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The Kaluza-Klein compactification process is applied in five dimensions to Chern Simons gravity,
for the anti-de Sitter and Poincaré groups, using the first order formalism. In this context some
solutions are found and analyzed. Also, the conserved charges associated to the solutions are
computed.
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I. INTRODUCTION

The Kaluza-Klein construction [1, 2] showed that four
dimensional interactions could be understood as manifes-
tations of an underlying higher dimensional gravity. In
five dimensions the gravitational theory is defined over a
manifold M5, with the topology ofM5 = M4×S1 where
M4 is a four dimensional manifold. This construction ac-
tually corresponds to study the gravity of a fiber bundle
[3] where S1 and M4 are the fiber and the base space
respectively.
The geometry of M5 motivates the introduction of a

coordinate system (xµ, ϕ), with xµ the coordinates on
M4 and ϕ ∈ [0, 2π[ in order to describe the S1. In prin-
ciple, one should introduce a Fourier expansion in ϕ for
every field on M5, however only the lowest order will be
considered here. With these coordinates the line element
at lower order in the fifth dimension reads

ds25 =
(

gµν(x) + Φ(x)2Aµ(x)Aν (x)
)

dxµdxν

+ 2Φ(x)2Aµ(x)dx
µdϕ+Φ(x)2dϕ2, (1)

Aµ(x) is identified with an electromagnetic field potential
and Φ(x) with a scalar field on M4.
On the other hand, the introduction of fermions into

gravity drags the need of extending the metric gravity
making manifest the presence of a local Lorentz group in
the tangent space [4]. To achieve this one needs to in-
troduce an orthonormal basis ẽA, usually called vielbein,
and a connection for the local Lorentz group, ω̃AB, called
spin connection. If the spin connection is considered an
independent field then a reformulation of gravity, called
first order gravity, arises. This formulation has proven to
be worthy on its own, beyond the presence of fermions.
In this work some aspects of compactification of first

order gravity are addressed. In particular some solutions
are shown as well as their analysis. Compactification
of a first order theory of gravity differs from metric for-
malism and allows to visualize some aspects which are
usually ignored, for instance, the presence of torsion in

M4. Given that Einstein theory has been well studied
within Kaluza-Klein construction this work concentrate
mostly on Chern Simons (CS) gravities.

II. GRAVITY AND COMPACTIFICATION

To begin with the discussion, the five dimensional case,
shown in Eq.(1), will be reanalyzed in the context of first
order gravity. To obtain the metric (1) one can choose
general fünfbein ẽA, with A = 0 . . . 3, 5,

ẽa = ea(x) and ẽ5 = Φ(x)(A(x) + e5) (2)

with latin index a = 0 . . . 3, Φ(x) is a scalar field, A(x) is
a 1-form on M4 and e5 = dϕ.
To introduce a connection compatible with the viel-

bein above one have to consider that ξ = ∂ϕ is a
Killing vector for Eq.(1). A Killing vector generates a
Lorentz transformation with parameters ∆AB = Iξω̃

AB−
ẼAM ẼBN (∇MξN ), however in this case, see Eq.(2),
∆AB(ξ) = 0. Using this result, the most general con-
nection compatible with Eq. (1) is given by

ω̃ab = ωab(x)+ψab(x)e5 and ωa5 = va(x)+pa(x)e5, (3)

where ψab(x) and pa(x) are scalars and ωab(x) and va(x)
are a one-form respectively on M4.
The vielbein (2) and the connection (3) determine the

curvature R̃AB = dω̃AB + ω̃A
C ω̃

CB, obtaining

R̃ab = (Rab − vavb) + (D(ψab) + pavb − pbva)e5,

R̃a5 = D(va) + (Dpa − ψa
be

b)e5, (4)

and the torsion two-form T̃A = dẽA + ω̃A
B ẽ

B

T̃ a = (T a − ΦvaA)− (ψa
be

b −AΦpa + vaΦ)e5,

T̃ 5 = (d(ΦA) − vce
c) + (dΦ + pce

c)e5. (5)
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III. DEFINITIONS OF CHARGES

Because the Kaluza-Klein construction is a very par-
ticular geometry, one can address part of the analysis of
charges on a general ground without considering a par-
ticular theory of gravity.
The form of the Lagrangian,

L5 = (L4(x) + dB3(x)) ∧ dϕ (6)

guaranties that the Noether charges obtained in five
dimensions from L5 are connected with the Noether
charges in four dimensions from L4 + dB3 by

Q =

∫

∂Σ3×S1

∗J5 ≡ 2π

∫

∂Σ3

∗J4, (7)

where Σ3 represents a family of space-like surfaces that
foliates M4. In this way the effective action in four di-
mensions contains all the physics of five dimensions. Af-
ter this remark it becomes straight to obtain the mass or
the angular momenta of any solution of this theory as the
Noether charges associated with Killing vectors on M4.
Recalling that by construction ξ = ∂ϕ is a Killing vec-

tor, the analysis above can be extended to obtain the
electric charge. In any electromagnetic theory, the elec-
tric charge can be obtained as the Noether charge associ-
ated with the gauge transformations, Q(λ), whose gauge
parameters, say λ(x), can be smeared out at infinity, in
this case at ∂Σ3. Thus the electric charge is given by

q̃ =

(

1

λ0
Q(λ)

)

∂Σ3

(8)

with λ(x)|∂Σ3
= λ0. On the other hand, The Kaluza-

Klein construction Eqs.(2,3) is invariant under the trans-
formation,

ϕ → ϕ+ λ(x) (9)

A(x) → A(x) + dλ(x),

where one recognizes a gauge transformation of A. By
noticing that the subset of gauge transformations useful
for Eq.(8) coincides with the transformation generated
by ξ = ∂ϕ, one finally obtains

q4 =

∫

∂Σ3×S1

∗J5(ξ). (10)

IV. EINSTEIN GRAVITY

The five dimensional (first order) Einstein Hilbert
(EH) action reads

IEH = κG

∫

M5

R̃AB ẽC ẽDẽF εABCDF . (11)

It yields the equations of motion

EF = R̃AB ẽC ẽDẽF εABCDF = 0,

T̃A = 0 (12)

It must be stressed that in first order gravity the vanish-
ing of torsion is a consequence of the equations of motion.
The vanishing of torsion, T̃A = 0, by Eq. (5) deter-

mines that

va = −Eaµ

(

1

2
ΦFµνdx

ν + ∂µΦA

)

, (13)

pa = −E µ
a ∂µΦ and ψab = −1

2
E µ

a E ν
b Fµν , (14)

with Fµν = ∂µAν − ∂νAµ. This last equation identifies
A with a field potential.
Remarkably the four dimensional torsion (see Eq.(5))

not only does not vanish, but it actually reads

T a = ΦAva ⇔ Kab = ΦF abA, (15)

where Kab is the contorsion one form.
In metric formalism one can skip the presence of tor-

sion because it can be completely understood in terms of
an electromagnetic field, see Eq.(15). This feature is not
surprising, in fact it is well established that under some
particular conditions, as those given here, a torsion ten-
sor can be rewritten as an effective electric field, although
this have been proven to be false in general [5].

Φ can not be constant

After the replacement of conditions (13) and (14) -

obtained from T̃A = 0- into the action (11) it becomes

IEH = κG

∫

M4×S1

Φ

(

R+
1

4
Φ2FµνF

µν

)√
gdϕd4x,

(16)
where R is the standard four dimensional Ricci scalar.
Since this five dimensional action (16) is independent of
ϕ one can integrate it out obtaining the effective action

Ieff = 2πκG

∫

M4

Φ

(

R+
1

4
Φ2FµνF

µν

)√
g d4x. (17)

It must be stressed that the equations of motion obtained
from this action reproduce the Einstein equations (12)
after using the ansatz (2) and (3).
Observing the final expression (17) one could consider

to take Φ constant, and so to obtain the standard Ein-
stein Maxwell theory. However this breaks the equiva-
lence between five and four dimensions, since a constant
Φ, through Gϕ

ϕ = 0, implies Fµν = 0, yielding a trivial
result.

V. BEYOND EINSTEIN

In higher dimensions the premise of second order equa-
tion of motion for the metric does not restrict the action
to EH. One the simplest extension gives rise to Lovelock
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gravities [6, 7, 8]. Furthermore in odd dimensions there
are subfamilies of Lovelock gravities which coincide with
CS gravities and so non vanishing torsion solutions [9]
exists. Unfortunately only a few non vanishing torsion
solutions are known [10, 11] at present time. It is worth
to stress that CS gravities are genuine gauge theories for
(A)dS and Poincaré groups respectively.
The Poincaré CS action in five dimensions [12] is the

so called Gauss Bonnett term and reads

Ip = κG

∫

M5

R̃ABR̃CDẽF εABCDF + dB4, (18)

where B4(x) is boundary term to be fixed later. Its

equations of motion are R̃ABR̃CDεABCDF = 0 and
R̃ABT̃CεABCDF = 0.

Effective theory

Using the Kaluza-Klein ansatz in the five dimensional
action (18) together with the vanishing of torsion one
can compute an effective four dimensional action starting
from Eq.(18). The effective action reads

Ieff = 2πκG

∫

M4

Φ
(

ΩabΩcd + 4ρaτbced + 4σaΩbced
)

εabcd

(19)
where

Ωab = R̂ab − 1

2
Φ2F abF − 1

4
Φ2F a

cF
b
de

ced

τab = −1

2
D̂(Φ2F ab) +

1

2
dΦF ab + ∂[aΦF b]

ce
c

ρa =
1

2
D̂(ΦF a

b)e
b + ∂aΦF

σa =
D̂(∂aΦ)

Φ
+

1

4
Φ2F a

cF
c
de

d (20)

The ’̂s on the derivative indicates that they are torsion-
less derivatives on four dimensions, i.e., the contorsion
Kab has been explicitly separated in the equations above.
The equations of motion, written in terms of the ef-

fective fields displayed above, Eqs.(20), are cumbersome,
thus we chose not to write them down. The action (19)
reproduces the five dimensional CS equations of motion.
It is straightforward to prove that a constant Φ, just as
before, implies the vanishing of Fµν .

VI. SOLUTION

In this section some solutions of CS gravities in five
dimensions will be discussed. A solution of the Poincaré
CS gravity with spherical symmetry in four dimensions
is given by

e0 = N(r)dt, e1 =
1

g(r)
dr,

e2 = rdθ, e3 = r sin(θ)dφ, (21)

Φ = Φ(r), A = a(r)dt,

where

Φ(r) = c1r ±
√

c21r
2 + c2r + c3 +

c2

2c1
,

N(r) = g(r) =

√

1− 8q2c31
(c22 − 4c21c3)

(

dΦ

dr

)−1

,

a(r) =
q

Φ2
. (22)

In this solution one can recognize four arbitrary inte-
gration constants, which occurs because CS gravity has
non linear equations of motion.

A. Analysis

The analysis of the four dimensional metric is best car-
ried out using the variable R = r + c2

2c2
1

. So the metric is

written

ds24 = −N(R)2dt2+
1

N(R)2
dR2+

(

R− c2

2c21

)2

dΩ2 (23)

Φ(R) = c1

(

R + sgn(c1)
√

R2 + κ
)

,

N(R) =

√

1 +
2q2

c1κ

(

dΦ

dR

)−1

,

a(R) =
q

Φ(R)2
(24)

with

κ =
4c21c3 − c22

4c41

The values κ < 0 and c2 > 0 lead to naked singular-
ities or a metric with the wrong signature everywhere,
therefore they are dismissed from the physical spectrum.
The case with c1 < 0, κ < 0 and c2 = 0 deserves some
attention and will be analyzed in a subsequent section.
The case κ > 0, c1 > 0 and c2 = 0 leads to a solution

which is regular everywhere and is asymptotically flat,
i.e.,

lim
r→∞

R
µν
αβ = 0, (25)

in four and five dimensions. This solution may be re-
garded as a soliton. Because of its regularity this case
will analyzed in detail.

B. The definitions of charges

After realizing that the action (18) is a CS action for
the Poincaré group, one can skip the long process of re-
obtaining the Noether charges. The Noether currents
associated with the Killing vectors of a CS theory have
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been discussed in Ref.[13]. In five dimensions it is given
by

∗ J5(η) = 6 d

(
∫ 1

0

dt〈(A1 −A0)FtIηAt〉
)

, (26)

where η is a Killing vector. Ft = dAt + At ∧ At with
At = tA1 + (1− t)A0. 〈〉 is the trace in the group. Here
A0 and A1 are connections in the same fiber having the
generic form

A =
1

2
ω̃ABJAB + ẽAPA, (27)

PA and JAB are the generators of the Poincaré group.
The charges are computed using the background A0. It
is worth to stress that background independent methods
exists to calculate Noether charges for the CS-AdS grav-
ity [13, 14] but they could not be trivially adapted to
the Poincaré case. The definition of A0 as a flat connec-
tion, determines B4 in Eq.(18). In this way the Noether
charges are given by

Q(η) =

∫

∂Σ×S1

∗J5(η). (28)

The charges of the above solution are associated with
the Killing vectors ζ = ∂t and ∂ϕ respectively. On the
other hand A0 will be fixed as the flat connection ob-
tained from the geometry,

ds2bg = −dt2 + dr2 + r2(dθ2 + sin(θ)2dφ2) + dϕ2,

which is a five dimensional Minkowski space with one of
its direction wrapped up.

C. Mass and electric charge

The mass can be obtained from the five dimensional
Noether charge by Eq.(7) associated with the Killing vec-
tor ζ using Eq.(28). To compute the Noether charge of
the five dimensional CS theory is formally simpler than
the analysis in four dimensions where the effective the-
ory, Eq. (19), is not purely gravitational but it contains
matter. For the case κ > 0, c1 > 0 and c2 = 0 the mass
is given by

M = Q(ζ) = 8π2κGc1

√

1 +
q2

c21κ

(

q2

c21κ

+ 4

(
√

1 +
q2

c21κ

(

1 +
9q2

4c21κ

)

− 1

))

.(29)

One can check that this mass is positive. Because the
mass vanishes for q = 0 this solution can be cast as a pure
electromagnetic solution, where the mass M represents
the mass of the electromagnetic field. This conjecture

seems to be confirmed by the asymptotic behavior of this
solution, where

N(r)2 ≈ 1 +
Q2

r2
+ . . .

reproducing the case m = 0 and Q 6= 0 in the Reissner-
Nordstrøm solution. One may speculate that another
solution, one that asymptotically behaves as RN solution
with m 6= 0, should exist. Unfortunately the equations
of motion obtained from the action (19) do not allow an
obvious extension of the solution above (21) to confirm
this conjeture.
In a similar way, the electric charge can be obtained

using Eq.(10), where in this case the current to be inte-
grated is given by Eq.(26). After a straightforward com-
putation the electric charge is given by

q̃ = Q(ξ) = −96π2κGq
3

c1κ
. (30)

VII. ADS IN FOUR

As previously noticed, the c1 < 0 case requires a deeper
analysis. In this case the function f(R)2 diverges at R →
∞ as

f(R)2 ∼ 1 +
3q2

c21κ
+

4q2

c21κ
2
R2 (31)

giving rise to an effective cosmological constant in four
dimensions.
For κ > 0 the solution is regular everywhere and there

is no horizon. The solution with κ < 0 has a singularity
at R =

√
−κ as well as an horizon at

r+ =
c21κ+ 2q2

|q|

√

−κ
c21κ+ q2

(32)

for the range − q2

c2
1

< κ < 0.

For all values of κ this solution has the same electric
charge of the c1 > 0 case, see Eq.(30).
Unfortunately, the mass Q(ζ), diverges and further-

more it may not be possible to find out a background
which can subtracts these divergences. Even though such
a background may exists still this would be odd, since for
a theory invariant under the Poincaré group only a flat
space can represent a proper background. Maybe a back-
ground independent method to calculate the mass would
give a finite one [15].
Given these considerations, the c1 < 0 case must be ex-

cluded from the physical spectrum in the solution above.

VIII. CONES

Poincaré CS gravity restricted to a vanishing torsion
solutions is known to have solutions with conical singu-
larities. In a certain way this a generalization of what
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is well known to happen in 2+1 dimensions where the
existence of black holes is only possible with a negative
cosmological constant. This feature is shown by the fa-
mous BTZ solution whose Λ → 0 limit yields a cone.
For that reason the analysis of conical solutions in this
Poincaré CS-KK model can be of interest.
One of those solutions is given by the same ansatz (21)

with N(r) = α, g(r) = β, a(r) = a0 and Φ(r) arbitrary.
This solution represents a scalar field, Φ, defined over a
manifold with a conical singularity.
The arbitrariness of a field is not new for the CS grav-

ity, and although it may seem odd it is a natural con-
sequence of a higher power differential operator. In fact
one must note that α and β are also arbitrary.
The arbitrariness of the scalar field can be fixed by

requiring that the solution has a physical meaning. To
fulfill this requirement Φ must be smooth near r = 0 and
the mass associated to this solution be a finite one.
As expected the electric charge vanishes in this case

since a = a0. The mass, M = Q(ζ), is given by

M = 4π2κG
dΦ(r)

dr
β(β− 1) (5 + 7α+ 3β(1 + 3α)) , (33)

which is finite provided

lim
r→∞

Φ(r) ≈ cpr + cq +O

(

1

r

)

,

with cp and cq constants.
This result constraints the arbitrariness of Φ.
Comparing the above result Eq.(33) with the previous

solution Eq.(22) one finds that β = 1 is equivalent to
q = 0. That both solutions above share a sub-sector it
probably indicates that there is a more general solution
that includes both as particular cases.

IX. ADS IN FIVE

The introduction of a cosmological constant, Λ 6= 0,
into a compactification procedure is not straightforward.
First, one has to consider that if a natural ground state
for Λ = 0 is a flat space with a non vanishing cosmological
constant the ground state is expected to be a constant
curvature manifold. An ansatz of the form AdS4 × S1

don’t fulfill this condition. Roughly speaking, this im-
plies that the fifth dimension in Eq.(1) needs a warp fac-
tor, represented by a non constant Φ, even for the ground
state.
The description of a fiber bundle by a constant cur-

vature manifold can be difficult. One needs to isolate a
cycle in M5 which can be identified with the fiber. Fortu-
nately for the case of negative curvature manifolds there
are a plethora of known spaces obtained as identifications
of AdS which have a cycle by construction.
The extension of Einstein gravity with a negative cos-

mological constant is direct. For this reason only the AdS

CS gravity will be discussed. This gravity is given by

Ip = κG

∫

M5

(

R̃ABR̃CDẽF +
2

3l2
R̃AB ẽC ẽDẽF

+
1

5l4
ẽA . . . ẽF

)

εABCDF + dB4, (34)

whereB4 is a boundary term to be defined later. The cor-

responding equations of motion are ¯̃
RAB ¯̃

RCDεABCDF =

0 and ¯̃
RABT̃CεABCDF = 0, where

¯̃
RAB = R̃AB +

1

l2
ēAēB.

The negative cosmological constant is given by Λ =
−6 l−2. Black hole solutions for AdS CS theory can be
found in [16].

A solution

For simplicity one can consider to turn off the elec-
tromagnetic field as a first approximation. In this case,
to be consistent with the fiber bundle geometry, M5 =
M4×S1, the spherical transverse section in (21) must be
replaced by a flat transverse section. After considering
this simplification a solution is given by

Φ(r) = C1

(
√

3γ + 3
r2

l2
− r

l

)

,

g(r) =

√

γ +
r2

l2

N(r) = C1

(
√

3γ + 3
r2

l2
− r

l

)

a(r) = A0

ẽ2 = rdθ (35)

ẽ3 = rdφ.

This solution has an horizon at

r+ = l

√

−3

2
γ

provided that γ < 0. This solution has no meaning
for r < r+ (N(r) becomes complex). The inner region
(r < r+) must be described by another chart. There is
also a curvature singularity at r = r+ but this is not a
problem because this is a light-like surface thus there is
no outgoing radiation. This solution, choosing A0 = 0
and γ = 0, corresponds to the wormhole found in [18]
with a Ricci flat base manifold.
The temperature of the four dimensional induced so-
lution vanishes. Finally, as expected, this solution is
asymptotically locally AdS, i.e.,

lim
r→∞

R
µν
αβ = − 1

l2
δ
µν
αβ . (36)
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The charges associated with this solution can be com-
puted by using Eq.(26), in this case, for the AdS group.
The background in this case corresponds to a locally AdS
space. For simplicity it is considered the space described
by the following metric

g(r) =
r

l
N(r) = C1

(√
3− 1

) r

l

a(r) = A0, Φ(r) = C1

(√
3− 1

) r

l
. (37)

The presence of C1 is only a matter of convention. It
avoids dealing with the

(√
3− 1

)

coefficient.
As expected the electric charge, Q(ξ), vanishes in this

case, since the field potential is constant. On the other
hand the mass Q(ζ), is given by

M = −6
√
3πκG

γ2C2
1

l2
V2, (38)

where V2 is the volume of the spatial transverse section
described by (θ, φ).

X. CONCLUSIONS AND PROSPECTS

In this work the procedure of compactification is re-
viewed within the context of first order gravity. The
manifest presence of four dimensional torsion, disguised
as an electric field, was well established by Einstein him-
self, but in first order gravity it becomes transparent.
Unfortunately CS gravities possess a complex phase

space, therefore many interesting solutions that one could
expect to exist are not obvious. In this article some indi-
rect evidence of the existence of a solution with asymp-
totically Reissner-Nordstrøm behavior have been found.

This is very promising since this probably indicates that
CS gravity, a truly gauge theory, reproduces Einstein
gravity at long distances in four dimensions.

The introduction of a negative cosmological constant
was also analyzed. The results in this case are far more
complex to analyze. For simplicity the solution is con-
structed as perturbation over a well known ground space
[17], which induces a flat transverse section in four di-
mensions. The solution displayed is an extremal black
hole whose mass can be negative for a certain range of
the parameters. The existence of negative mass solutions
is related with the presence of a negative cosmological
constant, and can not be obviously ruled out. As for
Λ = 0 its extension to the non extremal case is not obvi-
ous mainly because of the non linearity of the equations
of motion.

Torsion introduces some new degrees of freedom which
has been ignored in this work, however this is a very
interesting direction to continue with this investigation.
The research for non vanishing torsion solutions into CS
gravities has proven to be a hard task. There is, how-
ever, direct evidence [11] that a non vanishing torsion
could give room to reproduce standard solutions within
CS gravity, in this case standard four dimensional solu-
tions.

Acknowledgments

R.A. would like to thank Abdus Salam International
Centre for Theoretical Physics (ICTP) for its support.
We also thanks professors R. Troncoso, R. Olea and J.
Oliva for valuable comments. This work was partially
funded by grants FONDECYT 1040202 and DI 06-04.
(UNAB).

[1] T. Kaluza, On the problem of unity in physics,
Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys. )
1921 (1921) 966–972.

[2] O. Klein, Quantum theory and five-dimensional theory
of relativity, Z. Phys. 37 (1926) 895–906.

[3] C.-M. Y.Choquet-Brumat and M.Dillard-Bleick,
Analysis, Manifolds and Physics. Noth-Holland.

[4] P. V. Nieuwenhuizen, Supergravity, Phys. Rept. 68
(1981) 189–398.

[5] D. C. Chern, On the parallel transport of tetrad in a
riemann-cartan spacetime, Chinese Journal of Physics
19 (1981), no. 2 45–47.

[6] D. Lovelock, The einstein tensor and its generalizations,
J. Math. Phys. 12 (1971) 498–501.

[7] B. Zumino, Gravity theories in more than
four-dimensions, Phys. Rept. 137 (1986) 109.

[8] J. Zanelli, (super)-gravities beyond 4 dimensions,
hep-th/0206169.

[9] A. H. Chamseddine, Topological gauge theory of gravity
in five-dimensions and all odd dimensions, Phys. Lett.

B 233 (1989) 291.
[10] M. Banados, Charged solutions in 5d chern-simons

supergravity, Phys. Rev. D65 (2002) 044014,
hep-th/0109031.

[11] R. Aros and M. Contreras, Torsion induces gravity,
gr-qc/0601135.

[12] M. Banados, R. Troncoso, and J. Zanelli, Higher
dimensional chern-simons supergravity, Phys. Rev. D
54 (1996) 2605–2611, [gr-qc/9601003].

[13] P. Mora, R. Olea, R. Troncoso, and J. Zanelli,
Transgression forms and extensions of chern-simons
gauge theories, JHEP 02 (2006) 067, hep-th/0601081.

[14] P. Mora, R. Olea, R. Troncoso and J. Zanelli, Finite
action principle for Chern-Simons AdS gravity, JHEP
0406 (2004) 036, hep-th/0405267.

[15] Private communication with Professor R. Troncoso.
[16] M. Banados, C. Teitelboim, and J. Zanelli,

Dimensionally continued black holes, Phys. Rev. D 49

(1994) 975–986, gr-qc/9307033.
[17] R. Aros, C. Martinez, R. Troncoso, and J. Zanelli,

http://xxx.lanl.gov/abs/http://arXiv.org/abs/hep-th/0206169
http://xxx.lanl.gov/abs/http://arXiv.org/abs/hep-th/0109031
http://xxx.lanl.gov/abs/gr-qc/0601135
http://xxx.lanl.gov/abs/gr-qc/9601003
http://xxx.lanl.gov/abs/hep-th/0601081
http://xxx.lanl.gov/abs/hep-th/0405267
http://xxx.lanl.gov/abs/gr-qc/9307033


7

Supersymmetry of gravitational ground states, JHEP 05

(2002) 020, hep-th/0204029.
[18] G. Dotti, J. Oliva and R. Troncoso, Static wormhole

solution for higher-dimensional gravity in vacuum,
Phys. Rev. D 75 (2007) 024002, hep-th/0607062.

http://xxx.lanl.gov/abs/http://arXiv.org/abs/hep-th/0204029
http://xxx.lanl.gov/abs/http://arXiv.org/abs/hep-th/0607062

