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Abstract: In this paper we study supersymmetric co-dimension 2 and 4 defects in

the compactification of the 6d (2, 0) theory of type AN−1 on a 3-manifold M . The so-

called 3d–3d correspondence is a relation between complexified Chern-Simons theory

(with gauge group SL(N,C)) on M and a 3d N = 2 theory TN [M ]. We establish a

dictionary for this correspondence in the presence of supersymmetric defects, which

are knots/links inside the 3-manifold. Our study employs a number of different

methods: state-integral models for complex Chern-Simons theory, cluster algebra

techniques, domain wall theory T [SU(N)], 5d N = 2 SYM, and also supergravity

analysis through holography. These methods are complementary and we find agree-

ment between them. In some cases the results lead to highly non-trivial predictions

on the partition function. Our discussion includes a general expression for the clus-

ter partition function, in particular for non-maximal punctures and N > 2. We also

highlight the non-Abelian description of the 3d N = 2 TN [M ] theory with defect in-

cluded, as well as its Higgsing prescription and the resulting ‘refinement’ in complex

CS theory. This paper is a companion to our shorter paper [1], which summarizes

our main results.
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1 Introduction and Outline

We have learned over the past few years that compactification of M5-branes on

various manifolds generates a class of lower-dimensional supersymmetric field theo-

ries labeled by the geometrical data. This has led to fruitful interplay between the

physics of supersymmetric gauge theories (and in particular their non-perturbative

dualities) and the geometry of the compactification manifolds (see e.g. [2] and refer-

ences therein).

When we choose to compactify on a 3-manifold M , we have the correspondence

between complex Chern-Simons (CS) theory on M and 3d N = 2 theory T [M ]. This

has been worked out in a number of papers [3–8], and the appearance of complex

Chern-Simons theory has recently been derived in [9, 10] (see also [11]).
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In this paper we include supersymmetric defects to this story, inherited from

co-dimension 2 and co-dimension 4 defects in the 6d (2, 0) theory. This is particu-

larly interesting for us, since on the one hand such generalizations allow us to look

more closely into the dictionary of the 3d–3d correspondence, for example on the

relation between Abelian versus non-Abelian description of the 3d N = 2 theory

T [M ]. On the other hand, the partition functions of our theories with defects can be

computed by a number of different methods, hence our setup is ideal for developing

computational tools and doing consistency checks between them.

In the rest of this introduction we provide more detailed outline of this paper.

1.1 M5-branes on 3-manifolds

Let us consider N > 1 M5-branes, whose low energy world-volume theory is the 6d

AN−1 (2,0) theory. We wrap the M5-branes on a closed 3-manifold M̂ :

N M5s on

1,2,3︷︸︸︷
R1,2 ×

3,4,5︷︸︸︷
M̂ . (1.1)

Since M̂ is a curved manifold, we perform a partial topological twisting along M̂ ,

and turn on an R-symmetry flux mixing the SO(3) connection on M̂ with an SO(3)

current inside SO(5) R-symmetry of 6d (2, 0) theory. The resulting theory has four

supercharges with the remaining SO(2) R-symmetry. Thus such a compactification

generates a 3d N = 2 theory, which we denote by TN [M̂ ]. The 3d–3d correspondence

relates1

3d N = 2 theory TN [M̂ ] ⇐⇒ SL(N) CS theory on M̂ . (1.2)

We will comment on more precise versions of this relation momentarily.

1.2 Supersymmetric Defects

We would like to add defects to the system (1.1) now. The defects will be described

by M2 and M5-branes in M-theory. In order to preserve supersymmetry, these defect

M-branes should be either co-dimension 2 or co-dimension 4 inside the original N

M5-branes which give rise to (2, 0) theory. We can still have several choices as to

how to split the 6 dimensions into the R1,2 directions on which 3d N = 2 theory lives

and the 3-manifold directions.

Their configurations in the context of the 3d–3d correspondence will be given

more concretely below in this subsection, and let us emphasize that we can also

consider the composite of different types of defects. Note that there exist other types

of supersymmetric defects as well, e.g. domain walls which will not be explored in

this paper and we leave them for future work.

1This has generalizations to other gauge groups G, as is clear from the derivation of [9, 10]. The

same comment applies to our discussion in Sec. 6.2.
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Our co-dimension 2 and co-dimension 4 defects will be discussed in more detail

later in Sec. 2. We here provide a summary of their properties.23

Co-dimension 2 Defects The brane configuration is

R1,2︷︸︸︷ M̂︷︸︸︷
N M5: 0 1 2 3 4 5

Defect M5: 0 1 2 3 7 8

(1.3)

For the 6d AN−1 (2, 0) theory, the co-dimension 2 defect is labelled by an embedding

ρ : SU(2) → SU(N) or equivalently a partition [n1, . . . , ns] of N . Let denote by K

the trajectory of the defect inside M̂ .

Since the defect fills the whole R1,2, the effect of this defect is to replace the 3d

N = 2 theory TN [M̂ ] by a new theory4, which we denote by TN [M̂\K, ρ]. Geometri-

cally, this is to replace a closed 3-manifold M̂ by a knot/link complement, which we

denote by

M := M̂\K . (1.4)

In the SL(N) CS theory, the defect will be a loop defect around the knot K. We

propose that the loop defect of type ρ can be identified with monodromy defect

associated to Levi-subgroup L(ρ) of SL(N):

L(ρ) := S

[⊗
i

GL(ni)

]
⊂ SL(N) , (1.5)

and the generalization of the 3d–3d correspondence with this defect is

3d N = 2 theory TN [M̂\K, ρ] ⇐⇒
SL(N) CS theory on M̂ with a monodromy defect of type ρ around K .

(1.6)

Detailed description for the monodromy defect will be given in sec. 2.1, and we will

give an explicit example of the TN [M,ρ] in Sec. 4.5.2.

2In this paper, co-dimensions always refer to co-dimensions inside the 6d theory. In 3d–3d

correspondence, we have two ‘3d’ directions, and we also consider compactification of 6d theory to

5d N = 2 SYM. In each of these cases the co-dimensions in these (3d or 5d) spaces will be different

from those in 6d.
3There are many discussions of supersymmetric defects in the compactifications of 6d (2, 0)

theory of 5d N = 2 SYM. Our viewpoint of supersymmetric defects is somewhat close to that in

[12] for the case of the S5 partition functions of 5d N = 2 SYM.
4The supercharges preserved by the defect M5 coincides with those preserved under topological

twisting along M̂ .
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Co-dimension 4 Defects Let us next consider co-dimension 4 defects. The rele-

vant brane configuration is

R1,2︷︸︸︷ M̂︷︸︸︷
N M5: 0 1 2 3 4 5

Defect M2: 0 3 6

Defect M5: 0 3 7 8 9 ]

(1.7)

The difference from our previous case in eq. (1.3) is that we could have either

an M2-brane or an M5-brane. In both cases, the defect is a 1d line-like defect both

in the 3d N = 2 theory as well as the SL(N) Chern-Simons theory. The defect

is specified by a finite-dimensional unitary representation R of SU(N), and as we

will see in Sec. 7 in the large N limit, the difference between the M2-branes and

M5-branes is accounted for the choice of the representation R. The generalization of

the 3d–3d correspondence with this defect inserted is proposed to be

Supersymmetric loop operator labeled by a representation R and K in TN [M̂ ]

⇐⇒Wilson loop in representation R along K in SL(N) CS theory on M̂ ,

(1.8)

where on the right hand side the SU(N) representation R is naturally complexified

to a representation of SL(N). The correspondence can be made more concrete by

putting the 3d N = 2 theory on a curved background, for example S1×S2 or S3/Zk,
while preserving certain rigid supersymmetries. On those curved backgrounds, there

are two supersymmetric cycles: considering these 3-manifolds as S1 bundle over

S2, these cycles wrap the fiber S1 located at the north/south poles of the base S2.

These two choices correspond to the choice of either holomorphic or anti-holomorphic

Wilson loop in the CS theory. We also consider the co-dimension 4 defect in the

presence of co-dimension 2 along K in M̂ . In the case, the co-dimension 4 can be

considered as a knot K in the knot complement M := M̂\K (notice the difference

between K and K, see Fig. 1).

If we follow the proposals in [6, 7], the theory TN [M ] in general does not have

a gauge group SU(N). So it is not immediately obvious why (a subset of) Wilson

loops in TN [M ] should be labeled by the representation R of SU(N). We will see

later that this fact indeed gives a non-trivial hint as to the theory TN [M ], especially

on the non-Abelian nature of the gauge group.

1.3 Computational Methods

In order to better understand eq. (1.6) and eq. (1.8), a useful quantity to compute

is the partition function of the theories in the presence of defects5.

5 It should be noted, however, most of the ingredients, for example the construction of the

theory TN [M,ρ] for a given ρ, works for directly at the Lagrangian level, and in the end does not

necessarily need the analysis of the specific partition functions.
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M̂ K

K

Figure 1. Inside a closed 3-manifold M̂ , we in general simultaneously include a co-

dimension 2 defect along K, and then a co-dimension 4 defect along K. The two knots, K

and K, can be mutually knotted inside M̂ .

We will use a number of complementary computational methods, each of which

has its own virtues and limitations. Whenever more than one result is available, we

will check consistencies between them, and in some cases such checks leads to new

mathematical conjectures.

State Integral Model One method is to use an ideal triangulation of the 3-

manifold, and compute the partition function from the state integral construction of

3-manifolds. In this formalism, only the case of special ρ (the so-called ‘maximal’

case, as we will explain) has been considered in [13–16] for N = 2, and [17] for N > 2

(see also [18–21]), where the latter is based on the ‘octahedral’ decomposition of the

ideal tetrahedron. We also extend the existing construction of state-integral models

to include co-dimension 4 defects.

Cluster Partition Function Another method is formulating our 3-manifold prob-

lem in terms of quivers and their mutations, and compute its partition function (clus-

ter partition function) in the formalism of [22]. In this formalism, a co-dimension 2

defect corresponds to a change of the quiver and its mutation sequence. We will work

out an example of the co-dimension 2 defect with non-maximal ρ. A co-dimension 4

defect, in contrast, corresponds to a generalization of the cluster partition function

with Wilson line insertion. We also work out this generalization in this paper. We

will point out that that the “mutation network” of [22] is a generalization of the

octahedron decomposition.

Non-Abelian Description of TN [M,ρ] In general, the only known descriptions

of TN [M,ρ] is in terms of Abelian gauge groups, which (as we will comment below)

is insufficient for the full description of defects. Fortunately, however, there are some

known non-Abelian descriptions. One description of the 3d N = 2 theory TN [M,ρ]

is to describe it as a 1/2 BPS boundary condition (or domain wall) for the 4d N = 2

theory TN [Σ] associated with a punctured Riemann surface Σ. In particular, for the

cases discussed in [3, 4], the 3d N = 2 theory is already known to be constructed
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from N = 2 mass-deformation of the 3d N = 4 theory known as T [SU(N)] (see

[23] for the properties of this theory). We can then directly compute their partition

functions by supersymmetric localization.

Defects in 5d N = 2 SYM When we wish to compute S3 or S1 × S2 partition

function of TN [M ] theory, we can take advantage of the S1 direction of the 3d ge-

ometry and reduce the 6d (2, 0) theory along this S1. The resulting theory is then

5d N = 2 SYM, and the defects of the 6d theory is represented by defects of the 5d

N = 2 SYM, whose partition function (for co-dimension 4 defect) we can compute

directly using supersymmetric localization, generalizing the results of [9, 10]. We also

propose a Higgsing prescription for the co-dimension 2 defects in terms of T [SU(N)]

theory and its generalizations, and comment on its implications to complex Chern-

Simons theory.

Holographic Dual Finally, we can study the largeN limit of our systems using the

dual supergravity solution. We include the probe M2 and M5-branes, corresponding

to the brane setup of eqs. (1.3) and (1.7), to the M-theory background of [24, 25].

This generates a number of conjectures in the large N asymptotic of the partition

functions.

The organization of the rest of this paper is as follows. In Sec. 2 we describe the

supersymmetric defects in 3d–3d correspondence in more detail. We then go on to

discuss each of the methods listed in Sec. 1.3. In each of the following sections, we

start with summary on the background knowledge if necessary, and then subsequently

discuss co-dimension 2 and co-dimension 4 defects. We shall in turn discuss state

integral model (Sec. 3), cluster partition function (Sec. 4), T [SU(N)] theory (Sec. 5),

5d N = 2 SYM (Sec. 6), holography (Sec. 7). The final section (Sec. 8) is devoted

to summary and outlook. We also include several appendices containing technical

materials.

2 3d–3d Correspondence with Defects

Let us comment in more detail the supersymmetric co-dimension 2 and co-dimension

4 defects.

2.1 Co-dimension 2 Defects

Let us here describe in more detail the co-dimension 2 defects (1.3). As already

stated in the introduction, these defects are labelled by an embedding [23]

ρ : SU(2)→ SU(N) . (2.1)
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We can also specify ρ by the decomposition of the N -dimensional fundamental rep-

resentation [N ] of SU(N) into irreducible representations of SU(2):

[N ] −→ [n1]⊕ [n2]⊕ . . .⊕ [ns] , (2.2)

where [n] denote the n-dimensional irreducible representation of SU(2). We assume

ni > 0, and moreover without losing generality choose ni ≥ ni+1. Since
∑s

i=1 ni = N ,

ρ = [n1, n2, . . . , ns] (2.3)

is a partition of N , or a Young diagram with N -boxes.6

The defect is called ‘maximal’ (or ‘full’) and ‘simple’ when ρ = [1]N := [1, 1, . . . , 1]

and ρ = [N−1, 1] respectively. The number of defect M5-branes is given by the length

s =: `(ρ), namely the number of columns of ρ.

One way to understand the appearance of ρ is as follows (we will also provide

below further explanation from the viewpoint of complex Chern-Simons theory). We

can compactify M-theory to type IIB string theory, by compactifying along the di-

rection 5 and then T-dualize along the direction 3. The brane configuration becomes

N D3: 0 1 2 4

Defect NS5: 0 1 2 3 7 8
(2.4)

and we have 4d N = 4 SU(N) SYM on the N D3-branes. The 1/2 BPS boundary

conditions of 4d N = 4 SYM was studied in [23, 26], which classified such boundary

conditions under some mild assumptions. The conclusion there is that the boundary

theory on the defect described by the NS5-branes is then a 3d N = 4 theory called

Tρ[SU(N)].7 This theory has SU(N) × Hρ global symmetry, where Hρ is defined

as the commutant of ρ (SU(2)) inside SU(N), i.e. [ρ (SU(2)) , Hρ]=0. To be more

explicit,

Hρ = S

[⊗
α

U(lα)

]
, (2.5)

where lα=1,2,... denote the number of times that the number j appears in the partition

ρ,
∑

α αlα = N (namely ρ = [N lN , . . . , 2l2 , 1l1 ]), and ‘S’ on the right hand side means

to mod out by the overall U(1) factor. The theory Tρ[SU(N)] couples naturally to the

bulk 5d N = 2 SYM by gauging the SU(N) global symmetry. In brane realizations,

Tρ[SU(N)] describes a boundary condition where we have s separate NS5-branes and

ni of the N D4-branes end on the i-th NS5-brane.

To study 3d–3d correspondence of the system, we put the 6d (2, 0) theory on

a closed 3-manifold M̂ (along 3, 4, 5-directions) with a partial topological twisting.

6In our convention the i-th row has ni boxes.
7In S-dual, this is mapped to a singular boundary condition described by the Nahm pole, deter-

mined by the embedding in eq. (2.1).
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The defect M5-branes are located along an knot K in the 3-manifold. In eleven

dimensional M-theory, the topological twisting is realized as

N M5s : R1,2 × M̂ ⊂ R1,2 × T ∗M̂ × R2 ,

Defect M5 : R1,2 ×N∗K ⊂ R1,2 × T ∗M̂ × R2 .
(2.6)

Here T ∗M̂ denotes a cotangent bundle over M̂ whose fiber is along 6, 7, 8-directions.

The defect M5-brane is located along a knot K along 3rd direction on M̂ and N∗K

denote the co-normal bundle of the knot in T ∗M̂ . The effective world-volume theory

on N M5-branes is described by 3d N = 2 theory, which (as explained in introduc-

tion) will be denoted as

TN [M̂\K, ρ] . (2.7)

When ρ is maximal, we simply denote the theory as TN [M̂\K]. The 3d theory has

flavor symmetry Hρ ⊂ SU(N).

The 3d–3d correspondence with defect ρ was given in eq. (1.6). Mostly in the

literature only the case of ρ = maximal has been studied so far, with only a few

exceptions (e.g. [3] discuss the case of ρ = simple for N > 2, as will be mentioned in

Sec. 5). One of the goals of Sec. 4 is to generalize these works to non-maximal ρ.8

There is one interesting aspect in eq. (1.6). Recall that we first start with the

geometry M̂ , and we arrive at the geometry with K removed, namely M := M̂\K
as defined in eq. (1.6); in the end it looks like that partition function is determined

solely by the data of M . It might then happen that the same geometry M can be

obtained by two different ambient manifolds M̂1 and M̂2. In fact, there are in general

infinitely many choices of ambient manifolds M̂ , related by Dehn surgeries.9 As we

will see later in Sec. 4.5, depending on the choice of the ambient manifold we need to

change the choice of polarization on the boundary of the 3-manifold, thus changing

the associated 3d N = 2 theory.10 More explicitly, the CS path-integral with fixed

boundary holonomy along a cycle, say a(1, 0)+b(0, 1) of boundary torus, corresponds

8One interesting aspect of the 3d–3d correspondence is that the most typical version of the

3d–3d correspondence (this includes almost all the papers on the topic) has ρ = maximal, hence it

already includes the co-dimension 2 defects. Recall that the co-dimension 2 defect does not break

any supersymmetry, and we always have 3d N = 2 supersymmetry irrespective of the choice of ρ.
9Dehn surgeries can be described as follows. Let us for example take M to be a knot complement

S3\K in S3. The boundary of M is a torus T 2. We can close off the boundary of this geometry

by gluing a solid torus (whose boundary is also a solid torus), where the two boundary tori are

glued together by an element of SL(2,Z). This is the Dehn filling. Dehn surgeries relate different

Dehn fillings by first drilling the tubular neighborhood of a knot inside a closed 3-manifold and

then perform a Dehn filling. The resulting manifolds have different topologies depending on the

choice of the SL(2,Z) element, and for example generically have different hyperbolic volumes.
10 In this sense, it might be more precise to denote the theory TN [M̂\K, ρ] by TN [M̂,K, ρ]. For

the sake of notational simplicity, however, we stick with the notation TN [M̂\K, ρ].
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to the partition function of N M5s on a closed 3-manifold M̂(a,b) with defect M5s

along the knot K(a,b):

M̂(a,b) :=
(
a closed 3-manifold obtained by performing Dehn filling on M

which shrinks the cycle a(1, 0) + b(1, 0)
)
,

K(a,b) is a knot in M̂(a,b) such that M̂(a,b)\K(a,b) = M .

(2.8)

Complex Chern-Simons Theory Let us specify the right hand side of eq. (1.6)

more precisely. The Lagrangian of the complexified Chern-Simons theory is given by

SCS[A,A; ~, ~̃] =
k + σ

8π
CS[A] +

k − σ
8π

CS[A] =
i

2~
CS[A] +

i

2~̃
CS[A] , (2.9)

where the CS functional defined by

CS[A] := Tr

(
A ∧ dA+

2

3
A ∧A ∧A

)
. (2.10)

In eq. (2.9) we have two CS levels, k ∈ Z and σ ∈ R or iR11[27]. These parameters

are combined into ~ and ~̃:

~ :=
4πi

k + σ
, ~̃ :=

4πi

k − σ
. (2.11)

These parameters play the role of the “Planck constant” in the quantization. Note,

however, that ~, ~̃ are in general not real, and ~̃ is in general not the complex conju-

gate of ~.

The partition function is defined by the path-integral

ZCS =

∫
C

[DA][DA] eiSCS[A,A;~,~̃] . (2.12)

Since ~ and ~̃ are in general complex, the integrand is not bounded and path-integral

is not convergent on the naive integration contour where A is the complex conju-

gate of A. To make sense of the integral, therefore, the path-integral should be

interpreted as an infinite dimensional contour integral along a middle-dimensional

integration cycle C in the functional space spanned by two independent SL(N) com-

plex connections A and A [28].

C ⊂ MSL(N) connection

:= {(A,A) : two SL(N) connections on M with proper b.c.}/ ∼ .
(2.13)

with gauge quotient ∼ parametrized by a pair of U and Ū

U, Ū : M → SL(N) , (2.14)

11Note that σ here is sometimes denoted by iσ in the literature.
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which act on A and Ā respectively. U and Ū should be related in a proper way

such that eiSCS is invariant under large gauge transformation. The contour varies

depending on the reality of σ. When σ is purely imaginary (or equivalently ~̃ = −~∗
(3.12)) the action SCS is real and the integrand of the path-integral is bounded along

an integration cycle where A = A†. We propose that this contour, possibly with

infinitesimal deformation at infinity for convergence, is the correct integration cycle

for the 3d–3d correspondence:

Cσ∈iR = {(A,A) : A = A†} . (2.15)

with gauge quotient by

Ū = U † . (2.16)

When σ is real, on the other hand, the integrand is not bounded along the cycle

Cσ∈iR and we should choose a different contour to make the path-integral convergent.

We will see in the next section that at the level of the moduli space of flat connections

the choice is X̄ = 1
b2
X , where X and X̄ are the coordinates of the moduli space of flat

connections. Here the real parameter b is defined by b2 := ~
~̃ (see also eq. (2.31) in

the next section). The correct contour for our path integral should be the extension

of this to more general (non-flat) connections.12

We can also discuss the choice of the choice of integration contours in terms of

the so-called Lefschetz thimbles. Applying Morse theory to the infinite-dimensional

functional space MSL(N) connection with a Morse function Im(SCS),

h := −Im(SCS) : MSL(N) connection → R , (2.17)

it can be argued that any convergent cycle C as a relative homological cycle can be

decomposed into a linear combination of Lefschetz thimbles J (α,β) associated to the

critical points of h [28]. The critical points are given by a pair of flat connections,

A(α) and A(β) :

δh

δ(A,A)

∣∣ = 0 ⇔ {A,A} = {A(α),A(β)} , (2.18)

and the contour C is expanded as

C =
∑
(α,β)

nα,βJ (α,β) , nα,β ∈ Z ,

J (α,β) :=
{

union of all trajectories along upward flow of h

which approach to the critical point {A(α),A(β)} as t→∞} .

(2.19)

12The most naive choice is A = 1
b2A

†, however need to make sure that the contour choice is

consistent with the gauge transformation.
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The upward/downward flows are defined by gradient of h up to sign along which h

is always increasing/decreasing. Here (α, β) are labels of SL(N) flat-connections on

M . The integer coefficients nα,β are determined by counting (with sign) trajectories

along downward flows of h which start from a point in C and approach to the saddle

point {A(α),A(β)} as t → ∞. Decomposition into Lefschetz thimbles is important

to study perturbative expansion of the CS partition function. The integer nα,β can

jump as (~, ~̃) varies. For purely imaginary σ, one can see that

nα,ᾱ = 1 ,

nα,β = 0 if h(A(α),Aβ) > 0 ,
(2.20)

where A(ᾱ) is an SL(N) flat connection complex conjugate to Aα. The first equation

in eq. (2.20) follows from the condition that the saddle points {A(α),A(ᾱ)} are located

on Cσ=iR, and the second one follows from the fact that h is always zero on the cycle

and h always decreases along the downward flow.

In the most part of this paper, we assume that σ ∈ iR. We will come back to

the case σ ∈ R in Sec. 7.

Monodromy Defect When we wrote eq. (2.12) we implicitly assumed that the

3-manifold is closed. When the 3-manifold M̂ has a defect K, then we are instructed

to perform a path integral of the complexified gauge connection on the 3-manifold

(eq. (1.4)), with singular boundary conditions around the defect K:

ZCS
M̂\K(M) =

∫
b.c. around K

[DA][DA] eiSCS[A,A;~,~̃] . (2.21)

Suppose that K is topologically a knot inside M̂ , the path-integral can be thought

as defined on a 3-manifold M := M̂\K called knot-complement whose boundary is

a torus:

∂
(
M̂\K

)
= T 2 . (2.22)

The knot complement (exterior) can be constructed by removing tubular neighbor-

hood NK of the knot from M̂ .

M̂\K := M̂ −NK . (2.23)

In general, we can consider a knot with several disconnected components (in this

case, a knot is also called a link). When we have n components, we have

∂
(
M̂\K

)
=

n︷ ︸︸ ︷
T 2 ∪ T 2 ∪ · · · ∪ T 2 . (2.24)

Let us begin with the classical CS theory. Since the classical equation of motion

gives the flat connection condition

F := dA+A ∧A = 0 , (2.25)
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the boundary condition should be specified by an SL(N) flat connection on n copies

of T 2:

Hom

π1

 n︷ ︸︸ ︷
T 2 ∪ T 2 ∪ · · · ∪ T 2

→ SL(N)

 / ∼ , (2.26)

where ∼ denotes the conjugation by the gauge group. Note that the fundamental

group of T 2 is spanned by two cycles. In the knot theory literature, the cycle cor-

responding to contractable (non-contractible) cycle in the removed solid torus NK

is called the meridian (longitude). In this definition, the longitude is not uniquely

determined but only up to a shift by the meridian. We denote the meridians (lon-

gitudes) for the a-th link component by m(a) (l(a)), for a = 1, · · · , n. Note that

since the fundamental group of T 2 is commutative, we can use the gauge degrees of

freedom to bring all of them to be the upper triangular form (upper triangular here

includes non-trivial entries in the diagonal).

When we go to the quantum theory, due to uncertainly principle it is not possible

to specify both the holonomies along meridians Hol(m(a)) and the holonomies along

longitudes Hol(l(a)); they are canonically conjugate to each other. It is therefore

sufficient to specify only half of them. This is the choice of the polarization in the

quantization. Fixing holonomy with generic eigenvalues breaks the gauge symmetry

SL(N) to its Levi-subgroup L(ρ) (1.5), centralizer of Hol(m). The unbroken Levi-

subgroup L(ρ) determines the type ρ of the defect [29]. This again explains why the

defect (for each component of a knot) is labelled by a partition of N . For example,

defect of maximal type (ρ = [1, . . . , 1]) breaks the gauge group maximally, and

dimension of residual gauge group is N − 1. The defect has continuous parameter

{Mα}`(ρ)
α=1, which corresponds to `(ρ) eigenvalues of Hol(l) (they satisfy one traceless

constraint, and hence only rank(Hρ) = `(ρ)− 1 of them are independent).

Let us consider the more general case ρ = [n1, . . . , ns]. For generic eigenvalues

{Mα} (Mα 6= Mβ for any (α, β)), the meridian monodromy Hol(m) is given by (In×n
denote identity matrix of size n× n)

Hol(m) ∈ orbit of


eM1In1 0 0 0

0 eM2In2 0 0

0 0 . . . 0

0 0 0 eMsIns

 . (2.27)

The orbit of an element g ∈ SL(N) is the set of elements in the complex group

that are conjugate to e. Note that there are still residual Weyl group symmetries

for the discrete unbroken gauge group, and we can assume without generality that

Mα > Mβ for α > β. In the extreme case where all the eigenvalues are trivial, we

obtain a closure of a nilpotent orbit:

Hol(m) ∈ closure of orbit of ρt(eσ+) . (2.28)
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ρt denote the transpose partition of ρ whose corresponding Young diagram is obtained

by reflecting the original diagram along its main diagonal. As we will comment more

in App. A, it is crucial to have the closure on the right hand side of this equation. In

all these cases, the closure of the orbit coincides with the Coulomb branch (or Higgs

branch) of the corresponding mass-deformed T ρ[SU(N)] (or Tρ[SU(N)]) theory. The

`(ρ)− 1 parameters Mα corresponds to real mass parameters in TN [M,ρ] coupled to

the flavor symmetry Hρ.

3d–3d Correspondence with Defect of Type ρ The 3d–3d correspondence

(1.6) has several concrete incarnations, depending on the partition functions we

choose. Dictionaries found in the literature [3, 7, 9, 10, 30, 31], generalized here

with defect ρ included, states

(S3/Zk)b partition function of TN [M̂\K, ρ]

= SL(N)
k∈Z>0,σ=k 1−b2

1+b2
∈R or iR CS partition function on M̂

with type ρ defect along K ,

(S1 × S2)q partition function (superconformal index) of TN [M̂\K, ρ]

= SL(N)k=0,σ∈iR CS partition function on M̂ with type ρ defect along K .

(2.29)

Here (S3/Zk)b is a one-parameter deformation of the metric of S3/Zk (whose partition

function was computed in [32–38]), and (S1×S2)q [39, 40] is a geometry where going

around once along S1 is accompanied by a rotation along S2. The (S1×S2)q partition

function (superconformal index) has following interpretation as the trace over the

Hilbert space of S2:

TrHS2(ma)
(−1)2j3qj3+R

2

∏
uFaa , (2.30)

where j3 is a Cartan of SU(2) isometry of S2, R is the R-charge of the 3d N = 2

superconformal algebra, Fa denote the Cartan generators of the flavor symmetries

of the 3d theory and ua the associated nugacities. We also turn on background

monopole fluxes ma on S2 coupled to the flavor symmetries and consider generalized

superconformal index [41].

Note that the levels of the complex CS theory, namely k and σ, are translated

into the choice of the background geometry B = (S1 × S2)q, (S
3/Zk)b, . . . where the

3d theory TN [M,ρ] is defined: quantized level k is related to the topology of B and

σ is related to the squashing parameters (such as q, b, . . .) of B. Note also that the

case of k = 0, σ ∈ R is not covered in eq. (2.29).

Let us also remark on the reality properties of ~, ~̃. For (S3/Zk)b, we have (in

terms of the parameter b in eq. (2.29))

(S3/Zk)b : ~ =
2πi

k
(1 + b2) , ~̃ =

2πi

k
(1 + b−2) . (2.31)
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As already mentioned, σ = k(1 − b2)/(1 + b2) ∈ R or iR, and hence we have either

b ∈ R or |b| = 1; the two branches merge for b = 1, in which case σ = 0. For real b, ~
are ~̃ are purely imaginary. For |b| = 1, then ~, ~̃ ∈ R. If we analytically continue to

more general values of b, then both ~, ~̃ are complex. For S1 × S2, we have σ ∈ iR
and

(S1 × S2)q : ~ = −~̃ =
4πi

σ
∈ R . (2.32)

We will come back to the reality properties of ~, ~̃ when in the discussion of state-

integral models in the next section.

2.2 Co-dimension 4 Defects

Co-dimesion 4 defects can be realized as in eq. (1.7), and we claimed there that such

defects are labeled by

R : unitary representations of SU(N) . (2.33)

This is easy to see, again by compactifying the system along the M-theory circle (3rd

direction in eq. (1.7)). The defect is then described as a Wilson loop operator in

5d N = 2 SYM (we will come back to this viewpoint in Sec. 6). These defects are

labelled by R.

These co-dimension 4 defects are mutually BPS with the co-dimension 2 defects

and we consider co-dimension 4 defect in a representation R in the presence of co-

dimension 2 defect of ρ. We consider a Wilson loop ŴR(K) in SL(N) CS theory on

a knot complement M = M̂\K along a knot K in a representation R:

〈ŴR(K)〉(M) =

∫
b.c.

[DA] eiSCS[A]TrRP exp

(
−
∮
K
A
)
, (2.34)

with a boundary condition fixing the boundary holonomy around knot K as in

eqs. (2.27) and (2.28). Since the complex CS theory is topological, the Wilson line

depends only on the isotopy class of K inside M .

This defect K will be a loop operator in 3d N = 2 TN [M̂\K] theory. The

correspondence (1.8) again has incarnations as statements on the partition functions

of (S3/Zk)b and (S1 × S2)q:

(S3/Zk)b-partition function of TN [M̂\K] with line operator labelled by R

= SL(N)
k∈Z>0,σ=k 1−b2

1+b2
∈R or iR CS partition function on M̂

with a Wilson line of representation R along K ,

(S2 × S1)q-partition function of TN [M̂\K] with line operator labelled by R

= SL(N)k=0,σ∈iR CS partition function on M̂

with a Wilson line of representation R along K .

(2.35)
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On (S1 × S2)q and (S3/Zk)b there are two supersymmetric cycles compatible

with the supercharge used in localization: considering these 3-manifold as S1 bundle

over S2, these cycles wrap the fiber S1 located at the north/south poles of the base

S2. These two choices are represented on the Chern-Simons side by the exchange of

~ and ~̃.13

This concludes the discussion of the supersymmetric defects, and we now turn

to the explicit computations of the partition functions.

3 From State Integral Model

3.1 Generalities on State-Integral Models

Let us here describe state-integral models for the SL(N) CS theory, based on an

ideal triangulation of M . The models give finite dimensional integral expression for

the CS partition function (2.21). There are known constructions in the literature for

the case of ρ = maximal, see [16, 17, 31]. We will describe the construction slightly

more generally, to make contact with the discussion of non-maximal co-dimension 2

defects in Sec. 4.

Octahedron Decomposition The construction of the state-integral model starts

with an ideal triangulation T of M = M̂\K (with k ideal tetrahedra)

T : M =

(
k⋃
i=1

∆i

)
/ ∼ , (3.1)

where ∼ means that we glue the tetrahedra by identifying the faces and edges. The

ideal triangulation is not unique and the integral expression for the state-integral

model depends on the choice of it. However, we can show that the resulting invariant

after integral is independent on the choice, and hence it computes a topological

invariant of the manifold. We next associate a set of ‘octahedra’ 3a
i to each ideal

tetrahedron ∆i:

∆i  

(
]i⋃
a=1

3a
i

)
/ ∼ , (3.2)

where ∼ here means identification of the vertices of octahedra (as we will see in

examples, eq. (3.2) is not really a decomposition of tetrahedron into octahedra, and

is more a rule for associating a set of octahedra, and hence the symbol  instead of

=). See Fig. 3 for a figure of a single octahedron. The precise rule (3.2) of how to

associate octahedra to an ideal tetrahedron depends crucially on the choice of the co-

dimension 2 defects. The co-dimension 2 defect in the ideal triangulation corresponds

13Such an exchange is an example of the recently-found temperature reflection symmetry [42].

– 15 –



ρ1

ρ4ρ2

ρ3

Figure 2. The co-dimension 2 defect passes through the small neighborhood of a vertex of

an ideal tetrahedron. In general the co-dimension 2 defects passing through four vertices

are labeled by different ρs. The octahedron decomposition should be determined for a

given choice of ρ1,...,4. There is no general known rule in the literature except when all ρs

are maximal, however we will discuss the non-maximal cases in the next section, where we

identify octahedron structures (Fig. 16)

to loop(s) passing though the small neighborhood of the vertices of ideal tetrahedra,

and hence each tetrahedron in general could have four different co-dimension 2 defects

ρ1, ρ2, ρ3, ρ4 passing through its four vertices (Fig. 2). The completely general rule

for the octahedron decomposition (3.2) is not known at present, but we will discuss

some examples (where ρ is maximal and non-maximal) in the rest of this paper. Of

course, by combining eqs. (3.1) and (3.2), we have a rule for associating octahedrons

to the 3-manifold M :

M  

(
k⋃
i=1

]i⋃
a=1

3a
i

)
/ ∼ . (3.3)

We will denote the total number of octahedra by ]total :=
∑k

i=1 ]i. The octahe-

dron decomposition gives an algebraic ways to construct the moduli space of flat

connections:

MN(M̂\K, ρ)

:= {flat SL(N) connections on M satisfying b.c. in eq. (2.27)}
= {eZ′′η + e−Zη − 1 = 0 , CI({Z,Z ′, Z ′′})

∣∣
~=0

= 0 } ⊂ P (∂3)]total ,

(3.4)

where η is labeling for ]total octahedrons, and P (∂3) denoted a phase space associated

to a octahedron (see Fig. 3)

P (∂3) =

{
Z,Z ′, Z ′′ : Z + Z ′ + Z ′′ = iπ +

~
2

}
' (R× S1)2 , (3.5)

with symplectic structure

Ω =
i

~
dZ ′′ ∧ dZ +

i

~̃
dZ̄ ′′ ∧ dZ̄ . (3.6)
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Z '
Z ' Z ''Z

Z '' Z

Figure 3. For a single octahedron, we have the wavefunction ψ~,~̃(Z, Z̄) inside the phase

space P (∂3). The phase space is constructed from three variables Z,Z ′, Z ′′, satisfying the

constraint in eq. (3.5).

Geometrically, (Z,Z ′, Z ′′) are vertex variables assigned to each pair of vertices of

octahedron, see Fig. 3. Imaginary part of these vertex variables are angle variables :

Z ∼ Z+2πi. The CI are variables associated with internal vertices in the octahedron

decomposition,

CI = (sum over vertex variables meeting at the I-th internal vertex)− 2πi− ~ .
(3.7)

Number of independent CI are always less than ]total and let the number be ]total−nc.
Then, the dimension of the moduli space is nc.

For N = 2, the octahedrons in the N -decomposition is one-to-one with tetrahe-

drons in the ideal triangulation and the octahedron vertex variables can be identified

with edge variables of tetrahedrons. The edge variable measures the (complexified

version of) dihedral angle between two faces meeting at the edge. In the identi-

fication, the construction in eq. (3.4) has a geometrical meaning. These algebraic

equations are firstly studied in the study of hyperbolic structure of 3-manifold. One

way to construct hyperbolic structure is gluing hyperbolic tetrahedron smoothly.

Edge variables of an ideal tetrahedron in a hyperbolic space H3 satisfy the algebraic

relation e−Z + eZ
′′ − 1 = 0 and eZ+Z′+Z′′ = −1 and the internal edge conditions

CI = 0 is the requirement for no conical singularity in the gluing. Thus, with a

proper range of dihedral angle, solution for the algebraic equation give hyperbolic

metric on 3-manifold. Then, using the relation between hyperbolic metric and SL(2)

flat connections, the solutions give flat connections on the 3-manifold. The algebraic

variety in eq. (3.4) further can be thought as a Lagrangian subvariety of PN(∂M, ρ)

defined by the following symplectic quotient

PN(∂M, ρ) := P (∂3)]total//{CI = 0} . (3.8)

The symplectic quotient makes sense since actually all {CI} are mutually commute,

{CI , CJ}P.B = 0 for any pair of (I, J). In Sec. 3.3, we will explicitly construct the

flat-connections (or equivalently its holonomies along cycles) on a knot-complement

from the solution of algebraic equations.
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Limitation of the Decomposition Before explaining how to construct the CS

partition function from octahedron decomposition, as a cautionary remark, let us

point out that there is an important limitation of octahedron decomposition: only

a sub-sector of flat-connections can be obtained. For ρ=maximal case, for example,

the N -decomposition only captures fully irreducible flat-connections, i.e. centralizer

of whose holonomies is trivial (see [43] for details). Due to this limitation, the wave

functions of the state-integral models based on octahedron decomposition cannot

be glued to form a wave-function for the glued manifold, and in particular Dehn’s

filling and Higgsing (the latter will be discussed in section. 6.3) cannot be done

consistently on the wave functions. The limitation is related with the limitation of

Abelian description of TN [M ] theory, which will be discussed further in section. 5.1.

Note that the same limitation exists for the cluster partition function in section 4.

State-integral as an Overlap of Wavefunctions We can now write down

the expression for the partition function of our state-integral model by quantizing

eq. (3.4). Schematically, the partition function for a knot complement M̂\K (2.21)

is given by

Zstate integral

M̂\K (Xα) = 〈Xα

∣∣M̂\K〉 =
〈
Xα, CI = 0

∣∣3⊗]total
〉
. (3.9)

Let us explain the symbols here step by step. The partition function is written

as an overlap of two states. One of the two states is
∣∣3⊗]total

〉
:= ⊗]total

η=1 (|3η〉). This

is a state in the Hilbert space ⊗]total
η=1 H(∂3η), defined by a direct product of states

|3η〉, which in turn is a state in a Hilbert space H(k,σ)(∂3η) for each η (recall k

and σ are the real and imaginary parts of the complexified level). Here, the Hilbert

space H(k,σ)(∂3) is obtained by quantizing the phase space P (∂3) associated to a

octahedron. The state is a quantization of the algebraic relation e−Z + eZ
′′ − 1 = 0,

which define a Lagrangian sub-variety in the phase space, and satisfy the following

operator equations

(e−Ẑ + eẐ
′′ − 1)|3〉 = (e−

ˆ̄Z + e
ˆ̄Z′′ − 1)|3〉 = 0 , (3.10)

where Ẑ, Ẑ ′, Ẑ ′′ are quantized operators for vertex variables and ˆ̄Z, ˆ̄Z ′, ˆ̄Z ′′ are their

Hermitian conjugation. Quantization of the phase space depends on the CS levels

(k, σ), and we in particular need to impose different quantization conditions on posi-

tion variables. For the considerations of this paper, we need the following cases (see
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[31] for details):

position basis of H(k=0,σ∈iR) :{∣∣∣Z; ΠZ

〉
:=
∣∣∣Z =

~
2
m+ iθ, Z̄ =

~
2
m− iθ

〉
: m ∈ Z , θ ∼ θ + 2π ∈ R

}
,

position basis of H(k∈Z>0,σ:=k 1−b2
1+b2

,|b|=1)
:{∣∣∣Z; ΠZ

〉
:=
∣∣∣Z =

2π

k
(bµ+ iν), Z̄ =

2π

k
(b−1µ− iν)

〉
: µ ∈ R , ν ∈ Zk

}
.

(3.11)

Let us now comment on how to understand the quantization. First, when we consider

S1 × S2, namely k = 0 andσ ∈ iR, ~ = −~̃ is real (recall eq. (2.32)), and hence we

learn from eq. (3.6) that Re[Z] is canonically conjugate to Im[Z ′′]. The quantization

of the Re[Z] can then be understood from the periodicity of the conjugate variable

Im[Z ′′]. When we consider (S3/Zk)b, we choose |b| = 1.14 One simplification for this

case is that we have

~∗ = −~̃ , (3.12)

and the symplectic structure, when expressed in terms of real part µ and imaginary

part m (as in eq. (3.11)), takes a simple form:

Ω =
2π

k2
(dµ′′ ∧ dµ+ dν ′′ ∧ dν) . (3.13)

Since the imaginary part m,m′′ has period k and are canonical conjugates with each

other, we learn that m should take values in Zk := Z/kZ, as stated in eq. (3.11).

If we consider the (S3/Zk)b in eq. (3.11), with k = 1, ν in Z,Z ′′ is frozen to

take a fixed value and q = e2πib2 , q̃ = e2πib−2
and Z̄ = b−2Z, Z̄ ′′ = b−2Z ′′. For

k = 1 with b real, the quantization can be understood as an analytic continuation of

|b| = 1 case. In this case, only real parts of Z,Z ′′ can be varied and it is more like

quantization of “SL(N,R)” theory with X := Z, P := Z ′′ and single positive real

quantum parameter ~R := 2πb2:

〈X|eX̂ = 〈X|eX , 〈X|e
1
i~R

P̂
= 〈X + 1| , 〈X|P 〉 = e

1
~ZZ

′′+ 1
~̃
Z̄Z̄′′ = e

1
i~R

XP
. (3.14)

To fully characterize a position basis, choosing positions {Xi} is not enough

but also need to specify its conjugate momentums {Pi}. The choice Π := (Xi;Pi) of

14 This value is natural for the SU(2)× U(1) isometry-preserving squashing of S3 considered in

[37], which changes the relative size of the Hopf fibre and the base S3 (in the Hopf fibration of S3)

by the factor of `−1 = (b + b−1)/2. If we consider the U(1) × U(1) isometry-preserving squashing

of [35], b is geometrically real, b ∈ R requires analytic continuations on b. The partition functions

for the two squashings, although geometrically different, gives the same answer in the overlapping

range, 0 < ` ≤ 1.
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position/momentum variables is called a polarization and the corresponding position

basis is denoted by

|Xi; Π〉 . (3.15)

We sometimes suppress the polarization choice Π when it is obvious in the context.

Its conjugate ket-state is

|Xi〉† = 〈X̄i| . (3.16)

In general, we define a position basis 〈~X,Π| in a polarization in Π = (Xi;Pi) as

follows15

〈~X; Π|eX̂i = 〈~X; Π|eXi , 〈~X; Π|e ˆ̄Xi = 〈~X; Π|eX̄i ,

〈~X; Π|e
∑
i ε
iP̂i = e

∑
i ε
i~ ∂Xi 〈~X; Π| , 〈~X; Π|e

∑
i ε
i ˆ̄Pi = e

∑
i ε
i~̃ ∂X̄i 〈~X; Π| .

(3.17)

In the polarization Π, Xi and Pi are position and momentum variables where the

holomorphic symplectic form is written as

Ω =
∑
i

i

~
dPi ∧ dXi +

i

~̃
dP̄i ∧ dX̄i . (3.18)

(X̂, ˆ̄X, P̂, ˆ̄P) are quantum operators obtained by quantitating X, X̄,P, P̄ respectively.

As an example, one possible polarization choice for an octahedron’s phase space

(3.5) is

ΠZ = (Z;Z ′′) . (3.19)

In the polarization ΠZ := (Z,Z ′′), the octahedron’s wave-function |3〉 is given by a

version of the quantum dilogarithm function [7] (see App. B)

〈Z; ΠZ |3〉 := ψ~,~̃(Z, Z̄) :=
∞∏
r=0

1− qr+1e−Z

1− q̃−re−Z̄
, (3.20)

with q := e~ = e~, q̃ := e~̃ = e~̃. One can check that the wave function satisfy

the operator equations in eq. (3.10). The expression (3.20) is valid only for |q| < 1

and |q̃| > 1, and for general q the expression requires analytic continuation. For S3
b

(k = 1 in our notation), the quantum dilogarithm function ψ~,~̃(z, z̄) reduces to the

Faddeev’s non-compact quantum dilogarithm function [44].

15These conditions does not fix the overall normalization of position basis. We may impose the

orthonormality of the basis. Even then, however, overall phase factor cannot be fixed. Throughout

this paper (except k = 0 case), we are sloppy in the overall normalization. For k = 0, there is

a canonical choice for the normalization of the partition function, the superconformal index; the

normalization factor is the supersymmetric version of the Casimir energy.
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We can also choose ΠZ′ := (Z ′;Z) or ΠZ′′ := (Z ′′;Z ′). The three choices are

related to each other by cycle permutation of vertices Z → Z ′ → Z ′′, and the

corresponding wavefunction are all the same (up to an ovarall factor):

〈X; ΠZ |3〉 = 〈X; ΠZ′|3〉 = 〈X; ΠZ′′ |3〉 , (3.21)

as is guaranteed from the property of the quantum dilogarithm function ψ~,~̃(z, z̄).

In eq. (3.17) we have treated X̂ and ˆ̄X as independent degrees of freedom, however

we wish to impose the following Hermiticity constraint:

X̂† = ˆ̄X , P̂† = ˆ̄P . (3.22)

We need to make sure that this Hermiticity constraint is compatible with the sym-

plectic structure (3.18), leading to the constraint (3.12). Fortunately, that condition

is satisfied for both of the cases considered in eq. (3.11). The inner-product on

the Hilbert space, from the compatibility between the Hermiticity and eq. (3.17), is

uniquely determined up to an overall normalization as

〈~X|~X′〉 = δ(~X− ~X′) , (3.23)

and the completeness relation is16

I =

∫
d~X |~X〉〈~X| . (3.24)

Coming back to eq. (3.9), the variables {Xα} denote the position variables in the

boundary phase space (3.8) in a general choice of the polarization. The typical choice

is to take {Xα = Mα}, where Mα is the meridian variables (2.27). The meridian

variables Mα, as well as its canonical conjugate, the longitude Lα, can be expressed

linear combination of octahedra’ vertex variables Z,Z ′, Z ′′ which commute with all

CIs. We can also choose canonically conjugate variables {ΓI} of CI , satisfying the

canonical commutation relations {CI ,ΓJ}P.B. = −~ δIJ . We then have a choice of

polarization

~X = (Xα, CI) , ~P = (Pα,ΓI) . (3.25)

and the state |Xα, CI = 0〉 is a state defined in this polarization, with constraints

CI = 0 imposed. In this way, we can consistently reduce the Hilbert-space for

P (∂3)]totla to the Hilbert space for PN(∂M, ρ). This procedure is quantum version

of the symplectic quotient in eq. (3.8). Note that since we are setting CI = 0, the

state is actually independent of the choice of the ΓI ; a change of the polarization

ΓI → ΓI +
∑

J cIJCJ adds a Gaussian factor for CIs to the wave function, which

however is trivial due to the constraints CI = 0.

16The delta function (integral) in the inner-product (completeness relation) should be understood

as a Kronecker delta (summation) for discrete variables.
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Integral Expression We can rewrite our partition function (3.9) into a more

concrete expression, by inserting the completeness relation (3.24)

Zstate ntegral

M̂\K (Xα) =
〈
Xα|M̂\K〉 =

〈
Xα, CI = 0

∣∣3⊗]total
〉

=

∫
d~Z
〈
Xα, CI = 0

∣∣~Z; (ΠZ)⊗]total
〉〈
~Z; (ΠZ)⊗]total

∣∣3⊗]total
〉

=

∫
d~Z
〈
Xα, CI = 0

∣∣~Z; (ΠZ)⊗]total
〉 ]total∏
η=1

ψ~,~̃(Zη) . (3.26)

The matrix element 〈Xα, CI |~Z〉 determines the change of the polarization. For our

cases, this can be represented by an Sp(2]total,Z) canonical transformation plus affine

constant shifts, namely an element of the affine symplectic group ISp(2]total,Z):

ΠX,C :=


~X
~C
~P
~Γ

 =

(
A B

C D

)(
~Z
~Z ′′

)
−
(
iπ +

~
2

)(
ν

νp

)

=: g ·

(
~Z
~Z ′′

)
−

(
~γ
~δ

)
, (3.27)

where we obtain the constant part with ν, νp ∈ Z when we use the relation in eq. (3.5),

namely Z + Z ′ + Z ′′ = ~/2 + iπ.

Due to the differences (3.11) in the quantization conditions, details of state-

integral models depends on CS levels (k, σ). However, the expressions written in

eqs. (3.9), (3.20) and (3.26), are true in general.

State-integral Model for k = 0 To make things concrete, let us specialize to

the S1 × S2 case of eq. (3.11), with k = 0 and ~ = −~̃ real. In this case, following

eq. (3.11) let us first represent the variables ~X in terms of their real and imaginary

parts to as ~X = ~
2
~m + log ~u (with |~u| = 1). The wave-function (3.20) can then be

written as

I3(m,u) := 〈m,u; ΠZ |3〉 =
∞∏
r=0

1− qr−m2 +1u−1

1− qr−m2 u
. (3.28)

For k = 0, we use the letter I instead of Z for partition function since it corresponds

to the superconformal index.

I(mα, uα) = Zk=0(Xα)|Xα= ~
2
mα+log uα

. (3.29)

We call this the index in ‘fugacity’ position basis, since u plays the role of the fugacity

in the definition of the superconformal index (denoted ua in eq. (2.30)).
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It is useful to introduce the ‘charge’ position basis 〈m, e; Π|, by taking the powers

of the fugacities u:

〈m,u| :=
∑
e

〈m, e|ue , (3.30)

which leads to

I3(m,u) =
∑
e∈Z

Ic
3(m, e)ue , Ic

3(m, e) := 〈m, e; ΠZ |3〉 . (3.31)

The action of quantum position/momentum operators in the fugacity basis can be

read off from eq. (3.17):17

〈m,u; Π| eX̂± = 〈m,u; Π| q
m
2 u±1 , 〈m,u; Π| eP̂± = e

~
2
u∂u〈m± 1, u; Π| , (3.32)

which simplifies in the charge basis

〈m, e; Π| eX̂± = 〈m, e∓ 1; Π| q
m
2 , 〈m, e; Π| eP̂± = 〈m± 1, e; Π| q

e
2 , (3.33)

and the completeness relations in the two basis are given by

I =
∑
m,e∈Z

|m, e〉〈m, e| =
∑
m∈Z

∮
du

2πiu
|m,u〉〈m,u| . (3.34)

One advantage of the charge basis, as is clear from eq. (3.33), is that the sym-

metry between m and e is manifest, and consequently the basis has following simple

transformation property under the Sp(2]total,Z)+(affine shift) in eq. (3.27):〈
~m,~e; ΠX,C

∣∣ =
〈
(~m,~e) · (gt)−1; Π⊗]total

Z

∣∣e~e·~γ−~m·~δ , (3.35)

where ~m = (mα,mI)
α=1,...,]C
I=1...]total−]C and ~e = (eα, eI)

α=1,...,]C−1
I=1...]total−]C , and ]C denotes the

number of constraints CI = 0.

From eq. (3.35), we find the index of M\K̂ to be

Ic
M\K̂(mα, eα) = 〈mα,mI ; eα, eI |3⊗]total〉

∣∣
CI= ~

2
mI+log uI=0

. (3.36)

The imaginary part of the constraints CI = 0 reads uI = 1, and as we can see from

eq. (3.30) this amounts to sum over the eIs with equal weights:

Ic
M\K̂(mα, eα) =

∑
eI∈Z

〈mα,mI = 0; eα, eI ; ΠL,C |3⊗]total〉

=
∑
eI∈Z

e~e·~γ−~m·
~δ(Ic3)⊗]total

(
g−1 · (mα,mI = 0, eα, eI)

)
. (3.37)

This is the explicit expression of our index.

17We sometimes use subscript +/− for holomorphic/anti-holomorphic variables or operators:

X̂+ := X̂, X̂− := ˆ̄X.
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Abelian Description of TN [M̂\K] The result eqs. (3.26) and (3.27) have clear

counterparts in 3d N = 2 theories, and this is sufficient to give the Abelian descrip-

tion of the 3d N = 2 theory T [M ], which we briefly comment here (see [7, 22, 30]

for details). First, in eq. (3.26) we have a product of quantum dilogarithm functions

inside the integrand. Each of this factor represents a 3d N = 2 chiral multiplet.

Second, the Sp(2n,Z) transformation is interpreted as the Sp(2n,Z) transformation

for Abelian 3d N = 2 theories, defined from the diagonal/off-diagonal Chern-Simons

terms [7, 45]. We then have an integral over the parameters ~Z, representing the

Abelian gauge symmetries, and how the parameters ~Z appears in the arguments of

the quantum dilogarithm function determines the gauge charges of the corresponding

N = 2 chiral multiplets. We also have the delta-function constraints. This means to

include superpotential terms, breaking the symmetries; this superpotential in general

contains fields not appearing in the Lagrangian (monopole operators), and exactly

which operator appears in the superpotential is determined by an Sp(2n,Z) matrix

g in eq. (3.27).

3.2 Co-dimension 2 Defects

Let us restrict to the case where ρ = maximal. In this case, the rule for associating

octahedra was worked out in [17], by lifting to 3d the Fock-Goncharov construction on

2d Riemann surfaces [46]. We use an ‘N -decomposition’ of the 3-manifold, which can

be obtained by replacing each ideal tetrahedron of an ordinary ideal triangulation

by a pyramid of N(N2 − 1)/6 octahedra, {3(a,b,c,d)} with a, b, c, d = 0, . . . , N − 2

satisfying a+ b+ c+ d = N − 2.18 The number of octahedra per ideal tetrahedron is

………………

………………………
……

……

……
……

……
…

(0,0,N-3,1)

(0,0,N-2,0)

(1,0,N-3,0)

(0,1,N-3,0)

(1,0,N-4,1) (0,0,N-4,2)(2,0,N-4,0)

(1,1,N-4,0)

(0,0,N-5,3)(1,0,N-5,2)(2,0,N-5,1)(3,0,N-5,0)

(0,2,N-4,0)

(0,1,N-5,2)
(0,2,N-5,1)

(0,3,N-5,0)
(1,2,N-5,0)

(2,1,N-5,0)
(1,1,N-5,1)

(0,1,N-4,1)

Figure 4. N -decomposition of a single tetrahedron. The m-th layer has m(m + 1)/2

octahedra. Octahedrons are labelled by four non-negative integers (a, b, c, d) satisfying

a+ b+ c+ d = N − 2.

18See figure 3 in [25] for the N -decomposition for M=(figure eight knot complement) with N = 4.
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1

6
N(N2 − 1) . (3.38)

and grows as O(N3) as N becomes large.

Example : M = S3\41 with N = 2 Let us present an example of our procedure

for the figure-eight knot complement S3\41 (Fig. 5). While these computations are

not completely new, we present this example (and more for N = 3 next), since the

results will be necessary for comparison with later sections. Explicit expression for

B
A

D

C

A

C B

D

B

D C

A

ΔY ΔZ

Figure 5. The figure-eight knot 41 (left). We consider its knot complement in S3, namely

S3\41. An ideal triangulation for the knot complement is drawn (right).

all internal vertex variables for N -decomposition of S3\41 are given in eq. (4.60).

The 3-manifold can be obtained by gluing two tetrahedra (which we call ∆Y and

∆Z) with following gluing datum

C = Y ′ + 2Y + Z ′ + 2Z − 2πi− ~ ,
L = Z − Z ′′ , M = Z − Y ′′ . (3.39)

Under the polarization transformation

ΠL,C =


L

C

M

Γ

 =


0 1 0 −1

1 1 −1 −1

0 1 −1 0

0 0 1 0



Y

Z

Y ′′

Z ′′

 = g · ΠY,Z , (3.40)

the charge basis transforms as (see eq. (3.35))

〈(mη,mc, eη, ec); ΠL,C |
= 〈(ec +mc −mη, ec + eη, ec, ec + eη −mη); ΠY,Z | . (3.41)

Finally, we obtain the S1 × S2 partition function:

IcS3\41;N=2(mη, eη) =
∑
ec

〈mη,mc = 0, eη, ec; ΠL,C |3⊗2〉

=
∑
ec

Ic3(ec −mη, ec)Ic3(ec + eη, ec + eη −mη) . (3.42)
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Example : M = S3\41 with N = 3 The octahedral decomposition of S3\41 with

N = 3 is studied in sec 7.4 of [17]. For later comparison, let us rewrite the gluing

equations using the labeling in fig.13:

C1 = Y ′′0,0,1,0 + Y ′′1,0,0,0 + Y ′1,0,0,0 + Z ′′0,0,1,0 + Z ′′1,0,0,0 + Z ′0,0,1,0 − 2πi− ~ ,
C2 = Y ′′0,0,0,1 + Y ′′0,1,0,0 + Y ′0,0,0,1 + Z ′′0,0,0,1 + Z ′′0,1,0,0 + Z ′0,1,0,0 − 2πi− ~ ,
C3 = Y0,1,0,0 + Y1,0,0,0 + Z0,1,0,0 + Z1,0,0,0 + Y ′0,1,0,0 + Z ′1,0,0,0 − 2πi− ~ ,
C4 = Y0,0,0,1 + Y0,0,1,0 + Z0,0,0,1 + Z0,0,1,0 + Y ′0,0,1,0 + Z ′0,0,0,1 − 2πi− ~ ,
C5 = Y0,1,0,0 + Z1,0,0,0 + Y ′′0,0,1,0 + Y ′1,0,0,0 + Z ′′0,0,0,1 + Z ′0,1,0,0 − 2πi− ~ ,
C6 = Y0,0,1,0 + Z0,0,0,1 + Y ′′0,1,0,0 + Y ′0,0,0,1 + Z ′′1,0,0,0 + Z ′0,0,1,0 − 2πi− ~ ,
C7 = Y1,0,0,0 + Z0,0,1,0 + Y ′′0,0,0,1 + Y ′0,1,0,0 + Z ′′0,1,0,0 + Z ′0,0,0,1 − 2πi− ~ ,
C8 = Y0,0,0,1 + Z0,1,0,0 + Y ′′1,0,0,0 + Y ′0,0,1,0 + Z ′′0,0,1,0 + Z ′1,0,0,0 − 2πi− ~ ,
L1 = Z0,0,0,1 + Z1,0,0,0 − Z ′′0,0,1,0 − Z ′′0,1,0,0 ,
L2 = Z ′0,0,0,1 + Z ′1,0,0,0 − Z ′0,0,1,0 − Z ′0,1,0,0 ,

M1 =
1

2
(−Y0,0,0,1 − Y0,0,1,0 − Y0,1,0,0 − Y1,0,0,0 + Z0,0,0,1 + Z0,0,1,0 + Z0,1,0,0 + Z1,0,0,0) ,

M2 =
1

2
(−Y0,0,1,0 − Y0,1,0,0 + Z0,0,0,1 + Z1,0,0,0) .

(3.43)

From these gluing equations, the index (3.37) for TN=3[S3\41] can be written as

IcS3\41;N=3(m1,m2, e1, e2)

=
∑

e3,e4,e5,e6,e7,e8

(−q
1
2 )e3+e4−e5+m1+m2

× Ic3(e7, e3 + e6 − e7) Ic3(−e1 + e7,−e2 − e3 − e7 + e8)

× Ic3(−e2 − e4 − e6 + e8,−e1 + e7 − e8) Ic3(−e2 − e3 + e5 − e7 −m1,−e1 + e6)

× Ic3(−e4 − e7 −m2, e4 + e8 +m2) Ic3(e6 − e8 −m2, e4 − e5 − e6 + e7 +m2)

× Ic3(−e1 + e6 − e8 −m2,−e2 − e4 + e5 − e6)

× Ic3(−e3 + e5 − e6 + e8 −m1 +m2, e3 − e5 − e8 +m1 −m2) . (3.44)

3.3 Co-dimension 4 Defects

Let us next consider co-dimension 4 defects in the state-integral model. As in Sec. 2.2,

we consider a Wilson loop WR(K) in SL(N) CS theory on a knot complement M =

M̂\K along a knot K in a representation R (see eq. (2.34)). In this paper, we

choose to be the representation of SL(N), obtained by naturally complexifying a

finite-dimensional representation of SU(N).

We can also consider anti-holomorphic Wilson line operator by replacing A by

A in the exponent.
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Recall that we have two ‘knots’, one being the original knot K defining the knots

complement, and another the newly-added defect (knot) represented by K. Note that

the K and K play different roles here, K representing the co-dimension 2 defect and

K the co-dimension 4 (Fig. 1).

In this section, we focus on the case when the co-dimension 2 defect along a knot

K ⊂ M̂ is maximal.

State-integral Model with Loop Operators What we wish to achieve here is to

generalize the state-integral models, discussed in previous subsections, by including

co-dimension 4 defects.

The basic idea is simple: we insert the Wilson line operator

ŴR(K)± = ŴR(K)±({Ẑ±, Ẑ ′±, Ẑ ′′±}) (3.45)

into the partition function of the state-integral model (3.9):

〈ŴR(K)〉±(Xα) =
〈
Xα, CI = 0

∣∣ŴR(K)±
∣∣3⊗]total

〉
. (3.46)

Here +/− sign represents the choice of the holomorphic/anti-holomorphic Wilson

loop.

The remaining problem is to obtain the operator ŴR(K). Classically, the Wilson

loop operator WR can be computed using ‘3d snake’ (see App. F as well as sec 4.3

of [17]), and when represented in terms of vertex variables ~Z, ~Z ′ and ~Z ′′, we have:

WR(K)({Z,Z ′, Z ′′}) =
∑
k

sk exp

(
]total∑
η=1

p(k)
η Zη + q(k)

η Z ′η + r(k)
η Z ′′η

)
, (3.47)

with sk, Np
(k)
η , Nq

(k)
η , Nr

(k)
η ∈ Z. Note that the parameters here satisfy constraints

Zη + Z ′η + Z ′′η − iπ = 0 , eZ
′′
η + e−Zη − 1 = 0 , CI({Z,Z ′, Z ′′})

∣∣
~=~̃=0

= 0 ,

(3.48)

and eq. (3.47) are well-defined only up to these constraints. Note that eq. (3.48)

implies19

eZ
′
η =

1

1− eZη
, eZ

′′
η = 1− e−Zη . (3.49)

In the classical limit, q → 1 (q̃ → 1), we expect that the operator ŴR(K)+

(ŴR(K)−) in eq. (3.46) will be equal to the classical expression WR(K).

ŴR(K)+|q=1 = ŴR(K)−|q̃=1 = WR(K) . (3.50)

19For comparison with literature, Z ′ and Z ′′ are sometimes exchanged in the literature on hyper-

bolic geometry.
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All we need to do is then to quantize the classical expression in eq. (3.47).

Quantization turns out to be highly non-trivial, however. First, in the quantiza-

tion procedure there are always ordering ambiguities. Second, the classical expression

(3.47) is defined only up to the non-linear constraints (3.48), whose quantization is

not automatic. Third, the classical expression of WR(K) depends only on the homo-

topy class γ of the knot K inside the 3-manifold M̂\K, and not on the full isotopy

class of the knot K20; by contrast, quantum mechanically we expect that two knots

in different isotopy classes, even when the two are in the same homotopy class, will

give different answers.

In this paper, we specialize to the case of knots which originates from knots of

the 2d surface. We can then quantize the loop operators following the procedure

which we will explain later in Sec. 4.4.

One disadvantage of this approach is that some of the loop operators do not come

from 2d loop operators, and hence cannot be dealt with this method. We also have

to assume that there is an underlying 2d surface for our 3-manifold M . The most

typical case for this is when M is a mapping torus of a 2d surface (see eq. (4.17)),

as we will encounter many times in the rest of this paper.

One should keep in mind, however, that the restriction on the geometry is actu-

ally relatively mild, since we can realize an arbitrary knot complement in S3, using

the formalism of [22].

Also, while such a description of the loop operators covers only a limit class,

we can then appeal to the skein relations of loop operators (see [47, 48] for recent

discussion in 2d), from which we can recover even broader class of loop operators.

We leave the full exploration of this topic for future work [49].

Example: Figure-eight Knot Complement Let us again study the example

of the figure eight knot complement (Fig. 5). The figure eight is often denoted by

41 (with 4 denoting the number of minimal crossings of its 2d projection), so its

complement is M = S3\41. The fundamental group of M = S3\41 is generated by

three generators (a, b, c) depicted in Fig. 6:

π1(M) = 〈a, b, c| ac−1ba−1c = bc−1b−1a = 1〉 . (3.51)

We can therefore consider co-dimension 4 defects along either a, b or c.

20In our notation, K denotes a knot (defined by ambient isotopic equivalence) and γ denotes

a generator in π1(M) (defined by homotopy equivalence). Isotopic equivalence implies homotopy

equivalence, but not the other way around. Classically, only homotopy equivalence class of knot is

relevant. Indeed, the skein relation does not distinguish between an under-crossing and over-crossing

of a knot in the classical limit q = 1.
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The moduli space of SL(N) flat connections can be written as

MSL(N) flat(S
3\41) = Hom(π1(M), SL(N))/ ∼

= {A,B,C ∈ SL(N) : AC−1BA−1C = BC−1B−1A = 1}/ ∼ ,

(3.52)

where the equivalence relation is defined by conjugation of the SL(N). The SL(N)

elements A,B,C represent holonomy of flat connections around the cycles a, b, c

respectively.

A = Hol(a) := P e−
∮
aA , B = Hol(b) := P e−

∮
bA , C = Hol(c) := P e−

∮
cA .

(3.53)

For a hyperbolic 3-manifold M , there are SL(N) flat connections Ageom
N and

Aconj
N which can be constructed using the hyperbolic structure on M :

Aconj
N := (Ageom

N )† := ([N ] · (ω + ie))† . (3.54)

Let us first consider the complete hyperbolic structures. This means we con-

sider flat connections which satisfy the boundary condition in eq. (2.28) with ρ =

maximal, with unipotent monodromies on the boundary. Here ω and e denotes spin-

connections and dreibein on M and they form a PGL(2) flat connection ω± ie, and

the connection can be promoted to an SL(N) flat connection via the N -dimensional

irreducible representation [N ] of SL(2). For the figure-eight knot complement, gauge

holonomies for Ageom
N=2 around generators of the fundamental group are given by

Hol(a) =

(
1 0

e−
iπ
3 1

)
, Hol(b) =

(
1 −1

e−
iπ
3 e

iπ
3

)
, Hol(c) =

(√
3 e−

iπ
6 e

2iπ
3

e−
iπ
3 e

iπ
3

)
.

(3.55)

The complex length `C of a 1-cycle γ can be defined as

Hol(γ)(Ageom
N=2 ) ∼

(
e

1
2
`C(γ) ∗
0 e−

1
2
`C(γ)

)
(3.56)

up to a sign, and the absolute value of its real part `(γ) := |Re{`C}| of the complex

length `C is the hyperbolic length of the cycle, the length computed in a unit hyper-

bolic metric. For example, listing the complex length for the first few cycles with

shortest (yet non-vanishing) length:

`C(b) = 1.087070 + 1.722768i , `C(a−1b) = 1.087070− 1.722768i ,

`C(ab) = `C(b2c−1) = 1.662886 + 2.392124i ,

`C(a2c−1) = `C(ca−1c) = 1.662886− 2.392124i , . . . .

(3.57)
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D

B

D

A

ΔY ΔZ

Figure 6. Three generators a, b, c of π1(S3\41). The paths go through the faces of ideal

tetrahedra.

a : (face D in ∆Z) → (A in ∆Z) → (A in ∆Y ) → (D in ∆Y )→(D in ∆Z),

b : (D in ∆Z) → (B in ∆Z) → (B in ∆Y ) → (D in ∆Y )→(D in ∆Z),

c : (D in ∆Z) → (C in ∆Z) → (C in ∆Y ) → (D in ∆Y )→(D in ∆Z).

We can reproduce these results for N = 2 from the the ‘3d snake’ rule of App. F,

which gives the holonomies in terms of the octahedron variables. The result of the

computation, described in App. F, gives

Hol(a) =

 √
y′′

z
0

−1+y′′√
y′′z

√
z
y′′

 ,

Hol(b) =

 √
z′

y′
−
√

z′

y′

√
y′z′ −

√
y′

z′
(z′ − 1)

 ,

Hol(c) =

(
y+z′′−1√

yz′′
1−y√
yz′′

z′′−1√
yz′′

1√
yz′′

)
.

(3.58)

We can verify that these holonomies give a representation of π1(S3\41) modulo the

classical equations in eq. (3.48). Note that the variables y, y′, y′′ and z, z′, z′′ satisfy

the gluing constraints of eq. (3.39)

y2y′z2z′ = 1 , eL = zz′′−1 , eM = zy′′−1 , (3.59)

as well as (recall eq. (3.49))

y′ =
1

1− y
, y′′ = 1− y−1 , z′ =

1

1− z
, z′′ = 1− z−1 . (3.60)

For L = M = 0, these equations can be solved by y = y′ = y′′ = z = z′ = z′′ =

e−
πi
3 ,21 and the holonomies eq. (3.58) reduce to eq. (3.55).

21This solution corresponds to the geometric flat connection Ageom
N=2 . Another solution can be
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For the γ = c−1a and b−1, we compute the Wilson line in the fundamental

representation to be

Tr
[
Hol(c−1a)

]
= Tr

[
Hol(c)−1 Hol(a)

]
= eY

′′
+ e−Y

′′
+ e−Y

′′+Z+Z′′ ,

Tr
[
Hol(b−1)

]
= Tr

[
Hol(b)−1

]
= e−Y+Z′′ + eY

′′−Z + e−Y−Z ,
(3.61)

where we used eqs. (3.59) and (3.60). We will argue in Sec. 4.4 that the Wilson loop

along the unknot22 Kc−1a and Kb in this homotopy class should be quantized as

Ŵ2(Kc−1a)+ = Ŵ2(Ka−1c)+ ' q
1
4

(
eŶ
′′

+ e−Ŷ
′′

+ eẐe−Ŷ
′′+Ẑ′′

)
,

Ŵ2(Kb−1)+ = Ŵ2(Kb)+ ' q−
1
4

(
e−Ŷ eẐ

′′
+ e−ẐeŶ

′′
+ e−Ŷ−Ẑ

)
,

(3.62)

where the equivalence relation ' between 3d loop operators is defined by

Ô ' Ô′ if 〈CI = 0|Ô|3⊗L〉 = 〈CI = 0|Ô′|3⊗L〉 . (3.63)

Note that for our partition functions only the equivalence class matters. We only

give explicit quantization for holomorphic Wilson loops, since quantization for the

anti-holomorphic case is similar by replacing (q, eŶ , eẐ) by (q̃, e
ˆ̄Y , e

ˆ̄Z). The partition

function of the state-integral model with a holomorphic Wilson loop (3.46) is then

given by〈
Ŵ2(Kc−1a)

〉
+

(mη, η)

=
〈
L =

~
2
mη + log η, C =

~
2
mc + log uc = 0

∣∣Ŵ2(Kc−1a)
∣∣3⊗2

〉
=
∑
eη ,ec

ηeη
〈
mη,mc = 0, eη, ec; ΠL,C

∣∣ q 1
4 (eP̂1 + e−P̂1 + eX̂2e−P̂1+P̂2)

∣∣3⊗2
〉

=
∑
eη ,ec

ηeη
〈
(ec −mη, ec + eη, ec, ec + eη −mη); ΠY,Z

∣∣ q 1
4 (eP̂1 + e−P̂1 + eX̂2e−P̂1+P̂2)

∣∣3⊗2
〉

= q
1
4

∑
eη ,ec

ηeη
[
Ic3(ec −mη + 1, ec) Ic3(ec + eη, ec + eη −mη) q

ec
2

+ Ic3(ec −mη − 1, ec) Ic3(ec + eη, ec + eη −mη) q
− ec

2 .

+ Ic3(ec −mη − 1, ec) Ic3(ec + eη + 1, ec + eη −mη − 1)q
ec+2eη−mη−1

2

]
.

(3.64)

obtained by replacing e−
πi
3 by e

πi
3 . The latter corresponds to the conjugate flat connection Aconj

N=2.

In general, the solution of gluing equations with Im[Z] ∈ (−π, 0) + 2πZ for all vertex variables Z

corresponds to Ageom
N=2 . For non-hyperbolic case, there is no solution satisfying the angle conditions.

For hyperbolic cases, the solution is unique if it exists and the existence depends on the ideal

triangulation T .
22 By “the unknot in the homotopy class γ” we mean a knot inside M = M̂\K which is γ as a

homotopy class and which is an unknot inside the ambient manifold M̂ , namely an unknot when

the co-dimension 2 defect K is removed.
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Here we use eq. (3.41). In the computation, (X̂i, P̂i)i=1,2 denote position/momentum

operators in ΠY,Z and its action on the charge basis can be obtained using eq. (3.33).

Repeating the similar calculation, we have〈
Ŵ2(Kb)

〉
+

(mη, η) =

= q−
1
4

∑
eη ,ec

ηeη
[
Ic3(ec −mη, ec + 1) Ic3(ec + eη + 1, ec + eη −mη) q

eη
2

+ Ic3(ec −mη + 1, ec) Ic3(ec + eη, ec + eη −mη + 1) q−
eη
2 .

+ Ic3(ec −mη, ec + 1) Ic3(ec + eη, ec + eη −mη + 1)q
−eη−2ec+mη

2

]
.

(3.65)

For later use, we list several first orders in the q-expansion〈
Ŵ2(Kc−1a)

〉
+

(mη = 0, η)

= −
(
η +

1

η

)
q

3
4 − 3 q

5
4 −

(
η +

1

η

)
q

7
4 +

(
−1 + η2 +

1

η2

)
q

9
4 + 3

(
η +

1

η

)
q

11
4 + . . . .〈

Ŵ2(Kb)
〉

+
(mη = 0, η)

= q−
1
4 − 3 q

3
4 +

(
−3

η
− 3η

)
− 6 q

7
4 +

(
−2

η
− 2η

)
q

9
4 +

(
−1 +

1

η2
+ η2

)
q

11
4 + . . .

(3.66)

Later in Sec. 5.3 we will compare our answer with an independent computation from

T [SU(N)] theory.

4 From Cluster Partition Function

We next come to one of the central materials of this paper, the discussion of cluster

partition functions. We first present the general expression of our cluster partition

function, and then explain how that is related to the discussion of 3-manifolds. We

will finally work out explicit examples.

4.1 General Formula

Let us first summarize our results for the cluster partition function, building on and

generalizing the result of [22]. Since the derivation is technically involved, we present

the derivation in the App. C.

We shall present our result for the case of the (S3)b partition function which

corresponds to k = 1, in order to make contact with the results of [22]. The formula

however easily generalizes to other cases in eq. (3.11).

We use the formula for the ‘trace’ of the cluster partition function (an expression

before giving a trace is also given in App. C; we here give only the minimal results
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needed for the computations of examples in this paper). This is determined from

a quiver (an oriented graph) Q, represented by an anti-symmetric matrix (Qi,j)

changing from Q(0) := Q to Q(L). We denote the number of vertices of Q(t) by |Q|,
which is actually independent of t. This change of the quiver is prescribed by the

so-called mutations of the quiver at vertices m = (m0, · · · ,mL−1) of Q, as well as a

sequence of permutations σ = (σ0, . . . , σL−1).23 Then the assumptions we make is

that after all the mutations and permutations, the quiver Q(L) comes back to Q(0)

(see App. C for details of definitions).

Our trace of the cluster partition function is a trace of an operator in a quantum

mechanical Hilbert space constructed from Q,m and σ. Its Fourier transform has

an integral expression:

F.T. [TrQ,m,σ] (M′) =

∫ [L−1∏
t=0

d~u(t)dZ(t)dZ ′′(t)

]
L−1∏
t=0

ψ~
(
Z(t)

)
e−

1
4πib2

Z(t)Z′′(t)

× δ
(
ĈQ,m,σ · ~U − ~V

) L−1∏
t=0

δ

Z(t) + Z ′′(t)− 2

|Q|∑
i=1

Qmt,i(t)ui(t)


×

nc∏
α=1

δ

 |Q|∑
i=1

cαi (0)ui(0)

 . (4.1)

Let us explain the notation in eq. (4.1). First, this expression is a function of a

set of parameters M′ = {M′
α}, where α runs over the set of conserved quantities of

the quantum mechanics commuting with ‘time evolution’ generated by (m,σ). The

cluster partition function TrQ,m,σ is a function on the conserved quantities {Lα} and

the above expression is its Fourier transformation (C.31). In practice, the number

of such M′
α is given by nc, the number of central elements in the cluster algebra

commuting ϕ̂ constructed from (m,σ).

The notation L comes from the fact that these variables correspond to longitude

variables L in the case of our favorite example: (Q,m,σ) associated to mapping

torus (Σ1,1×S1)ϕ=LR. Note that while the notation M′ is reminiscent of the meridian

variable M, the two are not the same, M′ can be identified as −M up to an ambiguity

of the cluster partition function. The ambiguity will be studied in sec. 4.2 (see

eq. (4.19)). The ambiguity shifts M′ by some linear combinations for longitude

variables.

M′ ∼M′ + (some linear combination of L) . (4.2)

Note that (as we have seen around eq. (2.8)) the concept of the longitude/meridian

depends on the choice of the ambient manifold M̂ , and does not have an intrinsic

23 There is an unfortunate conflict of notations where: σ was also used for the Chern-Simons

level in eq. (2.9). The σ for the permutation is either written in bold (σ) or has an index (as in

σi). We hope that no confusion arises from this.
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meaning for a given manifold M = M̂\K. We call meridian/longitude for the our

favorite example case viewing the mapping torus as a knot complement whose ambi-

ent manifold is S3. If we view the knot complement as knot complement on a torus

bundle (T 2 × S1)LR, L should be interpreted as ‘meridian’ variables. Viewing the

torus bundle as the ambient space M̂ , the ambiguity in eq. (4.2) is nothing but the

framing ambiguity, ambiguity in the choice of longitude.24

knot knotlongitude

meridian

longitude

Figure 7. The framing ambiguity for the longitude; we can add integer multiples of the

meridian to the longitude. When the ambient 3-manifold for the figure eight knot is chosen

to be (T 2 × S1)LR, and not S3, the role of the longitude and the meridian is reversed and

hence the framing ambiguity is the ambiguity of the meridian as in eq. (4.2), the M′ there

is meant to be the meridian when the ambient 3-manifold is chosen to be S3.

The integral is over a set of parameters ~u(t) = {ui(t)}, Z(t) and Z ′′(t)25, with t

running over time (t = 0, · · · , L− 1) and i running over all the vertices of the quiver

Q (i = 1, · · · , |Q|). The integrand contains a product of a special function ψ~(x),

the quantum dilogarithm function defined in App. B.

24 In S3 or more generally a homology 3-sphere, we can fix this ambiguity by imposing the

condition that the total intersection number of the longitude with the knot itself is zero. Such a

canonical choice does not exist, however, for a general 3-manifold.
25Our convention of Z(t), Z ′(t), Z ′′(t) here is different from that in [22], to better match the

notations in the state-integral models.
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The arguments of the delta functions in the second line of eq. (4.1) are given by

ĈQ,m,σ · ~U :=


I 0 0 −σ−1

L−1 · P̂mL−1

−σ−1
0 · P̂m0 I 0

...
...

. . .
...

...

0 · · · −σ−1
L−2 · P̂mL−2

I




~u(0)

~u(1)
...

~u(L− 1)

 ,

~V :=


−1

2

∑|Q|
i=1

(∑|Ker(Q)|
α=1 cαi (0)M′

α

)
êi − 1

2
Z(0)êm0

−1
2
Z(1) êm1

...

−1
2
Z(L− 1) êmL−1

 . (4.3)

These delta functions impose linear constraints among the integration variables. Here

P̂mk is a linear transformation acting on ~u(t) = ui(t) (for each fixed t, see eq. (C.17)):

P̂mkui(t) =

{
−ui(t) (i = mt)

ui(t) + [Qi,mt(t)]+umt(t) (i 6= mt)
. (4.4)

We take ek to be a row vector ek = (
1

0̌, 0, · · · ,
k

1̌, 0, · · · ,
|Q|
0̌ ). Also, σ inside ĈQ,m,σ

acts linearly on the ui(t)s by changing the subscripts, namely σ · ui(t) = uσ(i)(t).

Note that ĈQ,m,σ is of size |Q| × |Q|, and ~U, ~V of size |Q| × L.

There is one subtlety in the integral expressions: the integral is naively divergent

since there are flat directions in the integral variables such that the integrand is kept

invariant, and we need to mod out such flat directions. We find the flat directions

are given by

δ(α)ui(t) = cαi (t) , α = 1, . . . , nc , (4.5)

where cαi (0) are vectors spanning the kernel of Q(0) and cαi (t) is defined recursively

by

cαi (t+ 1) := σ−1
t · P̂mt

(
cαi (t)

)
. (4.6)

Since we have (see App. D for explicit proof)

σ−1
t · P̂mt(KerQ(t)) = Ker(Q(t+ 1)) , (4.7)

it follows that cα(t) ∈ Ker(Q(t)) and the δ-functions δ(Z + Z ′′ −
∑

i 2Qmt,iui) is

invariant under the flat directions. For other δ-functions δ(C · ~V − ~U), the invariance

under the flat directions is manifest except for δ
(
u(0) − σ−1

L−1 · P̂mL−1
(u(L − 1))

)
,

whose invariance is also guaranteed from the condition cα(L) = cα(0) (see eq. (C.28)

in App. C). To kill the flat directions, we impose additional δ-functions in the inte-

gration; this is exactly what appears in the last line of eq. (4.1).
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4.2 Applications to 3-manifolds

Having obtained a general formula for the cluster partition function, the remain-

ing task is to choose (Q,m,σ) appropriately, namely to fit the 3-manifold problem,

thereby establishing the link between cluster algebras and 3-manifolds. Our presen-

tation is a generalization of [3, 4, 22, 50], which we follow closely.26

Flat Connections and Quivers Let us consider the moduli space MN(Σ, ~ρ) of

SL(N) flat connection on a Riemann surface Σ, with the specified holonomy at each

of the punctures pa of type ρa. We consider a 2d surface Σg,h of genus g with h

punctures {pa}ha=1, and we assume χ(Σ) = 2 − 2g − h < 0. We can use the same

boundary conditions as in eqs. (2.27) and (2.28), although here the holonomy is

meant to be the holonomy along a puncture in a 2d surface, not along a knot in

3-manifold. This choice is again labeled by an embedding ρa of SU(2) into SU(N),

for each puncture.

MN(Σg,h, ~ρ) :=
{

moduli space of SL(N) flat-connections on Σ

with a boundary condition around each puncture pa

which is determined by (ρa,L
(a)
α ) as in eq. (2.27)

}
.

More concretely (Pa := SL(N) holonomy around puncture pa),

MN(Σg,h, ~ρ) = Hom

[
π1(Σ1,1)→ SL(N) : with fixed conjugacy class Pa

of the form (2.27)

]
/ ∼ , (4.8)

where ∼ denotes an equivalence relation defined by conjugation action of SL(N).

The image of γ ∈ π1(Σg,h) under a homomorphism can be thought of as an SL(N)

monodromy along γ of the flat-connection determined by the homomorphism. Let

us first count the dimension of MN(Σg,h, ~ρ) for general ~ρ:

dimCMN(Σg,h, ~ρ) = (2g + h)(N2 − 1)− (N2 − 1)−
∑
a

dim L(ρa) − (N2 − 1)

= (2g + h− 2)(N2 − 1)−
∑
a

dim L(ρa) . (4.9)

Note that the dimension is always even (the middle-dimensional real slice, the moduli

space of SL(N,R) flat connection, is already a Kähler manifold). Let us explain the

counting in eq. (4.9). The fundamental group for Σg,h is given by (2g+h) generators

with one relation. In the counting, (2g + h)(N2 − 1) comes form (2g + h) SL(N)

26See [51] ([50]) for mathematical discussion of cluster algebras in the context of 2-manifolds

(3-manifolds).
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matrices which are image of the generators under the homomorphism. −(N2 − 1)

comes from one matrix relation among (2g+h) SL(N) matrices and −
∑

a dim L(ρa)

comes from the constraint fixing the conjugacy class of Pa. The last term −(N2− 1)

comes from the quotient by SL(N) (/ ∼).27

The moduli space MN(Σg,h, ~ρ) is a Kähler manifold, with a canonical holomor-

phic symplectic structured given by

Ω =
1

~

∮
Σ

δA ∧ δA+
1

~̃

∮
Σ

δĀ ∧ δĀ . (4.10)

Moreover, the moduli space allows for a nice set of coordinate charts, parametrized

by local coordinates {Yi, Ȳi}dimCMN
i=1 . Namely, the moduli space is a cluster X -variety,

meaning that on each patch we have a constant bilinear form determined from a

quiver Q,

{Yi, Yj}P.B. = ~Qji , {Ȳi, Ȳi}P.B. = ~̃Qji . (4.11)

and the coordinate transformation between different patches are given by the trans-

formation rules of the so-called y-variables of the cluster algebra (see eq. (4.13)).

While this general story is expected to be true for any N and ~ρ, it is a non-trivial

problem to work out the explicit cluster coordinates on the moduli space. In the lit-

erature, the known constructions are primarily for the case where all the ρa are the

maximal punctures [46]. Naming after its inventor, the local coordinates for maximal

punctures are called Fock-Goncharov (FG) coordinates and the corresponding quiver

Q is called FG quiver. The quiver is determined from an ideal triangulation of the

2d surface Σg,h. For more general punctures, there are very few papers (see e.g. [52]).

The quiver Q associated to MN,~ρ(Σg,h) is expected to have the following properties

|Q| = dimCMN(Σg,h, ~ρ) +
h∑
a=1

rank(Hρa)

= (2g + h− 2)(N2 − 1)−
h∑
a=1

(
dim L(ρa) − `(ρa)

)
− h ,

|Ker(Q)| =
h∑
a=1

rank(Hρa) =
h∑
a=1

`(ρa)− h .

(4.12)

Here |Q| the size of the square matrix and |Ker(Q)| is the dimension of kernel of the

matrix Q. Central elements of the cluster algebra AQ can be identified as distinct

eigenvalues, L
(a)
α , of fixed holonomies around punctures. This is why we identify

|Ker(Q)| as
∑h

a=1 rank(Hρa). Note that rank(Hρ) counts independent parameters of

27This counting is valid only around generic points in the moduli space where all SL(N) is

broken by holonomies, namely when the centralizer of images of (2g + h) generators is trivial (the

flat connection is called irreducible in this case).
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fixed boundary holonomy of type ρ, see eq. (2.27). More physically, given Σ as well

as ~ρ at punctures, we can consider compactifications of 6d (2, 0) theory on Σ, giving

rise to 4d N = 2 theories TN [Σ]. The moduli space MN(Σ, ~ρ) is then the Coulomb

branch of the 4d N = 2 theory compactified on S1, and the coordinates (cluster

y-variables) are the identified with the VEV of the IR line operators therein [53].

Mapping Class Group and Mutations We next describe the geometric meaning

of m (and σ): they describe the action of the mapping class group.

The mapping class group (MCG) of a Riemann surface Σg,h induces a sequence

of flips on ideal triangulation on the Riemann surface. More physically the MCG

corresponds to an action of the generalized S-duality group of the 4d N = 2 theory

T [Σ] [54]. On the cluster coordinates, flips of the ideal triangulation can be repre-

sented as a sequence of mutations and permutations. Classically, a mutation µk on

the k-th node in the quiver Q induces the following transformation on the cluster

coordinates yi := eYi

µk : yi → yi y
max(Qik,0)
k

(
1 + y−1

k

)Qik . (4.13)

By quantizing the moduli space MN(Σ, ~ρ), we obtain a Hilbert space H(k,σ)(Σ, ~ρ)

which depends on the quantum parameters (h, ~̃) (or equivalently (k, σ), see eq. (3.11).

An element ϕ ∈ MCG(Σ) is promoted to a linear operator ϕ̂ acting on the Hilbert

space after the quantization and it gives a projective representation of MCG(Σ). Let

us more explain about the projectivity of the representation. The quantized opera-

tors depends on fixed central elements L
(a)
α , which are related to fixed holonomy Pa

around the a-th puncture:

ϕ̂(L(a)
α ) or ϕ̂([Pa]) . (4.14)

Here [Pa] denotes SL(N) conjugacy class of Pa. Let {ϕn} be generators of the MCG

MCG =
〈
{ϕn} : relations among generators of the form

∏
i

(ϕni)
ci = 1

〉
. (4.15)

Then, we propose that the projectivity of the representation take following form in

general

∏
i

(ϕ̂ni)
ci = exp

( h∑
a=1

na
N

(
Tr(logPa)

2

2~
+

Tr(logP †a )2

2~̃

))
, {na} ∈ Zh , (4.16)

with a proper positive integer N which might depend only on N . In App. E, we will

explicitly confirm the projectivity for Σ0,1 with N = 3 and ρ = ‘simple’. We leave

the proof of the proposal for general case as future work.

The quantum operator ϕ̂ can be written as product of quantum mutation oper-

ators µ̂k (C.7) (quantization of (4.13)) and permutation operators σ̂t.
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Mapping Tori We now know the quiver Q as well as a mutation sequence m

associated with a change of the ideal triangulation. We can translate this into a

3-manifold by re-interpreting a flip as an ideal tetrahedron. This way, the time evo-

lution of a quiver is translated into a 3-manifold cobordism between two 2-manifolds

(Fig. 8). This is already a 3-manifold geometrically. However, if we wish to make

Figure 8. An example of a mapping cylinder (Σg=0,h=4×[0, 1])ϕ (left) and a mapping torus

(Σg=0,h=4×S1)ϕ (right). The mapping class ϕ in this example permutes the four punctures,

generating non-trivial braids in between; after the identification of the boundaries, we

obtain a mapping torus. In this example we have a two-component link, and hence only

two out of the four holonomies around the four punctures of the sphere are independent.

more explicit the connection with the choice of a 3-manifold, in particular with the

defects inside a closed 3-manifold M̂ , we need to close off the two boundary compo-

nents.

In the formulation in terms of cluster partition function, there are two different

methods to obtain 3-manifolds [22]. The first is to attach a handlebody, or rather

its generalization with knot-like defect, called a tanglebody in [22]. This gives rise

to an arbitrary knot in S3, represented in the so-called plat representation.

In another method, we simply identify the two boundaries. We then obtain the

mapping torus, a torus bundle M over the Riemann surface, twisted by a mapping

class group element ϕ:

M =
(
Σ× S1

)
ϕ

:= {(x, t) ∈ Σ× [0, 1]}/ ∼

where the equivalence relation is given by (x, 0) ∼ (ϕ(x), 1) .
(4.17)

Here, the choice of ϕ determines the mutation sequence m; ϕ maps one triangula-

tion to another, which can be equally represented by a sequence of change of the

ideal triangulation. This in turn could be realized by a series of quiver mutations.

The permutations σ is then chosen such that the quiver comes back to itself af-

ter L mutations. At the level of the cluster partition function, identifying the two

boundary Riemann surfaces means to take a trace TrQ,m,σ of the cluster partition

– 39 –



function.28 Since the phase spaceMN(Σ, ~ρ) can be thought as phase space of SL(N)

CS theory on Rtime × Σ, the corresponding cluster partition function will give CS

partition function on the mapping torus with fixed conjugacy class of holonomy along

punctures.

TrQ,m,σ(L(a)
α ) = Tr(ϕ̂)(Pa)

= {CS partition function on M with fixed conjugacy class

of holonomies [Pa] around a-th puncture} ; .

(4.18)

Due to the projectivity (4.16), the cluster partition function is only defined up to the

Zh which is phase factor (recall h is the number of punctures of the 2d surface Σ).

Tr(ϕ̂)(Pa) is defined up to a phase factor of the form

exp

( h∑
a=1

na
N

(
Tr(logPa)

2

2~
+

Tr(logP †a )2

2~̃

))
, {na} ∈ Zh .

(4.19)

The ambiguity is a version of the well-known framing ambiguity in the CS partition

function.

Note that not all knot complements can be expressed as mapping tori of 2-

manifolds, and the class of the 3-manifolds we discuss here is not the most general

(such a 3-manifold is a complement of the so-called fibered knot). However, mapping

tori provide excellent examples for practical computations, and include interesting

examples. For example, the mapping torus of the once-punctured torus bundle con-

tains the complement of the so-called figure-eight knot in S3, and we will study this

example extensively. If we consider twice-punctured torus bundles, we could obtain

all the torus knots and the so-called two-bridge knots in S3, as well as more general

knots in lens spaces [55]. In more physical terms, notice also that the 3d N = 2

theories originating from mapping tori can be thought of as duality domain walls of

4d N = 2 theories, which we will comment further in Sec. 5.

4.3 Relation with State-Integral Models

In the previous subsections, we have already written down rules for writing down

cluster partition functions; we can now directly proceed to the computations. Before

coming to examples, however, it is useful to rewrite the expression of the cluster

partition function in a different form, such that the connection with the state-integral

models in Sec. 3 becomes clearer. This not only helps to reproduce the results of

Sec. 3 from the cluster partition function, but also to explore new state-integral

models hitherto unknown in the literature.

28 As is clear from this discussion, we in general need to use only one permutation, at the last

step t = L − 1. However, for practical computations it is useful to have flexibility and allow

for permutation after each mutation, which was why we had a sequence of permutations in the

discussion of the previous subsection.
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The rewriting is actually rather simple: since the delta functions (4.1) are linear,

we can easily solve the constraints and integrate them out. Indeed, the number of

integration variables, as well as the number of constraints, are given by

] of integration variables :

~u(t)︷ ︸︸ ︷
L|(Q)|+

Z(t),Z′′(t)︷︸︸︷
2L ,

] of constraints :

δ(C·~U−~V )︷︸︸︷
L|Q| +

δ(Z(t)+Z′′(t)−2
∑
Qmt,iui(t))︷︸︸︷

L +

δ(
∑
i c
α
i ui(0))︷︸︸︷
nc ,

(4.20)

leading to L − nc remaining integration variables. Here, let us choose to integrate

out only the ~u(t)s. The partition function then can be written in the form

F.T. [TrQ,m,σ] (M′) =

∫ L−1∏
t=0

[dZ(t)dZ ′′(t)]

[ L−1∏
t=0

ψ~
(
Z(t)

)
e−

1
4πib2

Z·Z′′
]
δ (· · · ) . (4.21)

Here the δ-functions give L+nc linear constraints on 2L integration variables {Z(t), Z ′′(t)}.
We claim that the constraints in the δ-functions in the cluster partition function

(4.21) can be written in the following form:

M′
α −

L−1∑
t=0

Axα(t)Z(t) = 0 ,

CI :=
L−1∑
t=0

AcI(t)Z(t) +Bc
I(t)Z

′′(t) = 0 ,

Lα :=
L−1∑
t=0

Cp
α(t)Z(t) +Dp

αZ
′′(t) = 0 ,

(4.22)

with α = 1, . . . , nc , I = 1, . . . , L− nc. We argue moreover that the integer matrices

(Ax, Ac, Bc, Cp, Dp)

(Ax)α,t := Aα(t) , (Ac)I,t := AcI(t) , (Bc)I,t := Bc
I(t) ,

(Cp)α,t := Cp
α(t) , (Dp)α,t := Dp

α(t)

satisfy

Ax · (Bc)T = 0, Ax · (Dp)T = I , AC · (Bc)T − (Bc)T · Ac = 0 ,

Ac · (Dp)T −Bc · (Cp)T = 0 , Cp · (Dp)T −DP · (CP )T = 0 .
(4.23)

In fact, the constraints eqs. (4.22) and (4.23) are a part of the following assumption:

there exists a Sp(2L,Q) matrix gcluster and a set of coordinates ΓI (or equivalently
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matrices (Cγ, Dγ)) such that

gcluster :=


Axnc×L 0nc×L

Ac(L−nc)×L B
c
(L−nc)×L

Cp
nc×L Dp

nc×L
Cγ

(L−nc)×L D
γ
(L−nc)×L

 satisfying


M′

α

CI
Lα
ΓI

 = gcluster ·
(
Z(t)

Z ′′(t)

)
. (4.24)

While we do not have a general proof of the aforementioned statements applicable

to general quiver mutations, we will find that this assumption is satisfied for all the

examples discussed in this paper, and is consistent with the results from the state-

integral models (in fact, a similar condition was implicitly assumed in the discussion

of the state-integral models in Sec. 3).

Once we accept this assumption, we can interpret the linear transformation (4.24)

as a change of the polarization in the quantization, from the polarization (Z(t);Z ′′(t))

to (M′
α, CI ;Lα,ΓI). More concretely, we will prove in App. G that

〈M′
α, CI = 0|Z(t)〉 =

∫ L−1∏
t=0

dZ ′′(t) e−
1

4πib2

∑
t Z(t)Z′′(t)δ(eq.(4.22)) , (4.25)

up to an overall constant factor. Here we use language of state-integral model ex-

plained in Sec. 3: 〈M′
α, CI | denote a position basis of H(∂3)⊗L in the polarization

where positions are {M′ = Ax ·Z,C = Ac ·Z+Bc ·Z ′′} and its conjugate momentums

are {L = Cp · Z + Dp · Z ′′,Γ := Cγ · Z + Dγ · Z ′′} while 〈Z(t)| is a position basis

in the polarization where Z(t) and Z ′′(t) are positions and momentums respectively.

When CI = 0, the position basis 〈M′, C| is independent on the choice of ΓI . Using

eq. (4.25), we can then rewrite our cluster partition function (4.21) (4.22) into the

following form:

F.T. [TrQ,m,σ] (M′) =

∫ [L−1∏
t=0

dZ(t)

]
〈M′

α, CI = 0|Z(t)〉〈Z(t)|3⊗L〉

= 〈M′
α, CI = 0|3⊗L〉 , (4.26)

where in the second line we used the completeness relation (3.24), and we used the

octahedra’s wave-function (3.20) :

〈Z(t)|3⊗L〉 =
L−1∏
t=0

ψ~ (Z(t)) . (4.27)
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By performing Fourier transformation again, we finally have

TrQ,m,σ(L) = 〈Lα, CI = 0|3⊗L〉 , (4.28)

where the 〈Lα, CI | is position basis in a polarization where (L, CI) are positions and

(−M′,ΓI) are momentums. We therefore came to the conclusion that the cluster

partition function takes exactly the same form as the partition function of state-

integral models, and for precise comparison all we need to do is to compare the delta

function constraints (gluing equations in 3-manifold examples). Once we obtain the

octahedral gluing equations from the cluster partition function which is derived for

only k = 1, the cluster partition function for other k can be obtained using the

state-integral models for other k. Conversely, given a cluster partition function we

can recover the gluing equations, and hence the octahedron structures of the ideal

triangulation. In fact, the latter point can be made somewhat more manifest by

making a connection between octahedra and the ‘mutation network’ of [22], which

we now turn to.

Mutation Networks versus Octahedra For a general cluster partition function

(including those not coming from 3-manifolds), a useful method to encode the data

of quiver mutations is to use the formalism of the mutation network introduced in

[22].

Let us quickly summarize the concept of the mutation network (see [22]). The

mutation network is a graph consisting of black vertices and white vertices, with

1. Black vertices represent mutations of the quiver; we have a vertex for each muta-

tion m.

2. White vertices represent the vertices of the quiver. Each time a mutation is

performed we add a new vertex, representing the vertex after the mutation. This

means that (if we are interested in the trace of the cluster partition function) the

total number of white vertices is given by |Q|+ L.

3. Suppose a mutation is performed at the vertex m. We prepare two vertices mbefore

as well as mafter, representing the vertex m before and after the mutation. Then,

the black vertex representing the mutation is connected to the white vertex repre-

senting mbefore and mafter, as well as to all the white vertices whose corresponding

quiver vertices are connected to the vertex m (Fig. 4.3).

Let us now specialize to the case of this subsection, namely a mutation sequence

coming from the ideal triangulations of the Riemann surface. What is remarkable

in this case is that we always mutation at the vertex with two lines coming in and
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Figure 9. A mutation network represents combinatorial structure of the quiver mutations.

A mutation at vertex mt is represented graphically as shown here, here the black vertex

representing the mutation is connected (possibly with multiplicity) to the vertices i1, i2, . . . ,

affected by the mutation, and in particular the white vertex for the mutated vertex mt

itself is duplicated, one for before the notation, and another for after the mutation. For

applications to 3-manifold, the mutation network looks as on the right locally around a

black vertex, and it plays the same role as the octahedron decomposition. In this sense, a

mutation net work is more general than the octahedron decomposition.

two lines coming out (see examples in the next subsection).29 In this case, the

mutation network always looks as in the right of Fig. 4.3, namely the black vertex

is connected to six vertices. We can identify this with an octahedron, which has six

edges; a mutation (a black vertex) corresponds to an octahedron, and a vertex (a

white vertex) corresponds to an edge of the octahedron (Fig. 10). This means that the

given a quiver mutation, we can unambiguously write down the mutation network,

and consequently a octahedron-type decomposition. This is a powerful machinery

to write down octahedron decompositions, even in cases hitherto unknown in the

literature, for example for the example of the simple punctures to be discussed in

the next subsection.

Summary Comparing our expression of the cluster partition function (4.28) with

that for the state-integral model (3.9), we immediately find the following correspon-

29 If this pattern continues, this will be a strong constraint on the possible mutation sequence for

quiver sequences coming from general ρ. Interestingly, this means that the mutation of the quiver

can be thought of as a Seiberg duality [56] of the 4d N = 1 quiver gauge theory defined in [57, 58],

and we can associate 4d superconformal indices (or its lens space generalization) following [59–61].
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Figure 10. For the 3-manifold cases, there is a one-to-one correspondence between a

mutation network and an octahedron; a black vertex (mutation) of the mutation network

represents an octahedron, and the white vertices connected to it represents the vertices

of the octahedron. This makes it possible to write down octahedron structures for non-

maximal punctures.

dence:

cluster partition function state-integral model

mutation network octahedron decomposition

mutation octahedron

quiver vertex affected by a mutation vertex of a octahedron

nc complex dimension of boundary phase space

Z(t), Z ′′(t),
octahedron’s vertex variables

Z ′(t) := iπ + ~
2
− Z(t)− Z ′′(t)

Lα/M
′
α boundary position/momentum

delta function constraint gluing equations of octahedra

CI = 0 at an internal vertex

We can also associate a 3d N = 2 theory (“cluster N = 2 theories”) T [Q,m,σ]

with Abelian gauge groups: the procedure is exactly the same as in Sec. 3.1. The
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dictionary for the 3d N = 2 theory is given as follows:

cluster partition function 3d N = 2 theory

mutation network a graph indicating matter and symmetry

mutation chiral multiplet

quiver vertex affected symmetry under which

by a mutation a chiral multiplet is charged

nc rank of global symmetries

Z(t), Z ′′(t), loop operators for symmetries

Z ′(t) := iπ + ~
2
− Z(t)− Z ′′(t) of a free chiral multiplet

Lα/M
′
α flavor Wilson/vortex loops

delta function constraint superpotential W constraint

CI = 0 R-charge(W )=2

4.4 Inclusion of Co-dimsion 4 Defects

In our cluster partition function formalism, we can include co-dimension 4 defects by

inserting a loop operator in the 2-manifold direction. The loop operator is classically

a holonomy along a 1-cycle of the 2-manifold, which we can quantize systematically

using the Fock-Goncharov coordinate. The equivalence between the FG quantization

and quantization using Skein-relation is demonstrated in [47].

Given an ideal triangulation on the 2-manifold, there are rules for reading off

the holonomies for the 1-cycle, as we will explain in App. F. This will give rise to

classical expression for the Wilson loop operator in terms of FG coordinates Yi

WR(K) = TrR Hol(γ := [K]) =
∑
k

ck e
∑|Q|
i=1 a

(k)
i Yi , (4.29)

where γ is an element of π1(Σ). Unlike in 3d case, these Yi variables are only

constrained by linear equations, which identify some linear combination of Yi with

eigenvalues of holonomies around punctures, and allows for a simple quantization

rule:

ŴR(Kγ) =
∑
k

ĉk e
∑|Q|
i=1 a

(k)
i Yi (4.30)

where Ys are quantized FG coordinates and Kγ is the unknot in the homotopy class

γ (recall footnote 22). Also, ĉk is a quantization of ck, replacing the integer ck by

in general a Laurent polynomial in q
1
2 , symmetric under the exchange q → q−1 (cf.

[62]).

Since we consider mapping tori (and hence the ‘time’ t is periodic), we can choose

to insert the Wilson line into the cluster partition function at t = 0.30 Generalizing

30If we choose to insert Wilson lines at several different times, we could discuss correlators of

Wilson lines.
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the computation of cluster partition function in Sec. 4 with the insertion of loop

operators, we wish to compute

F.T.[〈WR(Kγ)〉Q,m,σ](M′) =

∫ ∏
dLα e

1
~
∑
α Lα·M′αTr

[
ŴR(Kγ)ϕ̂Q,m,σ

]
(Lα) ,

=
∑
k

ck F.T.[〈e
∑
i a

(k)
i Yi〉Q,m,σ](M′) .

(4.31)

The computation of eq. (4.31) is similar to the case without the Wilson lines: we

insert the complete set in between the operators, converting the expression into

integrals. We then carry out some obvious integrals. After the computation (see

App. C.2), we have

F.T.[〈e
∑
i aiYi〉Q,m,σ](M′)

=

∫ ( L−1∏
t=0

d~u(t)dZ(t)dZ ′′(t)
)

exp

(
− 1

2

|Q|∑
i=1

aiQim0Z(0)−
|Q|∑
i,j=1

aiQijuj(0)

)

×
L−1∏
t=0

ψ~
(
Z(t)

)
e−

1
2~Z(t)Z′′(t)δ

(
ĈQ,m,σ · ~U − ~Va

)

×
L−1∏
t=0

δ

Z(t) + Z ′′(t)− 2

|Q|∑
i=1

Qmt,i(t)ui(t)

 |Ker(Q)|∏
α=1

δ

 |Q|∑
i=1

cαi ui(0)

 .

(4.32)

with

~Va := ~V − ~
2


~a

0L
. . .

0L

 . (4.33)

The matrix ĈQ,m,σ and vectors ~U and ~V are defined in eq. (4.3). Let us change

the above expression suitable to compare with 3d Wilson loop in eq. (3.46). First

we shift the dummy integration variables (Z,Z ′′, ui) properly in order to cancel the

effect of the Wilson loop in δ-function : (Z,Z ′′, ui)→ (Z + δZ, Z ′′ + δZ ′′, ui + δui)

ĈQ,m,σ · δ~U = −1

2


δZ(0)êm0 + ~~a
δZ(1)êm1

...

δZ(L− 1)êmL−1

 , with δ~U :=


δ~u(0)

δ~u(1)

. . .

δ~u(L− 1)

 ,

δZ(t) + δZ ′′(t)− 2

|Q|∑
i=1

Qmt,i(t)δui(t) = 0 , t = 0, . . . , L− 1 ,

|Q|∑
i=1

cαi δui(0) = 0 .

(4.34)
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The shifts should depends only on ~a. In general, we do not know the existence of the

solutions; however, in several examples we found that such solutions exist. Assuming

existence of the solution, we now have

F.T.[〈e
∑
i aiYi〉Q,m,σ](M′)

=

∫ [L−1∏
t=0

dZ(t)dZ ′′(t)

]
L−1∏
t=0

ψ~
(
Z(t) + ~Wp(t)

)
eWx(t)Z(t)q∆(t)e−

1
2~Z(t)·Z′′(t)δ

(
eq. (4.22)

)
,

=
〈
M′, CI = 0

∣∣q∑L−1
t=0 ∆(t)e

∑
tWx(t)Ẑ(t)e

∑
tWp(t)Ẑ′′(t)

∣∣3⊗L〉 ,
(4.35)

where

Wp(t) :=
1

~
δZ(t) ,

~∆(t) +Wx(t)Z(t) := − 1

2~
Z(t)δZ ′′(t)− 1

2~
δZ(t)Z ′′(t)− 1

2~
δZ(t)δZ ′′(t)

− δt,0
2

|Q|∑
i=1

aiQim0

(
Z(0) + δZ(0)

)
− δt,0

|Q|∑
i,j=1

aiQij

(
uj(0) + δuj(0)

)∣∣∣∣
δ-functions in eq. (4.1)

.

(4.36)

Thus final expression for cluster partition function with insertion of a 2d Wilson loop

is exactly same as the partition function of the 3d state-integral model with a Wilson

line insertion (3.46), under the identification

2d loop operator
∑

ck e
a

(k)
i Yi

⇐⇒ 3d loop operator
∑
k

ck q
∑
t ∆(t)e

∑
tWx(t)Ẑ(t)e

∑
tWp(t)Ẑ′′(t) .

(4.37)

4.5 Examples

We will now come to the analysis of concrete examples. For concreteness we will

below concentrate on the case when Σ is a once-punctured torus or a four times

punctured sphere. In both cases, the mapping class group is (or contains in the

latter case) PSL(2,Z), generated by two elements

L =

(
1 0

1 1

)
, R =

(
1 1

0 1

)
. (4.38)

We primarily consider the case where ϕ = LR (L := ST−1S−1,R = T ). Inter-

estingly, for once-punctured torus case the resulting 3-manifold coincides with the

complement of the figure eight knot 41 inside S3:(
Σ1,1 × S1

)
ϕ=LR

= (Figure-eight knot complement on S3) . (4.39)
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Note that this is a concrete example where knots in different closed 3-manifolds M̂

generate the same 3-manifold with boundary; one 3-manifold is (T 2×S1)ϕ=LR, which

is not hyperbolic and rather is the so-called solvmanifold; another is S3, which is again

not hyperbolic. The two closed 3-manifolds are related by (0, 1)-Dehn surgeries. We

can also consider other (p, q)-surgeries, and the resulting closed 3-manifold Mp,q, with

a knot inside it, again generates the same cusped 3-manifold S3\41, with the choice

of polarization on the boundary torus induced by the (p, q)-Dehn surgery (recall

eq. (2.8)). In general, Thurston’s hyperbolic Dehn surgery theorem states that for

a given hyperbolic cusped 3-manifold, its Dehn fillings are hyperbolic except for a

finite values of (p, q) (note here p and q are taken to be coprime).31

4.5.1 Co-dimension 2 Defects: ρ = maximal

Let us first start with the case of ρ = maximal.

Ex 1. (Σ1,1×S1)ϕ with General ϕ and N We will give cluster partition function

datum (Q,m,σ) for mapping torus (Σ1,1 × S1)ϕ with general N .

(1,1)

(2,2)

(3,3)

(3,0)(2,0)(1,0)

(1,3)

(1,2)

(2,3)(0,3)

(0,2)

(0,1)

(2,1) (3,1)

(3,2)

Figure 11. The Fock-Goncharov quiver (red lines) associated with an ideal triangulation

of Σ1,1 with N = 4. The deal triangulation with two triangles is drawn in black (first from

the left). A puncture is located on vertices of two triangles. A flip of the ideal triangulation,

which corresponds to L ∈ SL(2,Z), causes a sequence of 3 + 4 + 3 = 10 mutations (on

vertices with violet circles).

The Fock-Goncharov (FG) quiver Q can be obtained using a tessellation for each

triangle of a triangulation of Σ1,1. In the tessellation, we introduce (N − 1) nodes in

each edges of triangles and fill nodes inside the triangulation in a natural way. The

quiver with N = 4 is depicted in Fig. 11. The quiver contains (N2− 1) nodes, which

31For the figure eight knot, it is known that such exceptional Dehn surgeries are (p, q) =

(1, 0), (0, 1), (±1, 1), (±2, 1), (±3, 1), (±4, 1) [63, section 4].
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according to their positions will be labelled by an element in (Z2\{0, 0}) /(NZ×NZ):

nodes (vertices) of the FG quiver = {(a, b) ∈ Z2\(0, 0)} ,
(a, b) ∼ (a+NZ, b+NZ) .

(4.40)

There are N − 1 central elements in the algebra AQ defined from the FG quiver:

|Ker(Q)| = N − 1 . (4.41)

All central elements are commute with mapping class group elements which will be

constructed below. Thus, we have

nc = |Ker(Q)| = N − 1 . (4.42)

In the FG quiver, a mapping class group element L can be realized as

L =

N−2∏
p=0

∏
(a,b)∈2L(p)

µ(a,b)

σL

:=

 ∏
(a,b)∈2L(0)

µ(a,b)

∏
(a,b)∈2L(1)

µ(a,b) · · ·
∏

(a,b)∈2L(N−2)

µ(a,b)

σL , (4.43)

where 2L(p) denotes a subset of Z2\{(0, 0)} with (p+ 1)(N − p− 1) entries

2L(p) := {mL,(p,r,s) := (1, N − p) + r(1, 0) + s(1, 2) :

0 ≤ r ≤ N − 2− p, 0 ≤ s ≤ p} .
(4.44)

For example, for N = 4 we have p = 0, 1, 2 and

2L(0) := {mL,(p,r,s) := (1, 0) + r(1, 0) : 0 ≤ r ≤ 2} ,
2L(1) := {mL,(p,r,s) := (1,−1) + r(1, 0) + s(1, 2) : r = 0, 1 , s = 0, 1} ,
2L(2) := {mL,(p,r,s) := (1,−2) + s(1, 2) : 0 ≤ s ≤ 2} ,

(4.45)

which coincides with the circled vertices in Fig. 11. For a given p, the ordering

of mutations µ(a,b)∈2L(p) is irrelevant since they all mutually commute. Thus, the

sequence of mutations for L is

mL = ({~mL,(p,r,s)}0≤r≤N−2−p,0≤s≤p,0≤p≤N−2 ,

with a partial ordering (p, r, s) < (p′, r′, s′) if p < p′ .
(4.46)

The permutation σL is given by

σL : (a, b) −→ (a, a+ b) . (4.47)
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Similarly, R ∈ SL(2,Z) can be realized as

R =

N−2∏
p=0

∏
(a,b)∈2R(p)

µ(a,b)

σR

:=

 ∏
(a,b)∈2R(0)

µ(a,b)

∏
(a,b)∈2R(1)

µ(a,b) . . .
∏

(a,b)∈2R(N−2)

µ(a,b)

σR , (4.48)

with

2R(p) = {mR,(p,r,s) := (N − p,N − 1− p)− r(0, 1) + s(2, 1) :

0 ≤ r ≤ N − 2− p, 0 ≤ s ≤ p} ,
σR : (a, b)→ (a+ b, b) .

(4.49)

Thus,

mR = ({~mR,(p,r,s)}0≤r≤N−2−p,0≤s≤p,0≤p≤N−2 ,

with a partial ordering (p, r, s) < (p′, r′, s′) if p < p′ .
(4.50)

The total number of mutations for a single flip is

|mL| = |mR| =
N−2∑
p=0

(p+ 1)(N − p− 1) =
1

6
N(N2 − 1) . (4.51)

which coincides with eq. (3.38) with k = 1 (i.e. for a single tetrahedron).

For a pseudo-Anosov map ϕ ∈ SL(2,Z) (i.e, |Tr(ϕ) > 2|), the mapping torus

(Σ1,1 × S1)ϕ is a hyperbolic 3-manifold. As an element of SL(2,Z), pseudo-Anosov

map ϕ can be always decomposed into L or R up to conjugation

ϕ = ϕ1ϕ2 . . . ϕ] , with ϕi = L or R . (4.52)

The SL(N) CS partition function on the corresponding mapping torus can be realized

as cluster partition function with the following datum

m = {mϕ1 ,mϕ2 , . . . ,m]} ,

σ = {
0

Ǐ, I, · · · ,
1
6
N(N2−1)−1

σ̌ϕ1 , I, · · · ,
k
6
N(N2−1)−1

ˇσϕk , I, · · · ,
]
6
N(N2−1)−1

σ̌ϕ] } ,
(4.53)

with the Fock-Goncharov quiver Q. Using these, it is straightforward to write down

the cluster partition function, and get the final answer (4.21) with linear constraint

on Z(t) and Z ′′(t) with t = 0, . . . , ]
6
N(N2 − 1) − 1. As we will see below in several

examples, one can check that the linear constraints can be written as in the form of

eq. (4.22). There is a pictorial way to understand these linear constraints: they are

– 51 –



equivalent to octahedra’s gluing equations in the N -decomposition of the mapping

torus. To see the equivalence, it is better to use following labelling for t

{Z(t), Z ′′(t)}t=0,1,..., ]
6
N(N2−1)

 
{
Z(k)(p, r, s), Z ′′(k)(p, r, s)

}k=1,...,]

0≤r≤N−2−p, 0≤s≤p, 0≤p≤N−2
.

(4.54)

Topologically, the mapping torus can be decomposed into ] ideal tetrahedra {∆k}

(
Σ1,1 × S1

)
ϕ

=

(
]⋃

k=1

∆k

)
/ ∼ . (4.55)

Thus, N -decomposition of the mapping torus introduce ]
6
N(N2−1) octahedra whose

A

B

A B

A

B

A

B

Δk

Δk+1

(ϕk ,ϕk+1) = (L,L) (ϕk ,ϕk+1) = (L,R)

A

B

(ϕk ,ϕk+1) = (R,L) (ϕk ,ϕk+1) = (R,R)

AB AB

A B

Figure 12. An ideal triangulation of (Σ1,1×S1)ϕ with ϕ = ϕ1 . . . ϕ]. The two faces in the

top of ∆k are glued to the two faces in the bottom of ∆k+1. We glue them according to

the sequence (ϕk, ϕk+1), namely the two faces with same color are glued together (cf. [4]).

vertex variables are labelled by

(Z,Z ′, Z ′′)
(k)
α,β,γ,δ : α + β + γ + δ = N − 2 (α, β, γ, δ ≥ 0) . (4.56)

Our convention for labelling octahedra is depicted in Fig. 13 using the example for

N = 4. Then the linear constraints in the cluster partition function are equivalent

to gluing equations for the N -decomposition under the following identification:

(Z,Z ′, Z ′′)
(k)
α,β,γ,δ =

(
Z(k)(p, r, s), iπ +

~
2
− Z(k)(p, r, s)− Z ′′(k)(p, r, s), Z ′′(k)(p, r, s)

)
with p = β + γ, r = δ, s = γ . (4.57)

The N -decomposition for the mapping torus can be drawn by replacing each tetrahe-

dron in the Fig. 12 by a pyramid of N(N2 − 1)/6 octahedra with labelling depicted

in Fig. 13. It is notationally rather cumbersome to explicitly write down the full

– 52 –



(0,0,2,0)

(0,0,1,1)
(0,1,1,0)

(1,0,1,0)

(0,2,0,0)
(0,1,0,1)

(0,0,0,2)
(1,1,0,0)

(2,0,0,0) (1,0,0,1)
(0,1,0) (0,2,0)

(1,0,0)

(1,0,1)

(1,1,0)

(1,1,1)

(2,0,0)

(2,0,1)

(2,0,2)

(0,0,0)

Z’

Z(0,0,2,0)Z’’(0,0,2,0)

(0,2,0)

(0,1,0)

(0,0,0)

(1,1,0)

(1,0,0) (1,1,1)

(1,0,1)

(2,0,0)

(2,0,1)

(2,0,2)

Figure 13. Left: Labeling (p, r, s) of mutations in a single flip corresponding to L ∈
SL(2,Z) of FG quiver with N = 4. Right: Labeling (Z,Z ′, Z ′′)(α,β,γ,δ) of octahedra in the

N = 4-decomposition of a single tetrahedron. Right: Labeling (p, r, s) of mutations in a

single flip corresponding to R ∈ SL(2,Z).

gluing equations for general ϕ. We therefore here write down gluing equations for

the internal vertices in the N -decomposition with ϕ = LR.

Depending on its location in ideal tetrahedra, the internal vertices can be divided

into 3 classes: ‘interior’ type located inside ideal tetrahedra and ‘edge’ type on the

edges and ‘face’ type on the faces. In total, there are 1
3
N(N2 − 1) internal vertices:

1

3
N(N2 − 1) =

(N − 1)(N − 2)(N − 3)

3
+ 2(N − 1)(N − 2) + 2(N − 1)

= ](‘interior’ vertices) + ](‘face’ vertices) + ](‘edge’ vertices) .

Consequently, the gluing equations also come in three different types. The first is

the “interior type”

Z
′′(k)
α,β,γ,d + Z

′(k)
α,β−1,γ,δ+1 + Z

(k)
α−1,β,γ,δ+1 + Z

′′(k)
α−1,β−1,γ+1,δ+1

+ Z
′(k)
α−1,β,γ+1,δ + Z

(k)
α,β−1,γ+1,δ = 2πi+ ~ ,

(4.58)

with k ∈ {1, 2}, 1 ≤ α, β ≤ N − 2, 0 ≤ γ, δ ≤ N − 3, α + β + γ + δ = N − 2. The

second is the “edge type”

Z
′(1)
0,d,N−2−d,0 + Z

′′(1)
N−2−d,d,0,0 + Z

(1)
0,0,N−2−d,d + Z

′′(2)
0,0,N−2−d,d

+ Z
(2)
N−2−d,d,0,0 + Z

′(2)
N−2−d,0,0,d = 2πi+ ~ ,

Z
(1)
d,0,N−2−d,0 + Z

(1)
0,d,0,N−2−d + Z

′(1)
d,0,0,N−2−d + Z

(2)
0,d,0,N−2−d

+ Z
(2)
d,0,N−2−d,0 + Z

′(2)
0,d,N−2−d,0 = 2πi+ ~ ,

(4.59)
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with 0 ≤ d ≤ N − 2. Finally, we have the gluing equations of the “face type”:

Z
′(1)
0,r−s,N−2−r,s + Z

(1)
0,r−s,N−1−r,s−1 + Z

′′(1)
0,r−s+1,N−2−r,s−1 + Z

′′(2)
N−2−r,r−s,0,s

Z
(2)
N−2−r+1,r−s,0,s−1 + Z

′(2)
N−2−r,r−s+1,0,s−1 = 2πi+ ~ ,

Z
′(1)
r−s+1,s−1,N−2−r,0 + Z

(1)
r−s,s,N−2−r,0 + Z

′′(1)
r−s,s−1,N−1−r,0 + Z

′′(2)
r−s+1,0,N−2−r,s−1

Z
(2)
r−s,0,N−2−r,s + Z

′(2)
r−s,0,N−r−1,s−1 = 2πi+ ~ ,

Z
′(1)
N−2−r,0,s,r−s + Z

(1)
N−2−r,0,s−1,r−s+1 + Z

′′(1)
N−r−1,0,s−1,r−s + Z

′′(2)
0,N−1−r,s−1,r−s

Z
(2)
0,N−2−r,s,r−s + Z

′(2)
0,N−2−r,s−1,r−s+1 = 2πi+ ~ ,

Z
′(1)
s−1,N−1−r,0,r−s + Z

(1)
s,N−2−r,0,r−s + Z

′′(1)
s−1,N−2−r,0,r−s+1 + Z

′′(2)
s−1,N−2−r,r−s+1,0

Z
(2)
s,N−2−r,r−s,0 + Z

′(2)
s,N−2−r,r−s,0 = 2πi+ ~ ,

(4.60)

with 1 ≤ s ≤ r ≤ N − 2. Out of these equations, only 1
3
N(N2 − 1) − (N − 1) of

them are independent. These equations are equivalent to linear constraints {CI = 0}
appearing in the cluster partition function (4.22) (this can be checked explicitly for

a given N). The remaining 2(N − 1) linear constraints, M′
α = Axα · Z and Lα :=

Apα ·Z+Bp
α ·Z ′′ = 0, pick up choice of polarizations in octahedron’s gluing equations.

The {Lα} will be identified with longitude variables {Lα}, which corresponds to

puncture variables in 2d. Longitude variables corresponds eigenvalues of longitude

holonomy

distinct eigenvalues of Hol(l) = {eLα} . (4.61)

The matrix elements of Hol(l) (Hol(P)) can be expressed as rational functions on

octahedron’s vertex variables (cluster y-variables) using 3d (2d) snakes. Unlike lon-

gitude variables, it is non-trivial to find the precise identification for the {M′
α} vari-

ables, and these variables are in general a linear combination of the longitude and

meridian variables.

Ex 1-1. (Σ1,1 × S1)ϕ with ϕ = LR and N = 2 The quiver is given by

vertices = {(1, 0), (0, 1), (1, 1)} ,

Q =

 0 −2 2

2 0 −2

−2 2 0

 . (4.62)

The mapping class group SL(2,Z) of the once-punctured torus is realized as

L = µ(1,0)σL , R = µ(0,1)σR , with

σR : (0, 1)←→ (1, 1) , σL : (1, 0)←→ (1, 1) .
(4.63)
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Using eq. (4.39), the SL(2) CS partition function on S3\41 can be realized as a

cluster partition function TrQ,m,σ with the following data:

m = {m0 = (1, 0),m1 = (0, 1)} ,
σ = {σ0 = σL, σ1 = σR} .

(4.64)

The kernel of Q is spanned by c = (1, 1, 1)T , and hence the central element is given

by

3∑
i=1

ciYi = Y(1,0) + Y(0,1) + Y(1,1) . (4.65)

We can then straightforwardly write down the expression for the cluster partition

function from the results (4.1) and (4.3), and the delta function constraints are given

by:

CQ,m,σ ·
(
u(1,0)(0), u(0,1)(0), u(1,1)(0), u(1,0)(1), u(0,1)(1), u(1,1)(1)

)T
− ~V = 0 ,

Z(0) + Z ′′(0) + 4u(0,1)(0)− 4u(1,1)(0) = Z(1) + Z ′′(1)− 4u(1,0)(1) + 4u(1,1)(1) = 0 ,

(4.66)

where

ĈQ,m,σ =

(
I −σ−1

1 · P̂(0,1)(1)

−σ−1
0 · P̂(1,0)(0) I

)
=



1 0 0 −1 0 0

0 1 0 0 0 −1

0 0 1 −2 1 0

0 0 −1 1 0 0

0 −1 0 0 1 0

1 0 −2 0 0 1


,

~V = −1

2

(
M′ + Z(0),M′,M′, 0, Z(1), 0

)T
.

(4.67)

These constraints imply

M′ = Z(0)− Z(1) , L := −Z(0) + Z ′′(0) = 0 ,

C := Z(0)− Z ′′(0) + Z(1)− Z ′′(1) = 0 .
(4.68)

This is compatible with eq. (4.22). These equations gives the gluing equations (3.39)

for the ideal triangulation for the mapping torus with the identification(
Z(0), Z ′(0) := πi+

~
2
− Z(0)− Z ′′(0), Z ′′(0)

)
⇐⇒

(
Y, Y ′, Y ′′

)
,(

Z(1), Z ′(1) := πi+
~
2
− Z(1)− Z ′′(1), Z ′′(1)

)
⇐⇒

(
Z,Z ′, Z ′′

)
,

(M′,L) ⇐⇒ (−M + L,L) .

(4.69)
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Thus using eq. (4.28) we see that the cluster partition function is same as the partition

function of the state-integral model in a polarization Π = (L,M− L)

TrQ,m,σ(L) =
〈
L, CI = 0

∣∣3⊗2
〉
. (4.70)

Such a change of the polarization in the cusped boundary is expected since our

partition functions have framing ambiguities as in eq. (4.19).

Ex 1-2. (Σ1,1 × S1)ϕ with ϕ = LR and N = 3 The quiver is given by

Vertices = {(1, 0), (2, 0), (0, 1), (1, 1), (2, 1), (0, 2), (1, 2), (2, 2)} ,

Q =



0 0 0 1 −1 −1 1 0

0 0 −1 0 1 0 −1 1

0 1 0 −1 −1 0 1 0

−1 0 1 0 1 0 −1 0

1 −1 1 −1 0 −1 0 1

1 0 0 0 1 0 −1 −1

−1 1 −1 1 0 1 0 −1

0 −1 0 0 −1 1 1 0


.

(4.71)

The mutations m and and the permutations σ are

m = ({1, 0}, {2, 0}, {1, 2}, {2, 1}, {0, 2}, {0, 1}, {2, 1}, {1, 2}) ,
σ = {I, I, I, σL, I, I, I, σR} .

(4.72)

We choose two central elements to be

8∑
i=1

c
(1)
i Yi = −Y(1,0) − Y(2,0) − Y(0,1) − Y(1,1) − Y(2,1) − Y(0,2) − Y(1,2) − Y(2,2) ,

8∑
i=1

c
(2)
i Yi = −Y(2,1) − Y(1,2) .

(4.73)

Applying these (Q,m,σ) to eqs. (4.1) and (4.3), we have following constraints

CI
(
in eq. (3.43)

)
= 0 , I = 1, . . . , 8 ,

Lα
(
in eq. (3.43)

)
= 0 , M′

α = −Mα(in eq. (3.43)) , α = 1, 2 .
(4.74)

These constraints are same as expected from eq. (4.22). Here we use eqs. (4.54)

and (4.57), and express {Z∗(t)} by {Y ∗α,β,γ,δ := Z
∗(1)
α,β,γ,δ, Z

∗
α,β,γ,δ := Z

∗(2)
α,β,γ,δ} where ∗

is ′ or ′′ or nothing. Thus, we see that the cluster partition function is same as the

partition function of the state-integral model in a polarization Π = (L1,L2,M1,M2)

TrQ,m,σ(L1,L2) =
〈
L1,L2, CI = 0

∣∣3⊗2
〉
. (4.75)
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z z

1

2

3 4
5

5 6

2

1

Figure 14. Quiver for MN=2(Σ0,4, ~ρ = [1, 1]⊗4). Σ0,4 can be decomposed into four ideal

triangles.

.

Ex 2. (Σ0,4 × S1)ϕ with ϕ = LR and N = 2 Ideal triangulation and FG quiver

for Σ0,4 with N = 2 is given in figure. 14. The skew-symmetric matrix Q is

Q =



0 0 1 1 −1 −1

0 0 1 1 −1 −1

−1 −1 0 0 1 1

−1 −1 0 0 1 1

1 1 −1 −1 0 0

1 1 −1 −1 0 0


. (4.76)

Mapping class group of Σ0,4 contains SL(2,Z) and its two generators L,R can be

written as

L = µ1µ2σL , R = µ5µ6σR , with

σL =



0 0 0 1 0 0

0 0 1 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1


, σR =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0

0 0 1 0 0 0

0 0 0 1 0 0


.

(4.77)

Classical transformation on the y-variables for these generators are

L : (y1, y2, y3, y4, y5)

→
{

y1y2y3

(y1 + 1) (y2 + 1)
,

y1y2y4

(y1 + 1) (y2 + 1)
,

1

y2

,
1

y1

, (y1 + 1) (y2 + 1) y5, (y1 + 1) (y2 + 1) y6

}
,

R : (y1, y2, y3, y4, y5)

→
{

y1y5y6

(y5 + 1) (y6 + 1)
,

y2y5y6

(y5 + 1) (y6 + 1)
,

1

y5

,
1

y6

, y4 (y5 + 1) (y6 + 1) , y3 (y5 + 1) (y6 + 1)

}
.

(4.78)
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Note that only two out of four central elements are invariant under ϕ = LR. We

choose two central elements as
6∑
i=1

c
(1)
i Yi :=

1

3
(Y1 + 2Y2 + Y3 + 2Y4 + 2Y5 + Y6) ,

6∑
i=1

c
(2)
i Yi :=

1

3
(2Y1 + Y2 + 2Y3 + Y4 + Y5 + 2Y6) .

(4.79)

Integrating out {~ui(t)} in the delta-function constraints in cluster partition function

(4.1), we have

M′
1 = Z(0)− Z(2) , M′

2 = Z(1)− Z(3) ,

L1 := Z ′′(0)− Z(1) = 0 , L2 := Z ′′(1)− Z(0) = 0 ,

C1 := Z(1) + Z(3)− Z ′′(0)− Z ′′(2) = 0 , C2 = Z(0) + Z(2)− Z ′′(1)− Z ′′(3) = 0 .

(4.80)

which have expected structure in eq. (4.22).

4.5.2 Co-dimension 2 Defects: ρ = non-maxiaml

Let us next turn to non-maximal ρ. We proceed to work on simple but yet non-

trivial examples: Σ = Σ1,1 (once-punctured torus) with N = 3 and 4. We study the

quiver for N = 3 with ρ = [2, 1] (simple) and for N = 4 with ρ = [3, 1] (simple) and

ρ = [2, 1, 1]. In these cases, the proposed quivers are drawn in Fig. 15.

4

21

3

5

21

5

Q[2,1]

4

21

3

5

21

Q[3,1]

6

31

4

5

2

77

31 2

6

31

4

5

2

7

31 2

1 32

4

5

6

7

8

7

8

9 10

1112

2 31

Q[2,1,1]

Figure 15. Quivers forMN=3(Σ1,1, simple),MN=4(Σ1,1, simple) andMN=4(Σ1,1, [2, 1, 1])

(from left to right). Fundamental region of torus is chosen as the region surrounded by

black lines. For ρ=simple case, generalization to arbitrary N is obvious, there are 2N + 1

nodes in the quiver.

Notice that our quiver breaks the symmetry between the three edges of the

quiver, which was present for ρ=maximal case.32 There are several indications that

32This is an interesting feature, and means that some of the considerations for the maximal case

requires certain modifications. For example, it looks like that the the specification of the quiver

requires not just an ideal triangulation, but in addition an ordering of the vertices of each ideal

triangle. We hope to explore this issue further in the future, and here are content in working out

an example of the once-punctured torus.
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this gives the correct quiver for the case at hand. First, we can indeed find a sequence

of mutations realizing the flips, and satisfying the relations of the full mapping class

group SL(2,Z). In fact, if we choose a random quiver this is almost never the case.

Second, the quiver gives the correct dimensionality (4.12) for the moduli space of flat

connections. Third, the our quiver is consistent with the proposal of [52] (motivated

by generalized s-rule in the 5-brane configuration), as well as the mathematical work

of [64] (in particular its Figure 9).

Ex 3. N = 3 with ρ = [2, 1] The quiver is drawn in Fig. 15 and the skew-

symmetric matrix Q is

Q =


0 0 2 −1 −1

0 0 −1 2 −1

−2 1 0 0 1

1 −2 0 0 1

1 1 −1 −1 0

 . (4.81)

Here we have |Ker(Q)| = 1 and a central element in the cluster algebra is

5∑
i=1

ciY
i := Y1 + Y2 + Y3 + Y4 + Y5 . (4.82)

Two generators S,T of the mapping class group SL(2,Z) can be represented as

S = µ5σS , T = µ3µ4σT . (4.83)

The permutation σS and σT are given by

σS =


0 0 0 1 0

0 0 1 0 0

1 0 0 0 0

0 1 0 0 0

0 0 0 0 1

 , σT =


0 0 1 0 0

0 0 0 1 0

1 0 0 0 0

0 1 0 0 0

0 0 0 0 1

 . (4.84)

Classical transformation of S and T are

S : (y1, y2, y3, y4, y5)→
(
µ5(y1), µ5(y2), µ5(y3), µ5(y4), µ5(y5)

)
· σS

=

{
y3 (y5 + 1) , y4 (y5 + 1) ,

y2y5

y5 + 1
,
y1y5

y5 + 1
,

1

y5

}
,

T : (y1, y2, y3, y4, y5)→ (µ2µ1(y1), µ2µ1(y2), µ2µ1(y3), µ2µ1(y4), µ2µ1(y5)) · σT

=

{
1

y3

,
1

y4

,
y1 (y3 + 1) 2y4

y4 + 1
,
y2y3 (y4 + 1) 2

y3 + 1
,

y3y4y5

(y3 + 1) (y4 + 1)

}
.

(4.85)
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One can check that these generators form SL(2,Z):

SSSS , TSTSTS : (y1, y2, y3, y4, y5)→ (y1, y2, y3, y4, y5) . (4.86)

For mapping torus M = (Σ1,1 × S1)ϕ with ρ = simple, the corresponding cluster

partition function datum {m,σ} can be obtained by decomposing ϕ ∈ SL(2,Z) into

products of S,T and its inverses. For figure-eight knot complement, ϕ = ST−1S−1T

and using µ̂2
k =(identity)

ϕ = ST−1S−1T = µ̂5σ̂Sσ̂
−1
T µ̂4µ̂3σ̂

−1
S µ̂5µ̂3µ̂4σ̂T

=⇒m = {5, 4, 3, 5, 3, 4} ,
σ = {σSσ−1

T , I, σ−1
S , I, I, σT} .

(4.87)

The δ-functions in the cluster partition function are given by

M′ = Z(0)− Z(3) , L := Z(1)− Z(2) + Z(3) + Z ′′(0)− Z ′′(1) = 0 ,

C1 := Z(4) + Z(5)− Z ′′(1)− Z ′′(2) = 0 ,

C2 := −2Z(1) + 2Z(2) + Z ′′(1)− Z ′′(2) = 0 ,

C3 := −Z(0)− Z(3) + Z(4) + Z(5)− Z ′′(0)− Z ′′(3) = 0 ,

C4 := Z(0) + Z(1) + Z(2) + Z(3)− Z(5)− 2Z ′′(4) = 0 ,

C5 = −Z(4) + Z(5) + 2Z ′′(4)− 2Z ′′(5) = 0 .

(4.88)

From these gluing equations, the cluster partition function with k = 0 (superconfor-

mal index) can be written as (4.28)

IS3\41,simple(mη, η) := TrQ,m,σ(L)|L= ~
2
mη+log η = 〈L, , CI = 0

∣∣3⊗5〉|L= ~
2
mη+log η .

(4.89)

Here the 〈L, CI
∣∣ is a position basis in a polarization Π = (L, CI ;−M′,ΓI) with a

choice of ΓI conjugate to CI . In charge basis, the index can be computed using the

general formula (3.37).

IcS3\41,simple(mη, eη) =
∑
ei∈Z5

Ic3
(
e2, e2 − e3 +

e4

2
+
e5

2

)
Ic3
(
e3,−e2 + e3 +

e4

2
+
e5

2

)
× Ic3

(
e4, e1 +

e2

2
+
e3

2
− e5

2
+
eη
2

)
Ic3
(
e5, e1 +

e2

2
+
e3

2
− e4

2
+
eη
2

)
× Ic3

(
e1,−e1 +

e4

2
+
e5

2
− eη +mη

)
Ic3
(
e1 + eη,−e1 +

e4

2
+
e5

2
−mη

)
.

(4.90)

The octahedron’s index Ic3 in charge basis is defined in eq. (3.31) and for non integer

(m, e) /∈ Z2 the index defined to be zero. For example, listing first several order of
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the index in fugacity basis:

IS3\41,simple(0, η) := 1 +

(
2η +

2

η

)
q

3
2 +

(
8 + 2η2 +

2

η2

)
q2 +

(
6η +

6

η

)
q

5
2

+

(
2− 3η2 − 3

η2

)
q3 + . . . ,

IS3\41,simple(1, η) := η

(
1

η2
+

1

η
+ η + η2

)
q + η

(
6 + 3η +

3

η

)
q2

+ η

(
−6− 1

η3
− 3

η2
− 5

η
− 5η − 3η2 − η3

)
q3 + . . . .

(4.91)

In App. E we repeat the same computation without relying on the general ma-

chinery of the cluster partition function, and more directly from the analysis of the

Hilbert space associated with the cluster algebra mutations. More interestingly the

index can be reproduced from index computation using a non-Abelian description of

the TN=3[S3\41, simple] in Sec. 5.2.

Following the comment around Fig. 10, we can write down the octahedron struc-

ture in this case (Fig. 16). It would be an interesting problem to see if such a oc-

tahedron decomposition defines a state-integral model, whose partition function is

independent of the choice of a ideal triangulation.

Figure 16. Octahedron structure for the simple puncture cases for a single ideal tetrahe-

dron, as determined from the connection between the mutation network and the octahedron

decomposition (Fig. 10). Interestingly, there are at least two different patterns; left (right)

figure corresponds to S (T ), containing two (one) octahedron(s). This is in contrast to the

case of the maximal puncture, where we always use the same N -triangulation octahedron

pattern for an ideal tetrahedron.
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Ex 4. N = 4 with ρ = [3, 1] The quiver is drawn in Fig. 15 and the anti-symmetric

matrix Qij is 

0 0 0 2 −1 0 −1

0 0 0 −1 2 −1 0

0 0 0 0 −1 2 −1

−2 1 0 0 0 0 1

1 −2 1 0 0 0 0

0 1 −2 0 0 0 1

1 0 1 −1 0 −1 0


. (4.92)

We have |Ker(Q)| = 1 and a central element in the cluster algebra is

5∑
i=1

ciY
i := Y1 + Y2 + Y3 + Y4 + Y5 + Y6 + Y7 . (4.93)

Two generators S,T can be represented as33

S = σS , T = µ7µ4µ6µ1µ5µ3µ5σT , (4.94)

where permutations matrices are

σS =



0 0 1 0 0 0 0

0 1 0 0 0 0 0

1 0 0 0 0 0 0

0 0 0 0 0 1 0

0 0 0 0 1 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 1


, σT =



1 0 0 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 0 1

0 0 0 1 0 0 0

0 0 1 0 0 0 0

0 0 0 0 0 1 0

0 1 0 0 0 0 0


. (4.95)

The full expression of classical transformation for ϕ = T is rather complicated but

we checked that

SS , TSTSTS : (y1, y2, y3, y4, y5, y6, y7)→ (y1, y2, y3, y4, y5, y6, y7) . (4.96)

Ex 6. N = 4 with ρ = [2, 1, 1] In the case, we only did minimal consistency check,

namely reproducing expected size of quiver, |Q|, and the number of central elements

in AQ. From the general counting rule in eq. (4.12),

|Q[2,1,1]| = 1× (42 − 1)−
(
dim L([2,1,1]) − `([2, 1, 1])

)
− 1 = 15− (5− 3)− 1 = 12 ,

|Ker(Q[2,1,1])| = `([2, 1, 1])− 1 = 2 .

33Interestingly, S can be represented as a single permutation, with no mutations.
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4.5.3 Co-dimension 4 Defects

In this subsection, we give a concrete example for uplifting 2d loop operators to

3d loops. Using the uplift, the problem of quantization of some class of 3d loop

operator is mapped to the problem of quantization of 2d loops, which has been

more studied. We explicitly work out the simplest example, (Σ1,1 × S1)ϕ=LR with

N = 2. Generalization to arbitrary mapping torus with general N and ρ=maximal

is straight-forward.

Ex 7. Co-dimension 4 Defects in S3\41 Using the two 1-cycles (γx, γy) ∈
π1(Σ1,1), the fundamental group π1(S3\41) = π1

(
(Σ1,1×S1)ϕ=LR

)
can be represented

γ x

γ y

Figure 17. Two 1-cycles in ideally-triangulated once-punctured torus.

as

π1(S3\41) = 〈γx, γy, γm|γ−1
m γxγm = γxγy , γ

−1
m γyγm = γyγxγy〉 . (4.97)

Here γm can be understood as a 1-cycle along the S1 in (Σ1,1×S1)ϕ and it generates

ϕ-transformation on two 1-cycles (γx, γy) on Σ1,1:

γm(γx, γy)γ
−1
m = ϕ(γx, γy)ϕ

−1 =
(
ϕ(γx), ϕ(γy)

)
. (4.98)

Under L and R transformations, the generators of π1(S3\41) transform as

R : (γx, γy)→ (γx, γyγx) , L : (γx, γy)→ (γxγy, γy) . (4.99)

The cycle γm can be identified as the meridian cycle in ∂M . The fundamental group

has an automorphism defined by conjugation by γm:

(γx, γy, γm)→ γm(γx, γy, γm)γ−1
m . (4.100)

This redundancy by the automorphism is reflected in the state-integral model (4.31)

as the following invariance by conjugation:

〈ŴR(Kγ)〉 = Tr
[
ŴR(Kγ)ϕ̂

]
= Tr

[
ϕ̂ŴR(Kϕ−1(γ))

]
= Tr

[
ŴR(Kϕ−1(γ))ϕ̂

]
= 〈ŴR(Kγ−1

m γγm
)〉 . (4.101)
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The two sets of generators in eq. (3.51) and eq. (4.97) of π1(S3\41) are related as

γx = c−1a , γy = b−1 , and γm = c−1 . (4.102)

up to the automorphism. Using the map (4.37), we have

exp
(
a1Y(1,0) + a2Y(0,1) + a3Y(1,1)

)
⇐⇒ q

1
2

(a2
1+a2

2+a2
3−2a1a2−2a1a3)+(a1+a2−a3)δ−δ2

× e(δ−a1)Ẑ(0)+(δ+a3−a2)Ẑ(1)e(2a2−a1−δ)Ẑ′′(0)+(a3−a2−δ)Ẑ′′(1)

= eδ
(
Ẑ(0)+Ẑ(1)−Ẑ′′(0)−Ẑ′′(1)

)
q

1
2

(a2
1+a2

2+a2
3−2a1a2−2a1a3)

× e−a1Ẑ(0)+(a3−a2)Ẑ(1)e(2a2−a1)Ẑ′′(0)+(a3−a2)Ẑ′′(1) .

(4.103)

Note that there is a 1-parameter ambiguity in the uplifted operator parametrized by

δ, however they are all equivalent as a 3d loop operator under the gluing constraints

(3.63). Simple example of 2d loop operators on Σ1,1 for N = 2 are

Ŵ2(Kγx) = e
1
2
Y(0,1)+

1
2
Y(1,1) + e−

1
2
Y(0,1)− 1

2
Y(1,1) + e

1
2
Y(1,1)− 1

2
Y(0,1) ,

Ŵ2(Kγy) = e
1
2
Y(1,0)+

1
2
Y(1,1) + e−

1
2
Y(1,0)− 1

2
Y(1,1) + e−

1
2
Y(1,1)+

1
2
Y(1,0) .

(4.104)

Applying the formula (4.103), we have

Ŵ2(Kγx) = q
1
4

(
eẐ
′′(0) + e−Ẑ

′′(0) + eẐ(1)e−Ẑ
′′(0)+Ẑ′′(1)

)
,

Ŵ2(Kγy) = q−
1
4

(
e−Ẑ(0)eẐ

′′(1) + e−Ẑ(1)eẐ
′′(0) + e−Ẑ(0)−Ẑ(1)

)
.

(4.105)

These expressions are compatible with the expressions in eq. (3.62) via the map

(4.102) and (4.69).

5 From Domain Wall Theory T [SU(N)]

5.1 Necessity of Non-Abelian Description for TN [M ]

In previous sections we discussed state integral models and cluster partition functions,

and obtained their partition functions. As explained in sections 3.1 and 4.3, from

the expression of the partition function we can recover the Abelian description of

the associated 3d N = 2 theory TN [M̂\K, ρ]. We also incorporated co-dimension 4

defects along K.

There is one unsatisfactory aspect, however: we really did not explain why,

on the side of the 3d N = 2 theory, the co-dimension 4 defects are labeled by a

representation R of SU(N). Note that in the Abelian descriptions, we could consider

loops (Wilson loop, vortex loop, or its mixture) for each Abelian gauge group, but

there is no natural explanation for the origin of the discrete label R; there is simply

no non-Abelian symmetries.

– 64 –



This strongly suggests that there should always be a non-Abelian descriptions

of T [M ]. The Abelian descriptions presumably arises on the “Coulomb branch”34 of

the non-Abelian theory. While the Abelian description is sufficient for the computa-

tion of the S3
b and (S1 × S2)q partition functions, it will not be sufficient for the full

understanding of loop operators and more generally supersymmetric defects, as well

as the discussion of the quantum-corrected moduli space, for example.35 It is there-

fore an important problem in the 3d–3d correspondence to search for non-Abelian

descriptions.

Fortunately, such a non-Abelian description of TN [M ] is known in the literature,

and it fact it was the proposal of [3] in 2011 (see also [65, 66]).

The basic idea is as follows. Let us consider a 3-manifold M with boundary

∂M = Σ. From M5-brane compactifications, we expect the relations between the

two associated theories, 3d N = 2 theory TN [M ], and 4d N = 2 theory (of the

so-called class S) TN [Σ] [54]. The natural expectation is that TN [M ] is the boundary

degrees of freedom for a certain 1/2-BPS boundary condition for TN [Σ]. We can

therefore analyze the boundary conditions of TN [Σ] theory, and recover the TN [M ]

theory.

The analysis of such boundary conditions, however, in general is rather compli-

cated, partly because we often do not have a Lagrangian description of TN [Σ], and

partly because there are quantum corrections to the moduli space.36

The situation simplifies for the case where Σ is a torus T 2, and hence TN [Σ]

theory is the 4d N = 4 super Yang-Mills theory. In this case, the relevant boundary

conditions have been identified in the works of [23, 26], giving rise to non-Abelian

description of TN [M ] involving the T [SU(N)] theory (which we discussed already in

a different context in Sec. 2.1).

We can also introduce a simple puncture to the torus37, leading to the 4d N = 2∗

theory, namely the deformation of the 4d N = 4 theory by mass deformation of the

N = 2 adjoint chiral multiplet. This leads to the 3d N = 2 deformation of the

3d N = 4 theory, by giving the real mass parameter to the axial U(1) R-symmetry

inside SO(4) N = 4 R-symmetry [69].

In the following we compute the partition function of the mapping torus of the

34As commented in footnote 35, in 3d N = 2 non-Abelian gauge theories there is no clear-cut

distinction between Coulomb and Higgs branches, and hence the “Coulomb branch” is at best an

approximate notion.
35The moduli space of vacua for a non-Abelian 3d N = 2 receives dramatic quantum corrections:

instanton effects sometimes lift the Coulomb branch, and several different branches merge, blurring

the distinction between Coulomb and Higgs branches.
36 For a generic choice of Σ, the boundary condition preserves only four supercharges out of the

original eight supercharges of TN [Σ]. In this sense, the situation is close to the analysis of 1/4 BPS

boundary conditions of 4d N = 4, recently worked out in [67, 68].
37If we instead have a maximal puncture, the Lagrangian description for the TN [Σg=1,h=1] theory

is not known for N > 2.
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once-punctured torus with a simple puncture, using such non-Abelian descriptions

of TN [M ]. The result will give a highly non-trivial cross-check for our understanding

of the co-dimension 2 defect of type ρ = simple, while simultaneously checking the

consistencies between Abelian and non-Abelian descriptions of TN [M ].

5.2 Co-dimension 2 Defects: ρ = simple from T [SU(N)] Theory

Consider a mapping torus over an once-punctured torus with ρ = simple, determined

by an element ϕ of SL(2,Z). The dual 3dN = 2 theory (which is a mass deformation

of the 3d N = 4 theory), which we denote by Tr
(
T [SU(N), ϕ]

)
, can be obtained as

follows (see [3] for details).

First, we identify the N = 2 mass-deformed T [SU(N)] theory as T [SU(N), ϕ =

S]38 and an empty theory with SU(N)× SU(N) flavor symmetry with background

off-diagonal N = 4 Chern-Simons term as T [SU(N), ϕ = T ]. Second, for the theory

T [SU(N), ϕ1 · ϕ2], we then glue the two theories T [SU(N), ϕ1] and T [SU(N), ϕ2]

by gauging the diagonal SU(N) flavor symmetry. By using the second rule re-

cursively, we can define the 3d theory T [SU(N), ϕ] for any ϕ, and the S-duality

of 4d N = 4 theory ensures that the resulting 3d theory is independent of the

choice of decomposition. In the 3d–3d correspondence, the T [SU(N), ϕ] theory cor-

responds to SL(N) CS theory on mapping cylinder Σ1,1 × [0, 1]. The theory has

SU(N)top × SU(N)bot × U(1)punct flavor symmetry.39 The theory corresponding to

mapping torus (Σ1,1 × S1)ϕ can be obtained by gluing two SU(N) flavor symme-

tries by gauging diagonal SU(N) subgroup of T [SU(N), ϕ] theory.40 Let denote the

theory obtained in this way as Tr(T [SU(N), ϕ]):

Tr(T [SU(N), ϕ])

= (the theory obtained by gauging diagonal SU(N) of T [SU(N), ϕ]) .
(5.1)

The mapping torus is a knot complement on a closed 3-manifold and the knot cor-

responds to a simple co-dimension 2 defect. Thus, we can identify

Tr(T [SU(N), ϕ]) = TN [(Σ1,1 × S1)ϕ, simple] . (5.2)

The field theory on the left has U(1)punct symmetry, which can be identified with

Hρ=simple of the theory on the right.

38 For simplicity we use the same name ‘T [SU(N)] theory’ both to N = 4 theory and its N = 2

mass deformation.
39’bot’/‘top’ means ‘bottom’/‘top’ of the mapping cylinder Σ1,1 × [0, 1], since these two flavor

symmetries are associated with the two boundaries of the mapping cylinder. ‘top’ also represents

‘topological’ since the flavor symmetry is often call the topological flavor symmetry.
40 Note in general this involves gauging of an emergent SU(N) symmetry which is not present

in the Lagrangian (except for its Cartan).
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T [SU(3)] Theory Let us now describe our theory for N = 3, and discuss their

S1 × S2 partition functions.

Let us begin with the basic building block, namely the T [SU(3)] theory. The

T [SU(3)] theory is described by the following 3d N = 4 quiver, where the square

(circle) represents the flavor (gauge) symmetry:

U(1)gauge U(2)gauge SU(3)bot

(5.3)

As we mentioned already, we are interested in an N = 2 mass deformation

of the theory, namely we turn on all the real mass/ FI parameters consistent with

N = 2 supersymmetry. The theory is U(1)×U(2) gauge theory which has SU(3)top×
SU(3)bot×U(1)punct flavor symmetry In terms of N = 2 chiral superfields, the charge

assignment for flavor/R-symmetries can be summarized as

U(1)gauge U(2)gauge SU(3)bot U(1)punct SU(3)top U(1)R

Φ1 1 2 1 1
2

1 1
2

Φ2 −1 2 1 1
2

1 1
2

Φ3 0 2 3 1
2

1 1
2

Φ4 0 2 3 1
2

1 1
2

ϕ1 0 1 1 −1 1 1

ϕ2 0 adj 1 −1 1 1

(5.4)

Here (Φ1,Φ
†
2) and (Φ3,Φ

†
4) form N = 4 bi-fundamental hypermultiplets, and ϕ1

and ϕ2 form N = 2 adjoint chiral multiplet inside an N = 4 vector multiplet.

The SU(3)top is a quantum/emergent symmetry in the IR, and is not present in the

classical Lagrangian, except for its Cartan U(1)2: these correspond to two topological

U(1)J symmetries coupled to U(1) factors in U(1)gauge×U(2)gauge. In S1×S2 partition

function, we have a continuous parameter (fugacity) as well as a discrete parameter

(magnetic flux) for each flavor symmetry. We denote them by

U(1)gauge U(2)gauge SU(3)bot U(1)punct SU(3)top

fugacity ζ (z1, z2) (v1, v2) η̄ (w1, w2)

magnetic flux σ (s1, s2) (n1, n2) mη (m1,m2)

(5.5)

Here (v1, v2, v3) and (w1, w2) are fugacities for the following Cartan element of SU(3)bot

and SU(3)top, respectively:

(v1, v2)←→ diag(H1, H2,−H1 −H2) ∈ su(3)bot ,

(w1, w2)←→ diag(H1, H2,−H1 −H2) ∈ su(3)top .
(5.6)
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Computation of Index We can now compute the index for the T [SU(N), ϕ]

theory. The index in the notation (5.5) is a function

IT [SU(N)](m1,m2, w1, w2|n1, n2, v1, v2;mη, η̄) , (5.7)

whose explicit formula for N = 3 we write down in detail in App. H. Given the index

for T [SU(N)] theory, the indices of theories T [SU(N), ϕ] for general choices of ϕ can

be computed with the help of the following two facts, which are index versions of the

two recursive rules we described previously.

First, a multiplication of two elements ϕ1, ϕ2 leads to the gauging of the diagonal

SU(N) flavor symmetry of the corresponding two theories T [SU(N), ϕ1,2]. Written

for N = 3, this means

IT [SU(3),ϕ1ϕ2](m1,m2, w1, w2|n1, n2, v1, v2;mη, η̄)

=
∑

(p1,p2)

∮
du1du2

(2πiu1)(2πiu2)
∆3(u1, u2, p1, p2; q)IT [SU(3),ϕ1](m1,m2, w1, w2|p1, p2, u1, u2;mη, η̄)

× IT [SU(3),ϕ2](p1, p2, u1, u2|n1, n2, v1, v2;mη, η̄) , (5.8)

where ∆3 is the measure from N = 2 SU(3) vector multiplets given in eq. (5.13).

This means the basic building blocks are the theories for the generators of SL(2,Z),

namely for ϕ = S,T . To complete the rule we need to give the indices for the theories

T [SU(3), ϕ = S,T ]. For ϕ = S, we have the T [SU(3)] theory whose index is written

down in App. H. If we have T generators in addition, we have Chern-Simons terms.

For example,

IT [SU(3),T k1ST k2 ](m1,m2, w1, w2|n1, n2, v1, v2;mη, η̄)

=
(
w1(−1)m1

)−k1(2m1+m2)(
w2(−1)m2

)−k1(2m2+m1)(
v1(−1)n1

)−k2(2n1+n2)

×
(
v2(−1)n2

)−k2(2n2+n1)IT [SU(3)](m1,m2, w1, w2|n1, n2, v1, v2;mη, η̄) .

(5.9)

The sign factors (−1)mi and (−1)ni come from shifts of spin of states on S2 in

the presence of magnetic fluxes [70, Appendix A]. We can explicitly verify that the

relations of the SL(2,Z) are satisfied up to an overall shift of the partition function:

IT [SU(3),S4·ϕ] = IT [SU(3),ϕ·S4] = IT [SU(3),ϕ] ,

IT [SU(3),(TSTSTS)·ϕ] = IT [SU(3),ϕ·(TSTSTS)] = (−η̄)−
3
2
mηIT [SU(3),ϕ] ,

(5.10)

The phase factor shift is related to framing ambiguity in knot theory as explained

around eqs. (4.16) (see also (E.22)) under the parameter identification η̄ = −η and

L :=
~
2
mη + log η , (5.11)

where the effect of the relative minus sign is to shift the definition of the central

element L in the cluster partition function by a constant factor of iπ.
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Finally, to obtain the index for mapping tori, we need to gauge the diagonal of

the remaining two SU(3) flavor symmetries:

ITr(T [SU(3),ϕ])(mη, η̄)

=
∑

(p1,p2)

∮
du1du2

(2πiu1)(2πiu2)
∆3(u1, u2, p1, p2; q) IT [SU(3),ϕ](p1, p2, u1, u2|p1, p2, u1, u2;mη, η̄) .

(5.12)

Here the measure ∆3 is from an N = 2 SU(3) vector multiplet, and is given by

∆3(u1, u2, p1, p2; q)

:=
1

sym(p1, p2)
q
−|p1−p2|−|p1+2p2|−|2p2+p1|

2 (1− q
|p1−p2|

2 u1u
−1
2 )(1− q

|p1−p2|
2 u2u

−1
1 )

× (1− q
|2p1+p2|

2 u2
1u2)(1− q

|2p1+p2|
2 u−2

1 u−1
2 )

× (1− q
|2p2+p1|

2 u1u
2
2)(1− q

|2p2+p1|
2 u−2

2 u−1
1 ) .

(5.13)

Here the range of allowed (p1, p2) is

(p1, p2) ∈ Z/3 , p1 − p2 ∈ Z , p1 ≥ p2 ≥ −(p1 + p2) , (5.14)

and the symmetric factor is defined by

sym(p1, p2) :=


6 (p1 = p2 = 0)

2 (p1 = p2 > 0 or p2 = −(p1 + p2) < 0)

1 (otherwise)

. (5.15)

The resulting expression is a complicated expression involving many integrals.

However, we can expand the integrand in power series in the fugacity q, and we

obtain the expression for ITr(T [SU(3),ϕ])(mη, η) in power series expansion in q. For

example, if we specialize to mη = 0, we obtain (ϕ = ST−1S−1T )

I
Tr(T [SU(3),ϕ])

(mη = 0, η̄) = 1−
(

2η̄ +
2

η̄

)
q

3
2 +

(
8 + 2η̄2 +

2

η̄2

)
q2 −

(
6η̄ +

6

η̄

)
q

5
2

+

(
2− 3η̄2 − 3

η̄2

)
q3 + . . . ,

I
Tr(T [SU(3),ϕ])

(mη = 1, η̄) =

(
1

η̄2
− 1

η̄
− η̄ + η̄2

)
q +

(
6− 3η̄ − 3

η̄

)
q2

+

(
−6 +

1

η̄3
− 3

η̄2
+

5

η̄
+ 5η̄ − 3η̄2 + η̄3

)
q3 + . . . .

(5.16)

These results are consistent with eqs. (4.91) and (E.25), again under the parameter

identification η̄ = −η. As emphasized already, these results are simultaneously (1)

consistency checks between Abelian and non-Abelian description of TN [M ] and (2)

consistency checks of the simple-puncture result in Sec. 4.5.2.
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5.3 Co-dimension 4 Defects

Let us now come to the question of the co-dimension 4 defect, which we commented

at the beginning of this section. In the non-Abelian description of TN [M,ρ] theory,

there are several SU(N) gauge groups and one natural choice of loop operator is a

Wilson loop in representation R of one of SU(N)s. In the 3d–3d correspondence, a

loop operator is mapped to a Wilson loop of representation R in SL(N) CS theory.

The choice of gauge group is mapped to choice of a knot K, trajectory of the Wilson

loop. For simplicity we here focus on one of the simplest cases, the loop operators in

the figure-eight knot complement. Note that this is an example where co-dimension

2 defect with ρ = simple coexists with a co-dimension 4 defect. In the case, we can

give concrete examples of the map and verify the map by explicitly checking the 3d–

3d correspondence for k = 0. For the check, we use localization methods in the field

theory computation and use state-integral model (3.46) in CS theory computation.

Loop Operators in TN=2[S3\41] Let first recall that the T [SU(2)] has SU(2)top×
SU(2)bot flavor symmetry, which we can represent graphically as

SU(2)top T [SU(2)] SU(2)bot

(5.17)

The 3d N = 2 theory TN=2[S3\41] = Tr(T [SU(2),LR]) can be then constructed by

gluing two T [SU(2)] theories as follows:

SU(2)1

T [SU(2)] T [SU(2)]

SU(2)−1

(5.18)

In the gluing we gauge diagonal subgroups of (SU(2)+)top×(SU(2)−)bot and (SU(2)+)bot×
(SU(2)−)top by introducing dynamical SU(2) vector multiplets with CS level −1 and

+1 respectively. We propose the following map for 3d–3d correspondence:

Wilson loop charged under SU(2)−1 in Tr(T [SU(2),LR]) theory

⇐⇒ Wilson loop along Kγ=c−1a in SL(2) CS theory on S3\41 ,

Wilson loop charged under SU(2)+1 in Tr(T [SU(2),LR] theory

⇐⇒ Wilson loop along Kγ=b in SL(2) CS theory on S3\41 .

(5.19)
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This correspondence can be confirmed by computing the index of the 3d N = 2

theory with the Wilson loop and comparing it to the computation in eq. (3.66). The

index can be computed as follows:

〈W2(SU(2)−1)〉Tr(T [SU(2),LR])
±

=
∞∑

2m1,2m2=0

∮
du1

2πiu1

du2

2πiu2

∆(m1, u1)∆(m2, u2)(−1)
1
2 (q

m1
2 u±1

1 + q−
m1
2 u∓1

1 )

×
(
u1(−1)m1

)−2m1
(
u2(−1)m2

)2m2IT [SU(2)](m1, u1|m2, u2;mη, η̄)IT [SU(2)](m2, u2|m1, u1;mη, η̄) ,

(5.20)

and similarly

〈W2(SU(2)+1)〉Tr(T [SU(2),LR])
±

=
∞∑

2m1,2m2=0

∮
du1

2πiu1

du2

2πiu2

∆(m1, u1)∆(m2, u2)(−1)−
1
2 (q

m2
2 u±1

2 + q−
m2
2 u∓1

2 )

×
(
u1(−1)m1

)−2m1
(
u2(−1)m2

)2m2IT [SU(2)](m1, u1|m2, u2;mη, η̄)IT [SU(2)](m2, u2|m1, u1;mη, η̄) .

(5.21)

Here IT [SU(2)](m,u|m′, u′;mη, η̄) is the index for T [SU(2)] theory; we refer to [71]

for explicit formula. (m,u), (m′, u′) and (mη, η̄) are (monopole flux, fugacity) for

SU(2)top, SU(2)bot and U(1) axial symmetry respectively of the T [SU(2)] theory.

The factor
(
u1(−1)m1

)−2m1
(
u2(−1)m2

)−2m2 comes from CS terms of level +1 and

−1 for two SU(2)s and ∆(m,u) is the index contribution from SU(2) N = 2 vector

multiplet

∆(m,u) :=
1

sym(m)

(
q
m
2 u− q−

m
2 u−1)(q

m
2 u−1 − q−

m
2 u
)
,

sym(m) :=

{
2 (m = 0)

1 (m > 0)
.

(5.22)

The factor (q
m1
2 u±1

1 + q−
m1
2 u∓1

1 ) in eq. (5.20) comes from classical action of the

SU(2)+1 fundamental Wilson loop. In the saddle point of localization, fields in the

SU(2)+1 vector multiplet are given by

iA =
m1

2

(
1 0

0 −1

)
(±1− cos θ)dφ+

log u1

iβ

(
1 0

0 −1

)
dτ ,

σ =
m1

2

(
1 0

0 −1

)
.

(5.23)

Two BPS trajectories xµ±(s)|β:=log q
s=0 at north/south poles are

+ : (τ, θ, φ)(s) = (s, 0, ∗) ,
− : (τ, θ, φ)(s) = (−s, π, ∗) .

(5.24)
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Here τ ∈ [0, β] is a coordinate for S1 and (θ, φ) are the standard spherical coordinates

for S2. Thus we have

Tr2Pe
∮
±(−Aµ dx

µ

ds
+σ| dx

ds
|)ds∣∣

saddle-point
= q

m1
2 u±1

1 + q−
m1
2 u∓1

1 . (5.25)

The phase factor (−1)±
1
2 in (5.20) is one subtle point: it reflects an overall shift in

spin of states on S2 in the presence of the loops. Once we write down the expression

(5.20), we can evaluate the integral order by order in q. For example,

〈W2(SU(2)−1)〉Tr(T [SU(2),LR])
+ (mη = 0, η̄)

=

(
η̄ +

1

η̄

)
q

3
4 − 3 q

5
4 +

(
η̄ +

1

η̄

)
q

7
4 +

(
−1 + η̄2 +

1

η̄2

)
q

9
4 − 3

(
η̄ +

1

η̄

)
q

11
4 + . . . ,

〈W2(SU(2)+1)〉Tr(T [SU(2),LR])
+ (mη = 0, η̄)

= q−
1
4 − 3q

3
4 +

(
3

η̄
+ 3η̄

)
q

5
4 − 6q

7
4 +

(
2

η̄
+ 2η̄

)
q

9
4 +

(
−1 +

1

η̄2
+ η̄2

)
q

11
4 + . . . .

(5.26)

and we can verify that the result is consistent with our previous computation from

the state integral model (3.66) (again under the parameter identification η̄ = −η).

Once we identify fundamental Wilson loops in the SU(2) theory in 3d–3d cor-

respondence, generalization to higher representation or higher N is obvious. This

approach will provide simple way to quantize (and identify the maps in 3d–3d corre-

spondence for) Wilson loops in higher representation which are not obvious in terms

of IR Abelian variables (cluster coordinates). We can also consider other loop opera-

tors, such as vortex loops. We still keep the non-Abelian structure on vortex loops by

defining them as non-Abelian SL(2,Z)-transformation on Wilson loops. This con-

struction gives natural non-Abelian generalization of Abelian vortex loops studied in

[72]. Non-abelian SL(2,Z) action on 3d N = 2 theory with SU(N) flavor theory can

be generated by two operations: one is gluing T [SU(N)] theory using the SU(N)

symmetry which corresponds to S and the other is adding background CS term with

level −1 for the SU(N) flavor symmetry which corresponds to T . Both operations

preserve SU(N) flavor symmetry and known to form SL(2,Z). The automorphism

in eq. (4.100) implies (where ϕ = LR = ST−1S−1T )

(VEV of loop operator O charged under the SU(2)±1)

= (VEV of loop operator ϕ(O) charged under the SU(2)±1) .
(5.27)

This property will also be useful in quantizing loop operators in mapping torus.

6 From 5d N = 2 SYM

We now come to another non-Abelian description, namely the 5d N = 2 SYM. In

[9, 10] the partition function of 5d N = 2 SYM with gauge group G on S2 ×M has
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been computed by localization. The result coincides with the partition function of the

complexified pure Chern-Simons theory with gauge group GC, the complexification

of G:

Z5d G N = 2 SYM[S2 ×M ] = Z3d GC CS[M ] , (6.1)

with parameter identification [10]41

k = 0 , σ =
8π2ir

g
. (6.2)

In this section we include supersymmetric 1/2-BPS Wilson line to this compu-

tation (following [10]), and show that the after localization the VEV of the Wilson

in the 5d N = 2 SYM reproduces the VEV of the Wilson line in the complexified

Chern-Simons theory. This gives a direct derivation of eq. (1.8).

6.1 Localization of 5d N = 2 SYM on S2 ×M

Conventions Let us first summarize our conventions for 5d N = 2 SYM, following

[10]. We use the indices M,N, · · · (A,B, · · · ) for the spacetime (internal space)

indices which runs from 1 to 5, while I, J, · · · for Sp(4) R-symmetry indices. We use

the following representations for the five-dimensional gamma matrices ΓM for the

spacetime, and Γ̂A for the internal space:

Γm = γm ⊗ 12 (m = 1, 2) ,

Γµ = γ3 ⊗ γµ (µ = 1, 2, 3) ,

Γ̂µ = γµ ⊗ γ3 (µ = 1, 2, 3) ,

Γ̂i = 12 ⊗ γi−3 (i = 4, 5) ,

(6.3)

where γm = (τ 1, τ 2), γµ = (τ 1, τ 2, τ 3) and τi are Pauli matrices. The charge conju-

gation operator C and the Sp(4)R invariant tensor ĈIJ are given by

C =
(
τ 1
)ab ⊗ εȧḃ ,

Ĉ = εαβ ⊗
(
τ 1
)α̇β̇

,
(6.4)

where we hereafter denote five-dimensional spinor indices (Sp(4) R-symmetry in-

dices) by I = (a, ȧ) (I = (α, α̇)). Each of these indices a, ȧ, α and α̇ is raised and

lowered by the antisymmetric tensor εab, εȧȧ, εαβ and εα̇β̇ with ε12 = −ε12 = 1. Our

convention for bilinear of 5-dimensional spinors is

ελ = −εICIJλJ , εΓMλ = −εI(CΓM)IJλJ , etc. (6.5)

41Our σ is iσ in [10].
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Topological Twist When we place 5d N = 2 SYM on S2 × M , one needs to

partially topologically twist the theory along the curved three-manifold M (cf. [73,

74]). Let us denote by SO(3)twist the diagonal subgroup of the SO(3) local Lorentz

group on M and the SO(3)R. The leftover SO(2)R is then identified as the U(1)R
R-symmetry of the SU(2|1) supersymmetry algebra on S2. Under the symmetry

group SO(3)twist × U(1)R, various fields can be decomposed as follows

AM : 1±2 ⊕ 30 ≡ Am ⊕ Aµ ,
λI : 1±1 ⊕ 3±1 ≡

(
λ, λ̄
)
⊕
(
ψµ, ψ̄µ

)
,

φA : 1±2 ⊕ 30 ≡ ϕ± ⊕ φµ ,
(6.6)

while the supersymmetry parameters can be decomposed as

εI : 1±1 ⊕ 3±1 . (6.7)

The SU(2|1) supersymmetry of our interest (1±1 in eq. (6.7)) can be parameterized

by the singlets (ξ, ξ̄) under the SO(3)twist, which takes the following form(
εI
)
aȧ

=
i

2
εȧα
(
ξa ⊗ ε+

α̇ − (γ3ξ̄)a ⊗ ε−α̇
)
, (6.8)

where ξ and ξ̄ satisfy the Killing spinor equation on the two-sphere

∇mξ = +
1

2r
γmγ

3ξ , ∇mξ̄ = − 1

2r
γmγ

3ξ̄ , (6.9)

and

ε+ :=

(
1

0

)
, ε− :=

(
0

1

)
. (6.10)

6.2 Co-dimension 4 Defects as Wilson Lines

5d Wilson Line Let us consider a Wilson line on S2 ×M , which spreads along

a 1-cycle γ on M and is located at a specific point p on S2. The choice of the

(non-self-intersecting) 1-cycle γ is arbitrary, and γ can be any knot inside M .

We consider the VEV of this Wilson line, in a representation R of the gauge

group G:

〈WR〉 =

〈
TrR P exp

(∫
{p}×γ

(−Aµ ∓ iφµ)

)〉
, (6.11)

where γ is an arbitrary closed path inside the 3-manifold M , and Aµ and φµ are the

1-forms on M after the topological twist (6.6).

To check the remaining supersymmetry of this Wilson line, let us first recall the

supersymmetry variation of the fields Aµ and φµ:

δAµ = iεIĈ
IJΓµλJ ,

δφµ = εI(ĈΓ̂µ)IJλJ .
(6.12)
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It then follows that

δ (Aµ ± iφµ) = iεI

(
ĈIJΓµ ± (ĈΓµ)IJ

)
λJ , (6.13)

and hence preserves a fraction of the supersymmetry given by

εI(Ĉ
IJΓµ ± (ĈΓ̂µ)IJ) = 0 . (6.14)

Writing I = (α, α̇), J = (β, β̇), and using the expressions of C, Ĉ,Γµ, Γ̂µ given in

eqs. (6.3), (6.14) amounts to

(εαα̇)aȧ ε
αβ ⊗ (τ 1)α̇β̇ ⊗ (τ 3)ab ⊗ (τµ)ȧḃ ± (εαα̇)bḃ (εγµ)αβ ⊗ (τ 1τ 3)α̇β̇ = 0 . (6.15)

What is crucial for our purposes is whether or not the Wilson line preserve

the same supersymmetry used for the localization computation. Substituting the

supercharge (6.8) into eqs. (6.15), (6.15), one obtains

(ε+τ 1)β̇ ⊗ (ξτ 3)b ⊗ (τµ)βḃ ± (ε+τ 1τ 3)β̇ ⊗ ξb ⊗ (τµ)βḃ

− (ε−τ 1)β̇ ⊗ ((τ 3ξ̄)τ 3)b ⊗ (τµ)βḃ ∓ (ε−τ 1τ 3)β̇ ⊗ (τ 3ξ̄)b ⊗ (τµ)βḃ

= (ε−)β̇ ⊗ (ξ(1± τ 3))b ⊗ (τµ)βḃ + (ε+)β̇ ⊗ (ξ̄(1∓ τ 3))b ⊗ (τµ)βḃ .

(6.16)

This means that the remaining supersymmetry should satisfy

ξ(1± τ 3) = 0 , ξ̄(1∓ τ3) = 0 . (6.17)

These conditions pick up two supercharges out of the four supercharges preserved on

S2 ×M .

Recall that ξ, ξ̄ are the Killing spinors on S2 (6.9), and hence depends non-

trivially on the position at S2. When we parametrize the S2 by

ds2 = r2(dθ2 + sin2 θdϕ2) , (6.18)

then ξ and ξ̄ are explicitly written as

ξ = e
iϕ
2 e−

iθ
2
τ2

ε+ , ξ̄ = e−
iϕ
2 e

iθ
2
τ2

ε− , (6.19)

where ε± are given in eq. (6.10), and in particular eigenstates of τ 3.

Due to the presence of the factor e−
iθ
2
τ2

, ξ and ξ̄ in general do not have a definite

chirality. However, the situation is special for north pole (θ = 0) and south poles

(θ = π):

τ 3ξNP = ξNP , τ 3ξSP = −ξSP ,
τ 3ξ̄NP = −ξ̄NP , τ 3ξ̄SP = ξ̄SP .

(6.20)

Comparing eqs. (6.17) and (6.20), we learn that we can include holomorphic (or

anti-holomorphic) Wilson lines in the south (north) pole of S2.

– 75 –



Localization Having established the presence of supersymmetry, we can now ap-

peal to the supersymmetric localization computation. Since the Wilson line preserves

the supercharges used for the localization, the computation works in exactly the same

manner, the only difference being that we have to evaluate the Wilson line at the

saddle point locus.

As explained in [10], at the saddle point, both Aµ and φµ, and hence its complex

combination Aµ = Aµ + iφµ, are constant along the S2 directions, and has a non-

trivial profile only along M :

Aµ(xM) = Aµ(xµ) . (6.21)

The action then reduces to the pure Chern-Simons action of the complexified Chern-

Simons theory.

The Wilson line (6.11) then reduces to the holomorphic (or anti-holomorphic)

Wilson line of the complex Chern-Simons theory (up to a constant factor, the volume

of S2):

〈WR〉 =
〈

TrR P exp

(
−
∫
γ

A
)〉

GC pure Chern-Simons
, (6.22)

where R is the representation of GC, which is obtained by a natural complexification

of the representation of G.

6.3 Co-dimension 2 Defect: Higgsing and Refinement

The discussion of the previous subsection raises a natural question: could be perform

similar localizations for co-dimension 2 defects (1.6), directly from 5d N = 2 SYM?

While this is a well-defined question, it is not too straightforward to cary out

in detail localization computations with co-dimension 2 defects in 5d N = 2 SYM.

Instead we choose to take a different route, which turns out to be a rather useful

shortcut.

Higgsing Prescription Our starting point was already explained in Sec. 2.1,

namely the expectation that the co-dimension 2 defect of type ρ is described by

coupling to Tρ[SU(N)] theory. Formulated for 5d N = 2 SYM, we have (cf. [12, 75])

5d N = 2 SU(N) SYM+ co-dimension 2 defect of type ρ

= 5d N = 2 SU(N) SYM coupled to 3d Tρ[SU(N)] theory .
(6.23)

We can then compactify the 5d N = 2 SYM on a 3-manifold, which should keep

intact the relation (6.23).

Now it becomes evident how to change the type of ρ: we start with say ρ =

maximal, and ‘remove’ the T [SU(N)] = Tρ=maximal[SU(N)] theory from the theory

TN [M ; ρ = maximal], and then glue together Tρ[SU(N)] theory. Very schematically,

TN [M ; ρ] ∼ TN [M ; ρ = maximal]− T [SU(N)] + Tρ[SU(N)] . (6.24)
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Of course, this prescription does not make sense unless we clarify what mean

by “removing” T [SU(N)] theory. Fortunately, T [SU(N)] has a very special prop-

erty which we already mentioned in Sec. 5: T [SU(N)] is a representation of the

element S of the mapping class group PSL(2,Z), and hence it squares to a trivial

theory under gluing, as expected from S-duality of 4d N = 4 SYM [23].Namely, to

remove T [SU(N)] theory we just need to glue T [SU(N)] theory. Hence, (again very

schematically)42

TN [M ; ρ] ∼ TN [M ; ρ = maximal] + (T [SU(N)] + Tρ[SU(N)]) . (6.25)

To make this more precise, we start from TN [M̂\K] which has a SU(N)orig flavor

symmetry. Let us note that T [SU(N)] has SU(N)1×SU(N)2 symmetry43, and sim-

ilarly Tρ[SU(N)] theory has global symmetry SU(N)3 ×Hρ, where Hρ is defined in

eq. (2.5). We can then couple the two theories by gauging the diagonal SU(N) sym-

metry of the SU(N)orig and SU(N)1, and similarly of SU(N)2 and SU(N)3, where

gauging makes the corresponding background N = 4 vector multiplet dynamical.

The resulting theory has Hρ as the remaining flavor symmetry, and is identified with

TN [M,ρ], see Fig. 18.

It is tempting to propose the following wavefunction interpretation of the Hig-

gsing procedure (6.25). First, it is known that the 3d theory obtained by gluing

T [SU(N)] and Tρ[SU(N)] plays the role of an overlap of two states: (see [77] for a

similar proposal in the case of the S3
b=1 partition function)

〈Lmaximal|Lρ〉
⇐⇒ 3d theory obtained by gluing T [SU(N)] and Tρ[SU(N)] , (6.26)

where Lρ and Lmaximal are the mass parameters for the Hρ=maximal and Hρ flavor

symmetries. Then we propose that the Higssing procedure is simply an integral

transformation, with kernel given in eq. (6.26):

〈Lρ|M̂\K〉 =

∫ [
dLmaximal

]
〈Lρ|Lmaximal〉〈Lmaximal|M̂\K〉 , (6.27)

This naturally can be interpreted as the completeness relation

I =

∫ [
dLmaximal

]
|Lmaximal〉〈Lmaximal| . (6.28)

42Our Higgsing proposal is reminiscent of the discussion of surface defects for superconformal

indices for 4d class S theories [76]. There are differences, however, in that in the 4d case we glue a

trinion (a bifundamental multiplet), whereas in our 3d setup we glue an annulus.
43More precisely one of the SU(N) flavor symmetries is SU(N)/ZN , and correspondingly there

are two choices in eq. (6.23), depending on whether you gauge SU(N) or SU(N)/ZN . This subtlety

does not matter (up to an overall constant factor of N !) for the partition functions considered in

this paper.
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r1 N
NT [SU(N)]ρρH

r2 rs-1
=

NT [M]N

NT[SU(N)N

HρT  [M;   ]N ρ

=
T [SU(N)]N Hρ ρ

NT[SU(N)N

T [SU(N)]N Hρ ρ

=

NT [                      ]maximal
maximal

ρ

∑0,2 ×S
1; , ρ

Figure 18. Left above : quiver diagram for Tρ[SU(N)] with ρ = [n1, n2, . . . , ns] theory.

Here rk := n1 + n2 . . . + nk. Circle vertices represent N = 4 vector multiplets with gauge

group U(ri) and the square vertices denotes the (SU(N)or Hρ) flavor symmetry. Lines

connecting those symmetry groups represent bi-fundamental hypermultiplet. Topological

symmetries U(1)s−1
J for each U(1) factors of U(ri) gauge will be enhanced to Hρ at IR.

Second diagram is a simple representation of the Tρ[SU(N)]. Left below : Higgsing proce-

dure which gives TN [M,ρ] theories from the TN [M ]. Dotted arrow line represent gauging

a diagonal SU(N) flavor symmetry. Right : The theory used in the Higgsing procedure

can be identified with TN [Σ0,2 × S1,maximal, ρ]

Note that the partition function of the state-integral model does take the form of

the overlap of two states (3.9).

One should keep here in mind that there is a subtlety in this Higgsing proce-

dure: the 3d theory TN=2[Σ0,2 × S1,maximal, ρ] is a ‘bad’ theory in the sense of [23]

(meaning that some operators decouple in the IR, and the UV R-symmetry does

not coincide with the IR R-symmetry of the superconformal algebra) and its super-

symmetric partitions functions on curved backgrounds diverges.44 The divergence is

actually expected from the 3d–3d correspondence, since there is no flat connection

(saddle point of CS theory) on Σ0,2 × S1 with different fixed holonomies along two

punctures in Σ0,2 and there is one-to-one correspondence between [28]

(saddle points of path integral)⇐⇒ (convergent contours in path-integral) .

(6.29)

Although the ‘Higgsing’ theory TN [Σ0,2 × S1] is a ‘bad’ theory, by coupling the

theory to a theory TN [M,maximal] we can obtain a ‘good’ theory. Similarly by

gluing Σ0,2 × S1 to M̂\K, we obtain M̂\K which can allow flat connections with

boundary longitude holonomy of type ρ.

44Both T [SU(N)] and Tρ[SU(N)] theories are good, but the problem happens when we combine

them by gauging the diagonal SU(N) flavor symmetry. For example, if we glue two T [SU(N)]

theories, the node for the newly-gauged gauge symmetry U(N) has Nf = 2(N − 1) flavors.
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Additional U(1)t and ‘Refined’ CS Partition Function Before closing this

section, let us comment on one implication of eq. (6.25). The result (6.25) means

that we can turn on an extra parameter, and therefore ‘refine’ the complex CS theory.

To describe this, note that while we are interested in 3d N = 2 theory T [M̂\K, ρ],

the 3d theories Tρ[SU(N)] have 3d N = 4 supersymmetry. From the viewpoint of

3d N = 2 theory, this means that we have an extra symmetry: this is the axial U(1)t
symmetry, which is a Cartan of SO(4)R N = 4 symmetry which commute with

the N = 2 R-symmetry SO(2)R ⊂ SO(4)R. The real mass (fugacity) parameter

for this U(1)t symmetry appears non-trivially in the partition functions (6.27), and

gives a natural 1-parameter generalization (‘refinement’) of the complex CS partition

function. In the brane configuration of eq. (1.3), this U(1)t symmetry is the axial

combination of U(1)78 and U(1)9]; the U(1)9] rotation is the rotation of R2 of eq. (2.6)

(cf. [43]).

This refinement can also be understood by considering the BPS equations, which

are obtained by topological twisting of 5d N = 2 SYM theory on a 3-manifold:

FA := dA+A ∧A = 0 , DAϕ = 0 . (6.30)

The 5d theory has five adjoint scalars and three of them become one-form after

topological twisting and form a complex SL(N) connection A := Aµ + iφµ. The

remaining two scalars form a complex field ϕ. The U(1)9] symmetry mentioned

above rotates the scalar ϕ, and could act non-trivially when ϕ is non-zero. At a

generic point in the moduli space of flat connections, SL(N) gauge group is totally

broken by holonomies, and the BPS equation implies ϕ = 0.At non-generic points

of the moduli space, however, there could be unbroken subgroup remaining (this is

when the flat connection is reducible), and ϕ can have non-trivial VEVs along the

unbroken direction. It is expected that the VEVs for the scalar parametrize the Higgs

(or mixed) branch of the corresponding 3d TN [M̂\K, ρ] theory (cf. [78] for similar

discussion in 4d–2d). For hyperbolic 3-manifold M̂\K, there is a special SL(N)

flat connection Aconj
ρ := ρt(Aconj

N=2) for each ρ which can be constructed from the

hyperbolic structure. Here the SL(2) flat connection Aconj
N=2 := ω − ie, where ω and

e are dreibeins and spin-connections of the hyperbolic metric. Since the holonomies

of the flat connection commute with Hρt , the VEV of ϕ can take values in Hρt . In

particular, the VEV of ϕ can be non-zero except when ρ = maximal. Thus at the

point Aconj
ρ for non-maximal ρ, we can introduce additional U(1)t which rotates ϕ.

It would be interesting to investigate this refinement further, and in particular

to understand the connection with the categorification of the knots invariants and

the refined topological strings (cf. [79–81]).
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7 From Large N Holography

In this section we study the holographic duals of co-dimension 2 and 4 defects. We

compute gravity free energy with various defects which corresponds to (S3)b-free

energy of 3d TN [M ] theory with defects at conformal point with real mass Mα = 0.

Via the 3d–3d correspondence (2.29) and (2.35), the free-energy is related to free

energy of SL(N) Chern-Simons theory on M with a defect at quantized CS level

k = 1.

7.1 Supergravity Background

Let us first begin with theD = 11 supergravity background ofN M5-branes wrapping

a hyperbolic 3-manifold M̂ [24, 25, 82–84], and review its properties. M-theory on

the background can be thought as gravity dual of 3d TN [M̂ ] theory.

The metric takes the form of a warped product AdS4 × M̂ × S̃4:

ds2
11 = l2P(2πN)

2
3 (1 + sin2 θ)

1
3

[
ds2(AdS4) + ds2(H3) + (1 + sin2 θ)

2
3ds2(S̃4)

]
, (7.1)

where lP is the eleven-dimensional Planck constant. The warp factors depend on

θ, which is one of the coordinates of the squashed 4-sphere S̃4. The metric of the

4-sphere S̃4 is given as follows:

ds2(S̃4) = (1 + sin2 θ)

[
1

2

(
dθ2 +

sin2 θ

1 + sin2 θ
dφ2

)
+

cos2 θ

1 + sin2 θ
ds2(S̃2)

]
. (7.2)

The round two-sphere S̃2 is fibered over H3, i.e. ds2(S̃2) =
∑

a(dµ
a + ω̄abµ

b)2 with∑3
a=1(µa)2 = 1 and ω̄ab representing the spin connection of H3. The remaining

coordinates θ, ϕ cover the range 0 ≤ θ ≤ π
2

and 0 ≤ ϕ ≤ 2π. Although the metric

(7.2) looks non-illuminating at first, it is in fact the metric of an ellipsoid embedded

in R5. One can easily check that, starting with

x2
1 + x2

2 + x2
3 + 2x2

4 + 2x2
5 = 1 , (7.3)

and the parametrization

x1 = cos θ cosϑ , x2 = cos θ sinϑ cosϕ ,

x3 = cos θ sinϑ sinϕ , x4 =
1√
2

sin θ cosφ , x5 =
1√
2

sin θ sinφ ,
(7.4)

we obtain eq. (7.2), aside from the fibration structure over H3. The hyperbolic space

H3 is a special Lagrangian 3-cycle M̂ , which should be more precisely expressed as

M̂ = H3/Γ, where Γ is a torsionless discrete subgroup of PSL(2,C). Then M̂ is

assigned a finite volume, and without orbifold singularities. We use eq. (7.1) only as a

local form of the metric, and replace H3 with M̂ = H3/Γ. The rotational invariance
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associated with the Killing vector ∂φ is dual to U(1) R-symmetry of the dual N = 2

superconformal field theory in D = 3.

The fact that the above supergravity background describes N M5-brane is con-

firmed through the 4-form flux quantization. When restricted to the squashed 4-

sphere, the flux is given as

G|S̃4 = −Nπl3P d
[

cos3 θ

1 + sin2 θ

]
∧ dφ ∧ Vol(S̃2) . (7.5)

This result will be crucial later in the study of the probe M5-brane action dual to

co-dimension 4-defects.

For the computation of S3 partition function of the dual superconformal field

theory in three-dimensions, we need to consider the dimensional reduction of the the-

ory from eleven down to four-dimensions [24, 25]. The 11-dimensional supergravity

action evaluates to

Ssugra =
N3

24π3
Vol(M̂)

∫
AdS4

√
g(R + 6) . (7.6)

The factor in front of the four-dimensional Einstein-Hilbert action gives the four-

dimensional Newton constant: if we follow the standard convention and use the result

above,
1

16πG4

=
N3

24π3
, (7.7)

and accordingly via holography S3-free energy on the field theory is given by [85]45

FS3(TN [M̂ ]) =
π

2G4

=
N3

3π
Vol(M̂) . (7.8)

The N3 behavior is a manifestation of the famous N3 scaling behavior of the N M5-

branes. By replacing the round S3 by squashed one (S3)b, the large N free energy

modified in the following universal way [86, 87] independent of any details of the 3d

N = 2 theory:

F(S3)b(TN [M̂ ]) =
1

4
(b+ b−1)2FS3 =

N3

12π
(b+ b−1)2vol(M̂) . (7.9)

The gravity computation is reliable only for a closed hyperbolic M̂ . But as noticed

in [24, 25], the large N formula also can be applicable to TN [M̂\K, ρ] when the

M = M̂\K is hyperbolic and ρ is maximal:

F(S3)b(TN [M̂\K,maximal]) =
N3

12π
(b+ b−1)2vol(M̂\K) . (7.10)

45Free energy is defined as F = − log |ZS3 |.
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Note that for non-hyperbolic 3-manifolds the volume Vol(M̂) is defined to be

zero. In this case, the result (7.8) becomes trivial, and we need to analyze the

subleading corrections of order N2. Note that this is consistent with the fact that the

only known supergravity solution is for hyperbolic 3-manifolds. For non-hyperbolic

3-manifolds we expect that the associated 3d N = 2 theory is massive, and its IR

theory will be trivial, apart from possible topological degrees of freedom.

7.2 ‘Simple’ Co-dimension 2 Defects

7.2.1 Single Probe M5

We are now done with the review material and come to the discussion of supersym-

metric defects.

Let us now consider putting supersymmetric defects into the D = 11 geometry

above. The first example we take is M5-brane whose worldvolume expands the

whole AdS4, and also a geodesic γ in H3 and a great circle in the two-sphere. We

use probe approximation where the backreaction to geometry is neglected; it would

be interesting to construct fully back-reacted geometry.

This configuration was studied and its supersymmetry was verified in [88]. This

object is analogous to a puncture for the case of M5-branes wrapping a Riemann

surface.

Here we will calculate the expectation value of the dual operator when the dual

field theory is put on S3. The induced metric times M5-brane tension gives

∆FS3 = T5(4π2l6P)(2π) `(γ) Vol(AdS4) , (7.11)

where `(γ) is the length of the geodesic γ, and T5 is the tension of the M5-brane and

T5 =
1

(2π)5l6P
. (7.12)

Using the regularized volume of AdS4
46

Vol(AdS4)|reg =
4π2

3
, (7.15)

we obtain

∆FS3 =
`(γ)N2

3
. (7.16)

46 To derive this, note that in the Euclidean signature the hyperbolic space with constant curva-

ture metric can be written as

ds2 = dρ2 + sinh2 ρ dΩ2
3 . (7.13)

Here the boundary is the three-sphere with unit radius. Then the volume with regulator cutoff ρ0
is

Vol(AdS4) = Vol(S3)

∫ ρ0

0

sinh3 ρ dρ = 2π2

(
1

3
cosh3 ρ0 − cosh ρ0 +

2

3

)
. (7.14)

Extracting the finite piece, we obtain eq. (7.15).
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This single probe M5 brane can be identified as gravity dual of a ‘simple’ co-dimension

2 defect. The difference ∆FS3 in free energies measure the increase of the free energy

by the defect at large N :

∆FS3 = F (TN [M̂\Kγ, simple])− F (TN [M̂ ]) . (7.17)

Since this defect has O(N2) scaling, we can consistently neglect the backreaction and

the probe approximation is well-justified. This is in contrast with the previously-

discussed case of the maximal puncture (7.10), which has O(N3) scaling and hence

the defect would rather change the geometry M̂ into M̂\K. The similar scaling

occurs in 4d–2d story, adding ‘simple’ puncture increase anomaly coefficients by

O(N2) while ‘maximal’ puncture increase the coefficients by O(N3) [89].

7.2.2 Large N of TN [(Σ1,1 × S1)ϕ, simple]

Let us next study the large N limit from the non-Abelian gauge theory description of

TN [(Σ1,1×S1)ϕ, simple] theory (Sec. 5). The closed 3-manifold M̂ϕ is a torus bundle

(T 2×S1)ϕ which is not hyperbolic. So, we cannot use the gravity solution to predict

the large N behavior of the theory.

The theory is build by gluing T [SU(N)] theory, and as is explained in Sec. H, its

(S1 × S2)q partition function is complicated already for N = 3. Fortunately, there

is a dramatic simplification when we consider the S3
b=1 partition function of the 3d

N = 4 version of the T [SU(N)] theory (namely when no real mass parameter for axial

U(1)t symmetry is turned on). In this case, the partition function of the T [SU(N)]

theory takes a rather simple form [77, 90, 91]. Denoting by ~µ = (µ1, . . . , µN) and

~ν = (ν1, . . . , µN) the real mass and FI parameters for the SU(N) × SU(N) flavor

symmetry (and hence
∑

i µi =
∑

i νi = 0), the (S3)b=1 partition function of T [SU(N)]

theory is given by

ZT [SU(N)][~µ, ~ν] =
1

N !

∑
σ∈SN

(−1)σ
e2πi ~ν·σ(~µ)

∆(~µ)∆(~ν)
, (7.18)

where we denoted ~ν · σ(~µ) =
∑N

i=1 νiµσ(i), the sum in eq. (7.18) is over the the

symmetric group, and ∆(~µ) is the sinh Vandermonde determinant:

∆(~µ) :=
∏
i<j

sinhπ(µi − µj) . (7.19)

One natural question is the large N behavior of eq. (7.18). Interestingly, at the

conformal point (namely in the limit ~µ, ~ν → 0) eq. (7.18) has a free energy which

scales as N2 logN in the large N limit [92]. This, however, is not in contradiction

with our holographic computations (7.8) or (7.16), since the corresponding 3-manifold

(mapping cylinder) is not a hyperbolic 3-manifold.
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Let us turn to the mapping torus theory discussed in Sec. 5.2. The mapping

torus (Σ1,1 × S1)ϕ, admits a hyperbolic structure (i.e. ϕ is pseudo-Anosov) if

|Tr(ϕ)| > 2 . (7.20)

The condition (7.20) can be satisfied, for example, by choosing ϕ = ST k with k ≥ 3.

The S3
b=1-partition function of the mapping torus theory is given by

ZS3

[
TN [(Σ1,1 × S1)ϕ, simple]

]
=

∫
d~µ∆(~µ)2 δ(~µ− ~ν)

S︷ ︸︸ ︷
ZT [SU(N)][~µ, ~ν]

T k︷ ︸︸ ︷
ekπi~µ

2

=
1

N !

∑
σ∈SN

(−1)σ
∫
d~µ e

2πi

(
k~µ2

2
+~µ·σ(~µ)

)
, (7.21)

where d~µ =
∏N

i=1 dµi and δ(~µ − ~ν) =
∏N

i=1 δ(µi − νi). We evaluate this integral in

App. I. It turns out that the result is a rather simple:

ZS3
b=1

[
TN [(Σ1,1 × S1)ϕ=ST k , simple]

]
=

1

cN
2

k (−c−2
k ;−c−2

k )N
, (7.22)

where ck is the largest eigenvalue of the 2×2 matrix ϕ = ST k and the q-Pochhammer

symbol (a; q)n is defined by

(a; q)n :=
n−1∏
k=0

(1− aqk) . (7.23)

It then immediately follows that in the large N limit we have

FS3
b=1

[
TN [(Σ1,1 × S1)ϕ=ST k , simple]

]
−→ N2

2
log c2

k . (7.24)

Note that we again see the O(N2) behavior for a ‘simple’ defect.

Entropy of Pseudo-Anosov Map and Hyperbolic Volume The fact that the

large the eigenvalue of ϕ with the largest absolute value appears in eq. (7.24) is has

interesting geometrical implications, which we now turn to.

The starting observation is that mathematically, c2
k is known to be the dilation

of the pseudo-Anosov map, which in turn coincides with the entropy (topological

entropy) Ent(ϕ) of the map ϕ [93]:

log(c2
k) = log(largest real eigenvalue of ϕ) = Ent(ϕ) , (7.25)

and hence

lim
N→∞

1

N2
FS3

[
TN [(Σ1,1 × S1)ϕ=ST 3 , simple]

]
=

1

2
Ent(ϕ) . (7.26)
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This topological entropy Ent(ϕ) is associated with a mapping class ϕ, but can also

be thought of as a quantity associated with the mapping torus (Σ× S1)ϕ, since the

latter is determined by the former.

Motivated by this computation for Σ = Σ1,1 and ϕ = ST k, we conjecture that

the equality (7.26) holds for Σ and any pseudo-Anosov map ϕ (such that (Σ×S1)ϕ is

hyperbolic, see eq. (7.20) for Σ = Σ1,1). It would be interesting to prove or disprove

this conjecture.

To some readers it might not be obvious (apart from obvious mathematical

interest) why a gauge/string theorist might be interested in the conjecture (7.26).

The reason comes from the following interesting inequality between Ent(ϕ), and the

hyperbolic volume Vol(ϕ), of a mapping torus (Σ × S1)ϕ:[94, Theorem 1], which

states that the inequality

Ent(ϕ) ≥ 1

3π|χ(Σ1,1)|
Vol(ϕ) =

1

3π
Vol(ϕ) , (7.27)

holds for any pseudo-Anosov ϕ ∈ MCG(Σ).

Interestingly, the mathematical quantities in both sides of the inequality (7.27)

are related to co-dimension 2 defects: Ent(ϕ) is related to a ‘simple’ defect and

Vol(ϕ) is related to a ‘maximal’ defect. More explicitly,

Ent(ϕ) = lim
N→∞

2

N2
× (S3 free energy of N M5s on M̂ϕ + ‘simple’ defect on Kϕ) ,

Vol(ϕ)

3π
= lim

N→∞

1

N3
× (S3 free energy of N M5s on M̂ϕ + ‘maximal’ defect on Kϕ) ,

(7.28)

where a closed 3-manifold M̂ϕ and a knot Kϕ in M̂ are defined by following conditions

M̂ϕ := (Σ1,0 × S1)ϕ and (Σ1,1 × S1)ϕ = M̂ϕ\Kϕ . (7.29)

The second equation in eq. (7.28) follows from eq. (7.10).

It is therefore tempting to understand the inequality (7.27) physically as the

condition (in the large N limit) that a defect with ρ maximal (with O(N) M5-

branes) does not decay into a set of O(N) M5-branes with ρ simple, namely that the

latter has more energy than the former. We leave more detailed analysis as future

work [95].

7.3 Co-dimension 4 Defects

7.3.1 Fundamental Representation as M2-brane

The M2-brane configuration which is dual to a Wilson loop operator in fundamental

representation of 3d CS theory on H3, is also a line operator for the theory dual to

AdS4. In addition to a loop in the boundary field theory, the M2-brane is extended
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along the holographic direction and also a great circle within S2. This configuration

is a co-dimension 4 defect within the M5-brane (2, 0) field theory.

Adopting the standard regularization scheme, the holographic expectation value

of a circular Wilson loop with unit radius is given from the evaluation of M2-brane

action,

S = T2(2πl3P)(2π)`(γ) = N `(γ) . (7.30)

Here `(γ) is the length of a geodesic loop γ in H3, wrapped by the M2-brane. We

have used the tension of the M2-brane

T2 =
1

(2π)2l3P
. (7.31)

The action computes the expectation values of the co-dimension 4 defects and it is

related to Wilson loop in SL(N) CS theory with k = 1 and b = 1 (or equivalently

σ = 0) via the 3d–3d correspondence (2.35):

log〈Ŵ2(Kγ)〉k=1,b=1
norm = N`(γ) at large N. (7.32)

Here 〈O〉norm denotes the normalized expectation value of an operator O,

〈O〉norm :=
〈O〉
Z

=
〈O〉
〈1〉

. (7.33)

Again, as (S3)b free energy, the dependence on b at large N for the defect wrapping

AdS2 factor in AdS4 can be universally restored as [96]:

log〈Ŵ2(Kγ)+〉k=1,b
norm =

1 + b2

2
log〈Ŵ2(Kγ)+〉k=1,b=1

norm =
1 + b2

2
N`(γ) ,

log〈Ŵ2(Kγ)−〉k=1,b
norm =

1 + b−2

2
log〈Ŵ2(Kγ)+〉k=1,b=1

norm =
1 + b−2

2
N`(γ) .

(7.34)

The subscript ± represents two supersymmetric cycle in (S3)b: + for a cycle of length

b and − for a cycle of length b−1. They correspond to holomorphic/anti-holomorphic

Wilson loop in SL(N) CS theory.

7.3.2 Antisymmetric Representation as M5-brane

The next object of our interest is the M5-brane which is in AdS2 subspace of AdS4,

a line defect γ in H3, and also occupying a three-dimensional sphere within the

four-sphere transverse to the source M5-branes. We expect that the probe M5-

brane corresponds to a co-dimension 4 defect in R = AK , K-th anti-symmetric

representation, with K ∼ O(N).47 In the un-wrapped version the worldvolume of

47In the brane configuration of eq. (1.7), let us Euclideanize the 0-direction and reduce the M5-

branes to (Euclidean) D4-branes in type IIA theory. The number of Dirichlet-Neumann directions

for the two D4-branes is 8. This implies that the zero-point ground-state energy of fundamental

strings between the D4-branes (originating from M2-branes between the M5-branes in M-theory) is

in the R sector in the NSR formalism. This behaves as a fermion and hence anti-symmetrizes the

Chan-Paton indices, so that the fundamental strings are naturally anti-symmetrized.
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this probe M5-brane occupies AdS3×S3 and already studied in [97]. We need to use

the PST action to properly identify the solution and evaluate the on-shell action.

For supersymmetry and also for satisfying the brane equation of motion, it is

essential to turn on the three-form gauge field on M5-brane. Without it, the action

is just induced worldvolume metric times tension, as usual. The nontrivial config-

uration we need to be careful about is the three-sphere. Let us identify this part

of the worldvolume coordinates with ϑ, ϕ from S̃2, and φ. Then the angle θ is in

general a function of these three coordinates. To be supersymmetric it should be

independent of the R-symmetry angle φ, and without losing generality we assume

it is also independent of ϕ. Now in terms of u(ϑ) ≡ (sin θ(ϑ))2, the action before

turning on 3-form field (and also ignoring the contribution from background G-flux)

is given by

S =
`(γ)N2

4

∫
dϑ sinϑ

√
u′2 +

8u(1− u)2

1 + u
. (7.35)

To incorporate the gauge field, we introduce

F3 = b′(ϑ) dφ ∧ dϑ ∧ dϕ . (7.36)

The flux quantization on the brane requires∫
b′(ϑ)dϑ = (2π)3K l3P , (7.37)

where K is an integer. Later, we will relate K to the rank of anti-symmetric represen-

tation for the Wilson loop. The physical gauge field on the worldvolume should also

include the pull-back of the 3-form gauge potential in the background, i.e. dC3 = G4

and

H3 = F3 − C3

=

[
b′ +Nπl3P

(
(1− u)

3
2

1 + u
− 1

)
sinϑ

]
dφ ∧ dϑ ∧ dϕ . (7.38)

It is crucial for us to include an integration constant −1 here: it makes sure that C3

vanishes at θ = 0, where the 3-sphere part of M5-brane shrinks to zero size in our

solution.

To compute the contribution of H3 in the PST action, we need to compute and

multiply
√

1 +H2
3 to eq. (7.35). It gives us

S =
`(γ)N2

4

∫
dϑ sinϑL , (7.39)

where

L :=

√√√√u′2 +
8u(1− u)2

1 + u
+

4

N2π2l6P
(1 + u)

(
b′

sinϑ
+Nπl3P

(
(1− u)

3
2

1 + u
− 1

))2

.

(7.40)
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This action can be treated as a classical mechanical system with “time” ϑ. We may

first take advantage of the gauge symmetry and derive the displacement field

D =
4(1 + u)

(Nπl3P )2L

[
b′

sinϑ
+Nπl3P

(
(1− u)

3
2

1 + u
− 1

)]
, (7.41)

which is a constant. We can plug it back to the original action (7.40) and take a

partial Legendre transformation:

H = Db′ −L sinϑ

= − sinϑ

(√
u′2 +

8u(1− u)2

1 + u

√
1− d2

1 + u
+

2d(1− u)
3
2

1 + u

)
. (7.42)

Here we introduced d := 2/(Nπl3PD). One can check that the Euler-Lagrange equa-

tion from H is interpreted as a Lagrangian of u, u′ is the same as the equation of

motion derived from eq. (7.40).

Because of the explicit “time” dependence on ϑ, the above action defies straight-

forward integration. However it turns out that there is a relatively simple solution:

u = 1− d2

cos2 ϑ
. (7.43)

Our solution (7.43) defines a 3-sphere through a constant latitude condition, x1 = d.48

Now it is easy to compute the action. The worldvolume flux quantization (7.37)

gives

d = 1− 2K

N
, (7.44)

and the action evaluates to

S =
`(γ)N2

4
(1− d2) = `(γ)N2K

N

(
1− K

N

)
. (7.45)

Note that this expression is consistent with the symmetry K → N −K of the K-th

antisymmetric representations. Also, when K is small, this reduces to S = LNK,

which is K times the action of the M2-brane computed previously. This is to be

expected since the M5-brane solution for K ∼ N can be thought of as the blow-up of

the M2-branes when the flux charge K is large. Restoring b-dependence and relating

to Wilson loop in SL(N), as we did for probe M2-brane case, we expect that

log〈ŴAK (Kγ)+〉k=1,b
norm =

1 + b2

2
N2κ(1− κ)`(γ) ,

log〈ŴAK (Kγ)−〉k=1,b
norm =

1 + b−2

2
N2κ(1− κ)`(γ) ,

(7.46)

48This is reminiscent of a similar result for 4d N = 4 SYM [98, 99] and 5d N = 1 SCFTs [100].
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in the limit

N →∞ , K →∞ with fixed κ :=
K

N
. (7.47)

We can also incorporate several different M5-branes, all occupying different lati-

tudes on the sphere. Let us assume that the i-th M5-brane corresponds to the Ki-th

anti-symmetric representation, and it wraps the cycle γi in M̂ , where Ki is of or-

der O(N). We assume that i runs over i = 1, . . . , s, where s is of order O(N0).49

Since these M5-branes preserve the same supersymmetry, we expect that there are

no forces between them, and the action, in the leading large N limit, should be a

sum of the contribution from each M5-brane:

S = N2

s∑
i=1

`(γi)
Ki

N

(
1− Ki

N

)
. (7.48)

Let us consider the special case where the 1-cycles γi inside the 3-manifold M̂

are all the same, γi = γ. We propose (cf. [99]) that the M5-brane configuration for

eq. (7.48) represents a Wilson line in the Chern-Simons theory, in representation R

labeled by the partition

λ = [1, · · · , 1︸ ︷︷ ︸
K1−K2

, 2, · · · , 2︸ ︷︷ ︸
K2−K3

. . . , s, · · · , s︸ ︷︷ ︸
Ks

] , λt = [K1, K2 · · · , Ks] , (7.49)

where without losing generality we assumed Ki ≥ Ki+1. Notice that this representa-

tion reduces to the anti-symmetric representation AK when s = 1, namely K1 = K,

Ki≥2 = 0. We will check the consistency of this proposal in the next subsection.50

7.4 Chern-Simons Perturbation

In this section, we try to understand the above gravity computations in SL(N) CS

theory. The gravity computation is only reliable at large N but exact in b. In CS

theory, b is related to perturbative expansion parameter (2.29). Here, we consider

the case when k = 1 and b (and correspondingly σ) is real. In the case, as discussed

around eq. (3.14), we use a real parameter ~R := 2πb2 as perturbative expansion

parameter.

Contour for σ ∈ R The large N free energy (7.10) was reproduced in a highly

non-trivial numerical way using state-integral model in [24, 25]. What is remarkable

in the comparison is that the large N free energy is wholly reproduced by pertur-

bative expansion of CS theory around a single flat connection Aconj
N in eq. (3.54).

49 If we allow s to be of order O(N1), then eq. (7.48) could be of order O(N3) and the probe

approximation breaks down.
50 In our leading supergravity approximation, we really do not distinguish between the repre-

sentation (7.49) and the tensor product representation ⊗iAKi . The two differ by an exponentially

suppressed contributions.
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As discussed around eq. (2.15), we don’t know correct path-integral cycle for real

σ unlike σ = iR case. The non-trivial consistency check in [24, 25] gives a possible

candidate for the correct contour in the 3d–3d correspondence for k = 1 and real σ :

Cσ∈R =
∑
α,β

n(α,β)J (α,β) , with

nα,β 6= 0 if and only if (α, β) = (conj, 0) as b→ 0 ,

nα,β 6= 0 if and only if (α, β) = (0, conj) as b→∞ .

(7.50)

Aα=0 denotes the trivial flat connection. For N = 2, there is some empirical sup-

porting evidence for it using state-integral models [25, 101].

In weak coupling limit ~R → 0, the holomorphic Wilson loop expectation value

can be perturbatively expanded around saddle point configurations

〈ŴR(Kγ)〉 =
∑
(α,β)

n(α,β) exp

(
W

(α,β)
0 (Kγ, R) + . . .+W (α,β)

n (Kγ, R)~nR + . . .

)
,

(7.51)

where as before (α, β) is the label for the saddle point, and n(α,β) is an integer

specifying the integration contour. We again assume that the leading correction

comes from the saddle point (α, β) = (conj, 0). The saddle point here refers to the

saddle point of the path integral with Wilson lines inserted, and the Wilson lines in

general affect the saddle point. There are simplifications, however, when we consider

the K-th antisymmetric representation AK the saddle point turns out to be the

same regardless of the presence of Wilson lines. This is because the original action

is order N3 (recall eq. (7.8)), whereas the Wilson line is at at most of order N2 and

is subleading. The saddle point is still determined by N3 piece, and hence we can

safely assume that the saddle point is unmodified in the leading large N limit.51

The prediction (7.34) from gravity calculation imply the following perturbative

expansion of the Wilson loop:

lim
N→∞

1

N
W

(conj,0)
0 (Kγ,2) =

1

2
`(γ) ,

lim
N→∞

1

N2
W

(conj,0)
0 (Kγ, AκN) =

κ(1− κ)

2
`(γ) ,

lim
N→∞

1

N
W

(conj,0)
1 (Kγ,2) =

1

4π
`(γ) ,

lim
N→∞

1

N2
W

(conj,0)
1 (Kγ, AκN) =

κ(1− κ)

4π
`(γ) ,

lim
N→∞

1

N
W

(conj,0)
n>1 (Kγ,2) = lim

N→∞

1

N2
W

(conj,0)
n>1 (Kγ, AκN) = 0 .

(7.52)

51The situation will be different when we consider K-th symmetric representation with K large,

say K of order N2 and higher.
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It is an interesting problem to check these results directly from the expressions of

the partition functions worked out in previous sections. We leave this question for

future work, except to point out that the conjecture can easily be checked as far as

the classical part W0 is concerned. For the classical part we only need to evaluate

the Wilson loop at the classical saddle point (conj, 0):

W
(conj,0)
0 (Kγ, AK) = TrAKPe

−
∮
Kγ A

conj
N

= TrAK

[
[N ] ·

(
`∗C/2 0

0 −`∗C/2

)]
(∵ eq.(3.56))

=
∑

1≤i1<i2...<iK≤N

eλi1+λi2+...+λik

(
λ` :=

(
N

2
+

1

2
− `
)
`∗C(γ)

)
= exp

(
K(N −K)

2
`∗C(γ)

)
+ · · · ,

(7.53)

where in the last equation, (· · · ) represents terms exponentially suppressed than the

first term in the large N limit. This is consistent with the expectation (7.52) since

real part of complex hyperbolic length `C(γ) is the hyperbolic length `(γ). More

generally, we show in App. J that the for the representation (7.49), leading large

N answer gives eq. (7.48), thereby establishing the consistency with our previous

proposal.

8 Discussion and Outlook

In this paper, we systematically studied co-dimension 2 and 4 defects, by consolidat-

ing results from a number of different approaches. The methods are complementary

in their scope, and whenever more than one results are available we have checked the

consistency between different approaches.

Our results on the one hand generalize the existing discussion of the 3d–3d

correspondence by including supersymmetric defects. On the other hand, our results

shed light on several key aspects of the 3d–3d correspondence which has not been

treated adequately in the literature.

The highlights of our work include the following:

• In Sec. 4 and App. C, we obtained explicit integral expressions for the cluster

partition function for a general quiver and a mutation sequence. We also extended

the result to include Wilson line insertions (in Sec. C.2). These results are rather

general, and go well beyond 3d N = 2 theories described by the 3-manifolds; they

apply to the 3d N = 2 cluster theories of [22]. We expect that our results will be

useful in such more general contexts.
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• We have initiated the study of the 3d–3d correspondence for non-maximal punc-

tures. This includes the simple punctures forN = 3 andN = 4, which we discussed

in detail, and we also commented on more general punctures (Sec. 4.5). It seems,

however, to be a challenging problem to generalize the discussion to completely

general punctures. Our results on non-maximal punctures should have a number

of different applications, such as the discussion of loop operators in both 4d–2d

and 3d–3d correspondence.

• One missing ingredient in the existing 3d–3d setup is to better understand the

consistency between Abelian and non-Abelian descriptions of TN>2[M ] theories.

We have carried out quantitative consistency checks of the two for the first time

in the literature for the N > 2 case. This was made possible by our techniques to

study the non-maximal punctures, as mentioned above. We also pointed out that

the non-Abelian description is crucial for the complete dictionary of co-dimension

4 defects in the 3d–3d correspondence; such a non-Abelian description is currently

not available, except for the cases discussed in Sec. 5.2.

• For co-dimension 4 defects, we proved the correspondence between Wilson loops

in 5d N = 2 SYM and those in CS theory, by explicit localization computation in

5d. Note that the proof applies to 5d N = 2 SYM with any gauge group G, and

is more general than the rest of the paper, where G is taken to be SU(N).

• For co-dimension 2 defects, we provided a Higgsing description relating different

types of defects. As a byproduct, this gives natural 1-parameter deformation of

the partition function, which is a certain ‘refinement’ of the CS theory.

• We obtained the supergravity duals of the supersymmetric defects in the large

N limit, and worked out several large N predictions. This gives interesting set

of predictions for the large N behavior the partition functions, which should be

checked mathematically in the future works.

Let us close this paper by making two extra comments.

• We can formulate our study of the co-dimension 2 and co-dimension 4 defect more

mathematically, as follows.

First, the moduli space of flat connections on a 3-manifold M with boundary

should decompose into several disconnected components, labeled by the conjugacy

class of the meridian/longitude on the ∂M . After quantization, it suffices to choose

one of the say, say longitude, and we have

M̂N
flat =

⋃
ρ

M̂N
flat, ρ . (8.1)
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Table 1. Summary and comparison between different approaches. On the left of each

entry, we indicate if our results are new: one smile means the result is known in the

literature, while two means we obtained new results. On the right, two smiles mean that

story is at least partially complete, while one smile means there are still open problems.

This is meant only as an illustration, and readers are encourage to consult the main text

for precise statements as to what is new/done/not done in this paper.

ρ = maximal ρ = simple co-dimension 4 R

cluster partition function ,,/,, ,,/ ,, ,,/,
state-integral model ,/,, ,,/ , ,,/,

domain wall T [SU(N)] — ,,/ ,, ,,/ ,,
5d N = 2 SYM ,,/ ,, ,,/ , ,,/ ,,

Holographic dual ,,/ , ,,/ , ,,/ ,

Namely the choice of the co-dimension 2 defect is nothing but the choice of the

connected component of the moduli space. In this respect, the Higgling proposal

of Sec. 6.3 is rather dramatic and maps one connected component to another

(however in these cases one component should be the closure of another).

We expect each of the moduli space allow for a descriptions in terms of quivers

and mutations, and has a set of nice coordinates associated with them: the moduli

space is a cluster X -variety. Co-dimension 4 defects are represented as an element

of the coordinate ring of the moduli space, and hence its quantization is part of the

quantization of the coordinate ring C[MN(M̂\K)]. Such a quantization is related

with the algebraic structure known as the so-called Kauffman bracket skein module

[102].

• In this paper we treated the co-dimension 2 and co-dimension 4 defects separately.

However, we learned that both defects corresponds to the same line operators in

SL(N) CS theory. Co-dimension 2 defects can be realized as boundary condition

in the CS theory which fix the holonomy around the knot K, whereas co-dimension

4 is realized as Wilson loop along γ on M . However, in pure Chern-Simons theory,

the Wilson line introduces a source term to the equation of motion, and hence

can equivalently be formulated as a defect operator [103, 104].52 This means that

the two types of defects are equivalent, up to a proper identification of continuous

mass-parameters of co-dimension 2 defects with discrete labels for unitary repre-

sentations of co-dimension 4 defects, see [105] for related discussion in the context

of the 4d–2d correspondence.

52Recall that in this paper we assumed that the representation of the complex gauge group SL(N)

is obtained by natural complexification of a finite-dimensional unitary representation of SU(N).
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A Conditions on Boundary Holonomies

In this appendix we comment in more detail the specification of the boundary

holonomies for the co-dimension 2 defects specified by ρ. This has been discussed

in the literature in the other contexts (see e.g. [78, 106]), however little in the cur-

rent subject of the 3d–3d correspondence. As in the main text let us discuss the

holonomies for the meridian; holonomies for other boundary cycles, say longitude, is

completely parallel.

Let us first start with the case N = 2. In this case, the only non-trivial type of

the co-dimension 2 defect is ρ = [1, 1]. If we turn on the mass parameters Mα=1 =

−Mα=2, and if we assume that they are generic (i.e. Mα=1 6= 0), then the two

eigenvalues of the holonomy matrix are different, and hence we can always diagonalize

the matrix. This means that

log (Hol(m)) ∈ orbit of

(
M1 0

0 −M1

)
, (A.1)

where the orbit is defined by the adjoint action of the gauge group.

Let us next consider the limit M1 → 0. The most straightforward method is to

take the limit M1 → 0. If we take the limit of the representative matrix in eq. (A.1),

we obtain the matrix

0 =

(
0 0

0 0

)
. (A.2)

53DG: IPMU, May 2015; SNU, June, 2015; KIAS, July 2015, MR:“Workshop on Non-Abelian

Gauged Linear Sigma Model and Geometric Representation Theory”, Peking University, June 2015,

MY: Oxford, Oct. 2015.
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However, this is not the only possibility. In fact, first note that for M1 6= 0

eq. (A.1) can also be written as

log (Hol(m)) ∈ orbit of

(
M1 1

0 −M1

)
, (A.3)

and the limit M1 → 0 for this representative matrix yields a nilpotent matrix

σ+ =

(
0 1

0 0

)
. (A.4)

This subtlety arises since while the two representative matrices in eqs. (A.1) and

(A.3) are related by conjugation for M1 6= 0, the matrix used in the conjugation

becomes singular as M1 → 0, and hence 0 is only in the closure of the orbit of

σ+. Since we should include all the limits of eq. (A.1) (or equivalently eq. (A.3)) in

the limit M1 6= 0, we come to the conclusion that we should include both orbits.

Equivalently, in this limit, the correct boundary condition for the co-dimension 2

defect should be

log (Hol(m)) ∈ Oσ+ = O0 ∪Oσ+ , (A.5)

where Ox denotes the orbit of x by conjugation. This means that we should include

Abelian flat connections for the descriptions of the co-dimension 2 defects. As we

will comment in the main text, neither the state-integral model (Sec. 3) nor the

cluster partition function (Sec. 4) contains the contributions from the Abelian flat

connections. This contrasts with the theories of Sec. 5, which do contain the Abelian

flat connections.

We can generalize the discussion for general N . In the extreme case where all the

eigenvalues are trivial, we obtain a closure of a nilpotent orbit, as stated in eq. (2.28).

In fact, we can be more explicit and write

log (Hol(m)) ∈ Oρt(σ+) = ⊕ρ′≤ρ(Oρt(eσ+ )) , (A.6)

where the partial ordering for two partitions ρ, ρ′ are defined by

k∑
i=1

ρi ≥
k∑
i=1

ρ′i (A.7)

for all k (we have taken ρi = 0 if i > `(ρ)). The right hand side of eq. (A.6) is

known to coincide with the Coulomb branch (or Higgs branch) of the mass-deformed

T ρ[SU(N)] (or Tρ[SU(N)]) theory.
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B Quantum Dilogarithm Function

The non-compact quantum dilogarithm function [44] is defined by

ψ~(x) :=


∞∏
n=0

1− qn+1e−x

1− q̃−ne−x̃
|q| < 1 ,

∞∏
n=0

1− q̃n+1e−x̃

1− q−ne−x
|q| > 1 ,

(B.1)

with q := e~ = e2πib2 , q̃ := e~̃ := e2πib−2
, x̃ := b−2x. For the value |q| = 1, we would

rather use the following integral expression

ψ~(z) = exp

[∫
R+i0

dt

4t

e(4πiz+2π(b+b−1))t

sinh(t) sinh(b−2t)

]
, (B.2)

In the main text, we also used a version (3.20) where ~ and ~̃ are independent. In

the literature, sometimes a different notation eb(z) is used, which is related to ψ~(z)

by

ψ~(−2πbz + iπ + iπb2) = ψ~

(
−2πbz +

~
2

)
= eb(z) . (B.3)

From the infinite product representation we can easily derive the following periodicity

relations:

ψ~(z + 2πib2) = (1− e−z)ψ~(z) ,

ψ~(z + 2πi) = (1− e−z/b2)ψ~(z) .
(B.4)

An important property of the quantum dilogarithm is∫
R
dx eb(x)e2πiwx = e−iπw

2+iπ(1+
(b+b−1)2

12
)eb

(
w + i

b+ b−1

2

)
. (B.5)

C Derivation of Cluster Partition Function

One tool we heavily reply on in this paper is the cluster partition function, Sec. 4.

Here we derive an integral expression for the cluster partition function. Our deriva-

tion, as well as the results, are the improvements over those of [22]; for example we

include dependence on central elements, and we are more explicit on the eliminating

flat directions of the integral, and we also include Wilson lines in Sec. C.2.

C.1 Detailed Derivation

Quiver Mutations and Cluster Algebras Let us first introduce quiver muta-

tions and cluster algebras [107] (see [108] for an introduction). Our notation here

follows [22].
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Let us begin with a quiver Q, i.e., a finite oriented graph. We denote the set of

the vertices of the quiver by I, and its elements by i, j, . . . ∈ I. We denote the number

of vertices of Q by |Q|. For our purposes Q is taken to be a quiver determined from

a triangulation of a Riemann surface.

For vertices i, j ∈ I, we define

Qij := #{arrows from i to j} −#{arrows from j to i} , (C.1)

i.e. |Qij| represents the number of arrows from the vertex i to j, and the sign

represents the chirality (orientation) of the arrow. The quivers discussed in this paper

has no loops and oriented 2-cycles, and hence the quiver Q is uniquely determined

by the matrix Qij.

Given a vertex k, we define a new quiver µkQ (mutation of Q at vertex k) by

(µkQ)ij :=

{
−Qij (i = k or j = k) ,

Qij + [Qik]+[Qkj]+ − [Qjk]+[Qki]+ (i, j 6= k) ,
(C.2)

where we defined [x]+ := max(x, 0). For our purposes an appropriate mutation

sequence will be determined from the change of the triangulation. Given a quiver

Q = (Qij), we can define a quantum-mechanical system by the commutation relation:

[Yi,Yj] = ~Qji , [Ȳi, Ȳj] = ~̃Qji . (C.3)

where we prepared a variable Yi for each vertex i, and a ‘Planck constants’ ~, ~̃.

The value of ~, ~̃ is taken to satisfy ~∗ = −~̃, so that the Y† = Ȳ without violating

eq. (C.3); the value of ~ is then analytically continued to other complex values after

the computation. In terms of exponentiated variables yi = exp(Yi), this becomes

AQ := {yi, ȳi (i∈I) | yjyi = qQijyiyj , ȳj ȳi = q̃Qijyiyj , ȳjyi = yiȳj } , (C.4)

where q := e~ and q̃ := e~̃. The variables yi are the so-called quantum y-variables

[109, 110]. Mutation µ̂k acts on these variables as

µ̂k yi µ̂
−1
k = q

1
2
Qik[Qik]+yiy

[Qik]+
k

|Qki|∏
m=1

(
1 + qsgn(Qki)(m− 1

2
)y−1
k

)−sgn(Qki)

,

µ̂k ȳi µ̂
−1
k = q̃

1
2
Qik[Qik]+ ȳiȳ

[Qik]+
k

|Qki|∏
m=1

(
1 + q̃sgn(Qki)(m− 1

2
)ȳ−1
k

)−sgn(Qki)

.

(C.5)

The commutation relation (C.3) has a central element of the form

LA =

|Q|∑
i=1

CAi Yi ,
|Q|∑
i=1

CAi Qij = 0 , (C.6)
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where A runs from 1 to dimension of Ker(Q) and we included a logarithm on the

left hand side for later convenience. Since they commute with all other elements, the

values of LA can be taken to be fixed constants (and hence we did not write LA as

an operator L̂A.

Once eliminating these central elements, Qij is non-degenerate in other variables,

and hence we can choose linear combinations such that the commutation relation

reduces to the canonical commutation relations. This has a standard representation

in a Hilbert space, which we denote by HQ. We will not describe this space in detail

here since we would rather use a related but somewhat extended space ĤQ, to be

described momentarily.

In this quantization the mutation is promoted to an operator, sending an element

of AQ to AµkQ: 54

µ̂k = ψ~
(
Yk + iπb2 + iπ

)
P̂k , (C.7)

where ψ~(x) is a quantum dilogarithm function defined in App. B, and in particular

satisfy the difference equations of eq. (B.4). The mutation operator is chosen to

satisfy the operator equations (C.5). The mutation operator is unitary operator.

The hermitian operator P̂k give a transformation properties of (the logarithm of) the

so-called tropical version of y-variables:

P̂k(Yi) := P̂kYiP̂
−1
k =

{
−Yk i = k

Yi + [Qik]+Yk i 6= k
, (C.8)

or equivalently

P̂k(yi) := P̂kyiP̂
−1
k =

{
y−1
k i = k

q
1
2
Qik[Qik]+yiy

[Qik]+
k i 6= k

. (C.9)

Cluster Partition Function In the following we consider a sequence of quiver

mutations (µm0 , . . . , µmL−1
) and permutations (σ0, . . . , σL−1), specified by a set m =

(m0, . . . ,mL−1) of vertices.

We define the quiver at “time” t by

Q(t) := σ̂t−1µ̂mt−1 . . . σ̂0µ̂m0Q , Q(0) := Q . (C.10)

Permutation σ acts on quiver Q in the following way

σ̂ ·Q := σTQσ ,

(σ)ij :=

{
1 i = σ(j)

0 i 6= σ(j)
.

(C.11)

54This can also be written as µ̂k = eb
(−Yk

2πb

)
P̂k, where eb(z) is defined in App. B.
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We can then define the cluster partition function Zcluster
Q,m,σ by55

Zcluster
Q,m,σ :=

〈
in
∣∣µ̂m0σ̂0 . . . µ̂mL−1

σ̂L−1

∣∣out
〉
, (C.12)

for the initial and final states |in〉 ∈ HQ(0) and |out〉 ∈ HQ(L).
56 This partition

function depends on the choice of initial and final states. We will compute the

matrix element (C.12) using quantization with k = 1 in eq. (3.11).

For the explicit computation of the expectation value of eq. (C.12), it is useful

to double the degrees of freedom, namely to replace Yi by two variables pi, ui, and

write [46]

Yi = pi −Qijuj . (C.13)

Here repeated index j is assumed to be summed from 1 to |Q|. The advantage of

this trick is that the (exponentiated version of) commutation relation (C.3) is then

is reproduced from the canonical commutation relations:

[ui, uj] = [pi, pj] = 0 , [ui, pj] = iπb2 δij . (C.14)

This commutation relation, of course, has a simple representation in a Hilbert space

ĤQ, spanned by position basis |u〉 (or momentum basis |p〉)

〈u|ui = 〈u|ui , 〈u|pi = −iπb2 ∂

∂ui
〈u| ,

〈p|ui = iπb2 ∂

∂pi
〈p| , 〈p|pi = 〈p|pi ,

〈u|p〉 = exp

(
i

πb2
u · p

)
.

(C.15)

We have following Hermiticity and the completeness relation57

u†i = ui , p†i = pi , I =

∫
du|u〉〈u| =

∫
dp|p〉〈p| . (C.16)

The action of the operator P̂k naturally extends to the variable pi, ui:

P̂k(pi) := P̂kpiP̂
−1
k =

{
−pk (i = k)

pi + [Qik]+pk (i 6= k)
,

P̂k(ui) := P̂kuiP̂
−1
k =

{
−uk +

∑
j[Qjk]+uj (i = k)

uk (i 6= k)
.

(C.17)

55Here we inserted a permutation σt for each mutation. We can easily commute the permutations

with the other operators, and hence can choose to do a permutation only in the last step. It is

technical useful, however, to allow for this flexibility.
56In our convention we read the product from left to right.
57Here we define

∫
du :=

∫ ∏|Q|
i=1 dui and

∫
dp :=

∫ ∏|Q|
i=1

dpi
(2iπb2) .
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It follows from the second relation that wi :=
∑

j Qi,juj transforms in the same

manner with pi, and hence eq. (C.17) is compatible with eq. (C.13). The operator

P̂k is Hermite:

P̂ †k = P̂k ,
〈
p
∣∣P̂k∣∣u〉 =

〈
P̂k(p)

∣∣u〉 =
〈
p
∣∣P̂k(u)

〉
. (C.18)

In this basis, the cluster partition function (C.12) becomes

Zcluster
Q,m,σ

(
p(0), p(L)

)
:=
〈
p(0)

∣∣µ̂m0σ̂0 . . . µ̂mL−1
σ̂L−1

∣∣p(L)
〉
, (C.19)

where the operator σ̂ is a permutation operator associated with a permutation σ,

acting on the |p〉 basis by

σ̂|pi〉 = |pσ(i)〉 . (C.20)

The the cluster partition function is then computed to be ([22], see also [111])

Zcluster
Q,m,σ

(
p(0), p(L)

)
=

∫ [L−1∏
t=0

du(t)
L−1∏
t=1

dp(t)

] 〈
p(0)

∣∣ψ~
(
Ym0 + iπb2 + iπ

) ∣∣u(0)
〉

×
〈
u(0)

∣∣P̂m0σ0

∣∣p(1)
〉
. . .
〈
p(L− 1)

∣∣ψ~
(
YmL−1

+ iπb2 + iπ
) ∣∣u(L− 1)

〉
×
〈
u(L− 1)|P̂mL−1

σL−1|p(L)
〉

=

∫ [L−1∏
t=0

du(t)
L−1∏
t=1

dp(t)

]
L−1∏
t=0

ψ~
(
pmt(t)−Qmt,juj(t) + iπb2 + iπ

)
(C.21)

× e
1

iπb2

[
u(t)·p(t)−P̂mt

(
u(t)
)
·
(
σt·p(t+1)

)]
.

Integration over pi 6=mt(t) simply gives δ-functions and pmt(t) also can be integrated

using the identify (B.5):

Zcluster
Q,m,σ

(
p(0), p(L)

)
=

∫ [L−1∏
t=0

du(t)

]
ψ~
(
pm0(0)−Qm0,juj(0) + iπb2 + iπ

)
× e

1
iπb2

[
u(0)·p(0)−P̂mL−1

(
u(L−1)

)
·
(
σL−1·p(L)

)] L−1∏
t=1

ψ~
(
Z(t)

)
e−

1
4πib2

Z(t)Z′′(t)δ(eq. (C.24)) .

(C.22)

Here we ignore the overall factor independent on p(0) and p(L). For 1 ≤ t ≤ L− 1,

we defined58

Z(t) := 2

[(
σ−1
t−1 · P̂mt−1

(
u(t− 1)

))
mt

− umt(t)
]
,

Z ′′(t) := 2

[
−
(
σ−1
t−1 · P̂mt−1

(
u(t− 1)

))
mt

+ umt(t) +
∑
j

Qmt,j(t)uj(t)

]
.

(C.23)

58The names Z(t), Z ′′(t) originates from the fact that when we discuss cluster partition functions

associated with a 3-manifold, these parameters coincide with the moduli of ideal tetrahedra, which

are often denoted by the same names.
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The arguments of the delta function constraints in (C.22) are

ui(t) =

(
σ−1
t−1 · P̂mt−1

(
u(t− 1)

))
i

, for i 6= mt , t = 1, . . . , L− 1 . (C.24)

We would also like to impose extra constraints coming from (C.6): This means that

inside the delta functions we should also have additional constraints∑
i

CAi Yi(0) = LA
(C.13)
=⇒

∑
i

CAi pi(0) = LA . (C.25)

Trace To this point we have followed the results of [22]. For our application in this

paper, there are still some points to clarified. First, what we wish to compute is the

trace

TrQ,m,σ(L) := TrĤQ(µ̂m0σ̂0 . . . µ̂mL−1
σ̂L−1) , (C.26)

Of course, in order to this trace to be well-defined, the Hilbert space at t = 0 and

that at t = L should be the same. We therefore impose the following two constraints

on (Q,m,σ). First, we obviously need

Q(L) = Q(0) . (C.27)

Second, we choose central elements {Lα =
∑|Q|

i=1 c
α
i Yi}ncα=1 commuting with ϕ̂

Lα(t = L) := ϕ̂−1(Lα)ϕ̂ = Lα , (ϕ̂ := µ̂m0σ̂0 . . . µ̂mL−1
σ̂L−1) , (C.28)

and we impose the constraints in (C.25) only for these central elements:

|Q|∑
i=1

cαi pi(0) = Lα . (C.29)

The trace in (C.26) depends on the nc central elements. Since we are potentially

identifying the puncture parameters when taking the trace, nc is not greater than

dimension of kernel of Q in general. For example, in the example of Fig. 8 we have

|Ker(Q) = 4|, since we have a fourth-punctured sphere; however, when after closing

the braids we have only two independent link components, and hence we have nc = 2.

The second constraint means that we in general have to identify some of the central

elements LA, and not all the LA will be independent after taking a trace. This is

needed for the identification of the two Hilbert spaces at t = 0 and t = L. For

certain choices of (Q,m,σ), the trace TrQ,m,σ(L) can be considered as the SL(N)

CS partition function on a 3-manifold where Lα are position variables in a certain

polarization choice of boundary phase space of the 3-manifold.

This identification has a natural geometrical interpretation in the 3-manifold

setup of Sec. 4.2. There a central element corresponds to the holonomy around
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a puncture in the 2d surface, which looks like a braid in 3d. When we close the

mapping cylinder Σ × [0, 1] into a mapping torus (Σ × S1)ϕ, the ends of the braids

are identified, giving rise to a link component, and the number of link components

after identification is smaller than the number of braids (see Fig. 8).

Going to the trace means to start with the final formula (C.22), identify initial

state and the final state by setting p(L) = p(0), and integral over the state |p(0)〉.
Then, we immediately have

TrQ,m,σ(L)

=

∫
dp(0)

∫ L−1∏
t=0

du(t)

[
ψ~
(
pm0(0)−Qm0,juj(0) + iπb2 + iπ

) L−1∏
t=1

ψ~
(
Z(t)

)
e−

1
4πib2

Z(t)Z′′(t)

× e
1

πib2

[
u(0)·p(0)−P̂mL−1

(
u(L−1)

)
·
(
σL−1·p(0)

)]
δ
(
eq.(C.24) and (C.29)

)]
.

(C.30)

where the (Z(t), Z ′′(t)) are defined in (C.23).

For our purposes, it is useful to take a Fourier transform from Lα to another set

of variables M′
α. The constraint (C.29) could then easily be dealt with, since we can

trivially integral over the Lαs. We then obtain

F.T. [TrQ,m,σ] (M′) :=

∫ nc∏
α=1

dLα e
1

2πib2

∑
α LαM′αTrQ,m,σ(L)

=

∫ L−1∏
t=0

du(t)

[ L−1∏
t=0

ψ~
(
Z(t)

)
e−

1
4πib2

Z(t)Z′′(t)δ
(
eq.(C.24) and eq.(C.32)

)]
. (C.31)

Here the delta functions gives constraints in (C.24), and the following additional

constraints:

ui(0) +
1

2

∑
α

cαi M
′
α =

(
σ−1
L−1 · P̂mL−1

(
u(L− 1)

))
i

, for i 6= m0 (C.32)

and with (C.23)

Z(0) := 2

[(
σ−1
L−1 · P̂mL−1

(
u(L− 1)

))
m0

− um0(0)−
∑
α

1

2
cαm0

M′
α

]
,

Z ′′(0) := 2

[
−
(
σ−1
L−1 · P̂mL−1

(
u(L− 1)

))
m0

+ um0(0) +
∑
α

1

2
cαm0

M′
α +

∑
j

Qm0,j(0)uj(0)

]
.

(C.33)

Collecting these results, we obtain (4.1).
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C.2 Inclusion of Wilson Lines

Here we derive the cluster partition function from the previous section but, adding

an extra ingredient: a Wilson loop insertion. We will focus on loops on the Riemann

surface Σg,h of the mapping torus/cylinder. Then, the Wilson loop can be written

as a linear combination of the operators:

exp

(∑
i

aiYi

)
ak ∈ Q . (C.34)

(More precisely, from periodicity conditions the constants ak should be quantized,

but, for the derivation of the formula, this is not important). Our starting point is59

Zcluster
Q,m,σ,a = 〈p(0)|e

∑
i aiYi(0)µ̂m0σ̂0 · · · µ̂mL−1

σ̂L−1|p(L)〉 . (C.35)

When then insert complete sets, we need an extra complete set of the form |p′(0)〉〈p′(0)|
in the first factor:

〈p(0)|e
∑
i aiYi(0)|p′(0)〉〈p′(0)|ψ~

(
Ym0(0) + πib2 + iπ

)
|u(0)〉

× 〈u(0)|P̂m0σ̂0|p(1)〉〈p(1)| .
(C.36)

It is not difficult to evaluate this expression. Since
∑

i aiYi =
∑

i aipi +
∑

l,j alQl,juj

and
[∑

i aipi,
∑

l,j alQljuj
]

= 0,

〈p(0)|e
∑
i aiYi(0)|p′(0)〉 = e

∑
i aipi(0)〈p(0)|e−

∑
i,j aiQijuj |p′(0)〉

= e
∑
i aipi(0)

〈
p(0)− πib2

∑
i,j

aiQij êj

∣∣∣p′(0)
〉

= e
∑
i aipi(0)δ

(
p(0)− πib2

∑
i,j

aiQij êj − p′(0)

)
. (C.37)

Then, doing the integration over p′(0) in (C.36) we obtain:

ea·p(0)+ 1
πib2

(u(0)·p(0)−πib2a·Q·u(0))

× ψ~
(
Ym0(0) + πib2(a ·Q)m0 + πib2 + iπ

)
〈p(1)| .

(C.38)

This is the only change, so we are left with

Zcluster
Q,m,σ,a(p(0), p(L)) =

∫ (L−1∏
t=0

du(t)

)
ea·p(0)ψ~

(
Ym0(0) + πib2(a ·Q)m0 + πib2 + iπ

)
× e

1
πib2

[u(0)·(p(0)+πib2Q·a)−P̂mL−1
(u(L−1))·p(L)]

L−1∏
t=1

ψ~ (Z(t)) e−
1

4πib2
Z(t)Z′′(t)δ(eq. (C.24)) .

(C.39)

59Here we inserted a Wilson line at time t = 0. Since we are taking a trace, the time is cyclic we

do not lose generality in assuming this.
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Taking trace with insertion of delta functions related to central elements ~c and the

doing Fourier transformation as before, we finally have:〈
exp

(∑
i

aiYi

)〉
Q,m,σ

:= F.T. [TrQ,m,σ,a] (M′
α)

=

∫ (L−1∏
t=0

d~u(t)

)
e−

∑
k,j akQkjuj(0)− 1

2

∑
k akQkm0

Z(0)

L−1∏
t=0

ψ~(Z(t))e−
1

4πib2
Z(t)Z′′(t)δ(eq. (C.24))

×
∏
i 6=m0

δ

(
1

2
ci ·M′ + ui(0)−

(
σ−1
L−1 · P̂mL−1

(u(L− 1))

)
i

+ πib2ai

) nC∏
α=1

δ

(∑
i

cαi ui(0)

)
.

Note we have already entered the factor
∏nC

α=1 δ(
∑

i c
α
i ui(0)) to quotient the flat di-

rections. Here, the Z variables are slightly modified due to the Wilson loop insertion:

Z(0) = 2

[
−1

2
cm0 ·M′ − um0(0) +

(
σ−1
L−1 · P̂mL−1

(u(L− 1))

)
m0

− πib2am0

]
,

Z ′′(0) = 2

[
1

2
cm0 ·M′ + um0(0)−

(
σ−1
L−1 · P̂mL−1

(u(L− 1))

)
m0

+
∑
j

Qm0juj(0)

]
.

(C.40)

D Proof of (4.7)

In this appendix we prove (4.7).

As we change the ‘time’ from t to t + 1, the coefficients cαi (t) transform as in

(4.6):

cαi (t+ 1) = σ−1
t P̂mt(c

α
i (t))

=

{
−cαMt

(t) +
∑

i 6=mt [QI,Mt(t)]+c
α
I (t) (i = mt) ,

cαI (t) (i 6= mt) ,

(D.1)

where to save spaces we denoted I := σ−1
t (i), J := σ−1

t (j),Mt := σ−1
t (mt). The

quiver Q transforms as (recall (C.2))

Qi,j(t+ 1) =

{
−QI,J(t) (i = mt or j = mt) ,

QI,J(t) + [QI,Mt(t)]+[QMt,J(t)]+ − [QJ,Mt(t)]+[QMt,I(t)]+ (i, j 6= mt) .

(D.2)

Suppose that we have
∑

i c
α
i (t)Qi,j(t) = 0 for all j. Note that this can also be

written as ∑
I

cαi (t)QI,J(t) = 0 (D.3)
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for all J = σ−1
t (j). For j 6= mt, we can compute∑

i

cαi (t+ 1)Qi,j(t+ 1)

= cαmt(t+ 1)Qmt,j(t+ 1) +
∑
i 6=mt

cαi (t+ 1)Qi,j(t+ 1)

=

(
−cαMt

(t) +
∑
i 6=mt

[QI,Mt(t)]+c
α
I (t)

)
(−QMt,J(t))

+
∑
i 6=mt

cαI (t) (QI,J(t) + [QI,Mt(t)]+[QMt,J(t)]+ − [QJ,Mt(t)]+[QMt,I(t)]+)

=

(
cαMt

(t)QMt,J(t) +
∑
i 6=mt

cαI (t)QI,J

)
+
∑
i 6=mt

cαI (t) ([QI,Mt(t)]+[QMt,J(t)]+ − [QJ,Mt(t)]+[QMt,I(t)]+ − [QI,Mt(t)]+QMt,J(t)) .

(D.4)

The expression inside the bracket simplifies, with the help of x = [x]+ − [−x]+,

[QI,Mt(t)]+[QMt,J(t)]+ − [QJ,Mt(t)]+[QMt,I(t)]+ − [QI,Mt(t)]+QMt,J(t)

= [QI,Mt(t)]+([QMt,J(t)]+ −QMt,J(t))− [QJ,Mt(t)]+[QMt,I(t)]+

= [QI,Mt(t)]+[QJ,Mt(t)]+)− [QJ,Mt(t)]+[QMt,I(t)]+

= QI,Mt(t)[QJ,Mt(t)]+ ,

(D.5)

and hence ∑
i

cαi (t+ 1)Qi,j(t+ 1)

=
∑
i

cαI (t)QI,J +
∑
i 6=mt

cαI (t)QI,Mt [QJ,Mt ]+

=
∑
I

cαI (t)QI,J +

(∑
i

cαI (t)QI,Mt

)
[QJ,Mt ]+ = 0 ,

(D.6)

where we used (D.3). Similarly, for j = mt,∑
i

cαi (t+ 1)Qi,j(t+ 1) =
∑
i 6=mt

cαi (t+ 1)Qi,mt(t+ 1)

=
∑
I 6=mt

cαI (t)(−QI,Mt(t)) = 0 .
(D.7)

This proves (4.7).
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E Direct computation of Tr(ϕ̂) on Hk=0
N=3(Σ1,1, simple)

In this appendix we present an alternative method to compute the partition function,

for the example discussed in Sec. 4.5.2.

The purpose of this appendix is threefold. First, we present a more direct deriva-

tion of the cluster partition function which does not rely on the ‘doubling trick’ of

the coordinates described in App. C. Second, we work out the consistency of the

quiver for the simple puncture case, by explicitly working out the representation of

the mapping class group SL(2,Z). Third, we explicitly confirm that using gluing

equations derived from the cluster partition function for k = 1 we can reproduce the

cluster partition function for other quantizations (for k = 0 here).

As discussed in sec.4.5.2, the two generators Ŝ, T̂ of SL(2,Z) can be generated

by following sequence of mutations and permutations :

Ŝ ·
{
y1±, y2±, y3±, y4±, y5±

}
· Ŝ−1

=
{
µ̂5(y3±), µ̂5(y4±), µ̂5(y2±), µ̂5(y1±), µ̂5(y5±)

}
=
{
q±

1
2 y3±y5±

(
1 + q∓

1
2 y−1

5±

)
, q±

1
2 y4±y5±

(
1 + q∓

1
2 y−1

5±

)
,

y2±

(
1 + q±

1
2 y−1

5±

)−1

, y1±

(
1 + q±

1
2 y−1

5±

)−1

, y−1
5±} ,

T̂ ·
{
y1±, y2±, y3±, y4±, y5±

}
· T̂−1

=
{
µ̂3µ̂4(y3±), µ̂3µ̂4(y4±), µ̂3µ̂4(y1±), µ̂3µ̂4(y2±), µ̂1µ̂2(y5±)

}
=
{
y−1

3± , y
−1
4± ,

q±2y1±y
2
3±(1 + q±

1
2 y−1

4±)−1(1 + q∓
3
2 y−1

3±)(1 + q∓
1
2 y−1

3±) ,

q±2y2±y
2
4±

(
1 + q∓

3
2 y−1

4±

)(
1 + q∓

1
2 y−1

4±

)(
1 + q±

1
2 y−1

3±

)−1

,

y5±

(
1 + q±

1
2 y−1

4±

)−1 (
1 + q±

1
2 y−1

3±

)−1

} .

(E.1)

Here the suffix ± denotes the complex pairs (y+ := y, y− := ȳ) and we use the fact

that q̃ = q−1 for k = 0, see eq. (2.32). We can check the unitarity of the representation

(E.1). For S, we compute

(S−1)†y3±S
† = (Sy3±S

−1)† =

(
y2±

(
1 + q±

1
2 y−1

5±

)−1
)†

= y2±

(
1 + q±

1
2 y−1

5±

)−1

.

(E.2)

By repeating the similar computations for yi=2,3,4 we find

(S−1)†yi±S
† = Syi±S

−1 (E.3)

for all yi. Schur’s lemma then tells us that (S−1)† = S. We can similarly show the

unitarity of T , and since arbitrary ϕ̂ ∈ SL(2,Z) can be generated by S and T , this

implies that every element in SL(2,Z) is unitary.
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We can decompose the operators S,T as60

Ŝ = ψ̂5 ·PS ,

T̂ = ψ̂3ψ̂4 ·PT ,
(E.4)

where

ψ̂i :=
∞∏
r=1

1 + qr−
1
2 y−1
i+

1 + qr−
1
2 y−1
i−

, (E.5)

and PS,T are operators satisfying

PS · (Y1,Y2,Y3,Y4,Y5) ·P−1
S = (Y3 + Y5,Y4 + Y5,Y2,Y1,−Y5) .

PT · (Y1,Y2,Y3,Y4,Y5) ·P−1
T = (−Y3,−Y4,Y1 + 2Y3,Y2 + 2Y4,Y5) ,

(E.6)

To quantize the system, we choose canonical variables as

Π = (X1,X2,P1,P2) =

(
Y1 + Y2, Y1 − Y2,

1

2
(Y3 + Y4),

1

6
(Y3 − Y4)

)
, (E.7)

such that the commutations relations take the canonical form

{Xi,Pj}P.B = −~ δij , {X̄i, P̄j}P.B = ~ δij , or equivalently

{Re(Xi), Im(Pj)}P.B =
i~
2
δij , {Im(Xi),Re(Pj)}P.B =

i~
2
δij .

(E.8)

After the coordinate transformation (E.7), periodicity of the variables becomes

Im[X1 ± X2] ∼ Im[X1 ± X2] + 4iπZ , Im[2P1 ± 6P2] ∼ Im[2P1 ± 6P2] + 4iπZ .

(E.9)

Quantizing the phase-space with k = 0, we obtain a Hilbert space

H3(Σ1,1, simple) = Span
{〈
m1,m2, e1, e2

∣∣ : (e1 ± e2) ∈ Z , (3m1 ±m2) ∈ 6Z
}
,

(E.10)

where the position basis associated to the Π are defined as〈
m1,m2, e1, e2

∣∣ :=
〈
m1,m2, e1, e2; Π

∣∣
:=

〈
Re[X1] =

~
2
m1,Re[X2] =

~
2
m2,Re[P1] =

~
2
e1,Re[P2] =

~
2
e2

∣∣∣∣ . (E.11)

The action of the quantized operators (X̂±, P̂±) on the basis is given in eq. (3.33)

and the completeness relation is

〈m1,m1, e1, e2|m′1,m′2, e′1, e′2〉 = δ(m1 −m′1)δ(e1,−e′1)δ(m2 −m′2)δ(e2 − e′2) ,∑
(m1,m2,e1,e2)

|m1,m2, e1, e2〉〈m1,m2, e1, e2| = I . (E.12)

60This is similar to the decomposition (C.7). One difference is that the PS,T here contain not

only P̂k but also permutations σ̂S,T . More explicitly, PT = P̂3P̂4σ̂T and PS = P̂5σ̂S .

– 107 –



In this basis, the matrix element for S and T are computed to be

〈m1,m2, e1, e2|Ŝ(L)|m′1,m′2, e′1, e2〉

= δ

(
e′2 +

1

6
m2

)
δ

(
e2 −

1

6
m′2

)
δ (m1 + 2e1 +m′1 + 2e′1 − 2mη)

× η2e′1

(
−q

1
2η
)−e1−2e′1−

1
2
m′1+mη

IC3
(
−m1 − 2e1 +mη,−e1 +mη −

1

2
m′1 − 2e′1

)
,

(E.13)

and

〈m1,m2, e1, e2|T̂ (L)|m′1,m′2, e′1, e′2〉

=
(
−q−

1
2

)m1−2e′1−2m′1 IC3
(
e1 − 3e2, e

′
1 − e′2 −

m1

2
+m′1 +

m2

6
− m′2

3

)
× δ

(
e1 +

m′1
2

)
δ

(
e2 +

m′2
6

)
IC3
(
e1 + 3e2, e

′
1 + e′2 −

m1

2
+m′1 −

m2

6
+
m′2
3

)
.

(E.14)

Here L := ~
2
mη + log η denote the central element, see eq. (4.82).

Projectivity of the SL(2,Z) Representation First, note that

〈m1,m2, e1, e2|S(L + ~)|m′1,m′2, e′1, e′2〉

= q
1
4

(m1+2e′1)

〈
m1,m2, e1 −

1

2
, e2|S(L)|m′1 − 1,m′2, e

′
1, e
′
2

〉
,

〈m1,m2, e1, e2|T (L + ~)|m′1,m′2, e′1, e′2〉 = 〈m1,m2, e1, e2|T (L)|m′1,m′2, e′1, e′2〉 .
(E.15)

This implies that

e−M̂
′
Ŝ(L) eM̂

′
= e

1
2
X̂1Ŝ(L) eP̂1 = e

1
2

(Y1+Y2)Ŝ(L) e
1
2

(Y3+Y4) ,

e−M̂
′
T̂ (L) eM̂

′
= T̂ (L) ,

(E.16)

where M̂′ is defined as

e−M̂
′
L eM̂

′
= L + ~ , e−M̂′L̄ eM̂′ = L̄ ,

⇐⇒ e−M̂
′
: (mη, η)→ (mη + 1, ηq

1
2 ) .

(E.17)

Using eqs. (E.1) and (E.16), one can compute how (yi, e
L, eM̂

′
) operators transfor-

mation under the SL(2,Z). For a central element eL, we know that it is invariant

under all SL(2,Z) :

ϕ̂ eL = eLϕ̂ , for all ϕ ∈ SL(2,Z) . (E.18)
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For ϕ̂ = T̂ ŜT̂ ŜT̂ Ŝ, one can easily check that

yi ϕ̂ = ϕ̂ yi , e−M̂
′
ϕ̂ = ϕ̂ e−M̂

′+3L , at q = 1 . (E.19)

Actually the above is correct even at q 6= 1. It means that T̂ ŜT̂ ŜT̂ Ŝ is not actually

identity operator but it acts as

T̂ ŜT̂ ŜT̂ Ŝ : M̂′ → M̂′ − 3L , L→ L , yi → yi . (E.20)

Doing similar computation for ϕ̂ = ŜŜŜŜ ,

ŜŜŜŜ : M̂′ → M̂′ − 2L , L→ L , yi → yi . (E.21)

It means that

T̂ ŜT̂ ŜT̂ Ŝ = exp

(
3

2~
L2 +

3

2~̃
L̄2

)
= η3mη ,

ŜŜŜŜ = exp

(
2

2~
L2 +

2

2~̃
L̄2

)
= η2mη .

(E.22)

This is compatible with eq. (4.16).

For ϕ = LR = ST−1S−1T (the corresponding mapping torus is figure eight

knot complement)

Tr(ŜT̂−1Ŝ−1T̂ )(mη, η)

=
∑

(−q
1
2 )−e

′
1+m1+

m′1
2
−mηη−e

′
1−

m′1
2

+mη

× IC3
(
e1 − 3e2,−2e1 − e′1 + 2e2 −m1 −

m′1
2

+ 2mη

)
× IC3

(
e1 + 3e2,−2e1 − e′1 − 2e2 −m1 −

m′1
2

+ 2mη

)
× IC3 (2e1 + 2e′1 +m1 +m′1 − 3mη,−e1 − e′1)

× IC3
(
−e1 −

m1

2
− m′1

2
− m2

2
+mη, 2e1 + e′1 +m1 +

m′1
2

+
m2

3
− 2mη

)
× IC3

(
−e1 −

m1

2
− m′1

2
+
m2

2
+mη, 2e1 + e′1 +m1 +

m′1
2
− m2

3
− 2mη

)
× IC3

(
−2e1 −m1 +mη, e1 +m1 +

m′1
2
−mη

)
, (E.23)

where the summation ranges are

2e1,m1 ∈ Z , e2, e
′
1,
m′1
2
∈ e1 + Z , m2 ∈ 6Z + 3m1 . (E.24)
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From q-expansion, we have

Tr(ŜT̂−1Ŝ−1T̂ )(mη = 0, η) = 1 +

(
2η +

2

η

)
q

3
2 +

(
8 + 2η2 +

2

η2

)
q2

+

(
6η +

6

η

)
q

5
2 +

(
2− 3η2 − 3

η2

)
q3 + . . . ,

Tr(ŜT̂−1Ŝ−1T̂ )(mη = 1, η) =

(
1

η2
+

1

η
+ η + η2

)
q +

(
6 + 3η +

3

η

)
q2

+

(
−6− 1

η3
− 3

η2
− 5

η
− 5η − 3η2 − η3

)
q3 + . . . .

(E.25)

These indices exactly match the indices in eq. (4.91) obtained using the gluing equa-

tions derived from cluster partition function for k = 1 and the indices in eq. (4.91)

obtained by gluing T [SU(3)] theories up to a framing factor (E.22).

F Holonomies and Snakes

In this appendix we explain the ‘snake’ rules , which will be necessary for the express-

ing of the holonomies along cycles of flat SL(N) connections on 2d/3d manifolds in

terms of FG coordinates/octahedron’s vertex variables hence for the discussion of

co-dimension 4 defects in sections 3.3 and 4.4. For 2d Riemann surface case, the

holonomy computation was developed in the original paper by Fock and Goncharov

[46]. By generalizing the 2d case, snake rule for 3d is developed in [17]. Here we

review general 3d snake first and then explain how to apply the 3d snake to holonomy

computations in 2d.

Basic Snake Moves Let us now summarize 3d snake rule [17]. We consider an

ideal N -triangulation of the 3-manifold M , where we replace each tetrahedron in an

ideal triangulation by a pyramid of 1
6
N(N2 − 1) small tetrahedrons, see Fig. 19. In

the N -triangulation, octahedron’s vertex variables are associated to edges of small

tetrahedrons. To compute the SL(N) holonomy matrices along cycles γ ∈ π1(M),

we move the snakes along γ. The segment of the snake is located on the edge, and we

need to remember which triangle around the edge does the snake segment belongs

to. This is represented by the ‘fin’. Any snake move can be decomposed into a

sequence of four fundamental snake moves introduced in [17]. For each fundamental

move, GL(N) matrix is assigned and the SL(N) holonomy is obtained by multiplying

all these matrices along the snake move and dividing it by a proper overall factor.

Instead of reviewing details of four fundamental moves, we only introduce four big

basic moves (fig. 19) which are more useful for actual computation. These move can

be obtained by a sequence of fundamental moves. Three of them are the natural lifts

of the 2d snake moves, and consequently they become equivalent to 2d snakes in [46]

after giving a proper relation between 3d vertex variables and 2d FG coordinates.
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S H(z '0,0,N−2,0 , z '0,N−2,0,0 )

z '0,0,N−2,0

z '0,N−2,0,0

F [z '0,0,N−2,0 , z '0,N−2,0,0 , z ''0,0,0,N−2 ]

z '0,0,N−2,0

z '0,N−2,0,0

z ''0,0,0,N−2

J

Figure 19. Four basic big 3d snake moves. S: reversing the orientation of snake, H:

Flipping fins of snake, F : moving along the face of ideal tetrahedron, J : moving from one

ideal tetrahedron to another one.

The new move represent the move of the snake from one tetrahedron to another.

Following the rules in [17], GL(N) matrices assigned to each basic move are given

by

S =

{
(−1)i−1 if j = N + 1− i
0 otherwise

,

H[z′0,0,N−2,0, z
′
0,N−2,0,0] :=

N−1∏
i=i

Hi(−z′0,i−1,N−1−i,0) , Hi(x) := diag(

i︷ ︸︸ ︷
1, . . . , 1,

N−i︷ ︸︸ ︷
x, . . . , x) ,

F [z′0,0,N−2,0, z
′
0,N−2,0,0, z

′′
0,0,0,N−2]

:=
N−1∏
k=1

[ k∏
i=1

HN−k+i

(
−z′0,N−1−k,k−1−i,i

)
FN−k−1+iHN−k+i (−z0,N−1−k,k−i,i−1)

×
k−1∏
i=1

HN−i(−z′′0,N−k,i−1,k−1−i)
]
,

J := diag(1,−1, 1,−1, . . .) .

(F.1)
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In the expressions above, ordering in the products of non-commuting matrices are

fixed as

k∏
i=1

Ai := AkAk−1 . . . A1 . (F.2)

Matrix Fi is given by:

(Fi)k,l =

{
1 if k = l or (k, l) = (i+ 1, i)

0 otherwise
. (F.3)

In the expressions above, the ordering in the products of non-commuting matrices

are fixed as

k∏
i=1

Ai := AkAk−1 . . . A1 . (F.4)

Other H and F matrices are give in a similar expression with proper change of their

arguments. For example,

F [z′′0,0,0,N−2, z
′′
0,0,N−2,0, z0,N−2,0,0]

= F [z′0,0,N−2,0, z
′
0,N−2,0,0, z

′′
0,0,0,N−2]

∣∣
z0,a,b,c→z′0,c,a,b,z

′
0,a,b,c→z

′′
0,c,a,b,z

′′
0,a,b,c→z0,c,a,b

. (F.5)

The snake can also be used for computation of SL(N) holonomy on a Riemann

surface in terms FG coordinates. We consider ideal triangles in a triangulation

of the 2d Riemann surface as faces in the boundary of ideal tetrahedron. In the

computation, Fock-coordinates of the Riemann surface is related to octahedrons’

vertex variables of vertices located on the boundary faces, see Fig. 20. Explicit

relation is

yn,0 = −z−1
0,N−1−n,0,n−1 , y0,n = −z′′−1

n−1,N−1−n,0,0 , yn,n = −z′−1
0,N−1−n,n−1,0 (1 ≤ n ≤ N − 1) ,

yN,n = −z′′−1
0,0,n−1,N−1−n , yn,N = −z−1

N−1−n,0,n−1,0 (1 ≤ n ≤ N − 1) ,

ya,b = −z−1
0,N−1−a,b,a−b−1z

′−1
0,N−1−a,b−1,a−bz

′′−1
0,N−a,b−1,a−b−1 (0 < b < a ≤ N − 1) ,

ya,b = −z−1
b−a−1,N−b,a−1,0z

′−1
b−a,N−b−1,a−1,0z

′′−1
b−a−1,N−b−1,a,0 (0 < a < b ≤ N − 1) .

(F.6)

The relation between 2d and 3d variables is not one-to-one. Nevertheless, we can

express the SL(N) holonomies along the boundary faces in terms of 2d FG coordi-

nates because the holonomies depend on only some combinations of vertex variables,

which always can be written as FG coordinates.
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z ' 0
,2
,0
,0

y(1,0)

z ' 0
,1,
1,0

z ' 0
,2
,0
,0

z ' 0
,0
,2
,0

z ' 0
,0
,1,
1

z ' 0
,0
,0
,2

z0,0,2,0z1,0,1,0z2,0,0,0

z ' 0
,1,
0,1

z1,1,0,0

y0,2,0,0

z0,1,1,0

y(1,0) y(2,0) y(3,0)

y
(0,1)

y
(0,2)

y
(0,3)

y(1,2)

y(1,3) y(2,3)

y(2,1)

y(3,2)

y(3,1)

y(1,3)
z1,1,0,0

z ''1,0,1,0z ' 2,
0,0
,0

y(1,3) = −(z1,1,0,0z ' z '' )−11,0,1,02,0,0,0 y(1,0) = −1/ z0,2,0,0

z0,0,2,0

z ''0,0,2,0

Figure 20. Relation between boundary vertex variables {za,b,c,d, z′a,b,c,d, z′′a,b,c,d} (associated

to edges of small gray triangles) of N -decomposition with FG coordinates y(a,b) := eY(a,b)

(associated to red points) of triangulated Riemann surface. For a FG coordinate whose

node is located on a edge of a triangle, it is identified with inverse of vertex variable

associated to the small edge where the node is located up to sign. For a FG coordinate

located on a white small triangle, it is identified (minus of) products of inverse of vertex

variables associated to three edges of the triangle.

Holonomies for S3\41 The snake move for a ∈ π1(S3\41) is given the Fig. 21.

From the snake move, we can compute the holonomy along the cycle :

Hol(a) = F [z′′0,0,0,N−2, z
′′
0,0,N−2,0, z0,N−2,0,0]J H[y′′0,0,0,N−2, y

′′
0,0,N−2,0]−1

×F [y′′0,0,0,N−2, y
′′
0,0,N−2,0, y0,N−2,0,0]−1J H[z0,0,N−2,0, z0,N−2,0,0] .

(F.7)

Similarly for b and c cycle of π1(S3\41), the corresponding SL(N) holonomies are

Hol(b) = J H[y′0,0,0,N−2, y
′
N−2,0,0,0]F [y0,0,0,N−2, y0,N−2,0,0, y

′
N−2,0,0,0]

× S J H[z′0,N−2,0,0, z
′
0,0,N−2,0]F [z0,N−2,0,0, z0,0,0,N−2, z

′
0,0,N−2,0]S ,

Hol(c) = S F [z0,N−2,0,0, z0,0,0,N−2, z
′
0,0,N−2,0]S J H[y0,0,N−2,0, yN−2,0,0,0]−1

×F [y0,0,N−2,0, yN−2,0,0,0, y
′
0,N−2,0,0]−1S J H[z′′0,0,0,N−2, z

′′
0,0,N−2,0]−1

×F [z′′0,0,0,N−2, z
′′
0,0,N−2,0, z0,N−2,0,0]−1 .

(F.8)

Holonomies for Σ1,1 Let (γx, γy) be the two cycles in once-punctured torus, see

Fig. 17. Snake move for γx is given in Fig. 22 . From the snake move (and similar

snake move for γy), holonomy matrices for (γx, γy) are

Hol(γx) = SH[z′0,N−2,0,0, z
′
0,0,N−2,0]−1F [z′0,N−2,0,0, z

′
0,0,N−2,0, z

′′
N−2,0,0,0]−1

× SH[z′′0,0,N−2,0, z
′′
0,0,0,N−2]F [z′0,0,N−2,0, z

′
0,N−2,0,0, z

′′
0,0,0,N−2] ,

Hol(γy) = S F [z0,N−2,0,0, z0,0,0,N−2, z
′
0,0,N−2,0H[zN−2,0,0,0, z0,0,N−2,0]

× S F [z0,0,N−2,0, zN−2,0,0,0, z
′
0,N−2,0,0]−1H[z′0,0,N−2,0, z

′
0,N−2,0,0]−1

(F.9)

These holonomies can be written as 2d FG coordinate using the relation (F.6).
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ΔY
ΔZ

B

DC

A

H[y ''0,0,0,N−2, y ''0,0,N−2,0 ]
−1 J F [z ''0,0,0,N−2, z ''0,0,N−2,0 , z0,N−2,0,0 ]

H[z0,0,0,N−2, z0,N−2,0,0 ]
J

F [y ''0,0,0,N−2, y ''0,0,N−2,0 , y0,N−2,0,0 ]
−1

start

B

A

C

D

Figure 21. Snakes’ move for one cycle a in figure-eight knot complement with N = 4.

The 3-manifold can be triangulated by two ideal tetrahedra ∆Y and ∆Z . The one cycle

a start from a point inside ∆Z then it moves to ∆Y through a face A and then it comes

back to ∆Z through a face D.

F (z '0,0,2,0 , z '0,2,0,0 , z ''0,0,0,2 )

H(z ''0,0,2,0 , z ''0,0,0,2 )

S

F (z '0,2,0,0 , z '0,0,2,0 , z ''2,0,0,0 )
−1

H(z '0,2,0,0 , z '0,0,2,0 )
−1

S

Figure 22. Snake’s move for γx on once-punctured torus with N = 4.

G Proof of eq. (4.25)

In this appendix we prove eq. (4.25), by working out the action of the operators

M̂′
α, ĈI and L̂α.
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For M̂′
α, we compute61

〈M′, C = 0|eM̂′α|Z(t)〉 = 〈M′, C = 0|eAxα·Ẑ |Z(t)〉

=

∫ (∏
dZ ′′

)
eA

x
α·Ze−

1
2~Z·Z

′′
δ(eq.(4.22)) = eM

′
α〈M′, C = 0|Z(t)〉 .

For ĈI ,

〈M′, C = 0|eĈI |Z(t)〉 = 〈M′, C = 0|eAcI ·Ẑ+BcI ·Ẑ
′′|Z(t)〉

= 〈M′, C = 0|q−
1
2
AcI ·B

c
IeA

c
I ·Z |Z(t)− 2πib2Bc

I(t)〉

=

∫ (L−1∏
t=0

dZ ′′

)
q−

1
2
AcI ·B

c
IeA

c
α·Ze−

1
4πib2

(Z−2πib2BcI)·Z′′δ(eq.(4.22))|Z→Z−2πib2BcI

=

∫ (∏
dZ ′′

)
q−

1
2
AcI ·B

c
IeA

c
I ·Ze−

1
4πib2

(Z−2πib2BcI)·(Z′′+2πib2AcI)δ(eq.(4.22))
∣∣
Z→Z−2πib2Bc

I
,

Z′′→Z′′+2πib2Ac
I

=

∫ (∏
dZ ′′

)
e

1
2
AcI ·Z+ 1

2
BcI ·Z

′′
e−

1
4πib2

Z·Z′′δ(eq.(4.22)) (∵ (4.23))

=

∫ (∏
dZ ′′

)
e−

1
4πib2

Z·Z′′δ(eq.(4.22)) = 〈M′, C = 0|Z(t)〉 .

Finally, for L̂α,

〈M′, C = 0|eL̂α|Z(t)〉 = 〈M′, C = 0|eC
p
α·Ẑ+Dpα·Ẑ′′|Z(t)〉

= 〈M′, C = 0|q−
1
2
Cpα·DpαeC

p
α·Z |Z(t)− 2πib2Dp

α(t)〉

=

∫ (L−1∏
t=0

dZ ′′

)
q−

1
2
Cpα·DpαeC

p
α·Ze−

1
4πib2

(Z−2πib2Dpα)·Z′′δ(eq.(4.22))
∣∣
Z→Z−2πib2Dpα

=

∫ (∏
dZ ′′

)
q−

1
2
Cpα·DpαeC

p
α·Ze−

1
4πib2

(Z−2πib2Dpα)·(Z′′+2πib2Cpα)δ(eq.(4.22))
∣∣
Z→Z−2πib2D

p
α,

Z′′→Z′′+2πib2C
p
α

=

∫ (∏
dZ ′′

)
e

1
2
Cpα·Z+ 1

2
Dpα·Z′′e−

1
4πib2

Z·Z′′δ(eq.(4.22))|M′α→M′α+~ (∵ (4.23))

=

∫ (∏
dZ ′′

)
e−

1
4πib2

Z·Z′′δ(eq.(4.22))|M′α→M′α+~ = 〈M′, C = 0|Z(t)〉
∣∣
M′α→M′α+~ .

This proves eq. (4.25).

H Index for T [SU(3)]

In this appendix we present explicit details on the index for the T [SU(3)] theory.

61In the computation, the dummy integration variable {Z ′′(t)} should be distinguished from the

operators {Ẑ ′′(t)} acting on H(∂3)⊗L, 〈Z|eẐ′′
= 〈Z+~|. We check eq. (3.17) for only holomorphic

part and checking anti-holomorphic part can be done in a similar way.
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Following the prescription in the literature [39, 40], it is straightforward to write

down the index for T [SU(3)] theory (see the main text for notations):62

IT [SU(3)](m1,m2, w1, w2|n1, n2, v1, v2;mη, η̄)

=
∑

σ,(s1,s2)

∮
dζ

2πiζ

dz1

2πiz1

dz2

2πiz2

∆2 × ICS × I0 × PE(f single) .
(H.1)

Let us discuss each of these factors in turn. First, ∆2 denote the measure coming

from an N = 2 U(2) vector multiplet

∆2(z1, z2, s1, s2; q) :=
1

sym(s1, s2)
q−
|s1−s2|

2

(
1− z1

z2

q
|s1−s2|

2

)(
1− z2

z1

q
|s1−s2|

2

)
.

(H.2)

where the symmetric factor is

sym(s1, s2) :=

{
2 (s1 = s2)

1 (s1 6= s2)
. (H.3)

The factor ICS denotes the classical contribution from the mixed CS terms

ICS =

(
w1

w2

(−1)m1−m2

)σ
(ζ(−1)σ)m1−m2

×
(

1

w2
1w2

(−1)−2m1−m2

)s1+s2 (
z1z2(−1)s1+s2

)−2m1−m2 .

(H.4)

Here we choose a particular linear combination of two topological U(1)J symmetries,

such that the fugacities (w1, w2) are conjugate to diag(H1, H2,−H1−H2) ∈ su(3)top.

The expression f single denote the single particle index from N = 2 chiral multiplets

62Notice however there are subtleties in the choice of the sign dependent on the monopole charges

for flavor/gauge symmetries [70, Appendix A]. For consistency it is extremely important to take

into account appropriate signs.
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(we have v3 = 1/(v1v2), n3 = −n1 − n2 since we have SU(3) symmetry)

f single =
q

1
4

1− q
∑
i=1,2

(
q
|mη/2+σ−si|

2 η̄
1
2
ζ

zi
+ q

|mη/2−σ+si|
2 η̄

1
2
zi
ζ

)

+
q

1
4

1− q
∑

i=1,2:j=1,2,3

(
q
|mη/2+si−nj |

2 η̄
1
2
zi
vj

+ q
|mη/2−si+nj |

2 η̄
1
2
vj
zi

)

− q
3
4

1− q
∑
i=1,2

(
q
|mη/2+σ−si|

2 η̄−
1
2
zi
ζ

+ q
|mη/2−σ+si|

2 η̄−
1
2
ζ

zi

)

− q
3
4

1− q
∑

i=1,2:j=1,2,3

(
q
|mη/2+si−nj |

2 η̄−
1
2
vj
zi

+ q
|mη/2−si+nj |

2 η̄−
1
2
zi
vj

)

+
q

1
2

1− q

(
3q
|mη |

2 η̄−1 + q
|−mη+s1−s2|

2 η̄−1 z1

z2

+ q
|−mη−s1+s2|

2 η̄−1 z2

z1

)
− q

1
2

1− q

(
3q
|mη |

2 η̄ + q
|mη−s1+s2|

2 η̄
z2

z1

+ q
|mη+s1−s2|

2 η̄
z1

z2

)
.

(H.5)

The first two terms are from scalars in the N = 4 bi-fundamental hyper multiplets,

the next two terms from fermions in the N = 4 hyper multiplets, and final two terms

from the N = 2 adjoint chiral multiplet in the N = 4 vector multiplet. PE denote

the plethystic exponential,

PE[f(·)] := exp

(
∞∑
n=1

1

n
f(·n)

)
. (H.6)

For example,

PE

±q |mη/2+σ−s|
2 η̄

1
2
z
ζ

1− q

 =
∞∏
α=0

(
1− q

|mη/2+σ−s|
2

+αη̄
1
2
z

ζ

)∓1

. (H.7)

I(0) is contributions for zero-point shift and sign factors

I(0) = qε0
(
ζ(−1)σ

)ζ0(z1(−1)s1
)(z1)0

(
z2(−1)s2

)(z2)0

×
(
v1(−1)n1

)(v1)0
(
v2(−1)n2

)(v2)0
(
v3(−1)n3

)(v3)0(η̄(−1)mη)η0 .
(H.8)

These zero point shifts can be obtained from single particle index:

1

2
∂qf

single
ζ=1,zi=1,vi=1,η̄=1,q→1

−−−−−−−−−−→ ε0 +O(q − 1) ,

1

2
∂ζf

single
ζ=1,zi=1,vi=1,η̄=1,q→1

−−−−−−−−−−→ (constant)

q − 1
+ (constant) + ζ0 +O(q − 1) ,

1

2
∂z1f

single
ζ=1,zi=1,vi=1,η̄=1,q→1

−−−−−−−−−−→ (constant)

q − 1
+ (constant) + (z1)0 +O(q − 1) ,

...

(H.9)
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where constant refers to numerical constants independent of fugacities and magnetic

fluxes (and hence is only an overall constant factor for the index). For example,

ε0 =
1

8

 ∑
i=1,2,3,
j=1,2

|mη

2
+ ni − sj|+ |

mη

2
− ni + sj|

+
∑
i=1,2

|mη

2
+ si − σ|+ |

mη

2
− si + σ|

)
.

(H.10)

Note that thanks to 3d N = 4 mirror symmetry (exchanging for example SU(3)top

and SU(3)bot), we have

IT [SU(3)](m1,m2, w1, w2|n1, n2, v1, v2;mη, η̄)

= IT [SU(3)](n1, n2, v1, v2|m1,m2, w1, w2;−mη, η̄
−1) .

(H.11)

Finally, in eq. (H.1) the range of summation is over σ, s2 ≥ s1 satisfying

s2, s1 ∈ Z +
mη

2
+ n1 , σ ∈ Z + n1 , (H.12)

and the quantization conditions of (n1, n2,m1,m2,mη) are given by

mi, ni ∈ Z/3 , ni − nj, mi −mj, ni −mj ∈ Z , mη ∈ Z . (H.13)

These summation range/quantization for monopole fluxes are fixed by Dirac quan-

tization condition.

I Derivation of eq. (7.22)

In this appendix we present a derivation of eq. (7.22), concerning the largeN behavior

of the S3
b=1 partition function of the domain wall theory for ϕ = ST k.

Let us start with eq. (7.21). Since the integral is Gaussian, we can easily evaluate

it in terms of determinants:

Zsimple
N (ϕ) := ZS3

b=1

[
TN [(Σ1,1 × S1)ϕ, simple]

]
=

1

N !

∑
σ∈SN

(−1)σ
∫
d~µ e

2πi

(
k~µ2

2
+~µ·σ(~µ)

)
= (πi)−

N
2

1

N !

∑
σ∈SN

(−1)σ
1√

detMk,σ

,
(I.1)

where we defined a N ×N matrix (Mk,σ)i,j := kδi,j + δi,σ(j) + δσ(i),j.

The summation involves N ! terms, but can be simplified by noting that the

summand depends only on the conjugacy class of the permutation σ. We can then

represent σ into a sum over the conjugacy classes, which in practice can be given by

a product of cyclic permutations: module the relabeling of the indices (which keep
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our expression invariant), we have a product of cyclic permutations, labeled by a

partition λ = [n1, . . . , ns]:

σ = σλ := (1, . . . , n1) (n1 + 1, . . . , n2)

(
s−1∑
i=1

ni + 1, . . . ,
s∑
i=1

ni

)
. (I.2)

Note that the number of i-cycles in σi is given by the number of time the i appears

in n1, . . . , ns; we denote this number by Ni, and hence λ is given by

λ = [N, . . . , N︸ ︷︷ ︸
NN

, . . . , 1 . . . , 1︸ ︷︷ ︸
N1

] , (I.3)

with
∑N

i=1 iNi = N . Then, the matrix Mk,σ can be written into a product of the

following matrix: (mk,σ)1≤i,j≤n = kδi,j + δi,j−1 + δi,j+1 (with identification i ∼ i +

n). The determinant of mk,σ can be evaluated by the formula for the circulant

determinant:

det(mk,σ) =
(
cnk + (−1)n−1c−nk

)2
, (I.4)

where the ck (k ≥ 3) is determined by

c2
k + c−2

k := k and |ck| > 1 , (I.5)

and more concretely,

c2
k =

k +
√
k2 − 4

2
(I.6)

for k ≥ 3. We can easily check that this is the largest eigenvalues of the 2× 2 matrix

ST k. From eq. (I.4) we obtain

det(Mk,σλ) =
N∏
i=1

(
cnik + (−1)ni−1c−nik

)2
. (I.7)

We therefore have

Zsimple
N (ϕ = ST k) = (πi)−

N
2

1

N !

∑
λ

N !∏
j Nj!jNj

N∏
j=1

(−1)nj−1

c
nj
k + (−1)nj−1c

−nj
k

, (I.8)

which can be rewritten as

(πi)−
N
2

1

N !

∑
λ

N !∏
j Nj!jNj

N∏
j=1

(−1)(j−1)Nj

(cjk + (−1)j−1c−jk )Nj

= (πi)−
N
2 (−1)N

∑
λ

1∏
j Nj!jNj

N∏
j=1

(−1)Nj

(cjk + (−1)j−1c−jk )Nj
.

(I.9)
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The useful trick to sum this up, as is familiar from statistical mechanics, is to consider

the grand canonical partition function. Introducing chemical potential µ for N , we

obtain

G(µ) :=
∞∑
N=1

µNZsimple
N

=
∞∑
N=1

(
∞∑

N1=0

∞∑
N2=0

. . .

)
δ

(
∞∑
j=1

jNj −N

)

×
(
− µ√

πi

)N ∞∏
j=1

(−1)Nj

Nj!jNj(c
j
k + (−1)j−1c−jk )Nj

=
∞∑

{Nj}=0

∞∏
j=1

(−1)(j−1)Nj

(
µ√
πi

)jNj
Nj!jNj(c

j
k + (−1)j−1c−jk )Nj

=
∞∏
j=1

∞∑
Nj=1

(−1)(j−1)Nj

(
µ√
πi

)jNj
Nj!jNj(c

j
k + (−1)j−1c−jk )Nj

=
∞∏
j=1

exp


(

µ√
πi

)j
j(c−jk + (−1)j−1cjk)

 = exp

 ∞∑
j=0

(
µ√
πi

)j
j(c−jk − (−ck)j)


=
∞∏
n=0

(
1− (−1)n+1c−2n−1

k

µ√
πi

)
=

(
−c−1

k

µ√
πi

;−c−2
k

)
∞

=
∞∑
N=1

(
µ√
πi

)N
cN

2

k (−c−2
k ;−c−2

k )N
. (I.10)

where the q-Pochhammer symbol (a; q)n was defined in eq. (7.23). When expanded

in powers of µ, we obtain eq. (7.22).

J Verification of eq. (7.48) in Chern-Simons Theory

In this section, we generalize the computation of the VEV of the Wilson line (7.53)

to a more general representation.

The VEV of the Wilson line in the representation R of SU(N) is given as

a specialization of the character of the representation, namely the Schur function

sλ(x1, . . . , xN):

W
(conj)
0 (γ,R) := TrR Pe

−
∮
γ A

conj

= sλ

(
xi = q

N+1
2
−i
)
, (J.1)

where λ is the partition associated with the representation R, and we defined q :=

e`
∗
C(γ).

We can now appeal to two formulas. One is [112, Section I.3, Example 1]

sλ
(
xi = q−(i−1)

)
= q−n(λ)

∏
(i,j)∈λ

1− q−(N+j−i)

1− q−hi,j
, (J.2)
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where n(λ) :=
∑

i(i − 1)λi =
∑

i

(
(λt)i

2

)
, and the hook length is given by hi,j =

λi + λtj − i− j + 1. Another is the homogeneity of the Schur function:

sλ(cxi) = c|λ|sλ(xi) . (J.3)

From these equations, we learn that

sλ

(
xi = q

N+1
2
−i
)

= q(N−1
2

)|λ|−n(λ)
∏

(i,j)∈λ

1− q−(N+j−i)

1− q−hi,j
. (J.4)

In the large N limit the product in eq. (J.4) can be neglected, and the leading order

is given by

〈Wλ〉 ∼ exp

[(
N

2
|λ| − n(λ)

)
`∗C(γ)

]
. (J.5)

As an example, consider the representation (7.49). In this case, |λ| =
∑N

i=1Ki and

n(λ) =
∑

i

(
Ki
2

)
, and hence

〈Wλ=(7.49)〉 ∼ exp

[
N∑
i=1

(
N

2
Ki −

(
Ki

2

))
`∗C(γ)

]
, (J.6)

which is consistent with eq. (7.48) in the large N limit (Ki ∼ O(N)).
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