above notation, we obtain operators‡‡ Lk,L(Π, . . . ,Π) as in Section 4.1.1, and hence also
Lk,L(Π, . . . ,Π) by equation (10). Definition 2.15 is modified to talk about tropical disks in (NR,Din) of type L,
which are proper maps ς : |L~s| → NR whose slope at an edge e ∈ L̄[1] is vme . The moduli space ML(NR,Din)
is defined accordingly and PL := ev(ML(NR,Din)) is now a subset of m⊥L . Lemma 4.3 holds after replacing nL
with mL, with the caveat that we can only conclude that c 6= 0, instead of c > 0.

With αL defined as in Lemma 4.4, parts (1) and (2) of Lemmas 4.4 and 4.10 hold by the same argument
(after replacing nL with mL and MR with NR). Lemma 4.11 is again valid, except that the sign of cL,σ 6= 0
cannot be determined. By Lemma 4.9, we have Lk,L(Π, . . . ,Π) = αLgL and, since it is independent of ribbon
structure, we can write Lk,L(Π, . . . ,Π) = αLgL.

Lemma 4.24. The sum

Φ :=
∑
k≥1

∑
L∈LRk

ML(NR,Din)6=∅

1

2k−1
αLgL =

∑
k≥1

∑
L∈LTk

ML(NR,Din)6=∅

1

|Aut(L)|
αLgL

is a Maurer–Cartan element of Ĥ∗.

Proof . The equality in the statement of the lemma holds by the same reasoning as in the tropical case. So we
focus on proving that Φ is a Maurer–Cartan element.

Fix k ∈ Z>0 and work in H<k,∗. Let K ⊂ NR be a compact subset. As in the proof of Lemma 4.7, we
must show that for sufficiently large L > 0 we have PL[ΦL, ΦL] = 0 on K, where ΦL := Π−HL[ΦL, ΦL] and
PL,m(β) := (τm−L)∗(β). Consider labeled ribbon trees L1,L2 with associated terms αLi,LgLi , where αLi,L ∈
W1
Pi

(NR) ∩W1
1 (NR) and Pi = m⊥Li . We can assume that mL1

∦ mL2
, as otherwise αL1,L ∧ αL2,L ∈ W−∞(NR)

and hence [αL1,LgL1 , αL2,LgL2 ] = 0 ∈ H<k,∗. Joining the trees L1,L2 to obtain L, the transversal intersection
PL1
∩ PL2

⊂ PL = m⊥L is contained in the (r − 2)-dimensional strata of the polyhedral decomposition PmL . By
our choice of vmL , the flow τmL is not tangent to PL1 ∩ PL2 . As in proof of Lemma 4.7, we can therefore choose
L sufficiently large so that (τmL−L )∗(αL1

∧ αL2
) = 0 on K.

Observe that, by the construction of vm, the line λ is disjoint from each PL.
Having proved Lemma 4.24, the conclusion of Theorem 4.12 follows after replacing MR with NR.

‡‡Labeled (ribbon) k-trees are defined as in Definitions 2.11 and 2.12 using the walls of Definition 4.21.
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4.4.3 Consistent scattering diagrams from non-tropical Maurer–Cartan solutions

We establish the relation between Maurer–Cartan solutions Φ ∈ Ĥ∗ and consistent scattering diagrams. By
construction Φ = lim←−k Φ

<k, where Φ<k =
∑

P αP gP is a finite sum indexed by polyhedral subsets P of NR.

From the discussion in Section 4.4.2, we have gP ∈ h<k and αP ∈ W1
P̃

(NR) ∩W1
1 (NR), where P̃ ⊂ NR is a

codimension one polyhedral subset containing P and αP |NR\P ∈ W−∞(NR \ P ). Similarly to Section 4.3.1,

consider a polyhedral decomposition P<k of
⋃

06=gP∈h<k P such that, for every 0 ≤ l ≤ r − 1 and σ ∈ P<k,[l], we

have σ ⊂ P for some dimR(P ) = r − 1 and P ∩ σ is a facet of σ for every P with 0 6= gP ∈ h<k.
Let U be a convex open set such that U ∩ τ = ∅ whenever τ 6= σ ∈ P<k and U \ σ = U+ t U− is a

decomposition into connected components. Since U is contractible, H1(H<k,∗(U), d) = 0, whence Φ<k|U is gauge

equivalent to 0, that is, eadϕde−adϕ = dΦ<k on U , where ϕ satisfies ϕ|U− = 0. We will use a homotopy operator Î

acting on H<k,∗ to solve for ϕ. Assume that we are given a chain of affine subspaces U• of U , as in Section 3.1.1,
such that v1 is transversal to σ and U1,+, the half space over which v1 points inwards, contains U+ ∪ σ. See
Figure 4. Such a choice yields a homotopy operator I :W0

∗ (U)→W0
∗−1(U) by equation (3) which, by Lemma

3.4, descends to W0
∗ (U)/W−1

∗ (U). As in Definition 3.9, we then obtain a homotopy operator Î, defined using

(the m-independent) I in place of Hm, and operators P̂ and ι̂ on Ĥ∗(U).

Fig. 4. The sets U1,+ and U+.

Arguments of [8, §4] show that the unique gauge satisfying P̂(ϕ) = 0 is given by ϕ = lim←−k ϕ
<k, where

ϕ<k ∈ H<k,0 is constructed inductively by

ϕ<(k+1) = −Î
(
Φ+

∑
l≥0

adlϕ<k

(l + 1)!
dϕ<k

)
.

Using Lemmas 3.3 and 3.4, we inductively obtain

ϕ<k ∈
(W0

U+
(U) ∩W0

0 (U) +W−1
0 (U)

W−1
0 (U)

)
⊗C h<k

σ⊥
, (16)

adlϕ<s

(l + 1)!
dϕ<s ∈

(W1
σ(U) ∩W1

1 (U) +W0
1 (U)

W0
1 (U)

)
⊗C h<k

σ⊥
(17)

for all s ≤ k and l ≥ 0, where σ⊥ is the subspace perpendicular to the tangents of σ.
Setting l = 0 in equation (17) gives (dϕ<k)|U+

= 0. This suggests that lim}→0 ϕ
<k|U+

be treated as a

(constant) element of h<k. Denote this element by log(Θ<k
σ ). Note that log(Θ<k

σ ) is independent of U , as follows
from the uniqueness of ϕ on the common intersection of two such open sets.

Remark 3. When h is tropical, we have Φ|U =
∑

k≥1

∑
L∈LTk
PL∩U 6=∅

1
|Aut(L)|αLgL with gL ∈ hmL,nL . This forces

[gL1
, gL2

] to vanish whenever PLi ∩ U 6= ∅, i = 1, 2, because dimR(PLi) = r − 1 and PLi ∩ U = σ ∩ U by our
choice of polyhedral decomposition P<k. The normals nL1

and nL2
to PL1

and PL2
are parallel while the

vectors mLi are tangent to PLi ∩ U = σ ∩ U , i = 1, 2. This gives 〈mLj , nLi〉 = 0 for i, j = 1, 2. By an induction

argument, this implies
adl
ϕ<s

(l+1)! dϕ
<s = 0 ∈ H∗(U) for all s, l. If h is not tropical, then

adl
ϕ<s

(l+1)! dϕ
<s need not vanish

and so contributes to the recursive construction of ϕ<k.

Definition 4.25. Let Φ be as in Theorem 4.12. For each k ∈ Z>0, let D(Φ<k) be the scattering diagram with
walls wσ = (Pσ = σ,Θ<k

σ ) indexed by the maximal cells σ ∈ P<k,[r−1].
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Denote by D(Φ) the scattering diagram determined by {D(Φ<k)}k∈Z>0
.

Theorem 4.26. 1. The diagram D(Φ) is consistent and the path ordered product Θλ|[0,1],D(Φ) is equal to
the product g := Θ1 · · ·Θr of the wall-crossing factors of the initial walls.

2. The scattering diagram D(Φ) is equivalent to the scattering diagram (or h-complex) D(g) constructed in
[6, Lemma 3.2].

Proof . The proof of Proposition 4.14 carries over with minor changes to show that D(Φ) is consistent. As
noted after Lemma 4.24, the path λ|[0,1] does not intersect any walls of D(Φ) which are supported on PL. By
construction, λ|[0,1] crosses the initial walls wr, . . . ,w1 consecutively. The assumption [gj1i, gj2i] = 0 ensures
that the wall-crossing factor Θi from Definition 4.25 agrees with the wall-crossing factor of wi determined by
the gauge ϕ, as constructed above; see also Remark 3. The path ordered product is therefore as stated. The
equivalence between D(Φ) and D(g) is achieved by using [6, Proposition 3.3] to show that D(Φ<k) and D(g<k)
are equivalent for each k ∈ Z>0.

Example 4.27. If the quiver Q is acyclic or, more generally, the quiver with potential (Q,W ) is genteel in the
sense of [6, §11.5] (and the motivic Hall algebra is modified so as to include the potential), then the consistent
completion D(Φ) of the initial scattering diagram Din, with Θi = [M〈i〉 →M] (see Example 4.23), is the Hall
algebra scattering diagram of [6]. In the non-genteel case, additional walls must be added to Din so as to recover
the Hall algebra scattering diagram.

4.4.4 Non-tropical theta functions

Following [6], we consider a Mσ ⊕N -graded algebra B =
⊕

(m,n)∈Mσ×N Bm,n together with a Mσ-graded h-

action by derivations so that hm ·B0,n = 0 whenever 〈m,n〉 = 0. We assume that, for each n 6= 0, there is
a distinguished element zn ∈ B0,n which we use to identify B0,n with C · zn. As in Definition 3.8, define
a (not-necessarily graded commutative) dg algebra B∗(U). The dg Lie algebra H∗(U) acts on B∗(U), so
we can again talk about theta functions as elements in Ker(dΦ). Define the flow τm,n by choosing vm,n ∈
(−σ∨ ∩N) \

⋃
m1,m2 6=0
m1+m2=m

m⊥1 . This defines the propagator Hm,n on B∗m,n.

Set N+
σ = {n ∈ N | 〈m,n〉 ≥ 0 ∀m ∈M+

σ } \ {0}. For each n ∈ N+
σ , define θn by equation (13), where an

edge ej in the core cJ is labeled by a pair (mej , n) ∈M+
σ ×N+

σ (instead of by mej , as described after Definition

2.11) and the incoming edge ĕ of J is labeled by n. We argue that Φ+ θn ∈ Ĥ ⊕ B̂[−1] is a Maurer–Cartan
element by showing that PL[ΦL + θn,L, ΦL + θn,L] = 0 on a compact subset K ⊂ NR for sufficiently large L.
Here ΦL + θn,L is defined using a cut-off propagator. It suffices to consider a labeled ribbon tree L and a marked

ribbon tree J with gL · aJ 6= 0. Join L and J to form Ĵ . Then vmĴ ,n is not tangent to PL ⊃ PL ∩ PJ and hence
the proof of Lemma 4.24 shows that (τ

mĴ ,n

−L )∗(αL ∧ αJ ) = 0 on K. It follows that θn ∈ Ker(dΦ). The argument
from Theorem 4.15 then shows that θn satisfies the wall-crossing formula.

Proposition 4.28. For any path γ ⊂ NR \ Joints(D(Φ)) from Q to Q′, the wall-crossing formula

θn(Q′) = Θγ,D(Φ)(θn(Q)) (18)

holds.

Moreover, if h is taken to be hΥ
Q , the motivic Hall–Lie algebra, then the Hall algebra theta function ϑn,Q,

as defined in [6, §10.5], is related to θn by the formula ϑn,Q = θn(Q).

Proof . It remains to prove the final statement. Since θn and ϑn,Q satisfy the wall-crossing formula, it suffices
to show that θn(Q) = zn for Q ∈ int(σ∨), since this condition characterizes ϑn,Q. Note that there are no walls
in int(σ∨) ∪ −int(σ∨), as all walls lie in a hyperplane of the form m⊥ for some m ∈ σ. Consider J ∈ MTk(n) with
core cJ = (e0, . . . , el) and v1 = ∂in(e1), . . . , vl = ∂in(el). Let ς be a marked tropical disk with ς(vout) = Q. Then
ς(vi) /∈ int(σ∨) since ς(vi) lies on a wall and ς ′ lies in −σ∨ when restricted to cJ , by the choice of vm,n. Therefore
we cannot have ς(vout) = Q unless J [0] = ∅, which corresponds to the trivial marked disk with aJ = zn.
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4.4.5 Hall algebra scattering diagrams and theta functions for acyclic quivers

In Sections 4.4.2 and 4.4.4, there was no canonical choice of the vectors vm and vm,n. In this section we
take h = hΥ

Q for an acyclic quiver Q, where canonical choices can be made. Let ω : M ×M → Z be the skew-
symmetrized Euler form of Q, so that ω(fi, fj) = aji − aij with aij the number of arrows from i to j. Relabeling
if necessary, we can arrange that aji = 0 whenever i < j. We will assume that ω is non-degenerate. Define
p : M → N so that 〈m′, p(m)〉 = ω(m′,m). We are therefore in the setting of [14] (but without the tropical
assumption). The following conditions hold:

1. The inequality ω(fi, fj) ≤ 0 holds whenever i < j.

2. If a subset I ⊂ Q0 satisfies ω(fi, fj) = 0 for any i, j ∈ I, then hI :=
⊕

m∈⊕i∈IZ≥0fi
hm is an abelian Lie

subalgebra of h.

Fix m = (m1, . . . ,mr) ∈M+
σ and write m = m≤i +m>i with m≤i = (m1, . . . ,mi, 0, . . . , 0) and m>i =

(0, . . . , 0,mi+1, . . . ,mr). The above conditions imply that ω(m≤i,m>i) ≤ 0 and hence 〈m>i,−p(m)〉 ≤ 0.
Moreover, if 〈m>i,−p(m)〉 = 0 for all i, then ω(fi, fj) = 0 for any i, j ∈ Im, where Im = {1 ≤ i ≤ r | mi 6= 0}.

We can now make the canonical choice vm := −p(m), leading to a canonically defined Maurer–Cartan
element Φ ∈ Ĥ1, and so canonically defined ML(NR,Din), PL and αL. The proof of Lemma 4.24 is modified
as follows. To begin, we prove by induction that PL ⊂ {x ∈ NR | 〈m>i

L , x〉 ≤ 0} for each i = 1, . . . , r − 1 and all
L. The initial case is trivial. For the induction step, spilt L into L1,L2. Then we have PL1

∩ PL2
⊂ {x ∈ NR |

〈m>i
L , x〉 ≤ 0} and the relation 〈m>i

L ,−p(mL)〉 ≤ 0 gives the desired inclusion. To conclude the proof, consider
trees L1, L2 joining to give L. If 〈m>i

L , p(mL)〉 > 0 for some i, then by taking the hyperplane (m>i
L )⊥ ∩m⊥L which

separates PL and p(mL) in m⊥L , we can choose L sufficiently large so that τmL−L (K) ∩ PL = ∅ for any compact
subset K ⊂ NR. Otherwise, the restriction of the Lie bracket to hImL is zero, which guarantees [gL1

, gL2
] = 0.

The constructions of Sections 4.4.2 and 4.4.3 therefore produce a Maurer–Cartan solution Φ and a
consistent scattering diagram D(Φ). Let us show that the path ordered product along λ is again Θ1 · · ·Θr.
It suffices to argue that λ ∩ PL = ∅ for any L[0] 6= ∅, that is, λ intersects only the initial walls. We have
PL ⊂ m⊥L ∩ {x ∈ NR | 〈m>i

L , x〉 ≤ 0} for each i = 1, . . . , r − 1 and all L. Let b = (b1, . . . , br) ∈ λ ∩m⊥L . Then
b1 < · · · < br and bi < 0 for the smallest i such that 0 6= m>i

L 6= mL. Such an index i exists because mL is not a
multiple of a standard basis vector of M , as PL is not an initial wall. Therefore 〈m>i

L , b〉 > 0 and hence b /∈ PL,
as desired.

Motivated by the definition of Hall algebra broken lines [10], define the flow τm,n using vm,n := −p(m)− n.
This defines Hm,n, as in Section 4.4.4, and so θn using equation (13). We argue that Φ+ θn is a Maurer–

Cartan element of Ĥ ⊕ B̂[−1]. As in Section 4.4.4, we can show that PJ ⊂ {x ∈ NR | 〈m>i
J , x〉 ≤ 0} for all

marked ribbon trees J , since 〈m>i
J ,−p(mJ )− n〉 ≤ 0. Consider a labeled ribbon tree L and a marked ribbon

tree J joining to give Ĵ . If 〈m>i

Ĵ
, p(mĴ ) + n〉 = 0 for all i, then gL · aJ = 0, otherwise there exists an i such

that 〈m>i

Ĵ
, p(mĴ ) + n〉 > 0 and hence the hyperplane (m>i

Ĵ
)⊥ would separate PL ∩ PJ and p(mĴ ) + n. We

conclude that τ
mĴ ,n

−L (K) ∩ (PL ∩ PJ ) = ∅ on a compact K ⊂ NR for large enough L. This shows Φ+ θn is a
Maurer–Cartan solution.

Theorem 4.29. Let h = hΥ
Q for acyclic quiver Q with non-degenerate skew-symmetrized Euler form. For each

n ∈ N+
σ , the canonically constructed element Φ+ θn has the following properties:

1. The Maurer–Cartan solution Φ can be written as a sum over labeled trees,

Φ =
∑
k≥1

∑
L∈LTk

ML(NR,Din) 6=∅

1

|Aut(L)|
αLgL,

with properties as in Theorem 4.12.

2. The scattering diagram D(Φ) is consistent, and the path ordered product along λ|[0,1] is g := Θ1 · · ·Θr.
Hence, D(Φ) is equivalent to the h-complex D(g) from [6, Lemma 3.2].

3. The section θn ∈ Ker(dΦ) can be written as a sum over marked tropical trees,

θn =
∑
k≥1

∑
J∈MTk(n)
PJ 6=∅

1

|Aut(J)|
αJaJ ,

and is related to the Hall algebra theta function ϑn,Q by the formula ϑn,Q = θn(Q).
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Proof . It remains to prove the third statement. Again, it suffices to show that θn(Q) = zn for Q ∈ int(σ∨).
Consider J ∈ MTk(n) and ς ∈MJ(NR,Din, n) with ς(vout) = Q. Let cJ = (e0, . . . , el) be the core of J with
associated labeled trees L1, . . . , Ll. Let m0 = 0, mj = mj−1 +mLj inductively and nj = −p(mj)− n. We then

have nj = (ς|ej )
′. Moreover, 〈m>i

j ,−p(mj)〉 ≤ 0 and hence 〈m>i
j , nj〉 ≤ 0, since 〈m>i

j ,−n〉 ≤ 0. Observe that this
inequality is strict for some i unless 〈fi, n〉 = 0 for all i ∈ Imj , which in turn forces aej = 0 and hence aJ = 0.

Since σ∨ is a subset of {x ∈ NR | 〈m>i
j , x〉 ≥ 0}, whenever 〈m>i

j , nj〉 < 0 the hyperplane m>i
j will separate σ∨

and −nj . We conclude that any marked tropical disk with ς(vout) = Q ∈ int(σ∨) must have aJ = 0.

Theorem 4.29 gives a combinatorial description of Bridgeland’s Hall algebra theta functions for certain
quivers. It is natural to ask if Bridgeland’s Hall algebra theta functions admit a combinatorial description in
terms of Hall algebra broken lines, as defined by Cheung [10]. This question was recently answered negatively
in [11, §5.3], where it was shown that Hall algebra theta functions which are defined as a sum over Hall algebra
broken lines do not, in general, satisfy the wall-crossing formula (18). Indeed, if we proceed as in the proof of
Theorem 4.20, then we will notice that right hand side of equation (14) depends on the order in which the
product is taken, and this order is not preserved by the PM(κ)-action. It follows that Lemma 4.19 cannot be
proved as for tropical h.
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