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The non-trivial 3d part of the Gödel spacetime can be recognized as a timelike (or

elliptic) deformation of anti-de Sitter spacetime [1]. The minimal setting to describe the

Gödel universe as a solution of an action consists in 3d Einstein gravity coupled either

to matter fields [2] or to a gravitational Chern-Simons term [3]. Interestingly, the 3d

Gödel spacetime can be embedded in string theory as an exact marginal deformation of

the SL(2,R) WZW model [4]. Tachyons destabilizing the background are found in the

spectrum of long strings and thus leads to a stringy clue to the chronology protection

conjecture [5]. Various regularization of the geometry were proposed, see e.g. [6, 4, 7] and

references therein.

It is intriguing that this instability occurs even though the 3d Gödel universe enjoys

supersymmetry as originally found in its five dimensional cousins [8]. More precisely, Killing

spinors can be found in the N = 2 extension of Einstein-Maxwell-Chern-Simons theory but

not in the N = 1 extension [9]. Also, it was shown that in heterotic string theory, the 3d

Gödel universe breaks all supersymmetry but preserve one half of it in type IIB [4].

In this work we would like to understand how these properties generalize to Gödel

black holes. The generalization is not entirely trivial because, as shown in [2], black holes

are defined via periodic identifications on another background than the Gödel universe,

namely what is called equivalently the tachyonic Gödel background in [2], the hyperbolic

deformation of anti-de Sitter space in [10] or the spacelike warped anti-de Sitter in [3]. This

spacetime contains no closed time-like curves as observed in [11] and is thus expected to

lead to a tachyon-free string spectrum [10]. Therefore, the conclusions of [4] reached for the

elliptic deformation are not directly applicable to the Gödel black holes. Also, in the work

of [9], the extremal Gödel black holes were not found as supersymmetric solutions which

is in contrast to the extremal BTZ limit where supersymmetric extensions are known [12].

Because of the discrete identifications, Gödel black holes contain closed time-like curves

in the asymptotic region. We thus still expect to find an instability in the string spectrum.

Nevertheless, in the causally safe region close to the horizon, standard thermodynamics

holds once the correct conserved charges have been identified. One can ask also if regardless

of the causal pathologies, black hole entropy can be microscopically computed as for the

BTZ [13]. In fact, Gödel geometries admit in general an asymptotic symmetry algebra
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containing one copy of the Virasoro algebra [14]. When the spacetime is supported by

Maxwell-Chern-Simons fields, the central charge turns out to be negative.

We will first show in section 2 how Gödel black holes describe exact string backgrounds

via deformations of the sl(2,R) WZW model. We will make contact between previous work

[2, 10] and the recently discussed warped geometries [3]. The spectrum of strings containing

tachyons will be described. In section 3, we will uplift the Gödel black holes to 10d solutions

of type IIB supergravity and discuss supersymmetry. The extremal Gödel black holes will

be shown to admit one 3d Killing spinor. We conclude with some remarks on black hole

entropy in the last paragraph.

1. Gödel black holes as a marginal deformation

1.1 Asymmetric marginal deformations of the SL(2,R) WZW model

Let us start with a SL(2,R) WZW model at level k with action SWZW and sl(2,R)-valued

currents J(z) = Jb(z) Tb, J̄(z̄) = J̄b(z) Tb, describing string theory on a target space whose

fields are the AdS3 metric and a given NS-NS 2-form. Let us take the conventions of [3]

and denote (J0
0 , J

1
0 , J

2
0 ) (resp. (J̃

0
0 , J̃

1
0 , J̃

2
0 )) the zero modes of Ja(z) (resp. J̄a(z̄)) satisfying

[J1
0 , J

2
0 ] = 2J0

0 , [J0
0 , J

1
0 ] = −2J2

0 and [J0
0 , J

2
0 ] = 2J1

0 . (1.1)

This background is an exact string theory one, sinceWZWmodels represent two-dimensional

worldsheet CFTs. An interesting feature of WZW models is that they allow for integrable

marginal deformations, which allows to reach a wide variety of new exact backgrounds.

The deformation is usually written as

Sδλ = SWZW + δλ

∫

d2z O(z, z), (1.2)

where δλ is a parameter being switched on continuously. A necessary condition for the

operator O(z, z) to be exactly marginal is obviously that it is marginal, i.e. of conformal

weights (1, 1). In WZW models, such operators are naturally present, and appear to be

truly marginal under additional conditions [15]. For our purposes, we will be interested in

a particular type of deformation, named asymmetric deformation, see e.g. [11, 10]. Such

deformations are possible if one considers a N = 1 supersymmetric extension of the WZW

model (for a short review, see appendix C of [10]) . In the case of sl(2,R), one adds 3 left-

moving free fermions transforming in the adjoint representation of sl(2,R), while leaving

the right-moving sector unchanged. However, a right-moving current algebra with total

central charge c = 16 has to be added representing the internal (compactified) bosons. As

a result, we end up with a left-moving N = 1 current algebra and a right-moving N = 0

one (for details, see [16, 11, 17]). We consider the following deformation operator

O(z, z) = (Ja(z)− i

2
ǫabcψb(z)ψc(z))Īi(z) , (1.3)

where Ja(z) is a left-moving generator of sl(2,R), ψa are the 3 left-moving worldsheet

fermions and Īi(z) is an arbitrary right-moving current belonging to the Cartan subalgebra
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of the heterotic gauge group. These are normalized as

Īi(z)Īj(w) ∼ kGh
ij

2(z − w)2
, i, j = 1, · · · , rank (gauge group), (1.4)

with hij = f ikl f
lj
k/g

∗, f ikl and g∗ being the structure constants and dual Coxeter numbers

of the heterotic gauge group. It can be shown that these operators are truly marginal [15].

The background fields resulting from integrating the infinitesimal asymmetric deformation

(1.2)-(1.3) to a finite one with parameter h is written as [18, 19, 11, 16, 20]

gµν = g̊µν − 2h2Ja
µJ

a
ν no sum , (1.5)

Bµν = B̊µν , (1.6)

Aµ = h

√

2k

kG
Ja
µ , (1.7)

where g̊µν and B̊µν are the initial anti-de Sitter background fields and Ja = Ja
µdx

µ, J̄a =

J̄a
µdx

µ. It is worth noting that these background fields are exact to all orders in α′,

contrarily to what happens e.g. for the symmetric deformations (see [21] for a pedagogical

review). The deformation preserves a U(1)×SL(2,R)R isometry of the original SL(2,R)L×
SL(2,R)R isometry of AdS3.

We emphasize on the fact that although this construction is intrinsically heterotic

due to the presence of the gauge field, the same background can be obtained in type

II superstrings via a Kaluza-Klein reduction. In that case, the current Īi(z) belongs to

an internal compact U(1) instead, and the gauge field is produced in the dimensional

reduction procedure [11]. On the other hand, since the asymmetric deformations have

constant dilaton, we might expect them to be mapped by S-duality to type IIA solutions,

where in this case the geometries will be supplemented by RR fields (although we won’t

consider these possibilities here) [21].

1.2 Gödel black holes as orbifolded hyperbolic deformations

The asymmetric deformations can be classified according to the nature of the current con-

sidered in the deformation (1.3). Deformations driven by a time-like (J3), space-like (J2)

or light-like (J1+J3) generator will be termed elliptic, hyperbolic or parabolic respectively.

The metric of an hyperbolic asymmetric deformation of the SL(2,R) WZW can be written

as [20, 10]

ds2 =
k

4

[

−dτ2 + du2 + dσ2 + 2 sinhσdudτ − 2h2(du+ sinhσdτ)2
]

(1.8)

For h = 0, this is simply AdS3 space, where for {τ, u, σ} ∈ R3 these coordinates cover the

whole space exactly once.

This geometry has been recently mentioned as a solution of topologically massive

gravity, see eq. (3.3) of [3]. The relation with their parameters (l̂, ν̂) is

h
2 =

3(1− ν̂2)

2(3 + ν̂2)
, k =

4l̂2

3 + ν̂2
(1.9)
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Therefore, the deformed anti-de Sitter metric for ν̂2 > 1 (stretched AdS3 in the terminology

of [3]), yielding regular black holes upon identifications can only be regarded as an exact

string background if the deformation parameter, and consequently the U(1) field, become

imaginary. As we look only for real solutions of the WZW model, we will discard such

solutions. On the other hand, the metric for real h, corresponding to ν̂2 < 1 (squashed

AdS3) is the tachyonic Gödel background discussed in [2, 14] and lead after identifications

to the Gödel black holes [2, 14] which we write for convenience as

ds2Gödel BH =
dr2

f(r)
+ (1− 2h2)(dT −mrdφ)2 − f(r)dφ2 (1.10)

where f(r) = m2r2 + c1r + c2. Contact is made with [2], eq. (31) via the substitution

m2 = 2

(

1 + α2l2

l2

)

, h
2 =

1− α2l2

2(1 + α2l2)
, c1 = −8Gν, c2 =

4GJ

α
(1.11)

and T = m
2αt. In order to show that (1.10) is indeed obtained by performing discrete

identifications on the metric (1.8), we first remark that (1.10) is exactly the metric (4.1)

of [3] with the following substitution ((hatted quantities) are the ones of [3]):

ν̂2 =
3α2l2

2 + α2l2
, l̂2 =

3l2

2 + α2l2
, (1.12)

ν =
−3(1 + α2l2)

8αlG(2 + α2l2)

(

αl(r̂+ + r̂−)−
√

2(1 + α2l2)r̂+r̂−

)

, (1.13)

J =
9
√

2r̂+r̂−(1 + α2l2)

32αG(2 + α2l2)2

(

(1 + 3α2l2)
√

2r̂+r̂− − 2αl
√

1 + α2l2(r̂+ + r̂−)
)

. (1.14)

and the change of coordinates t = l̂t̂, r = −2α
ν̂l̂
r̂ + 1

2ν̂

√

r̂+r̂−(ν̂2 + 3), φ = φ̂. The region

of parameter space where closed timelike curves appear ν̂2 < 1 is exactly the black hole

sector of [2] with α2l2 < 1. We can then use the change of coordinates (5.3)-(5.5) of [3]

also valid in the parameter range ν̂2 < 1 to show that the metric (1.10) can be written in

a coordinate patch as (1.8). The Killing vector used to perform the identifications is given

by

∂φ =
ν̂2 + 3

8

[(

r̂+ + r̂− −
√

(ν̂2 + 3)r̂+r̂−
ν̂

)

L2 − (r̂+ − r̂−)R2

]

(1.15)

where L2 and R2 are the SL(2,R) Killing vectors associated with the currents J2 and J̄2
respectively (given explicitly e.g. in [3], Appendix A). We note that quotients of (1.8) had

already appeared in [10], but these were not studied further because of the absence of a

causally safe asymptotic region.

For completeness, we provide a list of the real asymmetric deformations of anti-de

Sitter space in Table 1 in order to make a larger contact between the works of [10], [2] and

[3].

In conclusion, we have shown that Gödel black holes supplemented with the appropriate

background fields represent an exact string theory background through an orbifold of an

hyperbolic asymmetric deformation of the sl(2,R) WZW model in complete continuation

with [11]. In particular, it solves the beta function equations to all orders in the inverse

string tension α′ [4, 11].
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Name Deformation Gµν + Λgµν Real

Type ∼ KµKν deformations

Timelike wraped AdS Elliptic K2 = −1 Gödel universe (streched)

Spacelike wraped AdS Hyperbolic K2 = +1 Tachyonic Gödel (squashed)

Null wraped AdS Parabolic K2 = 0 -

Table 1: List of SL(2,R)×U(1) deformations of 3d anti-de Sitter space. In each case, the Einstein

tensor is equal to a cosmological constant term plus a direct product of the U(1) Killing vector K.

Identifications in the Gödel universe lead to conical singularities (Gödel particles) and identifications

in tachyonic Gödel lead to Gödel black holes.

1.3 String spectrum

The power of marginal deformations of WZW models lies in the fact that, besides being

able to read off the deformed background fields, it is in theory also possible to determine

the deformed partition function from the original one (see [21] Chap.3 for a overview and

an extensive list of references). In the case at hand, however, determining the deformed

partition function in a straightforward way would require to decompose the SL(2,R)k
partition function in a hyperbolic basis of characters, which is to date an unsolved problem.

Also, having to deal with the ̂SL(2,R)k current algebra in a basis diagonalizing a non-

compact operator leads to additional technical complications (see [22, 23, 24, 25, 26, 27]

for related discussions in the context of the BTZ black hole). Nevertheless, the spectrum

of heterotic string states in orbifolds of the asymmetric hyperbolic deformations including

the twisted sectors originating from the orbifold procedure [25] have been obtained in [10].

It reads as1

L0 = −j(j − 1)

k
− λ2

k + 2
− k + 2

2k

(

2λ

k + 2
+ ν

)2

+ Ltw
0 +N + hint

L̄0 = −j(j − 1)

k
− λ̄2

k + 2
+ L̄tw

0 + N̄ + h̄int (1.16)

where Ltw
0 and L̄tw

0 are the contributions to the weights of the heterotic SWZW primaries

touched by the deformation and the orbifold:

Ltw
0 =

(

k

2
√
2
w∆− +

1√
k
(µ+ ν) coshx+ ν̄

√

2

kg
sinhx

)2

L̄tw
0 =

(

ν̄

√

2

kg
cosh x+

1√
k
(λ+ ν) sinhx

)2

+

(

k + 2

2
√
2
w∆+ + λ̄

√

2

k + 2

)2

. (1.17)

In these expressions, the deformation parameter h is related to x through cosh x = 1
1−2h2 ,

with x > 0 so to have h2 ≤ 1/2 (see [11]). The SL(2,R) representations are parameterized

by j, which is related to the second Casimir c2 as c2 = −j(j − 1). The spectrum contains

continuous representations with j = 1
2 + is, s ∈ R+, as well as discrete representations with

1Note that in (C.20) and (C.21) of that paper, −j(j + 1) should read −j(j − 1), see [11] (3.17)-(3.18)
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j ∈ R+ lying within the unitarity range 1/2 < j < (k+1)/2, which are related to long and

short string states in the WZW spectrum respectively [28]. The parameters (λ, λ̄) ∈ R2 are

the (continuous) eigenvalues of the corresponding primary field with respect to J2 and J̄2,

ν and ν̄ are the corresponding eigenvalues with respect to iψ1ψ3 and the internal fermions

on the gauge sector considered in the deformation operator (1.3) (ν = n+a/2, ν̄ = n̄+ ā/2

n, n̄ ∈ N, a, ā = 0 for the NS sector and a, ā = 1 for the Ramond one). The oscillator

numbers and contributions from the internal CFT in the left and right-moving sectors are

given by (N,hint) and (N̄ , h̄int) respectively. The winding sectors with winding number

w ∈ Z originate from the orbifold along the Killing vector ∆−L2 +∆+R2 [25, 10].

One may now use these expressions to demonstrate that the spectrum of the orb-

ifolded hyperbolic asymmetric deformation contains tachyonic long strings, along the lines

of [28, 24, 4]. The analysis presented here is very rough and only aims at pointing out the

presence of at least one tachyonic state, as has been done in [4] for the asymmetric elliptic

deformation. First, we note that the inclusion of winding or spectral flowed sectors should

in principle be extended to the fermions of the left-moving SWZW model [29], as well as

on those in the gauge sector [4]. Then, the contributions of the internal CFTs and the

oscillator numbers have to be such that the level matching condition be satisfied. From

this, the energy spectrum E = ∆−λ−∆+λ̄ [24, 22] can be determined from the mass-shell

condition. Considering a state with N = 1/2, n = n̄ = a = ā = 0 and λ = λ̄, the condition

L0 − 1/2 = 0 for a state in a continous representation leads to

E =
(∆− −∆+)

2
√
2 sinh2 x

(

k3/2w∆− cosh x±
√

w2k3∆2
−
− 2(1 + 4hk + 4s2) sinh2 x

)

(1.18)

Therefore, we conclude that for a state sufficiently excited in the internal CFT or with s

large enough, the energy could become imaginary, pointing at an instability of the back-

ground. One could conjecture that the endpoint of the tachyon decay could correspond

to the double-deformation of [10], free of closed time-like curves, obtained by superposing

a symmetric deformation to the asymmetric one, but we won’t expand further in that

direction.

2. Supersymmetry properties

2.1 Embedding in Type II supergravity

Let us consider the consistent truncation of both type II supergravities to fields in the

Neveu-Schwarz sector. The action reads as (see e.g. [30], p.29)

S =
1

16πG10

∫

d10x
√

−ĝ [R̂− 1

2
∂µφ̂∂

µφ̂− 1

12
e−φĤ 2

3 ]. (2.1)

It turns out that the Gödel black holes can be uplifted to solutions of this action. In that

case, the dilaton vanish and the three form and metric are given by

Ĥ3 = m(volS3 + dr ∧ dT ∧ dφ+
√
2hdr ∧ dz ∧ dφ),

d̂s
2
= ds2S3 + ds2

R3 + ds2Gödel BH + (dz +
√
2h(dT −mrdφ))2, (2.2)
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where the metric (1.10) is used.

It is known that in (1,1) 3d supergravity, the non-zero mass extremal BTZ black holes

have only one periodic Killing spinor in the (1,0) or (0,1) representation of the gamma

matrices, depending on the sign of the angular momentum [12]. In the zero-mass vacuum,

these spinors add up and therefore the so-called Ramond vacuum preserve two supersym-

metries.

Let us develop a quick and informal argument in favor of supersymmetry for Gödel

black holes. First, it seems that the analysis of [12] is left unchanged if one analytically

continues to t → it and φ → iφ which indicated that the analytically continued BTZ

admits the same Killing spinors. Now, uplifting to 10 dimensions, one obtains the solution

BTZan.cont. ×S3 ×R4 of type II supergravity where the supersymmetries are also uplifted

and enhanced by the S3 ×R4 factors. It turns out that the solution (2.2) can be obtained

from a change of variables twisting one of the flat direction z with time T . Equivalently,

the Gödel metric can be “untwisted” by adding an extra dimension z with the appropriate

metric. It is only when z is periodically identified that the solution cannot be joined to

BTZan.cont. × S3 × S1 × R3 by a diffeomorphism.

Since the Killing spinors depend only on the radial coordinate r, they are unaffected

by the change of variables twisting one of the flat direction z with time and leading to the

solution (2.2). Compactifying this metric on S3 × T4, one obtains the Gödel black holes

and since the Killing spinors do not depend on the variables of S3×T4, they should appear

as supersymmetries of the Gödel black holes.

However, a subtlety arises which invalidates part of this argument. It turns out that

there is only one extremal BTZ black hole that is related to Gödel black holes in the limit

h → 0. Indeed, when h = 0, the metric ds2Gödel BH |h=0 = ds2an.cont.BTZ reduces to the

double analytic continuation of the BTZ metric

ds2BTZ =
dr2

f(−r) − (dT +mrdφ)2 + f(−r)dφ2 (2.3)

with the continuation T→− iT , φ→− iφ and r → −r. The BTZ metric is written in terms

of the standard asymptotically anti-de Sitter coordinates (tBTZ , rBTZ , φBTZ) [31] as

φBTZ = φ+
2

lAdSc1
T, tBTZ = − 2

c1
T, r2BTZ = −c1r + c2 (2.4)

and the standard parameters are given by

lAdS =
2

m
, MBTZ =

2c2
l2

− c21
4
, JBTZ = −2

c2
lAdS

(2.5)

Now, the extremal BTZ black hole lAdSMBTZ = JBTZ corresponds to c21 = 4c2m
2. How-

ever, the counter-rotating extremal black hole lAdSMBTZ = −JBTZ corresponding to c1 = 0

is not covered by the (T, r, φ) coordinates because the metric is not related by a diffeomor-

phism to the extremal BTZ metric.

Therefore, we expect to find only one Killing spinor for the class of extremal Gödel

black holes c21 = 4c2m
2. We will now show directly that Killing spinors exists by explicitly

solving the Killing spinor equations for the solution (2.2) compactified on S3 × T4.
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2.2 Killing spinor equations

We will follow the notations of [32] throughout. Requiring the variations of the dilatino

and gravitino to vanish and using the simplification trick shown in (7.4) of [33] lead to the

Killing spinor equations

H(3)ABCΓ
ABCη = 0 (2.6)

(

DA +
i

48
H(3)BCDΓ

BCDΓAB−1
C

)

η = 0 (2.7)

C is the complex conjugation operator and the reality matrix satisfies BB∗ = 1, Γ∗

A =

ρBΓAB∗ where ρ = ±1 depends on the representation. We have set the dilaton to zero.

The real parts of the spinor η± = P±η are obtained from the projectors P± = 1
2 (1± iB∗

C)

and obey

H(3)ABCΓ
ABCη± = 0,

(

DA ± 1

48
H(3)BCDΓ

BCDΓA

)

η± = 0. (2.8)

Let us choose the vielbein as

e0 = −
√

f(r)dφ, e1 =
1

√

f(r)
dr,

e2 =
√

1− 2H2(dT −mrdφ), e9 = dz +
√
2H(dT −mrdφ) (2.9)

with ei, i = 3..5 parameterizing the three-sphere and e6, e7, e8 the flat directions. We

choose a spinor of the form ηT 3 ⊗ ηM7
⊗ ǫ0 where ǫ0 is a two component spinor and ηT 3 is a

two component constant spinor which factorize from the equations. We will still denote η

and ΓA as the resulting seven-dimensional spinors and Gamma matrices. The first Killing

equation reads explicitly as

(Γ345 +
√

1− 2h2Γ012 +
√
2hΓ019)η± = 0. (2.10)

The anzatz for the spinor η consists in the following split: η± = ηM4± ⊗ ηS3± where

ηM4± = ǫ± ⊗ ηM2
is a four component spinor depending only on t, r, φ and z and ηS3 is a

spinor on the sphere. We are mainly interested in the part ηM2
of the spinor which captures

the supersymmetry properties of the three-dimensional Gödel subspace. We represent the

Clifford algebra as

Γ0 = iσ3 ⊗ σ1 ⊗ I, Γ1 = σ3 ⊗ σ2 ⊗ I,

Γ2 = σ1 ⊗ I⊗ I, Γ9 = σ2 ⊗ I⊗ I, (2.11)

Γ3 = εσ3 ⊗ σ3 ⊗ σ1, Γ4 = εσ3 ⊗ σ3 ⊗ σ2, Γ5 = εσ3 ⊗ σ3 ⊗ σ3, (2.12)

where, for completeness, we allowed for two inequivalent representations: ε = ±1. The

four first matrices form a representation for the 4 dimensional subspace (0129) of interest.

Now, the matrix Γ345 = −iεΓ∗⊗I is proportional to the chirality matrix Γ∗ = −σ3⊗σ3
in the space (0129). Therefore, the first Killing equation reduces to

(

εI +
√

1− 2H2σ2 −
√
2Hσ1

)

ǫ± = 0, (2.13)
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which is a chirality condition on ǫ± for arbitrary H.

Using {Γi,Γabc} = 0 and {Γi,Γ345} = 2i for a, b, c ∈ 0, 1, 2, 9, it is straightforward to

write the components on the sphere of the second Killing equation (2.8) as the usual Killing

spinor equation on the sphere for ηS3 . The remaining components can be written as

(

Da ±
m

8
{Γa,

√

1− 2H2Γ012 +
√
2HΓ019}

)

η± = 0. (2.14)

Using {Γa,Γ
012} = 2iΓ∗Γa9, {Γa,Γ

019} = −2iΓ∗Γa2 and Γ∗Γ
ab = − i

2ε
abcdΓcd the equation

can be written in the familiar form

(

d+
1

4
ω̃abΓab

)

ηM4± = 0

ω̃ab = ωab ± m

2
ec(
√

1− 2H2εc9ab −
√
2Hεc2ab) (2.15)

where the removal of the last identity factor of the Gamma matrices (2.11) is understood.

Up to now, we have solved the trivial flat and spherical parts of the Killing spinor

equations. The only remaining four equations involve the four-dimensional spinor ηM4±.

Now, we expect that they will be only three non-trivial equations involving the Gödel met-

ric. Indeed, the combination of
√
2H times the equation for the index 2 minus

√
1− 2H2

times the equation for index 9 gives

(
√
2hD2 −

√

1− 2h2D9)ηM4± = 0, (2.16)

which, expressed in the coordinate basis, gives the following dependence on the variables:

ηM4± = ηM4±(T +
√
2Hz, φ, r). Solving the remaining equations is the object of the next

section.

2.3 Gödel Killing spinors

In fact, the equation (2.15) for ηM4+ is very simple. We have

(

d+
1

2
Γ01dφ̃

)

ηM4+ = 0, φ̃ = −c1
2
φ−m(T +

√
2Hz). (2.17)

It admits the solution

ηM4+ = exp
(

− φ̃

2
Γ01

)

η(0)+ (2.18)

where η(0)+ = ǫ+ ⊗ η
(0)
M2

is a constant spinor with ǫ satisfying also the chirality condition

(2.13). However, for c1 6= 0, since the spinor is not periodic nor anti-periodic in φ, we have

to reject this solution. In any case, the spinor is z-dependent and therefore is not a Killing

spinor of the three-dimensional relevant spacetime.

The equation for ηM4− is more involved. Since the integrability conditions hold, a local

solution always exists. One obtains

ηM4− =
(

cosh(K(r)) + (
√

1− 2H2Γ02 +
√
2HΓ09)sinh(K(r))

)

exp
(

− φ

16m
M
)

η(0)−(2.19)
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where

K(r) =
1

2
ln
(c1 + 2m2r

2m
+
√

m2r2 + c1r + c2

)

,

M = (4m2(c2 − 1)− c21)Γ01 + (4m2(c2 + 1)− c21)(
√

1− 2H2Γ12 +
√
2HΓ19).(2.20)

In the case of the tachyonic Gödel geometry, φ is not identified and (2.20) provide local

solutions of the Killing spinor equations. The chirality condition (2.13) breaks half of the

supersymmetries.

In the case of black holes, the spinor globally exists if and only if it is independent on

φ which amounts to M2 = 0 and Mη(0)− = 0. This statement is equivalent to imposing

c21 = 4m2c2 and the following chirality condition

(−Γ01 +
√

1− 2H2Γ12 +
√
2HΓ19)η

(0)
M4−

= 0 (2.21)

Using the definition of conserved charges [2], the relation between c1 and c2 is in fact the

condition for extremal black holes. The condition (2.21) can be simplified by splitting η
(0)
M4−

as ǫ− ⊗ η
(0)
M2

and using the chirality condition (2.13) on ǫ−. One then gets a condition on

η
(0)
M2

only: σ1η
(0)
M2

= εη
(0)
M2

.

Finally, we found that for each representation of the Clifford algebra, parameterized

by ε, extremal Gödel spacetimes admit a Killing spinor,

ηM4− =
(

cosh(K(r)) + (
√

1− 2H2Γ02 +
√
2HΓ09)sinh(K(r))

)

(√
2H + i

√
1− 2H2

ε

)

⊗
(

1

ε

)

. (2.22)

We conclude that one class of extremal black holes (c1 = 0) do not have any Killing

spinor, while the other class (c21 = 4m2c2) has one supersymmetry generator. This is to be

contrasted with the BTZ case, where Killing spinors where found in each class of extremal

black holes.

This result fits nicely with the fact that the Gödel universe break one of the two

SL(2,R)×SL(2,R) exact symmetries, which at the level of asymptotic symmetries breaks

one of the two Virasoro algebra. It is then natural that one of the two supersymmetric

extensions of the Virasoro algebras gets also broken, as we just showed. The existence of a

Killing spinors shows that the SL(2,R) algebra gets enhanced to a Osp(1|2) algebra. Since
the Killing spinors are periodic, the supersymmetry generators are taken in the Ramond

representation.

3. Discussion

The identification of supersymmetry for extremal Gödel black holes in type IIB supergravity

can be used to complement the analysis of [14]. There we derived the central extensions

in the algebra of charges associated with the asymptotic symmetries of these spaces in

the Einstein-Maxwell-Chern Simons theory. Even though we haven’t repeated the analysis
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for the present matter fields, we expect that the right central charge associated with the

unbroken copy of a Virasoro algebra will be the same,

cR = − 3αl2

(1 + α2l2)G
= − 6ν̂ l̂

(3 + ν̂2)G
= −3

√
k

2G

√

1− 2h2. (3.1)

Indeed, a close analysis shows that the central charge arises only from the Einstein part

of the Lagrangian in [14]. The central charge is negative when the Gödel black holes have

positive mass. It is interesting to note that the central charges vanish in the limit h2 = 1/2

where the deformed geometry becomes locally AdS2 × R [11].

The missing step in the argument to be able to match the macroscopic entropy with

the one derived from the Cardy formula, at least in the left sector, was the knowledge of

the minimal value for the L0-eigenvalue. Given the supersymmetric energy bound,

L0 ≥ 0, (3.2)

this minimal value ∆0 is zero and is reached for the extremal black hole solutions. This

provides a firmer ground on the use of the Cardy formula to count the microstates of

Gödel black holes in the unbroken sector. It shows that even though the central charge

of the Virasoro algebra is negative, there is enough structure (a Virasoro algebra and

supersymmetry) to make the counting work.

An alternative approach to compute the entropy has been used in [34, 3]. One can de-

duce from the vector (1.15) what can be interpreted as a left and right moving temperature

in the dual CFT,

TR ≡
√

2Gα(2 + α2l2)(αl2µ− (1 + α2l2)J)√
3παl2

, (3.3)

TL ≡
√

2G(2 + α2l2)µ√
3πl

. (3.4)

The Bekenstein-Hawking entropy is then equal to

S =
A
4G

=
π2l

3
(|cL|TL + |cR|TR) (3.5)

where |cR| = |cL|. The advantage of this formula is that it allows one to conjecture the

(absolute value) of the left central charge.

We have mentioned that Gödel black holes can also be obtained as quotients of spacelike

squashed AdS3 geometries in topologically massive gravity [3]. One can then ask if the

N = 1 supersymmetric extension [35, 36] of this theory admits Gödel supersymmetric

solutions. It turns out that it is not the case since all supersymmetric solutions admit a

null Killing vector [37]. They all fall in the class of null/parabolic deformations of anti-de

Sitter, see table 1.2. Therefore, extremal Gödel black holes are not supersymmetric in

N = 1 topologically massive gravity.

We also observed that Gödel black holes represent exact string theory backgrounds,

like AdS3 and the BTZ do, even though with a tachyonic spectrum. It is however not clear
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if these backgrounds could be obtained as the near-horizon geometry of some branes or

fundamental strings configurations. If this would be the case, it would be interesting to

identify the corresponding non-gravitational theory. This question has been investigated

namely for the parabolic symmetric deformation of the SL(2,R) WZW model [38], but to

our knowledge no such analysis exists for asymmetric deformations.
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