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Abstract: We analyze orbifolds with discrete torsion of the ABJM theory by a

finite subgroup Γ of SU(2) × SU(2) . Discrete torsion is implemented by twisting

the crossed product algebra resulting after orbifolding. It is shown that, in general,

the order m of the cocycle we chose to twist the algebra by enters in a non trivial way

in the moduli space. To be precise, the M-theory fiber is multiplied by a factor of m

in addition to the other effects that were found before in the literature. Therefore we

got a Zk|Γ|
m

action on the fiber. We present a general analysis on how this quotient

arises along with a detailed analysis of the cases where Γ is abelian.
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1. Introduction

In the last two years some great amount of progress has been made towards a better

understanding of the dynamics of M-theory and the AdS4/CFT3 correspondence.

A major step towards the formulation of a M-brane worldvolume action was the

model proposed in the works by Bagger, Lambert and Gustavsson [1, 2, 3], the so

called BLG theory, describing a stack of two coincident M2-branes probing a ‘M-fold’
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singularity [4], whose interpretation is not clear yet. A complete non-abelian formu-

lation came later, the so called ABJM theory [5, 6]. This theory describes a stack of

N M2-branes transversal to a C4/Zk singularity, which corresponds to M-theory on

AdS4 × S7/Zk. The theory is a Chern-Simons (CS) gauge theory with gauge group

G = U(N)k×U(N)−k, with k,−k being the corresponding CS levels. The Zk orbifold

projects out four of the supercharges when k > 2 so the supersymmetry is broken

to N = 6 in three dimensions. The theory admits a perturbative expansion in a ’t

Hooft-like parameter λ = N
k
, hence, for k = 1 or k = 2 (where the supersymmetry

should get enhanced to N = 8), is strongly coupled.

One of the logical steps one can take to test this correspondence is to modify

the S7/Zk internal space, for example, by a marginal deformation of ABJM or an

orbifold of the gauge theory. Some of the simplest modifications of the background

we can study are certain families of orbifolds. In principle we can consider orbifolds

by any discrete subgroup of SU(4). However N = 1 supersymmetric theories in

three dimensions are non holomorphic, so in order to keep a better control of the re-

sulting theory, we will consider orbifolds of the form S7/Γ where Γ ⊆ SU(2)×SU(2)
breaking the supersymmetry at most to N = 2 in the three dimensions. This also

allows us to work in a convenient N = 1 four dimensional superfield formulation.

Orbifolds of this type, for Γ any A-D-E group, have been already considered [7, 8]

and also many toric setups (see for example [9, 10, 11, 12, 13] and references therein)

along with some non-toric deformations [14, 15]. One case that have been missed

is the inclusion of discrete torsion in the orbifolds. The purpose of this paper is to

study the role of discrete torsion in the cases Γ ⊆ SU(2)×SU(2). Our objective is to

analyze carefully the moduli space resulting from placing M2-branes in these types

of singularities. We will see that, as it happens in the case of orbifold singularities,

the behavior of M2-branes does not mimic their D-brane counterparts [16, 17, 18].

Discrete torsion in string theory was originally considered by Vafa [19], for closed

strings on orbifoldsX/Γ. In that paper was shown that the partition function
∑
Zg,g′

at one loop admits the insertion of phases ε(gi, gj) multiplying the twisted sectors

Z(gi,gj) and still preserving modular invariance. Modular invariance for genus g > 1

surfaces impose extra conditions on ε(gi, gj) that allows to write them as

ε(gi, gj) =
α(gi, gj)

α(gj, gi)
[α] ∈ H2(Γ, U(1)).

From the point of view of the states, the inclusion of these phases is equivalent to

imposing the physical state condition g · |s〉 = ε(h, g)|s〉 on the states |s〉 in the

sector twisted by h. On the other hand, the way this is reflected in the open string

spectrum is that, invariance of the OPEs under Γ [20, 21, 22, 23] enforces that Γ

acts on the Chan-Paton factors by a projective representation with cocycle α̃ ∈ [α].
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If we want to compute the moduli spaces of these orbifold theories, this is obviously

an effect we have to take into account. Our approach will be to construct an orbifold

gauge theory from ABJM using the orbifold construction [24, 25] that is well known

for D-branes. After doing that we will obtain the moduli space by computing the

chiral ring. In order to include discrete torsion we are then instructed to perform the

orbifold projection using projective representations. As proposed in [26], branes are

inherently non-commutative objects and therefore can be represented by matrices

that endow a representation of some algebra A derived from the F-term and D-term

relations. When the transverse space to the branes is an orbifold X/Γ the algebra A
can naturally be associated with a crossed product algebra A′ ⊠ Γ in a way we will

explain later. Then, the inclusion of discrete torsion on X/Γ ultimately should be

connected with the twisting of A′⊠Γ by a cocycle α. This is not direct since the path

algebra CQΓ [27] derived from the orbifold construction [24, 25] is not isomorphic to

A′⊠Γ in general. When the cocycle is trivial and Γ is abelian the isomorphism holds,

but in any other cases it does not. However, they have been proven to be Morita

equivalent in a wide variety of cases [28]. This is the property that will help us in our

analysis since it implies that both algebras share characteristics that are relevant to

compute physical quantities, such as the parameter space of simple modules or the

center. Our interest in these objects relies in the fact that they are key in computing

the chiral ring or the moduli space of vacua [26].

This algebraic approach is the one we will take in this paper, since it seems to be

the more convenient for computations in our cases and for possible generalizations

of the results. However, twisting the algebra and finding the simple modules is not

the whole story. One of the new ingredients that M2-branes will provide is the

appearance of non-perturbative operators in the chiral ring. Upon compactification

on a S1, M-theory is dual to Type IIA and therefore the worldvolume theory of

M2-branes should correspond to its counterpart for D2-branes (three dimensional

SYM) after flow to the IR fixed point. The IIA picture of this duality can be seen

by writing S7 as a Hopf fibration of CP3

S1 −→ S7

↓
CP3

The Zk orbifold acts just on the S1 fiber. Therefore we can think of ABJM

theory as dual to type IIA on AdS4 × CP3 with RR 2-form flux turned on, which

corresponds to the curvature of the connection on the circle bundle. This picture has

been shown to persist in more general setups [29]. For instance, a toric Calabi-Yau

(CY) fourfold X4 can be written as a circle fibration over a R×X3 base, where X3

is a CY threefold. Therefore, M-theory in X4 is dual to IIA in X3 × R plus fluxes.
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The RR fluxes induce CS terms in the worldvolume theory of the D2-branes and the

levels correspond to D6 and D4 brane charges of branes wrapping vanishing cycles

on the X3 [29]. Then we expect that in general, changing the CS levels will change

the three dimensional moduli space. For example, in the simplest cases of orbifolds,

performing the projection, as we mention before, will rescale the CS levels. This

cannot be undone by rescaling the fields and is reflected in the moduli space one ob-

tains. The way these effects show up is because of the existence of non-perturbative

BPS operators, the so called monopole operators. They are therefore essential for

the analysis of these families of theories (see for instance [30], for a very recent work

in the subject, and references therein). For instance, the enhancement of super-

symmetry expected when k = 1, 2 has actually been proved to occur and monopole

operators provide the necessary mechanism for it [31, 32, 33, 34, 35]. Extra gauge

invariant operators of dimension 1 can be built by pairing monopole operators with

scalars only when k = 1, 2 (since the dimensions of monopole operators depend on k)

providing us with the missing conserved currents. In conclusion, monopole operators

play an important role in the theories derived from M2-branes and their incorpora-

tion into the algebraic framework previously mentioned is one of the challenges we

face.

The paper is organized as follows. Sections 2,3 and 4 are mainly review sections.

In section 2 we review the ABJM theory and set up some notation and also review the

semiclassical techniques we will use to compute the spectrum of monopole operators.

In section 3 we review the orbifold projection for D-branes and projective represen-

tations in this context as well. Section 4 is devoted to presenting the mathematical

background that will be useful in computing the simple modules and other objects

we will need in our analysis. In section 5 we apply these mathematical tools for the

particular case of orbifolds of ABJM showing that the M-theory fiber is multiplied

by a factor of the order of the cocycle that characterizes the discrete torsion. Sec-

tions 6 and 7 are a detailed analysis of the case of abelian orbifolds. These cases are

quite interesting because the Schur multiplier, H2(Γ, U(1)) is larger. In section 8 we

comment on the possible gravity duals to the theories previously analyzed. Finally,

in section 9 we present some conclusions and possible future directions of this work.

Complementary results are collected in the appendices.

2. SCFTs in 3d and ABJM

2.1 Review of ABJM

We begin by briefly reviewing ABJM theory following [17], in order to set the con-

ventions for the rest of the paper. This theory is better formulated in the language of

N = 1 superfields inherited from 4d. So, let θα, θ̄α be the complex Grassman num-
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bers parametrizing the superspace and proceed as usual. Their indices are raised and

lowered with εαβ. Let begin by looking at the vector multiplet. In the Wess-Zumino

(WZ) gauge, it has the form

V = 2iθ̄θσ + 2θσµθ̄Aµ + i
√
2θθθ̄χ† − i

√
2θ̄θ̄θχ + θθθ̄θ̄D. (2.1)

Note that here, the auxiliary real scalar field σ cannot be gauged away (it can be

seen as the dimensional reduction of A3). The group indices are omitted (V = V aT a

with T a the generators of Lie(G)). The action for the CS term is given by

SCS = −iK
∫
d3xd4θ

∫ 1

0

dtTr
[
V D

α
(
etVDαe

−tV
)]
, (2.2)

with K = κ
8π
, where κ is the so called CS level and is quantized. The derivatives

D and D are the covariant superspace derivatives. The other piece we will need is

the matter field content. These are bi-fundamental fields. The gauge group is given

by G = U(N) × U(N ) (In [5] N = N , but if we include fractional M2-branes we

can take any N,N [6]). We will denote Za
â and W â

a a superfield transforming in the

representations (�,�) and (�,�) of G respectively

Z → UZÛ †,

W → ÛWU †. (2.3)

For a theory with two chiral fields Z and W and two anti-chiral fields Z̄ and W̄
transforming under G as

Field U(N) U(N)

Z, W̄ � �

W, Z̄ � �

the canonical kinetic term is given by

Skin =

∫
d3xd4θTr

[
− Z̄e−VZeV̂ − W̄e−V̂WeV

]
, (2.4)

where V̂ is the vector multiplet corresponding to the connection for U(N).

The ABJM theory has two pair of these fields, say ZA, W̄A, WA, Z̄A with A = 1, 2

and a superpotential term

Spot =
1

4K

∫
d3xd2θTr

[
εACε

BDZAWBZCWD

]
+

1

4K

∫
d3xd2θTr

[
εACεBDZ̄AW̄BZ̄CW̄D

]
.(2.5)

which correspond to the conifold superpotential. To get a better insight of the

theory is helpful to look at expressions in terms of components fields. The chiral
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fields components are given by

ZA(xL) = ZA(xL) +
√
2θζA(xL) + θ2FA(xL),

WA(xL) = WA(xL) +
√
2θωA(xL) + θ2GA(xL),

Z̄A(xR) = Z†
A(xR)−

√
2θ̄ζ†A(xR)− θ̄2FA(xR),

W̄A(xR) =W †A(xR)−
√
2θ̄ω†A(xR)− θ̄2G†A(xR). (2.6)

with xµL = xµ + iθσµθ̄, xµR = xµ − iθσµθ̄. As fermions will not play any role in our

analysis we will omit them in the following to keep the formulas more clear. The

action in term of the component fields is

SABJM =

∫
d3x

[
2KεµνλTr

(
Aµ∂νAλ +

2i

3
AµAνAλ − Âµ∂νÂλ −

2i

3
ÂµÂνÂλ

)
− 4KDσ + 4KD̂σ̂

]

+

∫
d3x
[
− Tr(DµZ)

†
ADµZA − Tr(DµW )†ADµWA +W †(D̂W −WD) + Z†(DZ − ZD̂)

+ |σ̂W −Wσ|2 + |σZ − Zσ̂|2 +G†G+ F †F
]

+
1

K

∫
d3x
[
εACε

BD(2FAWBZ
CWD + 2ZAWBZ

CGD)

− εACεBD(2F
†
AW

†BZ†
CW

†D + 2Z†
AW

†BZ†
CG

†D)
]
, (2.7)

solving for the auxiliary fields gives

F †
A = − 1

2K
εACε

BDWBZ
CWD

G†A =
1

2K
εACεBDZ

BWCZ
D

σ̂a(T̂ a)î
ĵ
=

1

4K
(Z†Z −WW †)î

ĵ

σa(T a)i j =
1

4K
(ZZ† −W †W )i j (2.8)

and the gauge covariant derivative is given by

DµW = ∂µW − iWAµ + iÂµW,

DµZ = ∂µZ + iAµZ − iZÂµ. (2.9)

To finish, we recall the vacuum equations

F = G = 0, (2.10)

σZ − Zσ̂ = 0,

σ̂W −Wσ = 0. (2.11)
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2.2 BPS states and the chiral ring

In this section we will review the characterization of the moduli space of vacua of

SUSY field theories via the chiral ring operators (see [36] for details) and focus

in particular on 3d SCFTs that have CS terms. The moduli space of vacua of

SUSY gauge theories can be described in terms of expectation values of scalar gauge

invariant operators O(θ, θ̄, x) in the chiral ring. These operators satisfy

DαO(θ, θ̄, x) = 0, (2.12)

and their expectation values form a ring, as well

∂x1〈O(x1)O(x2)〉 = ∂x2〈O(x1)O(x2)〉 = 0,

〈O(x1)O(x2)〉 = 〈O(x1)〉〈O(x2)〉, (2.13)

so the chiral ring operators can be defined as the set

R =
{
O|DαO(θ, θ̄, x) = 0

}/{
O =

{
D,G(θ, θ̄, x)

}}
, (2.14)

For SCFTs on the cylinder R × Sd−1 (that can be achieved via a Weyl rescaling of

the metric) additional constrains can be imposed over the operators on R due to the

large amount of (super-)symmetry [37]. This boils down to consider operators whose

lowest component φ is a superprimary in the chiral ring (i.e. its equivalence class can

be represented by a superprimary). More importantly this casts φ as a BPS state

satisfying ∆φ ∼ Rφ, with ∆φ the scaling dimension of φ and Rφ its R-charge. In

particular, for d = 3

∆φ = Rφ. (2.15)

So, the moduli space of these theories can be written as

M ∼=
{
〈φ〉|O = φ+ θ̄ψ + . . . ,O ∈ R

}
, (2.16)

A proposal made by Berenstein [37, 38] suggests that the operators φ are in 1-1 cor-

respondence with classical solutions of the equations of motion and the classical BPS

equations. This means that the chiral ring operators should provide a holomorphic

quantization of the space of these classical solutions.

Solving the classical equations is easier if we do radial quantization in Sd−1 ×R.

Then, the Hamiltonian is equal to ∆, the generator of dilatation.

It is a well known fact that the ABJM theory and orbifolds of it posses non-

perturbative operators, a fact that can be seen from the classical equations [39, 8].

These operators are BPS and contribute to the chiral ring, and hence to the descrip-

tion of the moduli space of vacua M3d. Not taking into account these states will
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result on an incorrect M3d (indeed a non-complex variety). Therefore the superpo-

tential alone does not give us all the information (for more details on the appearance

of these extra massless degrees of freedom see [40] or [41]).

The connection between the appearance of a massless monopole and the represen-

tation theory from the superpotential algebra is given by the BPS equations. First

note that in an orbifold of ABJM the Hamiltonian for the scalars, in the cylinder

S2 × R always take the form
∫

S2

(
Tr(ΠφΠφ†) + Tr(Dφ(Dφ)†) + 1

4
Tr(φ†φ) + VD + VF

)
(2.17)

where Dφ is the gauge covariant derivative in the sphere. The terms VD are the

analogous of the D-terms coming from the supersymmetric CS action and from the

canonical Kähler potential 1. VF is the scalar contribution to the superpotential.

The sum over the arrows of the quiver is implicit and the important point is that

the first three terms in (2.17) does not mix different arrows, only the arrow with its

conjugate. Then, the BPS equations are

H = QR (2.18)

where QR is the R-charge, that is given by

QR =
∑

φ

∫

S2

Tr(
i

2
Πφφ− i

2
Πφ†φ†) (2.19)

since all the scalar fields have R-charge 1
2
. This is preserved by the orbifolds we

will consider. The R-charge of the bifundamentals will not be modified because

we are guarantee to have a canonical Kähler potential as we pointed out before.

The equation (2.18) is classical and it will give a sum of squares that must vanish,

resulting in the following equations [39, 8]

Dφ = 0 (2.20)

Wφ = [σ, φ] = 0 (2.21)

Πφ† = φ̇ =
i

2
φ (2.22)

In addition we have to complement this with spherical symmetry (which is the clas-

sical condition of being a scalar) and the equations of motion. In particular the

Gauss’ law constraint will give us a relation for the magnetic fluxes on S2 of the form

Φ ≡
∫
S2 F ∼ φΠφ. If we quantize the moduli space after solving the representation

theory for the quiver, we will see that φΠφ is proportional to the number operator,

so this imposes constraints on the wave functions which are equivalent to discrete

identifications on the coordinate ring.

1Since we will deal with marginal deformations of the theory and preserveN = 2 supersymmetry

in three dimensions, this will guarantee that the Kähler potential only receives corrections that are

irrelevant in the IR [42]
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2.3 Magnetic monopoles

Here we will give a more detailed view of the monopole equations, focusing in a

three dimensional SCFT in S2 × R, with the general assumptions we made in the

last section. We want to solve the classical equations of motion and find the solutions

corresponding to the states of the chiral ring. As we saw before, states of the chiral

ring satisfyH = QR whereH is the Hamiltonian identified with the scaling dimension

and QR just the (classical) R-charge. To be more precise let us write the conjugate

momenta to our canonical variables. For this purpose, we denote our fields as φ
(ab)
I

for arrows going from V (a) to V (b).

ΠA0 = ΠÂ0
= 0 Π

A
(a)
i

= −2Kaε
0ijA

(a)
j ,

Π
φ
(ab)†
I

= φ̇
(ab)
I + iA

(a)
0 φ

(ab)
I − iφ

(ab)
I A

(b)
0 (2.23)

The expression for QR in terms of the fields can be read in [39]. Classical solutions

corresponding to operators of the chiral ring must be spherically symmetric to have

zero angular momentum, as we mentioned before, is the classical condition of being

a scalar, then

DiF
(a)
µν = 0 i = θ, ϕ. (2.24)

Is convenient to choose the gauge so that Fij is diagonal and A0 = 0. This gives the

following conditions

∇iφ
(ab)
I = 0

F = G = σ(a)φ
(ab)
I − φ

(ab)
I σ(b) = 0,

F
(a)
θϕ = j(φ

(ab)
I ). (2.25)

The last condition is the constraint equation imposed by A0 with j(φ
(ab)
I ) the source

(the equation of motion of A0). By DiFµν = 0, we have F0i = 0 and by our choice

of gauge, A0 = 0. So, F
(a)
ϕθ = Φ̃(a), where Φ̃(a) is a diagonal constant matrix, by the

conditions of fiber bundles on S2 [43]. Define the magnetic fluxes Φ(a) =
∫
S2

Φ̃(a)

sin θ

on the sphere. If we have bifundamental matter charged under V (a) and V (b) then

Dirac quantization conditions requires that the fluxes satisfy

Φ
(a)
ii − Φ

(b)
jj ∈ Z ∀i, j (2.26)

and since we are considering bifundamental fields with zero angular momentum along

S2

Φ(a) − Φ(b) = 0 (2.27)

both conditions must be imposed if there is a non-oriented path in the quiver joining

V (a) and V (b). In all the examples considered here we will have connected quivers
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with no disjoint pieces (at least away from the singularities), so, assuming that, we

can denote Φ(a) = Φ for all a. We still have an important subtlety to take into

account, pointed out in [39]. This is, the quantization can admit fractional fluxes if

all the ranks of the vertices are equal, so summarizing

Φii ∈ Z ∀i if dim(V (a)) 6= dim(V (b)) for some a, b

Φii = mi + a mi ∈ Z a ∈ Q if dim(V (a)) = dim(V (b)) ∀a, b (2.28)

In principle a ∈ R but the constraints from A0 gives an equation of the form Φ ∼ QR

restricting its values to be rational. Finally we write explicitly the equation of motion

for A
(a)
0 (in the gauge A

(a)
0 = 0)

− κ(a)

π sin θ
F

(a)
θϕ = −i

∑

I,b

φ
(ab)
I

˙
φ
(ab)
I

†

+ i
∑

I,b

˙
φ
(ba)
I

†

φ
(ba)
I + h.c.

= −i
∑

I,b

φ
(ab)
I Π

φ
(ab)†
I

+ i
∑

I,b

Π
φ
(ba)
I

φ
(ba)
I + h.c. (2.29)

integrating it we get

−κ(a)Φ(a) =

∫

S2

(
−i
∑

I,b

φ
(ab)
I Π

φ
(ab)†
I

+ i
∑

I,b

Π
φ
(ba)
I

φ
(ba)
I + h.c.

)
(2.30)

3. The Orbifold projection

In this section we review the well known orbifold construction for D-branes [24, 25]

and how to introduce discrete torsion [20, 21] on them. This will give us the guidelines

to construct our orbifold 3d gauge theory. As we will see in the following chapters,

the moduli space of the orbifolded gauge theory is not the same as in the D-brane

case which is natural, since we are dealing with M2-branes after all, not D-branes.

Consider an orbifold of a space X , of the form X/Γ with Γ a discrete group.

When we place Dp-branes transversal to X , the dual geometry in the near horizon

limit will take the form AdS × Y where Y is a compact variety and the real cone

over Y is isomorphic to X . Γ is taken to be a discrete subgroup of GR, the group of

global symmetries of Y . The worldvolume theory we obtain on the branes are the

well known quiver gauge theories that can be constructed by the orbifold projection

prescription, proposed by Douglas and Moore [24]. These theories are SCFTs whose

R-symmetry group, GR, is broken by the orbifold action and their field content and

superpotential can be derived from the compatibility conditions applied to the fields

of the unorbifolded theory. Let review this construction. First, we have to specify

how we embed Γ ≤ GR. We also must choose a way in which Γ acts on the Chan-

Paton factors i.e. an embedding of Γ in the gauge group G =
∏

a U(Na). Denote the
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irreducible representations of Γ by {Ri}, i = 1, . . . , r.

The embedding on G must be of the form
⊕

i niRi, for each vertex of the quiver

associated to G (we assume Γ acts on G without interchanging the nodes), with ni

the multiplicities of each irreducible representation, this is usually denoted by

γ =
⊕

i

CniRi (3.1)

and we have to satisfy the constraint Na = Σinidim(Ri). We chose the action of Γ in

the points x ∈ X to be proper, that is, the orbit of a generic point x has |Γ| distinct
points (fixed points form closed subsets) then for a generic brane i at a position

x(i) the action of Γ will generate |Γ| image branes x(γ(g)(i)) and so γ(g) ∈ G will

correspond to permutation matrices, that is, the regular representation. Therefore

ni = dim(Ri) and Na = |Γ|.
The consistency conditions on the fields are the following. Aµ should be invariant

under the orbifold

γ(g)−1Aµγ(g) = Aµ ∀g ∈ Γ (3.2)

this means that Aµ should be in the commutant of Γ. Since A ∈ Hom(CN ,CN) =

CN ⊗ (CN )∗, its invariant part under Γ is
⊕

iC
ni ⊗ (Cni)∗⊗1ni×ni

and G gets broken

accordingly

Aµ →
⊕

i

A(i)
µ ⊗ 1ni×ni

G = U(N) →
∏

i

U(ni). (3.3)

So, we have a new quiver where the nodes of the original quiver splits in vertices

labeled by i = 1, . . . , r, and we have a gauge group U(ni) associated to each of them.

The factor 1ni×ni
gives a ni coefficient in front of the action of A

(i)
µ after taking the

trace.

Now let see how this construction works for the matter. Denote the embedding of Γ

on GR by R. We just saw that the nodes corresponds to irreducible representations

of Γ. Then, the arrows between the nodes, which corresponds to the bifundamental

fields, are given by the invariant part of φa
ss′ under

φa
ss′ → R(g)abγ(g)

−1φb
ss′γ(g) ∀g ∈ Γ (3.4)

likewise the case of the gauge fields (define the Clebsh-Gordan coefficients aRij by

R ⊗Ri = ⊕ja
R
ijRj) this can be computed and the arrows of the new quiver are in

R⊗Hom(CN ,CN)Γ =
⊕

i,j

aRijC
ni ⊗ (Cnj )∗ ⊗ 1nj×nj

(3.5)

The way we encode the discrete torsion is by noting that the representation γ is de-

fined up to a phase. This, plus associativity, implies that we can consider projective
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representations [44].

Projective representations are given by homomorphisms ψ : Γ → PGL(n,C) =

GL(n,C)/C∗.The lift to GL(n,C) is what we are interested in. Let p : GL(n,C) →
PGL(n,C) be the canonical projection. Then we are looking for a lift γ : Γ →
GL(n,C) such that p ◦ γ = ψ (Fig.1). Of course, γ is not an homomorphism but it

Figure 1: Commutative diagram for projective representations

must satisfy the conditions

γ(g)γ(h) = α(g, h)γ(gh) for all g, h ∈ Γ, (3.6)

where α : Γ×G → C∗ is called a factor set. Associativity imposes extra conditions

on α, say

α(g, h)α(gh, k) = α(h, k)α(g, hk), (3.7)

and we use the convention γ(e) = 1, with e the identity, so

α(g, e) = α(e, g) = 1 ∀g ∈ Γ. (3.8)

Two representations are say to be projectively equivalent if there exist a map c :

G→ C∗ such that

α(g, h) = c(g)c(h)c−1(gh) ∀g, h ∈ Γ, (3.9)

this is equivalent to say that we can make α = 1 by a rescaling of the elements of

the group by a factor c(g) plus a similarity transformation. The α maps are cocycles

of H2(Γ,C∗) and if α satisfies (3.9) is called a coboundary. Moreover, as we are

interested in projective representations of finite groups, by taking determinant on

(3.6) we get

α(g, h)n det(gh) = det(g) det(h), (3.10)

so taking c(g) = det(g) allows us to redefine α up to a nth root of unity. This allows

to replace C∗ by U(1) everywhere in our previous discussion. This also shows that for

finite groups H2(Γ, U(1)) must be finite and so the number of inequivalent projective
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representations.

Roughly speaking discrete torsion will appear then as extra phases in the superpo-

tential [20, 21, 45]. This can be traced to the existence of a non-trivial background

B-field along the transversal directions [46] and then, branes wrapping some 2-cycle

Σ on X have their charge quantized depending on
∫
Σ
B.

4. Mathematical setup

In this section we will review the mathematical background that will be useful in

our analysis. More details in some of the points discussed here can be found in

[26, 27, 47]. In these references, this is treated in the context of D-branes, but what

we will review here remains true in very general grounds. In the next section we will

see what are the subtleties when dealing with the specific case of M2-branes.

Before we perform the orbifold projection, the fields φI will be represented by

arrows of some quiver diagram. These arrows modulo the relations coming from the

superpotential, dW = 0, plus D-term relations, will span a C∗-algebra

A = 〈φI , P
(a)〉/{VF = 0, VD = 0}, (4.1)

where P (a) are the projectors associated with the vertices of the quiver. Upon orbifold

projection we will obtain the path algebra CQΓ. On the other hand, Γ can be seen

as an element of Aut(A), that acts by conjugation

φg
I = γ(g)φIγ(g)

−1 = R(g) J
I φJ (4.2)

Γ and A together, along with the action of Γ on A, form a crossed product algebra

A⊠ Γ. An element a ∈ A⊠ Γ is written as

a =
∑

g∈Γ

ag ⋊ eg ag ∈ A, eg ∈ CΓα (4.3)

where CΓα is the twisted group algebra of Γ by the factor set (or cocycle) [α] ∈
H2(Γ, U(1)) defined by

CΓα = {eg|egeg′ = α(g, g′)egg′ , g ∈ Γ} (4.4)

the multiplication rules of A⊠ Γ are given by

(a⋊ eg)(a
′ ⋊ eg′) = aega

′e−1
g ⋊ egeg′ = α(g, g′)aa′g ⋊ egg′ , (4.5)

So, we can think of A⊠ Γ as a group algebra for Γ with coefficients in A. Suppose

the simple modules of A are finite dimensional, to be more precise, suppose A is
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finitely generated as a module over its center. Then there exists a basis of generators

{sa} such that we can write any element of A as

∑

a

zasa za ∈ ZA (4.6)

this implies that any simple module µp : A → Mn(C) can be characterized by a set

of complex numbers p which corresponds to the values of the generators of ZA (since

they will be proportional to 1n×n) on that particular representation. Therefore, there

exist a natural map [µp] → X̃ , where [µp] denote some equivalence class of modules,

related by some subset of the similarity transformations GL(n,C). The variety X̃ is

a commutative space, the space probed by the closed strings, and expected to be a

covering of X .

The simple modules of A⊠Γ can be constructed from those of A. The action of

Γ on A induces a natural action of g ∈ Γ on the modules µp, say eg(µp) = µpg . This

gives the simple modules (they are simple by construction) of A⊠ Γ the form

⊕

g∈Γ

µpg . (4.7)

In this representation, the elements eg will be just permutation matrices, i.e., the

regular representation, tensored with 1n×n. These modules are clearly unique when

p is a non singular point. When p is held fixed by a subgroup H ≤ Γ then, more than

one simple module can correspond to the same p (they will be indeed classified by

the irreducible representations of H). The dimension of these modules will be |Γ|n if

p is a regular point i.e. |OrbΓ(p)| = |Γ|, or, if p gets fixed by some subgroup H ⊳ Γ,

then |OrbΓ(p)| = |Γ|
|H|

and the dimension will be |Γ|n
|H|

. Note that we did not mention

the discrete torsion in the previous derivation. If we consider a non trivial cocycle,

the representations will be exactly the same, with the regular representation for CΓα,

which have the same form as in the case with no discrete torsion, say ⊕idim(Ri)Ri

where the sum goes over all inequivalent projective representations with cocycle α

[44].

Now, focus on the construction of the path algebra CQΓ. The crossed product alge-

bra is not expected to be isomorphic in a generic case, only Morita equivalent 2, which

is enough for our purposes. In the case Γ is abelian and α is trivial CQΓ
∼= A ⊠ Γ,

but as long as α is non trivial this does not hold. For simplicity we will focus on

the case of Γ being abelian. Then, all projective representations for a given cocycle

class [α] have the same dimension, say s. The number, r, of inequivalent projective

representations is given by the number of α-regular classes of Γ.

2For two algebras being Morita equivalent means that their categories of modules are equivalent.

See for example [48].
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5. M2-branes on orbifolds with discrete torsion

In this section we will apply the mathematical formalism we reviewed in the last

section to the particular case of M2-branes. We keep the same notation. Denote

the arrows of A by φ
(ab)
I , for bifundamentals joining the vertices V (a) and V (b), and

the projectors by P (a), with a, b = 1, . . . , Q0. The relations will be derived from a

superpotential which is polynomial in the fields, schematically ([l] denotes powers of

the fields contracted in a gauge invariant way)

W = Tr(
∑

l

a[l]φ
[l]). (5.1)

After performing the orbifold projection we described in section 3 we will have arrows

φ
(ab)
I ij , joining the vertices V

(a)
i → V

(b)
j and projectors P

(a)
i with i, j = 1, . . . r which

satisfy P
(a)
i P

(b)
j = δabδijP

(a)
i . In the abelian case we will have φg

I = χI(g)φI with χI(g)

a character of Γ. The arrows of the projected quiver will be the Clebsch-Gordan

coefficients of χI ⊗ Ri = RχI(i). Let us say we fix a canonical form Ri(g) ∈ Ms(C)

for each projective irreducible representation. Then

χ(g) · Ri(g) = Uχ(i)Rχ(i)(g)U
†
χ(i) (5.2)

where Uχ(i) ∈ U(s) is a matrix for the change of basis. Therefore, the superpotential

for the projected fields will be given by W , but taking the trace over the fields

φ
(ab)
I iχI(i)

⊗ UχI (i). The trace over the matrices UχI(i) will insert phases between the

terms in W . The kinetic terms will change just by a factor of s, they will be given

by

Skin = s
∑

Tr
(
Dµφ

(ab)
I ij(Dµφ

(ab)
I ij)

†
)

(5.3)

and the CS levels will also be rescaled by s

κ
(a)
i → sκ

(a)
i (5.4)

Note that we can rescale the bifundamental matter fields to have a canonical kinetic

term, but we cannot get rid of the factor of s in front of the CS levels. If we do this

rescaling, the constraint equation will then read

− sκ
(a)
i

π sin θ
F

(a)
θϕ i = −i

∑

I,b,j

φ
(ab)
I ij

˙
φ
(ab)
I ij

†

+ i
∑

I,b,j

˙
φ
(ba)
I ji

†

φ
(ba)
I ji + h.c. (5.5)
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Define the matrices eij ∈ Mr(C) which have only a 1 in the ij position. Then, an

obvious representation for the projected algebra is given by 3

R(φ
(ab)
I iχI(i)

) = µp(φ
(ab)
I )⊗ eiχI(i) ⊗ UχI(i)

R(P
(a)
i ) = µp(P

(a))⊗ eii ⊗ 1s×s (5.6)

and the gauge fields will take the form A
(a)
i → A(a) ⊗ eii ⊗ 1s×s. Therefore the

constraint equation (5.5) keeps the same form but with the bifundamental fields

replaced by µp(φ
(ab)
I ), that is, basically the same constraint equation of the unorb-

ifolded theory, but with the level rescaled by s. Then if we want to do holomorphic

quantization on the variables φ
(ab)
I ≡ µp(φ

(ab)
I ) , we can replace this representation

back in the action and the kinetic terms will be the same as of the original theory

but rescaled by a factor of rs. Then the conjugated momenta associated with the

φ
(ab)
I will be

Π
φ
(ab)
I

= rs
˙

(φ
(ab)
I )

†

(5.7)

and finally the constraint will be given by

− s2rκ(a)

2π
F

(a)
θϕ = −|Γ|κ(a)

2π
F

(a)
θϕ = −i

∑

I,b

φ
(ab)
I Π

φ
(ab)†
I

+ i
∑

I,b

Π
φ
(ba)
I

φ
(ba)
I + h.c. (5.8)

This factor of |Γ| has appeared before (first noticed in [17, 18] for the abelian case

and then showed to hold for any A-D-E group in [8]) and its consequence is that

the orbifold along the S1 circle is not the naive one we expect , say Zκ, but instead

Z|Γ|κ. When there is discrete torsion we have an additional effect. As usual, the

CS levels are rescaled by dim(Ri), so κ → dim(Ri)κ. Let denote e, the exponent

of H2(Γ, U(1)), then a theorem by Schur says that e2 | |Γ| and, moreover it can be

shown that if m[α] = 0 then m | dim(Ri) for all i (see appendix A) and so, the

quantization condition on κ, in general will be κ = k
m
, k ∈ Z>0. In the particular

case of ABJM, A is the conifold algebra Ac (see appendix B) and the representations

will be parametrized by four complex variables. The monomials that will represent

the wave functions, after holomorphic quantization will be then of the form [8]

f i1
1 f

i2
2 g

j1
1 g

j2
2 (5.9)

then, the gauge invariance condition, derived from the monopole equations (5.8) will

be (note that the condition is more subtle than this, taking into account (2.28), but

3We are not showing explicitly here that these modules are simple. However, arguments based

on Morita equivalence shows this gives the right result. If CQΓ and A ⊠ Γ are Morita equivalent

(we will show it explicitly in our examples) , the parameters that describes their simple modules

should be the same and the dimension of the simple CQΓ-modules can be read form the explicit

form of the correspondence.
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for now, we will consider the fractional piece of Φ to be zero)

i1 − i2 + j1 − j2 ∈
|Γ|k
m

Z. (5.10)

Then, the space probed by a D0-brane in the bulk 4 with the will be given by

C4/(Z |Γ|k
m

×Γ). The singular locus, where the fractional branes are stuck, will admit

a resolution by the algebra [26]. In this case, a point p will be held fixed by a subgroup

H ≤ Γ. If Γ is abelian, then H is a normal subgroup and we can cast the orbifold as

X/Γ → (X/H)/(Γ/H) [49]. The orbifold X/H is trivial at these fixed points and so,

it gives rH copies of X , with rH the number of irreducible representations (Hi) of H

with induced cocycle α̃. There is again a rescaling of the CS levels κ → dim(Hi)κ.

Then we will have rH copies of the orbifoldX/(Γ/H), each with levels κi = dim(Hi)κ.

Applying then the same prescription as before, the radius of the M-theory circle will

be reduced by a factor of dim(Hi)|Γ|k
|H|m

at each subquiver (note that the quantization

condition on the CS levels must be inherited from the result we got in the bulk).

Therefore the tension of a fractional brane will be given by dim(Hi)|Γ|k
2|H|m

. Adding them

with the correct multiplicity gives

TD0 =

rH∑

i=1

dim(Hi)
2|Γ|k

2|H|m =
|Γ|k
2m

(5.11)

which is the expected result, for the tension of a D0-brane in the bulk.

6. Example 1: q-deformed algebra Aq

In this section we will compute the simplest orbifold with non trivial discrete torsion

in a detailed way. This corresponds to a Zn×Zn orbifold of the conifold with maximal

discrete torsion i.e. the order of [α] is n. In the following section, the general case

of a Zn × Zm orbifold will be analyzed, nevertheless is illustrative to go through the

simplest one in detail first. We will begin computing the moduli space in the non-

singular locus i.e. for a brane in the bulk or Azumaya locus of the superpotential

algebra and we will focus on the singularities after that.

6.1 Moduli space of a regular M2-brane in the bulk

Consider a q-deformation of the ABJM superpotential

W = Tr (A1B1A2B2 − qA1B2A2B1) , (6.1)

where q is a nth root of unity q = e
2πim

n (m and n are relatively prime). This

deformation will not modify the quiver, however, we will see that the moduli space

4From the M-theory point of view, BPS monopoles are dual to D0-branes in type IIA string

theory, with momentum in the extra fiber.
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we get from it, is the same as the one obtained from a Zn×Zn quotient with cocycle

[q]. The algebra Aq of the q-deformed conifold, derived from (6.1) is spanned by Ai,

Bi and the projectors of the two nodes, P1 and P2. The path algebra relations are

given by

P1Ai = AiP2 P2Ai = AiP1 = 0, (6.2)

P1Bi = BiP2 = 0 P2Bi = BiP1,

and the relations derived from (6.1)

A2B2A1 = qA1B2A2, (6.3)

A1B1A2 = qA2B1A1,

B1A2B2 = qB2A2B1,

B2A1B1 = qB1A1B2.

Define X = A1 + B1, Y = A2 + B2, π = P2 − P1 and Σ = σ + σ̂, so the D-term

equations (2.11) can be written in a compact form

[X,Σ] = [Y,Σ] = 0 Σ = π(XX† + Y Y † −X†X − Y †Y ), (6.4)

from the point of view of the algebra, the D-term conditions are essentially telling

us to enlarge the center of Aq by Σ ∈ ZAq and therefore if we are interested in

simple modules of Aq, Σ must be proportional to the identity. In four dimensions

the equation of Σ will correspond to the familiar symplectic quotient [?]. For the

unresolved conifold we will have Σ = 0 and, as shown in [?], we can ignore it and

quotient by the complexified gauge group GC. If we include FI terms the singularity

gets resolved and Σ has a fixed value. In the present case, the equation of Σ can

be ignored too, but we should have in mind that there is a U(1) subgroup corre-

sponding to the dual photon becoming massless at the origin that we should not

consider as a gauge symmetry and therefore we should not quotient by it a priori.

An alternative way to see this, from a path algebra point of view is the following.

If we have an Aq-module, a similarity transformation will act as X → GXG−1 with

G of the form G+ ⊕ G− and G± ∈ GL(N±,C) with N± the rank of the vertices

of the module. However this transformation will act on Σ as Σ → GΣG†, then if

we want it to be a similarity transformation we need to consider G± ∈ U(N±) instead.

Now, consider the simple modules of Aq

π =

[
1n×n 0

0 −1n×n

]
Y =

[
0 f2P

g2I 0

]
X =

[
0 f1Q

g1Q
−1P−1 0

]
(6.5)

or, in terms of the A and B fields

A2 = g2I A1 = g1Q
−1P−1 B2 = f2P B1 = f1Q (6.6)
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the matrices P and Q are given by

P =




1 0 0 · · · 0

0 q 0 · · · 0

0 0 q2 · · · 0

0 0 0
. . . 0

0 0 0 · · · qn−1



, Q =




0 1 0 · · · 0

0 0 1 · · · 0

0 0 0
. . . 0

0 0 0 · · · 1

1 0 0 · · · 0



, (6.7)

a direct computation gives

Σ =

[|f1|2 + |f2|2 − |g1|2 − |g2|2 0

0 |f1|2 + |f2|2 − |g1|2 − |g2|2
]

(6.8)

so, Σ is proportional to the identity, as expected, and then we do not need to im-

pose further conditions to satisfy (2.11). Now, let examine how the remaining gauge

transformations act. Since we do not want to introduce additional moduli, the trans-

formations must have the form

U =

[
U1 0

0 λU1

]
(6.9)

to preserve A2 ∼ 1. In order to preserve B2 ∼ P is easy to show that U1 must be of

the form

U1 = QaP b, (6.10)

therefore, under these family of transformations, the matrix form of X, Y does not

change, only the factors fi and gi and they change in the following way

(f1, f2, g1, g2) 7→ (λ−1q−bf1, λ
−1qaf2, λq

b−ag1, λg2). (6.11)

This can be separated as the action of λ and two independent Zn factors on C4

λ : (f1, f2, g1, g2) 7→ (λ−1f1, λ
−1f2, λg1, λg2)

τ1 : (f1, f2, g1, g2) 7→ (q−1f1, f2, qg1, g2)

τ2 : (f1, f2, g1, g2) 7→ (f1, qf2, q
−1g1, g2). (6.12)

Here is a good point to compare again with the 4d case. Being in 4d we would

consider complexified gauge transformations U ∈ GL(2n,C) and so λ ∈ C∗ then

the moduli space spanned by {fi, gi} will be (C4/C∗)/Zn × Zn which is exactly the

orbifold of the conifold by Zn×Zn. For the 3d case U ∈ U(2n) hence λ ∈ U(1). So if

we naively quotient by the action of λ, locally, we will obtain (C3×R)/Zn×Zn which

is not even a complex manifold and so we know is the wrong answer for M3d. From

the field theory point of view what is happening is that we are missing operators in

the chiral ring: the monopoles, as mentioned before.
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So, we regard the space we found, prior to quotient by U(1), C4/Zn × Zn, as a

covering of the moduli space, and there must be a residual action of a Zl ⊂ U(1)

after we take into account the monopoles.

We now use the prescription we reviewed in section 2. First we replace our solution

on the Lagrangian (2.17) to holomorphically quantize the fields fi and gi. VD and

VF vanishes and the holomorphic fields does not depend on the angles of S2 because

we imposed spherical symmetry. We are left with

n

∫
dΩdt

(
ḟ †
1 ḟ1 + ḟ †

2 ḟ2 + ġ†1ġ1 + ġ†2ġ2 +
1

4
f †
1f1 +

1

4
f †
2f2 +

1

4
g†1g1 +

1

4
g†2g2

)
, (6.13)

the BPS equations implies

ḟi = i
1

2
fi ġi = i

1

2
gi (6.14)

therefore

Πfi = −in1
2
f †
i Πgi = −in1

2
g†i . (6.15)

Now, let look at the CS action. After orbifold projection the gauge field is given by

Aµ ⊗ 1n×n and so, taking the trace is equivalent to do the rescaling κ → dim(Rl)κ

with dim(Rl) the dimension of the simple module in the node l. In our case there

are only two nodes, both with dim(Rl) = n. The equations of motion of Aµ on the

sphere are automatically satisfied and we only have to look at the constraint from

A0. In this case, spherical symmetry imposes that all the fluxes must be equal hence

the equations of A0 and of Â0 are equivalent and given by

nκ

π
Φ =

∫

S2

dΩ
(
|g1|2 − |f2|2 + |g2|2 − |f1|2

)

=
2i

n

∫

S2

dΩ
(
g1Πg1 + g2Πg2 − f1Πf1 − f2Πf2

)
. (6.16)

Note that this is a scalar equation now. We have to be careful when solving

these equations and impose the quantization condition (2.28) for the fluxes. In

this particular case we have, generically, a gauge group G = U(nM) × U(nN) or

G = U(M) × U(N) in the locus where fractional branes are allowed. Let begin by

taking the former case with M 6= N , N < M therefore n(M −N) components of the

flux vanish and we have then Φ
(1)
s = Φ

(2)
s = Φs⊗1n×n with Φs ∈ 2πZ for s = 1, . . . , N

labeling the different M2-branes. In order to have a well defined path integral we

need, for each M2-brane (dropping the subindex s)

nκ

4π
(4πΦ) ∈ 2πZ ⇒ nκ ∈ Z (6.17)

so, the level κ can be fractional. On the other hand, from the algebra point of view,

this is implemented as follows. The coordinate ring that describe our moduli space

will be given by polynomials of the form

f i1
1 f

i2
2 g

j1
1 g

j2
2 , (6.18)
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identifying i
∫
S2 dΩfΠf with the number operator of the quantized theory, the monopole

quantization condition imposes that the powers are related by

i1 + i2 − j1 − j2 ∈ Zn2κ, (6.19)

so define κ = k
n
with k ∈ Z. Then, taking into account the action of the orbifold

(6.12), the moduli space for a pointlike brane in the bulk is given by

M3d = SymN(C4/(Znk × Zn × Zn)) (6.20)

where Znk acts in the coordinates C4 as

(f1, f2, g1, g2) 7→ (e
2πi
kn f1, e

2πi
kn f2, e

− 2πi
kn g1, e

− 2πi
kn g2) (6.21)

There are a couple of things to point out about this result. First, note that the Znk

action is the remaining gauge symmetry from the U(1) action we called λ due to the

periodicity of the monopole operator. Also we see that the action on the S1 fiber is

not Zn2k as we may have guessed at a first glimpse. Indeed, as we get before in our

general analysis, the radius of the S1 is further divided by the order of q which in

this case is n, the exponent of H2(Zn × Zn, U(1)) ∼= Zn.

The case G = U(nN) × U(nN) allows Φs = 2π(ms +
p

q
) to be fractional. We will

postpone the analysis of M3d in these cases for future work, since it will require a

more careful look at the dual operators in string/M- theory that carries the fractional

charges.

6.2 Singularities and fractional branes

In this section we will focus on the singular locus where we expect to see brane frac-

tionation. For this purpose we will first compute ZAq, since most of the singularities

lay there, in the base of our moduli space. To be more precise, ZAq will give us a

commutative geometry for such M3d is a C fibration over it. The variety ZAq is

what we expect from the moduli space of D3-branes on this singularity with discrete

torsion. First note that the algebra Aq is Morita equivalent to the crossed product

algebra A = Ac ⊠ (Zn ×Zn)q (see appendix (C)) where the q subindex indicate that

Zn ×Zn is twisted by the maximal cocycle q and Ac is the conifold algebra spanned

by ai, bi.

Two algebras that are Morita equivalent share the same center, so ZAq is iso-

morphic to the ring of Zn × Zn invariants of A. These are generated by

u = (a1b1)
n + (b1a1)

n,

v = (a2b2)
n + (b2a2)

n,

w = (a1b2)
n + (b2a1)

n,

z = (a2b1)
n + (b1a2)

n,

t = a1b1a2b2 + b1a2b2a1, (6.22)
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therefore

ZAq = 〈u, v, w, z, t〉/{tn − uv, tn − zw}, (6.23)

this describes the base of M3d, say a Zn × Zn orbifold of the conifold. Translating

these variables to our original Ai, Bi is direct, so we can read the base and the

fibers in terms of the parameters {fi, gi}. The singular locus of the base is given by

the lines where any three of the u, v, w, z variables are zero. The Zkn action on the

coordinates of the base and on the S1 is free if we exclude the origin, so these are

the only singularities we are getting. Let begin analyzing these singular lines, and

postpone the analysis of the origin for later. All the singular lines are equivalent

so, we can just focus in one particular case, say z 6= 0, then f2 = g1 = 0. At these

points, the modules we found above become reducible and so, a single point in the

line corresponds to a family of n (1, 1)-dimensional simple modules that we denote

by Rl = R(f1q
l, g2, 0, 0), therefore we can write

lim
u,v,w→0

R(f1, g2, f2, g1) = ⊕lRl. (6.24)

These modules should be interpreted as fractional branes [26]. As we pointed out

before, the allowed monomials are

f i1
1 g

i2
2 i1 − i2 ∈ Zk (6.25)

as long as G = U(N) × U(M) with M 6= N . Locally the singularity looks like

C2/Zn × Zk. The correct way to interpret this singularity is as a k-sheeted cover of

An−1 singularities, that is (C2/Zn) /Zk. At fixed f1 and g2 each of these fractional

branes can be associated with a twisted sector of the closed strings that is stuck at

that point, which couples to the brane. Closed string twisted sectors (from the type

IIA point of view) corresponds to operators of the chiral ring of the form Tr((AiBi)
l).

Is easy to see that these operators vanish everywhere in the bulk, for n ∤ l, since the

trace gives a sum of characters. Only on the singularities they are non-zero and

we have exactly n − 1 classes of them that are trivial in the bulk. For example, in

the particular locus we are looking at, the Oτ−l
2

= Tr((A2B1)
l) operators are in the

τ−l
2 twisted sector, they transform by a phase of ε(g, τ−l

2 ) = q−l under the action of

Zn × Zn. These are the deformation modes that give us the necessary parameters

to resolve the An−1 singularities (locally) in a bouquet of n 2-spheres. This basis of

twisted sectors is related by a discrete Fourier transform to the basis of CP1’s of the

blown up cycles. The discrete torsion generates a monodromy on this basis [22], as

we go around the singularity. This can be seen directly from our computation. A

loop around the singularity, z → ze2πi is equivalent to f1 → f1q
a, where a is the

integer solution of am + k′n = 1 with k′ ∈ Z which means Rl → Rl+a when we go

around a loop (Fig. 2).
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z=0

a times

Figure 2: Quiver diagram for the singularities at z = 0. The nodes represent the Rl

modules

We also see that the M-theory fiber is n times larger that in the bulk, so the momen-

tum along the circle is quantized in a different way. This effect takes into account

the existence of monopoles of fractional charge, that can be written schematically as

fmk
1 gm

′k
2 . Note that this is exactly what we expected, from the analysis in section

6.1, since the subgroup H = Zn has trivial discrete torsion, hence dim(Hi) = 1

Now, let examine more carefully the points at the origin of the base z = w = u =

v = 0. At these points either fi 6= 0 or gi 6= 0, but only one of the four coordinates

describing M3d in non zero (if we are on the case that all of them are zero, we get

back the theory we began with, as expected). Then a subgroup Zn ×Zn of the total

orbifold will left the point fixed. That means locally we have a C3/(Zn ×Zn)q where

the subindex q indicates the discrete torsion. Likewise the case analyzed in [50] the

moduli space is given by nk copies of this singularity, say

(
C3/(Zn × Zn)q

)
/Znk (6.26)

7. Example 2: Orbifold by Zn × Zm with discrete torsion

Now consider an orbifold by Γ = Zn×Zm = 〈τ1〉× 〈τ2〉, acting on the bifundamental

fields as

τ1 : (A1, A2, B1, B2) 7→ (αA1, α
−1A2, B1, B2)

τ2 : (A1, A2, B1, B2) 7→ (A1, βA2, β
−1B1, B2) (7.1)

where α = e
2πi
n and β = e

2πi
m . Define p = gcd(m,n) and so the discrete torsion of Γ

will be determined by an element of H2(Γ, U(1)) ∼= Zp. Consider in general a cocycle

η = e
2πir
p with 0 ≤ r < p and define s as the smallest positive integer such that
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ηs = 1. Then an irreducible representation is given by the s× s matrices

γ(τ1) = P =




1 0 0 · · · 0

0 η−1 0 · · · 0

0 0 η−2 · · · 0

0 0 0
. . . 0

0 0 0 · · · ηs−1



, γ(τ2) = Q =




0 1 0 · · · 0

0 0 1 · · · 0

0 0 0
. . . 0

0 0 0 · · · 1

1 0 0 · · · 0



, (7.2)

so

γ(τa1 τ
b
2) = P aQb α(τa1 τ

b
2 , τ

c
1τ

d
2 ) = ηbc (7.3)

Any other non (linearly) equivalent irreducible projective representation can be writ-

ten as Rkl = span(αkγ(e1), β
lγ(e2)) with 0 ≤ k < m

s
and 0 ≤ l < n

s
. All these

representations are of dimension s. The field theory associated with this orbifold has

2mn
s2

gauge groups and its quiver can be written over a torus. Here we draw a piece

of it (Fig.3) however, the superpotential is not given by the usual clockwise minus

Figure 3: Quiver diagram for Zn × Zm orbifold

anti-clockwise squares as in an orbifold without discrete torsion. There exist relative

phases between the squares we should determine. In order to do this we have to

solve the equations (4.2) for the fields Ai, Bi when γ is the regular representation

⊕

0≤k<n
s
,0≤l<m

s

sRkl (7.4)

so the generators are given by

γR(τ1) =

m
s
−1⊕

i=0

αiP⊕n γR(τ2) =




n
s
−1⊕

i=0

βiQ⊕s




⊕m
s

. (7.5)
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The solutions to (4.2) can be written in terms of the matrices

M1 =




0 1ns×ns 0 · · · 0

0 0 1ns×ns · · · 0

0 0 0
. . . 0

0 0 0 · · · 1ns×ns

(Qa)⊕n 0 0 · · · 0



, M2 = 1m

s
×m

s
⊗




0 1s2×s2 0 · · · 0

0 0 1s2×s2 · · · 0

0 0 0
. . . 0

0 0 0 · · · 1s2×s2

(P a)⊕s 0 0 · · · 0



,

both elements of Mmn(C) and invertible

M−1
1 =




0 0 0 · · · (Q−a)⊕n

1ns×ns 0 0 · · · 0

0 1ns×ns 0 · · · 0

0 0
. . . · · · 0

0 0 0 1ns×ns 0



, M−1

2 = 1m
s
×m

s
⊗




0 0 0 · · · (P−a)⊕s

1s2×s2 0 0 · · · 0

0 1s2×s2 0 · · · 0

0 0
. . . · · · 0

0 0 0 1s2×s2 0




where a is chosen to satisfy −ar
p
+ 1

s
∈ Z, equation that always have a solution,

indeed, if r | p we can chose a = 1, if r ∤ p then we have to solve pk′ + ra = 1 for

a, k′ ∈ Z. M1 and M2 satisfy the relations

γR(g1)M1γR(e1)
−1 = α−1M1

γR(g1)M2γR(e1)
−1 = M2

γR(g2)M1γR(e2)
−1 = M1

γR(g2)M2γR(e2)
−1 = β−1M2 (7.6)

So we can write the fields, after orbifold projection as

A1 =




0 · · · 0 0 A
(m

s
−1,0)

1 ⊗Q−a · · · 0

0 · · · 0 0 0
. . . 0

0 · · · 0 0 0 · · · A(m
s
−1,n

s
−1)

1 ⊗Q−a

A
(0,0)
1 ⊗ 1s×s · · · 0 0 0 · · · 0

0 A
(0,1)
1 ⊗ 1s×s 0 0 0 · · · 0

0 0
. . . 0 0 · · · 0

0 0 0 A
(m

s
−2,n

s
−1)

1 ⊗ 1s×s 0 0 0




the other variables can be projected likewise, A1 ∼ M−1
1 , A2 ∼ M1M

−1
2 , B1 ∼ M2,

B2 ∼ 1. Then the superpotential will have the form of a square superpotential

algebra but one of the anti-clockwise squares will be multiplied by a phase ηa
2
. We

cannot eliminate this phase just by a redefinition of the fields since the following

constraint must be satisfied
∏

�C
λC∏

�A
λA

= ηa
2

(7.7)
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where �C and �A stand for clockwise and anti-clockwise squares respectively. The

quantity (7.7) is invariant under field redefinitions by multiplication of a phase. How-

ever, we can opt for a more symmetric choice and have all the anti-clockwise squares

rescaled by

λs ≡ e
2πias
mn (7.8)

we define the projectors P
(i)
kl associated with the gauge groups R

(i)
kl as usual and the

Ai =
∑

klA
(kl)
i and Bi variables likewise. We also define the monomials

σ
(i)
k =

n
s∑

j=1

δjP
(i)
kj δ = βs (7.9)

Then the relations of the generators of the path algebra are derived from the super-

potential

W = Tr [A1B1A2B2 − λsA1B2A2B1] (7.10)

plus

σ
(2)
k B1 = δB1σ

(1)
k σ

(2)
k B2 = B2σ

(1)
k σ

(1)
k A2 = δA2σ

(2)
k−1 σ

(1)
k A1 = A1σ

(2)
k+1

Call this path algebra CQη. Solving the modules of this path algebra is not an easy

task, however, we can solve the problem for an algebra we know much better how

to handle, the crossed product A = Ac ⊠ (Zn × Zm)η. These algebras are Morita

equivalent (see appendix C). This fact allow us to extend our previous results in a

rather simple way. The CS levels are rescaled by a factor of s after we take the trace

over the simple modules R
(a)
kl . Therefore, the quantization of the levels is taken to be

κ
(a)
kl = k

s
with k ∈ Z. Morita equivalence implies that the simple modules of CQη are

again parametrized by four complex variables with a canonical kinetic term rescaled

by a factor mn
s
Skin(fi, gi)

5. These two facts together gives a total moduli space in

the bulk of the form

M3d = C4/(Zn × Zm × Zmnk
s
) (7.11)

which is the result we expected from our general analysis. The singularities can be

derived as before from ZA, which is given by (using the notation of appendix B)

ZA ∼= 〈X
mn
p

1 , X
mn
p

2 , Y n
1 , Y

n
2 , X1X2, (X1Y2)

m, (X2Y1)
m〉/{X1X2 − Y1Y2} (7.12)

As we can see from the action of Γ, the fixed lines are the same as in the case

of Aq therefore the analysis can be carried on on a similar way, likewise in [45].

The singularities are also locally As−1 but we will have a different factor on the

monodromy of the 2-spheres. Obviously, when m = n we reproduce the result from

section 6.
5The Uχ matrices we define in section 6.1 will be of dimension s and there are mn

s2
irreducible

representations. This is also clear from the result in the appendix C, where it can be seen directly

from (C.7) that the dimension of the simple CQη-modules is mn

s
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8. Matching with gravity duals

The theories we have studied differ from their counterparts with trivial discrete

torsion only by the superpotential. These deformations are casted by turning on

a non-trivial NS B-field and RR fluxes. In general, as shown in [51, 46], when

we have a non-zero B-field it sources a non-commutativity parameter for the open

strings. When we look at the worldvolume theory of a brane in these setups, the

usual pointwise product between fields should be replaced by a star product. Since

the non-commutativity parameter is controlled by the B-field, in the case it only has

components transverse to the brane, the star product is given by constant phases

f ⋆ g = eiπγ(Q1(f)Q2(g)−Q2(f)Q1(g))fg

where the Qi’s correspond to global charges and γ is the non-commutativity param-

eter. The geometries dual to these deformed theories have been studied as well. For

example, in the AdS5/CFT4 case, N = 4 SYM with a q-deformed superpotential

corresponds to a near horizon geometry with a deformed 5-sphere AdS5 × S̃5 [52].

This metric can be generated by a so called TsT transformation, a solution generat-

ing technique presented in [52]. The geometry with S̃5 is related by mirror symmetry

to the orbifolded 5-sphere [53].

In general, a TsT transformation can always be realized, as long as our geometry

possesses a T 2 fibration. The metric dual to ABJM has enough symmetry to do this.

Their q-deformed counterparts have been actually computed [54]. The near horizon

geometries we got from our analysis must be of the form AdS4×CP 3/Zn×Zn in the

q-deformed case (or AdS4×S7/(Zn ×Zn ×Znk) in M-theory). These seem quite dif-

ferent from the deformed backgrounds obtained in [54], but there is no contradiction.

Like in the type IIB case [55, 45, 53] they are related by mirror symmetry. Let us

see how this works. The moduli spaces we found can be seen as a C∗-fibration over a

basis described by ZA, so we can use the same reasoning as in [55, 45, 53]. From the

M-theory point of view our bulk branes are expected to be M5-branes with topology

R1,2 × T 2 × S1
M , where S1

M is the extra M-theory circle. In type IIA string theory

these are D4-branes with topology R1,2×T 2. At the singularities this torus pinches n

times, giving us the fractional branes, which may then have topology R1,2×S2×S1
M .

In type IIA these D4-branes have D2-brane charge due to Myers effect [56]. We can

then use T-duality along the T 2 directions to interchange D2/D4 charges, therefore

ending with a single point-like D2-brane and a fractional B-field. This is the geom-

etry found in [54]. By an analysis of the DBI action of a single D4-brane they also

found new branches when the deformation parameter q is a root of unity, results that

we confirm in our computation. The interesting new effect we found is that the S1

circle gets shrunk by a factor that depends on the choice of discrete torsion. The

backgrounds from [54] do not present this effect, although the dilaton gets modified.
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It would be interesting to see if this effect could be reproduced from the SUGRA

point of view. However, we may need to take into account corrections in α′ of the

background. One reason to think this is because the deformed S7/Zk metric has

small curvature as long as N2kγ ≪ 1 (with q = e2πiγ) then we need n ≫ 1 if we

want the 11d SUGRA approximation to be reliable. If we want to use the SUGRA

approximation for S7/(Zn × Zn × Znk), then we need n≪ 1.

Is also interesting to note the resemblance with the moduli space obtained in

[57, 58], although the field theories are different, having vanishing CS levels for some

of the hypermultiplets in the latter case. They obtained, by a brane construction,

the dual theory on a singularity of the form C4/Zn × Zm × Zmnκ, so it would be

worth studying how discrete torsion can be implemented there in order to see if the

effect in the M-theory fiber is also reproduced in those theories and ultimately shed

some light on the brane constructions that may lead to dual theories presented in

this paper.

9. Conclusions

We analyzed the inclusion of discrete torsion on orbifolds of the ABJM-type family

of theories. We focused on orbifolds by a group Γ ≤ SU(2) × SU(2), in order to

break supersymmetry at most to N = 2. We used the approach on [8] but using

projective representations of Γ which we showed is equivalent to twisting the crossed

product algebra Ac ⊠ Γ. We found that, if we carefully take into account the fact

that the smallest irreducible representation of Γ is of order greater than one, we can

have fractional CS levels on the covering theory. If we are twisting the algebra by

a cocycle of order m, the CS levels in the covering can be chosen as κ = k
m

with k

relatively prime to m giving us an orbifold theory with integer CS levels k. The net

effect is that the smallest unit of D0-brane charge for the BPS monopoles is smaller

than their counterparts without discrete torsion. This translates in a reduction of

the radius of the M-theory circle by a factor of m
|Γ|k

. This was shown very rigorously

for the cases of Γ abelian, but is expected to hold in general. At least the possibility

of κ being fractional was shown not to depend on this fact.

There are many possible future directions for this work. One of them is to con-

sider deformations of more general quivers. However, for superpotentials of order

different than four in the superfields, we will no longer have a canonical Kähler po-

tential, making the holomorphic quantization procedure more difficult to implement.

Another interesting question is what are the gravity duals of the theories we ana-

lyzed. We know the near horizon geometries found in [54] are good candidates, but it

would be interesting to understand how T-duality acts on the full solution to give the

correct value of the radius of the extra circle. This may shed some light also on what
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are the possible brane constructions that gives these configurations and ultimately a

better understanding of the role of discrete torsion in M-theory.

Last but not least, we should mention that a careful study of the quantization

conditions in the cases where fractional flux is allowed is worth studying. In partic-

ular, one of the important issues in these cases is to find what are the dual objects

that carry these quantum numbers. We expect them to be baryon like operators as

in the case analyzed in [39].
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A. Proof of theorem

The results we will use to prove the theorem are in [44, 59, 60]. Let begin recalling

that a theorem by Schur states that for every finite group Γ there exists a repre-

sentation group H and A ≤ Z(H), such that Γ ∼= H/A and A ≤ H ′ = [H,H ] and

A ∼= H2(Γ,C∗). Then given an isomorphism θ : Γ → H/A we can fix an element

r(g) ∈ H for each g ∈ Γ such that θ(g) = Ar(g), so there exist a map β : Γ×Γ → A

that satisfies r(g)r(g′) = β(g, g′)r(gg′).

Now, consider a 2-cocycle α of Γ. We say that α is special if given a character

λ of A then α(g, g′) = λ(β(g, g′)) for all g, g′ ∈ Γ. Then, we have two key results.

First , there is an isomorphism Hom(A,C∗) ∼= H2(Γ,C∗) induced by the map λ →
[λ(β(g, g′))], so in every cocycle class of Γ there exist a unique special 2-cocycle.

Second, given a special special 2-cocycle α and Pi, i = 1, . . . r representatives of

the inequivalent projective representations of Γ with cocycle α, then there exists r

irreducible linear representations of H , Di such that Di(r(g)) = Pi(g) for all g ∈ Γ.

Now, proving our claim is very simple, consider

Di(r(g))Di(r(g
′)) = α(g, g′)Di(r(gg

′)) = λ(β(g, g′))Di(r(gg
′))

= Di(r(g)r(g
′)) = Di(β(g, g

′))Di(r(gg
′)) (A.1)
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then Di(β(g, g
′)) = λ(β(g, g′))1 and taking the determinant of this expression we get

(det(Di(a)) = 1 for any a ∈ A since A ≤ H ′)

1 = λ(β(g, g′))dim(Pi) ∀g, g′ ∈ Γ (A.2)

therefore if m[α] = 0 then m | dim(Pi), so the order of a given cocycle class divides

the dimension of all its projective representations.

B. Conifold algebra

The quiver that gives the conifold algebra Ac is given by two nodes (P1 and P2) and

four arrows Ai, Bi with i = 1, 2. The path algebra relations are given by

P1Ai = AiP2 P2Ai = AiP1 = 0, (B.1)

P1Bi = BiP2 = 0 P2Bi = BiP1,

plus the ones derived from the superpotential

W =
1

2
Tr(ǫijǫklAiBkAjBl) = Tr (A1B1A2B2 − A1B2A2B1) , (B.2)

which are

A1B2A2 = A2B2A1, (B.3)

A1B1A2 = A2B1A1,

B1A2B2 = B2A2B1,

B1A1B2 = B2A1B1,

the center ZAc is generated by X1 = A1B1 + B1A1, X2 = A2B2 + B2A2, Y1 =

A1B2+B2A1 and Y2 = A2B1+B1A2 (see for example [61]) which satisfy the relation

X1X2 = Y1Y2.

C. Proof of Morita equivalence

Claim 1: The algebra A = Ac ⊠ (Zn × Zn)q where the q subindex indicate that

Zn ×Zn is twisted by the maximal cocycle q and Ac is the conifold algebra spanned

by ai, bi is Morita equivalent to Aq.

Proof: Define the variables

ã2 = a2 ⋊ 1 ã1 = a1 ⋊ e−1
τ1
e−1
τ2

b̃2 = b2 ⋊ eτ1 b̃1 = b1 ⋊ eτ2 . (C.1)
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where Zn × Zn
∼= 〈τ1〉 × 〈τ2〉 and eτi are the generators of C(Zn × Zn)q. Then

[ãi, eτj ] = [b̃i, eτj ] = 0, therefore the crossed product algebra can be split in a tensor

product

Ac ⊠ (Zn × Zn)q ∼= Aq[ãi, b̃i]⊗A[eτ1 , eτ2 ] (C.2)

since A[eτ1, eτ2 ] have a unique irreducible representation, for q maximal, then is iso-

morphic to the space of matrices of dimension n×n and so, we have that the category

of modules of A and of Aq are equivalent, which is the definition of Morita equiva-

lence.

Claim 2: The algebra CAη is Morita equivalent to A = Ac ⊠ (Zn × Zm)η.

Proof: Let begin by constructing the projectors for the twisted algebra. These are

given by sums over the generators corresponding to the α-regular elements. Is easy

to see that these elements are given by τas1 τ
a′s
2 with 1 ≤ a ≤ n

s
and 1 ≤ a′ ≤ m

s
,

hence the projectors will be given by

Pkl =
s2

mn

∑

a,a′

αkasβla′seτas1 τa
′s

2
PklPk′l′ = δkk′δll′ (C.3)

at this point we can see that the projectors P
(a)
kl ≡ Pa ⋊ Pkl satisfy the expected

relations with the generators of Ac, derived from the action (7.1) of Zn × Zm on

them

P
(1)
kl a1 = a1P

(2)
k+1l P

(1)
kl a2 = a2P

(2)
k−1l+1 P

(2)
kl b1 = b1P

(1)
kl−1 P

(2)
kl b2 = b2P

(1)
kl

our goal is to factor an algebra that has a unique irreducible representation. The

obvious choice is the algebra A[ẽ1, ẽ2] generated by ẽ1 = e
τ
n
s
1

and ẽ2 = e
τ
m
s

2

. Then

A[ẽ1, ẽ2] ∼= C(Zs × Zs)η. Define the variables

ã1 = a1 ⋊ eτb2 ã2 = a2 ⋊ eτc1 eτ−b
2

b̃2 = b2 ⋊ 1 b̃1 = b1 ⋊ eτ−c
1
. (C.4)

with b and c integers chosen such that

ηc
m
s = ηb

n
s = e

2πi
s (C.5)

therefore they commute with ẽ1 and ẽ2. A direct computation give us

ã1b̃2ã2b̃1 = ηcbα−cβbã1b̃1ã2b̃2 (C.6)

and, with a fair amount of patience it can be shown that b and c can be chosen such

that ηcbα−cβb = λ−s therefore showing that

A ∼= CAη ⊗A[ẽ1, ẽ2] (C.7)

which is the statement that both algebras are Morita equivalent.
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