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Abstract

We compute the partition function on the hemisphere of a class of two-

dimensional (2,2) supersymmetric field theories including gauged linear sigma

models. The result provides a general exact formula for the central charge

of the D-brane placed at the boundary. It takes the form of Mellin-Barnes

integral and the question of its convergence leads to the grade restriction rule

concerning branes near the phase boundaries. We find expressions in various

phases including the large volume formula in which a characteristic class called

the Gamma class shows up. The two sphere partition function factorizes into

two hemispheres glued by inverse to the annulus. The result can also be

written in a form familiar in mirror symmetry, and suggests a way to find

explicit mirror correspondence between branes.
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1 Introduction

Localization has been a powerful tool to obtain exact results in supersymmetric quan-

tum field theories since the very beginning [1]. Recently, the idea was applied to a part of

superconformal symmetry which exists for a class of spacetime even if the theory is not

conformally invariant. After the pioneering work by Pestun [2], several important results

are obtained in three, four and five dimensions, and qualitatively new information of the

respective theory is obtained. Along this line, the partition function on the two sphere

of (2, 2) supersymmetric gauge theories was computed by Benini et al [3] and Doroud et

al [4]. Interestingly, it was observed in some examples [5] that it computes the Kähler

potential for the family of superconformal fixed points of the theory.

These developments motivate us to study the partition function on the hemisphere of

two-dimensional (2, 2) supersymmetric gauge theories. The result will surely depend on

the choice of boundary condition, or the D-brane, at the boundary of the hemisphere.

There is a chance that it will tell us something non-trivial about D-branes or even about

the theory itself. In this paper, we formulate (2, 2) supersymmetric gauge theories on

the hemisphere, compute the partition function based on localization, and study some

of its properties. Our main target is the class of theories called the gauged linear sigma

models with the supersymmetry that admits the type of branes called the B-branes at

the boundary.

One obvious question is: what does it compute? We find in general that it depends

holomorphically on twisted chiral parameters and has no dependence on chiral parameters.

This suggests that it is the central charge of the D-brane. Indeed, after the computation,

we find that it agrees with the central charge whenever the computation can be completed

on both sides. In particular, the match can be made in various phases of the theories.

In the Landau-Ginzburg orbifold point, the result agrees with the formula for the central

charge proposed in [6]. In the geometric phase, in which the theory reduces to the non-

linear sigma model with a Kähler target space X , the large volume limit of our result

is

ZD2(B) =

∫

X

Γ̂X eB+ i
2π

ωch(B) + · · · (1.1)

where Γ̂X is a characteristic class of X called the Gamma class [7–10], B and ω are the

B-field and the Kähler class of X respectively. This is the expected behaviour for the

central charge of the brane. + · · · is the worldsheet instanton corrections, and we provide

a precise form of such corrections, to all orders in the instanton number. In a class of

theories, the exact expression for the central charge is known by mirror symmetry and/or
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by detailed instanton calculus. Our results matches with that in such cases. In other

cases where the expression is not known, our result can be regarded as a prediction for

the central charge.

The conjecture of [5] and our observation suggests that the two sphere partition func-

tion can be factorized into two hemispheres glued by the inverse to the annulus. We show

that this is indeed the case in the geometric phase in which the formula for the annulus is

known. We find though that the formula given in [3, 4] should be corrected by a shift of

theta angle. This is extremely subtle becuase it is just a matter of sign in the sum over

different topological sectors, and it is not always non-trivial.

The most interesting aspect of our study is that the formula for the partition function

is written as an integral of some meromorphic form and the choice of contour is related

to the choice of boundary condition for the vector multiplet of the gauge theory. There is

no apriori rule to decide the boundary condition, and the convergence of the integral can

give us some hint to find it. Deep in phases one can usually find the contour so that the

integral converges for an arbitrary brane. However, near the phase boundary, a convergent

contour can be found only for a very restricted class of branes. This reproduces the grade

restriction rule found in [11] in the Abelian and Calabi-Yau cases, and generalizes it or

provides a way of generalization in non-Abelian and non-Calabi-Yau cases. This is of

importance to the study of analytic behaviour of the partition function, especially across

the phase boundary. The integral is of the form called Mellin-Barnes integral. The present

work shows that the issue of convergence of such integrals encodes a rich physics content.

Using the most famous formula for the gamma function, we can convert our result

into the formula for the central charge found in [12] during the derivation of the mirror

symmetry. This provides a proof of the conjecture that the hemisphere computes the

central charge, in the gauge theories we study. The precise corrspondence between the

original B-brane and the mirror A-brane was out of reach in the method of [12, 13]. Our

results can now be used to find the correspondence, at least at the level of the Ramond-

Ramond charge.

Our work may be of interest from another point of view. Supersymmetric field theories

on higher dimensional spacetime with boundary can be an interesting subject of study in

its own right and also in relation to the dymnamics of branes in superstring theory and M

theory. We believe that some experience in two dimensions will be of some help in such

investigations.

While our work was in progress but no sentence was written, we were informed by

two groups of people, one by Daigo Honda and Takuya Okuda, and another by Sotaro
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Sugishita and Seiji Terashima, that they are working on a possibly related subject and

that they were getting to be ready or were ready to publish their papers. We asked them

to wait for us to write up our results, and they kindly agreed to do so. We would like to

thank them for their generosity.

2 Supersymmetry

In this section, we write down the supersymmetry transformation rule of component

fields in various supermultiplets on the sphere and the hemisphere.

Notation

We follow the convention originated from Wess-Bagger [14] concerning the notation for

the variational parameters as well as the component fields (φ, ψ, F ) and (v, σ, λ,D) of the

chiral and vector multiplets. Dimensional reduction [15] and a
√
2 rescaling yields a nota-

tion in two-dimensional Minkowski space [16]. The relation to [14] and [15] (superscripts

“WB” and “W” respectively) is

ǫ± =
√
2ǫW± ,

λ± =
√
2λW± , σ = σ1 + iσ2 =

√
2σW = vWB

1 − ivWB
2 ,

v0 = vW0 = vWB
0 , v1 = vW1 = vWB

3 .

The same relation holds for the hermitian conjugates. Other components, φ, ψ±, their

hermitian conjugates, and D, are trivially related. Notation in the Euclidean space is

obtained by Wick rotation, x0 → −ix2, v0 → iv2. We also write

D = iDE , F = if
or
= iFE F = if

or
= iFE. (2.1)

In Euclidean signature, DE is real and (f, f) (or (FE, FE)) is the complex conjugate pair,

D†
E = DE, f = f † (or FE = F †

E). (2.2)

The fermionic parameters and fields are to be regarded as sections of the spinor bundle

S = S− ⊕ S+ on the Euclidean space R2, with metric ds2 = |dz|2, (gzz = 1/2), where

z = x1 + ix2. See Appendix A for conventions and facts on spinors on two-dimensional

manifolds. For example,

ψ = ψ−
√
dz + ψ+

√
dz, ψ = ψ+

√
dz + ψ−

√
dz, (2.3)

6



and similarly for the variational parametes ǫ, ǫ. For the fermions in vector multiplets it is

more useful to write

λ = −iλ−
√
dz + iλ+

√
dz, λ = iλ−

√
dz − iλ+

√
dz. (2.4)

2.1 Superconformal Transformations

We first write down the (2, 2) superconformal transformations of various supermulti-

plet fields (taken from [3, 4]). They are obtained by replacing the pair (ǫ, ǫ) of constant

spinors on the Euclidean space R2 by a pair of (local) conformal Killing spinors on a

curved surface with a spin structure (Σ, g), via the Weyl covariantization procedure [4].

Chiral multiplet (vector R-charge R):

δφ = 〈ǫ, ψ〉, δφ = −〈ǫ, ψ〉,
δψ = i 6∂φǫ+ iR

2
φ 6∇ǫ+ ifǫ, δψ = −i 6∂φǫ− iR

2
φ 6∇ǫ+ ifǫ,

δf = 〈ǫ, 6∇ψ〉 − R
2
〈6∇ǫ, ψ〉, δf = 〈ǫ, 6∇ψ〉 − R

2
〈6∇ǫ, ψ〉 (2.5)

Twisted chiral multiplet (axial R-charge R):

The transformation is obtained from the one for the chiral multiplet by swapping ǫ+ and

ǫ+ while keeping ǫ− and ǫ− intact. In other words, replacing (ǫ, ǫ) by (ǫ̃, ǫ̃) defined by

ǫ̃ := P−ǫ+ P+ǫ, ǫ̃ := P−ǫ+ P+ǫ. (2.6)

This has full information but let us anyway write down the transformations

δu = 〈ǫ̃, χ〉, δu = −〈ǫ̃, χ〉,
δχ = i 6∂uǫ̃+ iR

2
u 6∇ǫ̃+ igǫ̃, δχ = −i 6∂uǫ̃− iR

2
u 6∇ǫ̃+ igǫ̃,

δg = 〈ǫ̃, 6∇χ〉 − R
2
〈6∇ǫ̃, χ〉, δg = 〈ǫ̃, 6∇χ〉 − R

2
〈6∇ǫ̃, χ〉 (2.7)

Vector multiplet:

δvµ = 1
2
〈ǫ̃, γµγ3λ〉 − 1

2
〈ǫ̃, γµγ3λ〉,

δσ = 〈ǫ̃, λ〉, δσ = −〈ǫ̃, λ〉,
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δλ = i 6Dσǫ̃+ iσ 6∇ǫ̃+ i
(
DE + iv12√

g

)
ǫ̃− 1

2
[σ, σ]γ3ǫ̃,

δλ = −i 6Dσǫ̃− iσ 6∇ǫ̃+ i
(
DE − iv12√

g

)
ǫ̃− 1

2
[σ, σ]γ3ǫ̃,

δDE = 1
2

(
〈ǫ̃, 6Dλ− iγ3[σ, λ]〉 − 〈6∇ǫ̃, λ〉+ 〈ǫ̃, 6Dλ− iγ3[σ, λ]〉 − 〈6∇ǫ̃, λ〉

)
. (2.8)

We also note

δ

(
i
v12√
g

)
=

1

2

(
−〈ǫ̃, 6Dλ〉+ 〈6∇ǫ̃, λ〉+ 〈ǫ̃, 6Dλ〉 − 〈6∇ǫ̃, λ〉

)
. (2.9)

We see that (σ, λ,DE + iv12√
g
) transform as fields in a twisted chiral multiplet of axial

R-charge 2, i.e. as (u, χ, g) in (2.7) with R = 2, up to commutator terms.

Charged chiral multiplet:

δφ = 〈ǫ, ψ〉, δψ = −〈ǫ, ψ〉,
δψ = i

(
6Dφ+ R

2
φ 6∇ − iσ1φγ3 + σ2φ

)
ǫ+ ifǫ,

δψ = −i
(
6Dφ+ R

2
φ 6∇+ iφσ1γ3 + φσ2

)
ǫ+ ifǫ,

δf = 〈ǫ, 6Dψ + R
2
6←−∇ψ − iγ3σ1ψ − σ2ψ − λ̃φ〉,

δf = 〈6Dψ + R
2
ψ 6∇+ iγ3ψσ1 − ψσ2 − φλ̃, ǫ〉. (2.10)

Here λ̃ = λ−
√
dz + λ+

√
dz and λ̃ = λ−

√
dz + λ+

√
dz.

Commutation Relations

The above superconformal transformations form a closed algebra together with con-

formal and R-symmetry transformations, up to gauge transformations. Under conformal

transformations, generated by vector fields X = Xµ∂µ such that ∂zX
z = ∂zX

z = 0, all

the fields transform like primary fields (in the sense of [19])

δconfX O = XµDµO + (∆∇zX
z + ∆̃∇zX

z)O, (2.11)

except the gauge potential which transforms as

δconfX vµ = Xνvνµ. (2.12)

(∆, ∆̃) are the “conformal weights” of O listed below together with the R-charges

O φ ψ− ψ+ f σ λ− λ+ DE

(∆, ∆̃) (R
4
, R
4
) (R

4
+ 1

2
, R
4
) (R

4
, R
4
+ 1

2
) (R

4
+ 1

2
, R
4
+ 1

2
) (1

2
, 1
2
) (1, 1

2
) (1

2
, 1) (1, 1)

(FV , FA) (R, 0) (R− 1, 1) (R − 1,−1) (R− 2, 0) (0, 2) (1, 1) (−1, 1) (0, 0)
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Under (φ, ψ±, f)→ (φ, ψ±, f) and (σ, λ±)→ (σ, λ±), conformal weights do not change but

the R-charges changes their signs. Those for twisted chiral multiplet fields are obtained

from the ones for chiral multiplet fields by the exchange of FV and FA (no change in

(∆, ∆̃)). It is useful to introduce right and left handed R-symmetries FR and FL defined by

FV = FR+FL and FA = −FR+FL. We write te corresponding symmetry transformations

by δright and δleft.

Let δ1 and δ2 be the superconformal transformations with conformal Killing spinors

(ǫ1, ǫ1) and (ǫ2, ǫ2). For all fields O, we find

[δ2, δ1]O = δconfX O + δrightΘ O + δleft
Θ̃
O + δgaugeiΛ O. (2.13)

where

Xµ = i〈ǫ[1, γµǫ2]〉, (2.14)

Θ =
i

2

(
〈6∇ǫ[1, P−ǫ2]〉+ 〈P−ǫ[1,6∇ǫ2]〉

)
, (2.15)

Θ̃ =
i

2

(
〈6∇ǫ[1, P+ǫ2]〉+ 〈P+ǫ[1,6∇ǫ2]〉

)
, (2.16)

iΛ = 〈ǫ[1, (γ3σ1 + iσ2)ǫ2]〉. (2.17)

Here 〈ǫ[1, γµǫ2]〉 := 〈ǫ1, γµǫ2〉 − 〈ǫ2, γµǫ1〉, etc. It is straightforward to find

Xz = 2iǫ−[1ǫ
−
2], Xz = −2iǫ+[1ǫ+2], (2.18)

Θ = iǫ−[1∂zǫ
−
2] − i∂zǫ

−
[1ǫ

−
2], Θ̃ = −iǫ+[1∂zǫ+2] + i∂zǫ

+
[1ǫ

+
2]. (2.19)

We see that Xz and Θ are holomorphic and Xz and Θ̃ are antiholomorphic, as they should

be. The commutation relation (2.13) and other obvious ones form the (2, 2) supercon-

formal algebra. Let us spell out a correspondence to the more standard notation. We

write the superconformal transformation for the pair (ǫ, ǫ) of conformal Killing spinors by

δ = δ−ǫ + δ+ǫ . As a local basis of conformal Killing spinors, we use

sr = zr+
1
2

√
∂

∂z
, s̃r = zr+

1
2

√
∂

∂z
. (2.20)

Then, the correspondence is

Ln = δconf
zn+1 ∂

∂z

, L̃n = δconf
zn+1 ∂

∂z

, (2.21)

G±
r = e−

πi
4 δ±

sr
, G̃±

r = e
πi
4 δ±

s̃r
, (2.22)

Jn = δrightzn , J̃n = δleftzn . (2.23)

They indeed obey the standard commutation relations, such as those in [17], in which the

central terms are set equal to zero.
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2.2 Supersymmetry On The Sphere And The Hemisphere

We shall formulate (2, 2) supersymmetric field theories on the sphere and the hemi-

sphere in such a way that a part of the (2, 2) superconformal symmetry is preserved. We

consider the Riemann sphere with coordinates z and w, zw = 1, and the southern or

northern hemisphere defined by |z| ≤ 1 or |w| ≤ 1 respectively. See Appendix A for more

details on the facts on the sphere and the hemispheres. Since we consider theories which

are not necessarily conformally invariant, out of the conformal generators we can at most

keep isometry generators. On the round sphere, the isometry group is O(3) generated by

ℓ3 = −z
∂

∂z
+ z

∂

∂z
, ℓ+ = z2

∂

∂z
+

∂

∂z
, ℓ− = − ∂

∂z
− z2 ∂

∂z
. (2.24)

Note also that only s± 1
2
and s̃± 1

2
are globally defined conformal Killing spinors. On the

hemisphere, only ℓ3 can be the isometry generator, and only the linear combinations

s 1
2
± s̃− 1

2
and s− 1

2
± s̃ 1

2
satisfy the boundary condition at |z| = 1 for some spin structure.

Thus, what can be included are the isometry generators,

L̂3 = δconfℓ3 = −L0 + L̃0,

L̂+ = δconfℓ+
= L1 + L̃−1,

L̂− = δconfℓ−
= −L−1 − L̃1, (2.25)

the supercharges

G+
± 1

2

, G−
± 1

2

, G̃+
± 1

2

, G̃−
± 1

2

, (2.26)

and the R-symmetry generators,

FV = δvector1 = J0 + J̃0,

FA = δaxial1 = −J0 + J̃0. (2.27)

We would like to find subsets of these, closed under the commutation relation, which

include all the isometries of the respective geometry and a maximum number of super-

charges.

On the round two-sphere, there are two possibilities

(A-type) L̂3, L̂±, FV ,

QA±
(+) = δ±

s
± 1

2

+ δ±
s̃
∓ 1

2

= e
πi
4 (G±

± 1
2

− iG̃±
∓ 1

2

),

QA±
(−) = δ±

s
∓ 1

2

− δ±
s̃
± 1

2

= e
πi
4 (G±

∓ 1
2

+ iG̃±
± 1

2

), (2.28)

(B-type) L̂3, L̂±, FA,
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QB±
(+) = δ∓

s
± 1

2

+ δ±
s̃
∓ 1

2

= e
πi
4 (G∓

± 1
2

− iG̃±
∓ 1

2

),

QB±
(−) = δ∓

s
∓ 1

2

− δ±
s̃
± 1

2

= e
πi
4 (G∓

∓ 1
2

+ iG̃±
± 1

2

), (2.29)

and their axial and vector R-rotations, (Aβ-type) or (Bα-type), which are obtained by

the replacement G±
r → e∓iβG±

r , G̃
±
r → e±iβG̃±

r , or G±
r → e±iαG±

r , G̃
±
r → e±iαG̃±

r ,

respectively. The generators from each set form a closed algebra which is isomorphic to

osp(2|2). At the south or the north pole, parts of the A-type (resp. B-type) supercharges

define twisted chiral (resp. chiral) operators. For example, let us look at the A-type

supercharges. At the south pole z = 0, operators annihilated by QA+
(+) ∼ e−

πi
4 G̃+

− 1
2

and

QA−
(+) ∼ e

πi
4 G−

− 1
2

are twisted chiral while those annihilated by QA−
(−) ∼ − e−

πi
4 G̃−

− 1
2

and

QA+
(−) ∼ e

πi
4 G+

− 1
2

are twisted antichiral, and things are the opposite at the north pole

z =∞. This is the motivation for the name “A” and “B”. In the litarature [3, 4], partition

function of gauged linear sigma model preserving A-type supersymmetry is studied, and

the result depends on the twisted chiral parameters but not on the chiral parameters— the

Kähler parameters but not the complex structure parameters when there is a non-linear

sigma model interpretation.

On the hemisphere, there are four possibilities

(A(+)-type) L̂3, Q
A±
(+), FV , (2.30)

(A(−)-type) L̂3, Q
A±
(−), FV , (2.31)

(B(+)-type) L̂3, Q
B±
(+), FA, (2.32)

(B(−)-type) L̂3, Q
B±
(−), FA, (2.33)

and their axial and vector R-rotations, (Aβ
(±)-type) or (B

α
(±)-type). The generators from

each set form a closed algebra: ( e
πi
4 Q, e

πi
4 Q,F ) = (QA±

(±), Q
A∓
(±),±FV ) or (Q

B±
(±), Q

B∓
(±),±FA)

obeys

Q2 = Q
2
= 0,

{Q,Q} = −2L̂3 + F,

[L̂3, Q] =
1
2
Q, [L̂3, Q] = −1

2
Q,

[F,Q] = Q, [F,Q] = −Q. (2.34)

A boundary condition must be specified at the boundary |z| = 1. There are basically

two types of subalgebra of the (2, 2) supersymmetry with half the amount of supercharges

that can be preserved at the boundary [18, 13] — A-type and B-type — and the boundary

11



conditions preserving these are called A-branes and B-branes. In a superconformal field

theory, the preserved generators are [18]

A-branes: Ln − L̃n, G+
r ± iG̃−

−r, G−
r ± iG̃+

−r, Jn − J̃−n, (2.35)

B-branes: Ln − L̃n, G−
r ± iG̃−

−r, G+
r ± iG̃+

−r, Jn + J̃−n, (2.36)

We see that the boundary conditions preserving A(±) are B-branes while those preserving

B(±) are A-branes.

The sign in the parenthesis, (±), corresponds to the choice of spin structure at the

boundary — (±)0 for the southern hemisphere D2
0 and (∓)∞ for the northern hemisphere

D2
∞. See Appendix A. We shall denote the partition function on the southern hemi-

sphere D2
0 preserving the A(±)-type and B(±)-type supersymmetry by ZA

D2
0(±)

and ZA
D2

0(±)

respectively, while the partition function on the northern hemisphere D2
∞ preserving the

A(±)-type and B(±)-type supersymmetry by ZA
D2

0(∓)
and ZA

D2
0(∓)

respectively. Note that the

label (±) in the partition function is correlated with the spin structure. Since there is

really no difference between the southern and northern hemispheres, we have the equality

ZA
D2

0(±)
= ZA

D2
∞(±)

, ZB
D2

0(±)
= ZB

D2
∞(±)

, (2.37)

When there is no room of confusion between A and B, we shall drop the superscript.

2.3 Some Useful Formulae

For convenience in later sections, we collect some useful properties of the variational

parameters for the supersymmetry transformations of each type.

We first write down the action of the Dirac operator. Let us first look at the B-type su-

persymmetry. The parameters of the four supercharges are (ǫ, ǫ) = (s 1
2
, s̃− 1

2
), (s− 1

2
,−s̃ 1

2
),

(−s̃− 1
2
, s 1

2
) and (̃s 1

2
, s− 1

2
), times a constant anticommuting variational parameter. Using

(A.17), we see that each satisfies 6 ∇ǫ = −ǫ/r and 6 ∇ǫ = ǫ/r. These can also be written

as 6 ∇ǫ̃ = γ3ǫ̃/r, 6 ∇ǫ̃ = −γ3ǫ̃/r using (ǫ̃, ǫ̃) introduced in (2.6). The same applies to the

A-type if we replace (ǫ, ǫ) by (ǫ̃, ǫ̃). To summarize,

(A-type) 6∇ǫ̃ = −ǫ̃/r, 6∇ǫ̃ = ǫ̃/r, or equivalently

6∇ǫ = γ3ǫ/r, 6∇ǫ = −γ3ǫ/r, (2.38)

(B-type) 6∇ǫ = −ǫ/r, 6∇ǫ = ǫ/r, or equivalently

6∇ǫ̃ = γ3ǫ̃/r, 6∇ǫ̃ = −γ3ǫ̃/r. (2.39)
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We next write down the action of γn̂ = gµνn̂
µγν on the variational parameters at the

boundary |z| = 1, where n̂ is the outward unit normal to the southern hemisphere D2
0.

Using (A.22), we find

(A(±)-type) γn̂ ǫ = ∓ǫ, γn̂ ǫ = ∓ǫ, (2.40)

(B(±)-type) γn̂ ǫ = ∓ǫ, γn̂ ǫ = ∓ǫ. (2.41)

3 Formulation

In this section, we formulate a class of theories on the hemisphere in such a way that

some of the supersymmetry studied in the previous section are preserved. We shall first

find a bulk action with appropriate boundary interaction so that the total is automatically

supersymmetric, and then discuss the boundary conditions. The main target is the gauged

linear sigma models with A-type supersymmetry (B-branes at the boundary), but we start

with Landau-Ginzburg models with B-type supersymmetry (A-branes at the boundary)

as a warm up. In view of (2.37) it is enough to consider the southern hemisphere, so we

set D2 = D2
0.

3.1 Bulk Action

3.1.1 Warm Up: Landau-Ginzburg Model (B-Type Supersymmetry)

We consider the Landau-Ginzburg model of n chiral multiplets (φi, ψi, f i), i = 1, . . . , n,

with superpotential W (φ) =W (φ1, . . . , φn).

Before starting, we comment on a useful fact concerning B-type supersymmetry trans-

formation of chiral multiplets. Using (2.39) in (2.5), we find that if (φ, ψ, f) is a chiral

multiplet of vector R-charge R, then (φ, ψ, f!) with

f! = f +
R

2r
φ, f ! = f +

R

2r
φ, (3.1)

transforms under the B-type supersymmetry as a chiral multiplet of vanishing vector

R-charge. This remark applies equally well to A-type supersymmetry transformation of

twisted chiral multiplets, as will be used in Section 3.1.2.

Kinetic term

First, let us find the kinetic term of a single chiral multiplet (φ, ψ, f). Let δ1 and δ2

be the B(+)-type supersymmetry with parameters (ǫ1, ǫ1) and (ǫ2, ǫ2). We compute δ2δ1 of
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some combination of fields and see if something like a kinetic term appears. After some

try and error, we find

iδ2δ1

(
f !φ+ φf! ∓

1

r
φφ

)
= ∇µJ

µ − 2c−Lkin, (3.2)

where

Lkin = ∂µφ∂µφ+
i

2
〈6∇ψ, ψ〉+ i

2
〈ψ,6∇ψ〉+ f !f!, (3.3)

and

Jµ = c−∂
µ(φφ)− 〈ǫ1, γµǫ2〉f !φ− 〈ǫ1, γµǫ2〉φf!

+c+
(
∂µφφ− φ∂µφ+ 〈ψ, γµψ〉

)
+ c3−

i√
g
ǫµν∂ν(φφ), (3.4)

in which c± = 1
2
(〈ǫ1, ǫ2〉±〈ǫ1, ǫ2〉), c3± = 1

2
(〈ǫ1, γ3ǫ2〉±〈ǫ1, γ3ǫ2〉). In deriving the above we

used (2.39) and some of its consequences, such as the fact that c− and c3+ are constants.

It is also useful to note that c+ = c3− = 0 at the equator |z| = 1. In particular, at |z| = 1

we have

n̂ ·J = c−n̂
µ∂µ(φφ)− 〈ǫ1, γn̂ ǫ2〉f !φ− 〈ǫ1, γn̂ ǫ2〉φf!

= c−
(
n̂µ∂µ(φφ)± (fφ− φf)

)
(3.5)

for B(±)-type supersymmetry, where we used (2.41) as well as (3.1). Evaluating c− and

integrating over the hemisphere, we find

∫

D2

Lkin
√
gd2x − 1

2

∫

∂D2

[
n̂µ∂µ(φφ)± (fφ− φf)

]
dτ

= ± i

2r

∫

D2

QB−
(±)Q

B+
(±)

(
f !φ+ φf! ∓

1

r
φφ

)√
gd2x. (3.6)

Here we used a periodic coordinate τ ≡ τ+2πr of the boundary ∂D2, defined by z = eiτ/r

for |z| = 1. Using the algebra (2.34), invariance of D2 under the rotation ℓ3, and the fact

that f !φ + φf! − 1
r
φφ has vanishing axial R-charge, we find that the right hand side is

QB−
(±)-exact as well as Q

B+
(±)-exact, and in particular, invariant under both. Thus, we can

take the left hand side of (3.6) as the action we wanted. It is the usual type of kinetic

term plus a particular boundary term.

With a little more hard work, we can generalize the above construction to the case

of n variables with a Kähler potential K and the Kähler metric gi = ∂i∂K. We shall

use the notation Ki = ∂iK etc. We have the relation of the form (3.2), in which we

make the replacement φφ → K, f !φ → f
ı

!Kı − i
2
Kı〈ψ

ı
, ψ

〉, φf! → Kif
i
! +

i
2
Kij〈ψi, ψj〉,
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∂µφφ→ ∂µφ
ı
Kı and φ∂

µφ→ Ki∂
µφi, in the expressions for the left hand side and for Jµ,

and

Lkin = gi∂
µφ


∂µφ

i +
i

2
gi〈6Dψ


, ψi〉+ i

2
gi〈ψ


, 6Dψi〉+ 1

4
Rikl〈ψi, ψk〉〈ψ

, ψ
l〉

+gi

(
f


! −
i

2
Γ

kl
〈ψk

, ψ
l〉
)(

f i
! +

i

2
Γi
kl〈ψk, ψl〉

)
. (3.7)

As the action, we may take
∫

D2

Lkin
√
gd2x− 1

2

∫

∂D2

[
n̂µ∂µK ±

(
f
ı

!Kı −Kif
i
! −

i

2
Kı〈ψ

ı
, ψ

〉 − i

2
Kij〈ψi, ψj〉

)]
dτ.

(3.8)

It is not only supersymmetric but also Q-exact as long as the Kähler potential is globally

defined.

Superpotential term

We next turn to the superpotential term. Let us put

LW =
i

2r
(W +W )− i

2
f i
! ∂iW −

i

2
f
ı

!∂ıW +
1

4
〈ψi, ψj〉∂i∂jW −

1

4
〈ψı

, ψ
〉∂ı∂W. (3.9)

Under B-type supersummetry, it transforms as δLW = ∇µJ
µ where

Jµ =
i

2
〈γµǫ, ψi〉∂iW +

i

2
〈γµǫ, ψı〉∂ıW. (3.10)

Note that

n̂ · J =
i

2
〈γn̂ ǫ, ψi〉∂iW +

i

2
〈γn̂ǫ, ψı〉∂ıW

= ∓ i

2

(
〈ǫ, ψi〉∂iW + 〈ǫ, ψı〉∂ıW

)
= ∓ i

2
δ(W −W ), (3.11)

where we used (2.41). We therefore find that
∫

D2

LW
√
gd2x ±

∫

∂D2

i

2

(
W −W

)
dτ (3.12)

is invariant under B(±)-type supersymmetry. Again, for this we do not need to use any

boundary condition.

When the superpotential is quasi-homogeneous, the system on the flat space has

the vector U(1) R-symmetry under the assignment of the R-charges so that W (λRφ) =

λ2W (φ), or equivalently,
∑

iRiφ
i∂iW = 2W . Then, the expression (3.9) simplifies as

LW = − i

2
f i∂iW −

i

2
f
ı
∂ıW +

1

4
〈ψi, ψj〉∂i∂jW −

1

4
〈ψı

, ψ
〉∂ı∂W. (3.13)
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This itself is invariant under the vector U(1) R-rotation. However, the last term of the

bulk kinetic term (3.3) as well as the boundary term in (3.12) violate this symmetry.

Thus, the systems on the sphere and the hemisphere do not inherite the vector U(1)

R-symmetry.

Bα-type supersymmetry

The above actions (3.6) and (3.12) can be made invariant under Bα
(±)-type supersym-

metry provided we make the folowing changes:

(i) The shift (3.1) is modified into f! = f + e2iα R
2r
φ and f ! = f + e−2iα R

2r
φ.

(ii) fφ− φf in the boundary term of (3.6) is changed to e2iαfφ− e−2iαφf .

(iii) W +W in the expression (3.9) for LW is changed to e2iαW + e−2iαW .

(iv) W −W in the boundary term of (3.12) is changed to e2iαW − e−2iαW .

When W is quasihomogeneous, this change is done simply by operating the vector R-

symmetry transformation eiαFV on all field variables.

3.1.2 Gauge Theory (A-Type Supersymmetry)

We consider a gauge theory with gauge group G (a complact Lie group) and a matter rep-

resentation V (a unitary representation of G). We write (φ, ψ, f) for the chiral multiplet

valued in V , and (σ, vµ, λ,DE) for the vector multiplet fields. We denote the superpoten-

tial by W (φ) and the twisted superpotential by W̃ (σ). Since the A-type supersymmetry

includes the vector U(1) R-symmetry, W (φ) must be quasi-homogeneous and we need to

assign the vector R-charges so that

W (λRφ) = λ2W (φ). (3.14)

We assume that R commutes with the gauge symmetry. The twisted superpotential W̃ (σ)

is arbitrary at the moment, although we shall later study in detail the gauged linear sigma

models in which it takes a special form

W̃ = − 1

2π
t(σ), (3.15)

where t = ζ − iθ is the complex combination of Fayet-Iliopoulos and Theta parameters.
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Gauge kinetic term

Recall that (σ, λ,DE + iv12√
g
) transforms like a twisted chiral multiplet with axial R

charge 2. Twisted chiral multiplets transform under A-type supersymmetry in the same

way as chiral multiplets do under B-type supersymmetry. Therefore, the construction

of the action of the Landau-Ginzburg models with B-type supersymmetry can give us a

guide to construct gauge kinetic term and the twisted superpotential term. In view of the

fact that the axial R-charge of σ is fixed to be 2, it is convenient to introduce, following

(3.1),

E! :=
(
DE + i

v12√
g

)
+

1

r
σ, E ! :=

(
DE − i

v12√
g

)
+

1

r
σ. (3.16)

Using (3.6) as a guide, we obtain the gauge kinetic term

∫

D2

Lgauge
kin

√
g d2x − 1

4e2

∮

∂D2

Tr

[
nµ∂µ(σσ)± 2i

(
DEσ2 −

v12√
g
σ1

)]
dτ

= ± i

4e2r

∫

D2

QA−
(±)Q

A+
(±)Tr

[
E !σ + σE! ∓

1

r
σσ

]√
g d2x, (3.17)

where

Lgauge
kin =

1

2e2
Tr

[
DµσDµσ +

1

4
[σ, σ]2 +

(
DE +

1

r
σ1

)2

+

(
v12√
g
+

1

r
σ2

)2

+
i

2
〈λ, 6Dλ〉+ i

2
〈6Dλ, λ〉+ 1

2
〈λ, γ3[σ, λ]〉+

1

2
〈λ, γ3[σ, λ]〉

]
. (3.18)

Here “ 1
e2
Tr(XY )” is an invariant inner product of the adjoint representation. “e2” is a

collective notation for the gauge coupling constant for each gauge group factor. The term

(3.17) is not only A(±)-type supersymmetric but also QA+
(±) and Q

A−
(±) exact.

Twisted superpotential term

Copying (3.12), we obtain the twisted superpotential term having A(±)-type super-

symmetry: ∫

D2

LW̃

√
g d2x ±

∮

∂D2

(
i

2
W̃ − i

2
W̃

)
dτ (3.19)

where

LW̃ =
i

2r

(
W̃ + W̃

)
− i

2

(
Ea! ∂aW̃ + Ea! ∂āW̃

)
+

1

4
〈λa, λb〉∂a∂bW̃ −

1

4
〈λa, λb〉∂ā∂b̄W̃ .

(3.20)
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In the particular case (3.15), it reads
∫

D2

(
i

2π
ζ(DE)

√
gd2x− i

2π
θ(Fv)

)
±
∫

∂D2

Im

(
1

2π
t(σ)

)
dτ, (3.21)

where Fv = dv + i
2
[v, v] is the curvature of the gauge potential v. We see that θ is indeed

a theta parameter.

Matter kinetic term

Finding the A-type supersymmetric kinetic term for the chiral multiplet with a possibly

non-trivial vector R-charge is a whole new story. However, just as we have done in finding

(3.6), we compute δ2δ1 of some combination of fields and see whether the result looks like

a kinetic term. After some try and error, we arrive at the following result:
∫

D2

Lmatter
kin

√
g d2x ±

∮

∂D2

[
i

2
〈ψ, ψ〉 − φσ2φ

]
dτ

= ± 1

2r

∫

D2

QA−
(±)Q

A+
(±)

[
〈ψ, γ3ψ〉+

i

r
φφ+ 2φ

(
−iR

2r
+ σ1

)
φ

]√
g d2x, (3.22)

where

Lmatter
kin = DµφDµφ+ φ

[
2R−R2

4r2
− iDE − i

R

r
σ1 + (σ2

1 + σ2
2)

]
φ+ ff

+
i

2
〈ψ, 6Dψ〉+ i

2
〈6Dψ, ψ〉+

〈
ψ,

[(
−iR

2r
+ σ1

)
γ3 − iσ2

]
ψ

〉

−i〈ψ, λ̃〉φ− iφ〈λ̃, ψ〉. (3.23)

We take the left hand side of (3.22) as the matter kinetic term. This is not only A(±)-type

supersymmetric but also QA+
(±) and Q

A−
(±) exact.

Matter superpotential

Finally, let us discuss the superpotential term. Let us put

LW = − i

2
f i∂iW −

i

2
f
ı
∂ıW +

1

4
〈ψi, ψj〉∂i∂jW −

1

4
〈ψı

, ψ
〉∂ı∂W. (3.24)

Under the condition (3.14) or equivalently
∑

iRiφ
i∂iW = 2W , any superconformal trans-

formation (2.5) of LW can be written as δLW = ∇µJ
µ where Jµ is the same as (3.10).

Note that

n̂ · J =
i

2
〈γn̂ ǫ, ψi〉∂iW +

i

2
〈γn̂ǫ, ψı〉∂ıW

= ∓ i

2

(
〈ǫ, ψi〉∂iW + 〈ǫ, ψı〉∂ıW

)
(3.25)
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for the A(±)-type supersymmetry, where (2.40) is used. Unlike in (3.11), it cannot be

written as a supersymmetry variation of some combination of bulk fields. Thus, we can

only say

δ

∫

D2

LW
√
g d2x = ∓ i

2

∮

∂D2

[
〈ǫ, ψi〉∂iW + 〈ǫ, ψı〉∂ıW

]
dτ (3.26)

The right hand side is the so called Warner term [22]. It can only be cancelled by the

supersymmetry transformation of a boundary interaction on a Chan-Paton factor of rank

greater than one, which we turn to next.

3.2 Chan-Paton Factor

We introduce a class of boundary interactions in the gauge theory which are important

by themselves but also can be used in cancellation of the Warner term.

First, let us introduce some notations that are suited to the boundary. The most

relevant ones are the fermions

ψ :=
1√
r

[
z

1
2ψ

{z}
− ± z

1
2ψ

{z}
+

]
, ψ :=

1√
r

[
z

1
2ψ

{z}
− ± z

1
2ψ

{z}
+

]
. (3.27)

The superscript {z} is there to emphasize that the field components are in the z-frame,√
dz,
√
dz, as in (A.4). ψ and ψ can be regarded as the boundary value of ψ and ψ with

respect to the natural frame at the boundary ∂D2,
√
rdz/z ≡ ±

√
rdz/z, where the sign

± corresponds to the spin structure (±)0 which is correlated with the supersymmetry

type A(±). Note that ψ and ψ are antiperiodic along ∂D2. Let ε0 and ε0 be the constant

and anticommuting variational parameters for QA−
(±) and Q

A+
(±) respectively. By definition,

the supersymmetry parameters ǫ and ǫ are given by

ǫ = ε0

(
s∓ 1

2
± s̃± 1

2

)
, ǫ = ε0

(
s± 1

2
± s̃∓ 1

2

)
. (3.28)

We now introduce a non-contant and antiperiodic variational parameters along ∂D2:

ε(τ) =
√
rε0 e

∓i τ
2r , ε(τ) =

√
rε0 e

±i τ
2r . (3.29)

The supersymmetry transformation of the boundary values of the fields can now be ex-

pressed in a simple way,

δφ = εψ, δφ = −εψ,

δψ = 2ε

[
Dτφ± i

R

2r
φ∓ σ1φ

]
, δψ = 2ε

[
−Dτφ± iφ

R

2r
∓ φσ1

]
. (3.30)
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Also, the Warner term can be written as

δ

∫

D2

LW
√
g d2x = ∓ i

2

∮

∂D2

[
εψi∂iW + εψ

ı
∂ıW

]
dτ (3.31)

A boundary interaction is specified for a choice of a homogeneous and gauge invariant

matrix factorization of the superpotential [23–25, 11]. The latter consists of the following

data: a Z2 graded hermitian Chan-Paton vector space M , a polynomial function Q(φ) of

φ ∈ V with values in Endod (M) obeying

Q(φ)2 = ∓ iW (φ) · idM , (3.32)

even and unitary actions of the vector R-symmetry and the gauge symmetry on M ,

λ 7→ λr∗ and g 7→ ρ(g), which commute with each other and satisfy

λr∗Q(λRφ)λ−r∗ = λQ(φ), (3.33)

ρ(g)−1Q(gφ)ρ(g) = Q(φ). (3.34)

Given such a data, we can write down the boundary interaction

Aτ = ρ (ivτ ∓ σ1)−
1

2
ψi∂iQ+

1

2
ψ

ı
∂ıQ

† +
1

2
{Q,Q†} ∓ i

2r
r∗, (3.35)

which is to be placed in the Chan-Paton factor,

trM

[
P exp

(
−
∮

∂D2

Aτdτ

)]
. (3.36)

In (3.35), the fermionic and anti-periodic fields ψ and ψ come with ∂Q and ∂Q† which

appear to be bosonic and periodic. This might look strange. However, we should note

that (3.36) needs to be understood as the graded Chan-Paton factor where Q and Q† are

regarded as fermionic and anti-periodic in a specific sense. See Appenidx B for detail.

Then, (3.36) makes a perfect sense.

Let us study the supersymmetry transformation of the Chan-Paton factor. We first

note that the combination (ivτ ∓ σ1) is invariant under the A(±)-type supersymmetry.

Thus, we have

δAτ = −1
2
2ε

(
Dτφ

i ± i

2r
(Rφ)i ∓ (σ1φ)

i

)
∂iQ

+
1

2
2ε

(
−Dτφ

ı ± i

2r
(φR)ı ∓ (φσ1)

ı

)
∂ıQ

†

+
1

2

{
εψi∂iQ,Q

†
}
+

1

2

{
Q,−εψı

∂ıQ
†
}
. (3.37)
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Using the infinitesimal forms of (3.33) and (3.34), the first two lines are written as

−ε
(
DτQ±

i

2r
Q∓ i

2r
[r∗, Q]∓ [ρ(σ1), Q]

)

+ε

(
−DτQ

† ± i

2r
Q† ± i

2r
[r∗, Q

†]± [ρ(σ1), Q
†]

)
.

If we use d
dτ
ε = ∓ i

2r
ε and d

dτ
ε = ± i

2r
ε that follows from the definition, it simplifies as

−Dτ (εQ+ εQ†)−
[
∓ρ(σ1)∓

i

2r
r∗ , εQ+ εQ†

]
. (3.38)

If we write Dτ (−) = d
dτ
(−) + [Aτ , (−)], it can be written as

−Dτ (εQ + εQ†) +

[
−1
2
ψi∂iQ+

1

2
ψ

ı
∂ıQ

† +
1

2
{Q,Q†} , εQ+ εQ†

]
. (3.39)

By the fermionic nature of Q and Q†, a part of it cancels with the third line of (3.37) and

another part can be simplified as

[ψi∂iQ,Q] = ψi∂iQQ−Qψi∂iQ = ψi(∂iQQ +Q∂iQ) = ψ
i∂i(Q

2). (3.40)

Collecting all, we have

δAτ = −Dτ

(
εQ+ εQ†)

−1
2
εψi∂iQ

2 +
1

2
εψ

ı
∂ı(Q

†)2 +
1

2
ε
[
Q†, Q2

]
+

1

2
ε
[
Q,Q†2

]
. (3.41)

Finally, if we use the matrix factorization property (3.32), the last two commutator terms

vanish and the two preceding terms become ± i
2

(
εψi∂iW + εψ

ı
∂ıW

)
idM , which is equal

to the Warner term (3.31) except that the sign is opposite. Note that the term of the

form Dτ (−) can be ignored if we consider the variation of the Chan-Paton factor (3.36).

Thus, the combination

exp

(
−
∫

D2

LW
√
g d2x

)
trM

[
P exp

(
−
∮

∂D2

Aτdτ

)]
(3.42)

is invariant under the A(±)-type supersymmetry.

3.3 Boundary Condition

Let us now discuss the boundary conditions of the field variables. Since we have

constructed the action which is automatically supersymmetric, the main requirement is
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the supersymmetry of the boundary conditions themselves as well as compatibility with

the Euler-Lagrange equations. We shall consult the analysis of [11] which studied the

boundary conditions for A-branes in Landau-Ginzburg models and B-branes in gauge

theories with the type of boundary interactions discussed above, in a half of the flat

Minkowski space with a timelike boundary.

As in the discussion on boundary interactions, it is convenient to use the spinor compo-

nents with respect to the natural frames near the boundary;
√
rdz/z for S− and±

√
rdz/z

for S+ which are identified at the boundary in the spin structure (±)0. We denote them

in upright symbols as

ψ− :=
√

z
r
ψ

{z}
− , ψ− :=

√
z
r
ψ

{z}
− , ψ+ := ±

√
z
r
ψ

{z}
+ , ψ+ := ±

√
z
r
ψ

{z}
+ ,

λ− :=
√

z
r
λ
{z}
− , λ− :=

√
z
r
λ
{z}
− , λ+ := ±

√
z
r
λ
{z}
+ , λ+ := ±

√
z
r
λ
{z}
+ . (3.43)

We shall use the real coordinates near the boundary, ρ and τ , which are related to the

complex coordinate by z = exp((ρ+ iτ)/r).

A-branes in the Landau-Ginzburg model

For concreteness, we consider the Landau-Ginzburg model of n variables with a purely

quadratic Kähler potential. To study A-branes, it is convenient to use real components

xI and f I
0 (I = 1, . . . , 2n) of the scalars φi = x2i−1 + ix2i and f i = ∓i(f 2i−1

0 + if 2i
0 ).

We also use linear combinations ψI and ψ̃I of the fermions, ψi
+ − ψi

− = ψ2i−1 + iψ2i,

ψ
ı

+−ψ
ı

− = ψ2i−1− iψ2i, ψi
++ψi

− = ψ̃2i−1+iψ̃2i and ψ
ı

++ψ
ı

− = ψ̃2i−1− iψ̃2i. We denote

by J I
J the complex structure of R2n, with non-zero entries J 2i

2i−1 = −J 2i−1
2i = 1, and by

gIJ the flat Kähler metric. It is also convenient to use ε1 and ε2 defined by ε = iε1 − ε2,
ε = −iε1 − ε2, and

N I := ∂ρx
I + if I

0 . (3.44)

Note that there is no reality for the fermionic fields and parameters in Euclidean signature,

and also that N I are complex valued. The B(±)-type supersymmetry transformation at

the boundary reads,

δxI = iε1ψ
I + iε2J I

Jψ̃
J ,

δψI = −2iε1ẋI + 2ε2J I
JN

J ,

δψ̃I = −2ε1N I + 2iε2J I
J ẋ

J ,

δN I = ε1

(
− ˙̃
ψ

I

± 1

2r
J I

Jψ
J

)
+ ε2

(
−J I

Jψ̇
J ∓ 1

2r
ψ̃I

)
, (3.45)
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where Ȯ = d
dτ
O. Except the 1/r terms, this is exactly the same as the Wick rotated

version of the expression for A-type supersymmetry in the flat Minkowski space [11].

An invariant set of boundary conditions is found for a totally real submanifold of Cn =

(R2n,J ), that is, a middle dimensnional submanifold L ⊂ R2n such that the tangent

space TxL at each point x ∈ L is transversal to its Jx-image. The conditions are, at each

point of the boundary,

x ∈ L, ψ ∈ TxL⊗C, ψ̃, N ∈ JxTxL⊗C. (3.46)

The next constraint is compatibility with the Euler-Lagrange equations. Here we make

a discrimination between the kinetic term and the superpotential term. We consider the

superpotential term as a perturbation and take into account the Euler-Lagrange equations

only from the kinetic term. This approach is suitable in the localization computation

where we take the limit of large Kähler metric, gIJ → ∞. As analyzed in [11], the

compatibility requires that at each point x ∈ L the tangent space TxL is orthogonal to its

Jx-image, or equivalently, L is a Lagrangian submanifold with respect to the symplectic

structure ωIJ = J K
I gKJ . Moreover, if we stick to the boundary term as in (3.6) or (3.8),

only a linear Lagrangian subspace is allowed. We can have a more general Lagrangian

submanifold by adding a boundary term which is itself Q-exact. Alternatively, we can

have an arbitrary Lagrangian submanifold by simply dropping the boundary term of (3.6).

In that approach, however, Q-exactness of the kinetic term is lost.

Although we consider the superpotential term as a perturbation, there is one constraint

from its presence. It is that the boundary potential in the superpotential term (3.12) must

be bounded below. This requires that ∓Im(W ) is bounded below at every infinity of L.

(For the Bα
(±)-type supersymmetry, ∓Im( e2iαW ) must be bounded below.)

B-branes in the gauge theory

Let us discuss the boundary conditions for B-branes in the gauge theory. Our main

interests are gauge linear sigma models where in a generic locus of the FI-parameter

space, the gauge group is mostly broken and we have the theory on the Higgs branch at

low energies. In such a theory, the main part of the information on the brane is expected

to be carried by the Chan-Paton data (M,Q, ρ, r∗). This is in contrast to the A-branes

discussed above where the main part of the information is carried by the choice of a

Lagrangian submanifold L. Nevertheless, we need to select boundary conditions for all

bulk fields in order to complete the formulation of the theory.
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Before starting, we write down the essential part of the supersymmetry transformation

of the fields at the the boundary. For the chiral multiplet,

δφ = ε(ψ− +ψ+), δφ = −ε(ψ− +ψ+),

δ(ψ− +ψ−) = 2εD′
τφ, δ(ψ− +ψ−) = −2εD′

τφ,

δ(ψ− − ψ+) = 2iε [Dρφ∓ σ2φ]∓ 2iεf,

δ(ψ− − ψ+) = −2iε
[
Dρφ∓ φσ2

]
∓ 2iεf,

δf = ε
[
±Dρ(ψ− +ψ+)− σ2(ψ− +ψ+)− (λ− + λ+)φ± iD′

τ (ψ− −ψ+)
]
,

δf = ε
[
±Dρ(ψ− +ψ+)− (ψ− +ψ+)σ2 − φ(λ− + λ+)± iD′

τ (ψ− −ψ+)
]
.(3.47)

For the vector multiplet,

δσa = iε1λ
a + iε2J a

bλ̃
b,

δλa = −2iε1D′
τσ

a + 2ε2J a
bN

b,

δλ̃a = −2ε1Na + 2iε2J a
bD

′
τσ

b,

δNa = ε1

(
−D′

τ λ̃
a ± 1

2r
J a

bλ
b

)
+ ε2

(
−J a

bD
′
τλ

b ∓ 1

2r
λ̃b
)
. (3.48)

In the above expressions, D′
τ is defined to be D′

τϕ = Dτϕ ∓ (σ1 − i
2r
R)ϕ and D′

τϕ =

Dτϕ± ϕ(σ1 − i
2r
R) for the components of the chiral multiplet of R-charge R and

D′
τυ = Dτυ ∓ [σ1, υ] (3.49)

for the components of the vector multiplet. For other notation and for more detail, see

Appendix C.

Let us first discuss the boundary conditions for the chiral multiplet. In order for the

boundary interaction (3.35) to be non-trivial, we would like the boundary values of φ as

well as the boundary values ψ and ψ of ψ+ +ψ− and ψ+ +ψ− to be as free as possible.

This leaves us with no choice on the boundary conditions:

Dρφ∓ σ2φ = 0, Dρφ∓ φσ2 = 0

ψ+ − ψ− = 0, ψ+ −ψ− = 0,

Dρ(ψ+ +ψ−)∓ σ2(ψ+ +ψ−)∓ (λ+ + λ−)φ = 0,

Dρ(ψ+ +ψ−)∓ (ψ+ +ψ−)σ2 ∓ φ(λ+ + λ−) = 0,

f = 0, f = 0. (3.50)

This set of boundary conditions is closed under the supersymmetry — the supersymmetry

transformation of the left hand sides all vanish if we use the boundary conditions. This is
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so for any configuration of the vector multiplet fields. See (3.47)-(3.48) and Appendix C.

The above boundary conditions are also compatible with the Euler-Lagrange equations

coming from the kinetic term (3.22) which includes a particular boundary interaction.

If we have the superpotential W and the matrix factorization Q, the Euler-Lagrange

equation changes. However, as long as we can treat these F-terms as perturbation, we

can still use (3.50) as the boundary condition. This approach is particularly suited to

the localization computation in which we take 1/e2 and the Kähler potential for φ to be

infinitely large.

For the vector multiplet, the boundary condition is analogous to the A-brane boundary

conditions for the chiral multiplet in the Landau-Ginzburg model. Indeed, the supersym-

metry transformation (3.48) is of the same form as (3.45) except that the τ -derivative

is replaced by the D′
τ -derivative given in (3.49). As in the discussion there, we need to

choose a Lagrangian submanifold L of the space gC of the values of σ = σ1 + iσ2 which is

equipped with a flat Kähler metric. Because of the commutator terms [σ1, υ] in D
′
τυ for

υ = σ2, λ̃ and λ, we also have additional conditions

[σ1, σ2] = 0 on L, (3.51)

[σ1,TσL] ⊂ TσL ∀σ ∈ L. (3.52)

Because we are mainly interested in gauged linear sigma models, we do not want to break

the gauge symmetry at the boundary by the choice of boundary conditions on the vector

multiplet fields. That is, we do not want to have any constraint on the boundary values of

the gauge transformations. This requires that L is invariant under the adjoint G action,

GL = L. (3.53)

Finally, we would like to require that the boundary potential is bounded below. However,

the precise meaning of the boundary potential is not so clear because the vector multiplet

is interacting with the chiral multiplet and also with itself. In [11], we studied the effective

boundary potential on the Coulomb branch in Abelian gauged linear sigma models and

obtained a general set of D-branes by choosing L to be the real locus ig ⊂ gC where σ1 is

free and σ2 is zero, or its small deformations. For a general compact Lie group G, the real

locus L = ig obviously satisfies the conditions (3.51), (3.52) and (3.53). This motivates

us to take the Lagrangian to be the real locus

L = ig ⊂ gC, (3.54)

or its deformations satisfying (3.51), (3.52) and (3.53).
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Let us determine the supersymmetric boundary conditions corresponding to the real

locus L = ig. A set of boundary conditions containing σ2 = 0 is

vρ = 0, ∂ρvτ = 0

σ2 = 0, ∂ρσ1 = 0,

λ+ + λ− = 0, λ+ + λ− = 0,

∂ρ(λ+ − λ−) = 0, ∂ρ(λ+ − λ−) = 0,

∂ρDE = 0. (3.55)

These are obtained from the corresponding boundary conditions in Minkowski space [11].

Because of the Wick rotation which changed the reality of the fields, a part of the con-

ditions in [11] need to be split into the real and imaginary parts. As a consequence,

these boundary conditions are not closed under the supersymmetry. The supersymmetry

transformation of (3.55) generates an infinite series of new conditions, consisting of even

number of normal derivatives of each, ∂2kρ vρ = 0, . . . , ∂2k+1
ρ DE = 0, k = 1, 2, 3, . . . This

might look problematic, but we will find in Section 5.2 a reasonable space of fields on

the hemisphere which satisfies all these boundary conditions.1 By the condition vρ = 0,

the gauge symmetry is broken to those g : D2 → G satisfying the Neumann boundary

condition ∂ρg = 0, but the boundary values of g are unconstrained. The boundary con-

ditions (3.50)-(3.55) are invariant under this residual gauge symmetry. If we also require

∂2k+1
ρ g = 0 for k = 0, 1, 2, . . ., then the extended boundary conditions are also gauge

invariant.

The choice of real locus (3.54) has some simplifying features. First, under (3.55) the

condition for the chiral multiplet becomes the purely Neumann boundary condition,

∂ρφ = 0, ∂ρφ = 0

ψ+ −ψ− = 0, ψ+ − ψ− = 0,

∂ρ(ψ+ +ψ−) = 0, ∂ρ(ψ+ +ψ−) = 0,

f = 0, f = 0. (3.56)

This will facilitates the analysis considerably. Second, under these conditions, the bound-

ary terms in the gauge kinetic term (3.17) and the matter kinetic term (3.22) both vanish.

1The same problem existsed in (3.46) where the last condition requires that the real and imaginary

parts of N , ∂ρx and f0, should independently belong to Jx(p)Tx(p)L. This is stronger compared to the

condition in Minkowski space where if0 were real and only the sum N = ∂ρx + if0 needs to be in that

real subspace. As we shall see, the same solution applies when L is a linear Lagrangian subspace.
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Thus, we may simply take Lgauge
kin +Lmatter

kin as the total kinetic terms. If we had taken an-

other Lagrangian submanifold, even if it is a small deformation of (3.54), the computation

becomes suddenly very hard.

In the direct computation of the partition function, we shall take the real locus (3.54),

that is, the boundary condition (3.56)-(3.55) (plus the infinite series). However, as we

shall see in Section 5.6, there is a simple trick to find the result for the deformations of

(3.54), once the result for (3.54) is found.

3.4 Remarks On R-Symmetry

Here we make some remarks on the vector U(1) R-symmetry of the gauge theory

preserving A(±)-type supersymmetry.

Charge integrality

An important class of theories are those in which A-twist is possible. It requires not

only the existence of a vector U(1) R-symmetry but also its charge integrality: The R-

charges of gauge invariant operators must be integers and they reduce modulo 2 to the

statistics of the operators. The quasihomogeneity (3.14) of the superpotential W (φ) only

assures the existence of the symmetry. The condition for the charge integrality is

eπiR = J ∈ G, (3.57)

that is, the linear transformation eπiR : V → V is the same as the action of an element J

of G. The charge integrality is extended to the boundary sector as the following condition

on the brane data (M,Q, ρ, r∗):

eπir∗ρ(J) =

{
+1 on M ev

−1 on Mod.
(3.58)

Gauge shift of R-charges

If the gauge group G has a center ZG with non-zero Lie algebra zG, we may shift the

R-charges as

R→ R +∆ (3.59)

for any element i∆ of zG. Indeed, if R satisfies (3.14) and commutes with G, so does

R+∆. We shall call this “gauge shift” of the R-charges. Note that it necessarily changes
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the matrix factorization data (M,Q, ρ, r∗) as

r∗ → r∗ − ρ(∆), (3.60)

in order for the condition (3.33) to remain satisfied.

When the charge integrality is assumed, and if the element J in (3.57) belongs to the

identity component of the center ZG, then, by the above shift with ∆ given by J = e−πi∆,

we may assume that all the bulk R-charges Ri are even integers and that all the boundary

R-charges rj (eigenvalues of r∗) are integers which reduce modulo 2 to the Z2-grading of

M . We shall refer to such a choice as the “Ro-frame” and denote the R-charges with the

superscript “o”:

Ro
i ∈ 2Z, roj ∈

{
2Z on M ev

2Z+ 1 on Mod.
(3.61)

Dressing by gauge transformation should not change any physics, and therefore, the

gauge shift of the R-charges is expected to be an unphysical operation. However, that is

far from obvious if we look into the R (and r∗) dependence of the action which we have

constructed. If we look more closely, however, we find that it might be possible to undo

the shift by suitable change of variables. We assume the boundary conditions, (3.56) and

(3.55), so that we can avoid complication coming from the boundary terms of the gauge

and matter kinetic terms. The R dependence appears in the matter kinetic term (3.23).

The shift (3.59) can be absorbed under the change of variables

σ1 → σ1 + i
∆

2r
, DE → DE − i

∆

2r2
. (3.62)

Note that this violates the original reality of the fields. The shift of variables (3.62) does

not change the gauge kinetic term (3.18), nor the matter superpotential term plus the

boundary interaction (3.35), provided we also do the gauge shift of r∗ (3.60). However,

this does change the twisted superpotential term. Therefore, the gauge shift of the R-

charge is not unphysical in general. However, if W̃ (σ) is linear in σ as in (3.15), then the

change is simply a constant shift of the action:

∆S =





1

2
t(∆) for (+)0

1

2
t(∆) for (−)0.

(3.63)

Whether the reality violating change of variables (3.62) is allowed is a subtle question.

That would be OK as long as it does not change physical observables. We shall examine

the effect on the partition function when we compute it.
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Range of R-charges

Under the original reality of the field variables, each term of the real part of the bulk

Lagrangian is non-negative except possibly the term φ2R−R2

4r2
φ in the matter kinetic La-

grangian (3.23). This motivates us to require 2R− R2 ≥ 0, that is, the R-charge of each

component φi must be in the range

0 ≤ Ri ≤ 2. (3.64)

In any known models of interest, we can find R-charges in this range. Indeed, since the

R-charge of the superpotential W (φ) is 2, as long as the fields φi entering into W (φ) are

concerned, if we choose all Ri to be non-negative they must also satisify the upper bound

Ri ≤ 2.

4 Parameter Dependence

The kinetic terms with appropriate boundary interaction which we constrcuted in the

previous section are Q-exact where Q is one or both of the two preserved supercharges.

See (3.6), (3.17) and (3.22). This means that the partition function does not change if we

multiply any positive number in front of these terms. For example, the result should not

depend on the gauge coupling constant e. This fact is very important and will be used in

a crucial way in the computation (Section 5). In this section, we study how the partition

function depends on other coupling constansts — chiral parameters that enter into the

superpotential and the matrix factorization and twisted chiral parameters that enter into

the twisted superpotential. We will again find some kind of Q-exactness and show that

it depends holomorphically (resp. anti-holomorphically) on the twisted chiral parameters

and does not depend on the chiral parameters if the system preserves the A(+)-type (resp.

A(−)-type) supersymmetry.

4.1 Holomorphy

Let us consider the Landau-Ginzburg model preserving the B(±)-type supersymmetry.

For δ1 and δ2 as in Section 3.1.1, we have

δ2δ1W = i〈ǫ1, γµǫ2〉∂µW + 〈ǫ1, ǫ2〉
(
−if ı

!∂ıW −
1

2
〈ψı

, ψ
〉∂ı∂W

)
. (4.1)

In what follows in this subsection, we take off the anticommuting variational parameters

from δi, ǫi, ǫi but denote the result by the same symbols. If we use (2.39) and the Fierz
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identity (A.6), where we should be careful that ǫi’s are now bosonic, we find

∇µ
〈ǫ1, γµǫ2〉
〈ǫ1, ǫ2〉

= −1
r
. (4.2)

Using this we find

1

〈ǫ1, ǫ2〉
δ2δ1W = ∇µ

(
i
〈ǫ1, γµǫ2〉
〈ǫ1, ǫ2〉

W

)
+

i

r
W − if

ı

!∂ıW −
1

2
〈ψı

, ψ
〉∂ı∂W. (4.3)

Integrating over D2 = D2
0 and using (2.41), we have

∫

D2

1

2〈ǫ1, ǫ2〉
δ2δ1W

√
gd2x = ∓

∫

∂D2

i

2
W dτ

+

∫

D2

(
i

2r
W − i

2
f
ı

!∂ıW −
1

4
〈ψı

, ψ
〉∂ı∂W

)√
gd2x. (4.4)

Similarly, we have
∫

D2

−1
2〈ǫ1, ǫ2〉

δ2δ1W
√
gd2x = ±

∫

∂D2

i

2
W dτ

+

∫

D2

(
i

2r
W − i

2
f i
! ∂iW +

1

4
〈ψi, ψj〉∂i∂jW

)√
gd2x. (4.5)

The right hand sides of (4.4) and (4.5) are precisely the W and W parts of the superpo-

tential term (3.12). So, it appears that the entire superpotential term is Q-exact for both

B(+) and B(−)-type supersymmetry. However, note that

(δ1, δ2) = (QB+
(+), Q

B−
(+)) : 〈ǫ1, ǫ2〉 =

2r

1 + |z|2 , 〈ǫ1, ǫ2〉 =
−2r|z|2
1 + |z|2 ,

(δ1, δ2) = (QB+
(−), Q

B−
(−)) : 〈ǫ1, ǫ2〉 =

−2r|z|2
1 + |z|2 , 〈ǫ1, ǫ2〉 =

2r

1 + |z|2 .

We see that division by 〈ǫ1, ǫ2〉 (resp. 〈ǫ1, ǫ2〉) is possible on D2
0 only for B(+)-type (resp

B(−)-type) supersymmetry. Therefore, if the system preserves the B(+)-type supersym-

metry, the W -part of the superpotential term (3.12) is Q-exact while the W -part is not.

Hence the partition function does not depend on the anti-chiral parameters but it can

depend on the chiral parameters. In other words, it depends holomorphically on the chiral

parameters. If the B(−)-type supersymmetry is preserved, the partition function depends

anti-holomorphically on the chiral parameters.

By the A-B exchange, that is, by the replacement (ǫ, ǫ) → (ǫ̃, ǫ̃), we have also shown

that the partition function of the system preserving A(+)-type (resp. A(−)-type) super-

symmetry depends holomorphically (resp. anti-holomorphically) on the twisted chiral

parameters.
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4.2 No Dependence

Let us next study the dependence of the chiral parameters in the systems preserving

A(±)-type supersymmetry. We note that deformation of the superpotential W and/or the

matrix factorization Q is constrained by

Q∆Q+∆Q = ∓i∆W, (4.6)

so that the condition (3.32) remains satisfied. In particular, any deformation ofW should

be accompanied by some deformation of Q, while deformation of Q for a fixed W must

satisfy {Q,∆Q} = 0.

Let ǫ′ and ǫ′ be the variational parameters for QA−
(±) and Q

A+
(±) in which the anticom-

muting parameters are stripped off. (I.e., ǫ′ = s∓ 1
2
± s̃± 1

2
and ǫ′ = s± 1

2
± s̃∓ 1

2
. See (2.28).)

Then we have

δ
(
〈γ3ǫ′, ψi〉∂iW

)
= ∇µ (i〈γ3ǫ′, γµǫ〉W ) + 〈γ3ǫ′, ǫ〉

(
if i∂iW −

1

2
〈ψi, ψj〉∂i∂jW

)
, (4.7)

δ
(
〈γ3ǫ′, ψ

ı〉∂ıW
)

= ∇µ (−i〈γ3ǫ′, γµǫ〉W ) + 〈γ3ǫ′, ǫ〉
(
if

ı
∂ıW +

1

2
〈ψı

, ψ
〉∂ı∂W

)
,(4.8)

where we used ∇µ〈γ3ǫ′, γµǫ〉 = 0 etc, that follows from (2.38). Note that the big paren-

theses on the right hand sides are parts of the superpotential term (3.24) and that the

coefficient in front, 〈γ3ǫ′, ǫ′〉, is a constant (which is ±2r). This means that the W -part of

the superpotential term LW given by (3.24) is QA−
(±)-exact while the W -part is QA+

(±)-exact.

However, this fact does not mean that the superpotential term is supersymmetric since

inside the parenthesis of δ( ? ) on the left hand sides have non-zero R-charges. (This is

another way to see that the supersymmetry variation of LW is the Warner term (3.26).)

But it can used to study the effect of deformation of W .

Deformation of the matrix factorization results in the following change in the Chan-

Paton factor,

∆ trM

[
P e−

∮
∂D2 A

]
= −

∮

∂D2

trM

[(
P e−

∫ τ+2πr
τ

A
)
∆Aτ (τ)

]
dτ, (4.9)

where

∆Aτ = −
1

2
ψi∂i∆Q+

1

2
ψ

ı
∂ı∆Q

† +
1

2
{∆Q,Q†}+ 1

2
{Q,∆Q†}. (4.10)

The supersymmetry transformation of expressions of the form trM

[(
P e−

∫ τ+2πr
τ

A
)
B(τ)

]

is, due to (3.41),

δ trM

[(
P e−

∫ τ+2πr
τ

A
)
B(τ)

]
= trM

[(
P e−

∫ τ+2πr
τ

A
)
δ′B(τ)

]
+ · · · (4.11)
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where

δ′B(τ) := δB(τ)− [ εQ + εQ†, B ](τ), (4.12)

and + · · · is the term that cancels the Warner term from the bulk. Let us note

δ′(∆Q) = ε
(
ψi∂i∆Q− {∆Q,Q†}

)
− ε{Q,∆Q}, (4.13)

δ′(∆Q†) = −ε
(
ψ

ı
∂ı∆Q

† + {Q,∆Q†}
)
− ε{Q†,∆Q†}. (4.14)

We see that the ∆Q-part of the change (4.9) of the Chan-Paton factor is QA−
(±)-exact while

the ∆Q†-part is QA+
(±)-exact.

Let us now consider the deformation preserving the supersymmetry (4.6). The effects

∆LW and (4.9) consist of terms which are exact under either QA+
(±) or Q

A−
(±). Therefore, the

partition function does not change under the deformation. It is also reassuring to note

that the total variation is exact under the sum Qtot = QA+
(±) +QA−

(±),

∆
{
e−

∫
D2 LW

√
g d2x trM

[
P e−

∮
∂D2 A

]}

= Qtot

{
e−

∫
D2 LW

√
g d2x trM

[
P e−

∮
∂D2 A

] ∫

D2

C√gd2x

+ e−
∫
D2 LW

√
g d2x

∮

∂D2

trM

[(
P e−

∫ τ+2πr
τ

A
)
B(τ)

]
dτ

}
, (4.15)

where

C := ± 1

4r
〈γ3ǫ′, ψi〉∂i∆W ± 1

4r
〈γ3ǫ′, ψ

ı〉∂ı∆W,

B :=
1

2
√
r
e±iτ/2r∆Q +

1

2
√
r
e∓iτ/2r∆Q†.

To summarize, the partition function does not change under deformation of (W,Q). That

is, it is independent of the chiral parameters.

Analogous statement for systems preserving B(±)-type supersymmetry would be that

the partition function is independent of the twisted chiral parameters. For example, in

the non-linear sigma model with a Kähler manifold X as the target space, the partition

function does not change under deformation of the Kähler class ω of X and the necessary

deformation of the A-brane data; a Lagrangian submanifold L ofX and a flat bundle E on

L. This seems to be difficult to prove. Even if we were able to show that the deformation

of (ω, L, E) changes the action by Q-exact terms, that would not be sufficient. The path-

integral measure is usually constructed using the target space metric and therefore is

expected to change if the Kähler class ω is deformed. Also the deformation of L results in
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the change of the boundary condition whose effect needs to be analyzed. This is in sharp

contrast with what we did above: The path integral meaure and the boundary conditions

are defined with no reference to the data of (W,Q) and hence Q-exactness of the change

in the action under the deformation was sufficient to prove the invariance of the result. A

related statement in the Landau-Ginzburg model is that the partition function does not

depend on the deformation of the Lagrangian submanifold L on which ∓Im(W ) is bounded

from below. As discussed in [11], Q-exact terms at the boundary generate Hamiltonian

deformations of L which are general deformations as Lagrangian submanifold when L has

a trivial topology. However, since the boundary condition necessarily changes, it is again

difficult to prove that the result does not change. In this paper, we shall simply assume

or postulate the invariance under such deformations. Based on this postulate and explicit

computation in simple cases, we shall find in Section 5.5 a reasonable proposal on the

general expression for the partition function.

4.3 What Does It Compute?

1 It was conjectured in [5] that the partition function ZS2 on the round two-sphere

with A-type supersymmetry computes e−K where K is the Kähler potential of the space

of twisted chiral parameters, when there is a spacetime physics interpretation. More

generally, if the theory is A-twistable, the conjecture is

ZS2 =
RR
〈0|0〉

RR
. (4.16)

|0〉
RR

is the canonical ground state defined via the infinitely long half-cigar in which the

curved region is A-twisted [20]. In other words ZS2 is equal to the partition function of the

infintely long cigar in which the two curved regions are A and anti-A twisted. The latter

is known as a component of the tt∗ metric which is known to satisfy special differential

equations [20]. Although there is some attempt [21], the real understanding of the realtion

between ZS2 and
RR
〈0|0〉

RR
is still missing.

Now we would like to ask what does the hemisphere partition function compute?

The combination of A-type supersymmetry and B-branes, holomorphic dependence on

the twisted chiral parameters, no dependence of the chiral parameters all points to one

possibility: the overlaps of supersymmetric ground states and the D-brane boundary

states in the Ramond-Ramond sector, as studied in [13]. If the latter are defined as

1What is said in this subsection holds when A and B are swapped provided ‘chiral’ and ‘twisted chiral’

are swapped at the same time.
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the partition function of the infinitely long half-cigar, in which the curved region is A-

twisted and B-branes are placed at the boundary, then, they are independent on the chiral

parameters but depend holomorphically on twisted chiral parameters in a partucular way,

so that Picard-Fuchs type equations hold [13]. When nothing is inserted at the tip of the

cigar, they are the overlaps of the state |0〉
RR

and the boundary states, called the central

charges of the D-branes. So, we would like to ask: Does the partition function on the

round hemisphere computes the D-brane central charge?

ZD2
0(+)

(B)
?
=

RR
〈0|B〉

RR
, ZD2

∞(−)
(B)

?
=

RR
〈B|0〉

RR
. (4.17)

We shall compute the partition functions in a large classes of examples and will observe

that this is indeed the case whenever the D-brane central charge is known.

5 Computation

We now compute the partition function. In the gauge theory, we perform the di-

rect computation by choosing the simplest boundary condition for the vector multiplet

in which the Lagrangian submanifold is the real locus (3.54). We also compute the par-

tition function for A-branes in Landau-Ginzburg model, where we discuss the choice of

integration measure. Using that discussion and employing the holomorphy discussed in

Section 4.1, we find the expression for the gauge theory partition function for more general

choice of Lagrangian submanifold.

5.1 Supersymmetric Configuration

Since the kinetic terms (3.17) and (3.22) for the vector and the chiral multiplets are

Q-exact, the result of the path-integral does not depend on the gauge coupling constant e

and the constant 1/g2 which we may put in front of the matter kinetic terms. If we take

the limit e→ 0 and g → 0, the path-integral localizes at the configurations in which the

real parts of these kinetic terms are minimized.

Let us find the condition for the minimization. Recall that the boundary condition

(3.56) and (3.55) annihilates the boundary terms of (3.17) and (3.22). Recall also that,

as long as the R-charges are in the range (3.64), 0 ≤ Ri ≤ 2, the real part of the bulk

kinetic Lagrangian, (3.18) and (3.23), is the sum of non-negative terms. Therefore, it is

minimized when each term vanishes. This condition reads

Dµσ = [σ, σ] = DE +
1

r
σ1 =

v12√
g
+

1

r
σ2 = 0, (5.1)
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Dµφ = (2R− R2)φ = σ1φ = σ2φ = f = 0. (5.2)

Since σ2 must vanish at the boundary by the boundary condition (3.55), being required to

be covariantly constant, it must vanish everywhere. This then implies v12 = 0, that is, the

gauge field is flat. Since the hemisphere is contractible, we may set vµ = 0 everywhere.

Then, σ1 and φ are literally constants. Note that a component φi must vanish unless its

R-charge Ri ∈ [0, 2] is either 0 or 2.

Almost the same condition follows from the supersymmetry. Vanishing of the super-

symmetry transformation of the gaugino, δλ = 0 and δλ = 0, requires precisely the same

condition as (5.1). Vanishing for the matter fermion, δψ = 0 and δψ = 0, requires

Dρφ−
(
x3
R

2r
∓ σ2

)
φ = Dτφ− i

(
∓R
2r
− x3σ2

)
φ = σ1φ = f = 0, (5.3)

where x3 = |z|2−1
|z|2+1

. If we put σ2 = vµ = 0, the first and the second conditions read

∂ρφi − x3Ri

2r
φi = 0 and ∂τφi ± iRi

2r
φi = 0. The first has a non-zero and regular solution

only when Ri = 0 while the second has a non-zero and single valued solution only when

Ri is an even integer. That is, φi is required to vanish unless Ri = 0. When Ri = 0, φi

must be a constant. Thus, this is stronger than the minimization condition in that φi is

required to vanish when Ri = 2.

In what follows, we shall assume that all the R-charges are in the range

0 < Ri < 2, (5.4)

or can be made into this range by using the gauge shift (3.59) if necessary. This is certainly

the case in all known examples of interest. Then, the supersymmetry requires all fields

including φ to vanish except that σ1 = −rDE must have a constant value σ1 ∈ ig. The

moduli space of supersymmetric configurations is the space of σ1 modulo the contant gauge

transformations, that is, the quotient of ig by the adjoint action of G. Or equivalently,

ig/G ∼= it/WG, (5.5)

where t is the Lie algebra of a maximal torus TG of G and WG is the Weyl group of G.

Let us evaluate the action at the supersymmetric background. Since the hemisphere

has area 2πr2 and the boundary has length 2πr, the twisted superpotential term is

S0 = 2πr2
i

2r

(
W̃ (σ1) + W̃ (σ1)

)
± 2πr

i

2

(
W̃ (σ1)− W̃ (σ1)

)

=

{
2πi rW̃ (σ1) for (+)0

2πi rW̃ (σ1) for (−)0
(5.6)
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(3.15)
=

{
i rt(σ1) for (+)0

i rt(σ1) for (−)0
(5.7)

The superpotential term vanishes, but the boundary interaction remains, Aτ = ∓iρ(σ1)∓
i
2r
r∗. It gives the Chan-Paton factor

trM e±πir∗ e±2πirρ(σ1) (5.8)

For the gauge fixing, we take the standard Lorentz gauge. The gauge fixing term is

given by

Lgauge fixing =
1

2e2
Tr
[
(∇µvµ)

2 + c∇µDµc
]
, (5.9)

In the e→ 0 and g → 0 limit, all the terms that is cubic or higher in the fluctuation

fields become irrelevant, and we are left with the classical action computed above, plus

the terms that are quadratic in the fluctuation fields. The quadratic terms are given by

the sum of the following

S1 =

∫

D2

{
φ

[
∆+

2R− R2

4r2
+ i

1−R
r

σ1 + σ
2
1

]
φ + ff

+

〈
ψ,

[
i 6∇+

(
−iR

2r
+ σ1

)
γ3

]
ψ

〉}√
gd2x, (5.10)

S2 =

∫

D2

Tr

[
σ′
1∆σ

′
1 + σ2

(
∆+ σ21 +

1

r2

)
σ2 + 2gzzvz

(
∆+ σ21

)
vz + (D′

E)
2

+ 2igzz(∂zvz + ∂zvz)σ1σ
′
1 − 2igzz(∂zvz − ∂zvz)

1

r
σ2

+ i〈λ, 6∇λ〉+ 1

2
〈λ,σ1γ3λ〉+

1

2
〈λ,σ1γ3λ〉

]√
gd2x, (5.11)

S3 =

∫

D2

Tr[ c∆c ]
√
gd2x. (5.12)

In the above expressions, we have absorbed the factor of e and g by a field redefinition. σ′
1

is the non-zero modes of σ1 andD
′
E := DE+σ1/r. ∆ is the Laplace operator ∆ = dd†+d†d

on functions and one-forms. For a g-valued field O, we denoted [σ1,O] simply by σ1O.

5.2 Mode Expansion

We shall regard the fields on the hemisphere as the restriction of the fields on the

whole sphere. All the field components on the sphere can be considered as differentiable

sections of the line bundle O(n) over CP1 for some n. Indeed, scalars, spinors, and vectors
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are sections of O(0), S± = O(±1), and O(±2) respectively. We may also regard the two-

sphere as the coset space SU(2)/U(1), where U(1) is the diagonal subgroup consisting of

elements of the form hu = diag(u, u−1) with |u| = 1. In this description, the sections of

O(n) are functions on SU(2) obeying the condition F (ghu) = u−nF (g). If g
(j)
m,m′ denote

matrix elements of the spin j representation1 of SU(2), we find that g
(j)
m,−n

2
satisfies this

condition. Of course, we need j − n
2
to be an integer. In fact, such matrix elements span

the space of global sections of O(n) as orthogonal basis [26],
∫

S2

(
g
(j)
m,−n

2

)∗
g
(j′)
m′,−n

2

√
gd2x = 4πr2

δj,j′δm,m′

2j + 1
. (5.13)

We also notice the reality

(g
(j)
m,m′)

∗ = (−1)2j−m−m′

g
(j)
−m,−m′ . (5.14)

The Laplace and the Dirac operator act on these elements as

∆g
(j)
m,−n

2
=
j(j + 1)

r2
g
(j)
m,−n

2
, for n = 0,±2, (5.15)

6∇g(j)
m, 1

2

= −j +
1
2

r
g
(j)

m,− 1
2

, 6∇g(j)
m,− 1

2

=
j + 1

2

r
g
(j)

m, 1
2

. (5.16)

Let us find the relation to the coordinate z and the frames
√
dz, etc, which we have

been using. If we write an element of SU(2) as

g =

(
a −b
b a

)
, |a|2 + |b|2 = 1, (5.17)

then

z = a/b. (5.18)

Also, we may identify √
dz =

1√
2r · b

,
√
dz =

1√
2r · b

, (5.19)

as well as dz = 1/(2rb
2
) and dz = 1/(2rb2). The mode expansion of the fields takes the

form

φ =
∑

j,m

φj,m g
(j)
−m,0µj,

ψ
{z}
− =

√
2r
∑

j,m

ψj,m b g
(j)

−m, 1
2

µj,

1It is the 2j-th symmetic tensor power of the doublet. The orthonormal basis {|m〉}jm=−j is the natural

one in that realization so that we have the reality (5.14).

37



ψ
{z}
+ =

√
2r
∑

j,m

ψ̃j,m b g
(j)

−m,− 1
2

µj,

vz = 2r
∑

j,m

vj,m b
2
g
(j)
−m,1µj,

vz = 2r
∑

j,m

ṽj,m b
2g

(j)
−m,−1µj,

where µj =
√

(2j + 1)/(2πr2), and similarly for φ, ψ
{z}
± , f, f as well as other components

of the vector multiplet fields and the ghosts. Note that σ′
1 and the ghosts do not include

the j = 0 mode. We would like to find which of the terms to be kept in order for the

fields to satisfy the boundary conditions discussed in Section 3.3.

For this we need some information on the matrix elements g
(j)
m,m′, and relevant ones

can be found in standard textbooks on angular momentum such as [27]. The elements for

g = R(α, β, γ) = e−iαL̂3 e−iβL̂2 e−iγL̂3 is written as

g
(j)
m,m′ = e−imαdjm,m′(β) e

−im′γ . (5.20)

This g has

a = e−iα
2 cos

β

2
e−i γ

2 , b = ei
α
2 sin

β

2
e−i γ

2 , (5.21)

and hence

z = e
ρ+iτ

r = eiα cot
β

2
. (5.22)

We see that β = 0, π
2
and π correspond to the north pole z =∞, the equator |z| = 1 and

the south pole z = 0 respectively. The hemisphere D2
0 is in the region π

2
≤ β ≤ π. The

functions djm,m′(β) satisfy some identities [27]. The most important for us is

djm,m′(π − β) = (−1)j+mdjm,−m′(β). (5.23)

Note that β → π − β precisely correspopnds to ρ→ −ρ and is nothing but the reflection

with respect to the equator.

We see from (5.23) that the function g
(j)
−m,0 is even or odd under the reflection ρ→ −ρ,

depending on j − m is even or odd. In particular they satify Neumann or Dirichlet

boundary condition at the boundary,

∂ρg
(j)
−m,0

∣∣∣
∂D2

= 0 if j −m is even,

g
(j)
−m,0

∣∣∣
∂D2

= 0 if j −m is odd.
(5.24)

Out of the (2j + 1) spin j scalar modes, (j + 1) of them satisfy the Neumann boundary

condition while the remaining j of them satisfy the Dirichlet boundary condition. To see

38



the boundary conditions for the spinors and the vectors, it is best to look at the componets

in the natural frames at the boundary. The spinor modes in the frames
√
rdz/z and√

rdz/z are

ϕ
S−

j,m =
√
2µj(ab)

1
2g

(j)

−m, 1
2

= µj e
imα(sin β)

1
2 dj−m, 1

2

(β),

ϕ
S+

j,m =
√
2µj(ab)

1
2g

(j)

−m,− 1
2

= µj e
imα(sin β)

1
2 dj−m,− 1

2

(β),

and the vector modes in the frames rdz/z and rdz/z are

ϕ
V−

j,m = 2µjab g
(j)
−m,1 = µj e

imα sin β dj−m,1(β),

ϕ
V+

j,m = 2µjab g
(j)
−m,−1 = µj e

imα sin β dj−m,−1(β).

We see from (5.23) that the reflection ρ→ −ρ does ϕ
•−
j,m → (−1)j−mϕ

•+
j,m for both spinor

and vector modes. In particular, they satisfy

(
ϕ
•−
j,m − (−1)j−mϕ

•+
j,m

)∣∣∣
∂D2

= 0,

(
∂ρϕ

•−
j,m + (−1)j−m∂ρϕ

•+
j,m

)∣∣∣
∂D2

= 0.
(5.25)

In view of (5.24)-(5.25), the boundary conditions (3.56) and (3.55) requires the fol-

lowing constraints on the modes. For the chiral multiplet,

φj,m, φj,m: j −m even,

ψj,m = ±(−1)j−mψ̃j,m, ψj,m = ±(−1)j−mψ̃j,m,

fj,m, f j,m: j −m odd. (5.26)

For the vector multiplet,

vj,m = −(−1)j−mṽj,m,

(σ′
1)j,m, (DE)j,m: j −m even,

(σ2)j,m: j −m odd,

λj,m = ∓(−1)j−mλ̃j,m, λj,m = ∓(−1)j−mλ̃j,m. (5.27)

Recall that we also had infinitely many conditons: even number of ρ-derivatives of (3.55).

In fact, the relations (5.24) and (5.25) hold also when g
(j)
−m,0 and ϕ

•±
j,m are replaced by

∂2kρ g
(j)
−m,0 and ∂2kρ ϕ

•±
j,m. Therefore, the vector multiplet fields with the mode expansion

obeying (5.27) satisfy also these infinitely many boundary conditions. For the ghosts, we

have

cj,m, cj,m: j −m even. (5.28)
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Note that the reality of fields, φ = φ†, f = f †, vµ = v†µ and O = O† for O = σ′
1, σ2,

D′
E , yields via (5.14) the following constraints:

φj,m = (−1)mφ†
j,−m, f j,n = (−1)mf †

j,−m, (5.29)

ṽj,m = (−1)m−1v†j,−m, Oj,m = (−1)mO†
j,−m. (5.30)

Let us write down the kinetic terms. To simplify the computation, we do the following

trick. Given the fields on the hemisphere D2 = D2
0 we define the fields on the other

hemisphere D2
∞ in such a way that the action on D2

∞ is equal to the one on D2
0. This

is done as follows. First let us denote by x 7→ x′ the reflection at the equator, given

by z 7→ z−1, or equivalently (τ, ρ) → (τ,−ρ), or (α, β) 7→ (α, π − β). For a scalar ON

or OD obeying the Neumann or Dirichlet boundary condition, we define the extension

by ON (x
′) = ON (x) or OD(x

′) = −OD(x). For the spinors, the extension is defined by

ψ±(x
′) = ψ∓(x), λ±(x

′) = −λ∓(x) (and similarly for the “bared” fields). For the vectors,

we define it by vz(x
′) = −(z2vz)(x) and vz(x′) = −(z2vz)(x). Then, it is easy to see that

the action on D2
∞ is the same as the original action on D2

0. We can also see that the fields

on D2
∞ defined this way is equal to the näıve extension of the above mode expansions,

from D2
0 to D2

∞. Thus, we find

∫

D2

L√gd2x =
1

2

∫

S2

L
∣∣∣ naive
extension

√
gd2x. (5.31)

Once the action is expressed as an integral on the whole sphere, we can use the orthogo-

nality (5.13) for the evaluation.

Let us express the quadratic part of the action, (5.10), (5.11) and (5.12), in terms of

the mode variables. For computation involving gzz∂zvz and gzz∂zvz, it is useful to note

gzz∂z

(
b
2
g
(j)
−m,1

)
= −

√
j(j + 1)

2r2
g
(j)
−m,0, gzz∂z

(
b2g

(j)
−m,−1

)
=

√
j(j + 1)

2r2
g
(j)
−m,0. (5.32)

The expressions are2

S1 =
∑

j−m even

φ†
j,m

[
j(j + 1)

r2
+

2R− R2

4r2
+ i

1− R
r

σ1 + σ
2
1

]
φj,m +

∑

j−m odd

f †
j,mfj,m

+2 i
∑

j,m

(−1)m+ 1
2ψj,−m

[
j + 1

2

r
∓ i(−1)j−m

(
σ1 − i

R

2r

)]
ψj,m, (5.33)

2The bosonic variables of the vector multiplet are rescaled as follows. For the scalars O = σ′
1, σ2, D

′
E,

we do Oj,m → 1√
2
Oj,m for m ≥ 1 but keep Oj,0 intact. For the vector, we do vj,m → 1√

8
vj,m for m ≥ 1

and vj,0 → 1√
2
vj,0.
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S2 =
∑

j≥1, m≥0
j−m even

(σ′
1)

†
j,m

j(j + 1)

r2
(σ′

1)j,m +
∑

j≥1, m≥0
j−m odd

(σ2)
†
j,m

[
j(j + 1)

r2
+ σ21 +

1

r2

]
(σ2)j,m

+
∑

j≥1m≥0

v†j,m

[
j(j + 1)

r2
+ σ21

]
vj,m +

∑

m≥0
j−m even

(D′
E)

†
j,m(D

′
E)j,m

−i
∑

j≥1, m≥0
j−m even

(
v†j,m

√
j(j + 1)

r
σ1(σ

′
1)j,m + vj,m

√
j(j + 1)

r
σ1(σ

′
1)

†
j,m

)

−i
∑

j≥1, m≥0
j−m odd

(
v†j,m

√
j(j + 1)

r

1

r
(σ2)j,m − vj,m

√
j(j + 1)

r

1

r
(σ2)

†
j,m

)

+2 i
∑

j,m

(−1)m+ 1
2λj,−m

[
j + 1

2

r
± i(−1)j−mσ1

]
λj,m, (5.34)

S3 =
∑

j≥1
j−m even

(−1)mcj,−m
j(j + 1)

r2
cj,m. (5.35)

5.3 Determinants

We are now ready to compute the fluctuation determinants. We choose a maximal

torus TG of G so that that the supersymmetric background σ1 = σ1 belongs to its Lie

algebra t times i. We choose a Weyl chamber in it∗ and write α > 0 if α is a positive root

with respect to that. We write dG and lG for the dimension and the rank of G, and put

dV := dimC V .

Let us first consider a single chiral multiplet that has charge +1 under a single U(1)

gauge group and vector R-charge R. The big parenthesis of the first line of (5.33) factorizes

as (
j

r
+ i

(
σ1 − i

R

2r

))(
j + 1

r
− i

(
σ1 − i

R

2r

))

Thus the determinant is

detF

det
1
2
B

=

∞∏

j= 1
2

(
j + 1

2

r
+ i

(
σ1 − i

R

2r

))j+ 1
2
(
j + 1

2

r
− i

(
σ1 − i

R

2r

))j+ 1
2

∞∏

j=1

(
j

r
+ i

(
σ1 − i

R

2r

))j+1(
j + 1

r
− i

(
σ1 − i

R

2r

))j+1

=
1

∞∏

j=0

(
j

r
+ i

(
σ1 − i

R

2r

)) (5.36)
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For a chiral multiplet of weight Q under TG, the result is obtained from the above by the

replacement σ1 → Q(σ1).

Next we consider the vector multiplet. The fermionic determinant is straightforward,

detF =
∞∏

j= 1
2



(
j + 1

2

r

)(2j+1)lG ∏

α>0

((
j + 1

2

r

)2

+ α(σ1)
2

)2j+1

 . (5.37)

The bosonic sector is complicated. We first notice that it splits into j − m even part

involving v and σ′
1 and j − m odd part involving v and σ2. We also notice that the

m = 0 modes are real or pure imaginary while the m ≥ 1 modes are complex. After some

computation, we find

det
1
2
B =

∞∏

j=1



(
j(j + 1)

r2

)(j+1)dG+jlG ∏

α>0

((
j(j + 1)

r2
+ α(σ1)

2

)2

+
α(σ1)

2

r2

)j

 . (5.38)

The ratio is

detF

det
1
2
B

=

∞∏

j=1

[(
j

r

)lG ∏

α>0

(
j

r
+ iα(σ1)

)(
j

r
− iα(σ1)

)]

∞∏

j=1

(
j(j + 1)

r2

)(j+1)dG
. (5.39)

Finally, the ghost determinant is

detgh =

∞∏

j=1

(
j(j + 1)

r2

)(j+1)dG

. (5.40)

We notice that it cancels againt the denominator of (5.39).

We find two problems in the above result. One is that it is a product of infinite

factors and the other is that each factor is dimensionful. The former will be dealt with

by regularization and renormalization. The latter is simply because we were not careful

in defining the measure, even formally. If ϕ is a field of canonical demension dϕ and if

there is a coupling constant factor 1/g20 in front of the kinetic term, we should define the

measure by

Dϕ =

√√√√det

(
Λ

D−2dϕ
0 (ϕn, ϕm)

g20

)
∏

n

dan, (5.41)

for some mode expansion ϕ(x) =
∑

n ϕ(x)an, where D is the spacetime dimension,

(ϕn, ϕm) is the inner product of the modes defined by the spacetime integration, and

42



Λ0 is a parameter of mass dimension which is usually taken to be the ultra-violet cut-off.

In the present context, we should take D = 2, g0 = 1 (as e and g are absorbed into fields),

and we had chosen the modes so that (ϕn, ϕm) = δn,m. The net effect is to multiply Λk
0

to each factor of length dimension k. For example, we should do the replacement
(
j

r
+ i

(
σ1 − i

R

2r

))
−→ 1

Λ0

(
j

r
+ i

(
σ1 − i

R

2r

))
, (5.42)

in the denominator factor of (5.36).

Let us now discuss the regularization. We take the näıve cut off1 where we introduce

an upper bound N of the product over j. We will eventually take the N →∞ limit after a

suitable renomalization of coupling constants. Since j/r corresponds to the energy scale,

we may interpret Λ0 := N/r as the ultra-violet cut-off which we take to be the same Λ0

in (5.41). Using the formula for the gamma function

Γ(z) = lim
N→∞

N ! (N + 1)z
∏N

j=0(j + z)
, (5.43)

together with Stirling’s formula N ! ∼
√
2πNN+ 1

2 e−N , we find

rΛ0∏

j=0

1

Λ0

(
j

r
+ a

)
=

1

(rΛ0)rΛ0+1

rΛ0∏

j=0

(j + ra) =
√
2π(rΛ0)

− 1
2
+ra e−rΛ0

1

Γ(ra)
. (5.44)

Now the determinants make sense. The factor from the chiral multiplet is

Zchiral = (2π)−
dV
2 ×

exp

(
dV rΛ0 +

∑

i

[
1− Ri

2
− irQi(σ1)

]
log(rΛ0)

)
∏

i

Γ

(
irQi(σ1) +

Ri

2

)
.(5.45)

The factor from the vector multiplet and the ghost is

Zvector+ghost =

(2π)
dG
2 exp

(
−dGrΛ0 −

dG
2

log(rΛ0)

)

∏

α>0

Γ (irα(σ1)) Γ (−irα(σ1)) r2α(σ1)2

= (2π)
dG
2 exp

(
−dGrΛ0 −

dG
2

log(rΛ0)

)∏

α>0

sinh(πrα(σ1))

πrα(σ1)
(5.46)

where we used Γ(1 + z) = zΓ(z) and Γ(z)Γ(1 − z) = π/ sin(πz).

1This discussion is important and leads to the identification of the 2d central charge (5.81) below.

This had been done on the two-sphere by Sungjay Lee as presented in conferences [28] and by the other

authors of [4] [29], and also in 4d by Pestun.
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5.4 The Result

Following (5.41), the zero mode measure is

(
rΛ0

e

)dG

ddGσ1. (5.47)

We use the following formula that holds for an adjoint invariant function F (σ1),

1

vol(G)

∫

ig

ddGσ1 F (σ1) =
1

|WG|

∫

it

dlGσ1
∏

α>0

α(σ1)
2 · F (σ1). (5.48)

Collecting everything, for the brane data B = (M,Q, ρ, r∗) we find

ZD2
(+)
(B) = C

(
Λ0

e

)dG

exp

(
(dV − dG)rΛ0 +

ĉ

2
log(rΛ0)

)

×
∫

it

rlGdlGσ1
∏

α>0

rα(σ1) sinh(πrα(σ1))
∏

i

Γ

(
irQi(σ1) +

Ri

2

)
(5.49)

× exp

(
2πirW̃ (σ1)− ir

∑

i

Qi(σ1) log(rΛ0)

)
trM

(
eπir∗ e2πrρ(σ1)

)
,

where C is a numercal factor and

ĉ :=
∑

i

(1− Ri)− dG. (5.50)

ZD2
(−)
(B) is the same as (5.49) except that we need to replace W̃ by W̃ and invert the

exponents of the Chan-Paton factor. (See (5.6) and (5.8).)

Before removing the cut-off Λ0 we need to do a renormalization. We consider the

following cut-off dependent local counter terms:

dilaton =
ĉ

2
log(Λ0/Λ), (5.51)

boundary potential =
1

2π
(dV − dG)Λ0, (5.52)

∆W̃ (σ) =
1

2π
trV (σ) log(Λ0/Λ). (5.53)

Here Λ is a finite energy scale. There is also an overall multiplicative divergence ΛdG
0

which we decide to absorb by a multiplicative change of measure, say, by replacing e in

(5.47) by Λ0. Then, we have cut-off independent expressions:
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ZD2
(+)
(B) = C(rΛ)ĉ/2

∫

it

rlGdlGσ1
∏

α>0

rα(σ1) sinh(πrα(σ1))
∏

i

Γ

(
irQi(σ1) +

Ri

2

)
(5.54)

× exp

(
2πirW̃ (σ1)− ir

∑

i

Qi(σ1) log(rΛ)

)
trM

(
eπir∗ e2πrρ(σ1)

)
,

ZD2
(−)
(B) = C(rΛ)ĉ/2

∫

it

rlGdlGσ1
∏

α>0

rα(σ1) sinh(πrα(σ1))
∏

i

Γ

(
irQi(σ1) +

Ri

2

)
(5.55)

× exp

(
2πirW̃ (σ1)− ir

∑

i

Qi(σ1) log(rΛ)

)
trM

(
e−πir∗ e−2πrρ(σ1)

)
.

5.5 A-Branes

Let us compute the partition function of the Landau-Ginzburg model preserving B(±)-

type supersymmetry. We consider the model of Cn valued variable φ = (φ1, . . . , φn) with

a superpotential W and a flat Kähler metric g2
∑

i |dφi|2. We start with the case where

the brane L± is a linear Lagrangian subspace of R2n such that ∓Im(W ) is bounded from

below on L±. In this case, the boundary term in the action (3.6) or (3.8) vanishes and

the usual kinetic term itself is Q-exact, so that the usual localization is valid. In the limit

g→∞, the path-integral localizes on the supersymmetric locus,

∂µφ = 0, f! = 0. (5.56)

The classical Lagrangian is

S0 =

{
2πirW (φ) for (+)0,

2πirW (φ) for (−)0.
(5.57)

The fluctuation determinant is independent of the location φ. The scalars tangent (resp.

normal) to the brane obey Neumann (resp. Dirichlet) boundary condition and the

fermions obey the the corresponding boundary conditon. We also need to omit the bosonic

zero modes. Employing the mode expansions obatined in the gauge theory, we find

detF

det
1
2
B

=




∞∏

j= 1
2

1

Λ0

(
j + 1

2

r

)2j+1

∞∏

j=1

1

Λ2
0

(
j(j + 1)

r2

) j+1
2

+ j
2




n

=
1

(rΛ0)n/2
, (5.58)
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where Λ0 is an ultra-violet cut off. The measure for the scalar zero modes is, following

(5.41),

(rΛ0)
ngndvolL±

, (5.59)

where dvolL± is the volume element of L± associated to the metric induced from the

metric
∑

i |dφi|2 of Cn. The result has a cut-off dependence which can be renormalized

by the dilaton shift n
2
log(Λ0/Λ). We shall also absorb the divergence as g → ∞ by

a multiplicative change of the measure. Collecting all the elements, we find that the

partition function is given by

ZD2
(±)
(L±) = (rΛ)n/2

∫

L±

dvolL±

{
e−2πirW (φ)

e−2πirW (φ)
(5.60)

Let us next consider deforming L± from a Lagrangian subspace to a more general

Lagrangian submanifold, while maintaining the condition that ∓Im(W ) is bounded from

below on L±. As discussed in Section 4.2, we require that the result does not change

under such a deformation. But the expression (5.60) does change if we deform L± and

thus cannot be the correct answer. We propose that we should replace the volume element

by holomorphic or antiholomorphic volume form,

dvolL+
→ dnφ = dφ1 ∧ · · · ∧ dφn, dvolL−

→ dnφ = dφ
1 ∧ · · · ∧ dφ

n
, (5.61)

so that

ZD2
(+)
(L+) = (rΛ)n/2

∫

L+

dnφ e−2πirW (φ), (5.62)

ZD2
(−)
(L−) = (rΛ)n/2

∫

L−

dnφ e−2πirW (φ). (5.63)

Indeed, it meets the requirement of invariance under deformation of L± and at the same

time, when L± is linear, it reduces to the result (5.60) up to a phase.

Let us discuss the issue of convergence of the integral (5.62)-(5.63). Thanks to the

asymptotic condition that ∓Im(W ) is bounded from below on L±, the exponential factor

does not grow at infinity. If ∓Im(W ) grows fast enough at infinity, the integral would be

absolutely convergent. Even if it does not, as long as the real part Re(W ) changes fast

enough, the integral converges due to rapid oscillation of the exponential factor. If the

infinity of L± consists of cones of linear subspaces, the “fast enough” condition is met

provided |∂W (φ)| grows faster than a power of φ. See [35] for a recent explanation on the

conditional convergence of the integral of this type.
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Let us look at the r dependence. When W (φ) is quasi-homogeneous, W (λRφ) =

λ2W (φ), we can absorb the r in the integrand by a change of variables, φ→ r−R/2φ, and

we find that the r dependence is just an overall factor

ZD2
(±)
(L±) ∼ rn/2−tr(R/2) for all r. (5.64)

This power behaviour is a characteristic feature of the partition function of a conformally

invariant field theory [30], where the power must be identified with one sixth of the central

charge in the case of a hemisphere. Indeed,

6

(
n

2
− tr

(
R

2

))
= 3

∑

i

(1− Ri), (5.65)

is the central charge of the superponformal field theory to which the Landau-Ginzburg

model is believed to flow [31, 32]. As the extreme opposite, let us consider the case where

the superpotential W (φ) is a Morse function, having isolated and non-degenerate critical

points only. The theory has supersymmetric ground states with mass gaps whose wave-

functions are supported at the critical points. To each critical point p, one can associate a

pair of Lagrangian submanifolds Lp,± passing through p, called Lefschetz thimbles, whose

W -values are straight semi-lines emanating fromW (p) in the direction where Im(W ) goes

to negative/positive infinity [13]. For such Lagrangians, one can employ the saddle point

approximation for large values of r, which finds

|ZD2
(±)
(Lp,±)| ∼ e−2πr(∓ImW (p)) as r −→∞. (5.66)

It is exponentially decaying or growing as a function of r, depending on whether ∓Im(W )

is positive or negative at p. We shall consider this exponential behaviour as a signal of

the vacuum with a mass gap.

If we consider the system preserving Bα
(±)-type supersymmetry, all we need to do is

to replace W by e2iαW . In particular, the power behaviour (5.64) for the case of quasi-

homogeneous W is independent of the parameter α, while the exponential behaviour

(5.66) for Morse W is changed so that what matters is the sign of ∓Im( e2iαW (p)).

The proposal can be extended to a more general Landau-Ginzburg model and the

non-linear sigma model preserving B(±)-type supersymmetry. Recall that an axial U(1)

R-symmetry is necessary for B-type supersymmetry and the existence requires the target

space X have a trivial first Chern class, c1(X) = 0. In many cases, this also means that

there exists a holomorphic volume form Ω. The proposal in such a case is

ZD2
(+)
(L+) = (rΛ)n/2

∫

L+

Ω e−2πirW , ZD2
(−)
(L−) = (rΛ)n/2

∫

L−

Ω e−2πirW . (5.67)
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When X is non-compact, the holomorphic volume form Ω is not unique and therefore we

must make a choice. In the non-linear sigma model on a compact Calabi-Yau manifold

X , the holomorphic volume form is unique up to constant multiplication.

The result (5.60) for linear Lagrangians as well as the proposal (5.62)-(5.63) or (5.67)

for the general case are indeed the same as the formula for the central charge of the

A-branes in the Landau-Ginzburg model or the non-linear sigma model [18, 13].

5.6 Deformation From The Real Locus

The above discussion allows us to propose a formula for the partition function in which

the boundary condition for the vector multiplet is deformed from the one (3.55) associated

to the real locus L = ig to a more general Lagrangian submanifold L of gC satisfying the

conditions (3.51), (3.52) and (3.53).

First, we claim that such an L is the adjoint G-orbit of a Lagrangian submanifold γ

of tC,

L = Gγ, γ ⊂ tC. (5.68)

To prove this claim, let us take a point σ = σ1+ iσ2 of L. By the condition [σ1, σ2] = 0 of

(3.51), there is an element g ∈ G which sends both σ1 and σ2 to t. By the condition (3.53)

that L is G-invariant, we have g(σ) ∈ L ∩ tC =: γ. Thus, we have seen L/G ∼= γ/WG.

In particular, the dimension of γ is equal to the dimension of L/G which is equal to

dimL − dim(G/Gσ) where Gσ is the isotropy subgroup of G at σ ∈ γ. Generically, the

dimension of Gσ is equal to the rank lG of G. Thus, dim γ = dimL− (dimG− lG) = lG.

Thus, γ is a middle dimensional submanifold of tC. Let us now show that γ is a Lagrangian

submanifold of tC. Since tC ⊂ gC is a complex submanifold and L ⊂ gC is a Lagrangian

submanifold, at any point σ ∈ γ, JσTσγ is a subspace of TσtC which is orthogonal to Tσγ.

Since γ is middle dimensional, JσTσγ is the orthocomplement of Tσγ in TσtC. That is, γ

is a Lagrangian submanifold of tC. Finally, we show that the condition (3.52) is satisfied

for such an L. By the homogeneity, we may assume σ ∈ γ. The tangent space TσL of

L = Gγ is the direct sum of Tσγ and the orbit directions g(σ). The former component

Tσγ commutes with σ1. The latter component g(σ) is invariant under commutator with

σ1, since [σ1, [X, σ]] = [[σ1, X ], σ] where we used [σ1, σ] = 0. This completes the proof of

the claim.

The localization procedure works in the same way as the real locus and we have

an integral over γ = L ∩ tC of the classical exponential factor times the fluctuation

determinant with respect to some measure. However, the direct computation of the
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fluctuation determinant is very complicated for a general choice of L. At this point, we

employ the holomorphy discussed in Section 4.1 and also take the lesson from the previous

section concerning the measure. The integrand can be regarded as the effective partition

function on the Coulomb branch in which the vector multiplet of the group TG is fixed to

be a supersymmetric background satisfying (5.1). In the background, the scalar σ takes

a constant value

σ = σ1 + iσ2, (5.69)

and the gauge field has the boundary holonomy

∮

∂D2

v = −2πrσ2. (5.70)

In this picture, σ is a twisted chiral parameter and the integrand of ZD2
(+)
(B) (resp.

ZD2
(−)
(B)) must depend holomorphically (resp. antiholomorphically) on it. It is uniquely

determined by the values at the real locus it, given as the integrand of (5.54) or (5.55). The

(anti)holomorphic extension of the Chan-Paton factor, from e±2πrρ(σ1) to e±2πrρ(σ1±iσ2),

can be understood from (5.70), since it originates from the factor e−
∮
∂D2 ρ(ivτ∓σ1)dτ in

(3.36). The measure dlGσ1 is extended uniquely to the holomorphic or anti-holomorphic

volume form of tC, denoted by dlGσ or dlGσ. In this way, we arrive at the following

expressions

ZD2
(+)
(B) = C(rΛ)ĉ/2

∫

γ+

rlGdlGσ
∏

α>0

rα(σ) sinh(πrα(σ))
∏

i

Γ

(
irQi(σ) +

Ri

2

)
(5.71)

× exp

(
2πirW̃ (σ)− ir

∑

i

Qi(σ) log(rΛ)

)
trM

(
eπir∗ e2πrρ(σ)

)
,

ZD2
(−)
(B) = C(rΛ)ĉ/2

∫

γ−

rlGdlGσ
∏

α>0

rα(σ) sinh(πrα(σ))
∏

i

Γ

(
irQi(σ) +

Ri

2

)
(5.72)

× exp

(
2πirW̃ (σ)− ir

∑

i

Qi(σ) log(rΛ)

)
trM

(
e−πir∗ e−2πrρ(σ)

)
.

In general, the Lagrangian submanifold γ+ ⊂ tC for the A(+)-type supersymmetry can

be different from the one γ− ⊂ tC for the A(−)-type supersymmetry. As in the Landau-

Ginzburg model, γ+ and γ− must be chosen so that the effective boundary potential is

bounded from below. A concrete proposal for the right choice will be given in Section 6.
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5.7 The Case Of Linear Sigma Model

Let us now restrict our attention to the gauged linear sigma models where the twisted

superpotential is linear, W̃ (σ) = 1
2π
t(σ).

In this case, the two expressions (5.71) and (5.72) are related by complex conjugation,

(
ZD2

(+)
(B)

)∗
= ZD2

(−)
(B), (5.73)

for the real locus γ+ = it = γ− and the relation continues to hold as long as γ+ and γ−

are mapped to each other by the inversion σ 7→ −σ. In what follows, we shall assume this

relation between γ+ and γ− and will only mention ZD2
(+)

untill a special need of ZD2
(−)

arizes in Section 9. Hence we shall drop the subscript + from the expressions.

When W̃ (σ) is linear, we may absorb the radius r into the integration variable as

σ′ = rσ, (5.74)

so that the integral (5.71) can be written as

ZD2(B) = C(rΛ)ĉ/2
∫

γ

dlGσ′
∏

α>0

α(σ′) sinh(πα(σ′))
∏

i

Γ

(
iQi(σ

′) +
Ri

2

)

× exp (itR(σ
′)) trM

(
eπir∗ e2πρ(σ

′)
)
. (5.75)

Here we introduce the renormalized FI parameter

tR = t− trV log(rΛ). (5.76)

As promised, we examine the effect of the gauge shift of the R-charges (3.59)-(3.60),

which reads Ri → Ri +Qi(∆) and r∗ → r∗ − ρ(∆), for a generator ∆ of the center of G.

Let us shift the integration variables as

σ′ → σ′ +
i

2
∆ (5.77)

Note that α(∆) = 0 for any root α since ∆ is central. Also, the exponent ĉ may change

but it is absorbed by the shift of the part −itrV (σ′) log(rΛ) of itR(σ′). The net effect is

the overall multiplication

Z → e−
1
2
t(∆)Z, (5.78)

plus the shift of integration contour, γ → γ + i
2
∆. Thus, as long as this shift does not

cross any pole from the gamma functions, the change is only by the multiplication by
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e−
1
2
t(∆). For the choice of real Lagrangian γ = it, this is the case as long as the shift does

not move the R-charges out of the range 0 < Ri < 2. The shift of variables (5.77) has two-

fold interpretation. One is the reality violating change of variables, as in (3.62), in which

the result Z → e−
1
2
t(∆)Z was anticipated in (3.63). The other is a change of boundary

conditions which moves the Lagrangian submanifold in the σ2-direction, γ → γ + i
2
∆.

Let us further specialize to the Calabi-Yau case:

G ⊂ SL(V ). (5.79)

Then, the trace trV (σ) vanishes and the FI parameter is not renormalized,

tR = t. (5.80)

Accordingly, the number ĉ does not change under the gauge shift of the R-charges. The

dependence on the size r of the hemisphere is only in the factor (rΛ)ĉ/2. As remarked

in the Landau-Ginzburg model, this is precisely the form of conformal anomaly [30] in a

conformal field theory of central charge

c = 3 ĉ. (5.81)

With ĉ given by (5.50), this is indeed the central charge of the infra-red fixed point of

the gauge theory obtained by identifying the conformal algebra in the Q+ chiral ring as

in [33] or by a short-cut argument [34].

If the charge integrality (3.57)-(3.58) holds, the brane factor trM(· · ·) in (5.75) can be

written as StrMρ(J
−1 e2πσ

′
). If the gauge group G is a finite group, where the theory is a

Landau-Ginzbutg orbifold, we do not have the σ integral and the result is simply

ZD2(B) = C(rΛ)ĉ/2 · StrMρ(J−1). (5.82)

Up to the prefactor, this indeed agrees with the central charge for the B-brane B =

(M,Q, ρ, r∗) of the Landau-Ginzburg orbifold proposed in [6]. If, instead, J is in the

identity component of the center, we may gauge shift the R-charges of bulk fields from

0 < Ri < 2 to the Ro-frame (3.61), where Ro
i = 0 or 2 by continuity:

ZD2(B) = C(rΛ)ĉ/2
∫

γ

dlGσ′
∏

α>0

α(σ′) sinh(πα(σ′))
∏

i

Γ

(
iQi(σ

′) +
Ro

i

2

)

× exp (itR(σ
′)) StrM e2πρ(σ

′). (5.83)

If the contour before the gauge shift was the real locus it, then γ is such that Qi(σ
′) for

Ro
i = 0 has a small negative imaginary part.
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In what follows, we shall concentrate on the study of the hemisphere partition function

(5.75) of the linear sigma model. We shall often specialize to the Calabi-Yau case (5.79)

or to the case with charge integrality (3.57)-(3.58).

6 The Contour

We are left with one and the most important problem: decide which Lagrangian

submanifold L ⊂ gC to take for the boundary condition on the vector multiplet, or

equivalently (see Section 5.6), which Lagrangian submanifold γ ⊂ tC to take as the

contour of the integration (5.75). Let us copy the integral for convenience,

ZD2(B) = (rΛ)ĉ/2
∫

γ

dlGσ′
∏

α>0

α(σ′) sinh(πα(σ′))
∏

i

Γ

(
iQi(σ

′) +
Ri

2

)

× exp (itR(σ
′))
∑

j

eπirj e2πqj(σ
′). (6.1)

Here, we wrote the brane factor as a sum,

trM

(
eπir∗ e2πρ(σ

′)
)
=
∑

j

eπirj e2πρ(σ
′),

where rj and qj are the R-charge and the T -weight of the basis element of the Chan-Paton

vector space M .

6.1 A Proposal

To attack this problem, we would like to have some idea on the integrand of (6.1).

In particular, we would like to know the location of singularity as well as the growth or

decay rate at infinity.

The gamma function has simple poles at non-positive integers,

Γ(z) ∼ (−1)n
n!

1

z + n
, z ∼ −n. (6.2)

Therefore, the integrand of (6.1) has poles at infinitely many hyperplanes

Qi(σ
′) = i

(
ni +

Ri

2

)
, ni = 0, 1, 2, 3, . . . . (6.3)

These are where Qi(σ
′) are on the positive imaginary axis if we choose Ri > 0. In

particular, the real locus γ = it does not hit the singularity. Of course we anticipated this
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since the scalar φi has no zero mode when σ = σ1 ∈ it as long as we put the R-charges

in the range (5.4). In fact, the poles (6.3) must be associated with the zero modes of

the scalars φi, in the presence of the boundary term −Qi(σ2)|φi|2 in (3.22) which takes

negative values for a positive Qi(σ2).

The gamma function has the asymptotic behaviour (Stirling’s formula),

Γ(z) ∼
√
2π e−zzz−

1
2 (1 +O(1/z)) , (6.4)

as |z| → ∞ with Arg(z) ∈ (−π, π). We also know that

sinh(z) ∼ ± 1

2
e±z (6.5)

as Re(z) → ±∞. These allow us to find the asymptotic behaviour of the integrand in a

generic direction in the σ′-space: The term of Chan-Paton weight q of the integrand (6.1)

behaves as

integrandq = const ·
∏

α>0

α(σ) sinh(πα(σ))
∏

i

Γ

(
iQi(σ

′) +
Ri

2

)
eitR(σ′)+2πq(σ′)

∼ const ·
∏

α>0

α(σ′)
∏

i

Qi(σ
′)Ri− 1

2 · exp
(
−2πirW̃eff ,q(σ)

)
(6.6)

with

2πW̃eff ,q(σ) =
∑

α>0

±πiα(σ)−
∑

i

Qi(σ)

(
log

(
Qi(σ)

−iΛ

)
− 1

)

−t(σ) + 2πiq(σ). (6.7)

The above is valid when |Re(α(σ′))| ≫ 1 for all α, |Qi(σ
′)| ≫ 1 for all i, and Qi(σ

′)

are not on the positive imaginary axis. The sign ±πiα(σ) is chosen when ±Re(α(σ′))
is positive. The imaginary part of the logarithm is defined to have values in the open

interval (−π, π).

The function W̃eff ,q(σ) is equal to the effective twisted superpotential on the Coulomb

branch. We see the well-known −σ(log σ − 1) from the 1-loop integral of the matter

multiplet. The term ±πiα(σ) may be less familiar, but it comes from the 1-loop integral

of the W-boson multiplet. See [36] for the explanation based on [37]. In the bulk, or in

the closed string sector, the shift of W̃eff (σ) by 2πiw(σ) does not matter for any weight

w of the maximal torus T since it is just a 2π shift of the theta angle. In the presence of

boundary, on the other hand, the shift does matter, since the 2π shift of the theta angle

amounts to the shift of Chan-Paton weight. The last term 2πiq(σ) is nothing but the

contribution from the classical Chan-Paton factor. Also, the precise choice of the sign

53



±πiα(σ) and the imaginary part of the logarithm, which is irrelevant in the bulk, does

matter here.

The imaginary part, Eeff ,q(σ) = −Im(W̃eff ,q(σ)), may be interpreted as the effective

boundary potential. For the evaluation, we use the formula

Arg(iz) = sgn (Re(z))

(
π

2
+ arctan

[
Im(z)

|Re(z)|

])
, (6.8)

which holds if we assume that Arg(−) and arctan(−) take values in the intervals (−π, π)
and (−π

2
, π
2
) respectively — we assume this in what follows too. We find

Eeff ,q(σ) = −
1

2

∑

α>0

|α(σ1)|

+
1

2π

∑

i

{
Qi(σ2)

(
log
∣∣∣Qi(σ)

Λ

∣∣∣− 1

)
+ |Qi(σ1)|

(
π

2
+ arctan

[
Qi(σ2)

|Qi(σ1)|

])}

+
1

2π
ζ(σ2)−

(
θ

2π
+ q

)
(σ1). (6.9)

The second line is nothing but the effective boundary energy of the matter system, which

was obtained in [11] by computing the energy density of the ground state of the canonically

quantized matter system on an interval or a half line with the same boundary condition

as (3.50), in which we set (σ1, σ2) to be a constant (σ1,σ2). See Section 6, Eqn (6.79) of

[11]. The first line is regarded as the boundary energy of the W-boson multiplet. It would

be interesting to check it directly by a computation like [11]. The third line is already

there in the classical action as the classical boundary potential, see (3.21) and (3.35).

This Eeff (σ) shows the asymptotic growth or decay of the integrand. In order to

isolate the dependence on the size r of the hemisphere, it is more convenient to use the

σ′ variables. We have
∣∣∣ integrandq

∣∣∣ ∼ P (σ′) · exp
(
−Aq(σ

′)
)
, (6.10)

where P (σ′) is a power of σ′ and

Aq(σ
′) = −

∑

α>0

π|α(σ′1)|

+
∑

i

{
Qi(σ

′
2)
(
log |Qi(σ

′)| − 1
)
+ |Qi(σ

′
1)|
(
π

2
+ arctan

[
Qi(σ

′
2)

|Qi(σ
′
1)|

])}

+ ζR(σ
′
2)− (θ + 2πq)(σ′1). (6.11)

The r dependence is only in the renormalized FI parameter,

ζR = ζ −
∑

i

Qi log(rΛ). (6.12)
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Notice that Aq(σ
′) is essentially piecewise linear at infinity in the σ′ space. One can also

see from (6.7) that the oscilation part, i.e. the imaginary part of the exponent, is also

essentially piecewise linear in σ′. For the absolute convergence of the integral, we need to

choose the Lagrangian γ ⊂ tC so that Aq(σ
′) grows at infinity of γ. One may also allow

Aq(σ
′) to approach a constant at infinity, hoping for the conditional convergence due to

rapid oscillation. However, the linear growth of the imaginary part makes the case very

subtle (see for example [35]). This motivates us to make the following proposal:

The Lagrangian submanifold γ is a deformation of the real locus it, avoiding the

poles (6.3), so that for any Chan-Paton weight q of the brane, Aq(σ
′) in (6.11)

grows to infinity in every asymptotic direction of γ.

We shall refer to the asymptotic region in which Aq(σ
′) grows to infinity as the admissible

region. Thus, γ is obtained from the real locus it by “bending” the infinity, if necessary,

so that every asymptotic direction is in the admissible region, and we require that the

poles (6.3) are not hit in the bending process. We shall also refer to the Lagrangian γ

satisfying this condition as admissible.

The main question is whether there exists an admissible Lagrangian submanifold γ,

and if so, whether it is unique up to deformation. In the rest of this section, we shall

examine this question in several examples, and at the same time identify the deformation

class of admissible Lagrangian submanifolds, when that is possible. In particular, we

will find that, at some special loci in the parameter space, called windows between phase

boundaries, it is not always possible to find an admissible Lagrangian submanifold for an

arbitrary brane B. The factor e2πq(σ
′) is exponentially growing in a certain direction of

the σ′ space, and the other factors cannot rule this divergence for any choice of γ, if the

parameter is on a window. This means that there is a severe constraint, depending on

the window, on the possible range of Chan-Paton weight q of the brane B.

The problem of identifying a Lagrangian submanifold γ for the boundary condition

on the vector multiplet was studied in [11] for the Abelian and Calabi-Yau cases, and

essentially the same condition on γ was obtained: The condition of adimissible asymptotic

direction of γ matches because, as we have just seen, the effective boundary potential in

that case is precisely equal to Eeff ,q(σ). Also, there is a singularity along the entire

positive imaginary axis of Qi(σ) due to the zero mode of φi localized near the boundary.

Avoiding that is the counterpart of avoiding the poles (6.3) at discrete points along the

same axis, which are associated with the zero mode of φi on the hemi-sphere. And in [11],

a constraint on the possible range of Chan-Paton weight q on windows was obtained and
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was named the grade restriction rule for D-brane transport across windows.

In Abelain and Calabi-Yau cases, we will indeed reproduce the grade restriction rule.

This is of course of no surprize regarding what we have just said, but the convergence of

the integral (6.1) provides a somewhat sharper constraint. We shall also discuss the non

Calabi-Yau and/or non-Abelian theories as well.

The integrals of the type (6.1) are known as the (multiple) Mellin-Barnes integrals

and have been a subject of mathematical study, from the old time to more recent days,

especially after the discovery [38] of the importance of mirror symmetry. The present

discussion shows that the issue of convergence, or the problem of identifying convergent

domains, of such integrals encodes a rich physical content.

6.2 U(1) Theories

We first consider the theories with gauge group G = U(1). As the basic class of

examples, we consider the theory with matter fields P , X1, . . . , XN of charge −d, 1, . . . , 1,
and with superpotential W = Pf(X1, . . . , XN) where f is a homogeneous polynomial of

degree d. We assume that f is generic so that the projective hypersurface Xf = (f =

0) ⊂ CP
N−1 is smooth. The R-charge assignment is unique up to the gauge shift, 2− dǫ

to P and ǫ to X1, . . . , XN . The bound (5.4) is ensured by 0 < ǫ < 2/d. The Ro-frame

is obtained by the limit ǫ ց 0. Before attacking the problem to identify the admissible

contour γ, we recall some basic facts on the bulk theory [15].

The nature of the classical theory depends very much on the sign of the FI parameter

ζ , which enters into the D-term equation,

N∑

i=1

|xi|2 − d|p|2 = ζ. (6.13)

When ζ is positive, this requires some xi to have a non-zero value which breaks the U(1)

gauge group completely. When ζ is negative, this requires p to have a non-zero value

which breaks the U(1) gauge group to the cyclic subgroup Zd or order d. When ζ is zero,

there is a locus x = p = 0 in which the U(1) is unbroken. The classical low energy theory

is the non-linear sigma model with the target Xf for ζ ≫ 0 and the Zd orbifold of the

Landau-Ginzburg model with superpotential W = f(X1, . . . , XN) for ζ ≪ 0. The theory

is said to be in the geometric phase and the Landau-Ginzburg orbifold phase respectively,

when ζ ≫ 0 and ζ ≪ 0.

The nature of the quantum theory depends very much on the sign of (N−d), since the
FI parameter runs as ζR = ζ − (N − d) log(rΛ). When d < N (resp. d > N), it runs from
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positive to negative (resp. negtaive to positive) as the distance scale r is increased. There

are also massive vacua on the Coulomb branch where σ is non-zero: They are found by

solving

teff (σ) := −2π∂σW̃eff ≡ 0 mod 2πiZ, (6.14)

where W̃eff is the effective twisted superpotential, which is equal to (6.7) but omitting

q since it does not matter for this purpose. This equation takes the form σN−d =

(−d)d e−ζ(−iΛ)N−d := (−1)d(−iΛ̃)N−d and hence has |N − d| solutions. When d = N

(Calabi-Yau case), the FI parameter does not run, and we have a family of theories

parametrized by t = ζ − iθ ∈ C/2πiZ. In this case (6.14) is a constant, teff ≡ t −
N log(−N). The theory is singular at teff ≡ 0 due to the presence of non-compact

Coulomb branch. This point, ζ = N logN and θ ≡ πN , is the quantum remnant of the

phase boundary which ‘separates’ the ζ ≫ 0 geometric phase and the ζ ≪ 0 Landau-

Ginzburg orbifold phase, although it does not really separate the two regimes since we

can go around a complex codimension one locus.

6.2.1 Calabi-Yau Case

Let us first consider the Calabi-Yau case, d = N . In this case, the expression for Aq is

very simple

Aq(σ
′) = ζeffσ

′
2 +

(
Nπ − sgn(σ′1)(θ + 2πq)

)
|σ′1|, (6.15)

where ζeff = ζ − N logN . When ζeff > 0 (resp. ζeff < 0), the entire region of the σ′-

plane above (resp. below) the broken line Aq(σ
′) = 0 is admissible. Figure 1 depicts the

ζeff > 0 ζeff < 0

Figure 1: Admissible regions (Calabi-Yau case)

σ′-planes for two values of (ζ, θ+ 2πq), where the admissible regions are shaded. For any

finite q, a sector of positive angle including the positive (resp. negative) imaginary axis

is inside the admissible region. Therefore, we can take γ to be the curve obtained by

bending the real line R toward the positive (resp. negative) imaginary direction, like a

graph of a function which grows or decays faster than a linear function. See Figure 2-Left
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ζeff > 0 ζeff < 0

γ

γ

Figure 2: Admissible contours (Calabi-Yau case)

(resp. -Right), where the poles (6.3) are also drawn together as dots. Then, the integral

(6.1) is convergent for any brane whose Chan-Paton charge q ranges over an arbitary but

finite set of integers.

When ζeff = 0, the situation is very different. If θ + 2πq ≥ Nπ, the entire right half

plane is not admissible. There is no way to move the right end of the real line to the

left half plane without hitting the poles. Therefore, an admissible contour does not exist.

Similarly for the case θ + 2πq ≤ −Nπ where the entire left half plane is not admissible.

If −Nπ < θ + 2πq < Nπ, the entire directions is admissible except infinitesimally small

sectors including the imaginary axis. Therefore, the real line γ = R itself is admissible,

as well as any of its deformation that keeps a non-zero angle against the imaginary axis.

Thus, we have a strong constraint on the brane B = (M,Q, ρ, r∗):

At ζeff = 0, all the Chan-Paton charges q of B must be in the range

−N
2

<
θ

2π
+ q <

N

2
. (6.16)

The allowed charges form a set of N consecutive integers provided θ avoids Nπ + 2πZ,

which are singular values for θ at ζeff = 0. This set does not change if θ moves inside

an open interval, or a window, of length 2π of regular values. If a brane B obeys the

condition (6.16) for θ in such an interval, we shall call it grade restricted with respect to

the window.

This is strange. If ζeff is positive or negative, an arbitrary brane has an admissible

Lagrangian submanifold γ for the boundary condition on the vector multiplet. At ζeff = 0,

that is possible only for grade restricted branes which form a tiny subset of the set of all

branes in the linear sigma model.

To illustrate the problem, let us see what happens to the partition function for a brane
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B = (M,Q, r∗, ρ) if we move the parameter t = ζ − iθ along a path from one phase to

another, say from the geometric phase ζ ≫ 0 to the Landau-Ginzburg orbifold phase

ζ ≪ 0. The path must avoid the singularity t ≡ N logN + Nπi and hence must go

through one of the windows at ζ = N logN . First, let us consider the case where the

brane B is grade restricted with respect to that window. The move of the admissible

ζeff > 0 ζeff < 0ζeff ≫ 0 ζeff ≪ 0ζeff = 0

Figure 3: Grade Restricted Case

region for any Chan-Paton charge q of the brane is shown in Fig. 3. We see that one can

find a continuous family of admissible contours as depicted in the same Figure. Therefore,

the partition function for the brane B in the phase ζ ≫ 0 is related to the one for the

same brane B in the phase ζ ≪ 0 by anlytic continuation along the path. Let us next

consider the case where the brane B is not grade restricted with respect to the window.

Then, it includes a Chan-Paton charge q which is outside, say above, the set (6.16). The

move of the admissible region for such a charge is depicted in Figure 4. We see that,

???

ζeff > 0 ζeff < 0ζeff ≫ 0 ζeff ≪ 0ζeff = 0

Figure 4: Not Grade Restricted Case

before ζeff approaches 0, an admissible contour is forced to hit the singularity along the

positive imaginary axis. The integral must pick these infinitely many poles when ζeff goes

negative, but the convergence of the infinite sum is not obvious at all. So, we do not know

what happens to the partition function if we try to see it this way. The same problem

arizes if there is a charge q below the set (6.16).

In a sense, only grade resticted branes can cross the window safely. This is how the

grade restriction rule was stated in [11]. What does this mean? Is there a real phase

boundary between the geometric phase and the Landau-Ginzburg orbifold phase across

which some of the branes cannot cross? That would be strange since the points with

ζeff = 0, θ 6≡ πN have no special status compared to other points in the parameter
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space. The answer to this problem, given in [11], is that in either phase, there is a huge

equivalence relation among the branes, and each equivalence class has a grade restricted

representative. This point, which we shall call the “classical grade restriction rule”, will

be revisited in the next section, where we show that the partition function takes the same

value on branes in the same equivalence class. This will give a solution to the above

problem of analytic continuation of the partition function for a brane which is not grade

restricted with respect to the window.

In this paper, we shall call the constraint (6.16) itself the grade restriction rule.

6.2.2 Non Calabi-Yau Case

In the non-Calabi-Yau case, d 6= N , the function Aq can be written as

Aq(σ
′) = (N − d)

(
log

∣∣∣∣
σ′

rΛ̃

∣∣∣∣− 1

)
σ′2 (6.17)

+

(
π

2
(N + d) + (N − d) arctan

[
σ′2
|σ′1|

]
− sgn(σ′1)(θ + 2πq)

)
|σ′1|.

We see that the coefficient of σ′2 changes its sign at the cricle |σ′| = rΛ̃ e = rΛ̃×2.1718...—
it is postive outside the circle and negative inside when d < N and the other way around

when d > N . Also, the coefficient of |σ′1| is positive on the real axis if |θ+2πq| < π
2
(N+d).

Fig 5 shows the σ′ planes for three values of (ζ, θ + 2πq) for the case d < N . We shade

|θ + 2πq| < πd πd < |θ + 2πq| < πN+d
2 πN+d

2 < |θ + 2πq| < πN

Figure 5: Regions with positive Aq (the case d < N).

the region with positive Aq and draw the circle at |σ′| = rΛ̃ e. We assume rΛ≫ 1 so that

(6.10) is a good approximation at the scale σ′ ∼ rΛ̃. For any value of (ζ, θ + 2πq), the

function Aq grows at least linearly in any ray direction on the upper half plane. Therefore,

for any brane, the contour γ can be taken to be a curve, as in Fig. 6-Left, which comes in

from and goes out to the region where Im(σ′) is positive infinity. This is as in the ζeff > 0

phase of the Calabi-Yau case, which may be understood by the fact that the effective FI

parameter ζeff (σ) = (N − d) log |σ/Λ̃| goes to positive infinity as |σ′| → ∞. For the case

60



d < N d > N

γ

γ

Figure 6: Admissible contours (Non Calabi-Yau cases)

d > N , the picture for the Aq > 0 region is upside down compared to Fig. 5, with d and

N exchanged in the subtitles. Also, the effective FI-parameter ζeff (σ) goes to negative

infinity as |σ′| → ∞. Thus, the contour γ for any brane can be taken as in Fig. 6-Right,

coming in from and going out to the region where Im(σ′) is negative infinity.

6.2.3 More General Theories

What is said on this particular class of examples applies more generally. Let us consider

the U(1) theory with fields Xi of R- and gauge charge (Ri, Qi) and with some superpoten-

tial W . We assume that each Qi is non-zero. We put N± :=
∑

±Qi>0 |Qi|. In the Calabi-

Yau case N+ = N−, we have a family of theories parameterized by t, with the singularity

at t ≡ −∑iQi logQi. The contour γ can be chosen as in Fig. 2 if ζeff = ζ−∑iQi log |Qi|
is non-zero. At ζeff = 0, the brane must obey the grade restrcition rule (6.16), with N

replaced by N+ = N−. In the case N+ > N− (resp. N+ < N−), the FI parameter runs

from positive to negative (resp. negtaive to positive) and there are |N+ − N−| massive

vacua on the Coulomb branch. The contour can be chosen as in Fig. 6-Left (resp. -Right).

6.3 Higher Rank Abelian Theories

In the rest of this paper, except when we discuss U(1) theories, we write the real and

imaginary parts of σ as

τ = Re(σ), υ = Im(σ), (6.18)

instead of σ1 and σ2, in order to avoid confusion between the index of coordinates on it

and the (1, 2) for the (real, imaginary) part.

In this subsection, we consider theories with Abelian gauge group G. For simplicity

we take it to be a connected group so that G = T . We write k := dG = lG. The FI
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parameter ζ takes values in it∗. We consider a theory with a matter chiral multiplet

φ = (φi)i∈I of R-charge (Ri)i∈I and gauge charge (Qi)i∈I . We assume some superpotential

W of R-charge 2. We shall only consider the Calabi-Yau case,
∑

iQi = 0, so that we

decide not to distinguish σ′ from σ.

As in the U(1) theory, the space of FI parameters is divided into phases. For ζ in a

phase, any solution to the D-term equation
∑

i∈I
Qi|φi|2 = ζ (6.19)

breaks the gauge group to a finite subgroup. An interface between two phases, called a

phase boundary, is a positive linear span of (k−1) independent charges from {Qi}i∈I . For
ζ in such a phase boundary, there is a solution to (6.19) which breaks the gauge group to a

subgroup of rank one whose Lie algebra is the common kernel of the (k− 1) charges. The

rank of the possibly unbroken subgroup will be higher for intersection of phase boundaries.

The quantum theory is parametrized by the FI-theta parameter t = ζ − iθ ∈ t∗
C
/2πiP

where P ⊂ it∗ is the weight lattice of T . The theory is singular at a hypersurface in which

teff := −2πdW̃eff ≡ 0, i.e.

t+
∑

i∈I
Qi logQi(σ) ≡ 0 mod 2πiP, (6.20)

has a set of solutions, i.e. a non-compact Coulomb branch. There can also be additional

singularity from mixed Coulomb-Higgs branches. The ζ images of the singular hypersur-

faces asymptote to the phase boundaries, and the Coulomb branch approaches the one

for the unbroken gauge group at each of them.

Phase I

Phase IIPhase III

Phase IV

X1,2

X3,4,5

X6

P

it∗

Figure 7: A two parameter model

As an illustration, let us consider the U(1) × U(1) linear sigma model familiar to

physicists [39]: Fields are X1, . . . , X6 and P whose charges are as in Fig. 7, and with
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superpotential W = Pf(X) where f(X) is a polynomial of X1, . . . , X6 of bidegree (0, 4).

The theory has four phases, I, II, III and IV, which are respectively the geometric, orbifold,

Landau-Ginzbirg orbifold and hybrid phases. The quantum theory is singular at the two

curves

C1 : e−t1 = 4−4(1− 2u), e−t2 =
u2

(1− 2u)2
, (6.21)

C2 : e−t2 = 2−2. (6.22)

The curve C1 is associated to the pure Coulomb branch with σ2/σ1 = u. (Here, σ1 and σ2

are not the real and the imaginary parts of σ, but the first and the second U(1) components

of σ. This is why we introduce the new notation (6.18) for the real and imaginary parts.)

The limit points u = 0, 1
2
,∞ correspond to the I-IV, II-III, III-IV boundaries with the right

unbroken gauge groups, (σ1, σ2) ∈ C(1, 0),C(2, 1),C(0, 1). The curve C2 is associated to

a mixed Higgs-Coulomb branch in which the second U(1) is unbroken. It corresponds to

the I-II and III-IV boundaries. For more detail of the relevant aspects of the theory, see

[39, 11].

Assuming the Calabi-Yau condition, the function (6.11) can be written as

Aq(σ) = ζeff (υ)− θeff ,q(τ), (6.23)

where ζeff and θeff ,q are defined by teff ,q := −2πdW̃eff ,q using (6.7). Although we hide from

the notation to avoid clatter, ζeff and θeff ,q depend on σ. In fact they depend only on the

direction σ̂ = σ/||σ||. If t is on the singular hypersurface, they ‘vanish’, i.e., ζeff = 0 and

θeff ≡ 0 (mod 2πiP), for σ̂ in the Coulomb branch direction. If ζ is deep inside a phase,

ζeff (υ) is dominated by the classical part ζ(υ) for any direction σ̂, and nearly the entire

half space {
σ = τ+ iυ

∣∣∣ ζ(υ) > 0
}
⊂ tC

is admissible. When ζ approaches a phase boundary, the quantum correction becomes

comparable to the classical part and a careful analysis will be needed.

Since the contour γ is defined to be a deformation of the real locus, υ = 0, it may

be regarded as a graph of a map, τ ∈ it 7→ υ(τ) ∈ it. It must obey the condition that

Aq(τ+ iυ(τ)) grows to infinity as |τ| → ∞ in any direction. Also, the deformation should

avoid the poles at (6.3), that is, Qi(τ) = 0 and Qi(υ) = ni +
Ri

2
with ni = 0, 1, 2, . . . .

This condition is satisfied if the contour γ avoids the wedge, Qi(τ) = 0 and Qi(υ) > 0,

i.e., if we choose the map υ = υ(τ) to avoid positive values of Qi(υ) over the hyperplane

Qi(τ) = 0. Let us introduce some notations. Let Hi ⊂ it be the hyperplane annihilated
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F

H1,2

HP = H3,4,5

H6

it

Figure 8: The chamber decomposition of it in the model of Fig. 7.

by Qi, i.e, Hi = Ker Qi, and let D±
i ⊂ it be the half space with positive values of ±Qi.

The hyperplanes {Hi} define a chamber decomposition of it. See Fig. 8 for an example.

As the first step, we look for a piecewise linear map τ 7→ υ(τ) satisfying the conditions,

which is linear on each chamber. The wedge condition to avoid poles is a condition on

the values at the walls of the chambers, υ(Hi) ⊂ D
−
i .

If ζ is deep inside a phase, the growth condition is satisfied if the image is deep inside

the ζ-positive half space D+
ζ and if it is of full rank on each chamber. In particular, the

image is a cone of full dimension inside the half space D+
ζ . We shall call it the image cone

of the map. Let us show examples of such maps in the two parameter model:

ζ ∈ Phase I : (υ1,υ2) = (|τ1|, |τ2|), (6.24)

ζ ∈ Phase II : (υ1,υ1 − 2υ2) = (|τ1|, |τ1 − 2τ2|), (6.25)

ζ ∈ Phase III : (υ1,υ1 − 2υ2) = (−|τ1|, |τ1 − 2τ2|), (6.26)

ζ ∈ Phase IV : (υ1,υ2) = (−|τ1|, |τ2|), (6.27)

The choice may not be unique. For example, if ζ is in the subset ζ1 < 0, ζ2 < 0 of Phase

III, we may also take (υ1,υ2) = (−|τ1|,−|τ2|). However, the two can be continuously

connected to each other by a homotopy which stays inside the admissible region. That

is, they are in the same deformation class. In Fig. 9, we show the image cones of these

maps. CI, . . . , CIV are the image cones of (6.24), ..., (6.27), and CIII′ is the one for the

other map on a part of Phase III. We may try to generalize the examples (6.24)-(6.27).

Suppose that ζ is a positive linear span of a set {Qj}j∈J of k charges, which must be

linearly independent if ζ is deep inside a phase. Then, define υ(τ) by

Qj(υ(τ)) = |Qj(τ)|, ∀j ∈ J. (6.28)

It certainly satisfies the growth condition, but the question is the wedge condition to avoid

poles. The latter is always satisfied when k = 2 and also in many other examples with
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Figure 9: The image cones

higher k. However, it is easy to find counter examples with k = 3.

The graph of such a piecewise linear map is not always Lagrangian. For example, the

maps (6.24) and (6.27) already define (piecewise) Lagrangian submanifolds with respect

to ω = dτ1 ∧ dυ1 + dτ2 ∧ dυ2, but the maps (6.25) and (6.25) do not. In fact we may

modify the maps as

(υ1,υ1 − 2υ2) = (±f(τ)|τ1|, g(τ)|τ1 − 2τ2|) (6.29)

for some positive valued functions f(τ) and g(τ). It is straightforward though technically

involved to find such functions so that the graph is a Lagrangian. Such a modification

is also useful even if the graph is already a Lagrangian. For a piecewise linear map, no

matter how deep inside ζ is, if we consider a very large Chan-Paton charge q, the growth

condition can be violated. However, the graph can be ‘bent’ by multiplying positive

functions to the maps, as in (6.29). For example, in Phase I, the map (6.24) can be

modified to (υ1,υ2) = (|τ1|1+ǫ, |τ2|1+ǫ) for some positive ǫ, say 1. Then, the growth

condition is satisfied for any brane B with an arbitrary set of Chan-Paton charges.

At this moment, we do not have a general proof of the existence and uniqueness of the

deformation class of a map τ 7→ υ(τ) satisfying the conditions. We leave it as a problem

for a future work.

Let us now consider the region where ζ is not deep inside a phase. Since the analysis

is very complicated in general, in this paper, we focus on the region near an “asymptotic

phase boundary”, that is, deep in the interior of the boundary between two phases. Take

a phase boundary spanned by (k − 1) charges {Qi}i∈Ib. We denote by T u the unbroken

subgroup at the boundary and take its integral generator eu ∈ it. We write ξ(eu) = ξu

for ξ ∈ t∗
C
. Since eu is the common kernel of {Qi}i∈Ib we have Qu

i = 0 for i ∈ Ib. If we

choose some element eu ∈ it∗ such that eu(e
u) = 1 we can write t =

∑
i∈Ib Qit

i + eut
u. We

are looking at the regime where ζ i ≫ 0 for all i ∈ Ib. For any fixed (ti)i∈Ib in that regime,

we have an array of singular ‘points’ in the tu-plane, separated by 2πi. (Each ‘point’ is
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in general a collection of a number of points which are very close to each other.) In any

limit with ζ i → +∞, the singular ‘points’ approach the points

tu = −
∑

i∈I
Qu

i logQ
u
i + 2πin, n ∈ Z. (6.30)

The line ζu = −∑i∈I Q
u
i log |Qu

i | is the asymptotic phase boundary, and the open intervals

of length 2π between the adjacent singular points shall be called the windows between the

phases in the asymptotic regime. In the two parameter model, the asymptotic singular

points of the four phase boundaries are

I-II : t2 ≡ 2 log 2, [1], (6.31)

II-III : 2t1 + t2 ≡ 9 log 4, [1], (6.32)

III-IV : t2 ≡ 2 log 2. [2], (6.33)

IV-I : t1 ≡ 4 log 4, [2]. (6.34)

The number in the bracket shows the number of points in the collection.

Let us examine the image of the map τ 7→ υ(τ) over the line τ ∈ Reu of the unbroken

gauge group T u. This line is equal to the intersection of the hyperplanes Hi for i ∈ Ib. By
the wedge condition, we need Qi(υ(τ)) ≤ 0 for i ∈ Ib. On the other hand, by the growth

condition, none of Qi(υ(τ)) with i ∈ Ib cannot go large negative since we are looking at

the regime ζ i ≫ 0 for all i ∈ Ib. Therefore, Qi(υ(τ)) with i ∈ Ib are frozen to be small

on the line τ ∈ R eu. This is the incarnation of the Higgs mechanism in which Qi(σ) = 0

is enforced by the non-vanishing value of φi at a solution to the D-term equation with

ζ i ≫ 0. As a consequence, on this line, τ = τue
u, the function Aq(τ,υ(τ)) is dominated

by the one for the theory with the gauge group T u only, that is,

Aq =

(
ζu +

∑

i∈I
Qu

i log |Qu
i |
)
υu(τ) +


∑

Qu
i >0

Qu
i π − sgn(τu)(θ

u + 2πqu)


 |τu|. (6.35)

If ζu is exactly on the asymptotic phase boundary, where the first term vanishes, we

obtain a constraint

−1
2

∑

Qu
i >0

Qu
i <

θu

2π
+ qu <

1

2

∑

Qu
i >0

Qu
i . (6.36)

This is the grade restriction rule. It is a constraint on the Chan-Paton charges with

respect only to the unbroken gauge group T u at the phase boundary. (It is called the

band restriction rule in [11].) The set of charges satisfying this condition depends only

on the window, as in the U(1) theories. If ζu is above (resp. below) the asymptotic
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phase boundary, we may choose υu(τ) on the line τ = τue
u to be a function that goes

to postive (resp. negative) infinity faster than |τu| (resp. −|τu|). Then, at least along

this line, the growth condition is satisfied for any charge qu. In fact, this behaviour is

consistent with the choice of contour γ deep inside either of the two phases, provided the

latter is constructed based on the map (6.28). In the phase above the boundary, as the

set {Qj}j∈J we take {Qi}i∈Ib ∪ {Qj+} where Qj+ is one of the charges such that Qu
j+
> 0.

Then, up to a positive rescaling, we may assume eu = Qj+ . This means that υu(τ) = |τu|
on the line (before the further bending). In the phase below the boundary, we take Qj−

with Qu
j− < 0 instead of Qj+, and we have υu(τ) = −|τu| on the line (before the further

bending).

6.4 Non-Abelian Examples

The linear sigma model with non-Abelian gauge groups is a surprisingly rich subject of

study. One interesting feature is that there can be phases in which a continuous subgroup

of the gauge group is totally unbroken. The low energy physics of such a strongly coupled

system is usually hard to understand. Exact results obtained in this paper may provide

some clue towards better understanding. In this subsection, we describe some examples

with geometric phase where we can find admissible contours, as well as an example where

a simple grade restriction rule can be obtained. Full exploration is beyond the scope of

the present paper and will be left for future works.

The models treated are all Calabi-Yau and hence we write σ for σ′. Also reminded is

the notation (6.18) for the real and imaginary parts of σ.

6.4.1 Rødland Model

The first example is the Rødland model [40, 34]. It is a U(2) gauge theory with seven

fundamental doublets, X1, . . . , X7 and seven fields P 1, . . . , P 7 in the det−1 representation.

The superpotential is of the formW =
∑7

i,j,k=1A
ij
k P

k[XiXj] where [XiXj] are the baryons

X1
iX

2
j − X2

iX
1
j and Aij

k are generic complex coefficients which are antisymmetric in the

upper indices. The R-charge assignment is unique up to te gauge shift, 2−2ǫ for P i’s and

ǫ for Xi’s, with 0 < ǫ < 1. There is one FI and one theta parameters, ζ ∈ R, θ ∈ R/2πiZ.

ζ ≫ 0 is the usual geometric phase where the gauge group is completely broken and the

low energy theory is the non-linear sigma model on the complete intersection of seven

hypersurfaces, Aij
k [xixj ] = 0, k = 1, . . . , 7, in the Grassmannian G(2, 7). ζ ≪ 0 is the

phase in which the SU(2) subgroup is totally unbroken. Obtaining and applying some
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understanding of SU(2) gauge theories, it is found [34] that the low energy theory is the

non-linear sigma model after all, whose target space is the Pfaffian locus of p ∈ CP
6

where the 7 × 7 antisymmetric matrix (Aij(p)) = (
∑

k A
ij
k p

k) is of rank 4. ζ ≫ 0 is

called the Grassmannian phase while ζ ≪ 0 is called the Pfaffian phase. The quantum

theory is parametrized by t = ζ − iθ and there are three singular points in the middle, at

et = (1 + ω)7, (1 + ω2)7, (1 + ω3)7 with ω = e2πi/7.1

Let us write down the function Aq(σ),

Aq(σ) = ζ(υ1 + υ2)− θ(τ1 + τ2)− 2πq1τ1 − 2πq2τ2 − π|τ1 − τ2|

+7(−υ1 − υ2) log |σ1 + σ2|+ 7|τ1 + τ2|
(
π

2
+ arctan

[−υ1 − υ2
|τ1 + τ2|

])

+7υ1 log |σ1|+ 7|τ1|
(
π

2
+ arctan

[
υ1

|τ1|

])

+7υ2 log |σ2|+ 7|τ2|
(
π

2
+ arctan

[
υ2

|τ2|

])
. (6.37)

It can also be written as (6.23), i.e., Aq(σ) = ζeff (υ)− θeff ,q(τ), where teff = −2πdW̃eff ,q is

the effective FI-theta parameter which depends on the direction σ̂ = σ/||σ||. When ζ ≫ 0

or ζ ≪ 0, the term ζeff (υ) is dominated by ζ(υ1 + υ2). Therefore the admissible region is

the region with (υ1 + υ2)≫ 0 or (υ1 + υ2)≪ 0.

As in the higher rank Abelian theories, we would like to think of γ as the graph of a

map τ 7→ υ = υ(τ). The wedge condition to avoid poles (6.3) is

τ1 + τ2 = 0 =⇒ υ1 + υ2 ≥ 0, (6.38)

τ1 = 0 =⇒ υ1 ≤ 0, (6.39)

τ2 = 0 =⇒ υ2 ≤ 0. (6.40)

In the Grassmannian phase ζ ≫ 0, an admissible contour is easy to find. For example,

we can take

υ1 = (τ1)
2, υ2 = (τ2)

2. (6.41)

It may be replaced by υ1 = |τ1|α, υ2 = |τ2|α for any α > 1. For such a choice, the growth

condition is satisfied for any q. Therefore, this can be used for any brane B with an

arbitrary set of Chan-Paton representations.

1Compared to [34], there is a sign difference. This is the effect of the W-boson integral. The formulae in

[34] should be corrected by the replacement e−t → e−t(−1)k+1 for U(k) gauge theory. The relationship

between the theta angle and the B-field mentioned in [34] is totally explainable by Morrison-Plesser

mechanism [39]. The same formula as [34] is copied in v1 of [36]. That is a careless mistake.
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In the Pfaffian phase ζ ≪ 0, on the other hand, it is hard to find any admissible contour

of the above type. The growth condition (υ1 + υ1) ≪ 0 is in conflict with the wedge

condition (6.38). We may need to select the allowed set of Chan-Paton representations

over the entire phase. We plan to explore this problem in the future works.

The contour choice of the type (6.41) works in the usual geometric phase in a Calabi-

Yau model. For example, take a U(k) gauge theory with N fundamentals X1, . . . , XN and

a number of powers of det−1 representations, P 1, . . . , P S, and a gauge invariant super-

potential W = P 1f1(B) + · · ·+ P SfS(B) with fi(B)’s being polynomials of the baryons

Bi1···ik = [Xi1 · · ·Xik ]. ζ ≫ 0 is a geometric phase where the gauge group is completely

broken and the low energy theory is the non-linear sigma model on the complete inter-

section of hypersurfaces f1 = · · · = fS = 0 of the Grassmannian G(k,N). In this phase,

the contour

υa = (τa)
2, a = 1, . . . , k, (6.42)

is admissible for any brane B.

6.4.2 A Model With A Simple Grade Restriction Rule

The next example is the U(2) gauge theory with four fundamentals, X1, . . . , X4, and four

antifundamentals, Y 1, . . . , Y 4. Choice of superpotential and R-charge assignment are not

relevant for the matters we would like to discuss. ζ ≫ 0 and ζ ≪ 0 are both phases

where the gauge group is completely broken and Xi’s and Y i’s span the Grassmannian

G(2, 4) respectively. The quantum theory is parametrized by t = ζ − iθ and there is a

single singularity in the middle,

t ≡ πi mod 2πiZ. (6.43)

This π shift of the theta angle comes from the single pair of the W-bosons.

The function Aq(σ) is astonishingly simple,

Aq(σ) = ζ(υ1 + υ2)− θ(τ1 + τ2)− 2π(q1τ1 + q2τ2)

−π|τ1 − τ2|+ 4π|τ1|+ 4π|τ2|. (6.44)

The wedge condition to avoid poles is

τ1 = 0 ⇒ υ1 = 0, τ2 = 0 ⇒ υ2 = 0. (6.45)

In the ζ ≫ 0 phase, as an admissible contour, we can take

υ1 = (τ1)
2, υ2 = (τ2)

2. (6.46)
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In the ζ ≪ 0 phase, as an admissible contour, we can take

υ1 = −(τ1)2, υ2 = −(τ2)2. (6.47)

At the phase boundary, ζ = 0, the υ dependence disappears and the choice of graph

υ = υ(τ) does not matter. The growth condition simply requires that

Aq(σ) = − θ(τ1 + τ2)− 2π(q1τ1 + q2τ2)− π|τ1 − τ2|+ 4π|τ1|+ 4π|τ2|

goes to positive infinity as |τ| → ∞ in any direction. After some elementary exercise, we

find that this condition is equivalent to

−3
2
<

θ

2π
+ q1 <

3

2
, −3

2
<

θ

2π
+ q2 <

3

2
. (6.48)

This is the grade restriction rule. As long as θ 6≡ π (mod 2πZ), this defines a set of nine

weights in a square of size 3 on the diagonal. This set does not change as long as θ moves

in a window, i.e. and open interval of length 2π sandwitched between singular ponts. See

Fig. 10 for example.

q1

q2

Figure 10: The grade restriction rule for the window −3π < θ < −π.

We decided to look at this example because this is one of the first examples in a work

by Donnovan-Segal [41] which studies aspects of (classical) grade restriction rule in a

class of non-Abelian linear sigma models. There it is found that as the relevant “window

category” one can take the one generated by Kapranov’s exceptional collection of G(2, 4),

which are the vector bundles associated with the following representations of U(2):

C, C2, Sym2C2, det, C2 ⊗ det, det⊗2, (6.49)

where C is the trivial representation. We see that the weights of these representations

fits precisely to the one in Fig 10.
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7 Low Energy Behaviour

In this section, we check the partition function against the expected low energy physics

of the theory. In the Calabi-Yau case, we fulfill the promise to show that, deep inside a

phase, the partition function takes the same value for branes that descend to the same

brane in the low energy theory. This in particular shows that the analytic property of

the partition function is consistent with the rule of D-brane transport along a path in the

parameter space. In the non Calabi-Yau case, we look at the behaviour of the partition

function in the large r limit. Some consistency check can be made, and moreover, the

study leads us to find the rule of D-brane map under the bulk renormalization group flow.

The key is to look at the partition function of a particular class of branes, called “empty

branes”.

For concreteness, we consider in detail the particular U(1) theory introduced in Sec-

tion 6.2. Let us write down the formula for the partirion function for a brane B in this

theory,

ZD2(B) = (rΛ)ĉ/2
∫

γ

dσ′ Γ

(
−d iσ′ + 1− dǫ

2

)
Γ
(
iσ′ +

ǫ

2

)N
eitR(σ′)fB(σ

′), (7.1)

where fB(σ
′) = trM( eπir∗ e2πρ(σ

′)) and

ĉ = N − 2− (N − d)ǫ, (7.2)

tR = t− (N − d) log(rΛ). (7.3)

The integrand has poles at

σ′ =

{
i
(
nx +

ǫ
2

)
nx = 0, 1, 2, . . . (order N),

i
(
−np+1

d
+ ǫ

2

)
np = 0, 1, 2, . . . (simple).

(7.4)

7.1 Tachyon Condensation

Let us first describe how the branes in the linear sigma model reduce to branes in the

classical low energy theory, deep in either the geometric phase ζc ≫ 0 or the Landau-

Ginzburg orbifold phase ζc ≪ 0. To emphasize that the analysis is purely classical,

we denoted the FI parameter by ζc. An important rôle is played again by the D-term

equation,
N∑

i=1

|xi|2 − d|p|2 = ζc. (7.5)
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We shall only give an outline since all the detail can be found in [11]. Only the Calabi-Yau

case was discussed in [11], but the classical discussion applies equally well without such a

restriction.

The descent of branes can be decomposed into two steps: (i) impose the D-term

equation (7.5) strictly but keep all the chiral multiplets, and (ii) integrate out the heavy

chiral multiplets. Step (i) suffices for the present purposes. Step (ii) will be described in

the next section.

The main ingredient in the descent is the brane-antibrane annihilation by tachyon

condensation. Recall that the matrix factorization Q enters into the boundary potential

{Q,Q†}. I.e., it plays the rôle of a profile of the open string tachyon. If the D-term equa-

tion (7.5) is strictly imposed, it is possible that {Q,Q†} is everywhere positive definite.

In such a case the brane can be regarded as empty in the low energy limit by the complete

brane-antibrane annihilation. Since the space of solutions to (7.5) depends very much on

the sign of ζc, which branes are empty and which branes are not depends also on the sign

of ζc.

Let us introduce two basic examples:

B1 : C(0, 0)
f
✲

✛

p
C(1− dǫ, d) (7.6)

B2 : C(0, 0)
x
✲

✛

pf ′ E
x
✲

✛

pf ′ ∧2E
x
✲

✛

pf ′ · · ·
x
✲

✛

pf ′ ∧NE (7.7)

where E = C(1 − ǫ, 1)⊕N . Here we used the notation of [11] except that the component

W(q)j of R-charge j and gauge charge q is here denoted by C(j, q). Let us explain what

the data (Mi, Qi, ρi, r∗i) is for Bi, i = 1, 2. The vector space Mi is the direct sum of the

spaces appearing, i.e., M1 = C(0, 0)⊕C(1− dǫ, d) and M2 = ∧E, r∗i and ρi are specified
by the numbers (j, q) of each component C(j, q), and the matrix factorization is given by

Q1 =

(
0 p

f(x) 0

)
, (7.8)

Q2 =

N∑

i=1

(
xiηi +

1

d
p ∂if(x)ηi

)
, (7.9)

where ηi and ηi are generators of the Clifford algebra, {ηi, ηj} = δi,j, {ηi, ηj} = {ηi, ηj} =
0, that is used to construct ∧E. We may also consider the shifts, B1(j, q) and B2(j, q),

where B 7→ B(j, q) for (j, q) ∈ Z⊕2 is the uniform shift of the R-charges by j and the

gauge charges by q. The boundary potentials are

{Q1, Q
†
1} =

(
|p|2 + |f(x)|2

)
idM1

, (7.10)
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{Q2, Q
†
2} =

N∑

i=1

(
|xi|2 +

1

N2
|p∂if(x)|2

)
idM2

. (7.11)

In the ζc ≫ 0 phase, B2 and all of its shifts are empty at low energies. This is because∑
i |xi|2 ≥ ζc by the D-term equation (7.5) and hence the boundary potential {Q2, Q

†
2} is

positive definite everywhere with a strictly positive lower bound. Likewise, in the ζc ≪ 0

phase, B1 and all of its shifts are empty at low energies since {Q1, Q
†
1} is positive definite

everywhere on the D-term locus (7.5) where |p|2 ≥ |ζc/N |. On the other hand, they are

non-empty in the opposite phases, since the boundary potentials fail to be positive definite

at some locus: {Q1, Q
†
1} vanishes at p = f(x) = 0 which is allowed in the ζc ≫ 0 phase,

while {Q2, Q
†
2} vanishes at x = 0 (assuming d > 1) which is allowed in the ζc ≪ 0 phase.

After the step (ii), see [11] or the next section, we find that B1 in the ζc ≫ 0 phase is (a

shift of) the structure sheaf OXf
, that is, the single D-brane wrapped on the entire target

space Xf and supporting the trivial line bundle. When f is a Fermat polynomial, B2 in

the ζc → −∞ limit is one of the L = 0 Recknagel-Schomerus branes [42].

Brane-antibrane annihilation implies that the descent map of branes in the linear

sigma model to branes in the low energy theory is not one to one but many to one, as is

always the case in renormalization group flow. In fact it is huge to one since any number

of copies of empty branes should be regarded as “nothing” in the low energy theory. It

would be convenient if we have a subset, or a slice, in the set of branes in the linear sigma

model such that the map is one to one when restricted to that subset. In fact, such subsets

exist! In the ζc ≫ 0 phase, let us consider a set of branes whose Chan-Paton charges are

within a zone w of length N , i.e., a set of N consecutive integers, say w = {1, . . . , N} or
w = {17, . . . , 16+N}. Then, the map of branes in that subset to branes in the low energy

theory at ζc ≫ 0 is one to one. Likewise, in the ζc ≪ 0 phase, let us consider a set of

branes whose Chan-Paton charges are within a zone w of length d, say w = {0, . . . , d−1}.
Then, the map of branes in that subset to branes in the low energy theory at ζc ≪ 0 is

one to one. We shall call this the classical grade restriction rule.

We put the adjective “classical” in order to distinguish it from the (quantum) grade

restriction rule which we have discussed in the previous section, for branes of the theory

sitting at or going through a window between different phases, in the Calabi-Yau case.

However, these are certainly related. Note that (6.16) defines a zone of length N , and we

shall call it the zone of the window. Carrying over the terminology, a brane in the subset

determined by a zone w is said to be grade restricted with respect to w.

The classical grade restriction rule means that any brane can be replaced by a unique

grade restricted brane by a brane-antibrane creation and annihilation process. We can
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show this by employing the empty branes introduced above, i.e, B2 and its shifts in the

ζc ≫ 0 phase and B1 and its shifts in the ζc ≪ 0 phase. It goes as follows. Let us take

any brane B = (M,Q, ρ, r∗). If B has a Chan-Paton charge outside the zone w, then, we

can bind an empty brane to B at the vector of that charge so that the resulting brane has

charges closer to w. We repeat this process. Note that B2 has the smallest charge 0 and

the largest charge N , while B1 has the smallest charge 0 and the largest charge d. This

guarantees that this binding process can eventually put all the charges inside the zone w

of length N for ζc ≫ 0 and d for ζc ≪ 0.

To summarize the discussion, let us introduce some notations. We denote the set of

all linear sigma model branes by D, the set of branes in the classical low energy theory in

the phase ζc ≫ 0 (resp. ζc ≪ 0) by D+ (resp. D−) and the set of grade restricted branes

with respect to a zone w by Tw. Then, we have maps of branes:

Tw− DD

D−

∼=∼=
⊂⊂ Tw+

D+

π− π+

The vertical arrow π± : D → D± is the huge-to-one descent map to the low energy

theory. The restriction to the subset Tw± ⊂ D associated to a zone w± is one to one, if

the length ofw− is d and the length ofw+ is N . The above diagrams of “sets” and “maps”

may be regarded as diagrams of categories and functors. In that case “the one to one

map” should be regarded as an equivalence of categories. There is a recent development

concerning such equivalences of categories, motivated by the classical grade restriction

rule [43–45, 41].

Finally let us compute the factor fB(σ
′) in the integrand of (7.1) for the branes B1

and B2:

fB1(σ
′) = 1− e−πidǫ e2πdσ

′

, (7.12)

fB2(σ
′) = 1−N e−πiǫ e2πσ

′

+

(
N

2

)
e−2πiǫ e4πσ

′ − · · ·+ (−1)N e−Nπiǫ e2Nπσ′

= (1− e−πiǫ e2πσ
′

)N . (7.13)

Notice that fB2(σ
′) cancels the poles of Γ(iσ′ + ǫ

2
)N on the positive imaginary axis but

cannot cancel all the poles of Γ(−diσ′ + 1 − dǫ
2
) on the negative imaginary axis. On the

other hand, fB1(σ
′) cancels the poles of Γ(−diσ′ +1− dǫ

2
) on the negative imaginary axis

but cannot cancel the higher order poles of Γ(iσ′ + ǫ
2
)N on the positive imaginary axis.

This is a reflection of the fact that B2 is empty in the ζc ≫ 0 phase but not in the ζc ≪ 0
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phase, while B1 is empty in the ζc ≪ 0 phase but not in the ζc ≫ 0 phase. The real

significance of this observation in the quantum theory will be discussed below.

We now look at the partition function and compare it with the expectation of the low

energy behaviour of the theory and of the branes, including the above descent map of

branes. We separate the discussion into the three cases, d = N , d < N and d > N .

7.2 d = N : Family of conformal field theories

In the Calabi-Yau case, d = N , the family of theories parametrized by t ∈ C/2πiZ

is expected to flow to a family of superconformal field theories with c/3 = N − 2. Note

that the last number is equal to the exponent ĉ in (7.2) as already remaked (5.81). In the

two extreme regimes, ζ ≫ 0 and ζ ≪ 0, the degrees of freedom other than those in the

classical low energy theory are infinitely heavy. Therefore, the classical analysis of the

previous subsection is expected to hold, with ζ ∼ ζc.

As an examination, let us look at the partition function for the branes B1 and B2.

Recall that fB2(σ
′) cancels the poles of the gamma function factor on the positive imagi-

nary axis while fB1(σ
′) cancels the poles on the negative imaginary axis. In view of the

contour choice in Fig. 2, we see that they indeed have vanishing partition function in the

phase where they are said to be empty,

ZD2(B2) = 0 for ζeff > 0,

ZD2(B1) = 0 for ζeff < 0.
(7.14)

The same holds for B2(j, q) and B1(j, q) as the shift B 7→ B(j, q) changes the brane

factor fB(σ
′) simply by multiplication of the entire function (−1)j e2πqσ′ which does not

affect the cancellation of poles. Recall also that the brane factors for B1 and B2 fail to

cancel the poles on the opposite sides of the imaginary axis. Thus, the partition functions

do not have to vanish in the opposite phases. In the next section, we will compute them

and see that they are equal to the (expected) parition function of the low energy images,

i.e. the structure sheaf OXf
of Xf for B1 and the Recknagel-Schomerus brane of the

Landau-Ginzburg orbifold for B2.

The vanishing (7.14) means that, in each phase, branes related by binding the empty

branes have exactly the same partition function. In particular, a given brane and its grade

restricted replacement have the same partition function. Therefore, the partition function

takes the same value on the branes which descend to the same brane in the classical low

energy theory.
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Now let us come back to the problem in Section 6.2.1 concerning analytic continuation

of the partition function ZD2(B) along a path from one phase to another, say from ζ ≫ 0

to ζ ≪ 0. There was a problem if the brane B is not grade restricted with respect to

the window through which the path goes. We now know what to do: while in the ζ ≫ 0

phase, we replace B by a grade restricted brane B′ by binding the empty branes B2(j, q).

We have just learned that ZD2(B) is exactly equal to ZD2(B′) in the ζ ≫ 0 phase. Now

that B′ is grade restricted with respect to the window, the partition function can be

analytically continued to ζ ≪ 0 through that window. We therefore conclude that the

partition function of the brane B at ζ ≫ 0 is analytically continued along the path to

the partiction function of the brane B′ at ζ ≪ 0.

This matches the rule of D-brane transport [11]. In the Calabi-Yau case d = N , the

lengths of the zones for the classical grade restriction are the same between the two phases.

Hence we can take a common grade restricted subset Tw to make a bridge between low

energy branes in one phase and the low energy branes in the other.

Tw

D

D−

∼=∼=

∪

D+

π− π+

If we take w to be the zone of a window, this gives the rule of D-brane transport through

that window. Once again, we have seen that the analytic continuation of the partition

function matches with this rule.

We may also consider a closed loop in the parameter space, starting from one phase,

going to the other phase through a window, and then coming back through a different

window. If we analytically continue the partition function of a brane B along such a path,

it comes back as the partition function of another brane B′′.

Tw′ 6= Tw

D

D−
∼=∼=

∼= ∼=

∪

D+

π− π+

The tranform B 7→ B′′ is what is known as the D-brane monodromy. As in the above

discussion, this is done by the brane replacement via binding empty branes at appropriate

phases. If the loop goes around one singular point, it is to bind a brane which becomes

massless at the singular point, in accord with the picture found by Strominger [47].
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At the level of categories, the D-brane transport along a path from one phase to the

other gives an equivalence of the categories, D+

∼=−→ D−. The equivalences for various win-

dows are the same as the equivalences first found by Orlov [46]. The D-brane monodromy

for a closed loop gives an autoequivalence of the category, say, D+

∼=−→ D+. Construction

of such autoequivalences had been given in [48, 49] and is called Seidel-Thomas twist.

7.3 d < N : Flow from the non-linear sigma model

When d < N , the FI parameter is larger at higher energies and the theory describes the

asymptotically free non-linear sigma model on the Fano manifold Xf , with c/3 = N − 2

in the ultra-violet limit. At low energies, the theory reduces to the Landau-Ginzburg

orbifold W = f(X1, . . . , XN)/Zd or one of the (N − d) massive vacua. The Landau-

Ginzburg orbifold is expected to flow to a superconformal field theory with

c

3
= N

(
1− 2

d

)
. (7.15)

The massive vacua are at

σk = −iΛ̃ exp

(
i
θ + πd+ 2πk

N − d

)
, k ∈ Z/(N − d)Z, (7.16)

(Λ̃N−d := ΛN−ddd e−ζ , see Section 6.2) with the value 2πW̃eff = (N − d)σk for the twisted

superpotential.

We would like to ask which branes correspond to the superconformal field theory

and which branes correspond to the massive vacua at low energies. Can we see that by

looking at the behaviour of the partition function in the large size limit r →∞? Taking

the lesson from Section 5.5, we may try to see if it has a power or exponential behaviour.

We suppose that the poles on the negative imaginary axis are relevant for the Landau-

Ginzburg orbifold. For rΛ ≫ 1, the pole σ′ = i(−1/d + ǫ/2) closest to the origin yields

the dominant contribution, which is of the order of

(rΛ)ĉ/2 eitRi(−1/d+ǫ/2) ∼ (rΛ)N(1−2/d)/2. (7.17)

This is indeed the expected power behaviour for the conformal field theory of central

charge (7.15). Therefore, if the partition function is dominated by the pole contribution

(7.17), we may say that the brane corresponds to a brane in the superconformal field

theory, or more precisely, has such a component.

For which values of q does the integral have the residue (7.17) as the dominant contri-

bution? We recall that the contour is decided to to be as in Fig. 6-Left. We deform it so
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|θ + 2πq| < πd πd < |θ + 2πq| < πN+d
2 πN+d

2 < |θ + 2πq| < πN

Figure 11: Deformed contours

that it picks this and some other poles on the negative imaginary axis as in Fig. 11. (The

meaning of the dots will be explained later.) The part along the negative imaginary axis

will have (7.17). The question is what the other part of γ gives. If |θ+ 2πq| < π
2
(N + d),

we can choose γ so that it goes through the region in which the integrand is exponentially

small, e−C′r|σ′|, as r → ∞ where C ′ is positive and with a strictly positive lower bound

along the way. Therefore the integral from that part vanishes in the r →∞ limit, and is

dominated by (7.17). If |θ+2πq| > π
2
(N + d), on the other hand, it is unavoidable that γ

goes through a region where the integrand is exponentially large. Therefore, the integral

on the other part is generically exponentially growing as r →∞.

For more detailed evaluation, let us see if the integrand has a critical point. We

assume θ 6≡ πd, πN so that the massive vacua (7.16) are not on the imaginary axis. For

large values of σ′, we may omit the power factor and only look at the exponent, which is

2πirW̃eff ,q(σ), now with the q dependence. The equation ∂σW̃eff ,q(σ) = 0 reads |σ| = Λ̃

and

(N − d)Arg(iσ) = θ + 2πq − sgn(σ1)πd. (7.18)

(This is equivalent to the vanishing of the coefficient of |σ′1| in (6.17). See (6.8).) When

|θ + 2πq| < πd and |θ + 2πq| > πN , there is no solution. When πd < |θ + 2πq| < πN ,

there is a unique solution which is equal to σk of (7.16) with

k =





q − d (πd < θ + 2πq < πN)

q (−πN < θ + 2πq < −πd).
(7.19)

For these values of q, a part of the integral can be evaluated by the saddle point approx-

imation at the critical point and has the exponential behaviour as r → ∞. The dots in

Fig. 11-Middle and -Right are the critical points. Indeed the contour γ comes close to

this point. If |θ+ 2πq| < πd, except the sum of poles on the negative imaginary axis, the

integral vanishes more rapidly as r →∞ than any of these exponentials.

Let us see the behaviour of the partition function at large r for the branes B1 and B2
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and their shifts. Looking at the contour γ, we immediately see that it vanishes for B2

and all of its shifts,

ZD2(B2(j, q)) = 0. (7.20)

This is exact vanishing, for any value of r. For B1(j, q), let us consider the deformed

contour as in Fig. 11. We know that the poles on the negative imaginary axis is cancelled

by the brane factor fB1(σ
′), and hence the contribution comes entirely from the other part.

Recall that B1(j, q) has two components, C(j, q) and C(j + 1 − dǫ, q + d). By (7.19),

the contribution of the former (resp. latter) component has the exponential behaviour

∼ e−(N−k)irσq for −πN < θ + 2πq < −πd (resp. πd < θ + 2π(q + d) < πN). Therefore,

for such a q,

ZD2(B1(j, q)) ∼ exp
(
−(N − d)irσq

)
, r →∞. (7.21)

It is non-zero and therefore the braneB1(j, q) cannot be empty in the full quantum theory,

even though it is so when reduced to the Landau-Ginzburg orbifold.

The above observations are enough to conclude the following, assuming θ 6≡ πd, πN

(mod 2πZ). It is enough to consider branes which are grade restricted with respect to a

zone of length N . A natural zone is

w+,θ =

{
q ∈ Z

∣∣∣ −N
2

<
θ

2π
+ q <

N

2

}
. (7.22)

For |θ + πd + 2πq| < π(N − d), the brane B1(j, q) descends to a brane of the massive

vacuum at σq. On the other hand, branes which are grade restricted with respect to the

zone

w−,θ =

{
q ∈ Z

∣∣∣ −d
2
<

θ

2π
+ q <

d

2

}
(7.23)

descend purely to the superconformal field theory. A picture of the descent is shown

in Fig. 12 where the branes are plotted on the W̃eff -plane, for the value θ = −πd + δ

with a small positive δ. The square dots are the values of the massive vacua (7.16), and

the origin is the value for the Landau-Ginzburg orbifold. We plot the large volume image

O(q) = OXf
(q) of the brane B1(0, q) in the place of the critical value of σq The maximum

and the minimum values of q are qmax := [N−d−1
2

] and q
min

:= −[N−d
2

].

At the special values θ ≡ πd, πN , one or two of the critical points (7.16) are on the

imaginary axis. When a critical point crosses the negative imaginary axis as we vary θ,

the zone w−,θ changes. For example, if we move θ = −πd + δ from a positive δ to a

negative δ, the zone changes from w− = {0, 1, . . . , d− 1} to w′
− = {1, . . . , d}. If a brane

B′ is grade restricted with respect to the latter it is not grade rerstricted with respect to

the former, at the components of charge d. That can be cancelled by binding the branes
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W̃eff

O(2)
O(1)

O(0)O(−1)
O(−2)

O(−3)

O(q
max
−1)

O(q
max

)
O(q

min
)

O(q
min

+1)

Tw−,θ

Figure 12: Low energy images of the branes

B1(j, 0) there, and we obtain a brane B which is grade restricted with respect to w−.

But B and B′ are not the same brane. They differ by the attached branes B1(j, 0) which

are not empty at the massive vacuum σ0. This is the “brane creation” in the sense of

[13]. When the critical point crosses the positive imaginary axis, there is again the change

of zones w+,θ. The change is accompanied with a brane replacement using B2(j, q∗) for

a particular q∗. Since B2(j, q∗) are genuinely empty, it is simply a change of linear sigma

model representatives of the same brane.

To summarize, let us redraw the diagram of the sets and maps of the branes.

Tw−⊂ Tw+

D

D−

∼=∼=

∪

D+

π− π+

We emphasize that D± are the set of branes in the classical low energy theory. D+ is

the set of branes in the non-linear sigma model on the Fano-manifold Xf and D− is

the set of branes in the Landau-Ginzburg orbifold. For each θ, we have a pair of grade

restricted subsets, Tw− ⊂ Tw+ , of D. This gives rize to an embedding D− ⊂ D+, and

the complement is given by the collection of (N − d) branes, O(q
min

), . . . ,O(qmax), which

descend to the (N − d) massive vacua. As we vary θ, one or both of the pair Tw− ⊂ Tw+

can jump. When Tw− jumps, the embedding D− ⊂ D+ will also jump.
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7.4 d > N : Flow from the Landau-Ginzburg orbifold

When d < N , the FI parameter is smaller at higher energies and the theory describes a

relevant deformation of the superconformal field theory with c/3 = N(1−2/d) associated

to the Landau-Ginzburg orbifold W = f(X1, . . . , XN)/Zd. At low energies, the theory

reduces to the non-linear sigma model on the manifold of general type Xf or one of

(d − N) massive vacua. The nonilinear sigma model is free in the infra-red limit with

central charge
c

3
= N − 2. (7.24)

The massive vacua are at σk in (7.16) which may be rewritten as

σk = iΛ̃ exp

(
i
θ + πN + 2πk

N − d

)
, k ∈ Z/(d−N)Z, (7.25)

with the value 2πW̃eff = (N − d)σk for the twisted superpotential.

The analysis of the contour and the integral goes in the same way as in the d < N

case, and the description can be brief. Roughly speaking, we only need to exchange the

rôles of d and N and flip the sign of the FI parameter and σ′2. The contour γ can be taken

as in Fig. 6-Right, coming in from and going out to th eregion where Im(σ′) is negative

infinity. The sum of residues at the poles on the positive imaginary axis is dominated by

the one at σ′ = iǫ/2 at r →∞ which behaves as

(rΛ)ĉ/2 eitRiǫ/2 ∼ (rΛ)(N−2)/2. (7.26)

This is the expected behaviour for the conformal field theory of central charge (7.24). The

integral for a fixed charge q is dominated by (7.26) when |θ+2πq| < π
2
(N+d). Assumimg

θ 6≡ πd, πN , the integrand has a unique critical point at (7.25) with

k =





q −N (πN < θ + 2πq < πd)

q (−πd < θ + 2πq < −πN).
(7.27)

For these q’s, a part of the integral can be evaluated by th saddle point approximation

and has the exponential behaviour as r → ∞. For other values of q’s, the integrand has

no critical points. In particular, when |θ + 2πq| < πN , the integral minus the sum of

residues at the poles on the positive imaginary exis decays more rapidly than any of the

above exponentials as r →∞. The branes B1 and B2 and their shifts have the following

partition functions,

ZD2(B2(j, q)) = 0, ∀r, (7.28)
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for any (j, q) and

ZD2(B1(j, q)) ∼ exp
(
−(N − d)irσq

)
, r →∞. (7.29)

for any j and for |θ + πN + 2πq| < π(d−N).

The conclusion for θ 6≡ πd, πN (mod 2πZ) is as follows: It is enough to consider branes

which are grade restricted with respect to a zone of length d and a natural choice is w−,θ

as in (7.23). For |θ+πN +2πq| < π(d−N), the brane B2(j, q) descends to a brane of the

massive vacuum at σq. On the other hand, branes which are grade restricted with respect

to the zone w+,θ as in (7.22) descend purely to the non-linear sigma model. A picture of

W̃eff

B(−2)
B(−1)B(0)

B(1)
B(2)

B(−3)

B(q
min
+1)

B(q
min

)B(q
max

)

B(q
max
−1)

Tw+,θ

Figure 13: Low energy images of the branes

the descent is shown in Fig. 13 where the branes are plotted on the W̃eff -plane, for a small

positive θ. The square dots are the values of the massive vacua (7.25), and the origin is the

value for the non-linear sigma model. We plot the L = 0N Recknagel-Schomerus brane

B(q) = B0N ,q,0 which is the Landau-Ginzburg orbifold image of the brane B2(−N, q−N).

The maximum and the minimum values of q are qmax := [d−N−1
2

] and q
min

:= −[d−N
2

].

When θ varies across the special values θ ≡ πd and πN , the critical points crosses the

imaginary axis, and the zone change occurs. When a critical point crosses the positive

imaginary axis, a non-linear sigma model brane creates branes at the massive vacua.

To summarize, let us draw the diagram of sets and maps of the branes.

Tw−⊃ Tw+

D

D−

∼=∼=

∪

D+

π− π+
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For each θ, we have a pair of grade restricted subsets, Tw− ⊃ Tw+, of D. This gives rize

to an embedding D− ⊃ D+, and the complement is given by the collection of (d − N)

branes, B(q
min

), . . . ,B(qmax), which descend to the (d−N) massive vacua. As we vary θ,

one or both of the pair Tw− ⊃ Tw+ can jump. When Tw+ jumps, the embedding D− ⊃ D+

will also jump.

8 Expressions In Phases

In this section, we compute the partition function for the theory deep inside various

phases. In particular, we find expressions at the Landau-Ginzburg orbifold points and in

the geometric phases. The expression at a Landau-Ginzburg orbifold point agrees with the

result of the purely Landau-Ginzburg orbifold found in Section 5.7 which in turn agrees

with the formula for the central charge. The expression at the large volume limit mathces

with the expected formula for the central charge, except that the class
√
Â should be

replaced by the Gamma-class, a correction well-known among mathematicians.

8.1 Landau-Ginzburg Orbifold Phase

Let us first look at the Landau-Ginzburg orbifold phase. We start with the U(1)

theories introduced in Section 6.2 as a warm up, and then consider more general theories.

8.1.1 The U(1) Theories

The Landau-Ginzburg orbifold appears in the regime ζ ≪ 0 if d = N , as a part of the

theory in the long distance regime r ≫ Λ if d < N , and as the theory in the short distance

regime r ≪ Λ if d > N . In either case, we look at the parameter region with ζR ≪ 0.

Before looking at the partition function, we describe the descent rule of branes [11].

The Landau-Ginzburg orbifold is obtained by freezing the field p at some value, say 1,

which breaks the gauge group G = U(1) to GL = Zd. Therefore, it is natural to go to the

ǫ = 2
d
frame where the R-charge of p vanishes. In this frame, the element J ∈ G defined

in (3.57) becomes

J = eπiǫ
ǫ→ 2

d−→ e
2πi
d =: JL (8.1)

The brane B = (M,Q, ρ, r∗) descends to the brane BLG = (ML, QL, ρL, r∗,L) where

ML = M,
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QL(x) = Q(1, x),

ρL(ω) = ρ(ω), ωd = 1,

r∗,L = r∗

∣∣∣
ǫ= 2

d

. (8.2)

We recall that (3.58) is satisfied, so that eπir∗ρ(J) = eπir∗,LρL(JL) is the Z2 grading, or

equivalently, eπirj eqjπiǫ = eπirj,L eqj2πi/d = (−1)roj .

The formula for the partition function in the ǫ = 2
d
frame is

ZD2(B) = (rΛ)
ĉLG
2

∫

γ

dσ′ Γ(−d iσ′) Γ
(
iσ′ + 1

d

)N
eitRσ

′

fB(σ
′), (8.3)

with ĉLG = N(1 − 2
d
). Note that the contour γ should be poked at σ′ = 0 so that it goes

above 0. From a glance at the contours (Figs. 2, 6, 11), and from the discussion in the

previous section, we see that we only need to take the poles on the negative imaginary

axis, σ′ = −in/d for n = 0, 1, 2, . . . . Using (6.2), we obtain

Z
LG

D2(B) =
2π

d
(rΛ)

ĉLG
2

∞∑

n=0

(−1)n
n!

Γ
(
n+1
d

)N
etRn/dfB

(
−in

d

)
. (8.4)

The brane factor can be written as

fB
(
−in

d

)
=

∑

j

eπirj |ǫ= 2
d
e2πqj(−in

d
)

=
∑

j

(−1)roj e−2πiqj( 1+n
d ) = StrMρ(J

−1−n
L ). (8.5)

Thus, we obtain

Z
LG

D2(B) =
2π

d
(rΛ)

ĉLG
2

∞∑

n=0

(−1)n
n!

Γ
(
n+1
d

)N
etRn/d StrMρ(J

−1−n
L ). (8.6)

This is the etR/d expansion of the full partition function for d ≥ N and of a part of it for

d < N . In the limit ζR → −∞, that is, ζ → −∞, the infra-red and the ultra-violet limits

respectively for d = N , d < N and d > N , only the leading term remains,

Z
LG

D2(B) −→ 2π

d
Γ
(
1
d

)N
(rΛ)

ĉLG
2 StrMρ(J

−1
L ). (8.7)

Up to the numerical factor, this agrees with the formula (5.82) for the brane (8.2) in the

Landau-Ginzburg orbifold, which in turn is the same as the formula of [6] for the central

charge of the same brane.

To get back a general ǫ, say for comparison with the other phase, we use (5.78) and

find that the result must be multiplied by exp
(
−t
(
ǫ
2
− 1

d

))
.
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8.1.2 More General Theories

Let us consider a theory with an Abelian and connected gauge group, G = T , with charge

integrality. We assume the situation as discussed in [11],1 where the fields are grouped

into two, Y1, . . . , Yk and X1, . . . , Xl, such that QY1 , . . . , QYk
span it∗ and that QXj

are

non-positive spans of QYi
’s,

QXj
= −

k∑

i=1

a i
j QYi

; a i
j ≥ 0 ∀(i, j). (8.8)

If ζ is a positive linear span of QYi
’s, the D-term equation

∑
iQYi
|yi|2 =

∑
i,j a

i
jQYi

|xj |2+ζ
has a solution with yi’s all non-zero, for any value of xj ’s. Therefore the gauge group is

broken to a finite subgroup GL, consisting of elements that fix all yi’s, and the classical low

energy theory is the GL-orbifold of the Landau-Ginzburg model with the superpotential

WL(X1, . . . , Xl) =W (1, . . . , 1, X1, . . . , Xl), (8.9)

where W (Y,X) is the original superpotential. By the charge integrality, we have the Ro

frame in which all the R-charges of the bulk fields, Ro
Yi
, Ro

Xj
, are 0 or 2. Since QYi

’s span

it∗, there is a unique gauge shift ∆ that annihilates the R-charges of Yi’s,

RYi,L = Ro
Yi
+QYi

(∆) = 0. (8.10)

The new R-charges for Xj ’s

RXj ,L = Ro
Xj

+QXj
(∆) = Ro

Xj
+

k∑

i=1

a i
j R

o
Yi
, (8.11)

are the R-charges of the low energy Landau-Ginzburg orbifold. The element eπi∆ ∈ G

acts trivially on Yi’s and acts on Xj by the phase eπiRXj,L . That is, it is the element

JL ∈ GL of the Landau-Ginzburg orbfiold,

JL = eπi∆. (8.12)

The brane descent is as in (8.2): B = (M,Q, ρ, r∗) 7→ BLG = (ML, QL, ρL, r∗,L), where

ML = M,

QL(x1, . . . , xl) = Q(1, . . . , 1, x1, . . . , xl),

ρL = ρ|GL
,

r∗,L = ro∗ − ρ(∆). (8.13)

1Although this include a wide class of examples, this is not the most general situation. Some examples

in [15] are not of this type.
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The partition function in the RL-frame is

ZD2(B) = (rΛ)ĉLG/2

∫

γ

dkσ

k∏

i=1

Γ (iQYi
(σ))

l∏

j=1

Γ
(
−i∑i a

i
j QYi

(σ) +
RXj,L

2

)

× eit(σ) trM
(
eπi(r

o
∗−∆) e2πρ(σ)

)
, (8.14)

where the contour γ should be poked near (QYi
(σ) = 0)’s to avoid the poles that came

down in the RL-frame limit. If the theory satisfies the Calabi-Yau condition, the contour

γ in this phase can be taken as in (6.28). For example, we can take (the poked version

of)

QYi
(υ) = (QYi

(τ))2, i = 1, . . . , k. (8.15)

The growth condition is satisfied since ζ is a positive span of QYi
’s. The wedge condition

to avoid poles, which is trivially satisfied for Yi’s, is also satisifed for Xj ’s,

QXj
(υ) = −

k∑

i=1

a i
j QYi

(υ) = −
k∑

i=1

a i
j (QYi

(τ))2 ≤ 0, (8.16)

where (8.8) is used. If the theory is not Calabi-Yau, as in the U(1) theory, the above

contour may still be admissible, or appears as a part of the admissible contour in the

regime where ζR is deep inside the positive span of QYi
’s. In either case, we decide to

take (the poked version of) (8.15) as the contour. In the Calabi-Yau case and some other

cases, it is the full partition function but in some other cases it is only a part of it.

Taking the poles at QYi
(σ) = ini, ni = 0, 1, 2, . . ., for i = 1, . . . , k, we obtain

Z
LG

D2(B) =
(2π)k

detQY
(rΛ)ĉLG/2

∑

n

(−1)n1+···+nk

n1! · · ·nk!

l∏

j=1

Γ
(
aj(n) +

RXj,L

2

)

× e−t(Q−1
Y (n)) StrM ρ

(
J−1
L e2πiQ

−1
Y (n)

)
(8.17)

In the limit (tQ−1
Y )i →∞, only the n = 0 term remains,

Z
LG

D2(B) −→ (2π)k

detQY

l∏

j=1

Γ
(

RXj,L

2

)
(rΛ)ĉLG/2 StrMρ(J

−1
L ). (8.18)

Up to the numerical factor, this agrees with the formula (5.82) for the brane (8.13) in the

Landau-Ginzburg orbifold.

8.2 Geometric Phase

We next consider the geometric phase.
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8.2.1 The Gamma Classes

Before starting, we describe some characteristic classes which will enter into the formulae.

Let us introduce some functions of one variable x with Taylor series at x = 0 starting

with 1:

Â(x) =
x/2

sinh(x/2)
, (8.19)

td(x) =
x

1− e−x
, (8.20)

Γ̂(x) = Γ
(
1− x

2πi

)
, Γ̂∗(x) = Γ

(
1 +

x

2πi

)
. (8.21)

They define characteristic classes ÂX , tdX , Γ̂X and Γ̂∗
X of the tangent bundle of a

complex manifold X via the total Chern class c(X) [51], in such a way as

c(X) =

∏
i(1 + xi)∏
j(1 + yj)

=⇒ tdX =

∏
i td(xi)∏
j td(yj)

. (8.22)

These are called the A-roof class, Todd class, and Gamma classes. To be more precise,

the A-roof class can be defined for any real manifold and can be expressed in terms of

the Pontrjagin classes. Here we are considering the specialization to complex manifolds,

assuming the usual relation between the Pontrjagin classes of the real tangent bundle and

the Chern classes of the complex tangent bundle. Explicit expressions in terms of the

Chern classes are well known for Â and td. We write down first few terms for the Gamma

class:

Γ̂ = 1− i
γ

2π
c1 +

1

24
c2 +

(
− 1

48
− 1

2

( γ
2π

)2)
c21 + i

ζ(3)

(2π)3
c3

−i
(

γ

24 · 2π +
ζ(3)

(2π)3

)
c2c1 + i

(
γ

48 · 2π +
1

6

( γ
2π

)3
+

ζ(3)

3(2π)3

)
c31 + · · · , (8.23)

where γ is Euler’s consant. There are some relations among the above functions, Â(x) =

e−x/2td(x) = Γ̂(x)Γ̂∗(x), which are copied to the relations among the associated classes,

ÂX = e−c1(X)/2tdX = Γ̂XΓ̂
∗
X . (8.24)

Let us also recall that the A-roof and Todd classes appears in some index formula. If X

is an even dimensional smooth manifold with a spin structure, and E is a smooth vector

bundle on X , we can consider the Dirac operator acting on the spinors with values in E.

Then, the index of the Diract operator is given by the Atiyah-Singer formula:

ind 6DE =

∫

X

ÂX ch(E). (8.25)
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If X is a complex manifold and E is a holomorphic vector bundle on X , we can consider

the Dolbeault operator acting on anti-holomorphic differential forms with values in E .
Then, the Euler characteristic of the Dolbeault complex is given by the Riemann-Roch

formula

χ(E , ∂) =

∫

X

tdX ch(E). (8.26)

8.2.2 The U(1) Theories

As a warm up, we start with the U(1) theories. The geometric phase is in the regime

ζ ≫ 0 if d = N , in the short distance regime r ≪ Λ if d < N , and in a part of the long

distance regime r ≫ Λ if d > N , In either case, we look at the parameter region with

ζR ≫ 0.

Before starting, let us describe how branes in the linear sigma model descend to branes

in the non-linear sigma model [11]. What we have after imposing the Higgs mechanism

(step (i) in the language of Section 7.1) is the non-linear sigma model on the total space

of the line bundle O(−d) over CPN−1, with the superpotential W = pf(x). This W is a

Bott-Morse function and the critical set is the locus p = f(x) = 0, that is, the hypersurface

Xf . We obtain the non-linear sigma model on Xf by integrating out the massive modes,

p and f(x). (This is the step (ii).) The brane descent for integrating out a pair of massive

variables is known as Knörrer periodicity [52] and we only have to apply it in the current

situation. How to do it is described in [11] and we simply record the procedure.

Branes in the non-linear sigma model with the target Xf are represented by complexes

of holomorphic vector bundles on Xf , possibly of infinite lengths but with truncation to

finite lengths complexes of coherent sheaves. A brane is therefore specified by a pair

(E , d): E is a Z-graded vector bundle on Xf which is of finite rank in each degree. d is

a local endomorphism of E (holomorphic bundle map of E) of degree 1 such that d2 = 0

and that {d, d†} has a finite rank kernel for some choice of fibre metric on E .

We shall simply write M for (M, ρ, r∗) so that the information of gauge group and

R-symmetry group action on the Cahn-Paton vector space is included into the notation

M . The brane B = (M,Q) descends to the brane BLV = (ML, QL) where

ML =

∞⊕

i=0

M(2i, di), (8.27)

QL = Q(pL, x), (8.28)

where pL is the shift of charges by (2, d). Here we regard C(j, q) as the line bundle OXf
(q)
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at degree j. The Chern character of this brane is given by

ch(BLV) =
∞∑

i=0

∑

j

(−1)roj+2i e(qj+di)H

=
1

1− exp(dH)
fB
(

1
2π
H
)
. (8.29)

It is also noticed that the Knörrer procedure involves the shift of the Chan-Paton charge,

which can be absorbed into the shift of the theta angle or a B-field:

2πB = (θ + πd)H (8.30)

In this paper, we normalize the B-field as [B] ∈ H2(Xf ,Z) on the closed string sector so

that the instanton factor for the degree β maps is

exp

(
−
∫

β

(ω − 2πiB)

)
, (8.31)

where ω is the Kähler form.

Now we look at the partition function. The formula in the Ro frame is

ZD2(B) = (rΛ)
ĉLV
2

∫

γ

dσ′ Γ(−d iσ′ + 1) Γ (iσ′)N eitRσ
′

fB(σ
′), (8.32)

with ĉLV = N − 2. Note that the contour γ should be poked at σ′ = 0 so that it goes

below 0. Looking at the contours (Figs. 2, 6, 11), and from the discussion in the previous

section, we see that we only need to take the poles on the positive imaginary axis, σ′ = in

for n = 0, 1, 2, . . . . At each n, we shift the integration variable as σ′ = in + z
2π
. This

yields

Z
LV

D2(B) = (rΛ)
ĉLV
2

∞∑

n=1

∮

0

dz

2π
Γ
(
dn+ dz

2πi
+ 1
)
Γ
(
−n− z

2πi

)N
e−tRn+ i

2π
tRzfB

(
in+ z

2π

)
.

(8.33)

Note that fB(in+ z
2π
) = fB(

z
2π
) since e2πqj(in) = 1. We also use the relation

Γ(x)Γ(1− x) = π

sin(πx)
, (8.34)

to rewrite a part of the gamma function factors. This yields

Z
LV

D2(B) = −C(rΛ)
ĉLV
2

∞∑

n=0

∮

0

dz

2πi

(
(−1)n

2 sinh
(
z
2

)
)N

Γ
(
1 + dz

2πi
+ dn

)

Γ
(
1 + z

2πi
+ n
)N e−ntR+ i

2π
tRzfB

(
z
2π

)
,

(8.35)
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with C = −i(−2πi)N . We further rewrite it as follows,

Z
LV

D2(B) = C(rΛ)
ĉLV
2

∞∑

n=0

∮

0

dz

2πi

1

zN
· dz · z

N−1(1− e−dz)

d(1− e−z)N
Γ
(
1 + dz

2πi
+ dn

)

Γ
(
1 + z

2πi
+ n
)N

× exp

(
−nt′R +

i

2π
t′Rz

)
fB
(

z
2π

)

1− edz
, (8.36)

where

t′R = tR − dπi + (N − d)πi. (8.37)

This is in order to express each term as an integral over Xf , using

∫

Xf

g(H) =

∫

CP
N−1

dHg(H) =

∮

0

dz

2πi

1

zN
· dz · g(z), (8.38)

which holds for a power series g(z) in z where H is the hyperplane class on CP
N−1 or its

restriction on Xf .

At this point, let us write down the expressions of some characteristic classes of Xf .

By the exact sequences

0→ O −→ O(1)⊕N −→ T
CP

N−1 → 0,

0→ TXf
−→ T

CP
N−1 |Xf

−→ NXf/CP
N−1 → 0,

we have

c(Xf ) =
(1 +H)N

(1 + dH)
, (8.39)

which implies c1(Xf) = (N − d)H and

tdXf
=
HN−1(1− e−dH)

d(1− e−H)N
. (8.40)

Let us also introduce a cohomology class

Γ̂Xf
(n) := ÂXf

· Γ
(
1 + d

(
H
2πi

+ n
))

Γ
(
1 + H

2πi
+ n
)N

= e−
N−d

2
HH

N−1(1− e−dH)

d(1− e−H)N
· Γ
(
1 + d

(
H
2πi

+ n
))

Γ
(
1 + H

2πi
+ n
)N . (8.41)

At n = 0, it reduces to the Gamma class,

Γ̂Xf
(0) = ÂXf

· Γ(1 + d
2πi
H)

Γ(1 + 1
2πi
H)N

= ÂXf
· 1

Γ̂∗
Xf

= Γ̂Xf
, (8.42)
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where we used (8.24).

Using (8.38) and looking at (8.29) and (8.41), we can write (8.36) as

Z
LV

D2(B) = C(rΛ)
ĉLV
2

∞∑

n=0

∫

Xf

e
N−d

2
HΓ̂Xf

(n) exp

(
−nt′R +

i

2π
t′RH

)
ch(BLV) (8.43)

Let us denote the renormalized Kähler form as ωR = ζRH . In view of (8.30), we have

t′RH = ωR − 2πiB + πi(N − d)H . Then, we may also write the result as

Z
LV

D2(B) = C(rΛ)
ĉLV
2

∞∑

n=0

e−nt′R

∫

Xf

Γ̂Xf
(n) exp

(
B +

i

2π
ωR

)
ch(BLV) (8.44)

This is the e−tR expansion of the full partition function for d ≤ N and of a part of it for

d > N . In the limit ζR → +∞, that is, ζ → +∞, the ultra-violet and the infra-red limits

respectively for d = N , d < N and d > N , only the leading term remains,

Z
LV

D2(B) −→ C(rΛ)
ĉLV
2

∫

Xf

Γ̂Xf
exp

(
B +

i

2π
ωR

)
ch(BLV). (8.45)

This is agrees with the expected formula for the central charge of the brane BLV, except

that we have the Gama class in the place of
√
ÂXf

. That the Gamma class rather than√
ÂXf

should enter into the asymptotic formula for the central charge had been well-

known to mathematicians. In fact, formula of the type (8.43), (8.44) were first presented

by Hosono [7] for the quintic, N = d = 5, and that was a part of the motivation to define

the Gamma class [8–10].

Gravitational Descendants and Loop Operators

In one of such development [8, 10], Iritani studied the D-brane central charge from the

view point of Gromov-Witten theory, i.e., topological A-model, on Fano manifolds. If we

compare our results with his formula, it looks like that the central charge can be expressed

in terms of the genus zero topological string three point amplitudes as

ZD2
(−)

(B) =

∞∑

n=0

(−1)n(rΛ)n〈τn(F (B))PP 〉0, (8.46)

where 〈· · ·〉0 stands for the genus zero topological string amplitude with sum over all

worldsheet instantons, F (B) is a certain cohomology class ofXf constrcuted out of ch(B),

Γ̂Xf
and (rΛ)c1(Xf ). τnF (B) is the n-th gravitational descendant of F (B) and P is the

puncture operator. The series of the form w(ℓ) =
∑

n(−1)nℓnτn is known as the “loop
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operator” in the study of 2d quantum gravity which creates a hole on the worldsheet. It

is interesting to observe that our formula came from the hemisphere, i.e. a genus zero

Riemann surface with a big hole, and that the right hand side of (8.46) is also associated

to a sphere amplitude with one hole. It would be interesting to understand the meaning

of this observation.

8.2.3 More General Theories

Let us move on to a more general linear sigma model with a gauge group G and the

matter fields grouped into two, an E-valued field X and an F ∗-valued field P , for some

representations E and F of G of dimensions dE and dF . We assume the superpotential of

the form

W = 〈P, f(X)〉 (8.47)

where f : E → F is a G-equivariant polynomial map, and 〈−,−〉 is the pairing between

F ∗ and F . We assign the R-charge 0 to X and 2 to P in the Ro-frame. We assume that

there is a phase in which the D-term equation requires X to have non-zero values which

break the gauge group G completely. We also assume that f is generic enough so that

the D- and F-term equations force P = 0 and that the vacuum manifold is a smooth

submanifold Xf , defined by f = 0, of a smooth compact symplectic quotient P of E by

G. We may also regard P as the geometric invariant theory quotient

P = E//GC (8.48)

with respect to the stability condition defined by the FI parameter in the phase. We write

the weights of E and F with respect to a maximal torus T by Qi’s and dβ’s,

E|T =
⊕

i

C(Qi), F |T =
⊕

β

C(dβ). (8.49)

Let us write down some characteristic classes of Xf . By the exact sequences,

0→ O(gC) −→ O(E) −→ TP → 0,

0→ TXf
−→ TP|Xf

−→ NXf/P → 0, (8.50)

we have

c(Xf ) =
c(P)

c(NXf/P)
=

∏
i(1 +Qi(H))∏

α>0(1− α(H)2)
∏

β(1 + dβ(H))
, (8.51)

which implies c1(Xf) =
∑

iQi(H)−∑β dβ(H) and

td(Xf ) =

∏
iQi(H)

∏
α>0

(
2 sinh(α(H)

2
)
)2∏

β(1− e−dβ(H))
∏

α>0 α(H)2
∏

β dβ(H)
∏

i(1− e−Qi(H))
(8.52)
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For a coroot n ∈ Q∨ ⊂ it, we put

Γ̂Xf
(n) := ÂXf

·
∏

β Γ
(
1 + dβ

(
H
2πi

+ n
))

∏
i Γ
(
1 +Qi

(
H
2πi

+ n
))
∏

α>0

Γ
(
1 + α

(
H
2πi

+ n
))

Γ
(
1− α

(
H
2πi

+ n
))
.

(8.53)

It reduces to the Gamma class Γ̂Xf
at n = 0.

The rule of brane descent is just as in the U(1) case. We shall denote the R-charge

shift by j by M 7→ M [j] — if the gauge group were Abelian we could use the notation

M 7→ M(j, 0), but that would not be appropriate for non-Abelian gauge group. The

brane B = (M,Q) descends to the brane BLV = (ML, QL) in the non-linear sigma model

on Xf where

ML = M ⊗ SymF [2], (8.54)

QL = Q(pL, x) (8.55)

where pL is the co-evaluation combined with the degree 2 shift: The component pL(v) for

v ∈ F is the multiplication by v and the shift of the R-charge by 2. The Chern character

of the image brane is

ch(BLV) =
1∏

β (1− exp (dβ(H)))
fB
(

1
2π
H
)

(8.56)

The theta angle shift is

2πB =

(
θ + π

∑

β

dβ

)
(H). (8.57)

Now let us compute the partition function, which is given in the Ro-frame by

ZD2(B) = (rΛ)ĉLV/2

∫

γ

dlGσ′
∏

α>0

α(σ′) sinh(πα(σ′))

×
∏

β

Γ(−idβ(σ′) + 1)
∏

i

Γ(iQi(σ
′)) eitR(σ′)fB(σ

′). (8.58)

with ĉ = dE − dF − dG. The contour γ should be poked near (Qi(σ
′) = 0)’s to avoid poles

that came down in the Ro limit. Alternatively, we can uniformly shift γ by −iǫ for some

small ǫ ∈ it. As in the U(1) case, we would like to deform, or close, the contour γ so that

we have a sum over residues. We may try to do it for one coordinate after another, but

that is not practical for high rank cases. Fortunately, a machinery is developed for the

situation like this. It is called the multivariable Jordan lemma [53, 54].

Let C ⊂ it be a cone with lG faces with −ǫ as its vertex, and suppose C = {Im(σ′) ∈ C}
is deep inside the admissible region, i.e., the integrand decays exponentially fast at infinity

93



of C. We name the faces of C by {Ca}lGa=1. We assume that the charges {Qi} are decomposed

into lG groups, {Qi}i∈Ia, for a = 1, . . . , lG, so that the following condition is satisfied. Let

us define holomorphic functions f1, . . . , flG of σ′ by 1
fa(σ′)

:=
∏

i∈Ia Γ(iQi(σ
′)). Then the

condition is that the divisor Da := (fa = 0) do not meet the face Ca, for each a, and

that the intersection of D1, . . . , DlG is a discrete point set iS ⊂ t on the imaginary plane.

Under this situation, the multivariable Jordan lemma says that the integral is the sum of

residues at σ′ = in for n ∈ C ∩ S,

Z
LV

D2(B) = (rΛ)
ĉLV
2

∑

n∈C∩S

∮

γ
G

dlGz

(2π)lG

∏

α>0

α
(
in + z

2π

)
sinh

(
πα
(
in + z

2π

))

×
∏

β

Γ
(
−idβ

(
in + z

2π

)
+ 1
)∏

i

Γ
(
iQi

(
in + z

2π

))
exp

(
itR
(
in + z

2π

))
fB
(
in + z

2π

)
.

The cycle γ
G
, called the Grothendieck cycle, is a small cycle of z ∈ tC defined by the

equation |fa(in + z
2π
)| = εa for all a, for some 0 < εa ≪ 1. One important property is

that the integral does not depend on the choice of εa’s.

At this point, we assume that the set C ∩ S is a subset of the coroot lattice Q∨, and

denote it by Q∨
+. Then, we have fB

(
in + z

2π

)
= fB

(
z
2π

)
. After some computation, we

find

Z
LV

D2(B) = C(rΛ)
ĉLV
2

∑

n∈Q∨
+

∮

γ
G

dlGz

(2πi)lG

∏
α>0 α(z)

2
∏

β dβ(z)∏
iQi(z)

Γ̂Xf
(n, z)

× e
1
2
(
∑

Qi−
∑

dβ)(z) e−t′R(n)+ i
2π

t′R(z) fB
(

z
2π

)
∏

β(1− edβ(z))
, (8.59)

in which Γ̂Xf
(n, z) = Γ̂Xf

(n)|H→z, and

t′R = tR − πi
(
∑

i

Qi − 2
∑

β

dβ

)
. (8.60)

C is a constant (−1)dF (−2πi)dE(2π)−|∆+|idG (|∆+| is the number of positive roots).

We would now like to convert each term into an integral over Xf using an identity like

(8.38). A generalization of (8.38) to a possibly non-Abelian quotient exists and is known

as the Jeffrey-Kirwan localization formula [55]:
∫

Xf

g(H) =

∫

P

∏

β

dβ(H)g(H) =

∮

γ
JK

dlGz

(2πi)lG

∏
α>0 α(z)

2

∏
iQi(z)

·
∏

β

dβ(z) · g(z), (8.61)

where γ
JK

is a middle dimensional homology class of the complement of
∏

iQi(z) = 0,

called the JK cycle. The question is whether the integration over γ
G

and the one over
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γ
JK

are the same. That is indeed the case in two examples which we will present below,

but we do not have a proof at the moment. We simply assume this and proceed. Then

we immediately see that the partition function can be written as

Z
LV

D2(B) = C(rΛ)
ĉLV
2

∑

n∈Q∨
+

∫

Xf

e
1
2
c1(Xf )Γ̂Xf

(n) exp

(
−t′R(n) +

i

2π
t′R(H)

)
ch(BLV). (8.62)

In view of (8.57), we have t′R(H) = ωR−2πiB+πic1(Xf ). Using this, we may also rewrite

the result as

Z
LV

D2(B) = C(rΛ)
ĉLV
2

∑

n∈Q∨
+

e−t′R(n)

∫

Xf

Γ̂Xf
(n) exp

(
B +

i

2π
ωR

)
ch(BLV). (8.63)

In the large volume limit in this phase, only the n = 0 term remains,

Z
LV

D2(B) −→ C(rΛ)
ĉLV
2

∫

Xf

Γ̂Xf
exp

(
B +

i

2π
ωR

)
ch(BLV). (8.64)

Again, this matches with the expected formula for the central charge of the brane BLV.

Let us present two examples. These are simple enough so that one by one contour de-

formation can be done by hand. It is instructive to do so and check that the multivariable

Jordan lemma gives the correct answer.

The first is the two parameter model considered in Section 6.3. We are in Phase I.

{Qi} is the set of charges {(0, 1), (1, 0), (1,−2)} for X1, . . . , X6. As the shift, we can take

−ǫ = (−ǫ1,−ǫ2) with ǫ1 > 0, ǫ2 > 0 and ǫ1 > 2ǫ2. The last condition comes from the

requirement that RX6 > 0 before taking the Ro-frame limit. As the cone C, we can take

CI − ǫ, where CI is the image cone of the map τ 7→ υ(τ) given in (6.24). It is the first

quadrant shifted by −ǫ. See Fig. 14. Let us regard the horizontal and vertical faces by

the first and the second respectively. Let us group the charges of Xi’s so that {(0, 1)}
and {(1, 0), (1,−2)} are the first and the second groups respectively. Then, the grouping

satisfies the condition for the multivariable Jordan lemma. And C∩S is the first quadrant

of the integral lattice Z⊕2, that is, it is a subset of the coroot lattice Q∨ = Z⊕2. The

Grothendieck cycle is therefore

|z22 | = ε1, |z31(z1 − 2z2)| = ε2. (8.65)

On the other hand, the JK cycle is

|z1| = ε̃1, |z2| = ε̃2, ε̃1 ≪ ε̃2. (8.66)

See for example, [56]. If we choose ε1 ≫ ε2, then, the two cycles are homotopic to each

other.
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Figure 14: The cone and the poles: The cone C is the shaded region. The poles for the charges

(0, 1), (1, 0) and (1,−2) are shown as the red, blue and green lines respectively. The red itself forms a

group while the blue and the green form the other group. The intersection of the two groups are shown

as the black dots. Note that the intersection only between the blue and the green are not taken.

The second example is the Rødland model in the Grassmannian phase. The set {Qi}
is {(1, 0), (0, 1)}. We can take −ǫ = (−ǫ1,−ǫ2) with arbitrary positive ǫ1 and ǫ2 as the

shift. The cone C is the first quadrant shifted by −ǫ. There is a unique grouping and

the assumption of the lemma is trivially satisfied. C ∩S is again the first quadrant of the

integral lattice and hence is a subset of the coroot lattice. The Grothendieck cycle and

the JK cycle are the same, |z1| = |z2| = ε.

9 Factorization Of Two-Sphere Partition Function

We have collected a lot of evidence that the parition function of the hemisphere is

equal to the central charge of the brane placed at the boundary. They agree whenever

both can be computed, and the expressions in some limits also match. This motivates us

to conjecture that this is the case in general:

ZD2
(+)
(B) =

RR
〈0|B〉

RR
, ZD2

(−)
(B) =

RR
〈B|0〉

RR
. (9.1)

On the other hand, there is a conjecture [5] that the partition function on the whole

sphere is equal to the 00 component of the tt∗ metric:

ZS2 =
RR
〈0|0〉

RR
. (9.2)

If we admit these, there is a certain relation between the partition functions on the whole

sphere and the hemisphere. For any basis {|a〉}µa=1 of the space of supersymmetric ground
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states, we have

RR
〈0|0〉

RR
=

µ∑

a,b=1
RR
〈0|a〉gab〈b|0〉

RR
, (9.3)

where (gab) is inverse to the matrix (〈a|b〉). Suppose there are µ D-branes {Bi}µi=1 whose

boundary states have components which span the space of supersymmetric ground states.

That is, the square matrix (
RR
〈Bi|a〉) is invertible. Then, we may use the ground state

components of |Bi〉RR
’s as a new basis and obtain the formula like (9.3). In the place of

gab we have the inverse to

RR
〈Bi|PG|Bj〉RR

, (9.4)

where PG is the orthogonal projection to the space of supersymmetric ground states. The

matrix element (9.4) can be represented by the partition function on the infinitely long

cylinder in which the fields including fermions are all periodic along the circle direction.

In fact, by the supersymmetry, the length and the thickness of the cylinder does not

matter. So, it is just a cylinder partition function of any size. Viewed from the open

string channel, (9.4) is the open string Witten index,

χ(Bi,Bj) := TrHBi,Bj
(−1)F e−βH , (9.5)

where HBi,Bj
is the space of states of the open string with the boundary conditions Bi

and Bj on the left and the right ends of the string. H and F are the Hamiltonian and a

fermion number operator. Given (9.1) and (9.2), we must have

ZS2 =
∑

i,j

ZD2
(+)
(Bi)χ

ij ZD2
(−)
(Bj), (9.6)

where χij is the inverse to χ(Bi,Bj). In this section, we shall examine whether this

factorization equation holds.

9.1 The Sphere

First let us write down the formula for the two-sphere partition function. The result

of [3, 4] is essentially as follows:

ZS2 = (rΛ)ĉ
∑

m∈Q∨

∫

it

dlGσ′ exp
(
2 i ζR(σ

′) + i (θ + 2πρ)(m)
)

(9.7)

×
∏

α>0

(
α(m)2

4
+ α(σ′)2

)∏

i

Γ
(
iQi(σ

′)− Qi(m)
2

+ Ri

2

)

Γ
(
1− iQi(σ′)− Qi(m)

2
− Ri

2

) .
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We say “essentially” because we have done one modification: a shift of the theta angle,

θ −→ θ + π
∑

α>0

±α ≡ θ + 2πρ mod 2πP. (9.8)

Note that the choice of sign assignment ±α does not matter since a root is always a weight

α ∈ P (so that it takes integer values on coroots m ∈ Q∨). ρ is half the sum of positive

roots, ρ := 1
2

∑
α>0 α, which may fail to land on the weight lattice P depending on the

group G. For example, for a U(k) gauge theory this matters if and only if k is even. As

we will see, this is needed for the factorization. Necessity of the same modification is

also noticed in [35] from a different point of view. The factor (rΛ)ĉ is not in [3, 4] but is

noticed by the authors of these papers, [28, 29].

9.2 The Annulus

Next, we dicuss the open string Witten index χ(Bi,Bj), or equivalently, the cylin-

der, or annulus, partition function. At this moment, we do not have a complete results

concerning the computation, but let us make some preliminary remarks.

We may try to apply the localization, sending the gauge coupling to zero and the

Kähler metric of the matter to infinity. However, that is plagued by the presence of

bosonic as well as fermionic zero modes. It is similar to the situation of the elliptic genus

[57, 56] but it is worse than that. In the case of elliptic genus, we have, by definition, the

twist by R-symmetry, which usualy separates the singular loci for “positively charged”

and the “negatively charged” matter fields. That separation made it possible to justify a

certain manipulation of the path integral. For the case of open string Witten index, we

do not have that, so that singular loci may collide and cannot be separated. That makes

the justification of computation based on the free approximation difficult. But we may

hope that there is a way to justify it some way, and try to see if we obtain a reasonable

answer.

The annulus partition function of each multiplet in the free approximation is straight-

forward. We choose the real boundary condition (3.54) for the vector multiplet, so that

we may need to consider only grade restricted branes. For the matter sector, the compu-

tation is almost done in [11]. It immediately gives the result in the operator formalism

but the mode expansion presented there can also be used for the path integral. The result

is

Zchiral =
1

∏
i 2 sinh

(
Qi(u)

2

) . (9.9)
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where u parametrizes the bosonic zero mode of the vector multiplet,

u = βσ1 − ia ∈ tC/2πiQ
∨. (9.10)

In the last expression, β is the circumference of the annulus, σ1 is the scalar zero mode

and a ∈ it/2πQ∨ parametrizes the gauge holonomy along the circle. The one for the

vector multiplet can also be computed. The W-boson pair with the roots ±α yields

Zvector,α =
(
2 sinh

(
α(u)
2

))2
. (9.11)

The path integral is presented as the integration over the whole moduli space

(tC/2πiQ
∨)/WG (9.12)

of the vector multiplet bosonic zero modes. A proper treatment of the bosonic zero modes

from the matter and the fermionic zero modes from the vector may results in an expression

of the integrand as a total derivative, which by Stokes theorem leads to the integration

over a lower dimensional subspace, just as in [57, 56]. This and some evidences which we

will describe below motivates us to make the following conjecture: The annulus partition

function is given by a contour integral

χ(B1,B2) =
1

|WG|

∫

Γ

dlGu

(2πi)lG

∏
α>0

(
2 sinh

(
α(u)
2

))2

∏
i 2 sinh

(
Qi(u)

2

) fB1

(
− u

2π

)
fB2

(
u
2π

)
(9.13)

where fB(
u
2π
) is the brane factor in the Ro-frame,

fB
(

u
2π

)
= StrMρ ( e

u) , (9.14)

and Γ ⊂ tC/2πiQ
∨ is some middle dimensional cycle which represents a homology class

of the complement of the divisor
∏

i sinh(Qi(u)/2) = 0.

Let us comment on some anomaly, which was already noticed in [11]. The integrand

of (9.13) is not always single valued on the moduli space (9.12). If one shifts u by 2πin

with n ∈ Q∨, then, the integrand changes by a sign, (−1)
∑

i Qi(n). The integrand is single

valued if and only if the sum of weights is even,

∑

i

Qi ∈ 2P. (9.15)

If the theory has a usual geometric phase, with a target Kähler manifold X , this is

equivalent to the condition that c1(X) is even, in other words, X admits a spin structure.
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Let us describe some evidences for the conjecture. We first consider the U(1) theories.

We assume N − d is even. The formula is written as

IΓ =

∫

Γ

du

2πi

fB1(− u
2π
)fB2(

u
2π
)

(
e

u
2 − e−

u
2

)N (
e−du

2 − ed
u
2

) , (9.16)

where Γ is some cycle in C/2πiZ minus the pole location which is { e2πin/d}d−1
n=0. It can be

rewitten as

IΓ =

∫

Γ

du

2πi

1

uN
· du ·

uN−1
(
e

du
2 − e−

du
2

)

d
(
e

u
2 − e−

u
2

)N
fB1(− u

2π
)

(1− e−du)

fB2(
u
2π
)

(1− edu)
(9.17)

Suppose the cycle is the small contour γ0 around u = 0. Then, we can use the identity

(8.38) to write it as an integration over Xf and in fact it is nothing but

Iγ0 =

∫

Xf

ÂXf
ch(B1LV)

∨ ch(B2LV). (9.18)

(For a 2i form ω we define ω∨ := (−1)iω.) This is indeed an expected answer in the

geometric phase. For the Witten index, we may employ the zero mode approximation. In

the zero mode sector, open string states are spinors valued in Hom(E1, E2), where Ei is

the vector bundle for BiLV and a linear combination of the supercharges is essentially the

Dirac operator. Therefore, the Witten index is the Dirac index gievn by the Atiyah-Singer

formula (8.25), which is (9.18) in the present context. To be more precise, the geometric

phase can represent the full theory only for d ≤ N . So, we obtain the expected correct

answer if we choose Γ = γ0 in the case d ≤ N .

This can be generalized to any theory with the usual geometric phase. In the set up

of Section 8.2.3, assuming
∑

iQi −
∑

β dβ is even, if we take the JK cycle near u = 0,

Γ = γ
JK

, then the same computation yields the Dirac-type index,

Iγ
JK

=

∫

Xf

ÂXf
ch(B1LV)

∨ ch(B2LV). (9.19)

Let us come back to the U(1) theory. Recall that there are also (d − 1) poles at

u = e2πin/d. If we start from Γ = γ0 and deform it, provided the behaviour Re(u)→ ±∞
is good enough, we can arrive at the (d − 1) small cycles around these poles, with the

clockwise orientation. Since each is a simple pole, it is easy to evaluate the residues. The

result is
d−1∑

n=1

I−γn =
1

d

d−1∑

n=1

e
πi(d−N)n

d
fB1

(
− in

d

)
fB2

(
in
d

)
(
1− e−

2πin
d

)N (9.20)
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When d = N this is precisely the open string Witten index in the Landau-Ginzburg orb-

ifold [6]. When d < N it does not agree with that. Indeed, we do not expect an agreement

since the Landau-Ginzburg orbifold is only a part of the whole theory. However, some of

the branes descends purely to the Landau-Ginzburg orbifold. It would be interesting to

see if the above gives the correct answer for a pair of such branes. When d > N it is the

whole theory, but the starting choice Γ = γ0 would not be the right choice in general since

it gives the formula in the non-linear sigma model, which is only a part of the theory.

We would like to make a final comment on the behaviour at Re(u)→ ±∞ in this U(1)

theory. The charge (q(1), q(2)) term of the integrand behaves as

integrandq(1),q(2) −→ exp

(
−q(1)u+ q(2)u− N + d

2
|u|
)

as Re(u)→ ±∞. (9.21)

A good behaviour is guaranteed only if

∣∣ q(1) − q(2)
∣∣ <

N + d

2
(9.22)

for any pair of Chan-Paton charges of B1 and B2. In the Calabi-Yau case, d = N , if the

two branes are grade restricted with respect to a common window, −N
2
< θ

2π
+ q

(a)
ja

< N
2
,

a = 1, 2, then the above condition is indeed satisfied.

9.3 Factorization

Let us now come back to the question of factorization. Since we do not yet know the

general formula for the annulus, we cannot make the most general check at this moment.

However, we do know the formula for the theory with a usual geometric phase — it is

given by the Dirac index (9.18) and (9.19). So, we shall test the factorization in such

theories.

Let us first examine the U(1) theory introduced in Section 6.2. We shall only consider

the case d ≤ N where the large volume expression (8.43) is an expansion of the full

partition function. In this case, the formula (9.8) is

ZS2 =
∑

m∈Z

∫

R−i0

dσ′ e2iζRσ
′+iθmΓ

(
1− idσ′ + dm

2

)

Γ
(
idσ′ + dm

2

) Γ
(
iσ′ − m

2

)N

Γ
(
1− iσ′ − m

2

)N (9.23)

We look at the geometric regime ζR ≫ 0 in which the integrand decays exponentially fast

in the positive imaginary direction. due to the factor e2∈ζRσ
′
. Then, we can bend both

ends of the contour upwards and we only have to take the poles on the upper half plane.

The poles are at

iσ′ − m

2
= −l ; l ≥ 0, l ≥ m. (9.24)
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They come from the factor Γ(iσ′ − m
2
)N . The condition l ≥ m is to omit the poles which

are cancelled by the zeroes from the gamma functions in the denominator. The other

gamma function in the numerator may have poles on the upper half plane but they are all

cancelled from the other gamma function in the denominator. With the reparametrization

l = n, m = n − n, the condition l ≥ 0, m becomes n, n ≥ 0. If we shift the integration

variable as σ′ = i
(
l − m

2

)
+ z

2π
at each pole, we have

ZS2 =
∑

n,n≥0

∮

0

dz

2π
e−tRn−tRn+i(tR+tR) z

2π
Γ
(
1 + dn+ dz

2πi

)

Γ
(
−dn− dz

2πi

) Γ
(
−n− z

2πi

)N

Γ
(
1 + n+ z

2πi

)N . (9.25)

On the other hand, we use the large volume formula (8.43) for the hemisphere partition

function,

ZD2
(+)
(Bi) =

∞∑

n=0

∫

Xf

e
N−d

2
HΓ̂Xf

(n) exp

(
−nt′R +

i

2π
t′RH

)
ch(BiLV), (9.26)

ZD2
(−)
(Bj) =

∞∑

n=0

∫

Xf

e−
N−d

2
HΓ̂Xf

(n) exp

(
−nt′R +

i

2π
t
′
RH

)
ch(BjLV)

∨. (9.27)

t
′
R is the complex conjugate of t′R. The latter expression (9.27) is obtained from the former

by using (5.73) and the sign change of H . Note that Â(−x) = Â(x). We ignore overall

nemerical factors. To evaluate the right hand siade of (9.6), we employ the identity

∑

i,j

∫

Xf

ω ch(BiLV) χ
ij

∫

Xf

η ch(BjLV)
∨ =

∫

Xf

ω
1

ÂXf

η (9.28)

Then the right hand side is

RHS =
∑

n,n≥0

∫

Xf

Γ̂Xf
(n) Γ̂Xf

(n)

ÂXf

exp

(
−nt′R − nt

′
R +

i

2π
(t′R + t

′
R)H

)
(9.29)

Recalling the definition (8.41) and (8.37), after some computation using the gamma func-

tion identity (8.34), we find

RHS =
∑

n,n≥0

∮

0

dz

2π
(−1)(N−d)n e−tRn−tRn+i(tR+tR) z

2π
Γ
(
1 + dn+ dz

2πi

)

Γ
(
−dn− dz

2πi

) Γ
(
−n− z

2πi

)N

Γ
(
1 + n + z

2πi

)N .

(9.30)

This agrees with the expression (9.25) when (N − d) is even, i.e., when Xf is a spin

manifold, which is the case where the Dirac index makes sense.

We next consider the more general theory with a geometric phase from Section 8.2.3.

We take over the assumptions made in that section (which are confirmed in the examples).
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The two sphere partition function is

ZS2 =
∑

m∈Q∨

∫

it−i0

dlGσ′ exp
(
2 i ζR(σ

′) + i (θ + 2πρ)(m)
)

(9.31)

×
∏

α>0

(
α(m)2

4
+ α(σ′)2

)∏

β

Γ
(
1 + dβ(−iσ′ + m

2
)
)

Γ
(
dβ(iσ′ +

m
2
)
)

∏

i

Γ
(
Qi(iσ

′ − m
2
)
)

Γ
(
1 +Qi(−iσ′ − m

2
)
) .

We deform the contour in the direction of the cone C. By the multi-dimensional Jordan

lemma, we only have to take the poles at iσ′ − m
2

= −l with l ∈ Q∨
+, but we also

need to omit the poles that are cancelled by the zeroes from the gamma function on the

denominator. We assume that it can be done by requiring l −m ∈ Q∨
+. We also assume

that the gamma function factors from the P -fields do not have poles that contribute to

this integral. We do not have a proof of these claims, although these indeed hold in the

examples. To summarize, we take poles at

iσ′ − m

2
= −l ; , l ∈ Q∨

+, l −m ∈ Q∨
+. (9.32)

With the same reparametrization of l and m and the shift of integration variables as in

the U(1) theory, we find that the S2 partition function can be written as

ZS2 = (−1)|∆+|
∑

n,n∈Q∨
+

∮

γ
G

dlGz

(2π)lG
e−(tR−2πiρ)(n)−(tR+2πiρ)(n)+ i

2π
(tR+tR)(z) (9.33)

×
∏

α>0

α
(
n + z

2πi

)
α
(
n+ z

2πi

)∏

β

Γ
(
1 + dβ(n+ z

2πi
)
)

Γ
(
dβ(−n− z

2πi
)
)
∏

i

Γ
(
Qi(−n− z

2πi
)
)

Γ
(
1 +Qi(n+ z

2πi
)
) .

On the other hand, we use the expression (8.62) for the hemisphere partition function in

the geometric phase. Using the identity (9.28), we see that the right hand side of (9.6) can

be written in the same way as (9.29) where the sum is over n, n ∈ Q∨
+ and the exponent

is −t′R(n)− t
′
R(n) +

i
2π
(t′R + t

′
R)(H). Applying the Jeffrey-Kirwan fomula (8.61) and after

some computation using the identity (8.34), we find

RHS = const
∑

n,n∈Q∨
+

∮

γ
JK

dlGz

(2π)lG
e−tR(n)−tR(n)+ i

2π
(tR+tR)(z)(−1)2ρ(n+n)+(

∑
i Qi−

∑
β dβ)(n) (9.34)

×
∏

α>0

α
(
n+ z

2πi

)
α
(
n + z

2πi

)∏

β

Γ(1 + dβ
(
n + z

2πi
)
)

Γ
(
dβ(−n− z

2πi
)
)
∏

i

Γ(Qi

(
−n− z

2πi
)
)

Γ
(
1 +Qi(n+ z

2πi
)
) .

The sign (−1)2ρ(n+n) comes out during the process of the following type,

sin
(
πα
(
n + z

2πi

))
= (−1)α(n) sin

(
πα
(

z
2πi

))
.
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We see that it agrees with (9.33) up to constant, provided Xf is a spin manifold, c1(Xf) ≡
0 mod 2, so that

∑
iQi −

∑
β dβ takes even numbers on the coroot lattice. And we see

why the shift (9.8) is needed in order for the factorization to work out.

10 Mirror Symmetry

In this final section, we use one more property of the gamma function. That is, the

Euler integral of the second kind,

Γ(z) =

∫ ∞

0

e−t tz−1 dt, Re(z) > 0. (10.1)

which is usually used as the definition of the gamma function.

For convenience, let us write once again the formula for the hemisphere partition

function,

ZD2(B) = (rΛ)ĉ/2
∫

γ

dlGσ′
∏

α>0

α(σ′) sinh(πα(σ′))
∏

i

Γ

(
iQi(σ

′) +
Ri

2

)

× exp (itR(σ
′))
∑

j

eπirj e2πqj(σ
′). (10.2)

Let us apply (10.1) to the gamma function factor in (10.2). Using the variable e−y′i instead

of t, we have

Γ

(
iQi(σ

′) +
Ri

2

)
=

∫ ∞

−∞
dy′i exp

(
−y′i

(
iQi(σ

′) +
Ri

2

)
− e−yi

)
(10.3)

which is valid when Im(Qi(σ
′)) < Ri

2
. Using this, we can write (10.2) as

ZD2(B) = (rΛ)ĉ/2
∑

ε,j

(
∏

α>0

εα
2

)
eπirj

∫

γ ×RdV

dlGσ′ ddVy′
∏

α>0

α(σ′) · δ′ · eFε,qj
(σ′,y′) (10.4)

where the sum is over j and the choice of εα = ±1 for each α > 0, δ′ :=
∏

i e
−y′iRi/2 and

Fε,qj := itR(σ
′)− i

∑

i

y′iQi(σ
′)−

∑

i

e−y′i +
∑

α>0

εαπα(σ
′) + 2πqj(σ

′). (10.5)

Recalling tR = t −∑iQi log(rΛ) and shifting the variables as y′i = yi − log(rΛ), we find

that the partition function can be rewritten as

ZD2(B) =
(rΛ)

dV +lG
2

Λ
dG+lG

2

∑

ε,j

(
∏

α>0

εα
2

)
eπirj

×
∫

γ̃ ×RdV

dlGσ ddVy
∏

α>0

α(σ) · δ · exp
(
−2πriW̃ε,qj(σ, y)

)
(10.6)

104



where

δ =
∏

i

exp

(
−Ri

2
yi

)
(10.7)

and

2πW̃ε,qj =

(
∑

i

Qiyi − tε,qj

)
(σ) + (−iΛ)

∑

i

exp
(
−yi

)
, (10.8)

in which tε,qj = ζ − iθε,qj with

θε,qj = θ + 2πqj +
∑

α>0

εαπα (10.9)

This is valid when the contour γ̃ lies in the region with Im(σ) < Ri

2r
. For convergence of

the integral, we may need to consider only the grade restricted branes.

This is the same as, or more precisely, similar to the expression for the D-brane central

charge found in [12] during the derivation of mirror symmetry. 2πW̃ε,q is essentially the

mirror superpotential found in [12]. The factor δ is the factor found in [12] following [39],

also denoted by δ, which is required if there is a tree level superpotential in the original

side. The factor
∏

α>0 α(σ) is also in [12]. We say “essentially”, because they are not the

same, even modulo 2πiP(σ), because of the shift
∑

α>0±πα(σ) of the theta angle. This

is a simple mistake in [12]. More importantly, even the integral part from 2πiP matters.

Our formula shows precisely how to fix this integral part and then how to sum over the

integrals with appropriate signs/phases, depending on the choice of D-brane.

Our formula may be used as a string point to find explicit correspondence between

B-branes in the linear sigma model and A-branes in the mirror theory, at least at the level

of Ramond-Ramond charge. We leave this problem for future works.
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Appendix

A Conventions

A.1 Spinors On A Two-Manifold

A two-dimensionsal oriented Riemannian manifold (Σ, g) has a natural complex struc-

ture. The holomorphic and antiholomorphic cotangent bundles are isomorphic as uni-

tary bundles to the anti-holomorphic and holomorphic tangent bundles, KΣ
∼= TΣ,

KΣ
∼= TΣ. A spin structure defines square roots of these bundles, S− =

√
KΣ
∼=
√
TΣ

and S+ =
√
KΣ
∼=
√
TΣ. We assume them be dual to each other. The total spin bundle

is the direct sum, S = S− ⊕ S+. A local complex coordinate z of Σ yields a local frame

(
√
dz,
√
dz) of S, with respect to which the gamma matrices are expressed as

γz
·
=

(
0 (2gzz)

1
2

0 0

)
, γz

·
=

(
0 0

(2gzz)
1
2 0

)
. (A.1)

The chirality operator γ3 is defined to have the expression

γ3
·
=

(
1 0

0 −1

)
, (A.2)

that is, γ3 = +1 on S− and −1 on S+. (We hope that this is not too confusing.) The

natural projections P∓ : S → S∓ have expressions

P− =
1 + γ3

2
·
=

(
1 0

0 0

)
, P+ =

1− γ3
2

·
=

(
0 0

0 1

)
. (A.3)

Spinors are expressed as

ǫ = ǫ
{z}
−
√
dz + ǫ

{z}
+

√
dz. (A.4)

We shall often suppress the superscript “{z}” when it is obvious. The pairing between

S− and S+ is extended to an antisymmetric bilinear form on S,

〈ǫ, η〉 = (2gzz)
− 1

2 (ǫ+η− − ǫ−η+). (A.5)

If the spinors are anticommuting, then it is symmetric, 〈ǫ, η〉 = 〈η, ǫ〉. It obeys other

relations including Fierz identities,

〈ǫ, γµη〉 = −〈γµǫ, η〉, 〈ǫ, γ3η〉 = −〈γ3ǫ, η〉,
ǫ〈η, λ〉+ η〈λ, ǫ〉+ λ〈ǫ, η〉 = 0,

γµǫ〈η, γµλ〉+ γ3ǫ〈η, γ3λ〉+ ǫ〈η, λ〉+ 2λ〈ǫ, η〉 = 0,

ǫ〈η, λ〉 − γ3ǫ〈γ3η, λ〉+ 2〈P−ǫ, η〉P−λ+ 2〈P+ǫ, η〉P+λ = 0. (A.6)
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We may also write spinors as

ǫ = ǫ+{z}

√
∂

∂z
+ ǫ−{z}

√
∂

∂z
, (A.7)

where

ǫ
{z}
± = ±(2gzz)

1
2 ǫ∓{z}, (A.8)

so that the bilinear form has the expression

〈ǫ, η〉 = (2gzz)
1
2 (−ǫ−η+ + ǫ+η−) = ǫ−η− + ǫ+η+. (A.9)

These mean 〈
√

∂
∂z
,
√
dz〉 = 〈

√
∂
∂z
,
√
dz〉 = 1, 〈

√
dz,
√
dz〉 = (2gzz)

− 1
2 , 〈

√
∂
∂z
,
√

∂
∂z
〉 =

(2gzz)
1
2 , and

√
dz = −(2gzz)−

1
2

√
∂

∂z
,

√
dz = (2gzz)

− 1
2

√
∂

∂z
. (A.10)

On the flat space with metric d2s = |dz|2 we have 2gzz = 1. The above spinor convention

matches with the dimensionally reduced and Wick rotated version of the standard one in

four dimensions [14].

A conformal Killing spinor is a section ǫ of S obeying

∇µǫ = γµǫ
′ (A.11)

for some other section ǫ′. Obviously, ǫ′ = 1
2
6∇ǫ, and the condition is equivalent to

∂zǫ
+ = 0, ∂zǫ

− = 0. (A.12)

That is, the S− and S+ components of ǫ are antiholomorphic and holomorphic sections of√
TΣ and

√
TΣ respectively. If Σ is closed, such a spinor exists only when Σ is a sphere

or a torus.

When the manifold Σ has a boundary ∂Σ, a spin structure includes, as a part of the

information, an identification

ς : S∓|∂Σ −→ S±|∂Σ, ς2 = id, (A.13)

whose second tensor power equals a canonical isomorphism between KΣ|Σ and KΣ|Σ. As
the canonical isomorphism, we may take the one that sends dζ to −dζ for a complex

coordinate ζ near the boundary that maps the chart of Σ to the upper half plane. A

conformal Killing spinor is assumed to be anti-invariant under ς at the boundary. Then it

defines a conformal Killing spinor of the double, Σ ♯Σ, which exists only when the latter is

a sphere or a torus. That is, a conformal Killing spinor exists only when Σ is a hemisphere

or an annulus.
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A.2 Sphere And Hemisphere

A two-sphere is CP
1 as a complex manifold and is covered by two charts. One with

coordinate z and the other with w which are related by zw = 1. The round sphere metric

of radius r is

ds2 =
4r2|dz|2
(1 + |z|2)2 or gzz =

2r2

(1 + |z|2)2 , (A.14)

with the Christoffel symbols given by Γz
zz = − 2z

1+|z|2 , Γ
z
zz = − 2z

1+|z|2 . The expressions in

terms of the w coordinate are the same. It is useful to note

(2gzz)
1
2 =

2r

1 + |z|2
|z|→1−→ r. (A.15)

There is a unique spin structure on CP
1.
√
TCP

1 as a holomorphic bundle is isomorphic to

O(1) and has two holomorphic sections. Thus, there are four conformal Killing spinors,

s− 1
2
=

√
∂

∂z
, s 1

2
= z

√
∂

∂z
, s̃− 1

2
=

√
∂

∂z
, s̃ 1

2
= z

√
∂

∂z
. (A.16)

It is useful to note that

6∇ s± 1
2
= ∓ 1

r
s̃∓ 1

2
, 6∇ s̃± 1

2
= ∓ 1

r
s∓ 1

2
. (A.17)

Let us consider the southern hemisphere D2
0 = {|z| ≤ 1}. There are two spin struc-

tures, (+)0 and (−)0, given by

ς(±)0 :

√
dz

z
←→ ±

√
dz

z
,

√
z
∂

∂z
←→ ∓

√
z
∂

∂z
, at |z| = 1. (A.18)

There are two conformal Killing spinors for each,

(+)0 : s(+)+ = s 1
2
+ s̃− 1

2
, s(+)− = s− 1

2
+ s̃ 1

2
, (A.19)

(−)0 : s(−)+ = s 1
2
− s̃− 1

2
, s(−)− = s− 1

2
− s̃ 1

2
(A.20)

For the outward unit normal vector at the boundary

n̂ =
1

r

(
z
∂

∂z
+ z

∂

∂z

)
, (A.21)

γn̂ = gµν n̂
µγν acts on the above conformal Killing spinors as

γn̂ s(±)ν = ∓ s(±)ν at |z| = 1. (A.22)

Finally, let us consider the northern hemisphere D2
∞ = {|w| ≤ 1}. We define two

spin structures (±)∞ in the same way as (A.18) but with the replacement z, z → w,w.

Conformal Killing spinors are s(−)± for (+)∞ and s(+)± for (−)∞.
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B Graded Chan-Paton Factor

Chan-Paton factors which appear in this paper takes the following form

trM

[
P exp

(∮

S1

(ψaTa + V ) dτ

)]
or StrM

[
P exp

(∮

S1

(ψaTa + V ) dτ

)]
, (B.1)

where M is a Z2-graded vector space, τ ≡ τ + β is a periodic coordinate of a circle S1,

Ta and V are functions on S1 with values in Endod (M) and Endev(M) respectively, ψa

are fermionic fields (i.e. anticommuting functions) on S1. trM is the usual trace over

M and StrM is the supertrace defined by StrM(U) = trMev (U) − trMod (U). We take the

usual trace when the fermions are anit-periodic ψa(τ +β) = −ψa(τ) and the supertrance

when they are periodic ψa(τ + β) = ψa(τ). In this appendix, we give a definition to the

expression like (B.1), and explain why we take the trace or the supertrace depending on

the periodicity of ψa(τ).1

We start with defining

U(τf , τi) = P exp

(∫ τf

τi

(ψaTa + V ) dτ

)
, (B.2)

for an interval [τi, τf ]. First, we formally apply the usual rule of path ordered exponential.

If we set V = 0 for simplicity just for now, the n-th order term is of the form

∫ τf

τi

dτn · · ·
∫ τ3

τi

dτ2

∫ τ2

τi

dτ1 (ψ
anTan)(τn) · · · (ψa2Ta2)(τ2)(ψ

a1Ta1)(τ1) (B.3)

We now define this expression by

:=

∫ τf

τi

dτn · · ·
∫ τ3

τi

dτ2

∫ τ2

τi

dτ1 (−1)1+2+···+(n−1)ψan(τn) · · ·ψa2(τ2)ψ
a1(τ1)

×Tan(τn) · · ·Ta2(τ2)Ta1(τ1). (B.4)

The last line is the usual matrix multiplcation of Taj (τj)’s. We can recover V 6= 0 by

inserting U0(τj+1, τj) := P exp
(∫ τj+1

τj
V (τ)dτ

)
between Taj+1

(τj+1) and Taj (τj), as well

as U0(τf , τn) to the left of Tan(τn) and U0(τ1, τi) to the right of Ta1(τ1). By the sign

(−1)1+···+(n−1), we may treat Ta(τ)’s as fermionic quantities inside the formal expressions

like (B.2) and (B.3). But in the actual definition (B.4), they are genuine (“bosonic”)

1Warning: We are not reviewing the well understood rule of quantum mechanics that the trace and

the supertrace correspond respectively to path integrals over fermions with the antiperiodic and periodic

boundary conditions along a (time) circle. The present problem can be related to that, as we will mention

below, but only in a special case.
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functions with values in the space Endod (M) of usual matrices. Let us express U =

U(τf , τi) with respect to a basis of M , where the first entries are even and the last entries

are odd,

U
·
=

(
A B

C D

)
. (B.5)

In view of the above definition of U , we see that A and D have even powers of ψa(τ)’s and

hence are bosonic while B and C have odd powers of ψa(τ)’s and hence are fermionic.

We next consider the case where τ is a coordinate of a circle with periodocity τ ≡ τ+β.

In the usual case, say the case T a = 0, we can simply take the trace of U(τ0 + β, τ0) to

define an invariant. This does not depend on the choice of the initial time τ0, because

trU(τ0 + β, τ0) = tr [U(τ0 + β, τ1)U(τ1, τ0)] = tr [U(τ1, τ0)U(τ0 + β, τ1)]

= tr [U(τ1 + β, τ0 + β)U(τ0 + β, τ1)] = trU(τ1 + β, τ1). (B.6)

In this proof, we used the following properties

composition rule U(τ2, τ1) = U(τ2, τ∗)U(τ∗, τ1),

cyclicity of the trace tr [U1U2] = tr [U2U1],

periodicity U(τ2 + β, τ1 + β) = U(τ2, τ1).

In the graded case, the composition rule holds for (B.2). However, the cyclicity of the

trace or supertrace may fail since some of the matrix entries are fermionic. To examine

how it may fail or hold, let us write

Ui =

(
Ai Bi

Ci Di

)
, i = 1, 2, (B.7)

with respect to the basis where the first entries are even and last entries are odd. We

have

tr [U1U2] = tr [A1A2 +B1C2 + C1B2 +D1D2],

Str [U1U2] = tr [A1A2 +B1C2 − C1B2 −D1D2],

When A, D are bosonic and B, C are fermionic as in (B.5), then we see that the supertrace

has the right cyclicity

Str [U1U2] = Str [U2U1] (B.8)

but the usual trace violates it in the middle two terms. However, we can say

tr [U1U2] = tr [U2U1]|B2→−B2,
C2→−C2

(B.9)
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For U in (B.5), the sign flip of the B and C components can be realized by τ → τ + β

provided ψa(τ) are antiperiodic. This proves that the following is independent of the

choice of the initial time τ0:

trM U(τ0 + β, τ0) if ψa(τ) are antiperiodic,

StrM U(τ0 + β, τ0) if ψa(τ) are periodic.

In the special case where the rank of M is a power of 2, there is a very familar way to

understand the above construction. Let us consider the simplest case where rank(M) = 2,

rank(Mev ) = ranl(Mod ) = 1. Let us write

Ta =

(
0 fa

ga 0

)
, V =

(
V0 0

0 V0

)
. (B.10)

(We take this special form for V for simplicity.) Using

η =

(
0 1

0 0

)
, η =

(
0 0

1 0

)
, (B.11)

the matrix ψaTa + V may be written as ψa(faη + gaη) + V0 =: −H . We may regard

H as a time dependent Hamiltonian of a quantum mechanical system whose space of

states is M . In the path-integral formulation, such a system can be realized by a pair

of anticommuting variables η(t), η(t), with the Lagrangian L = iη d
dt
η − H . The matrix

(B.2), which can be regarded as the evolution in the imaginary time, τ = it, is represented

by the path-integral with an appropriate boundary condition B
τf
τi

U(τf , τi) =

∫

B
τf
τi

DηDη exp
(∫ τf

τi

(
−η d

dτ
η +ψa(faη + gaη) + V0

)
dτ

)
. (B.12)

Let us now discuss the case where τ is a periodic coordinate, τ ≡ τ + β. If ψa(τ) is anti-

periodic (resp. periodic), we need η(τ) and η(τ) to be also anti-periodic (resp. periodic),

in order for the Lagrangian to be periodic. By the standard quantization rule, we have

trM U(β, 0) =

∫

A

DηDη exp
(∫ τf

τi

(
−η d

dτ
η +ψa(faη + gaη) + V0

)
dτ

)
, (B.13)

StrM U(β, 0) =

∫

P

DηDη exp
(∫ τf

τi

(
−η d

dτ
η +ψa(faη + gaη) + V0

)
dτ

)
, (B.14)

where A and P stand for the anti-periodic and the periodic boundary conditions for both

η(τ), η(τ) and ψa(τ). In this presentation, we explicitly see that Ta = faη + gaη is a

fermionic opeartor which is anti-periodic (resp. periodic) in the former (resp. latter) case.
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C Explict Expressions For Supersymmetry Transformations

For the study of supersymmetry of the boundary conditions, we explicitly write down

the A(±)-type supersymmetry transformation of the chiral multiplet and vector multiplet

fields. Spinors are written in components (3.43) with respect to the natural frames near

the boundary ∂D2. We also use the variational parameter ε(τ) and ε(τ) defined in (3.29).

Expressions are simplified a little by partially using ψ′
− = |z|∓ 1

2ψ−, ψ
′
+ = |z|± 1

2ψ+,

ψ
′
− = |z|± 1

2ψ−, ψ
′
+ = |z|∓ 1

2ψ+, λ
′
− = |z|± 1

2λ−, λ
′
+ = |z|∓ 1

2λ+, λ
′
− = |z|∓ 1

2λ−, λ
′
+ =

|z|± 1
2λ+. (Here and elsewhere the multiple signs ± or ∓ are always correlated with the

spin structure (±) or equivalently the type A(±) of supersymmetry.) We also use

|x1,2| =
2|z|

1 + |z|2
∂D2

= 1, x3 =
|z|2 − 1

1 + |z|2
∂D2

= 0.

The transformation of the chiral multiplet fields is

δφ = ε(ψ′
− +ψ′

+), δφ = −ε(ψ′
− +ψ

′
+), (C.1)

δ(ψ′
− +ψ′

+) = 2ε

[
Dτφ+

(
±
(

i

2r
R − σ1

)
+ ix3σ2

)
φ

]
,

δ(ψ
′
− +ψ

′
+) = 2ε

[
−Dτφ+ φ

(
±
(

i

2r
R− σ1

)
+ ix3σ2

)]
,

δ(ψ′
− − ψ′

+) = 2ε

[
iDρφ−

(
x3

(
i

2r
R− σ1

)
± iσ2

)
φ

]
∓ 2iε|x1,2|f,

δ(ψ
′
− − ψ

′
+) = 2ε

[
−iDρφ+ φ

(
x3

(
i

2r
R − σ1

)
± iσ2

)]
∓ 2iε|x1,2|f,

δf = ε

[
± 2

r|x1,2|
(
|z|± 1

2 zDzψ+ + |z|∓ 1
2zDzψ−

)

− |z|± 1
2

(
R

2r
+ iσ

)
ψ− + |z|∓ 1

2

(
R

2r
+ iσ

)
ψ+ −

(
|z|± 1

2λ− + |z|∓ 1
2λ+

)
φ

]
,

δf = ε

[
± 2

r|x1,2|
(
|z|∓ 1

2 zDzψ+ + |z|± 1
2zDzψ−

)

+ |z|∓ 1
2ψ−

(
R

2r
+ iσ

)
− |z|± 1

2ψ+

(
R

2r
+ iσ

)
− φ

(
|z|∓ 1

2λ− + |z|± 1
2λ+

)]
.

The transformation of the vector multiplet fields is

δvτ = ∓|x1,2|
2

ε
(
|z|± 1

2λ− − |z|∓
1
2λ+

)
∓ |x1,2|

2
ε
(
|z|∓ 1

2λ− − |z|±
1
2λ+

)
, (C.2)

δvρ = ±i
|x1,2|
2

ε
(
|z|± 1

2λ− + |z|∓ 1
2λ+

)
± i
|x1,2|
2

ε
(
|z|∓ 1

2λ− + |z|± 1
2λ+

)
,

δσ1 = −
i

2
ε(λ

′
− − λ

′
+)−

i

2
ε
(
λ′− − λ′+

)
,
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δσ2 =
1

2
ε(λ

′
− + λ

′
+)−

1

2
ε
(
λ′− + λ′+

)
,

δ(λ′− − λ′+) = 2ε

[
iDτσ1 − iDρσ2 ±

(
DE +

σ1
r

)
+ ix3

(
v12√
g
+
σ2
r

+
1

2
[σ, σ]

)]
,

δ(λ
′
− − λ

′
+) = 2ε

[
iDτσ1 + iDρσ2 ∓

(
DE +

σ1
r

)
− ix3

(
v12√
g
+
σ2
r
− 1

2
[σ, σ]

)]
,

δ(λ′− + λ′+) = 2ε

[
−Dρσ1 −Dτσ2 + x3

(
DE +

σ1
r

)
± i

(
v12√
g
+
σ2
r

+
1

2
[σ, σ]

)]
,

δ(λ
′
− + λ

′
+) = 2ε

[
−Dρσ1 +Dτσ2 + x3

(
DE +

σ1
r

)
± i

(
v12√
g
+
σ2
r
− 1

2
[σ, σ]

)]
,

δDE =
i

r|x1,2|
{
∓ε
(
|z|± 1

2 zDzλ+ + |z|∓ 1
2 zDzλ−

)
± ε

(
|z|∓ 1

2 zDzλ+ + |z|± 1
2zDzλ−

)}

+
i

2r

{
ε(λ

′
− − λ

′
+) + ε(λ′− − λ′+)

}

+
1

2

[
σ1, ε(λ

′
− − λ

′
+)− ε(λ′− − λ′+)

]
+

i

2

[
σ2, ε(λ

′
− + λ

′
+) + ε(λ′− + λ′+)

]
,

δ
v12√
g
=

1

r|x1,2|
{
±ε
(
|z|± 1

2zDzλ+ − |z|∓
1
2zDzλ−

)
± ε

(
|z|∓ 1

2zDzλ+ − |z|±
1
2 zDzλ−

)}

+
1

2r

{
ε(−λ′− − λ

′
+) + ε(λ′− + λ′+)

}
.

If we set |z| = 1, the above transformation rule simplifies. The rule (C.1) for the chiral

multiplet just becomes (3.47). For the vector multiplet, we write σa = σa for a = 1, 2 and

introduce

λ1 =
i

2
(λ− − λ+)−

i

2
(λ− − λ+), λ2 =

1

2
(λ− + λ+) +

1

2
(λ− + λ+),

λ̃1 = − i

2
(λ− + λ+) +

i

2
(λ− + λ+), λ̃2 = −1

2
(λ− − λ+)−

1

2
(λ− − λ+),

D1
0 = ∓

(
v12√
g
+
σ2
r

)
, D2

0 = ±
(
DE +

σ1
r

)
, (C.3)

and Na = Dρσ
a + iDa

0 . We also use ε1 and ε2 given by ε = iε1 − ε2 and ε = −iε1 − ε2.
Then a part of (C.2) at |z| = 1 is written as (3.48).
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