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Abstract: We study abelian and non-abelian orbifolds of the ABJM model. We

compute the precise moduli space of these models by analyzing the classical BPS

equations for the theory on the cylinder, which include classical solutions of magnetic

monopole operators. These determine the chiral ring of the theory, and thus they

provide the complete set of order parameters determining the classical vacua of the

theory. We show that the proper quantization of these semiclassical solutions gives

us the topology of moduli space, including the additional quotient information due

to the Chern-Simons levels. In general, we find that in the dual M-theory setup, the

M-theory fiber is divided by the product of the Chern-Simons level times the order of

the orbifold group, even in the non-abelian case. This depends non-trivially on how

the different Chern-Simons terms have different levels in these constructions. We also

see a direct relation in this setup between the Chern-Simons levels of the different

groups and fluxes for fractional brane cycles. We also show that the problem of the

moduli space can be much more easily analyzed by using the method of images and

representation theory of crossed product algebras rather than dealing only with the

quiver theory data.
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1. Introduction

In the past year, the AdS/CFT correspondence has found a new set of examples in

three dimensional superconformal field theories that share many characteristics with

the original N = 4 SYM and its AdS5 × S5 dual [1] and their orbifolds [2].

These theories, whose first example was constructed in [3] and which we will call

the ABJM model, have the following properties that make them similar to their four

dimensional cousins:

1. The theories posses an N = 2 supersymmetry in three dimensions: these

have a simple superspace description similar to the N = 1 superspace in four

dimensions.

2. The degrees of freedom are vector (super)fields and chiral superfields. The

gauge groups can be arbitrarily large (they have a rank N that can be taken

to be large).
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3. The theories have simple lagrangians that are classically conformally invariant

with canonical kinetic terms for matter. The vector field lagrangian is of Chern-

Simons type. This was originally suggested by Schwarz [4] as a source of

interesting dualities, but the examples with duals were found later in [3]. The

level k plays a similar role to the Yang Mills coupling constant g−2
YM .

4. The theories admit a large N t’ Hooft limit by taking N → ∞ and keeping

λ = N/k fixed.

5. For small λ the theories can be analyzed using standard perturbation theory.

6. For large and finite λ the theory can be better thought of as a type IIA string

theory in an AdS4 ×X6 geometry.

7. If k is kept fixed and N made very large, the theory can be best described

by an M-theory setup on AdS4 × X7. The seven dimensional space is a circle

bundle over X6 that is determined by the level k.

Because of these similarities to four dimensional examples, a lot of work has been

done at the level of comparisons between both sides of the correspondence following

the familiar ideas used in four dimensions. These comparisons usually deal primarily

with the AdS4 × X6 string limit where one usually can calculate the dimensions of

operators using perturbation theory.

Unlike their four dimensional cousins, the perturbative gauge invariant elements

of the chiral ring are not sufficient to describe the moduli space of vacua. These

moduli spaces are essentially N particles on a real cone over X7 as expected by the M-

theory setup. In contrast, perturbative gauge invariant words would give holomorphic

spaces of lower dimension than the cone over X7 would demand. In essence, the

naive chiral ring made up of gauge invariant polynomials in the holomorphic fields

is identical to that of a four dimensional theory. These usually can only describe

multiple branes on a Calabi-Yau threefold 1.

The solution to this puzzle lies in the fact that in three dimensional theories

there are additional non-perturbative elements of the chiral ring. These chiral ring

operators create magnetic fluxes and have a similar profile to the spatial components

of magnetic monopoles in four dimensions. These operators are called magnetic

monopole operators. Their presence is necessary to match the spectrum of protected

operators of eleven dimensional supergravity on X7 [3]. These carry the quantum

1This can be understood in terms of a simple condition: that the F-terms equations are naturally

dual to the superfields of the theory. When translated into a mathematical framework, one builds

an associated algebra of a quiver theory: a quiver path algebra with relations. This condition on the

F-terms becomes a homological algebra relation that identifies the Ext2(A,B) functor (relations

obtained from F-terms) as a natural dual to Ext1(B,A) (chiral fields) on modules [5]. This is

identical to what one would obtain from Serre duality for threefolds with a trivial canonical bundle.
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numbers of angular momentum on the circle fiber of X7 over X6. From the point

of view of IIA string theory seen as a compactification of M-theory on a circle, the

dual particles to these operators describe D0-branes in the bulk and not strings, as

the simplest gauge invariant observables do.

From the point of view of calculating the moduli space of vacua from the field

theory, the vacuum expectation values of these non-perturbative operators are some

of the order parameters distinguishing the different points in the moduli space. This

means that non-perturbative effects are crucial to the understanding of the model,

even at the level of describing the precise shape of the moduli space of vacua. This

is very unlike the examples in four dimensions, where knowledge of the perturbative

spectrum is enough to describe the moduli space. Very importantly, the topology of

the moduli space of vacua depends on k. This is another way to understand why the

level of Chern -Simons terms in the lagrangian should be quantized.

The difference in the dimension of the moduli space from what one can guess

perturbatively can be qualitatively explained by stating that the electric-magnetic

dual of a vector super-particle in three dimensions is a complex scalar. It is the

vacuum expectation values of these dual scalars that one needs to probe to completely

characterize this moduli space. This is why we require understanding magnetic

monopole instanton effects or operators in three dimensions to fully address this

issue: they have to be the non-perturbative probes that can probe the field of a dual

electromagnetic field. Because the dual particle is a scalar, the charged defect needs

to be a type of instanton in three dimensions and the monopoles are the natural

objects to study. For the case of the ABJM theory, these have been studied in

various works [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16].

The purpose of this paper is to characterize the spectrum of magnetic monopole

operators for various orbifolds of the ABJM model. Some of these (in the abelian

orbifold case) have already been studied in various works for the special case of

a single brane in toric setups [10, 14, 16, 17, 18, 19]. This is characterized by a

U(1)2k gauge group. The ideas presented in this work can also be applied to a large

collection of possible duals to M2-branes in these setups, that have been proposed

[20, 21, 22, 23, 24, 25]. A more complete analysis has been recently completed in [26].

We want to do a general analysis that includes the non-abelian orbifolds and arbitrary

rank gauge groups as well. Such a program along with various of the techniques we

are going to use was performed for the ABJM model in [6, 15]. Most important for

us, was the observation of [27, 18] that the moduli space for level k gives collections

of branes on the C4/Zkn × Zn space, rather than the naive C4/Zk × Zn quotient. In

our generalization to non-abelian orbifold we will see that the pattern persists, and

we get a collection of branes on C4/Zk|Γ| × Γ, where |Γ| is the order of the group Γ.

The main issue is to just solve for the detailed structure of the moduli space

of vacua. The chiral ring will be a complete set of holomorphic coordinates on this

moduli space of vacua. This is the idea of holomorphy: holomorphic operators are
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a complete set of order parameters to distinguish all of the different vacua of a

supersymmetric theory. We are not aware of any example where this is not the case,

nor of a proof of this statement in general.

There are various parts to such an analysis. First, we will find the general

solutions of the scalar field vevs that describe such a moduli space. We will show

that this can be done very conveniently with the theory of representations of certain

C∗ algebras associated to a quiver diagram. This is a generalization of the techniques

introduced in [28] to solve the moduli space of vacua of four dimensional theories.

Such a connection with operator algebras simplifies a lot of the analysis and describes

very elegantly the method of images for orbifolds of Douglas and Moore [29]. The

main advantages is that one does not have to write the lagrangian of the orbifold

with all of the fields explicitly, but instead one writes the lagrangian of the parent

theory and imposes extra algebraic relations that make the extraction of the field

content and gauge symmetries of the quotient theory manifest.

Once we have the moduli space of vacua, there are discrete gauge identifications

between the solutions that need to be addressed. To do that we need to understand

how the chiral ring operators are related to the moduli space of vacua. We do this

by considering the operator state correspondence and analyzing the complete set of

classical BPS states of the field theory on the cylinder. These can be seen to be

related to the classical moduli space of vacua in a very direct manner. The analysis

of the Chern-Simons equations of motion and the quantization of gauge fluxes plays

a crucial role at this stage. These classical solutions can be seen to have a natural

Poisson structure on them: the complex structure of the moduli space. This lets

one quantize the classical problem by holomorphic quantization. Consistency with

the constraints of the Chern-Simons degrees of freedom selects the polynomial wave

functions that are allowed. This provides in the end the complete set of chiral

ring operator quantum numbers that are allowed. With this information we can

then provide the exact topology of the moduli space of vacua of the theory, thereby

generalizing various results to non-abelian orbifolds. It is clear that these techniques

can be also applied in other cases.

Furthermore we can provide interesting tests of the duality of the quiver orbifold

theories with the ABJM orbifold models. Particularly, we can recover the description

of how D0-brane fractionate when they arrive at a singularity of the AdS4 × X6

geometry. We see clearly how the familiar patterns of tensions expected from the

local nature of the orbifold singularities of X6 happen for fractional D0-branes. This

ends up being intimately tied to the levels of the different Chern-Simons terms in

the action. Moreover, these can be read from the quiver diagram at a glance. We

will explain how this works in detail.

The paper is organized as follows. In section 2 we give an overview of the problem

of computing the moduli space of vacua in three dimensions. We present a compar-

ison with the four dimensional case to remark the importance of non-perturbative
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effects in 3d. In section 3 we review the orbifold construction for gauge theories

and setup the problem of solving the superpotential vacuum equations as finding the

irreducible representations of some quiver path algebra. In section 4 we characterize

the chiral ring of these theories in terms of classical solutions to the BPS equations.

In section 5 a particular example of a Zn orbifold is solved in full detail. We begin by

explicitly showing the isomorphism between the quiver algebra and the correspond-

ing crossed algebra. We use this to build explicitly the branes in the bulk by the

method of images (this is the same as studying the general irreducible modules of

the algebra). Using this prescription we describe the full moduli space including the

singular points where brane fractionation occurs. In section 6 the previous results

are generalized to non-abelian orbifolds and we show that in the non-singular locus

the topology of the moduli space have the general form C4/Zk|Γ| × Γ. In section 7

we present a summary and a conclusion on the results obtained along with possible

further directions.

2. Moduli space problem in diverse dimensions.

Let us consider a quiver gauge theory in four dimensional field theory associated

to branes probing the tip of some Calabi-Yau geometry. This is a special class of

theories with gauge fields and a superpotential. The theories we are analyzing in

three dimensions have this similar structure, with the extra twists of not having a

Yang-Mills lagrangian, and instead having a Chern-Simons term in the action. Since

the ABJM model has the same superpotential as a four dimensional model of branes

at the conifold, this structure is expected to be common.

We can then compactify the four dimensional system to three dimensions and

compare it to the three dimensional model with Chern-Simons terms.

The four dimensional theory reduced to three dimensions will have a Yang-Mills

lagrangian for the gauge fields. In this theory the gauge coupling constant becomes

large in the infrared since it has dimension 1
2
. The dimensional reduction of a vector

multiplet from four to three dimensions contains apart from the vector potential

degrees of freedom, an additional massless scalar field in the adjoint representation.

This is the fourth component of the gauge field in four dimensions. We can give

a vev to this component in three dimensions without breaking the supersymmetry.

The off-diagonal modes become massive via a supersymmetric Higgs mechanism.

Also, for the moduli space problem in four dimensions, the Kähler potential usually

doesn’t matter, so we will take it to be canonical for simplicity. In three dimensions

the Kähler potential is important to determine if a theory has conformal symmetry

or not. All the theories we study in detail in this paper have this property anyhow,

so we will not comment on this further.

These extra scalar fields coming from the vector multiplet, as long as they are

massless, can in general get vevs without breaking supersymmetry. If we explore
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these vevs, we can be in a mixed Coulomb-Higgs branch, depending on the vevs

of the other matter fields. This extra adjoint field, that we will call σ increases

the dimension of moduli space from 6 real dimensions for a brane in the bulk, to

seven dimensions. This is natural from the point of view of lower dimensional branes

exploring some geometry. There are extra directions from the position of the brane

in the dimension that is not wrapped any longer. For N branes at the same locus in

the four dimensional theory, a vev of this scalar field, at a generic point of the moduli

space would break the gauge group to U(1)N (σ is hermitian and can be diagonalized)

. The vector field superpartners of these scalar fields will be massless. While the

other off-diagonal degrees of freedom become massive and can be integrated out.

For the chiral multiplets, it is easy to show that only diagonal components remain

massless also. This is because the kinetic term (for a canonical kinetic term in four

dimensions) contains terms that contribute to the potential which are of the form

|[σ, φ]|2 (2.1)

These are from the dimensional reduction of the terms with covariant derivatives in

the fourth direction. Then, in the infrared, the massless chiral fields will be decoupled

from the diagonal vector fields, since they will satisfy [Aµ, φ] = 0. Therefore, the

low energy effective theory has no massless charged particles under the U(1)N gauge

group.

In this setup, we are considering the moduli space at a generic point in the

Calabi-Yau geometry associated to the four dimensional theory, where the unbroken

gauge group is U(N) and all moduli are in the adjoint: we expect that this low energy

effective theory is like N = 4 SYM away from the tip of the cone. In the full theory

of N D3-branes on a Calabi-Yau singularity, this U(N) is embedded diagonally in

the quiver gauge theory, whose gauge group is G =
∏

i U(Ni) with
∑

iNi = N , and

all matter fields transform in the adjoint of this diagonal U(N).

This shows that only the chiral fields φ that are mutually diagonal with the U(N)

are allowed. As we pointed out before, at a generic point of the moduli space, in the

infrared we have a free theory for U(1)N vector fields and massless scalars. We want

to analyze these U(1) degrees of fredom carefully. For a U(1) vector field, Vµ, we can

dualize the field strength Fµν ∼ ǫµνγ∂
γθ to write it in terms of an electromganetic

dual scalar field. The equation of motion of the free F in the low energy effective

field theory becomes a Bianchi identity for this expression, and the Bianchi identity

for F becomes a Laplacian acting on θ that gets set to zero. This is in the procedure

in the absence of sources. This dual scalars θ can also be considered to be in the

adjoint of U(1)N . Now, θ can also get a vev, but it is not visible in perturbation

theory of the original lagrangian. A gradient of θ is visible as an electro-magnetic

field, and in the original lagrangian this is in the adjoint of U(N), so that one can

assume that a putative non-abelian completion of θ is also in the adjoint of U(N),
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but this is just so that we can understand that when the θ get vevs, the gauge group

should be broken also.

The condition that a vev of θ is massless in the Coulomb branch can be described

as [σ, θ] = 0, so that the combined vacuum expectation values of θ, σ on the moduli

space of vacua break the theory to U(1)N and no further. As long as we’re doing the

analysis in the low energy effective field theory with U(1)N symmetry, this dualization

procedure can be done without much trouble. For the full non-abelian symmetry

we do not know of a way to do this consistently for every case. These two extra

dimensions get naturally complexified, and suggest that the moduli space of vacua

for a single brane grows one extra complex direction, described by one perturbative

vev 〈σ〉, and one non-perturbative vev 〈θ〉 that we need to access somehow 2.

This can only be done non-perturbatively. Naturally θ being a scalar potential,

couples to point-like defects in three dimensions. The electric sources for θ are mag-

netic monopole instantons. The action for such an instanton coupling is proportional

to θ, but in quantum effects it must be exponentiated: only the exponential of the

action counts.

This implies that the monopole instanton can be described as a local operator

inserted at the center of the monopole and it should behave as

M(x) ∼ exp(iθ)(x) (2.2)

This suggests that the scalar θ is periodic. This property of monopole operators

is described in detail in [30], where the dual scalar is introduced in a path integral

formalism carefully.

With this information, the full moduli space of the theory is characterized by

the original Calabi-Yau geometry and a (θ, σ) pair for each brane.

Now, let us add the Chern-Simons terms to the lagrangian. These give a topo-

logical mass to both the gauge field Vµ and σ. This means that θ also becomes a

massive degree of freedom, even if we can not write an obvious lagrangian for θ.

This is because θ encodes the same degrees of freedom as Vµ. In this situation, one

expects that the vector field degrees of freedom decouple in the infrared. The vevs

of monopole operators 〈M(x)〉 will probe the vevs of θ. Also, as shown in [31], the

angle-variable θ can fiber non-trivially on the moduli space.

From now on, we will begin in three dimensions with a Chern-Simons lagrangian,

and treat the vector fields as of dimension one. The Chern-Simons coupling is

marginal. If we add a SYM term to the action, we find that this is an irrelevant

deformation that we can neglect in the infrared. Therefore in our following analysis

of the low energy theory we can consider only the CS term. The supersymmetric

2For theories with more supersymmetry, this gives interesting topological effects [31] that let

one solve for the moduli space metric exactly.
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Chern-Simons term adds the following coupling to the lagrangian:

∫

d3xKDσ (2.3)

The full superfield expressions can be read in [32].

So, the moduli equations describing the vacuum change. The D-term constraints

are relaxed so that σ becomes a (background) field dependent FI term relative to

the matter. Moreover, the Chern-Simmons terms give rise to a topologically massive

vector field. this means that the theory does not necessarily become strongly coupled

in the infrared anymore. In the infrared, such fields can be integrated out, so they

should drop out of the action somehow.

In the equation above, since σ has no dynamical degrees of freedom left over, it

becomes a composite field. This means we do not necessarily reduce the dimension

of moduli space, unless the D-term constraints have no solution for a given set of

values of σ. For the ABJM theory and related models, there is a constraint between

the levels of the various Chern-Simons theories that is required for this to happen

[19].
∑

i

αiKi = 0 (2.4)

For U(1)k theories, αi = 1. In general, a similar analysis shows that αi = N̂i

should be the rank of the gauge group products on a single brane moduli space, by

taking traces over the D-term constraints and summing. This constraint has a nice

interpretation in terms of the diagonally embedded U(1) gauge degrees of freedom:

the effective Chern-Simons coupling for this diagonal field vanishes. This means

that in the effective action the topological mass vanishes, and the theory requires

us to include higher order terms. This is just an effective SYM action to leading

order. This is the essence of the emergent SYM action from spontaneously broken

conformal symmetry [33]. A topological mass for a low energy effective field vanishes,

and therefore in the low energy effective action that field can not be integrated out.

This keeps this direction of moduli space without it being lifted.

It also happens that in these theories, because of the Chern-Simons lagrangian,

the monopole operators carry electric quantum numbers that depend on the level of

the Chern-Simons pieces. This means that the non-perturbative θ vacuum expecta-

tion value should mix with the other degrees of freedom. Since vacuum expectation

values of θ also break the gauge symmetry, one can just assume that they are fixed

to some value. Under this assumption the corresponding gauge phases of the gauge

group become dynamical on the other fields and can distinguish vacua. This means

that on the moduli space we do not impose one D-term relation, and the corre-

sponding phase of the associated U(1) gauge group is declared to be non-gauge. The

moduli space is then for a single brane is not a standard symplectic quotient by a
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product group
∏

j GL(N̂j ,C), that would give a Calabi-Yau geometry

CY = {F-terms = 0}//
∏

j

GL(N̂j ,C) (2.5)

but instead it is a quotient by

M = {F-terms = 0}//
(

∏

j

GL(N̂j ,C)/GL(1,C)

)

(2.6)

So we always find a natural fibration of the moduli space over a Calabi-Yau complex

manifold, and there is a natural symplectic quotient describing the CY geometry.

CY = M//GL(1,C) (2.7)

A natural question is then what is the topology of this fibration. In particular, M
has a circle action on it (the compact part of GL(1,C)), and this is the gauge phase

that we allowed to stay unfixed after using our gauge freedom on the dual scalar.

This circle is fibered over the base non-trivially. The natural periodicity of the dual

scalar suggests that there might be some additional discrete freedom of these phases

that is gauged. This is related to the level of the Chern-Simons theory. Thus the

topology of the moduli space of vacua depends non-trivially on the Chern-Simons

levels of the quiver theory (the different topologies can be understood in the toric

case [19]). Determining this carefully is what we want to do in this paper for a variety

of theories with non-abelian gauge groups, where dualizing the gauge fields is not

really an option. Instead, we assume that the phases are fixed as above, and that the

allowed holomorphic coordinates of the moduli space coincide with the chiral ring of

the theory. We can compute the chiral ring by using other semiclassical techniques,

giving us the answers we are looking for. Moreover, we see that this natural fibration

makes it interesting to study the relationship between the Calabi-Yau geometry and

the four dimensional complex manifold describing the moduli space of vacua of a

single brane.

3. Constructing the orbifold theories

We want to build supersymmetric orbifold field theories of ABJM that preserve

N = 2 supersymmetries in three dimensions. To do so it is best to use super-

space methods to describe the lagrangian. The superspace appropriate for this level

of supersymmetry is the same superspace that appears in the description of four

dimensional theories with N = 1 supersymmetry. Therefore the usual notions of su-

perpotential and Kähler potential apply for the matter action. Because the Kähler

potential of the ABJM model is that of a free theory, the orbifolds will have the

same property. However, the vector superfields will have a different type of action
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than in four dimensions: a Chern-Simons action. The superspace actions of these

vector theories have been conveniently described in [32]. We will use the notation of

[32] frequently in this paper. We will also consider in some sections the addition of

a standard Super Yang Mills term to the action. This is an irrelevant deformation

of the infrared field theory, but it is convenient for other purposes: one can guar-

antee that the gauge interactions become weak in the UV. This will preserve the

supersymmetry, but will break conformal invariance.

The ABJM field theory is described most easily in N = 2 superspace in terms

of a quiver diagram with some additional information that describes the interactions

of the theory. As a quiver diagram , the ABJM theory consists of two nodes. To

each node we associate a vector multiplet V 1,2
µ in the adjoint of U(N1), U(N2).

Each of these has a Chern-Simons lagrangian with levels k,−k respectively. There

are four chiral matter fields A1, A2 and B1, B2. The A superfields transform in the

(N1, N̄2), and the B superfields transform in the (N̄1, N2) representation of the gauge

group. Each of these chiral superfields have R-charge 1/2 and dimension 1/2, as it

corresponds to a free scalar field in 3 dimensions.

The theory has an SU(2) symmetry of rotations of the A into themselves, and

another SU(2) symmetry of the B transforming into themselves. This manifest

symmetry is an SO(4) subgroup of the SO(6) ∼ SU(4) R-symmetry of the ABJM

model that commutes with the manifest SO(2) R-symmetry of theN = 2 superspace.

In the ABJM model the scalars are in a spinor of SO(6). When considered as spinors

of SO(4) they split into (0, 1
2
)⊕ (1

2
, 0) representations. The A,B† can transform into

each other in the ABJM theory. This mixing does not commute with the SO(2)

R-charge that we have singled out with our choice of N = 2 superspace. These extra

mixings will in general be broken by our choices of the orbifold group action.

The ABJM model also has a superpotential that preserves the SO(4) ∼ SU(2)×
SU(2) symmetry.The field content and superpotential of the matter fields are identi-

cal to the conifold field theory [34], except that the gauge groups are U(N)× U(N)

rather than SU(N)×SU(N) and the lagrangian for the gauge degrees of freedom is

different.

To preserve the N = 2 supersymmetry in an orbifold, we should choose an

orbifold by a subgroup of the original SO(6) ≃ SU(4) R-symmetry that commutes

with the SO(2) R-charge of superspace we are preserving (it has to be embedded

in the commutant). We will thus consider an orbifold by a group Γ that sits in

the SO(4) ≃ SU(2) × SU(2) that acts separately in the A and B fields. Thus, the

orbifolds we are studying are classified by discrete subgroups of SU(2)×SU(2). The
problem of classification of these subgroups will not be considered here in full detail.

We will consider special subgroups that are easy to construct. These are either

products of discrete subgroups of the two SU(2) subgroups, or diagonal embeddings

of a group into the two SU(2) subgroups. In turn, the discrete subgroups of SU(2)

have an ADE classification that is well understood. Thus, we will be able to use this
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classification to build new quiver diagrams starting from the ABJM model using the

method of images. This can be made more formal using group theory analysis and

representation theory of algebras as described in [28]. This is conveniently expressed

in terms of a crossed product algebra and stating that a physical configuration is

always a representation of an algebra up to isomorphism. The equivalence up to

isomorphisms is encoded in the fact that gauge theories allow gauge transformations,

and physical configurations are equivalence classes under gauge transformations. We

will describe this construction in detail later in this section.

A quiver theory is usually presented as a graph with nodes and arrows. The nodes

represent gauge groups, and the arrows are interpreted as matter fields in various

bifundamental representations of the gauge groups depending on the beginning and

end of the arrows.

The set of arrows and nodes of a quiver can be thought of as describing some

sort of matrix algebra as well (the path algebra of the quiver). Because incoming

arrows and outgoing arrows are in fundamental (antifundamental) representations,

we can contract them using matrix multiplication. This tends to produce composite

arrows that can be thought of as composite meson fields and that also transform

in bifundamental representations. The operators act on an auxiliary Hilbert space

as follows. If at each node s we have a gauge group U(Ns), then we can build an

auxiliary Hilbert space given by

H = ⊕sVs (3.1)

where Vs is a vector space of dimension Ns in the fundamental of U(Ns). All the fields

of the theory can act on H and produce new elements of H, because of the index

structure of matrix multiplication. Under gauge transformations, H transforms in

an obvious way. This can be thought of as reshuffling the basis of the Vs. This can

be done for each position in space if we want to. Here, we are indicating the matrix

structure only.

We will be dealing with the scalar chiral fields and their complex conjugates

and with a standard condition of reality. In mathematical terms, we are saying that

we are interested in a C∗ algebra structure. In other setups it is customary to use

a holomorphic path algebra only [35], as that is the simplest way to describe the

chiral ring of field theories in four dimensions. Such an algebraic approach includes

the F-term equations of the field theory as part of the description of the algebra.

However, the setup we need requires a slightly different take on these ideas which is

why we are spending a lot of effort describing it in this slightly more elaborate way.

The discrete symmetry of the orbifold will act on these nodes and arrows in

some way, so that it preserves the action (lagrangian) of the system. This can be

translated as saying that we have an automorphism of this operator algebra that acts

on H, preserving some structure. For the purposes of this paper, it suffices to study

symmetries that leave the nodes fixed. This is, the discrete group will not change

– 11 –



one type of gauge field into another. More general actions can be found in various

examples [35].

To understand what the crossed product structure is, we first build the group

algebra of Γ, which we will call CΓ. This is an algebra with a generator eg for each

element g ∈ Γ and any element of the algebra is a formal linear combination of these

generators with coefficients in C. The multiplication in the algebra is done as follows

egeg′ = eg◦g′ (3.2)

which makes obvious the multiplication rule in the group. Associativity in the algebra

follows from associativity of the group multiplication. Knowledge of CΓ is equivalent

to the knowledge of Γ. This algebra has an identity 1 = e1. A representation of Γ of

dimension d is equivalent to a representation of CΓ in terms of d×d matrices. This is,

a map µ : CΓ → Md×d(C) that preserves all the algebraic relations (sums, products

and multiplications by scalars) and such that µ(1) = 1. It is a standard result in

finite group theory that all representations are unitary, and moreover they admit

decompositions into direct sums of irreducibles. These are all finite-dimensional.

Thus any finite dimensional representation of Γ can be written as a sum R = ⊕NiRi,

where the Ri are irreducible, and the Ni are the multiplicity of these irreducible

representations. On each of these Ri, we can choose a canonical matrix representation

for Γ. This is a gauge choice. This implies that the µ(g) can be assumed to be

completely known and fixed by the Ni labels.

If one builds an orbifold according to the prescription of Douglas and Moore [29],

we have to gauge a discrete symmetry Γ. This can be thought of as some action of

Γ on the operator algebra of a quiver diagram up to gauge transformations. This

should be though of as a group action on the fields of our theory that preserve various

desired structures. For example, connections should map to connections, etc.

When acting on the gauge group (on the Vµ multiplets), we have to embed

the symmetry in the gauge group via some representation of the right dimension,

characterized by a gauge transformation γ(g) for each element g of the group.

This leads to the following equation for the gauge field connection

γ(g)Vµγ
−1(g) = Vµ (3.3)

This indicates the invariant nature of the gauge field under the orbifold action. Usu-

ally we ask that the discrete symmetry we are gauging does not act on the coordinates

along the brane. There is another similar way to write these equations that encodes

the geometric information better

Dµγ(g)(x) = 0 (3.4)

These indicate that if we had chosen the embedding of γ(g) to be position dependent,

then the structure of the embedding is such that it is covariantly constant. We can
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then choose a gauge where it is constant. This produces a reduction of the holonomy

group to the commutant with γ(g). The condition on Vµ written above has exactly

that interpretation: the allowed connections are those in the commutant of γ(g).

If we interpret this as an algebraic equation for matrices, we can read this equa-

tion as if we have associated matrices γ(g) to the elements of the group algebra eg
of Γ via a map µ as above. These can be interpreted as linear operators acting on

H also. Thus, we can read the operator equations as

egVµeg−1 = Vµ (3.5)

This is done for each gauge field that we have, with different possible γ(g) for each.

Writing it this way we are stating that the algebraic relations are such that the

algebra CΓ is part of the full algebra, rather than an external object.

The quiver algebra should also have an idempotent πs for each node (parametrized

by s) in the quiver. These satisfy

πsπr = δrsπs (3.6)

This can be thought of also as the generator of the U(1) ’baryon’ symmetry at each

node, the one that distinguishes the fundamental and the antifundamental represen-

tation of U(Ns). We can recover the Vs by projecting on the corresponding nodes

with πs, Vs ≃ πsH. These projectors are very useful objects to consider.

The fact that the γ(g) don’t permute the gauge fields into each other is expressed

as follows

egπs = πseg (3.7)

Moreover, because we have the direct sum decomposition in the Vs already spelled

out, the πs are diagonal by blocks. Their eigenvalues are one or zero. Again, we can

say that the πs are covariantly constant and produce a reduction of the gauge group

to the gauge groups of each node.

Finally, for the matter fields, a bifundamental matter field associated to an arrow

connecting nodes s and s′ will be associated to a matrix such that

πrφ
i
ss′ = δrsφ

i
ss′ (3.8)

φi
ss′πr = φi

ss′δrs′ (3.9)

This just indicates that it is an off-diagonal matrix connecting the corresponding

Vs,Vs′ These equations merely indicate how the fields are charged under the different

gauge groups.

Also, we should impose standard hermiticity conditions as follows

(φi
ss′)

† = φ̄i
s′s (3.10)

π∗
s = πs (3.11)

e∗g = eg−1 (3.12)
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Notice that writing the equations in this way, we are starting to forget the labels

Ns. This is a very convenient point of view, because what we care about are the

relations in the algebra, which are independent of the values of Ns. The values of

Ns are obtained from studying a particular representation of the algebra. Whereas if

we study a general representation we can decompose it in terms of irreducibles. The

nature of this decomposition is diagonalization by unitary transformations of various

fields.

So far, we have an action of the original quiver algebra on H, and now we have

an action of CΓ on H by unitary transformations. We also have the compatibility

conditions [Vµ, eg] = 0, which is an algebraic representation stating that the gauge

field is Γ−invariant. Notice that these equations can also be applied to the Yang-Mills

curvature

[Fµν , eg] = 0 (3.13)

and in general, composite fields will have definite commutation relations with the eg.

One also has the invariance condition under the orbifold action for the scalar

fields, given by

γs(g)φ
i
ss′γs′(g

−1) = Ri
j(g)φ

j
ss′ (3.14)

where R is the action of the group Γ on the matter fields and the embedding of Γ

in the gauge group is given by the representation γ(g) = ⊕sγ(g)s. These can also be

read abstractly as

egφ
i
ss′eg−1 = Ri

j(g)φ
j
ss′ (3.15)

In the matrix algebra whose generators are the (vacuum expectation values of the)

quantum fields of the theory, the equations of how the eg relate to each other and the

fields are external constraints. Solving these equations gives a representation of the

formal algebra generated by the symbols πs, eg, φ, Vµ subject to the list of equations

that we have written above. The size of the representations are determined by the

brane charges that one wants to analyze in a specific example, but these can be left

undetermined without changing the nature of the algebra relations. If one wants

to look at supersymmetric vacuum solutions, then there are additional equations

that indicate that we are on a vacuum manifold and these can also be interpreted

in terms of representation theory of a C∗ algebra described above, with additional

equations representing the F,D equations of motion for the vacuum. This is not

automatic. The reason why this works is that the action is of single trace type

(generated by disc diagrams), so the equations of motion from the variation read as

additional algebraic relations in the path algebra of the quiver. Since the equations

of motion are covariant under the action of Γ, the equations describing the conditions

for vacua or the equations of motion are compatible with the action of Γ: the action

of Γ commutes with the equations of motion. The general solution will be a solution

of the equations of motion of the non-orbifolded theory, and these solutions are

constrained to be covariant.
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One can find the most general solution of the equations describing the quiver

algebra above rather directly. These can be conveniently expressed in terms of a

quiver diagram also. Notice that the πs commute with each other. Thus they can

be diagonalized simultaneously, and the Vs blocks provide this diagonalization. The

equations (3.7) are also easy to solve. Since the πs commute with the eg, then

after diagonalizing the πs the e are block diagonal in the same basis. It follows in a

straightforward way that to each node πs we need to associate a representation of the

group Γ. We have already seen this. The representation is the embedding associated

to the γ representation in Vs. Any such representation γs of Γ can be written as a

sum of irreducibles

γs = ⊕NisRi (3.16)

where the Nis are the mutiplicities of representation Ri in γs. These can be written

in canonical form (as given by our canonical choice of matrices described previously).

To each such factor we will end up associating a residual U(Nis) gauge group.

This is what we get from Vµs commuting with Γ. The Vµs as a matrix has to be

an element of Hom(⊕NisRi,⊕NisRi). This just states that Vµ is a matrix in the Vs

block. Since Vµ respects the action of Γ, we find, following the prescription of [36],

that it is an element of

Vµ ∈ Hom(⊕NisRi,⊕NisRi)
Γ ≃ ⊕iMat(Nis ×Nis) (3.17)

this is canonically equivalent as a set to a collection of Nis × Nis matrices for each

s. But this is the adjoint representation of U(Nis), so the U(
∑

Nisdim(Ri)) =

U(Ns) connection is reduced to a subgroup that is embedded diagonally, with the

Nis providing all the important data. We associate nodes of a quiver to these gauge

subgroups. There is one node per s per irreducible representation of Γ. This is,

each node decomposes into many nodes, as many nodes as there are irreducible

representations of Γ.

We also need to solve the equations (3.15). However, it becomes more obvious

how to do that in the operator language. φss′ acts as a map from Vs′ to Vs. These

spaces are decomposed into Vs = ⊕NisRi and Vs′ = ⊕Nis′Ri. The field φ is an

operator that transforms according in a representation R of the R-symmetry group.

If we act on the Nis′Ri subspace for fixed i, we obtain objects that transform in the

R⊗Ri representation of Γ, where R is determined by (3.14). This is the generalization

of the Wigner -Eckart theorem in quantum mechanics to arbitrary group actions.

What is important then is the decompositions of R⊗Ri into irreducibles. These

are obtained from tables of products of representations

R ⊗Ri = ⊕rNrRr ⊗Ri ≃ ⊕r,kNrN
k
riRk (3.18)

where the Nr, N
k
ri are the multiplicities of irreducible representations of Γ in R, and

Rr ⊗Ri respectively.
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The φ are Clebsch-Gordon decompositions for these products times matrices that

commute with Γ. The arrows from Vs′ to Vs split according to these rules. For each

Nis′Ri, NjsRj , there will be
∑

rNrN
j
ri arrows representing the possible actions of the

φ acting on Ri, and each of these arrows transform in the (Njs, N̄is′) representations

of the group.

The quiver algebra characterized by A, φ, π, eg according to the equations above

is the crossed product algebra of the quiver algebra of A, φ, π subject to the auto-

morphism by an action of Γ. This setup generalizes easily to the cases where we

have discrete torsion: we use the twisted algebra of Γ by the cocycle in H2(Γ, U(1))

that describes discrete torsion[35] (see also [37, 38]). This can also be generalized to

cases where Γ acts with permutations on the nodes of the original quiver. This has

been worked out in some detail [35], but a complete analysis of what happens in this

situations has not been done in the general case.

The action of the new orbifold theory is the same action as that of the parent

theory. However we are restricted to field configurations that are compatible with

the group action of Γ as described algebraically above.

For the ABJM model, there are various discrete subgroups of SU(2)×SU(2) that
one can consider 3. We will consider two cases: a Zn group embedded into SU(2)×
SU(2), or a discrete subgroup Γ ∈ SU(2). Remember that A and B are doublets

transforming in the (1/2, 0) and (0, 1/2) representation of the global symmetry. These

are the fundamental representations of both SU(2).

First, we need to consider the irreducible representations Ri of Zn. These are

all one dimensional and given by Ri ∼ [ηi], where η = exp(2πi/n) is a fundamental

root of unity. The classification [ηi] is the action of the generator of Zn on the one

dimension Hilbert space.

If we let Zn act on a two dimensional representation of SU(2), the action is

characterized by a root of unity ω, such that ωn = 1, where

2SU(2) ∼ Rω ⊕Rω−1 ∼ [ηj]⊕ [η−j] (3.19)

Remember we need to act with matrices of determinant one in order to be inside

SU(2).

From the ABJM theory, we get that each of the two nodes, associated to π1, π2
decomposes into n nodes (the irreducibles of Zn). These can be put side by side on

a graph with the same labels. The superfields A1,2 will transform according to some

value j,−j (after choosing a basis where Zn acts diagonally), while the B superfields

3It is important to point out at this stage that any two embeddings of Γ in SU(4) which differ

by a diagonal U(1) gauge transformation are considered equivalent. If we call this subgroup of

gauge transformations U(1)D, we are really embedding Γ in SU(4)R ⊗ U(1)D and U(1)D acts on

an element of SU(4)R multiplying it by a phase. This is not surprising since at the end the only

thing that matters are gauge invariant quantities. The A and B fields are not gauge invariant.
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will transform according to some value k,−k. We will analyze the case where j = k

in a quite detailed fashion later on4.

The new quiver will be bipartite (this is the splitting on π1, π2). The A arrows

will connect nodes (1, t) (associated to π1, [η
t]) with nodes (2, t± j), while the B will

connect nodes (2, t) with nodes (1, t ± k). The quiver will look as follows. We only

show the A and B arrows of one node.

A A

B B

Figure 1: Quiver diagram for the QABJM/Zn orbifold algebra. Only the fields emanating

from one of the nodes inside π1,2 are shown.

Notice that the vector fields are split as follows

V 1
µ →











V 1
µ [1]

V 1
µ [η]

V 1
µ [η

2]
. . .











(3.20)

where each block indicates the irreducible blocks of Ri in the lagrangian. These are

all one dimensional. We get a similar answer for V 2
µ . With this embedding, when

replacing this splitting of Vµ in the ABJM lagrangian, we find out that all the V 1
µ [η

i]

are at level k, while all the V 2
µ [η

i] are at level −k. Thus, the coupling constant is

inherited in all the nodes.

We can now consider the simplest non-abelian case Γ = D̂k. Again, the graph

is bipartite. Each of π1 and π2 is split into the irreducible representations of D̂k.

These are the nodes of the affine D̂k Dynkin diagram. If we tensor these with the

fundamental representation (the one given by the canonical embedding in SU(2)),

the product rules of the representations reproduces the Dynkin diagram of the affine

D̂k group. This observation was fundamental for the understanding of dualities.

The quiver is shown in the following figure. Since the A fields are chosen not to

transform under Γ, they necessarily connect the same representation of the group Γ,

between the nodes on the top and bottom of the figure (these are the ones associated

to π1, π2).

Again, we can decompose the V 1
µ according to the irreducible representations of

D̂k, of the form

V 1
µ → diag(V 1

µ [Ri]) (3.21)

4Note that the transformation (A,B) → (−A,−B) corresponds to a gauge transformation, hence

a diagonal Z2n action (j = k) is equivalent to a Zn orbifold.
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1

2 2 2 2 2

1

1 1

1

2 2 2 2 2

1

1 1

Figure 2: Quiver diagram for the QABJM/D̂k orbifold algebra. The labels on top of the

representations indicate the dimension of the irreducible of D̂k that the node is associated

to. The arrows pointing downward come in pairs and transform as a doublet of the unbroken

SU(2) global symmetry.

The difference with the previous case is that the Ri have different dimension. In the

decomposition pictured above, we have that V 1
µ [Ri] is proportional to the identity of

the group algebra times an N1i ×N1i matrix. When evaluating the action, we have

to take the trace over both the N1i ×N1i matrix and the group algebra. The level of

the R1
i block is given by

k1Ri
= dim(Ri)k (3.22)

Similarly, we find that the levels for the V 2
µ splitting are given by

k2Ri
= −dim(Ri)k (3.23)

This is similar to the patterns of gauge coupling constants in orbifold theories of

D-brane models with Yang-Mills interactions, where gi
−2 = dim(Ri)g

−2.

The Ê series of discrete subgroups of SU(2) is also easy to draw, it follows the

same pattern of the D̂ series. The example of the D̂ series is enough to understand

the broad patterns of behavior. The levels of the Chern-Simons orbifold theories are

kaR = dim(R)ka, where ka are the levels of the parent theory.

For all of these theories the superpotential and the lagrangian are the same as

those of the parent theory. The algebraic constraints imposed on the solutions (these

can also be thought of as states) distinguish the theories amongst each other.

4. Chiral operators and BPS states on the cylinder

Conformal field theories in d+ 1 dimensions can be characterized by the correlation

functions of operators in the vacuum. In such theories there is in general an operator

state correspondence that makes it possible to equate operator insertions at the origin

with the spectrum of the conformal field theory compactified on a cylinder, whose

base is a sphere Sd. Such a compactification has a manifest SO(d+1)×R symmetry
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from isometries of the sphere and time translations. This symmetry makes it very

amenable to study the system by Hamiltonian methods. Also, the presence of a finite

box implies that the spectrum of the cylinder Hamiltonian is discrete and therefore

semiclassical methods can provide a good starting point to analyze the theories.

In the presence of N = 2 supersymmetries in three dimensional conformal theo-

ries, there is additionally an SO(2) R-charge symmetry and a unitarity bound that

makes state energies greater than or equal to their R-charge. States that saturate this

inequality preserve some of the supersymmetries (they are BPS) and when quantized

they generate the chiral ring of the theory. Knowledge of the chiral ring translates

directly into understanding the exact geometry of the moduli space of the theory.

This point of view has been explained recently in detail in [15]. We will follow the

ideas presented there to perform the calculation of the chiral ring of the orbifold

theories we have considered so far. The advantage of this formulation is that it can

be applied in the presence of magnetic monopole operators and that it can resolve

subtle details of the geometry of moduli space.

The details follow the analysis in [39, 6, 15] (for other recent work, see [16]). For

the ABJM theory, the complete analysis was done in [15]. Here, we can follow similar

steps. The analysis is not changed substantially so long as all fields have canonical

dimension and R-charge. For orbifolds this is automatic. Moreover, for orbifolds the

main part of the analysis can be done in the parent theory or in the orbifold field

theory without change. It is when we get to details of the solutions to the chiral ring

classical states that the differences become apparent.

The first step is to go from the lagrangian formulation to the canonical quantiza-

tion of the theory. This is done most simply for the matter fields in the gauge A0 = 0.

We only need to use the scalar lagrangian since we are going to look at semiclassical

solution of the theory. For the Chern-Simons fields, since the lagrangian is of first

order type, the Legendre transform of the term with first order time derivatives van-

ishes. We are left with a constraint whose Lagrange multiplier is A0, hence it also

vanishes. The only contributions of the gauge fields to the energy is via the terms in

the lagrangian that involve the matter fields. There is also a Poisson structure for

the gauge fields that is important for recovering the gauge field equations of motion

from the Hamiltonian.

Since the fields are complex, the kinetic term for the matter fields is given by

K =

∫

S2

tr(ΠφΠφ̄) (4.1)

where Πφ is the canonical conjugate variable to the field φ. If we choose a gauge

A0 6= 0, then one gets a different set of expressions that reflect the minimal coupling

of the field to the gauge connection. The potential includes a gradient term of the

fields given by

Vgradient =

∫

S2

tr(Dφ(Dφ)†) (4.2)
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where D are gauge covariant derivatives along the sphere. We also have an effective

mass term from the conformal coupling of the scalars to the background curvature

of the sphere. In units where the sphere is of radius one, we have that this is equal

to

Vconformal mass =

∫ 2

S

1

4
tr(φ̄φ) (4.3)

For an s-wave mode on the sphere on a trivial gauge background, the corresponding

frequency of the oscillator is given by w2 = 1/4, so that w = 1/2. This reflects the fact

that a free scalar field has dimension 1/2 in three dimensions. These expressions are

independent of which orbifold we are choosing: the schematic form of the lagrangian

is the same, and the dimensions of fields do not change. The interpretation of the

group algebra constraints change between theories, but at this level they eliminate

fields and their canonical conjugates in pairs.

There are additional terms in the lagrangian from the potential of the theory.

If we use the superspace appropriate for N = 2 supersymmetry in three dimensions

(the same standard superspace of four dimensions), then it is convenient to write the

interaction potential as

Vpotential ∼ tr([σ, φ][σ, φ̄]) + |Wφ|2 (4.4)

which makes manifest the fact that it is a sum of squares. Again, this expression is

independent of the orbifold constrains. The components of φ that can be non-zero

vary between models, but the action and the Hamiltonian is identical to the one of

the ABJM model. These are simply constraints on the fields.

Each of the chiral scalar fields has R-charge one half, as inherited from the parent

ABJM theory. This means that the R-charge is given by

QR =
∑

φ

∫

S2

tr(
i

2
Πφφ− i

2
Πφ̄φ̄) (4.5)

This generates R-charge rotations by Poisson brackets

δRφ ∼ {QR, φ}PB (4.6)

If we consider the BPS unitary inequality H −Q ≥ 0, we can look for solutions that

saturate this inequality. It is easy to show that

K + Vconformal mass −QR =

∫

tr(ΠφΠφ̄ +
1

4
φ̄φ)−QR =

∫

tr(

∣

∣

∣

∣

Πφ̄ −
i

2
φ

∣

∣

∣

∣

2

) (4.7)

So that when we consider H − QR = 0, we find that H − QR is a sum of squares.

Each of these has to vanish.
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These result in the following sets of equations

Dφ = 0 (4.8)

Wφ = [σ, φ] = 0 (4.9)

Πφ̄ = φ̇ =
i

2
φ (4.10)

The first equation says that the scalar field is covariantly constant on the sphere.

These equations imply that φ is spherically symmetric. If we supplement these

conditions with the equations of motion of the gauge field ,the equation of motion

of A0 implies that the gauge field curvature Fθϕ is also covariantly constant in the

sphere. The Aθ and Aϕ equations imply F i0 = 0, which in our gauge choice, reduces

to Ȧi = 0. The second line above indicates that the interaction potential vanishes.

This is the condition that needs to be satisfied by a solution of the moduli space

of vacua of the theory on flat space in order to have a supersymmetric vacuum. Since

the field is covariantly constant on the sphere, this implies that the field is constant

in an appropriate gauge as an initial condition. The first order equations indicate

that the field remains constant after evolution in the gauge A0 = 0, so the initial

gauge condition is compatible with the gauge A0 = 0 that we chose previously.

Putting these results together, we find that the BPS classical configuration are

classically in correspondence with points in the moduli space of vacua of the theory.

Notice that we have to be careful because we have not completely analyzed the gauge

redundancies and how they affect this correspondence. This is especially important

when quantizing the results. At the classical level the gauge redundancy of solutions

is not as important to describe the dynamics.

If we include the Gauss’ law constraints, (the equation of motion of A0), we find

that the magnetic field is covariantly constant and given by the current of schematic

form

kF = (φΠφ − Π̄φφ̄) ∼
i

2
φφ̄ (4.11)

where we have assumed φ is in the fundamental and we have used the BPS equa-

tions of motion. For the antifundamental, signs and ordering are reversed. Both

contribute. Remember that F is a matrix, as well as Π, φ. To take into account both

possibilities, this can be written as the following matrix equation

kFv =
i

2
πv[φ, φ̄] (4.12)

One of the products will be zero in the quiver algebra because of the projector πv.

The notation includes implicit matrix multiplication, which also affects the ordering

of the fields. These covariantly constant solutions of the magnetic field are also

solutions of the Yang-Mills equation in two dimensions. The magnetic fluxes are

quantized at the classical level as originally shown by Atiyah and Bott [40].
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So the program is clear: we need to first evaluate the classical vacuum equations

of the field theory in flat space. We then need to impose these as initial conditions of

the theory. The manifold of initial conditions has a Poisson structure. It is induced

from the first order equations of motion treated as constraints. Since Πφ ∼ φ̄, we see

that φ̄ becomes canonically conjugate to φ in a well defined sense.

This means that the Poisson structure of initial conditions makes the holomor-

phic variables a complete set of commuting coordinates. This lets us perform a

holomorphic quantization of the moduli space of vacua: wave functions are holo-

morphic wave functions. These are supplemented by a measure that we will not

determine 5

These wave functions also need to be single valued, which places constraints on

them. These holomorphic wavefunctions end up describing the full structure of the

chiral ring in the ABJM case [6, 15]. This lets one study the exact topology of the

moduli space of vacua: the chiral ring is assumed to be the complete set of order

parameters classifying the vacua of a supersymmetric theory.

There are two ways to proceed now. We can either analyze the quiver theory

of the orbifold or we can analyze the theory in the parent theory and impose the

projection conditions, and recover the same information. Both ways of proceeding

will give the same answer in this case. We will show how this works in a particular

example in a lot of detail by working directly in the orbifold theory. We will then

see what implications the second formulation has in the case of non-abelian orbifolds

where it is more convenient.

5. A quiver example in complete detail

5.1 The BKKS example

We consider a modification of the ABJM theory [3] with G =
∏2n

i=1 U(Ni), described

by Benna et al. in [32]. We will call this model the BKKS model for simplicity. The

field content and conventions are mostly from [32]. The quiver is given by

The orbifold acts on the A1,2 and B1,2 superfields by a Zn action. The generator

of Zn g acts by sending

A1 → η1/2A1 (5.1)

B1 → η1/2B1 (5.2)

A2 → η−1/2A2 (5.3)

B2 → η−1/2B2 (5.4)

5These measures can be calculated in a semiclassical limit [41, 42, 43, 6], and based on the

structures found generalizations can be made to other setups [44]. The calculated measure can be

used to match other calculations that can be done at weak coupling in three dimensional theories[6],

but it is not understood how to calculate these measures at strong coupling.
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W W W W W

+, 2l +, 2l+2 +,2l+4

-, 2l-1 -, 2l+1 -, 2l+3

Figure 3: Quiver diagram the BKKS orbifold. The nodes are numbered and are given a

sign: the sign of the Chern-Simons level.

where η = exp(2πi/n). Notice that this is a Zn action, because gn acts as the gauge

transformation (−1). Indeed, the gauge transformations let us do any of the following

identifications

A1 → exp(iφ)η1/2A1 (5.5)

B1 → exp(−iφ)η1/2B1 (5.6)

A2 → exp(iφ)η−1/2A2 (5.7)

B2 → exp(−iφ)η−1/2B2 (5.8)

with the same field content. There is one simple choice of phases as follows

A1 → ηA1

B1 → B1

A2 → A2

B2 → η−1B2 (5.9)

which shows more clearly that we have a Zn action, but it is less symmetric. These

choices are equivalent.

The graph is Identified at both ends: node 0 and node 2n are the same. From

the picture the superfields transform as

Z2l → U2l+1Z2lU
†
2l,

W2l → U2lW2lU
†
2l+1,

Z2l−1 → U2l−1Z2l−1U
†
2l,

W2l−1 → U2lW2l−1U
†
2l−1. (5.10)

And their components in the superspace expansion are

Zl = Zl +
√
2θζl + θ2Fl,

Wl =Wl +
√
2θωl + θ2Gl,

Z̄l = Z†
l −

√
2θ̄ζ†l − θ̄2F †

l ,

W̄l =W †
l −

√
2θ̄ω†

l − θ̄2G†
l . (5.11)
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As we are interested in the moduli space then, the relevant terms in the action are

those of the scalars (we omit terms that involve fermions)

SCS =
κ

4π

∫

d3xTr
[

n
∑

l=1

(LCS(V2l−1)− LCS(V2l)− 4D2l−1σ2l−1 + 4D2lσ2l)
]

,

Smat =

∫

d3xTr
[

n
∑

l=1

|∇Zl|2 + |∇Wl|2

(F †
2l−1F2l−1 + Z†

2l−1D2l−1Z2l−1 − Z†
2l−1Z2l−1D2l

− Z†
2l−1σ

2
2l−1Z2l−1 − Z†

2l−1Z2l−1σ
2
2l + 2Z†

2l−1σ2l−1Z2l−1σ2l

+ G†
2l−1G2l−1 +W †

2l−1D2lW2l−1 −W †
2l−1W2l−1D2l−1

− W †
2l−1σ

2
2lW2l−1 −W †

2l−1W2l−1σ
2
2l−1 + 2W †

2l−1σ2lW2l−1σ2l−1

+ F †
2lF2l + Z†

2lD2l+1Z2l − Z†
2lZ2lD2l

− Z†
2lσ

2
2l+1Z2l − Z†

2lZ2lσ
2
2l + 2Z†

2lσ2l+1Z2lσ2l+1

+ G†
2lG2l +W †

2lD2lW2l −W †
2lW2lD2l+1

− W †
2lσ

2
2lW2l −W †

2lW2lσ
2
2l+1 + 2W †

2lσ2lW2lσ2l+1)
]

Spot =
L

2

∫

d3xTr
[

n
∑

l=1

(F2l−1W2lZ2lW2l−1 + Z2l−1W2lF2lW2l−1 (5.12)

+ Z2l−1G2lZ2lW2l−1 + Z2l−1W2lZ2lG2l−1)

−
n
∑

l=1

(F2lW2lZ2l+1W2l+1 + Z2lW2lF2l+1W2l+1 + Z2lG2lZ2l+1W2l+1 + Z2lW2lZ2l+1G2l+1)

+
n
∑

l=1

(F †
2lW

†
2l+1Z

†
2l+1W

†
2l + Z†

2lW
†
2l+1F

†
2l+1W

†
2l + Z†

2lG
†
2l+1Z

†
2l+1W

†
2l + Z†

2lW
†
2l+1Z

†
2l+1G

†
2l)

−
n
∑

l=1

(F †
2l−1W

†
2l−1Z

†
2lW

†
2l + Z†

2l−1W
†
2l−1F

†
2lW

†
2l + Z†

2l−1G
†
2l−1Z

†
2lW

†
2l + Z†

2l−1W
†
2l−1Z

†
2lG

†
2l)
]

Where 2n+ 1 ∼ 1 and 0 ∼ 2n. Solving the equations for the auxiliar fields gives

F †
2l−1 =

L

2

(

W2l−1Z2l−2W2l−2 −W2lZ2lW2l−1

)

F †
2l =

L

2

(

W2lZ2l+1W2l+1 −W2l−1Z2l−1W2l

)

G†
2l−1 =

L

2

(

Z2l−2W2l−2Z2l−1 − Z2l−1W2lZ2l

)

G†
2l =

L

2

(

Z2l+1W2l+1Z2l − Z2lW2l−1Z2l−1

)

σ2l =
1

4K

[

Z†
2l−1Z2l−1 −W2l−1W

†
2l−1 + Z†

2lZ2l −W2lW
†
2l

]

σ2l−1 =
1

4K

[

Z2l−1Z
†
2l−1 −W †

2l−1W2l−1 + Z2l−2Z
†
2l−2 −W †

2l−2W2l−2

]

(5.13)
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5.2 The moduli space

As was described in the previous section, we need to compute the moduli space of

the theory. After this is calculated, we need to impose the equations of motion of

the gauge fields and the flux quantization. First we need to solve the equations

F = F † = G = G† = 0 and

σ2l−1Z2l−1 − Z2l−1σ2l = 0,

σ2lW2l−1 −W2l−1σ2l−1 = 0,

σ2l+1Z2l − Z2lσ2l = 0,

W2lσ2l+1 − σ2lW2l = 0. (5.14)

These equations describe the minimum of the potential. We will show how this is a

lot easier by constructing the algebra of the quiver, rather than trying to solve them

as they appear above.

So, we define the set of projectors {πi}i=1,...,2n which are associated with the nodes

of the quiver and which satisfy πiπj = δijπj. Since the quiver has a Zn symmetry of

cyclic permutation of + nodes and − nodes, it is convenient to define the monomials

ς+ =
∑n

i=1 η
iπ2i η = e

2iπ
n (5.15)

ς− =
∑n

i=1 η
(2i+1)/2π2i+1 (5.16)

The ς+ and ς− transform by phases when we act with the permutation of the nodes.

Clearly we can invert this formulae

π2k =
1

n

n
∑

j=1

η−jk(ς+)j (5.17)

π2k+1 =
1

n

n
∑

j=1

η−(2j+1)k/2(ς−)j (5.18)

Notice also that (ς+)n = π+, and (ς−)n = −π−, these are the projectors on the

even/odd nodes respectively, and that ς+ς− = ς−ς+ = 0.

Consider now an algebra with two projectors π+, π− and a group Zn generated

by g (so that eng = 1), with the relations [eg, π] = 0. It is easy to see that this algebra

is equivalent to the one generated by ς+, ς−, with the following identifications

eg = ς+ + η1/2ς− , (ς+)n = π+, (ς−)n = −π− (5.19)

Then, we put the Z and W operators in some element of the path algebra, say

ξ, such that

π2lξ = 0 π2l+1ξ = ξπ2l + ξπ2l+2 π2l+1ξπ2l = Z2l π2l+1ξπ2l+2 = Z2l+1

(5.20)
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Likewise

π2l+1ω = 0 π2lω = ωπ2l+1 + ωπ2l−1 π2lωπ2l+1 =W2l π2lωπ2l−1 = W2l−1

(5.21)

We should split these into their even and odd part, as follows

n−1
∑

l=0

π2l+1ξPπ2l = ξe

n−1
∑

l=0

π2l+1ξπ2l+2 = ξo (5.22)

n−1
∑

l=0

π2lωπ2l+1 = ωe

n−1
∑

l=0

π2lωπ2l−1 = ωo (5.23)

After using these symbols and the formal algebra manipulations, we can express all

F-term conditions as

ωeξeωo = ωoξeωe

ωeξoωo = ωoξoωe

ξoωoξe = ξeωoξo

ξoωeξe = ξeωeξo (5.24)

Notice that in this formulation, we have set up the following matrices made of the Z

ξe =





























0 0 0 0 · · · 0 0 Z2n

0 0 0 0 · · · 0 0 0

0 Z2 0 0 · · · 0 0 0

0 0 0 0 · · · 0 0 0

0 0 0 Z4 · · · 0 0 0
...

...
... 0

. . . 0 · · · 0

0 0 0 0 · · · Z2n−2 0 0

0 0 0 0 · · · 0 0 0





























ξo =





















0 Z1 0 0 · · · 0

0 0 0 0 · · · 0

0 0 0 Z3 · · · 0
...

...
... 0

. . .
...

0 0 0 0 · · · Z2n−1

0 0 0 0 · · · 0





















(5.25)

so that they are off-diagonal connecting the various vector spaces that we have set

up in each node. The multiplications with projectors encode just which off-diagonal

blocks are occupied and which are empty. We have done something similar with the

W , and called it ω.

On the other hand, the D-term conditions are expressed as

[Σ, ωe] = [Σ, ξe] = [Σ, ωo] = [Σ, ξo] = 0 (5.26)

where

Σ =
1

4K

(

ξoξ
†
o + ξeξ

†
e − ω†

oωo − ω†
eωe + ξ†oξo + ξ†eξe − ωoω

†
o − ωeω

†
e

)

(5.27)

It is easy to check that with eg = ς+ + η1/2ς−, eg−1 = en−1
g , A1 = ξe, A

2 = ξo,

B1 = ωo, B
2 = ωe, then the quiver algebra spanned by the variables Zl and Wl
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is identical to the crossed product algebra of the Zn orbifold. That is A ⊠ Zn,

where A is the ABJM C∗ algebra spanned by A,B. The product between elements

a⋊ eg, a
′ ⋊ eg′ ∈ Ac ⊠ Zn is given by

(a⋊ eg)(a
′
⋊ eg′) = aega

′eg−1 ⋊ egeg′ . (5.28)

Moreover, the equations of motion describing the moduli space are the same equations

of motion that one would obtain for the ABJM model. So not only do we recover the

off-shell crossed product algebra from the quiver, we can also recover the equations

of motion that describe the moduli space in the parent theory when we impose that

we are in a vacuum configuration.

These equations are also algebraic in nature: they are matrix equations which

involve only sums and matrix multiplications, so the theory of algebra represen-

tations can help solve the problem. In particular, notice that the ABJM algebra

A is a subalgebra of the crossed product algebra. Thus any representation of the

crossed product algebra (with vacuum constraints) is automatically a representation

of the ABJM model (with vacuum constraints). Since the vacuum constraints are

equivariant, we can build repesentations of the crossed product algebra by induc-

ing representations of the orbifold vacuum solutions from solutions (representations)

of the ABJM model. This essentially reduces to the method of images in orbifold

setups.

5.2.1 The regular representation

The idea now is to build the general representation of the vacuum equations of

the ABJM orbifold models from solutions of the ABJM theory for a generic case.

The structure that we need resembles the analysis of four dimensional theories very

closely. This has been discussed in [19], where it is observed that the dimension

of the moduli space for a single brane is one complex dimension bigger than in the

case of four dimensional theories, and that the extra dimension is fibered over a base

which is the moduli space of the associated four dimensional quantum field theory.

Thus, we need to explore how this structure can be analyzed in detail and how it

plays a role in our understanding of the system.

Let us begin with the ABJM vacuum representations. It has been shown in [19,

6, 15] that the U(N)× U(N) ABJM model vacuum solutions have a decomposition

into N copies of the U(1) × U(1) model: this is a direct sum of two dimensional

representations of the algebra A. For the U(1)×U(1) model, we can choose A1,2, B1,2

to be parametrized by arbitrary complex numbers.

Thus the general solution will be of the form of block-diagonal matrices as follows

A1,2 ∼ diag(a1,2i )⊗
(

0 1

0 0

)

B1,2 ∼ diag(b1,2i )⊗
(

0 0

1 0

)

(5.29)
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There is a (U(1)× U(1))N block of continuous gauge transformations that preserve

this block decomposition acts as follows

a1,2i → exp(iφi)a
1,2
i (5.30)

b1,2i → exp(−iφi)b
1,2
i (5.31)

where φi = χ1
i − χ2

i is a sum of two phases, one in each one of the two U(1) gauge

groups associated to an eigenvalue. This is the ’unbroken’ gauge group associated to

each of the image branes. This is not the same as the unbroken gauge group of the

configuration, although it seems similar. This is the gauge freedom of defining the

basis as ‘eigenvalues’ of the A,B matrices. This gets frozen when we act with the

group Γ and require that Γ commute with the A in particular ways, so that the ai’s

are related to each other. Some of these phases can survive as the unbroken gauge

group of the orbifold theory.

We have to be careful with these gauge transformations. As we have noticed

before, the group of automorphisms of the orbifold might close onto a gauge trans-

formation. This will be very important for us later on when we discuss the structure

of singularities. Because of this, we need objects that have less gauge freedom to tie

the analysis down.

Consider for example the composite mesons AsBt + BtAs where s, t ∈ {1, 2}.
The sum is there because we are using matrix multiplication and we think of these

as matrices (operators) on a Hilbert space H, so the order of multiplication matters.

The coordinates of these on a U(1)× U(1) brane are

Ws,t = AsBt +BtAs =

(

asbt 0

0 asbt

)

(5.32)

where we are keeping the convention of having one vector space of dimension one

for each node in the quiver (this is what the U(1) × U(1) indicates us to do). The

operators Ws,t generate the center of the conifold algebra Ac

ZAc = 〈Ws,t〉 (5.33)

hence these matrices are diagonal and proportional to the identity in irreducible

representations. The proportionality constant is complex.

Moreover, these are gauge invariant under the U(1)×U(1) group. Variables like

this generates the center of the ABJM C∗ algebra. Other examples are

A1(A1)† + (A1)†A1 ≃
(|a1|2 0

0 |a1|2
)

(5.34)

which is clearly hermitian.

The gauge transformation (5.30) does not affect these diagonal variables. Thus

on these objects the action of the Zn algebra can be defined unambiguously (not up

to a gauge transformation).
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For example, as mentioned earlier, the variables Ws,t are holomorphic, and the

relations between them are those of the conifold

W1,1W2,2 = W1,2W2,1 (5.35)

Indeed, if we were solving the problem in four dimensions, this would completely

characterize the representation theory content of points in the moduli space. This

is what one does for the conifold field theory of Klebanov and Witten [34] and was

analyzed using these techniques in [39]. The idea of using the center of the algebra

to describe the moduli spaces of branes was developed in [28], but it was used in the

holomorphic context only. In this case we need to also consider the real structure

that is imposed on us from some of the equations describing the moduli space of

vacua.

Also, the traces of W[r] are gauge invariant polynomials in the field theory.

These would describe the (mesonic) chiral ring operators of the conifold theory in

four dimensions and their vevs parametrize the moduli space of vacua. These same

polynomials form part of the chiral ring of the three dimensional field theory as well.

However, there are other non-perturbative contributions that complete the chiral

ring and are magnetic monopole operators. Without them one cannot understand

the full moduli space. One would get the same results as the four dimensional theory.

Our purpose is to address these non-perturbative operators systematically later on.

Given these holomorphic W variables, it is natural to consider how the Zn orb-

ifold acts on them. We clearly see that

W1,1 → η W1,1 (5.36)

W1,2 → W1,2 (5.37)

W2,1 → W2,1 (5.38)

W2,2 → η−1W2,2 (5.39)

These types of orbifolds of the conifold in four dimensions have been analyzed in the

work [45]. Here we give a more complete algebraic characterization of various features

of the Calabi-Yau geometry, from the point of view of algebra representations.

The center of the orbifold algebra A ⊠ Zn is generated by the elements of ZA
which are invariant under the action of Zn. This happens often. Given that the

rephasings by η are to become gauged, the new set of invariants is given byW1,2,W2,1

and

U = (W1,1)n (5.40)

V = (W2,2)n (5.41)

Z = W1,1W2,2 = W1,2W2,1 (5.42)
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notice that the variable Z becomes redundant because of the original conifold equa-

tions. The new relations between the variables is

UV = (W1,2W2,1)n (5.43)

However, we can understand how these variables describe the moduli space a lot

better if we think of them in terms of the representation theory of the orbifold

algebra.

What we need to do now is understand how the representations of the moduli

space algebra can be characterized by these numbers. In particular, we can always

choose a gauge where the W are diagonal. Now we want to analyze how to put

various representations together into representations of the crossed product algebra.

Making W diagonal reflects a choice of basis on our representation space H. In

this basis, if the W are generic, they are invertible and any element of the group

action changes at least one of the W variables. This is, it is associated to an orbit

where the subgroup that leaves the point fixed is the trivial one. If our basis is

labeled by the eigenvalues of W, we have that

Wi,j |w〉 = wi,j|w〉 (5.44)

where the wi,j are now the eigenvalues. Given one such |w〉, we can act with the

group element g to find that

Wi.j(eg|w〉) = eg(W
i,j)g|w〉 = eg(w

ij)g|w〉 = (wij)g(eg|w〉) (5.45)

where Wg denotes the W that is obtained by the action of the group element g as

described by equation (5.39). Notice that in the generic case we are describing, all

of these kets are linearly independent, because their eigenvalues with respect to the

commuting W are different for at least one such variable.

Starting from a single ket |w〉, we find that the action of the group generates

images of |w〉 characterized exactly by the label of group elements g. Moreover, we

find that the action of the group on this basis is by permutations that exactly follow

the group multiplication. This is, the typical irreducible (generated by |w〉) can be

labeled by the group elements g ∈ Γ, and the action of Γ on these states is the same

action of Γ on Γ itself: by permutations. This representation of the discrete group

algebra is the group algebra CΓ itself as a left module over CΓ. This is called the

regular representation of the group. If we decompose it into irreducibles, we find

always that

CΓ ≃
∑

i∈irreps(Γ)

dim(Ri)Ri (5.46)

where CΓ contains each irreducible representation Ri of Γ dim(Ri) times. This can

be found in standard texts in representation theory of finite groups, (see [46], p. 17

for example).
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In the ABJM model, for each |w〉 with fixed eigenvalues under the W, we have

a two dimensional space, characterized by |w,±〉, where π+|w,+〉 = |w,+〉, and
π+|w,−〉 = 0. These are the two eigenspaces for the nodes of the ABJM quiver.

The argument we did above works for each of these two eigenspaces. Also notice

that it was not particularly important which group Γ we used. When we look at

this information and compare to the quiver diagrams presented in section ??, we

see that a bulk representation (generic) has ranks dim(Ri) on each of the ± nodes.

Remember that these also have levels proportional to dim(Ri).

Each of these eigenspaces of the W would be considered as a brane in the ABJM

or KW theory, where the brane positions are inferred from the wi,j eigenvalues. What

we see is that we have produced brane positions and their images in the conifold

geometry. This way of proceeding makes it clear that we can analyze the theory

with algebraic methods in a way that parallels very closely our geometric thinking

on orbifold spaces.

So far, we have only solved the gauge invariant holomorphic data for a single

brane. This would be enough to characterize the moduli space in four dimensional

gauge theories. However, the three dimensional case is more involved, as some of the

equations require real variables and the full C∗ algebra structure.

Notice now that if we consider the U,V variables, they have all the same eigen-

values for all the |w,±〉. Thus, on each of these solutions, these variables belong

to the center of the algebra. After all, they are proportional to the identity in any

irreducible representation. We have not show that these are irreducibles of the full

C
∗ algebra, but they are irreducibles of the solutions of the F -term equations.

Let us show that given this Hilbert space associated to the regular representation,

we can completely solve for the set of representations. This is, given the W,U,V as

scalar values, satisfying the relations we have described, we want to solve for A,B

variables.

By direct evaluation, we can find that W1,2 = a11b
2
1 = a12b

2
2 . . . . We can choose

the orbifold algebra to act also by leaving A1, B2 invariant (this corresponds to

choosing phases so that φ cancels the phase of η1/2). Denote the basis of the regular

representation by |wηj±〉, where wηj is the eigenvalue of W1.1. Then in this basis

A1|wηj+〉 = a1j |wηj−〉 (5.47)

since we choose Γ to act trivially on A1

(A1)g|wηj+〉 = a1j |wηj−〉 = a1j−1|wηj−〉 (5.48)

Thus, the a1i must be equal to each other, as well as the b2i . This reflects the fact

that we can do this operation also by a gauge transformation.

Given this information, we learn that W1,1 = diag(a1b1i ), and that the action of

the group on the W1,1 forces the b1j = b10η
−j, so that they are all the same up to a
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phase. Remember that once we make a gauge choice for A, there is no more freedom

on the B. So, in matrix notation, we have that A is block diagonal

A1 =















(

0 a1

0 0

)

0 . . .

0

(

0 a1

0 0

)

...

...
. . .

. . .















= a11⊗
(

0 1

0 0

)

(5.49)

and

B2 = b21⊗
(

0 0

1 0

)

(5.50)

We also get that

A2 = a2diag(ηj)⊗
(

0 1

0 0

)

B1 = b1diag(η−j)⊗
(

0 0

1 0

)

(5.51)

These are tensor products of the ’Clock’ matrix, times a matrix in the |±〉 basis.
Similarly, the group generator acts as

eg =













0 0 . . . 1

1 0 . . . 0

0 1
. . .

...
...
. . .

. . .













⊗
(

1 0

0 1

)

(5.52)

so it is a tensor product of a ’Shift’ matrix and the identity.

If we now choose a different basis, we can diagonalize eg into a clock matrix, and

then A2, B1 become shift matrices, giving us the usual quiver representation, where

the eigenstates of eg are the vector spaces associated to the nodes of quiver diagram.

This change of basis is a discrete Fourier transform6.

It is easy to check that these matrices suffice to reconstruct the W1,2,W2,1, and

that U,V can be computed easily. They all satisfy the relations that are needed, so

this gives a representation of the holomorphic part of the algebra.

In general supersymmetric theories we would expect the gauge group to be com-

plexified in the superfield formulation. However, this is usually fixed by imposing the

D-term constraints. In our setup, we find that the equations that replace the D-terms

are those that state that the auxiliary field of the gauge potential is composite

Σ ∼ A†A+ AA† − B†B − BB† (5.53)

Explicitly, we have that Σ is the set of usual D-terms of the field theory in four

dimensions. Since Σ commutes with A,B and it is real, it is proportional to the

6Indeed if we consider the quiver algebra spanned by ξ, ω and solve for representations of it,

imposing the D-term constraints (Σ ∼ 1), we arrive at the basis where the eg are diagonal.
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identity. Hence, all the D-terms for the (U(1)×U(1))N are the same: the only freedom

we have is in changing the scale of as, bs by a complexified gauge transformation, but

we can not do that independently at each node, because that would modify the

D-terms and we would not be able to satisfy [Σ, B] = [Σ, A] = 0.

Let us see how this argument would work in more detail. If we consider a four

dimensional theory, like the Klebanov-Witten conifold theory for the U(1) × U(1)

gauge group, the complexified gauge transformations can act on the fields as follows

A1,2 → exp(γ)A1,2 and B1,2 → exp(−γ)B1,2. The D-term equations of motion, that

are given by

|A|2 − |B|2 − α = 0 (5.54)

where α is a FI term that we fix to some value, need to vanish. Under these gauge

transformations we can set reference values where |A0|2 = |B0|2 = Ω/2. We can then

solve the D-term equations, by using a γ such that

Ω sinh(2γ) = α (5.55)

and since the function sinh covers the real line, there always exists a solution to this

equation. This gives us a parametrization of the moduli space.

Here, we find that in the case of three dimensional theories we are studying the

FI terms must all be essentially equal (the Chern-Simons level of the node appears as

part of the calculation). For each set of values of the α parameter, there is a unique

set of real exponents that solves the corresponding set of equations. However, these

are the complexified gauge transformations that commute with the action of Γ, so

they are diagonal in the basis where the action of Γ has been diagonalized. This is

different than the basis we chose above where the W are all diagonal. We still will

use the same letters to label the representations, with the understanding that there

is a linear transformation between the a1,2, and a discrete Fourier transform ã1,2, and

b1,2 gets also replaced by b̃1,2. In the quiver, these are the variables Z and W . The

D-term equations are given by

σ2l =
1

4K

[

Z†
2l−1Z2l−1 −W2l−1W

†
2l−1 + Z†

2lZ2l −W2lW
†
2l

]

(5.56)

and similar for σ2l+1. Given that the σ must all be equal to each other in an irre-

ducible representation (this is an application of Schur’s lemma, since Σ commutes

with everything), there is only one degree of freedom to tune, that is the value of σ

itself, on any one node.

So if the |A|2 and |B|2 are independent of the nodes that we are considering,

we obviously solve these equations, and this solution is unique for each σ. There

is still one real parameter γ that can be used on all A, B with the same weights

as the conifold which we are free to vary (the diagonal U(1) gauge transformation).

This parameter, and its corresponding complexified phase give us that the set of
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representations of the C∗ algebra is one complex dimension higher than the same

set of solutions in the four dimensional theory, for all setups that correspond to a

single brane. We explained this in section ??. This phase is a gauge redundancy at

the level of these fields. However, we know that moduli spaces should be complex,

so σ will end up complexified in the true moduli space. This has it’s source in the

dual scalar of the photon, whose vev is not manifestly present in the Chern-Simons

lagrangian formulation. However, just keeping this phase can account for it. In a

U(1) theory we fix the gauge of that dual scalar to a fixed value, leaving only discrete

gauge transformations that keep that dual scalar fixed.

Thus, the general brane is described by four complex numbers a1, a2, b1, b2. There

is one phase redundancy of gauge transformations. However, when we include the

Chern-Simons degrees of freedom, this becomes a discrete phase rather than a con-

tinuous one.

Notice also that if we fix a1, in the representation there is a discrete identification

(a1, a2, b1, b2) ∼ (ηa1, a2, b1, η−1b2) (5.57)

after a simple change of basis. We had a representation classified by these up to the

(cyclic) discrete permutations of the eigen-blocks of the A,B matrices that keep eg
invariant. This discrete identification is the fact that the discrete symmetry of the

original quiver was gauged, so that we can not tell apart a brane from its image.

So we have shown that the method of images lets us construct a solution of the

equations in the quotient theory by the method of images. That solution, for a single

brane in the bulk and its images, is an irreducible representation of the algebra. The

non-degeneracy of the eigenvalues of Wi,j guarantee this.

5.2.2 The singularities and fractional branes

The next step is to analyze what happens at the non-generic points of the ’orbifold of

the conifold’. These are the locus where theWi,j degenerate. This is a set of positions

where the Wi,j are repeated between a brane and its image. Such degeneracy implies

that there is a 1 6= g ∈ Γ that does not change the position of the brane in the

conifold. Indeed, it is a subgroup of Γ that has this property, and the fixed point is

an orbifold singularity. If at least one of theWi,j is non-zero, then this is not at the tip

of the cone, and we would expect locally that we have a curve of such singularities,

because the geometry is a cone and the group identifications are compatible with

rescalings in the cone. For the Calabi-Yau threefold, this corresponds locally to

a C2/Γ̃ × C∗ singularity. These are generally classified by ADE groups. In this

particular case, we get an An−1 singularity. The general wisdom is that a brane

hitting such a singularity will split according to the irreducible representations of

Γ̃ ⊂ Γ. This is easy to see. We started with the regular representation of Γ. When

we reach the singularity, the degeneracy of the subspaces are classified by the regular
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representation of Γ̃. This is because these subspaces are classified by the eigenvalues

of the W. The regular representation of Γ̃ splits these eigenspaces into irreducible

representations of Γ̃. One can show that these do not mix when we take into account

the rest of the group elements not in Γ, because the group Γ× Γ̃ acts naturally on Γ

by a left of action of Γ, and a right action of Γ̃. This guarantees that the actions can

be made compatible. For the abelian group we are considering it is always obvious.

The location of the singularities of the Calabi-yau three-fold can be understood

by noticing that these are singularities of the equations defining the Calabi-Yau

geometry. These are given by the locus

U = V = 0 W1,2W2,1 = 0 (5.58)

There are two such lines of singularities in our case. Those where W1,2 = 0, or those

where W2,1 = 0. Let us consider the second such locus first W2,1 = 0 = U = 0 =

V = 0. Having these set equal to zero gives us the following locations in terms of

the a1, a2, b1, b2 variables

a1b1 = a2b2 = a2b1 = 0 (5.59)

a1b2 6= 0 (5.60)

This makes us set a2 = 0 = b1. From the action given in equations (5.9), these are

exactly the locus where the action on the fields has a fixed point.

For the other singularity, we would have a1 = 0, b2 = 0 and we would at first

think that equation (5.9) would imply that it is not a fixed point. However, another

gauge transformation is possible that will let us keep A2, B1 fixed, while transforming

A1, B2 with phases. With respect to this action on the fields, the fields are a fixed

point of the orbifold group. This shows why it is so important to keep track of the

gauge redundancy when deciding if we have a fixed point of the orbifold action or

not.

These solutions with singularities give us a copy of C2 for each fractional brane

at a singularity. If we only keep the fields that are non-zero in the quiver, we see

that we get a picture as shown in figure 4

Z Z

W W

+, 2l +, 2l+2 +,2l+4

-, 2l-1 -, 2l+1 -, 2l+3

Z

W

+, 2l

-, 2l+1

Z

W

Z

W

+, 2l+2

-, 2l+3

W

Figure 4: Quiver with groups of nodes shaded according to vevs

There are n such nodes. The fact that some nodes are not connected, means

that the representation is reducible: we can not go from the vector spaces V joining

them by a non-zero map. The set of n irreducibles is exactly what we expect from
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brane fractionation at An−1 singularities [29]: there should be n irreducibles, one for

each blow-up cycle, and one extra for the extended root of the affine Dynkin diagram

of the An−1 system.

The arrows that are missing are the fields that can become massless when two of

these fractional branes are in the same position in the CY-geometry. If we contract

the shaded areas to points, these missing arrows would give us the quiver of the An−1

singularity.

Each of those blocks would correspond to a branch of moduli space for a U(1)×
U(1) subquiver7. Moreover, we can see easily that the vevs of the A,B fields can

be complete uncorrelated between the different fractional branes. Thus, there is no

unique a1, b2 characterizing them, instead there is one such value for each subquiver.

For the other set of singularities, the splitting is different, along the other diag-

onal cells in the quiver graph.

There is an extra potential set of singular solutions where U = V = W1,2 =

W2,1 = 0, which are characterized by either a1, a2 = 0, or by b1, b2 = 0. These

solutions in the four dimensional Klebanov-Witten theory would correspond to vacua

at the tip of the cone, unless the FI-terms are set to be different from zero. In such a

case, these would give rise to points in the exceptional divisor of the blow-up of the

conifold. The coordinates (a1, a2) (or (b1, b2) for a different choice of the FI-term)

would be the homogeneous coordinates on this CP1. Generically, these are not fixed

points of the orbifold group if a1 and a2 are different from zero. In the C
∗ algebra

setup, we see that the non-holomorphic coordinates a1a2∗ would be invariant under

the gauge transformations, but would transform, hence these are not fixed points

in the blow-up. And if one of them is zero, it is in the locus that the subquivers

described above cover. These singularities do not intersect in the blow-up, so there

is no additional fractionation.

This shows us a nice correspondence of the singularity structure of the Calabi-

Yau geometry associated to the four dimensional theory relative to the singularities of

the moduli space of the three dimensional theory. The two lines of An−1 singularities

in the Calabi-yau geometry become two copies of C2, with the same An−1 singularity

around them. In this case, these are all the singularities of the geometry that are

not the tip of the 4-dimensional complex geometry.

5.3 The complete moduli space

We have described how to build some solutions of the vacuum constraints of the

theory. For theories that have couplings of single trace type, there is a general recipe

to build the moduli space from the components we have studied so far [28]. The

7An equivalent way to see this is by looking at the simple modules of A ⊠ Zn at the singular

points of the moduli space. In these points we get a collection of irreducibles that are exactly the

fractional branes, lima2,b1→0 R(a1, a2, b1, b2) =
⊕n

l=1
Rl(a

1, b2).
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idea is that solutions of the vacuum equations for block diagonal matrices can be

obtained if every block satisfies these equations on its own.

We have classified the solutions in terms of representations of the quiver alge-

bra with vacuum relations. Let us call them Rα. The α are the parameters that

describe a particular irreducible representation of the quiver algebra (for example,

R(a1, a2, b1, b2), or Rl(â
1, b̂2) for the fractional branes), and they also contain discrete

labels for the fractional branes: the sublock of nodes of the quiver that the repre-

sentation covers. We have also kept one extra degree of freedom for each brane that

arises from dual photons on the theory. This vev does not have any implications

at the level of perturbation theory: for example, masses of off-diagonal fields are

independent of these phases, as can be seen very explicitly in the ABJM model [6].

Here, the same equations work by the method of images, as expected from general

features of the construction [29]. Given these blocks, one can build new solutions of

the equations of the vacuum by taking direct sums:

R = ⊕αRα (5.61)

This general solution by a representation of the algebra solves all the equations

of motion of the vacuum. The representation space has constraints from the ranks

of the gauge groups to be fixed, but are otherwise unconstrained.

For each brane there is a massless photon, and the dual scalar action can be used

in the low energy effective action. This is allowed since in the generic representation

of this set there are no massless charged particles. Thus, we need to remember that

for each brane there is a circle direction that is invisible in perturbation theory.

The labels α can vary for each brane, so the moduli space generically described

a collection of branes at various loci. The sum is unordered, because how to organize

blocks into matrices is a gauge choice. Thus, the general moduli space is a general-

ization of a symmetric product space, and give an appropriate notion of a symmetric

product for a non-commutative geometry [28]. It would be a standard symmetric

product if all branes could be exchanged with each other by motions in parame-

ter space. However, the process of brane fractionation involves processes where one

brane can split into many. These give rise to different branches in moduli space. The

simplest example of a variety with two branches meeting at the origin is the subset

of C2 characterized by the equation xy = 0. There are two branches, x = 0 and

y = 0, each of them a complex line. These two meet at the origin. A general system

of branes where branes can fractionate and give rise to new branches of moduli space

has a similar structure. This implies that in the chiral ring there will relations like

the one above, xy = 0, where x and y can be elements of the chiral ring, but not

their product.

These relations become rather complicated for the chiral ring of theories with

many branes. But if we know what the geometry of the moduli space looks like, then

– 37 –



the relations are implicit in the geometry. We will not address this issue further in

this paper.

Also, for each brane there are discrete phases that need to be taken into account.

These give identifications between the Rα parameters that we need to analyze further.

These can be conveniently described in terms of the chiral ring elements. We will

describe these in what follows.

5.4 The chiral ring

As described previously, the chiral ring can be obtained from a semiclassical quan-

tization of solutions of the BPS equations on the sphere (we quantize the space of

those solutions by wiring a wave function on them and counting the allowed wave-

functions). We will describe the chiral ring here in this manner, rather than as local

words on the elementary fields. The BPS equations force the fields to be spherically

symmetric and to evolve according to their R-charge.

Moreover, we saw that the classical solutions require that the scalar field expec-

tation values are in the moduli space of the theory in flat space. The semiclassical

quantization will place constraints that will determine the full topology of the moduli

space of vacua in the end. What we have calculated so far is a cover of the mod-

uli space of vacua, as there are possible identifications between configurations that

we have not described yet. We have already constructed the full basic structure of

moduli space. Since the moduli space of vacua has different branches, we need to

analyze these equations in different branches to obtain results.

The next step is to include the equations of motion of the Chern-Simons gauge

fields and to perform the correct holomorphic quantization of moduli space. In par-

ticular, we have found the wave functions on moduli space are naturally holomorphic.

So the chiral ring is identified exactly with holomorphic wave functions on moduli

space.

There is one last thing to consider. That is that the moduli space is a general-

ization of a symmetric product, which is a collection of representations with various

charges assigned to them: fractional branes have additional discrete charges. These

are counted by the rank of the different gauge groups.

This means that wave functions need to be symmetrized between components.

This symmetrization will be assumed throughout. It gives rise to a natural structure

in terms of products of traces (summing over branes). This is automatically invariant

when we permute branes. Thus, we can analyze the chiral ring one brane at time

and this description is sufficient for describing the whole chiral ring.

We will do this in what follows. First we need to verify what the classical

equations of motion say about the chiral ring classical BPS states.

When we consider the theory with the fields in S2 × R we get a coupling of

the background curvature to the scalars. Since on BPS configuration the potential

vanishes, the effective action on these reduced configurations can be without potential
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terms. Moreover, if we apply this to our case, ignoring fermionic and potential terms

the effective action on BPS states takes the form

S = − κ

4π

∫

dΩdτ

2n
∑

l=1

(−1)lǫµνλTr
(

A(l)
µ ∂νA

(l)
λ +

2i

3
A(l)

µ A
(l)
ν A

(l)
λ

)

−
∫

dΩdτ

2n
∑

l=1

Tr
(

(DµZl)
†DµZl + (DµWl)

†DµWl +
1

4
W †

l Wl +
1

4
Z†

l Zl

)

(5.62)

where

DµZ2l = ∇µZ2l + iA(2l+1)
µ Z2l − iZ2lA

(2l)
µ ,

DµZ2l−1 = ∇µZ2l−1 + iA(2l−11)
µ Z2l−1 − iZ2l−1A

(2l)
µ ,

DµW2l = ∇µW2l + iA(2l)
µ W2l − iW2lA

(2l+1)
µ ,

DµW2l−1 = ∇µW2l−1 + iA(2l)
µ W2l−1 − iW2l−1A

(2l−1)
µ , (5.63)

for spherically symmetric configurations

DiF
(l)
µν = 0 ∇iZl = ∇iWl = 0 ∀l i = ϕ, θ (5.64)

then F
(l)
0i = 0 and by gauge fixing A

(l)
0 = 0, and F

(l)
ϕθ = Φ̃(l), where Φ̃(l) is a diagonal

constant matrix. The magnetic fluxes Φ(l) =
∫

S2
Φ̃(l)

sin(θ)
are classically quantized.

For a single brane in the bulk, the BPS equations mandate that DµZl = DµWl =

0 for all l, and so Φ̃(l) = Φ̃ for all l. If the fluxes would not be the same the

matter would be charged under a magnetic monopole background and it would not

be spherically symmetric (monopole spherical harmonics carry spin). This is the

same reasoning found in [6, 15].

The equation of motion for A
(l)
µ vanishes identically for µ = θ, ϕ, the e.o.m for

µ = 0 gives

− κ

π sin(θ)
F

(2l)
θϕ = −iŻ†

2lZ2l + iW2lẆ
†
2l − iŻ†

2l−1Z2l−1 + iW2l−1Ẇ
†
2l−1 + h.c.,

κ

π sin(θ)
F

(2l−1)
θϕ = iŻ†

2l−2Z2l−2 − iW2l−2Ẇ
†
2l−2 + iŻ†

2l−1Z2l−1 − iW2l−1Ẇ
†
2l−1 + h.c.,(5.65)

In this prescription, the Z andW fields satisfy the equation of an harmonic oscillator

Ż = i1
2
Z, Ẇ = i1

2
W as they are of dimension 1

2
. Then

− κ

π sin(θ)
Φ̃ = −|Z2l|2 + |W2l|2 − |Z2l−1|2 + |W2l−1|2,

κ

π sin(θ)
Φ̃ = |Z2l−2|2 − |W2l−2|2 + |Z2l−1|2 − |W2l−1|2. (5.66)

where κ is the Chern-Simons level.
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When we are away from the singularities, we can substitute the solutions of these

equations for a brane in the bulk. These are characterized by a1, a2, b1, b2, so we find

that
κ

π
Φ =

∫

S2

|b|2 − |a|2 (5.67)

and in the Hamiltonian all of a1,2, b1,2 have the same frequency, ω = 1/2.

The effective Hamiltonian for these variables is of the form

Heff = (iΠaa + iΠbb) (5.68)

where Πa and Πb are the canonically conjugate momenta to the a, b variables. This

obviously reproduces the BPS equations of motion ȧ = ia/2, etc.

We also have to take into account the constraint (5.67). Moreover, we have

the identifications on the parameters a that are characterized by the discrete action

(5.57), or some equivalent identification that depends on a gauge choice for one

variable.

When replacing all the Z,W by their expressions in terms of a, b, we find that

the R-charge is given by

QR = n
(

−i ˙̄aa − i ˙̄bb
)

(5.69)

and comparing with Heff , we find that Πa = −in ˙̄a. This can be derived also by

direct substitution in the original lagrangian. The factor of n is here because we

have to sum over all Z,W identical factors.

The a commute with each other and with b on the set of BPS solutions, while

their complex conjugate variables have non-trivial commutation relations with a, b

on the reduced phase space of solutions (see [15] for more details). A holomorphic

quantization will give us polynomials in the a variables, while the canonical conjugate

momenta get represented by derivatives Πa ∼ i∂a.

As can be seen, the effective Hamiltonian is the same as that for a Harmonic

oscillator in four dimensions (four complex dimensions since we are on phase space),

and the natural variables are holomorphic. Thus, wave functions are polynomials in

the a, b, and the energy of a monomial is the degree of the monomial divided by two.

A typical wave function will be as follows

ψ ∼ (a1)k1(a2)k2(b1)m1(b2)m2 (5.70)

Since the system has an extra U(1)3 symmetry, we can choose wave functions that are

eigenfunctions of these U(1) charges (they count the number of a1,2, b1,2) and these

are just monomials. However, not all of these are allowed. There are constraints that

need to be satisfied.

First, for the standard integral quantization of the magnetic flux requires that
∫

S2
Φ̃

sin(θ)
= 2πm, from which

κm =
1

n
(k1 + k2 −m1 −m2) (5.71)
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so that k1+ k2−m1 −m2 is a multiple of κn. This combines the classical integrality

of the magnetic flux with the integral quantization of harmonic oscillator wave func-

tions. As shown in [15], one can also have fractional flux on all fluxes simultaneously.

This enlarges slightly the space of possibilities. The detailed study of the fractional

flux configurations is beyond the scope of the present paper, suffice to say, these are

described by D4-branes in the dual theory and gives rise to a discrete fibration over

a symmetric product of the orbifolded space.

Similarly, the other identification from redundancy of the representation content

should impose that the wave function is single valued under those replacements (the

same prescription was used in [42, 43]). This forces us to havem2−k1 being a multiple

of n. Thus, the allowed polynomials are those that correspond to the invariant ring

of C4 under the following two actions

(a1, a2, b1, b2) → (βa1, βa2, β−1b1, β−1b2) (5.72)

(a1, a2, b1, b2) → (ηa1, a2, b1, η−1b2) (5.73)

where βnκ = ηn = 1 are primitive roots of unity.

This is, we describe this way a single brane on the quotient space C4/Zκn × Zn.

When we have many representations, the flux quantization is done on each of them

independently. This result was obtained first in [27, 18].

For the case m = 1, the minimal energy solutions have k1 + k2 = κn and

m1 = m2 = 0. The energy of this state is κn. Also, k1 − k2 should be a multiple of

n. The simplest solution has k1 = κn, k2 = 0.

This covers the chiral ring elements that on the cylinder probe the ’brane in the

bulk’ solutions. There are also the chiral ring elements that probe the fractional

brane branches. These are classical solutions in a subquiver with group U(1)×U(1),
and can also be analyzed easily.

In this subquiver, we have variables ã1i , b̃
2
i for only one i 6= 0. Again, the effective

Hamiltonian will be that for a harmonic oscillator in two dimensional phase space

(we only have two coordinates).

The flux quantization condition becomes

κm = n1 −m2 (5.74)

which shows that the allowed monomials are given by (ã1i )
n1(b̃2i )

n2, and that n1−m2

are a multiple of κ, the level. This is the same reasoning for all the possible fractional

brane representations parametrized by i. There is a similar set of states for the other

singularities. Again, the simplest operator with non-zero flux appears for m = 1,

and n1 = κ, while m2 = 0.

This means that the fractional brane branch corresponds to the invariant ring of

a C2/Zκ quotient, without a factor of κn appearing in it. Notice that the only states

that can sense the multiples of κ have flux and are therefore associated to monopole

operators.
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When this fractional branch is considered, there is monodromy along the circle

fiber with respect to the branes in the bulk, since in the bulk the circle fiber is divided

by κn, rather than just κ. This monodromy is similar to fractional branes in orbifolds

with discrete torsion [47] where a similar monodromy of fractional branes is encoun-

tered, except that in that case the monodromy is already visible with perturbative

gauge invariant operators and does not require monopole operators.

5.5 Matching monopole states to the AdS dual states

We have found quite a variety of solutions of the equations of motion of the fields

on a sphere that we can identify with states on the cylinder under quantization.

We want to compare these states to those that are expected from the AdS dual

theory on AdS4×S7/Zκn×Zn, where the Zκn acts along the Hopf fibration, and the

corresponding type IIA theory on AdS4 × CP
3/Zn with fluxes. Here, the CP

3 is the

base of the Hopf fibration of S7. The fiber of the Hopf-fibration is the circle of gauge

transformations that the dual photon makes physical. Hence, from the point of view

of the natural fields of the quiver, it is very closely related to gauge transformations

(see also [6]).

In terms of the a1, a2, b1, b2 coordinates that we have been describing so far, the

homogeneous coordinate ring of CP3 are formed by a1, a2, (b1)∗, (b2)∗, similar to how

the CP
3 coordinates of the ABJM model work. Notice that in the ABJM model the

matter fields associated to A,B∗ have the same gauge theory representation content.

Hence they can be grouped together, and their ratios can be considered to be gauge

independent.

In the type IIA picture, the operators that carry momentum along the Hopf fiber

have D0-brane charge. The coordinates a1,2, (b1,2)∗ carry positive charge, since they

have period one on the Hopf-fiber of CP3.

Also, for BPS states that are BPS with respect to our choice of N = 2 super-

charge, (b1,2)∗ have the opposite time dependence than a1,2. Thus, when we time

evolve the system, the homogenous coordinates on CP
3 change unless either a = 0

or b = 0.

We find that therefore the D0 brane charge should basically count the number

of a minus the number of b letters in a monomial. Such monomials require magnetic

flux. We therefore have to identify the uniform magnetic fluxes on the cylinder theory

to give rise to the D0 brane charge.

Given the topological classification of line bundles on a sphere, for each node

in the quiver diagram there is a determinant line bundle associated to it. The first

Chern class of that line bundle is the sum of the fluxes on each of the eigenvalues.

This is not allowed to change, as it is an invariant under homotopies. Therefore

we find that the total magnetic flux on each node is a topological invariant. These

should be associated to conserved charges in the theory. Because all of these fluxes
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add to the notion of D0 brane charge, we should identify magnetic fluxes with brane

charges.

Now, let us look at the tension of a D0 brane on AdS4 × S7/Zκn × Zn. A D0

brane can move along the Hopf fiber without any extra motion on the base, so from

the point of view of CP3, it will stay at a fixed position. Since the Hopf fiber is

reduced in size by a factor of 1/κn relative to a natural S7, the typical momentum

along the fiber is κn. This translates into an energy equal to κn/2 in AdS units.

This is exactly the energy of the simplest flux configuration we could find, associated

to a brane in the bulk.

However, not all positions of a D0 brane in the bulk correspond to a holomorphic

operator in the field theory. Only those where b = 0 correspond to BPS states that

saturate the correct BPS inequality. From the point of view of the type IIA theory,

the D0 branes see a magnetic field on the CP
3 base. There is a lowest Landau level

associated to these particles in a magnetic field. Since in this particular orbifold we

preserve an SO(4) R-charge, we find that the states in the lowest Landau level that

we are describing have maximal angular momentum. This is why they reside in a

submanifold of the set of possible D0-brane configurations.

If we excite some of the holomorphic b monomials, we end up in a situation where

the D0 brane moves. Again, this puts us in excited Landau levels, in the maximal

angular momentum band. Again, these states are near the locus of the D0-branes

that not move, until we go to very high excitations.

Notice that we can bring a BPS D0-brane near the orbifold singularities on CP
3.

At the singularity we expect the D0 branes to fractionate into n fractional branes.

Indeed, this is what we see. So we find that the total fluxes on the nodes of the

quiver must correspond to the number of fractional branes of each type.

Each of these should have a tension that is 1/n times the tension of D0 brane

in the bulk. This is exactly what we find. The simplest fractional brane solutions

carry R-charge equal to κ, rather than κn. Since the R-charge is equal to the energy

(tension) of the configuration, we find the expected result. Since we have an SO(4)

R-charge, these charges necessarily are quantized in half-integer units. This is why

the charge of a D0-brane in the bulk is n times larger than a naive guess would

have suggested: the fractional branes that combine to make it have charge that is a

multiple of κ. This explains why the orbifold where the branes move is in the end

for branes on C4/Zκn × Zn.

There are also solutions without magnetic flux that correspond to the ’fractional’

brane classical solutions. These just describe the expected massless modes arising

from twisted sector strings at the singularity [48, 47]. Since these don’t carry flux,

they can be expressed as words in elementary fields: they are perturbative solutions

of the theory with small energy.

We should also notice that the field theory permits us to have flux greater than

one on a single eigenvalue for fractional brane solutions. These indicate a bound
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state of fractional branes at the singularity. Such states are usually forbidden for

the theory on a flat space orbifold [49] (more information on the index computations

that are necessary for these statements can be found in [50]). Here, we see that

these solutions can not be deformed by a small parameter into two fractional branes

moving separately from each other (it requires a jump in flux from one eigenvalue

to another). This suggest that these bound states are separated from the set of

solutions with two fractional branes moving independently from each other by a

potential barrier. Happily, fuzzy spheres in string theory can provide such a barrier

in the presence of fluxes, as discovered by Myers [51]. Indeed, this is how bound

states of D0 branes are expected to be matched between the field theory solutions

and the gravity dual [13]. Even though the configurations are abelian in field theory,

they are non-abelian in the string dual.

6. Aspects of non abelian orbifolds

In this section we shall only sketch the results for other abelian and non-abelian

orbifolds that can be obtained by following a similar path to the example wee have

analyzed in detail.

Again, we can begin by analyzing the moduli space of the orbifolded theory by a

group Γ. This is most easily done by studying the method of images, and basically,

we get that the moduli space of branes in the bulk should correspond to N particles

moving on C4/Zκr × Γ. One of the purposes of this section is to determine what the

correct value of r should be. For the Zn case studied above, we saw that r = n = |Zn|.
We will show that this generalizes to the order of the group.

To understand this, let us examine again the case Γ = D̂k acting on one SU(2)

of the SO(4) ≃ SU(2) × SU(2)-R charge that commutes with the choice of N = 2

superspace.

Such a Γ ⊂ SU(2) would act only on the B fields, lets say, but not on the A

fields. Again, the best way to describe the set of configurations is with the crossed

product algebra. This is not identical to the quiver algebra any longer. Instead, they

are Morita-equivalent. This means that the representation theory is the same, and

it is parametrized by the same data. The crossed product algebra is the one that

captures the method of images precisely.

This means that a brane in the bulk is again parametrized by four numbers

a1,2, b1,2, with identifications on the a1,2 coordinates by Γ. The simplest singularities

occur when a = 0. These are fixed points under Γ. Branes fractionate at those

locus. In the quiver diagram of figure 2 we turn off the crossed arrows, and we get a

splitting of the diagram as follows in the figure5.

We should notice that again, the quiver splits into subquivers. Fractional branes

and twisted sector states should be associated to these splittings. One of the inter-

esting things that follows from the Douglas and Moore construction is that fractional

– 44 –



1

2 2 2 2 2

1

1 1

1

2 2 2 2 2

1

1 1

2

2

2

2

2

2

2

2

2

2

Figure 5: Splitting of the quiver diagram when the missing arrows are turned of to zero

vev: the gray areas indicate contraction of nodes where the arrows that are turned on are

connected. The curved arrows should be contracted similarly. The missing arrows would

reconstruct a standard quotient for an ADE quiver.

branes do not all have the same tension by the method of images. The tension of a

brane associated to representation Ri is proportional to Ri [29] ( see also [52]) . How

does this get realized in the present context?

Again, flux on the subquivers should be related to fractional brane charge. Re-

member that for the vevs to be spherically symmetric, the flux should be matched

between nodes connected by arrows. This gives us freedom to have different fluxes

on different subquivers thereby recovering fractional brane charges.

There is a new ingredient however. The level of the Chern-Simons fields on the

nodes is proportional to the dimension of the representation Ri, times the basic level

of the original ABJM model κ. This means that when we match the minimal brane

charge, associated to a node, the R charge carried by the configuration is proportional

to dim(Ri) (this is how the level of the Chern-Simons affects the equations of motion

of the gauge fields and related it to the charge of the matter fields).

In equations

κdim(Ri)m = −m1 −m2 (6.1)

Notice that in this equation m1, m2 are positive integers (this follows from chi-

rality): there are no chiral ring operators with m = 0, m > 0. This would seem

to imply that we can not have the opposite magnetic flux (corresponding to branes

rather than anti-branes), because we only have positive contributions from matter

to the charge. What we find instead is that states with opposite magnetic flux are

necessarily anti-chiral (they require the b to have the opposite time dependence).

Thus, the R-charge of these fractional branes is dim(Ri)κ/2 and the D0 brane

charge is −dim(Ri)/|Γ|. By contrast, the R charge of a D0-brane in the bulk is

the sum of these R-charges with multiplicity and positive magnetic flux, giving us a
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tension of a D0-brane equal to

TD0 =
∑ dim(Ri)

2κ

2
=

|Γ|κ
2

(6.2)

The equality of the sum of dimension squared of representations and the order of the

group is a straightforward fact of discrete groups. It follows from the character of the

identity of the regular representation. So from the fractional branes we constructed,

it is simplest to build an anti-D0 brane with positive R-charge.

Given that the tension of this D0-brane dual object is exactly |Γ| times larger

than κ shows that the circle fiber of the Hopf fibration is divided by a further factor

of |Γ| than that one provided by the κ factor of the ABJM theory. This means that

these orbifold constructions should correspond to membrane theories on

C
4/Zκ|Γ| × Γ (6.3)

This follows in the general case from solving the equations of motion with uniform

flux on all the nodes for the regular representation: the flux quantization condition

counts the number of a minus b fields at each node, but their normalization at

each node differs (the fields are multiplied by Clebsch -Gordon coefficients after all).

Also, the global normalization of the a, b coordinates by the method of images is

proportional to |Γ|, the number of copies of a brane. These factors conspire to give

us the above result in the general case.

Notice that there are other singularities of the group action in the type IIA

picture (as would correspond to fixed points of subgroups of Γ on CP
3). These occur

when the pair (a1, a2) that can be used to describe a CP
2, is at a fixed point of

a subgroup of Γ (they get multiplied by a common phase). At these singularities

one can do a gauge transformation that keeps the pair fixed. This is a fixed point

if b = 0, as then the transformed configurations is equivalent to itself by a gauge

transformation. These can be a Z2n singularity. It is easy to understand how the

D̂k quivers arise from orbifolding an A2n−1 quiver [35] (see also [53] for more related

information about solving the equations for the matrix model realization of ADE

quivers and related group theory constructions).

At these singularities, the A fields can have vevs, but not the B fields. The quiver

splits differently, depending which a is allowed to have a vev. A new ingredient is that

the field a can connect pairs of nodes with different level. The effective U(1)×U(1)

theory on a pair of nodes can not solve the equations of motion of the gauge fields.

There are new collections of fluxes that seem to work. These are given in the D̂k

case by branes with a U(1) × U(1)× U(1) theory, as shows by the following figure.

The charge that the magnetic flux carries in the node with higher Chern Simons level

is canceled by the charge carried by the excitations of the fields represented by the

arrows. The charge is split evenly between the other two nodes. This is natural from

the point of view of taking a fractional brane from a Z2n singularity and projecting it
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Figure 6: Connected nodes that can give rise to fractional branes at the Zn fixed point

singularities.

onto a bound state of branes in a Dn quiver that is obtained by folding the diagram

(as in [35, 53]).

We find this way that all the expected fractional branes at the singularity then

have the same R-charge. This is a straightforward computation. We find also that

for all fractional branes a similar condition is satisfied to the Martelli-Sparks [19]

condition to get a four dimensional moduli space.

∑

i∈f.b.

Miki = 0 (6.4)

Here ki = ±κdim(Ri), and we sum over the indices that correspond to a fractional

brane. The Mi are the ranks of the corresponding gauge group. This condition is a

consistency condition for being able to saturate the total charge carried by the fluxes

with the matter fields.

We should also remember that in M-theory compactifications on a circle, the

fractional charge carried by a fractional brane can usually be modified by changing

the Wilson lines of the enhanced gauge symmetry group at the ADE singularity

[54, 55]. In matrix quantum mechanical models, this is done by changing the effective

gauge coupling constants [53] . Here we find that the corresponding way of changing

the tension of the fractional branes is by changing the levels of the different Chern-

Simons coefficients. To insure that the fractional brane survives, we need to keep

constraints like those in (6.4) for the corresponding brane. Notice that now, since the

circle bundle of the Hopf fibration over the base is twisted, we find that we are only

allowed to have discrete values for these fractional brane tensions (these are related

to the quantization of the Chern-Simons terms). These tensions need to be related

to fluxes, rather than Wilson lines, because the bundle over the base that the branes

see is different. The fractional branes need to have a twisted connection on the fiber

to have different quantization conditions on a bundle than the D0-brane charges
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would provide. This is how the field theory tells us that the Chern-Simons terms

are generated by fluxes [56]. Also, the consistency requirement that the charges are

cancelled can be reformulated in the geometry side by the usual statement that the

total flux on the worldvolume of the brane should cancel [57, 58].

7. Conclusion

We have seen in this paper how the computation of the spectrum of magnetic

monopole operators is useful in finding the topology of the moduli space of vacua of

three dimensional field theory. In particular we have seen a very direct connection

between these objects and points in the moduli space of vacua. This can be seen by

solving classical equations of motion of a superconformal field theory on a cylinder,

where we impose the equations that define BPS states at the classical level. These in-

volve a slight improvement of the equations that describe the classical moduli space,

because gauge theory fluxes are quantized already at the classical level. It is indeed

these quantization conditions that produce the different topologies when we change

the level of the field theory.

The natural setup for these investigations was described in terms of matrix equa-

tions, with a natural action by complex conjugation. These systems of equations find

their natural home in the realm of representation theory of associative algebras. In

the particular case we study, the theory of C∗ algebras is appropriate. This is just

the name for algebras that have a natural conjugation that needs to be compatible

with the representation. For the case of group actions, we found that the crossed

product setups (essentially a very careful treatment of the method of images) where

easier to analyze than just looking at the quiver algebra directly.

Of particular interest, we found that the detailed description of these configu-

rations can be mapped directly to D-brane probes of the dual geometry, including

brane fractionation at the singularities. With these tools, we were able to argue

that the tension of fractional branes at nonabelian orbifold singularities follows the

same pattern than as expected from string theory considerations. We saw that this

seems to require a nontrivial flux for the potentials that couple to fractional branes,

and that these tensions are directly correlated with the Chern-Simons levels of the

different nodes of the quiver diagram representing the theory.

It is natural to then ask what happens when we change the values of these fluxes

and in particular how the moduli space is modified, as well as the patterns of brane

fractionation. We have also not analyzed the setup in cases with discrete torsion.

This is currently being investigated in [59].

There are many other theories that are interesting to analyze and that do not

arise from orbifolds of the basic ABJM theory. It would be interesting to see how

these techniques can be applied in those cases, especially in situations where the

fields of the theory do not have canonical dimensions.
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We believe that there is still a lot of information to be obtained from studying

BPS questions in three dimensional theories. However, we should not forget that

the detailed study of the dynamics of these theories should produce additional in-

formation about the dynamics of M-theory and the locality of the theory in eleven

dimensions. This is still mysterious from this setups.
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