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Abstract. Getzler-Jones-Petrack [7] introduced A∞ structures on the equivariant complex for man-
ifold M with smooth S1 action, motivated by geometry of loop spaces. Applying Witten’s defor-
mation by Morse functions followed by homological perturbation we obtained a new set of A∞
structures. We extend and prove Fukaya’s conjecture [6] relating this Witten’s deformed equivariant
de Rham complexes, to a new Morse theoretical A∞ complexes defined by counting gradient trees
with jumping which are closely related to the S1 equivariant symplectic cohomology proposed by
Siedel [15].

1. Introduction

In the influential paper [17] by Witten, harmonic forms on a compact oriented Riemannian man-
ifold (M, g) are related to the Morse complex CM∗f :=

⊕
p∈Crit(f) C · p on M with a Morse function

f 1. More precisely, Witten introduced the twisted Laplacian ∆f,λ := d∗f,λ ◦ d + d ◦ d∗f,λ
2 with a

large real parameter λ, and an isomorphism

(1.1) φ : (CM∗f , δ)→ (Ω∗f,<1(M), d)

where Ω∗f,<1(M) refers to the small eigensubspace of ∆f,λ (see Section 2.2). The detailed analysis

of φ is later carried out in [9, 11, 10, 12] and readers may also see [18] for this correspondence.

In [6], Fukaya conjectured that Witten’s isomorphism (1.1) can be enhanced to an isomorphism of
A∞ algebras (or categories), a generalization of differential graded algebras (abbrev. dga), encoding
rational homotopy type by work of Quillen [14] and Sullivan [16]. The A∞ structures mk(λ)’s on
Ω∗f,<1(M) are obtained by pulling back the structures of the de Rham dga (Ω∗(M), d,∧) using the

homological perturbation lemma (see e.g. [13]) with homotopy operator Hf,λ = d∗f,λGf,λ. The Morse

A∞ structures mMorse
k ’s are defined via counting gradient flow trees of Morse functions as in [5].

Fukaya conjectured that they are related by

(1.2) lim
λ→∞

mk(λ) = mMorse
k

via the Witten’s isomorphism (1.1). This conjectured is proven in [3] by extending the analytic
technique in [12] to incorporate the homotopy operator Hf,λ.

When M is equipped with a smooth S1 action, motivated by the geometry of loop space S1 y LX
for some X, Getzler-Jones-Petrack [7] introduced an enhancement of the equivariant de Rham
complex on M . They defined new A∞ algebra structures consisting of

(1.3) m̃k :
(
Ω∗(M)[[u]]

)⊗k → Ω∗(M)[[u]]

by adding higher order (in u) operations uPk’s (see Section 2.1) to ordinary de Rham dga structures.
Witten’s deformed A∞ structures mk(λ)’s are constructed from m̃k’s in (1.3) using the technique of
homological perturbation as in original Fukaya’s conjecture.

1Here Crit(f) refers to set of critical points of f , and the differential δ is given by counting gradient flow lines.
2We let d∗f,λ to be the adjoint of d, and Gf,λ to be Witten’s Green function of ∆f,λ w.r.t. volume form e−2λf volM .
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Inspired by Fukaya’s correspondence, we define new Morse theoretic type counting structures
meMorse
k ’s (where meMorse

1 is known before in [2]) associated to S1 yM , counting of Morse flow trees
with jumpings coming from the S1 action (see the following Section 1.1). We prove the generalization
of (1.2) for S1 yM relating these two structures.

Theorem 1.1 (=Theorem 2.11). We have

lim
λ→∞

mk(λ) = meMorse
k .

1.1. The operation meMorse
k ’s. To describe meMorse

k ’s, we fix a generic sequence (see Definition
2.8) of functions (f0, . . . , fk) such that their differences fij := fj−fi are assumed to be Morse-Smale
as in Definition 2.5. The Morse theoretical A∞ product meMorse

k ’s take the form

meMorse
k :=

∑
T

meMorse
k,T : CM∗f(k−1)k

[[u]]⊗ · · · ⊗ CM∗f01
[[u]]→ CM∗f0k

[[u]]

which is a summation over directed labeled ribbon k-tree T with k-incoming edges and 1 outgoing
edge, where internal vertices are either labeled by 1 or by u. For example (see Section 2.3 for
details), if we take the tree T to be the one with two incoming edges e12 and e01 joining the vertex
vr connected to the outgoing edge e02, with vr being labeled by u. The gradient flow trees with
type T will be consisting of gradient flow lines of f12, f01 and f02 which ending at critical points
q12, q01 and q02 respectively, that can be joined together at a point xvr ∈ M with further help of
the S1 action σt : M → M (for some t) as shown in the Figure 1. As a consequence of the above
Theorem 1.1, the Morse (pre)-category (here pre-category means this operation only defined for
generic sequence (f0, . . . , fk)) on S1 yM is an A∞ (pre)-category.

Figure 1. Gradient tree with jumping of type T

Corollary 1.2. The operations meMorse
k ’s satisfy the A∞ relation for generic sequences of functions.

Remark 1.3. In [15, Section 8b], Seidel proposed the A∞ operators mFloer
k on the symplectic cochain

complex for a Liouville domain X, which corresponds to meMorse
k ’s if we think of M as a finite

dimensional analogue of LX. The corresponding mFloer
1 operation is studied in details in [19]. The

above Theorem 1.1 suggest how Witten deformation can provide a linkage between the Getzler-Jones-
Petrack’s operation m̃k on LX and the Floer theoretical operations introduced by Seidel through the
investigation of the corresponding finite dimensional situation.
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This paper consists of three parts. In Section 2 we set up the Witten deformation of Getzler-
Jones-Petrack’s A∞ operations m̃k’s, the definition of counting gradient flow trees with jumping,
and state our Main Theorem 2.11. In Section 3.1, we recall the necessary analytic result by following
[3]. The rest of Section 3 will be a proof of Theorem 2.11 by figuring out the exact relations between
the operations mk,T (λ) and counting of gradient trees.
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2. Witten’s deformation of S1-equivariant de Rham complex

We always let (M, g) to be an n-dimensional compact oriented Riemannian manifold, and denote
it volume form by volM (or simply vol). We assume there is an smooth S1 action σ : S1 ×M →M
on M preserving (g, vol). We should write σt : M →M to be the action for a fixed t ∈ S1.

2.1. S1-equivariant de Rham complex and category. We begin with recalling the Definition
of S1-equivariant de Rham A∞ algebra introduced in [7], which is reformulated to be A∞ category
as follows for the convenient of presentation of this paper.

Definition 2.1. The S1-equivariant de Rham A∞ category dR(M) consisting of object being smooth
functions f : M → R, with morphism Hom(f, g) := Ω∗(M)[[u]] where u is a formal variable. The A∞
operations m̃k : Hom(fk−1, fk) ⊗ · · · ⊗ Hom(f0, f1) ∼= (Ω∗(M)[[u]])⊗k → Hom(f0, fk) ∼= Ω∗(M)[[u]]

is defined by m̃1(α01) = d(α01) +uP1(α01), m̃2(α12, α01) = (−1)|α12|+1α12 ∧α01 +uP2(α12, α01) and
m̃k(α(k−1)k, . . . , α01) = uPk(α(k−1)k, . . . , α01) for αij ∈ Hom(fi, fj).

Here the operator Pk is defined by the action P1(αij) =
∫
S1(ι ∂

∂t
σ∗(αij))dt, and for k ≥ 2 we use

Pk(α(k−1)k, . . . , α01) :=

∫
0≤tk≤···≤t1≤1

(
ι ∂
∂tk

(σ∗(α(k−1)k)) ∧ · · · ∧ ι ∂
∂t1

(σ∗(α01))

)
dtk · · · dt1.

The fact that the about operations m̃k’s form an A∞ category is proven in [7, Theorem 1.7].

2.2. Homological perturbation via Witten’s deformation. We follow [3, Section 2.2.] to
introduced the Witten deformation with a real parameter λ > 0, which is orignated from [17].
For each fi and fj , we twist the volume form vol by fij := fj − fi as volij = e−2λfij vol, and let

d∗ij := e2λfijd∗e−2λfij = d∗+2λι∇fij to be the adjoint of d with respect to the volume form volij . The

Witten Laplacian is defined by ∆ij := dd∗ij + d∗ijd, acting on the complex Ω∗(M)[[u]] 3. We denote

the span of eigenspaces with eigenvalues contained in [0, 1) by Ω∗ij,<1(M)[[u]], or simply Ω∗ij,<1[[u]].

We use construction in [3] originated from [6] using homological perturbation lemma [13], which
obtain a new A∞ structure from mk’s as follows.

Definition 2.2. A (directed) k-tree labeled T consists of a finite set of vertices T̄ [0] together with

a decomposition T̄ [0] = T
[0]
in t T [0] t {vo}, where T

[0]
in , called the set of incoming vertices, is a set of

size k and vo is called the outgoing vertex (we also write T
[0]
∞ := T

[0]
in t {vo} and T

[0]
ni := T [0] ∪ {vo}),

a finite set of edges T̄ [1], two boundary maps ∂in, ∂o : T̄ [1] → T̄ [0] (here ∂in stands for incoming and

3Stictly speaking, the differential forms here depend on the real parameter λ while we prefer to subpress the
dependence in our notation.
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∂o stands for outgoing), and a labeling of every internal vertices T [0] by either 1 or u, satisfying the
following conditions:

(1) Every vertex v ∈ T [0]
in has valency one, and satisfies #∂−1

o (v) = 0 and #∂−1
in (v) = 1; we let

T [1] := T̄ [1] \ ∂−1
in (T

[0]
in ).

(2) Every vertex v ∈ T [0] has an unique edge ev,o ∈ T̄ [1] such that ∂in(ev,o) = v, and only trivalent

vertices in T [0] can be labeled with 1.
(3) For the outgoing vertex vo, we have #∂−1

o (vo) = 1 and #∂−1
in (vo) = 0; we let eo := ∂−1

o (vo)

be the outgoing edge and denote by vr ∈ T [0]
in t T [0] the unique vertex (which we call the root

vertex) with eo = ∂−1
in (vr).

(4) The topological realization |T̄ | :=
(∐

e∈T̄ [1] [0, 1]
)
/ ∼ of the tree T is connected and simply

connected; here ∼ is the equivalence relation defined by identifying boundary points of edges
if their images in T [0] are the same.

By convention we also allow the unique labeled 1-tree with T [0] = ∅. Two labeled k-trees T1 and

T2 are isomorphic if there are bijections T̄
[0]
1
∼= T̄

[0]
2 and T̄

[1]
1
∼= T̄

[1]
2 preserving the decomposition

T̄
[0]
i = T

[0]
i,in t T

[0]
i t {vi,o} and boundary maps ∂i,in and ∂i,o and the labelling of T [0]. The set of

isomorphism classes of labeled k-trees will be denoted by Tk. For a labeled k-tree T , we will abuse
notations and use T (instead of [T ]) to denote its isomorphism class.

A labeled ribbon k-tree is a k-tree T with a cyclic ordering of ∂−1
in (v) t ∂−1

o (v) for each trivalent

vertex v ∈ T [0], and isomorphism of labeled ribbon k-trees are further required to preserve this
ordering. A labeled ribbon k-tree can have its topological realization |T̄ | being embedded into the unit

disc D, with T
[0]
∞ lying on the boundary ∂D such that the cyclic ordering of ∂−1

in (v) t ∂−1
o (v) agree

with the anti-clockwise orientation of D. The set of isomorphism classes of labeled ribbon k-trees
will be denoted by LTk.

Notations 2.3. For each T ∈ LTk, we can associated to each edge e ∈ T̄ [1] a numbering by pair
of integer ij using the embedding |T̄ | → D by the rules: there are k + 1 connected components of

D \ |T̄ |, and we assign each component by integers 0, . . . , k; each (directed) edge e ∈ T̄ [1] with region
numbered by i on its left and region numbered by j on its right is numbered by ij; the incoming edges
numbered by e(k−1)k, . . . , e01 and the outgoing edge e0k are in clockwise ordering of ∂D.

A pair of v ∈ T [0] ∪ {vo} attached to an edge e ∈ T̄ [1] is called a flag, and we will let z(T ) to be
the set of all flags. For every flag (e, v), we let Te,v to be the unique subtree with outgoing vertex
being v if ∂o(e) = v, and we let Te,v to be the unique subtree with outgoing edge being e if ∂in(e) = v.

Definition 2.4. Given a labeled ribbon k-tree T ∈ LTk with an embedding |T̄ | → D, we assoicate
to it an operation mk,T (λ) : Ω∗(k−1)k,<1[[u]]⊗ · · · ⊗ Ω∗01,<1[[u]]→ Ω∗0k,<1[[u]] by the following rules :

(1) aligning the inputs ϕ(k−1)k, · · · , ϕ01 at the incoming vertices T
[0]
in according to the clockwise

ordering induced from D;
(2) if a vertex v ∈ T [0] has incoming edges ev,1, . . . , ev,l and outgoing edge ev,o attached to it such

that ev,l, . . . , ev,1, ev,o is in clockwise orientation, we apply the operation ∧ if v is labeled with
1 (and hence trivalent) and the operation Pl if v is labeled with u;

(3) for an edge e ∈ T [0] which is numbered by ij, we apply the homotopy operator Hij := d∗ijGij
where Gij is the Witten’s twisted Green operator associated to the Witten Laplacian ∆ij;

(4) for the unique outgoing edge eo, we apply the operator P0k which is the orthogonal projection
P0k : Ω∗[[u]] → Ω∗0k,<1[[u]] with respect to the twisted L2-norm obtained from the volume
form vol0k.
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By convention, we define m1,T (λ) for the unique tree with T [0] = ∅ to be the restriction of d on

Ω∗ij,<1[[u]]. For each labeled ribbon k-tree T , we assign nT to be the number of vertices in T [0] labeled

with u, and we let mk(λ) :=
∑

T∈LTk u
nTmk,T (λ) to be the homological perturbed A∞ strucutre.

It is well-known that (see e.g. [1, Chapter 8]) the perturbed A∞ structure mk(λ)’s satisfy the
A∞ relation. And we obtain a new category dR<1(M) via Witten deformation.

2.3. Relation with S1-equivariant Morse flow trees. In [12, 17, 18], a relation between the
Morse complex CMfij and Ω∗ij,<1 is established when fij is a Morse-Smale function in following

Definition 2.5. Following [18], it is an isomorphism

(2.1) Φij : Ω∗ij,<1 → CMfij ; Φij(α) :=
∑

p∈Crit(fij)

∫
V −p

α,

where Crit(fij) is the finite set of critical points of fij (with Morse index of p given by number of
negative eigenvalues of ∇2fij(p)), and V −p (Notice that we further choose an orientation of V −p by

choosing a volume element of the normal bundle NV +
p ) is the unstable submanifold associated to p

which is the union of all gradient flow lines γ(s) of∇fij which limit toward p as s→∞. Furthermore,
the de Rham differential is identified with the Morse differential δ1 defined via counting Morse flow
lines.

Definition 2.5. A Morse function fij is said to satisfy the Morse-Smale condition if V +
p and V −q

intersecting transversally for any two critical points p 6= q of fij.

We illustrate how the technique in [3] can be used to establish a relation between λ → ∞ limit
of the operation mT

k (λ) with a new Morse-theoretical counting for S1 →M defined as follows.

Notations 2.6. A metric labeled k-tree (ribbon) T is a labeled (ribbon) k-tree together with a length

function l : T [1] \ {eo} → (0,+∞). For each e ∈ T̄ [1], we let Ie = (−∞, 0] if e ∈ T [1]
in , Ie = [0, l(e)]

for e ∈ T [1] \ {eo} and Ieo = [0,∞). The space of metric structure on T , denoted by S(T ), is a

copy of (0,+∞)|T
[1]|−1. The space S(T ) can be partially compactified to a manifold with corners

(0,+∞]|T
[1]|−1, by allowing the length of internal edges going to be infinity. In particular, it has

codimension-1 boundary ∂S(T ) =
∐
T=T ′tT ′′ S(T ′)× S(T ′′).

For every vertex v ∈ T̄ , we use ν(v) + 1 to denote the valency of v. We write Nl := {(tl, . . . , t1) ∈
[0, 1]l | 0 ≤ tl ≤ · · · ≤ t1 ≤ 1} for l > 1, and N1 = S1 4, and attach to each vertex v labeled with

u a simplex Nν(v). Writing LT [0] to be the collection of all vertices with label u, we let S(T ) :=∏
v∈LT [0] Nν(v) × S(T ).

Definition 2.7. Given a sequence ~f = (f0, . . . , fk) such that all the difference fij’s are Morse, with
a sequence of points ~q = (q(k−1)k, . . . , q01, q0k) such that qij is a critical point of fij, and a metric
labeled ribbon k-tree T , a gradient flow tree (with jumping) Γ (readers may see Figure 1 for an

example) of type (T, ~f, ~q) consisting of a gradient flow line γij : Ieij → M of the Morse function

fij for each edge eij ∈ T̄ [1] numbered by ij, and a point tv = (tv,ν(v), . . . , tv,1) ∈ Nν(v) for every

v ∈ LT [0] satisfying:

(1) lims→−∞ γei(i+1)
(s) = qi(i+1) for the incoming edges ei(i+1) ∈ T

[1]
in , and lims→∞ γe0k(s) = q0k

for the unique outgoing edge eo;
(2) for a trivalent vertex v ∈ T [0] labeled by 1 with two incoming edges ejl, eij and outgoing edge

eil, we require that γij(l(eij)) = γjl(l(ejl)) = γil(0);

4This is not the 1-simplex, but we would like to unify our notation in this way.
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(3) for a vertex v ∈ LT [0] with incoming edges eil−1il , . . . , ei0i1 and outgoing edge ei0il, we require
that σ(−tv,l, γil−1il(l(eil−1il))) = · · · = σ(−tv,1, γi0i1(l(ei0i1))) = γi0il(0), where l = ν(v) and

σ is the S1 action map in the beginning of Section 2.

We will let MT (~f, ~q) to denote the moduli space (as a set) of gradient flow lines of type T . For the

unique tree with T [0] = ∅, we let MT (~f, ~q) to be the moduli space of gradient flow lines quotient by
the extra R symmetry by convention.

Similar to the moduli space of gradient flow trees without S1 action (see e.g. [3, Section 2.1.]),

we can describe MT (~f, ~q) as intersection of stable and unstable submanifolds.

Definition 2.8. Given the sequence ~f and ~q as in the above Definition 2.7, we define a smooth map
fT,i(i+1) : V +

qi(i+1)
× S(T ) → M for each i = 0, . . . , k − 1 as follows. Given a incoming edge ei(i+1),

there is a unique sequence of edges ei0j0 = ei(i+1), ei1j1 , . . . , eimjm , eim+1jm+1 = eo with vd := ∂o(eidjd)

forming a path from the incoming vertex vi(i+1) to the outgoing vertex vo. Fixing a point x0 ∈ V +
qi(i+1)

and a point ((tv)v∈LT [0] , (l(e))e∈T [1]\{eo}) ∈ S(T ), we determind a point xd ∈ M inductively for

0 ≤ d ≤ m+ 1 by the rules:

(1) if vd is labeled with 1, we simply take xd+1 to be the image of xd under l(eid+1jd+1
) time flow

of ∇fid+1jd+1
for d < m, and xd+1 = xd for d = m;

(2) and if vd is labeled with u, we take xd+1 to be the image of σ(−tvd,l, xd) under the l(eid+1jd+1
)

time flow of ∇fid+1jd+1
if d < m, and xd+1 = σ(−tvd,l, xd) for d = m, where eidjd is the l-th

incoming edge attached to vd in the anti-clockwise orientation.

These map can be put together as fT : V −q0k × V
+
q(k−1)k

× · · · × V +
q01
× S(T )→Mk using the natural

embedding V −q0k ↪→ M for the first component. Therefore we see that MT (~f, ~q) = f−1
T (D) where

D = M ↪→Mk+1 is the diagonal.

We say a sequence of function ~f generic if for any sequence of critical points ~q, any labeled tree
T the associated intersection fT with D is transversal with expected dimension (meaning that it is
empty when expected negative dimensional intersection), and the same hold when restricting fT on
any boundary strata of V −q0k×V

+
q(k−1)k

×· · ·×V +
q01
×S(T ) (the stratification coming from that of Nν(v))

and for any subsequence of ~f .

Suppose we are given a generic sequence ~f with ~q and T as in the above Definition 2.8, then we
can compute the dimension of the moduli space as

(2.2) dim(MT (~f, ~q)) = deg(q0k)−
k−1∑
i=0

deg(qi(i+1)) +
∑

v∈LT [0]

ν(v) + |T [1]| − 1.

Definition 2.9. Given generic ~f , ~q and T as in the above Definition 2.8 such that dim(MT (~f, ~q)) =

0, with a flow tree Γ ∈MT (~f, ~q), we assign a sign (−1)χ(Γ) by assigning a differential form vole,v ∈∧n T ∗Mγe(v) (Here we abuse the notation to use v to stand for the corresponding point in Ie) for
each flag (e, v) ∈ z(T ), inductively along the tree T as follows:

(1) for an incoming edge ei(i+1) with v = ∂o(ei(i+1)), we let volei(i+1),v to be the restriction of the

volume form of the normal bundle NV +
qi(i+1)

onto γei(i+1)
(v);

(2) for a vertex v ∈ T [0] with incoming edges eil−1il , . . . , ei0i1 and outgoing edge ei0il arranged in

clockwise orientation with voleid−1id
,v defined, we let volei0i2 ,v := (−1)

| volei2i1 ,v
|+1

volei2i1 ,v ∧ volei0i1 ,v
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when v is labeled with 1 5, and we let volei0il ,v := σ∗tv,l(ισ∗( ∂
∂tl

) voleil−1il
,v)∧· · ·∧σ∗tv,1(ισ∗( ∂

∂t1
) volei0i1 ,v)

when v is labeled with u;
(3) for an edge eij with incoming vertex v0 = ∂in(eij) and outgoing vertex v1 = ∂o(eij), we let

voleij ,v1 = (τl(eij))∗(voleij ,v0) where τl(eij) is the gradient flow of ∇fij for time l(eij).

Therefore, for the outgoing edge e0k starting at the root vertex vr and ending at the outgoing vertex
vo, we obtain a differential form vole0k,vr from the above construction, and we determine the sign

(−1)χ(Γ) by (−1)χ(Γ) vole0k,vr ∧∗volq0k = volM where volq0k is the chosen volume element in NV +
q0k

for

the critical point q0k. (For the case T [0] = ∅, we define by convention that (−1)χ(Γ)Γ′∧volp ∧∗volq =
volM for a gradient flow line Γ from p to q.)

Definition 2.10. Given a generic sequence of functions ~f = (f0, . . . , fk), with a sequence of critical
points (q(k−1)k, . . . , q01) we define the operation meMorse

k (q(k−1)k, . . . , q01) ∈ CM∗f0k
[[u]] by extending

linearly the formula

meMorse
k,T (q(k−1)k, . . . , q01) :=


∑

q0k∈Crit(f0k)

( ∑
Γ∈MT (~f,~q)

(−1)χ(Γ)
)
q0k if dim(MT (~f, ~q)) = 0,

0 otherwise,

where ~q = ((q(k−1)k, . . . , q01, q0k). We further let meMorse
k =

∑
T∈LTk u

nTmeMorse
k,T where nT = |LT [0]|.

We have the following Theorem 2.11 which is the main result for this paper.

Theorem 2.11. Given a generic sequence of functions ~f = (f0, . . . , fk), with a sequence of critical
points ~q = (q(k−1)k, . . . , q01, q0k), then we have

lim
λ→∞

Φ
(
mk,T (λ)(φ(q(k−1)k), . . . , φ(q01))

)
= meMorse

k,T (q(k−1)k, . . . , q01),

where φ := Φ−1 6 is the inverse of the isomorphism in equation (2.1).

As a consequence, the Morse product meMorse
k ’s satisfy the A∞-relation whenever we consider a

generic sequence of functions such that every operation appearing in the formula is well-defined.

3. Proof of Theorem 2.11

3.1. Analytic results. For the proof of Theorem 2.11, we assume T [0] 6= ∅ since this is exactly the
case carried out by [12]. We begin with recalling the necessary analytic results from [12, 18, 3].

3.1.1. Results for a single Morse function. We will assume that the function fij we are dealing with

satisfy the Morse-Smale assumption 2.5. Due to difference in convention, e−λfij∆ije
λfij is called the

Witten’s Laplacian in [3], and result stated in this Section is obtain by the corresponding statements
in [3] by conjugating eλfij .

Theorem 3.1 ([12, 18]). For each fij, there is λ0 > 0 and constants c, C > 0 such that we have

Spec(∆ij) ∩ [ce−cλ, Cλ1/2) = ∅, for λ > λ0. The map Φ = Φij : Ω∗ij,<1 → CM∗fij in equation (2.1) is

a chain isomorphism for λ large enough. We will denote the inverse by φ = φij.

We will the asymptotic behaviour of φ(q) for a critical point q of fij , and we will need the following
Agmon distance dij for this purpose.

5Hence we have valency of v being 3.
6We omit the numbering ij from our notation here.
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Definition 3.2. For a Morse function fij, the Agmon distance dij
7, or simply denoted by d, is

the distance function with respect to the degenerated Riemannian metric 〈·, ·〉fij = |dfij |2〈·, ·〉, where
〈·, ·〉 is the background metric. We will also write ρij(x, y) := dij(x, y)− fij(y) + fij(x).

Lemma 3.3. We have ρij(x, y) ≥ 0 with equality holds if and only if x is connected to y via a
generalized flow line γ : [0, 1]→M with γ(0) = x and γ(1) = y. Here a generalized flow line means
that γ is continuous, and there is a partition 0 = t0 < t1 < · · · < tl = 1 such that γ|(tr,tr+1) is a
reparameterization of a gradient flow line of fij and γ(tr) ∈ Crit(fij) for 0 < r < l.

Lemma 3.4. Let γ ⊂ C to be a subset whose distance from Spec(∆ij) is bounded below by a
constant. For any j ∈ Z+ and ε > 0, there is kj ∈ Z+ and λ0 = λ0(ε) > 0 such that for any two
points x0, y0 ∈ M , there exist neighborhoods V and U (depending on ε) of x0 and y0 respectively,

and Cj,ε > 0 such that ‖∇j((z − ∆ij)
−1u)‖C0(V ) ≤ Cj,εe

−λ(ρij(x0,y0)−ε)‖u‖
Wkj,2(U)

, for all λ > λ0

and u ∈ C0
c (U), where W k,p refers to the Sobolev norm.

We will also need modified version of the resolvent estimate for Gij , which can be obtained by
applying the original resolvent estimate to the the formula

(3.1) Gij(u) =

∮
γ
z−1(z −∆ij)

−1u.

Lemma 3.5. For any j ∈ Z+ and ε > 0, there is kj ∈ Z+ and λ0 = λ0(ε) > 0 such that for any two
points x0, y0 ∈M , there exist neighborhoods V and U (depending on ε) of x0 and y0 respectively, and

Cj,ε > 0 such that ‖∇j(Giju)‖C0(V ) ≤ Cj,εe−λ(ρij(x0,y0)−ε)‖u‖
Wkj,2(U)

, for all λ < λ0 and u ∈ C0
c (U),

where W k,p refers to the Sobolev norm.

For a critical point q of fij , φ(q), has certain exponential decay measured by the Agmon distance
from the critical point q.

Lemma 3.6. For any ε, there exists λ0 = λ0(ε) > 0 such that for λ > λ0, we have φ(q) =

Oε(e−λ(g+
q (x)−ε)), and same estimate holds for the derivatives of φij(q) as well. Here Oε refers to

the dependence of the constant on ε and g+
q (x) = ρij(q, x) = dij(q, x) + fij(q)− fij(x).

Remark 3.7. We notice that g+
q is a nonnegative function with zero set V +

q that is smooth and

Bott-Morse in a neighborhood W of V +
q ∪ V −q . Similarly, if we write g−q = dij(q, x) + fij(x)− fij(q)

which is a nonnegative function with zero set V −q and is smooth and Bott-Morse in W , and we have

∗ijφ(q)/‖φ(q)e−λfij‖2 = Oε(e−λ(g−q −ε)) where ∗ij = ∗e−2λfij comparing to the usual star operator ∗.
Lemma 3.8. The normalized basis φ(q)/‖φ(q)‖’s are almost orthonormal basis with respect to the
twisted inner product 〈·, ·〉e−2λfij . More precisely, there is a C, c > 0 and λ0 such that when λ > λ0,

we will have
∫
M 〈

φ(p)
‖φ(p)‖ ,

φ(q)
‖φ(q)‖〉 volij = δpq + Ce−cλ.

Restricting our attention to a small enough neighborhood W containing V +
q ∪ V −q , the above

decay estimate of φ(q) from [12] can be improved from an error of order Oε(eελ) to O(λ−∞).

Lemma 3.9. There is a WKB approximation of the φ(q) as φ(q) ∼ λ
deg(q)

2 e−λg
+
q (ωq,0 +ωq,1λ

−1/2 +
. . . )8, which is an approximation in any precompact open subset K ⊂Wq of the form

‖eλg
+
q ∇j

(
λ−deg(q)/2φ(q)− e−λg

+
q

N∑
l=0

ωq,jλ
−l/2)‖2L∞(K) ≤ Cj,K,Nλ

−N−1+2j

7Readers may see [8] for its basic properties.
8Notice that we indeed have ωq,2j+1 = 0 in this case while we prefer to write it in this form to unify our notations.
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for any j,N ∈ Z+, where Wq ⊃ V +
q ∪ V −q is an open neighborhood of V +

q ∪ V −q .

Furthermore, the integral of the leading order term ωq,0 in the normal direction to the stable
submanifold V +

q is computed in [12].

Lemma 3.10. Fixing any point x ∈ V +
q and χ ≡ 1 around x compactly supported in W , we take

any closed submanifold (possibly with boundary) NV +
q,x of W intersecting transversally with V +

q at
x. We have

λ
deg(q)

2

∫
NV +

q,x

e−λg
+
q χωq,0 = 1 +O(λ−1);

λ
deg(q)

2

‖e−λfijφij(q)‖2

∫
NV −q,x

e−λg
−
q χ ∗ ωq,0 = 1 +O(λ−1),

for any point x ∈ V −q , with NV −q,x intersecting transversally with V −q .

3.1.2. WKB for homotopy operator. We recall the key estimate for the homotopy operator Hij

proven in [3, Section 4]. Let γ(t) be a flow line of ∇fij/|∇fij |dij starts at γ(0) = xS and γ(T ) = xE
for a fixed T > 0 as shown in the following figure 2. We consider an input form ζS defined in a

Figure 2. gradient flow line γ

neighborhood WS of xS . Suppose we are given a WKB approximation of ζS in WS , which is an
approximation of ζS according to order of λ of the form

(3.2) ζS ∼ e−λgS(ωS,0 + ωS,1λ
−1/2 + ωS,2λ

−1 + . . . )

which means we have λj,0 > 0 such that when λ > λj,N,0 we have

‖eλgS∇j(ζS − e−λgS(
N∑
i=0

ωS,iλ
−i/2))‖2L∞(WS) ≤ Cj,Nλ

−N−1+2j ,

for any j,N ∈ Z+. We further assume that gS is a nonnegative Bott-Morse function in WS with
zero set VS such that γ is not tangent to VS at xS . We consider the equation

(3.3) ∆ijζE = (I − Pij)d∗ij(χSζS),

where χS is a cutoff function compactly supported in WS , Pij : Ω∗(M) → Ω∗ij,<1 is the projection.

We want to have a WKB approximation of ζE = Hij(χSζS)

Lemma 3.11. For supp(χS) small enough (the size only depends on gS and fij), there is a WKB

approximation of ζE in a small enough neighborhood WE of xE, of the form ζE ∼ e−λgEλ−1/2(ωE,0 +

ωE,1λ
−1/2 + . . . ) in the sense that we have λj,0 > 0 such that when λ > λj,N,0 we have

‖eλgE∇j{ζE − e−λgE(
N∑
i=0

ωE,iλ
−(i+1)/2)}‖2L∞(WE) ≤ Cj,Nλ

−N+2j .
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Furthermore, the function gE (only depending on gS and fij) is a nonnegative function which is
Bott-Morse in WE with zero set VE = (

⋃
−∞<t<+∞ ςt(VS)) ∩WE which is a closed submanifold in

WE, where ςt is the t-time ∇fij/|∇fij |2.

Finally, we have the following Lemma 3.12 from [3] relating the integrals of ωS,0 and ωE,0.

Lemma 3.12. Using same notations in lemma 3.11 and suppose χS and χE are cutoff functions
supported in WS and WE respectively, then we have

(3.4) λ−
1
2

∫
NxE

e−λgEχEωE,0 = (

∫
NxS

e−λgSχSωS,0)(1 +O(λ−1)).

Furthermore, suppose ωS,0(xS) ∈
∧topN(VS)∗xS , we have ωE,0(xE) ∈

∧topN(VE)∗xE . Here
∧topE

refers to
∧r E for a rank r vector bundle E. Here NvS and NvE are any closed submanifold of WS

and WE intersecting VS and VE transversally at xS and xE respectively.

3.2. Apriori Estimate.

Notations 3.13. From now on, we will consider a fixed generic sequence ~f = (f0, . . . , fk) with
corresponding sequence of critical points ~q = (q(k−1)k, . . . , q01, q0k) and a fixed labeled ribbon k-tree

T such that dim(MT (~f, ~q)) = 0 (the dimension is given by formula (2.2)). We use qij to denote a
fixed critical point of fij. φ(qij) associated to qij is abbreviated by φij.

Notations 3.14. For T ∈ Tk or LTk with ~q, we let NT :=
∏
v∈LT [0] Nν(v) of dimension ν(T ) :=∑

v∈LT [0] ν(v), and we also let deg(T ) :=
∑k−1

i=0 deg(qi(i+1))− |T [1]| − ν(T ). We inductively define a
volume form νT on NT for labeled ribbon tree T ∈ LTk by: letting νl = dtl ∧ · · · ∧ dt1 on the Nl; and
for vr labeled with 1 we split T at vr into T2 and T1 such that T2, T1, eo is clockwisely oriented, then
we take νT = νT2 ∧ νT1; and for vr labeled with u we split T at vr into Tl, . . . , T1 clockwisely, and we
take νT = νTl ∧ · · · ∧ νT1 ∧ νl. We should also write ν∨T to be the polyvector field dual to νT .

Definition 3.15. Given a labeled ribbon k-tree T with ~f and ~q as above, we associate to it a length

function ρ̂T on M(T ) := NT ×M |T
[0]
ni | → R+

9 with coordinates (~tT , x̂T ) (where ~tT = (tv)v∈LT [0] and
x̂T = (xv)v∈T [0]

ni

) inductively along the tree by the rules:

(1) for the unique tree with one edge e numbered by ij, we take ρ̂T (xvo) := ρij(qij , xvo);
(2) when vr is labeled with 1, we split T at the root vertex vr into T2, T1. We notice that

M(T ) = M(T2)×M M(T1)×Mvo (with coordinates ~tT = (~tT2 ,~tT1), and x̂T = (x̂T2 , x̂T1 , xvo)
such that xT2,vr = xT1,vr = xvr in M) and we let

ρ̂T (~tT , x̂z(T )) = ρ̂ij(xvr , xvo) +

2∑
j=1

ρ̂Tj (~tTj , x̂Tj )

if the numbering on eo is ij;
(3) when vr is labeled with u, we split T at vr into Tl, . . . , T1 and we can write M(T ) = MTl ×M
· · · ×M M(T1) ×M (Nl × Mvr) × Mvo where l = ν(vr). By writing coordinates (~tTj , x̂Tj )
for M(Tj), tvr = (tvr,l, . . . , tvr,1) for Nl, xvr for Mvr and xvo for Mvo satisfying xTl,vr =
σtvr,l(xvr), · · · , xT1,vr = σtvr,1(xvr), we let

ρ̂T (~tT , x̂T ) := ρ̂ij(xvr , xvo) +

l∑
j=1

ρ̂Tj
(
~tTj , x̂Tj

)
if the numbering on eo is ij.

9Here T
[0]
ni is the set of all vertices besides incoming edges introduced in Definition 2.2
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Fixing the outgoing point xvo = q0k giving coordinates ~xT = (xv)v∈T [0] for M |T
[0]|, we let ρT (~tT , ~xT ) :=

ρ̂T (~tT , ~xT , q0k).

Example 3.16. Suppose that T is the labeled ribbon 2-tree with two incoming vertices v2 and v1

joining to v labeled with u by e12 and e01, and v is joining to the root vertex vr labeled with u via

e. Then we have NT ×M |T
[0]
ni | = N2 × S1 ×M3 and ρ̂T (tv,2, tv,1, tvr , xv, xvr , xvo) = ρ02(xvr , xvo) +

ρ02(xv, σtvr (xvr)) + ρ12(q12, σtv,2(xv)) + ρ01(q01, σtv,1(xv)). The following Figure 3 shows the tree T
and its associated ρ̂T .

Figure 3. Distance function associated to T

From its construction and Lemma 3.3, we notice that ρT (~tT , ~xT ) ≥ 0 and equality holds if and
only if for each edge e numbered by ij with ∂in(e) = v1 and ∂o(e) = v2, there is a generalized
flow line of ∇fij joining xv1 to x̃v2 , where x̃v2 = xv2 when v2 is labeled by 1; and x̃v2 = σtv2,j (xv2)

if v2 is labeled by u with and e is the jth incoming edges of v2 in the anti-clockwise orientation.

Therefore, we have a generalized flow tree (with jumping) of type (T, ~f, ~q) (which is a generalization
of flow tree in Definition 2.7 by allow broken flow lines as in Definition 3.3). With the condition

that dim(M(~f, ~q)) = 0 as mentioned in Notation 3.13, we notice that every such generalized flow

line is an actual flow line from the generic assumption 2.8 for ~f , because the expected dimension for
flow tree with broken flow line is negative.

Notations 3.17. We let Γ1, . . . ,Γd be the gradient flow tree of type (T, ~f, ~q), such that each Γi is

associated with a point tΓi,v ∈ Nν(v) (for v ∈ LT [0]) and xΓi,v ∈M (for v ∈ T [0]) such that

(1) xΓi,v is the starting point of a gradient flow line γe associated to edge e if ∂in(e) = v, and
we write xΓi,e,v = xΓi,v in this case;

(2) xΓi,v is the end point of the gradient flow line γe if v is labeled by 1 if ∂o(e) = v, and we
write xΓi,e,v = xΓi,v in this case;

(3) and σtΓi,v,j (xΓi,v) is the end point of a gradient flow line γe associated to jth-edge e clockwisely

if v is labeled by u and ∂o(e) = v, and we write xΓi,e,v = σtΓi,v,j (xΓi,v) in this case.

We consider a sequence of cut off functions ~χ := (χv)v∈T [0] such that χv compactly supported
in a ball Uv := B(xv, r/2) of radius r centered at a fixed point xv ∈ M , and (~κv)v∈LT [0] with κv
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compactly support in a small neighborhood Cv containing a fixed tv = (tv,ν(v), . . . , tv,1) ∈ Nν(v) such
that the Riemannian distance between σtj (x) and σt′j (x) is strictly less than r/2 for any j and any

x ∈M and any t and t′ in Cv.

Definition 3.18. With ~χ and ~κ as above, we define m
(e,v)
~χ,~κ ∈ Ω∗(NTe,v ×M) 10 for each flag (e, v) ∈

z(T ) inductively along T by letting:

(1) for the incoming edge eij with ∂o(eij) = v, we take m
(eij ,v)
~χ,~κ = φij;

(2) when we have (e, v) with ∂in(e) = v with v is labeled with 1 with, we let T2, T1 to be sub-
trees with outgoing edges e2, e1 ending at v such that e2, e1, e clockwisely oriented. With
coordinates ~tTe,v = (~tT2 ,~tT1) for NT = NT2 × NT1, we let

m
(e,v)
~χ,~κ (~tTe,v , x) = (−1)ενTe,vχvr(x)

(
ιν∨T2

m
(e2,v)
~χ,~κ (~tT2 , x)

)
∧
(
ιν∨T1

m
(e1,v)
~χ,~κ (~tT1 , x)

)
,

where ε = deg
(
ιν∨T2

m
(e2,v)
~χ,~κ (~tT2 , x)

)
+ 1;

(3) when we have v labeled with u, we let Tl, . . . , T1 be subtrees with outgoing edges el, . . . , e1

ending at v with el, . . . , e1, e clockwisely oriented. We let

m
(e,v)
~χ,~κ (~tTe,v , x) = νTe,vχv(x)κv(tv)σ∗tv,l

(
ιwv,l∧ν∨Tl

m
(el,v)
~χ,~κ (~tTl , x)

)
∧ · · · ∧ σ∗tv,1

(
ιwv,1∧ν∨T1

m
(e1,v)
~χ,~κ (~tT1 , x)

)
,

where tv,l, . . . , tv,1 is the coordinates for Nν(v) and ~tTe,v = (~tTl , . . . ,~tT1 , tv,l, . . . , tv,1), and

wv,j = σ∗(
∂

∂tv,j
);

(4) for an edge e numbered by ij with ∂in(e) = v0 and ∂o(e) = v1 with v1 not being the outgoing

vertex vo, we let m
(e,v1)
~χ,~κ = d∗ijGij(m

(e,v0)
~χ,~κ ) where Gij is introduced in Definition 2.4;

(5) for the outgoing edge eo with ∂in(eo) = vr and ∂o(eo) = vo, we take mT
~χ,~κ = m

(eo,vo)
~χ,~κ = m

(eo,vr)
~χ,~κ .

Example 3.19. We the tree T described in the previous Example 3.16, we have m
(e,v)
~χ,~κ (tv,2, tv,1, xv) =

χv(xv)κv(tv,2, tv,1)dtv,2dtv,1σ
∗
tv2

(ιwv,2φ02)(xv) ∧ σ∗tv1 (ιwv,1φ01)(xv), m
(e,vr)
~χ,~κ = d∗02G02(m

(e,v)
~χ,~κ ) (d∗02G02

only acting on the component M) and

m
(eo,vr)
~χ,~κ (tv,2, tv,1, tvr , xvr) = χvr(xvr)κ(tvr)dtv,2dtv,1dtvrσ

∗
tvr

(ιwvr∧ ∂
∂tv,1

∧ ∂
∂tv,2

m
(e,vr)
~χ,~κ )(xvr),

and finally we have mT
~χ,~κ = m

(eo,vr)
~χ,~κ .

We take a collection {~χi}i∈I and {~κj}j∈J such that ~χi = (χi,v) i∈Iv
v∈T [0]

and ~κj = (κj,v) j∈Jv
v∈LT [0]

and such

that every collection {χi,v}i∈Iv and {κj,v}j∈Jv is a partition of unity for Mv and Nν(v) respectively
(Here we use the notation I =

∏
v∈T [0] Iv and J =

∏
v∈T [0] Jv). With the cut off construction in

Definition 3.18 and the Definition 2.4, we have

(3.5)

∫
M
mk,T (λ)(φ(k−1)k, . . . , φ01) ∧ ∗e

−2λf0kφ0k

‖e−λf0kφ0k‖2
=
∑
i∈I

∑
j∈J

∫
NT×M

mT
~χi,~κj
∧ ∗e

−2λf0kφ0k

‖e−λf0kφ0k‖2
.

Lemma 3.20. We fix a point (~tT , ~xT ) in M(T ) with the cut off functions ~χ and ~κ and mT
~χ,~κ as before

Definition 3.18, for any ε > 0 we have λ0(ε) and small enough radius r = r(ε) of cut off functions
(which is described before Definition 3.18) such that when λ > λ0 we have the norm estimate

‖mT
~χ,~κ ∧

∗e−2λf0kφ0k

‖e−λf0kφ0k‖2
‖Cj(NT×M) ≤ Cj,εe−λ(ρT (~tT ,~xT )−bT ε),

10recall that Te,v is introduced in Notation 2.3



FUKAYA’S CONJECTURE ON S1-EQUIVARIANT DE RHAM COMPLEX 13

for any j ∈ Z+ (Here we fix an arbitrary metric on the simplices Nl’s), where bT is a constant
depending the combinatorics of T .

Proof. We prove by induction along the tree T that for each flag (e, v) with ∂o(e) = v 6= vo we have

‖m(e,v)
~χ,~κ ‖Cj(NTe,v×Uv) ≤ Cj,ε,~χ,~κ exp

(
−λ(ρ̂Te,v(~tTe,v , x̂Te,v)− bTe,vε)

)
,

where Uv = B(xv, r/2), for any points ~tT ∈ NT , x̂T ∈M |T
[0]
ni | with the assoicated cut off functions ~κ

and ~χ with small enough r. The initial case follows from the estimate in Lemma 3.6. For induction
we consider an edge e with ∂in(e) = v and ∂o(e) = ṽ. We take subtrees (of T ) Tl, . . . , T1 with edges
el, . . . , e1 attached to v such that el, . . . , e1, e is clockwisely oriented. There are two cases.

The first case is when v is labeled with 1 and we have l = 2. In this case we have the estimate

‖m(e2,v)
~χ,~κ ∧m

(e1,v)
~χ,~κ ‖Cj(NTe2,v×NTe1,v×Uv) ≤ Cj,ε,~χ,~κ exp

(
−λ
(
ρ̂T2(~tT2 , x̂T2) + ρ̂T1(~tT1 , x̂T1)− bTe,vε

))
by choosing bTe,v ≥ bT1 + bT2 , where we require xT1,v = xT2,v = xv in the R.H.S. of the above

equation. Assuming that e is numbered by ij, and we apply the Lemma 3.5 to the term m
(e,ṽ)
~χ,~κ =

d∗ijGij
(
χvm

(e2,v)
~χ,~κ ∧m

(e1,v)
~χ,~κ

)
(we choose smaller r if necessary) we obtain the estimate

‖d∗ijGij
(
χvm

(e2,v)
~χ,~κ ∧m

(e1,v)
~χ,~κ

)
‖Cj(NTe,ṽ×Uṽ) ≤ Cj,ε,~χ,~κ exp

(
−λ
(
ρ̂Te,ṽ(~tTe,ṽ , x̂Te,ṽ)− bTe,ṽε

))
,

by taking bTe,ṽ ≥ bTe,v + 1 which is the desired estimate.

The second case is when v is labeled with u, and we have the estimate

‖σ∗tl
(
ιwv,l∧ν∨Tl

m
(el,v)
~χ,~κ

)
∧ · · · ∧ σ∗t1

(
ιwv,1∧ν∨T1

m
(e1,v)
~χ,~κ

)
‖Cj(∏l

j=1 NTj×Cv×Uv)

≤ Cj,ε,~χ,~κ exp

−λ( l∑
j=1

ρ̂Tj (~tTj , x̂Tj )− bTe,vε
) ,

using the induction hypothesis and by taking bTe,v ≥ l +
∑l

j=1 bTj , for (tl, . . . , t1) varying in small

enough neighborhood Cv of (tv,l, . . . , tv,1) (Cv introduced in the paragraph before Definition 3.18),
where we require that the identity xTj ,v = σtv,j (xv) on the R.H.S. as in the Definition 3.15. By

applying d∗ijGij (if e is numbered by ij) to the term m
(e,v)
~χ,~κ = νTe,vχvκvσ∗tl

(
ιwv,l∧ν∨Tl

m
(el,v)
~χ,~κ

)
∧ · · · ∧

σ∗t1
(
ιwv,1∧ν∨T1

m
(e1,v)
~χ,~κ

)
as in Definition 3.18, and using Lemma 3.5 again we have the desired estimate

‖m(e,ṽ)
~χ,~κ ‖Cj(NTe,ṽ×Uṽ) ≤ Cj,ε,~χ,~κ exp

(
−λ
(
ρ̂Te,ṽ(~tTe,ṽ , x̂Te,ṽ)− bTe,ṽε

))
,

where we take bTe,ṽ ≥ bTe,v + 1.

To obtain the statement of the Lemma, we observe that if Tl, · · · , T1 are the incoming trees joining
to the root vertex we have

‖m(eo,vo)
~χ,~κ ‖Cj(NT×Uvr ) ≤ Cj,ε,~χ,~κ exp

−λ( l∑
j=1

ρ̂Tj (~tTj , x̂Tj )− bTeo,vo ε
)

in a small enough neighborhood Uvr of xvr , where we have l = 2 and xT2,vr = xT1,vr = xvr in R.H.S.
as in the first case with vr labeled with 1, and xTj ,vr = σtvr,j (xvr) in R.H.S. as in the second case

that vr is labeled with u. The Lemma follows from the estimate for m
(eo,vo)
~χ,~κ and that for ∗e

−2λf0kφ0k

‖e−λf0kφ0k‖2
in Remark 3.7. �
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The above Lemma allows us to estimate the terms mT
~χ,~κ appearing in the R.H.S., and from the

discussion after Example 3.16 we notice that it is closely related to gradient flow tree of type T .
With the gradient flow trees Γi’s as in Notation 3.17, we assume there are open neighborhoods DΓi,v

and WΓi,v of xΓi,v for v ∈ T [0] such that DΓi,v ⊂ WΓi,v together with χΓi,v ≡ 1 on DΓi,v which is
compactly supported in WΓi,v giving ~χΓi = (χΓi,v)v∈T [0] . Similarly, we also assume there are open

neighborhoods CΓi,v and EΓi,v of tΓi,v in Nν(v) satisfying CΓi,v ⊂ EΓi,v together with κΓi,v ≡ 1 on

CΓi,v which is compactly supported in EΓi,v giving ~κΓi = (κΓi,v)v∈LT [0] . We should further prescribe
the size of these neighborhood WΓi,v’s and EΓi,v in the upcoming Section 3.3 which is defined along

the gradient tree Γi’s together with the WKB approximation 11. By writing ~DΓi =
∏
v∈T [0] DΓi,v

and ~CΓi =
∏
v∈LT [0] CΓi,v, we have ρT ≥ c > 0 for some constant c outside

⋃d
i=1

~CΓi × ~DΓi by
continuity of ρT and the discussion after Example 3.16. As a result, we can fix a small enough ε
(and the associated r(ε)) such that bT ε < c/2. The following Figure 4 show the situation for these
open subsets WΓi,v’s and EΓi,v’s for the tree in Example 3.16.

Figure 4. Open subsets near gradient tree Γi

We can take a finite collection {~χi}i∈I and {~κj}j∈J in the paragraph before Lemma 3.20 such

that {~χi}i∈I ∪ {~χΓ1 , . . . , ~χΓd} forms a partition of unity of M |T
[0]| and finite collection {~κj}j∈J ∪

{~κΓ1 , . . . , ~κΓd} forms a partition of unity of NT respectively, further satisfying
(
Supp(~χi)×Supp(~κj)

)
∩

~CΓi × ~DΓi = ∅ for each flow tree Γi and any i, j. Therefore we have the estimate ‖mT
~χi,~κj

∧
∗e−2λf0kφ0k

‖e−λf0kφ0k‖2
‖C0(NT×M) ≤ Cε,~χi,~κj

e−λc/2. As a conclusion of this Section 3.2, we have

(3.6)∫
M
mk,T (λ)(φ(k−1)k, . . . , φ01) ∧ ∗e

−2λf0kφ0k

‖e−λf0kφ0k‖2
=

d∑
i=1

∫
NT×M

mT
~χΓi

,~κΓi
∧ ∗e

−2λf0kφ0k

‖e−λf0kφ0k‖2
+O(e−λc/2),

11Roughly speaking, these are the open subsets that WKB approximation for m
(e,v)
~χ,~κ can be constructed. These

open subsets does not depend on m
(e,v)
~χ,~κ but rather depend on the geometry of gradient flow tree Γi’s when applying

Lemma 3.9 and Lemmma 3.11 along Γi’s.
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where O(e−λc/2) refers to function in λ bounded by Ce−λc/2 for some C. This cut off the contribution
to integral near the gradient flow trees Γi’s.

3.3. WKB approximation method.

3.3.1. WKB expansion for m
(e,v)
~χ,~κ . We fix a particular gradient flow tree Γ = Γi (we omit i in our

notations for the rest of this paper) and compute the contribution from the integral
∫
NT×M mT

~χΓ,~κΓ
∧

e−2λfij ∗φ0k

‖e−λf0kφ0k‖2
in the above equation 3.6 using techniques from [3, Section 3].

We inductively define the open subset We,v ⊂ M and Ev of tv along the tree Γ, together with a

WKB expansion of m
(e,v)
~χ,~κ in ~ETe,v ×We,v =

∏
v∈LT [0]

e,v
Ev ×We,v

12 for each flag (e, v) of T

(3.7) m
(e,v)
~χ,~κ ∼ λ

re,ve−λge,v
(
ω(e,v),0 + ω(e,v),1λ

− 1
2 + · · ·

)
,

which is a norm estimate (here we fix arbitrary metric on Nl as before) in the sense of Lemma 3.11,

where ge,v ∈ C∞(~ETe,v ×We,v) is non-negative Bott-Morse function with zero set Ve,v ⊂ ~ETe,v ×We,v

and ω(e,v),i ∈ Ω∗(~ETe,v ×We,v) as follows:

(1) for the incoming edges eij with ∂o(eij) = v, we define Weij ,v to be a open subset of xΓ,eij ,v (We
use the notation as in Notation 3.17) together with the WKB expansion for φij in Weij ,v from

Lemma 3.9, with reij ,v =
deg(qij)

2 and geij ,v = g+
qij . In this case we have Veij ,v = V +

qij ∩Weij ,v

being the stable submanifold;
(2) for (e, v) with ∂in(e) = v with v is labeled with 1, we let T2, T1 to be subtrees with outgoing

edges e2, e1 ending at v such that e2, e1, e clockwisely oriented, we let ~ETe,v = ~ET2× ~ET1 and
We,v = We2,v ∩We1,v, with the product WKB expansion as

(−1)εχvm
(e2,v)
~χ,~κ ∧m

(e1,v)
~χ,~κ ∼ λre,ve−λge,v

(
ω(e,v),0 + ω(e,v),1λ

− 1
2 + · · ·

)
by taking λre,v = λre2,v+re1,v , ge,v = ge2,v + ge1,v and ω(e,v),l =

∑
i+j=l χvω(e2,v),i ∧ ω(e1,v),j

(Here ε is given (2) in Definition 3.18). In this case we have ge,v being a non-negative

Bott-Morse function in ~ETe,v ×We,v with zero set Ve,v = (Ve2,v × ~ET1) ∩ (Ve1,v × ~ET1);
(3) when we have v labeled with u, we let Tl, . . . , T1 be subtrees with outgoing edges el, . . . , e1

ending at v with el, . . . , e1, e clockwisely oriented, we let ~ETe,v =
∏l
j=1

~ETj × Cv and take

We,v (Here Cv is neighborhood of tΓ,v, and We,v is a neighborhood of xΓ,v = xΓ,e,v) such
that σtj (We,v) ⊂ Wej ,v for each j = 1, . . . , l for (tl, . . . , t1) ∈ Cv. Therefore we have the

WKB expansion m
(e,v)
~χ,~κ ∼ λ

re,ve−λge,v
(
ω(e,v),0 +ω(e,v),1λ

− 1
2 + · · ·

)
by taking re,v =

∑l
j=1 rej ,v,

ge,v =
∑l

j=1 τ
∗
j (gej ,v) and

ω(e,v),m =
∑

il+···+i1=m

νTe,vχvκv
(
ι ∂
∂tv,l

∧ν∨Tl
τ∗l (ω(el,v),il)

)
∧ · · · ∧

(
ι ∂
∂tv,1

∧ν∨T1

τ∗1 (ω(e1,v),i1)
)
,

where τj :
∏l
j=1

~ETj × Nν(v) × We,v → ~ETj × Wej ,v is induced by taking product of the

projection
∏l
j=1

~ETj → ~ETj with τj : Nν(v) ×We,v → Wej ,v (here we abuse the notation)

given by τj(tv,l, · · · , tv,1, x) = σtv,j (x). In this case we have Ve,v =
⋂l
j=1 τ

−1
j (Vej ,v);

(4) for an edge e numbered by ij with ∂in(e) = v0 and ∂o(e) = v1 with v1 not being the outgoing

vertex vo, we apply the Lemma 3.11 by taking ζS = m
(e,v0)
~χ,~κ (and shrinking We,v0 if necessary)

together with its WKB approximation, therefore we obtain the WKB approximation for

12Here Te,v is the combinatorial subtree of T as in Notation 2.3.
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ζE = m
(e,v1)
~χ,~κ in a neighborhood ~ETe,v1

×We,v1 for some small neighborhood We,v1 of xΓ,e,v1 .

In this case we have Ve,v1 =
⋃
t∈R ςt(Ve,v0) ∩

(
~ETe,v1

×We,v1

)
where ςt here is t-time flow of

∇fij/|∇fij |2 extended to ~ETe,v1
× (M \ Crit(fij)) by taking product with ~ETe,v1

;

(5) for the outgoing edge eo with outgoing vertex vo, we simply take the WKB expansion of

m
(eo,vo)
~χ,~κ to be that of m

(eo,vr)
~χ,~κ . In this case we have Veo,vo = Veo,vr .

Having the WKB approximation of m
(eo,vo)
~χ,~κ , together with that for

∗e−2λf0kφ0k

‖e−λf0kφ0k‖2
∼ λdeg(q0k)/2

‖e−λf0kφ0k‖2
e−λg

−
0k
(
∗ ω0k,0 + ∗ω0k,1λ

− 1
2 + · · ·

)
from Lemma 3.9 (here we abbreviated g−q0k and ωq0k,i’s by g−0k and ω0k,i’s respectively), we obtain
(3.8)∫
NT×M

mT
~χΓ,~κΓ

∧ ∗e
−2λf0kφ0k

‖e−λf0kφ0k‖2
=
λreo,vo+deg(q0k)/2

‖e−λf0kφ0k‖2

∫
NT×M

e−λ(geo,vo+g−0k)ω(eo,vo),0 ∧ ∗ω0k,0 +O(λ−
1
2 ).

3.3.2. Explicit computation of the integral. From the generic assumption of ~f in Definition 2.8, we
notice that all the points tΓ,v ∈ int(Nν(v)). In the above WKB construction, by shrinking Ev’s and

We,v’s if necessary, we may always assume that πe,v : ~ETe,v ×We,v → Ve,v being identified with a

neighborhood of zero section in the normal bundle NVe,v in ~ETe,v×We,v. We notice that the element
νTe,v ∧ vole,v (Here vole,v is introduced in Definition 2.9 as element in

∧∗ T ∗MxΓ,e,v) is a top degree

element in
∧∗NV ∗e,v, serves as an orientation in the normal direction (by extending to whole Ve,v).

We show inductively along gradient tree Γ that the integration along fiber

(πe,v)∗
(
λre,ve−λge,vω(e,v),0

)
= 1 +O(λ−

1
2 )

at the point (~tΓe,v , xΓ,e,v) (here xΓ,e,v is introduced in Notation 3.17) in Ve,v (Here (πe,v)∗ refers
integration along fibers of πe,v with respect to orientation νTe,v ∧ vole,v) using techniques from [3,
Section 3]. Since ge,v is non-negative Bott-Morse function with zero set Ve,v, using the well known

stationary phase expansion (see e.g. [4] or [3, Lemma 58]) we notice the leading order in λ−
1
2 in

above integral only depend on the values of ω(e,v),0 at (~tΓe,v , xΓ,e,v), and can be computed inductively
as follows (we use the same notations as in the inductive WKB construction in earlier Section 3.3):

(1) for the incoming edges eij with ∂o(eij) = v, this is exactly Lemma 3.10;
(2) for (e, v) with ∂in(e) = v with v is labeled with 1, with subtree T2, T1 and outgoing edges

e2, e1 ending at v, we have Ve,v = (Ve2,v × ~ET1) ∩ (Ve1,v × ~ET1) and we can compute

(πe,v)∗(λ
re,ve−λge,vω(e,v),0) = (−1)ε(πe2,v)∗(λ

re2,ve−λge2,vω(e2,v),0)(πe1,v)∗(λ
re1,ve−λge1,vω(e1,v),0) = 1

at the point (~tΓe,v , xΓ,e,v) in Ve,v modulo error O(λ−
1
2 ) (ε as in (2) Definition 3.18);

(3) when we have v labeled with u, we let Tl, . . . , T1 be subtrees with outgoing edges el, . . . , e1

ending at v with el, . . . , e1, e clockwisely oriented, we notice that Ve,v =
⋂l
j=1 τ

−1
j (Vej ,v) from

WKB construction in previous Section 3.3. From the induction, we can compute the integral

(πej ,v)∗
(
λrej ,ve−λτ

∗
j (gej ,v)τ∗j (ω(ej ,v),0)

)
= 1 +O(λ−1) as function on τ−1

j ((~tΓej ,v
, xΓ,ej ,v)) if we

identify a neighborhood τ−1
j (~ETj ×Wej ,v) of τ−1

j (Vej ,v) with a neighborhood of zero section

in the pull back normal bundle τ−1
j (NVej ,v) as treat πej ,v : τ−1

j (NVej ,v) → τ−1
j (Vej ,v) as
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integration along fibers. We obtain the identity

(πe,v)∗(λ
re,ve−λge,vω(e,v),0) =

l∏
j=1

(πej ,v)∗
(
λrej ,ve−λτ

∗
j (gej ,v)τ∗j (ω(ej ,v),0)

)
= 1,

at (~tΓe,v , xΓ,e,v) modulo error O(λ−
1
2 );

(4) for an edge e numbered by ij with ∂in(e) = v0 and ∂o(e) = v1 with v1 not being the

outgoing vertex vo, we can compute (πe,v1)∗(λ
re,v1e−λge,v1ω(e,v1),0) = 1 + O(λ−

1
2 ) at the

point (~tΓe,v1
, xΓ,e,v1) using the fact that (πe,v0)∗(λ

re,v0e−λge,v0ω(e,v0),0) = 1 +O(λ−
1
2 ) at the

point (~tΓe,v0
, xΓ,e,v0) by applying Lemma 3.12 with xS = xΓ,e,v0 an xE = xΓ,e,v1 (notice that

~tΓe,v0
= ~tΓe,v1

);

(5) for the outgoing edge eo with outgoing vertex vo, since we have Veo,vo and ~ET × V −0k inter-

secting transversally at (~tΓ, xΓ,eo,xr), we can compute

λreo,vo+deg(q0k)/2

‖e−λf0kφ0k‖2

∫
NT×M

e−λ(geo,vo+g−0k)ω(eo,vo),0 ∧ ∗ω0k,0

=± (πeo,vo)∗(λ
reo,voe−λgeo,voω(eo,vo),0)

( λ
deg(q0k)

2

‖e−λf0kφ0k‖2

∫
NV −xΓ,eo,xr

e−λg
−
0k ∗ ω0k,0

)
+O(λ−

1
2 )

=± 1 +O(λ−
1
2 )

where the ± sign depending on whether the sign of gradient flow tree Γ obtained by com-
paring voleo,vr ∧ ∗ volq0k with volM as described in Definition 2.9.

As a conclusion, we have proven that∫
M
mk,T (λ)(φ(k−1)k, . . . , φ01) ∧ ∗e

−2λf0kφ0k

‖e−λf0kφ0k‖2
=

d∑
i=1

(−1)χ(Γi) +O(λ−
1
2 )

and hence Theorem 2.11.
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