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Abstract. We propose an extension of the recently-proposed volume conjec-

ture for closed hyperbolic 3-manifolds, to all orders in perturbative expansion.
We first derive formulas for the perturbative expansion of the partition func-

tion of complex Chern-Simons theory around a hyperbolic flat connection,

which produces infinitely-many perturbative invariants of the closed oriented
3-manifold. The conjecture is that this expansion coincides with the perturba-

tive expansion of the Witten-Reshetikhin-Turaev invariants at roots of unity

q = e2πi/r with r odd, in the limit r →∞. We provide numerical evidence for
our conjecture.
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1. Introduction and Summary

The goal of this paper is two-fold:

A We derive a perturbative expansion (4), around a hyperbolic flat connec-
tion, for the partition function of SL(2,C) Chern-Simons theory [1, 2] on
a general closed hyperbolic oriented 3-manifold. Our starting point is the
finite-dimensional integral expression (17) for the partition function.
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B Based on the perturbative expansion mentioned above, we present a new
all-order perturbative extension (5) of the recently-proposed volume conjec-
ture [3] for Witten-Reshetikhin-Turaev (WRT) invariants [4, 5] for closed
oriented 3-manifolds.

In the rest of this introduction let us explain these two points in more detail.

1.1. Volume Conjecture for Knot Complements. The celebrated volume con-
jecture [6, 7, 8] (see [9] for review) states a surprising relation between two a-priori
very different objects.

The first is the colored Jones polynomial [10] of a link (or a knot)1 L in the
three-sphere S3. We denote this by JN (L; q), where N denotes the coloring (an
integer specifying a representation of SU(2)), and q is a formal parameter.2

The second is the complex hyperbolic volume3 of the knot complement S3 \ L,
which is a combination of the hyperbolic volume together with the Chern-Simons
invariant: Vol(L) + iCS(L).

The volume conjecture [6, 7, 8] states that the asymptotic behavior of the root-
of-unity value of the former gives the latter:

lim
N→∞

JN (L; q = e
πi
N ) = exp

[
N

2π
(Vol(L) + iCS(L))

]
.(1)

1.2. Volume Conjecture for WRT Invariants. A natural extension of the vol-
ume conjecture is to consider a closed hyperbolic oriented 3-manifold M , where
the relevant quantity replacing the Jones polynomial would be the WRT invariant,
which was formulated mathematically by Reshetikhin and Turaev [5] based on the
physics idea of Witten [4]. This invariant is defined from a modular Hopf algebra,
which can be obtained from a quantum group Uq(sl2) when q is a primitive root of

unity.4 For q = exp(πi/r) we denote the associated invariant by τ
SU(2)
r (M), where

r is an integer r ≥ 3.5 It is then natural to consider the limit r → ∞, and expect
that we again reproduce the complex simplicial volume of the closed 3-manifold:

lim
r→∞

τSU(2)
r (M)

??
= exp

[ r
2π

(Vol(M) + iCS(M))
]
.(2)

It turns out, however, this naive conjecture does not work; WRT partition function
grows in a power-law in r, and not exponentially.6

1A link in general has several components. A link is called a knot if it has only one component.
2The Jones polynomial referred here is the normalized Jones polynomial, namely an unknot

has a trivial Jones polynomial. Also, the colored Jones polynomial in our convention is a Laurent
polynomial in q, and not in q1/2. In the literature q here is sometimes denoted by q1/2.

3More generally this is a simplicial volume (Gromov norm) [11]. When L is a hyperbolic
link, namely when S3 \ L is hyperbolic, then the simplicial volume coincides with the hyperbolic

volume. Since we are mostly interested in the hyperbolic cases, we will hereafter mostly refer to

this quantity as “hyperbolic volume”.
4Contrary to the case of the colored Jones polynomial where q is a formal parameter, WRT

invariant is defined only for q being a primitive root of unity. If we try to construct and expression
in q whose values at root of unity reproduce the WRT invariants, we need to consider a certain
cyclotomic completion of the polynomial ring in q [12].

5In the language of SU(2) Chern-Simons theory this integer r is the 1-loop corrected level
r = k + 2, where k is an integer known as the level and is a parameter in front of the classical

Chern-Simons action.
6See nevertheless [13, 14, 15] for related discussion, which applies a formal saddle point analysis

to the WRT invariant τ
SU(2)
r and obtained the complex volume.
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A new insight was brought by the recent work of Chen and Yang [3], who con-
sidered the root-of-unity value q = e2πi/r with odd r. Let us denote the associated

WRT invariant by τ
SO(3)
r (M), since this invariant is known to be related to the

group SO(3), rather than SU(2). We will call this invariant the SO(3)-WRT in-
variant. This invariant is discussed for example by Kirby and Melvin [16], and
studied further by Blanchet et al. [17] and Lickorish [18] in the context of skein-
theory reformulation of WRT invariants by Lickorish [19, 20, 21].7

Now the conjecture due to [3] states the following asymptotics:

lim
r∈2Z+1;r→∞

τSO(3)
r (M) = exp

[ r
2π

(Vol(M) + iCS(M))
]
.(3)

1.3. All-Order Generalization. We are now ready to state the main results of
this paper.

First, we introduce a perturbative expansion for the state-integral model for
complex Chern-Simons theory on a closed hyperbolic oriented 3-manifold M , whose
partition function (which we denote by Z~(M)) is written as a finite-dimensional
integral. We then consider the ~-expansion of this quantity around the complete
hyperbolic flat connection:

Z~(M)
~→0−→ exp

[
1

~
Shyp

0 (M) + Shyp
1 (M) + ~Shyp

2 (M) + . . .

]
.(4)

Here each of the expansion coefficient Shyp
n (M) is an interesting perturbative invari-

ant of the closed 3-manifold M . We will give a concrete prescription for computing
these invariants.8

We then claim that the expansion (4) coincides with the r → ∞ of the WRT

invariant τ
SO(3)
r (M):9

τSO(3)
r (M)

r∈2Z+1;r→∞
−−−−−→ exp

[
1

~
Shyp

0 (M) + Shyp
1 (M) + ~Shyp

2 (M) + . . .

] ∣∣∣
~= 2πi

r

.

(5)

Since the first coefficient S0(M) is shown to coincide with the complex volume
iVol(M)− CS(M), (5) contains and generalizes the conjecture (3).

The rest of the paper is organized as follows. In section 2 we explain how to
obtain the integral formula for the partition function for the closed 3-manifold, as
motivated from complex Chern-Simons theory. In section 3 we discuss the pertur-
bative expansion of the partition function around a hyperbolic flat connection. In
section 4 we check for some examples the generalized conjecture (5) numerically.
We also include appendices for review materials.

7τ
SO(3)
r (M) (r odd) was denoted by τ ′ in [16], and θr in [17]; they all coincide, up to overall

normalization factors [22]. Our normalization follows [18].
8We can also consider non-perturbative evaluation of the state-integral along a proper con-

verging integration cycle. The non-perturbative partition function can be identified as a Borel

resummation of the perturbative expansion [23]. Thanks to the so-called 3d–3d correspondence

[24, 25], the partition function can be interpreted as a partition function of a three-dimensional
N = 2 supersymmetric gauge theory on a curved background.

9More precisely, the perturbative invariants Sn=0,1,2 has ambiguities as stated in (24), and

the match is meant to be modulo this ambiguity.
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Note added: After submission of the manuscript to arXiv, we have been noticed of
the preprint by Tomotada Ohtsuki [26], which also discusses asymptotic expansion
of WRT invariants.

2. State-Integral Model for Closed 3-Manifolds

In this section we introduce a partition function Z~(M) for a closed oriented
hyperbolic 3-manifold M . We then go on to discuss its perturbative expansion
around a hyperbolic flat connection.

2.1. Derivation. Our discussion of closed 3-manifolds relies on the famous math-
ematical theorem by Lickorish and Wallace [27, 28], which states that any closed
3-manifold can be obtained by a Dehn filling of the complement S3 \ L of a link L
inside S3.

The task of deriving a partition function is therefore divided into two. The first
is to derive a formula for the partition function for a link complement S3 \ L. The
second is to study the effect of the Dehn filling on the partition function.

2.1.1. State-Integral Model for Link Complements. For a knot/link complement,
there are several developed state-integral models [29, 30, 31]. For our purpose,
in particular, we will use the state-integral model developed in [30, 32] (see also
[33, 34, 35, 36] for discussion of higher order terms for knot complements). This
result was motivated from complex Chern-Simons theory [1, 2]; in our context this
is natural since Jones polynomial is nothing but the vacuum expectation value of
the Wilson line in Chern-Simons theory [4] and an interpretation for the volume
conjecture (for a link complement) is provided in [37].

Given a hyperbolic knot/link complement, we can consider its regular ideal tri-
angulation. Let us denote the number of ideal tetrahedra by k. The gluing rules
of the ideal tetrahedra are specified by the gluing datum {A,B,C,D, ~ν, ~ν′}. Here
A,B,C,D are k× k matrices, and ~ν, ~ν′ are k-vectors. For details, see Appendix B.
Then the state-integral expression for the link complement is [30, 32]

Z
(Xα,Pα)
~ (M̂ \ L;Xα)

=
2√

detB

∫ k∏
i=1

dZi√
2π~

exp

(
1

~
Q(~Z, ~X; {A,B,C,D, ~ν, ~ν′})

) k∏
i=1

Ψ~(Zi) .
(6)

This finite dimensional integration can be interpreted as a SL(2,C) Chern-Simons

partition function on the link complement M̂\L with analytically-continuned Chern-
Simons level 2πi

~ .10 Let us explain this formula in detail. In order to compute the
partition function we need to specify the choice of polarization on the boundary of
M̂ \ L. In our case, this is to choose a basis of H1(∂(M̂ \ L),Z), and if the link L
has S components we need to pick up S pairs of generators (Xα,Pα)Sα=1. For our

later purposes it is actually sufficient to restrict to the case M̂ = S3. Then we have
a canonical choice

Xα = mα (merdian) , Pα = lα (longitude) .(7)

10It is known that this state-integral model does not capture reducible flat connections. We

will, however, be interested in the perturbative expansion of our partition function around a
hyperbolic flat connection, which is irreducible, and hence this subtlety is not important for the

considerations of this paper.
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for each boundary torus labeled by α. Once we fix a polarization (Xα,Pα)Sα=1 , the
partition function depends non-trivially on the deformation parameters (boundary
conditions) (Xα)Sα=1; their effect is to modify the holonomy along the meridian
cycles of the knot complements (see (78) and (79) in appendix). The integral (6)
is over k parameters {Zi}ki=1, one for each tetrahedron. For the integrand, the

expression Q on the exponent is a quadratic expression in ~Z and ~X:11

Q(~Z, ~X; {A,B,C,D, ~ν, ~ν′}) :=
1

2
~ZB−1A~Z + 2 ~XDB−1 ~X + (2πi+ ~)~fB−1 ~X

+
1

2

(
iπ +

~
2

)2

~fB−1~ν − ~ZB−1

((
iπ +

~
2

)
~ν + 2 ~X

)
.

(8)

The rest of the integrand is a product of the quantum dilogarithm function Ψ~(Z),
which is defined as (for Re(~) < 0) [38]12

Ψ~(Z) :=

∞∏
r=1

1− (e~)re−Z

1−
(
e−

(2πi)2

~

)r−1

e−2πiZ~

.(9)

The parameter ~ is the expansion parameter of the partition function, which is to
be identified with the parameter of the same name in (5).

Given a knot complement, the choice of an ideal triangulation, as well as its
gluing datum, is far from unique. It can be shown, however, that the partition
function (6) is independent of such choices up to the following ambiguity [32]13:

exp

(
π2

6~
Z +

iπ

4
Z +

~
24

Z
)
.(10)

In the following ~ will be taken to be pure imaginary (see (20)), in which case the
ambiguity is only a phase factor.

2.1.2. Dehn-Filling Formula. The second ingredient is the Dehn-filling formula,
which specifies the change of the partition function under the Dehn filling (a similar
formula for compact-group Chern-Simons theory is well-known, see [4]).

Consider a 3-manifold obtained by performing (pα, qα)-Dehn filling (α = 1, . . . , S′)

for the knot complement M̂ \ L along S′(≤ S) components of a link L out of S
components. We denote this manifold as

(M̂ \ L){pαXα+qαPα}S
′
α=1

.(11)

where in the notation pαXα + qαPα denotes the cycle of the boundary torus which
becomes contractible after Dehn filling (see (72) in appendix). Let us first assume

11We did not include ~f, ~f ′′ in the arguments of Q since they are determined by other arguments
(84).

12This function has a symmetry under b → 1/b, where b is a parameter related to ~ by

~ = 2πib2. This symmetry, however, is not important for a perturbative consideration of this
paper.

13The π2

6
ambiguity at ~−1 can actually be lifted to 2π2 [39].



6 DONGMIN GANG, MAURICIO ROMO, AND MASAHITO YAMAZAKI

that qα 6= 0 for all α. Then our Dehn-filling formula is given by [23]14

Z
(Xα,Pα)S

α=S′+1

~
(
(M̂ \ L){pαXα+qαPα}S

′
α=1

; {Xα}Sα=S′+1

)
=

∫  S′∏
α=1

dXα√
2π~ qα

Kpα,qα(Xα)

Z
(Xα,Pα)
~ (M̂ \ L;Xα) ,

(12)

where sα (and rα) is defined by the condition15(
rα sα
pα qα

)
∈ PSL(2,Z) ,(13)

and the integral kernel for the Dehn filling is given by

Kp,q(X) := exp

[
s

q

(
π2

~
− ~

4

)
+
pX2

q~

]
×
(
e

2πiX
~q sinh

(
X − iπs

q

)
− e−

2πiX
~q sinh

(
X + iπs

q

))
.

(14)

When qα = 0, the formula (12) should be modified as

∫
dXα√
2π~ qα

Kpα,qα(Xα)
qα=0

−−−−−→
∫
dYαdXα√

2π~
sinh(Yα) sinh

(
2πiYα

~

)
e−

2XαYα
~ .

(15)

The resulting 3-manifold has (S − S′) cusp boundaries and its partition function
Z~ depends on the same number of variables {Xα}Sα=S+1. When S = S′, the

3-manifold (M̂ \ L){pαXα+qαPα}Sα=1
is a closed 3-manifold.

It is worth pointing out that a version of the Dehn-filling formula was proposed
in [29, section 3]. The integral kernel there coincides with the leading semiclassical
piece of our integral kernel Kp,q,

Kp,q
~→0
−−−−−→ 1

2
exp

[
1

~

(
p

q
X2 +

2πi

q
X +

π2s

q

)
+O(~0)

]
,(16)

where we assumed Re(X/q) > 0. This means that the two proposals give the same
result as far as the leading classical results are concerned. Leading classical part
of the state-integral model in [29] is shown to give the complex hyperbolic volume
of M , so does our state-integral model. However, the two proposals give different
answers for higher orders in ~, and the difference will crucially affect the discussion
of the volume conjecture below.

2.2. Main Formula. We are now ready to give the final expression for the state-
integral model. Suppose that a closed 3-manifold M is obtained from the knot
complement M̂ \L by (pα, qα)-Dehn surgeries on the α-th component: in our previ-

ous notation we have M = (M̂ \L){pαXα+qαPα}Sα=1
. For this 3-manifold, our formula

14See also [40] for recent discussion on Dehn fillings.
15As discussed before sα is defined up to qαZ. This ambiguity does not change the formula

(12) modulo (10). The formula is also invariant under the sign flip of (p, q), which can be seen

explicitly by noting that Z
(Xα,Pα)
~ (M̂ \ L;Xα) = Z

(Xα,Pα)
~ (M̂ \ L;−Xα) by Weyl invariance and

Kpα,qα (Xα) = K−pα,−qα (−Xα).
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is given by a concrete finite-dimensional integral expression16, which is obtained by
(6) and (12):17

Z~(M) =
2√

detB

∫ S∏
α=1

Kpα,qα(X)dXα√
2π~qα

k∏
i=1

Ψ~(Zi)dZi√
2π~

× exp

(
1

~
Q(~Z, ~X; {A,B,C,D, ~ν, ~ν′})

)
.

(17)

The formula is only valid for qα 6= 0 and it should be modified as (15) when
qα = 0. The expression of state-integral depends both on basis choice (Xα,Pα)Sα=1

of H1

(
∂(M̂\L),Z

)
and filling slopes (pα, qα)Sα=1. The final state-integral, however,

turns out to depend only on the combination {pαXα + qαPα}Sα=1 and invariant
under following transformation:

(
X̃α
P̃α

)
=

(
aα bα
cα dα

)(
Xα
Pα

)
,

(
p̃α
q̃α

)
=

(
dα −cα
−bα aα

)(
pα
qα

)
,

with

(
aα bα
cα dα

)
∈ SL(2,Z) .

(18)

This is consistent with the obvious fact that the closed 3-manifold M is invariant
under the transformation. The gluing datum (A,B, ~ν) and (C,D, ~ν′) depends on
the choice of Xα and Pα respectively and let denote them as (AX, BX, ~νX) and
(CP, DP, ~ν

′
P). Under the transformation of (Xα,Pα), the matrices transforms as

(
(AX̃)αi (BX̃)αi (νX̃)α
(CP̃)αi (DP̃)αi (ν′P̃)α

)
=

(
aα 2bα
cα/2 dα

)(
(AX)αi (BX)αi (νX)α
(CP)αi (DP)αi (ν′P)α

)(19)

for α = 1, . . . , S and other components do not transform.
Notice that the Dehn-filling representation of a closed 3-manifold is far from

unique, and there are ambiguities associated with the Kirby moves [44]. While the
connection with complex Chern-Simons theory suggest that our partition function
is invariant under such moves (up to possibly overall ambiguities discussed in (10)),
it would be interesting to prove this more directly from the formulas above. We
leave the detailed proof for future work.

3. Perturbative Expansion

In this section, we work out the perturbative expansion of the partition function
of the state-integral model (17) for a closed hyperbolic 3-manifold M . For the
expansion, we always assume that

~ = 2πib2 ∈ iR+ .(20)

16Our partition function (17) can be thought of as finite-dimensional counterparts of the
infinite-dimensional path integral. Since the complex Chern-Simons theory has a complex gauge

field, its action is also complex and the precise definition of the path integral requires a subtle
choice of the integration contour [2]. This is reflected in the choice of integration contour in (17).

These subtleties, however, are irrelevant for perturbative expansions discussed in this paper.
17We can also apply the Dehn filling prescription (12) to the cluster partition of [41, 42, 43].

It would be interesting to study the resulting partition function.
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Using the symmetry in (18) we can always make

qα 6= 0(21)

and we assume it in the most discussions of this section. For the expansion, let us
first expand the integrand of the state-integral model in powers of ~:∫ S∏

α=1

dXα

k∏
i=1

dZi exp

( ∞∑
n=0

Wn(~Z,X)~n−1

)
.(22)

For this expansion we can use the ~-expansion of the quantum dilogarithm function
Ψ~ (9) [45]:

log Ψ~(Z) ∼
∞∑
n=0

Bn~n−1

n!
Li2−n(e−Z) , for 0 < Im[Z] < π .(23)

where Bn is the n-th Bernoulli-Seki number with B1 = 1/2.
By evaluating (22) in the saddle point approximation (around a saddle point,

whose choice we will discuss momentarily), we will obtain an expansion of the form
(4). Each of the Sn(M) is a well-defined perturbative invariant of 3-manifolds,
with curious number-theoretic properties. For SU(2) Chern-Simons theory, such
an expansion is considered for example in [46, 47]. For SL(2,C) Chern-Simons
theory, see [45, 32] for similar perturbative invariants for knot complements.

Due the ambiguity in (10), the perturbative series {Sn(M)} is defined up to

S0 ∼ S0 +
π2

6
Z , S1 ∼ S1 + i

π

4
Z , S2 ∼ S2 +

Z
24

.(24)

Under the change of orientation M →M ,

Z~(M) = (Z~(M))∗ ⇒ Sn(M) = (−1)n+1(Sn(M))∗ .(25)

In the rest of this section we assume for simplicity of notation that S = S′ =
1; namely, the closed 3-manifold M is obtained by a Dehn filling along a one-
component link (knot) L, which we also denote by K, to match standard notation:

M = (M̂ \K)pX+qP. It is straightforward to repeat the discussion for general values
of S.

3.1. Classical Part: Complex Hyperbolic Volume. As already mentioned

above, to define the perturbative expansion S
(c)
n , we need to specify a saddle point

(X(c), Z(c)). For the formulation of the generalized volume conjecture for WRT
invariants (5), we are particularly interested in perturbative expansion Shyp

n around
saddle points corresponding to the hyperbolic structure of M .

To discuss this more explicitly, let us start wth the leading term of the integrand
(22). For which is given by (ε := Sign(Re[X/q]))

W0(X, ~Z) =W0(~Z) +
p

q
X2 + ε

2πi

q
X +

δ

q
π2

+

(
2 ~XDB−1 ~X + (2πi)fB−1 ~X − 1

2
π2 ~fB−1~ν − ~ZB−1

(
iπ~ν + 2 ~X

))
,

with W0(~Z) =
1

2
~ZB−1A~Z +

k∑
i=1

Li2(e−Zi) .

(26)
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Here the vector ~X is (X, 0, . . . , 0) as defined in eq. (79). The formula (26) coincides
with the so-called Neumann-Zagier potential for a knot complement [48], and the
formula (26) recovers its transformation rule under the Dehn filling. Indeed, saddle
point equations with respect to Zi are

∂W0

∂Zi
= 0 ⇒ A~Z +B~Z ′′ = iπ~ν + 2 ~X ,(27)

where we defined Z ′′i := log(1 − 1
zi

). This equation coincides with the gluing

equation (77) upon exponentiation and under the identification eZi = zi, e
Z′′i =

z′′i = 1 − z−1
i (see also (76)). We also need to take into account the saddle point

equation for X:

∂W0

∂X
= 0 ⇒ pX + qP = −πiε ,(28)

where

P := (C ~Z +D~Z ′′ − iπ~ν′)1 .(29)

In the above expressions, we simplify the equations using the equation of motion
(27) and the symplectic property of gluing matrices (82). These saddle point equa-
tions (27), (28), (29) are equivalent to the gluing equations for closed 3-manifold
studied by Neumann and Zagier [48].

Generically a solution to these equations gives a PSL(2,C) flat connection on
M . We can explicitly construct Hom(π1(M) → PSL(2,C)) from the solution
[49, 43]. But there are two subtle points as emphasized in [50]. First, some flat-
connections on a closed 3-manifold M , cannot be constructed from solutions of the
gluing equations (27) and (28). This is because we are using a state-integral model
based on ideal triangulations which do not capture reducible flat connections on a
knot complement, M̂\K. This means flat connections on M that originated from
a reducible flat connection on the knot complement cannot be found as a saddle
point in the state-integral model. Second, some solutions of the gluing equations
might not give a flat connection on M . The solutions of the gluing equations (27)

and (28) are guaranteed to correspond to a flat connection on M̂\K whose ho-
lonomy along pX + qP has eigenvalue ±1. If the holonomy is ±(identity), then
it gives a PSL(2,C) flat-connection on M . But if the holonomy is conjugate to

±(parabolic)=±
(

1 1
0 1

)
, it does not give a flat connection on M . In the latter

case, the perturbative expansion around the parabolic solution cannot be inter-
preted as a perturbative expansion of PSL(2,C) Chern-Simons theory on M . One
simple example is S3 = (S3\K)m with K a hyperbolic knot. In this case, there are
at least three flat-connections on S3\K whose meridian (m) holonomy has eigen-
value ±1. Two of them can be constructed from the unique complete hyperbolic

structure on the knot complement, say Ahyp and its conjugate Ahyp.18 The third
flat connection is an Abelian flat connection. General Abelian flat connection has

18A complete hyperbolic 3-manifold M (knot complement or closed) with finite volume can be
realized as a quotient 3-dimensional hyperbolic upper half-plane, H3/Γ with a discrete, torsion-

free action Γ. The action Γ gives a representation Hom
(
π1(M) → PSL(2,C) = Isom+(H3)

)
which defines a PSL(2,C) flat-connection Ahyp. Its conjugate representation defines Ahyp. In

the language of three-dimensional gravity, the flat connection Ahyp on hyperbolic 3-manifold can
be written as Ahyp = ω + ie where ω and e are spin connection and dreibein on M constructed

using the unique complete hyperbolic structure. The conjugate flat connection is Ahyp = ω − ie.
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trivial longitude holonomy and its meridian holonomy can be an arbitrary element
of PSL(2,C). The unique trivial PSL(2,C) flat connection on S3 comes from this
Abelian flat connection on the knot complement which cannot be captured by an
ideal triangulation. Therefore, for models based on ideal triangulations, the solu-

tions to the gluing equations correspond to the flat-connections Ahyp or Ahyp which
have ±(parabolic) as meridian holonomy and thus do not give a flat connection on
S3.

In the case that the resulting manifold M , after Dehn filling, is hyperbolic, the

gluing equations (27) and (28) have a solution Ahyp corresponding to the conjugate
of the complete hyperbolic metric on M , satisfying

0 < Im[Zi] < π for all i = 1, . . . k .(30)

This flat connection Ahyp has the maximal value (2Vol(M)) of Im[CS[A]] among all
PSL(2,C) flat connections A on M , where CS[A] is the holomorphic Chern-Simons
functional defined by

CS[A] :=

∫
M

Tr

[
A ∧ dA+

2

3
A3

]
.(31)

We can also consider perturbative series {Shyp
n } around a flat connection Ahyp

which has lowest value (−2Vol(M)) of Im[CS[A]]. The two expansions are related
by complex conjugation,

Shyp
n = (Shyp

n )∗ for all n ≥ 0 .(32)

Coming back to the flat connection Ahyp, there is actually a two-fold degeneracy
as originated from the Z2 Weyl-symmetry of SL(2); the two saddle points are

(Xhyp,ε=1, Zhyp,ε=1) and (Xhyp,ε=−1, Zhyp,ε=−1), with Xhyp,ε=1 = −Xhyp,ε=−1.
Perturbative expansions around two saddle points are expected to be equal to all
orders

Shyp,ε=1
n = Shyp,ε=−1

n for all n ≥ 0 .(33)

due to the Weyl-symmetry. The leading classical contributions from the two saddle

points Shyp,ε
n thus sum up to

exp
( ∞∑
n=0

Shyp
n ~n−1

)
= exp

( ∞∑
n=0

Shyp,ε=1
n ~n−1

)
+ exp

( ∞∑
n=0

Shyp,ε=−1
n ~n−1

)
=⇒ Shyp

n = Shyp,ε=1
n + δn,1 log 2 .

(34)

As stated above around (16), the classical part Shyp
0 coincides with the complex

hyperbolic volume of M :

Shyp
0 (M) = −iVol(M)− CS(M) := −1

2
CS[Ahyp] .(35)

3.2. One-Loop Part: Reidemeister Torsion. Having specified the saddle point
we can now discuss the perturbative expansion (4). We define from the next O(~0)
term in the expansion a quantity

τ(M) := e−2Shyp
1 (M) .(36)
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Then, as will be derived in section 3.3

τ(M) = ±1

8
det(A∆z′′ +B∆−1

z −R ·∆z′′)
p+ 2q(DB−1)1,1

(sinh[X−εiπsq ])2

k∏
i=1

z
f ′′i
i (z′′i )−fi

∣∣∣∣
(z,X)→(eZ ,X)hyp,ε

,

where Rij :=
2q δi1(B−1)j,1
p+ 2q(DB−1)1,1

, ∆t := diag(t1, . . . , tk) t ∈ {z, z′, z′′} .

(37)

Using the equations of motion, the factor sinh[X−εiπsq ]2 can be written in terms of

edge variables

sinh

[
(A~Z +B~Z ′′ − iπν)1 − 2εiπs

2q

]2

or equivalently,

sinh

[
(C ~Z +D~Z ′′ − iπν′)1 − iεπr

p

]2

.

(38)

In the derivation we have assumed q is non-zero. Nevertheless, the formula gives
the correct answer even for q = 0, if we use the second expression above.

There is a useful trick for the evaluation of τ(M). Using the transformation
(18) and (19), we can map [(X,P); (p, q)] to [(pX + qP,−rX − sP); (1, 0)]. After
transformation, the 1-loop is expressed as

τ(M) = ±1

8
det(ApX+qP∆z′′ +BpX+qP∆z−1)

1

(sinh[rX + sP ])2

k∏
i=1

z
f ′′i
i (z′′i )−fi

∣∣∣∣
(z,X)→(eZ ,X)hyp,ε

.
(39)

Where ApX+qP and BpX+qP are the A,B matrices corresponding to the polarization
pX + qP. As checked in [32], by overwhelming experimental evidence, is expected
that

Tor(M̂ \ L; pX + qP)

= ±1

2
det(ApX+qP∆z′′ +BpX+qP∆z−1)

k∏
i=1

z
f ′′i
i (z′′i )−fi

∣∣∣∣
(z,X)→(eZ ,X)hyp,ε

,
(40)

where Tor(M̂\L; pX+qP) denotes the Reidemeister torsion of adjoint representation

twisted by the flat connection Ahyp on M̂ \L associated to the boundary one-cycle
pX + qP. This means that under Dehn filling

τ(M) = Tor(M̂ \ L; pX + qP)
1

4 sinh[rX + sP ]2
.(41)

This is exactly the same as the change of torsion under the Dehn filling (see, for
example, [51])

Tor
(
(M̂ \ L)pX+qP

)
= Tor(M̂ \ L; pX + qP)

1

4 sinh[rX + sP ]2
.(42)

We have therefore proven (modulo the assumption of (40)) that our 1-loop invariant
coincides with the Reidemeister torsion:

τ(M) = Tor(M) .(43)
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This is an expected result since the 1-loop part of Chern-Simons partition function
is given by the Reidemeister torsion [1].

3.3. Higher Order Results from Feynman Diagrams. Let us now we will
derive the Feynman rules, which are useful for systematic computation of higher-
order perturbative invariants.

Our starting point is the formula (12). We are interested in the limit ~→ 0. As
we already discussed in section 3.1, depending on the sign of Re(X/q), the dominant
term in the exponential of the integral kernel Kp,q(X) will be either p

qX
2±X

q . Under

these assumptions, the leading pice of (12) in the limit ~→ 0 yields to the potential

W0( ~X, ~Z) (26). We have also seen in section 3.2 that there is a two-fold degeneracy
in the saddle point corresponding to the sign ε = +1 and ε = −1, with the same
perturbative expansion to all orders (12). This means we only need to focus on one
choice of ε. We are then left with the following integral:

εe
s
q

(
π2

~ −
~
4

) ∫
dX√
2π~q

eε
2πiX
q~ + pX2

q~ sinh

(
X − iπsε

q

)
Z

(X,P)
~ (M̂ \ L;X) .(44)

Let us combine all the integration variables X and (Zi)i=1,...k together into a (k+1)-

component vector y := (ya)a=1,...,k+1 = (X, ~Z). Let us choose a critical point

y(c) = (Xc, ~Zc) of W0. The integral we want to perform perturbatively is given by:

Z
(c),ε
pert (M) =

2ε√
detB

eΓ(0)

∫
[dy] e

1
2~H

abyayb sinh

(
X +Xc − iπsε

q

)
e(fB−1)1X

k∏
i=1

e
∑
s≥1 Γ

(s)
i /s!Zsi

=
2ε√
detB

eΓ(0)

∫
[dy] e

1
2~H

abyayb

k+1∏
a=1

e
∑
s≥1 Γ(s)

a /s!ysa .

(45)

Here the measure is

[dy] :=
dX√
2π~q

k∏
j=1

dZj√
2π~

,(46)

In the first line (45) we have defined some symbols, including the classical action:

Γ(0) =
1

~
W(y(c)) +

∑
i

∞∑
n=1

Bn
~n−1

n!
Li2−n(e−Z

c
i ) + (fB−1)1X

c

+
i

2
(π +

~
4

)fB−1ν − 1

2
ZcB−1ν +

s

q

(
π2

~
− ~

4

)
,

(47)

the linear vertex:

Γ
(1)
i = −1

2
(B−1ν)i −

∞∑
n=1

Bn
~n−1

n!
Li1−n(e−Z

c
i ) ,(48)

the quadratic vertex:

Γ
(2)
i =

∞∑
n=1

Bn
~n−1

n!
Li−n(e−Z

c
i ) ,(49)
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the Hessian matrix:

Hab :=
∂W(y(c))

∂ya∂yb
,

Hij = (B−1A)i,j + (zjz
′′
j )−1δi,j , Hix = −2(B−1)i,1 ,

Hxx = 2
p

q
+ 4(DB−1)1,1 ,

(50)

and finally the higher order vertices:

Γ
(s)
i = (−1)s

∞∑
n=0

Bn
~n−1

n!
Li2−n−s(e

−Zci ) s ≥ 3 .(51)

In the second line (45), the sine-hyperbolic piece has been expanded as

sinh

(
X +Xc − iπsε

q

)
= sinh

(
Xc − iπsε

q

)
exp

(
X

q
−
∞∑
s=1

Xs

s!
Cs(X

c)

)
,(52)

where

Cs(X
c) :=

(
−2

q

)s
Li1−s

(
e−2(X

c−iπsε
q )

)
.(53)

We can then define the combined s-vertex Γ
(s)
a for y = (X, ~Z) by combining (51),

(52) and the exponential linear term in X in (45):

Vertices : Γ(s)
a :=

(
(fB−1)1 + q−1)δs,1 − Cs(Xc),Γ

(s)
i

)
.(54)

With this information, we can obtain the perturbative expansion of (45):

Z
(c),ε
pert (M) = exp

(
1

~
S

(c),ε
0 +

∞∑
n=1

S(c),ε
n ~n−1

)
,(55)

where the index (c) in (55) is labelling the choice of critical point y(c). The first
two terms in the ~-expansion (55) are given by

S
(c),ε
0 = coeff[Γ(0), ~−1] ,

exp(S
(c),ε
1 ) = 2ε sinh

(
Xc − iπsε

q

)
ik+1√

qdet(B)det(H)
ecoeff[Γ(0),~0] .

(56)

Here for a given a Laurent series f(~) on ~, coeff[f(~), ~a] denotes the coefficient
of ~a in f(~). We can verify that the expression (56) reduces to

eS
(c),ε
1 = 2ε sinh

(
Xc − iπsε

q

)
ik+1

∏
j z
−
f′′j
2

j (z′′j )−
fj
2√

(2p+ 4q(DB−1)1,1)det(A∆z′′ +B∆z−1−R∆z′′
)
.

(57)

After including a factor 2 from (34) we can verify eq. (37).
The higher order terms in the ~ expansion can be computed by the Feynman

diagram techniques. The situation is very analogous to [32], except here we have
the sinh term as in (52) and the vertex (54) is more involved. The terms Sn>1 will
be extracted from a sum of connected graphs. Consider a connected graph GΓ with
vertices of valences k ≥ 1. Then, we associate a weight to GΓ: to each k-vertex
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we associate a factor Γ
(k)
ti and a label ti and to each internal line connecting two

vertices with labels ti and tj a factor Πti,tj , where we defined the propagator:

Propagator : Πa,b := −~(H−1)a,b ,(58)

Then the weight associated to the graph GΓ is:

WΓ(GΓ) :=
1

|Aut(GΓ)|
∑

labels

∏
v∈vertices

(−1)kvΓ
(kv)
tv

∏
e∈edges

Πe ,(59)

where |Aut(GΓ)| is the symmetry factor (the rank of the group of automorphisms
of GΓ). Given a connected graph GΓ then is easy to see that WΓ(GΓ) is of order
~−V+E or higher, where E is the number of internal lines and V the number of
vertices with valence k ≥ 3 in GΓ. After some computation one can show that
E = V +L+V1 +V2−1 where L is the number of loops and V1, V2 are the number
of 1 and 2-vertices respectively.

The Feynman rule for the perturbative invariant is then

S(c),ε
n = coeff

[
Γ(0) +

∑
GΓ∈Gn

WΓ(GΓ), ~n−1

]
n ≥ 2 ,(60)

where we defined

Gn := { Connected graphs GΓ such that L+ V1 + V2 ≤ n} .(61)

For example, S
(c),ε
2 is given by:

1

4

∑
i

Li0

(
e−Z

c
i

)
+
i

8
fB−1ν − s

4q
+ coeff

[1

8
Γ(4)
a (Πaa)2 +

1

8
ΠaaΓ(3)

a ΠabΓ
(3)
b Πbb

+
1

12
Γ(3)
a (Πab)

3Γ
(3)
b +

1

2
Γ(1)
a ΠabΓ

(3)
b Πbb +

1

2
Γ(2)
a Πaa +

1

2
Γ(1)
a ΠabΓ

(1)
b , ~

]
.

(62)

3.4. Examples. Let us discuss an example of (S3 \ 41)pm+ql. Here 41 denote the

figure-eight knot, the simplest hyperbolic knot. Since M̂ = S3 in this case, we can
use the canonical choices (7). In this choice the gluing datum (A,B,C,D, ~ν, ~ν′) for
the figure-eight knot complement (S3 \ 41) are [52]

A =

(
1 0
−1 −1

)
, B =

(
0 −1
1 1

)
, C =

(
−1 0
0 0

)
, D =

(
1 0
0 −1

)
~ν =

(
0
0

)
, ~ν′ =

(
0
0

)
.

(63)

Using the gluing datum and the perturbative expansion developed in previous sec-

tion, we can compute Shyp
n

(
(S3 \41)pm+ql

)
. The knot is amphichiral and thus topo-

logically (S3 \ 41)pm+ql = (S3 \ 41)−pm+ql for all (p, q)s. For M = (S3 \ 41)±5m+l,
which is called Thurston manifold, the saddle point (for ε = +1) is

(X,Z1, Z2)hyp,ε=1 = (0.360784− 0.575606i, 1.59632 + 0.348931i,−0.929172 + 1.23658i) ,
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and the perturbative invariants are

Shyp
0

(
M
)

= 1.52067− 0.981369i , Shyp
1

(
M
)

= −0.343697 + 3.78189i ,

Shyp
2

(
M
)

= −0.512461 + 0.0155225i , Shyp
3

(
M
)

= 0.00927226 + 0.00617571i ,

Shyp
4

(
M
)

= 0.00312943 + 0.00434039i , Shyp
5

(
M
)

= 0.00164586 + 0.00407186i .

(64)

We compute the perturbative invariants for (p, q) = (5, 1) and the invariants for
(p, q) = (−5, 1) are simply related by the orientation change (25). As another
example, for M = (S3 \ 41)−m+2l, we have

Shyp
0

(
M
)

= 4.86783− 1.39851i , Shyp
1

(
M
)

= −0.340874− 3.9077i ,

Shyp
2

(
M
)

= −0.610686 + 0.0259448i , Shyp
3

(
M
)

= 0.0130034 + 0.00708517i .

(65)

4. Numerical Evidence for All-Order Volume Conjecture

Finally, let us present a numerical evidence for our conjecture (5) based on the
technical developments in the previous sections. The SO(3)-WRT invariant for the
closed 3-manifold (S3 \K)pm+l is given by [18]19

τSO(3)
r

(
(S3 \K)pm+l

)
=

2

r
eπi(

3+r2

r −
3−r

4 )

( r−2∑
N=0

(
sin

2(N + 1)π

r

)2

(−eπir )−p(N
2+2N)JN+1(K; e

2πi
r )

)
.

(66)

where JN (K; e
2πi
r ) is the value of N -th colored Jones polynomial of K at q = e

2πi
r

with a normalization JN (unknot) = 1.
Let us take the example M = (S3 \ 41)−5m+l = (Thurston Manifold). The

colored Jones polynomial for the knot K = 41 is (this is due to Habiro [53], see
also [54])

JN (41; q) =

N−1∑
k=0

k∏
i=1

(qN−i − q−N+i)(qN+i − q−N−i) .(67)

Combining this expression with (66), we can compute τr(M) for any r. Numerical
value for the perturbative expansions Shyp

n (M) up to n = 5 are given in (64) (see
also eq. (32)). The numerical test for the generalized conjecture (5) is given in
Fig. 1. In these plots we defined

δk(r;M) := rk−1
[

log τSO(3)
r (M)−

k∑
n=0

~n−1Shyp
n (M)

]
~= 2πi

r

,(68)

19This should be compared with

τ
SU(2)
r

(
(S3 \K)pm+l

)
=

√
2

r

1

sin(π
r

)
exp(

(3− 2p)πi

4
)

r−1∑
N=1

sin2(
πN

r
)e
πipN2

2 JN (K; e
πi
r ) .
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Imδk=4r ;M = S3 \41(-5m+l)


100 200 300 400 500

-1.5

-1.0

-0.5

0.5

Imδk=5r ;M = S3 \41(-5m+l)


100 200 300 400 500

-200

-150

-100

-50

50

100

150

Reδk=4r ;M = S3 \41(-5m+l)


100 200 300 400 500

-0.1

0.1

0.2

0.3

0.4 Reδk=5r ;M = S3 \41(-5m+l)


100 200 300 400 500

-40

-20

20

40

Figure 1. Graphs of real and imaginary part of δk(r;M) for k =
4, 5 and M = (S3 \ 41)−5m+l. The expression decreases quickly as
r becomes large, especially for larger k.

We see that both of Re δk(r;M) and Im δk(r;M) quickly decreases as we increase
the value of r.20 This is a highly non-trivial evidence for our conjecture.

As another example, let us consider a Dehn filling of the knot K = 52. Its
colored Jones polynomial is [54]

JN (52; q) =

N−1∑
k=0

ck

k∏
i=1

(qN−i − q−N+i)(qN+i − q−N−i) ,

ck := (−1)kq3k2+5k
k∑
i=0

qi
2−2i−3ki [k]!

[i]![k − i]!
, [n]! :=

n∏
a=1

qa − q−a

q − q−1
.

(69)

For a manifold M = (S3 \ 52)−m+l = (S3 \ 41)−m+2l
21, numerical value for the

perturbative expansions Shyp
n (M) up to n = 3 are given in (65) (see also eq. (32)).

The numerical test for the generalized conjecture (5) is given in Fig. 2.
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Appendix A. Review: Surgery Construction of Closed 3-manifolds

In this appendix we quickly summarize the concept of Dehn filling, for readers
unfamiliar with the concept.

Suppose that K is a knot inside a closed 3-manifold M̂ , namely has only one
component, and consider a knot complement

M̂ \K .(70)

The boundary of this 3-manifold is a two-torus T 2, which has two non-trivial one-
cycles, X and P

〈X,P〉 = H1

(
T 2 = ∂(M̂\K),Z

)
= Z⊕ Z .(71)

Now a (p, q)-Dehn filling of M , which we denote as (M̂\K)pX+qP, is obtain by
eliminating the boundary torus of the knot complement by filling in solid tori D2×
S1, so that the combination pX + qP is contractible inside D2 × S1 :

(M̂\K)pX+qP := (D2 × S1)
⋃

ϕ∈Aut(T 2)

(M̂\K) .(72)
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where an automorphisms ϕ on the two-torus is taken to be22

ϕ : H1(∂(M̂\K),Z)→ H1(∂(D2 × S1),Z) ,(
X
P

)
→ g ·

(
α
β

)
, with g := ±

(
r s
p q

)
∈ PSL(2,Z) .

(73)

Here (α, β) is a basis of H1

(
∂(D2 × S1),Z

)
:

α ∼ (S1 in D2 × S1) , β ∼ (S1 of ∂D2) .(74)

The definition (72) apparently depends on the choice of integers (r, s) in (73), in
addition to (p, q). Indeed, given (p, q) there is an ambiguity in the choice of (r, s)
as (r, s)→ (r, s) + n(p, q), with n ∈ Z. However, this ambiguity is equivalent with
the ambiguity of the longitude inside a general 3-manifold, and keeps the topology
of the manifold after the Dehn filling (see e.g. discussion around Figure 7 of [43]).
Consequently this ambiguity preserves the partition function of the complex Chern-
Simons theory, possible up to some overall pre-factors originating from framing
anomaly. Note also that we also have an overall sign ambiguity (p, q) ∼ (−p,−q),
which we can eliminate by considering a slope p/q.

In general, the link L has several (say S) connected components and we can
choose (pα, qα) Dehn-surgeries for the α-th component, for some value of α (1 ≤
α ≤ S). The resulting 3-manifold is then a complement of a link with S − 1
components. When do the Dehn filing on all the link complements we obtain a
closed 3-manifold (M̂ \ L)p1X1+q1P,...,pSXS+qSPS .

Appendix B. Review: State-Integral Model for Link Complement

Let us first review the state-integral model for a knot/link complement M̂ \ L,
following [30, 32]. We consider a regular ideal triangulation of a link complement

M̂ \ L:

M̂ \ L =

(
k⋃
i=1

∆i

)
/ ∼ .(75)

where each ∆i is an ideal tetrahedron (ideal here means that all the vertices are
located on the boundary). The symbol ∼ denotes the gluing of the k tetrahedra.
The shape of an ideal tetrahedron can be parametrized by a shape parameter zi.
This is a complexification of the dihedral angles between two faces, and once we fix
the choice of an edge the remaining dihedral angles are given by

z′i = (1− zi)−1, z′′i = 1− z−1
i , ziz

′
iz
′′
i = 1 .(76)

In this parametrization, we fixed a choice of which dihedral angle to call zi (and
not z′i or z′′i ). Such a choice is called the ‘quad type’.

We next impose extra conditions originating from the gluing of tetrahedra. First
we have gluing conditions at each internal edge. It follows from vanishing of the
Euler number of the boundary tori that the number of edges is also given by k.
We also need to impose conditions on the cups boundaries, and we therefore have
extra S conditions. This naively means that we have k+S conditions. However, it
turns out that only k − S out of the k conditions from internal edges are linearly
independent, leading to total of (k − S) + S = k constraints.

22The topological type of the resulting 3-manifold is invariant under continuous deformation
of ϕ and hence we can regard ϕ as an element of the PSL(2,Z).
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To describe this gluing, let us denote by zi the shape parameter (modulus) of the
i-th ideal tetrahedron (i = 1, . . . , k). We can then express the constraint equation
as [48]

k∏
j=1

z
Aij
j z′′j

Bij = (−1)νi , i = 1 , . . . , k ,(77)

where the matrices A = (Aij), B = (Bij) are k × k-matrices with integer entries,
and ~ν is an k-component integer vector. When we consider deformations of the
boundary holonomy, the equations are modified to be

k∏
j=1

z
Aij
j z′′j

Bij = e2Xi+iπνi , i = 1 , . . . , k .(78)

Here a length-k vector ~X = (Xi) is defined by from a set of S parameters (Xα)Sα=1

to be

Xi :=

{
Xi if 1 ≤ i ≤ S
0 if S + 1 ≤ i ≤ k

,(79)

where we have chosen the indices I such that the first S conditions (i = 1, . . . , S)
come from cusp boundaries, and the remaining k − S conditions (i = S + 1 . . . , k)
from internal edges. The parameters (Xα)Sα=1 (or rather its exponential, to match
with the standard definition in literature) parameterize the boundary PSL(2,C)-
holonomies along S one-cycles Xα.

P exp

(∮
Xα
A
)
∼ ±

(
eXα ∗

0 e−Xα

)
(80)

with a conjugacy equivalence relation ∼. Similarly, we can introduce boundary
holonomy variables Pα along S Pα and these variables also can be written in terms
of shape parameters

k∏
j=1

z
Ĉαj
j z

′′D̂αj
j = ePα+iπν̂′α , α = 1 , . . . , S .(81)

In general, the Ĉ, D̂ and ν̂′ are valued in half-integers. The partition function for
the state-integral model is given by (6) in the main text. As discussed in section
3.1, in the semiclassical limit, its saddle point value reproduces the shape modulus
of the tetrahedron by the relation eZi = zi. The matrices (Ĉ, D̂) can be extended
to k × k matrices (C,D) in a way that [48].

Cij = Ĉij , Dij = D̂ij for i = 1, . . . , S ,

and

(
A B
C D

)
∈ Sp(2k,Q) .

(82)

Similarly, the vector ν̂′ is extended to k-component vector ~ν′:

~ν′ := (ν̂1, . . . , ν̂S , 0, . . . , 0) .(83)

The vectors (~f, ~f ′′) = (fi, f
′′
i )ki=1 are known as combinatorial flattening, and satisfy

the constraints

~ν = A · ~f +B · ~f ′′ , ~ν′ = C · ~f +D · ~f ′′ .(84)
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towards the volume conjecture (Japanese) (Kyoto, 2000).

[14] F. Costantino, “6j-symbols, hyperbolic structures and the volume conjecture”,
Geom. Topol. 11, 1831 (2007), http://dx.doi.org/10.2140/gt.2007.11.1831.

[15] F. Costantino and J. Murakami, “On the SL(2,C) quantum 6j-symbols and their
relation to the hyperbolic volume”, Quantum Topol. 4, 303 (2013),
http://dx.doi.org/10.4171/QT/41.

[16] R. Kirby and P. Melvin, “The 3-manifold invariants of Witten and
Reshetikhin-Turaev for sl(2,C)”, Invent. Math. 105, 473 (1991),
http://dx.doi.org/10.1007/BF01232277.

[17] C. Blanchet, N. Habegger, G. Masbaum and P. Vogel, “Three-manifold invariants
derived from the Kauffman bracket”, Topology 31, 685 (1992),
http://dx.doi.org/10.1016/0040-9383(92)90002-Y.

[18] W. B. R. Lickorish, “The skein method for three-manifold invariants”,
J. Knot Theory Ramifications 2, 171 (1993),
http://dx.doi.org/10.1142/S0218216593000118.



ALL-ORDER VOLUME CONJECTURE FOR CLOSED 3-MANIFOLDS 21

[19] W. B. R. Lickorish, “Invariants for 3-manifolds from the combinatorics of the Jones
polynomial”, Pacific J. Math. 149, 337 (1991),
http://projecteuclid.org/euclid.pjm/1102644467.

[20] W. B. R. Lickorish, “Three-manifolds and the Temperley-Lieb algebra”,
Math. Ann. 290, 657 (1991), http://dx.doi.org/10.1007/BF01459265.

[21] W. B. R. Lickorish, “Calculations with the Temperley-Lieb algebra”,
Comment. Math. Helv. 67, 571 (1992), http://dx.doi.org/10.1007/BF02566519.

[22] C. Blanchet, N. Habegger, G. Masbaum and P. Vogel, “Remarks on the
three-manifold invariants θp”, in: “Operator algebras, mathematical physics, and
low-dimensional topology (Istanbul, 1991)”, pp. 39–59, A K Peters, Wellesley, MA
(1993).

[23] J.-B. Bae, D. Gang and J. Lee, “3d N = 2 minimal SCFTs from Wrapped
M5-branes”, arxiv:1610.09259.

[24] Y. Terashima and M. Yamazaki, “SL(2,R) Chern-Simons, Liouville, and Gauge
Theory on Duality Walls”, JHEP 1108, 135 (2011), arxiv:1103.5748.

[25] T. Dimofte, D. Gaiotto and S. Gukov, “Gauge Theories Labelled by
Three-Manifolds”, arxiv:1108.4389.

[26] T. Ohtsuki, “On the asymptotic expansion of the quantum SU(2) invariant at
q = exp(4π

√
−1/N) for closed hyperbolic 3-manifolds obtained by integral surgery

along the figure-eight knot”, preprint.
[27] W. B. R. Lickorish, “A representation of orientable combinatorial 3-manifolds”,

Ann. of Math. (2) 76, 531 (1962), http://dx.doi.org/10.2307/1970373.
[28] A. H. Wallace, “Modifications and cobounding manifolds”,

Canad. J. Math. 12, 503 (1960), http://dx.doi.org/10.4153/CJM-1960-045-7.
[29] K. Hikami, “Generalized volume conjecture and the A-polynomials: The Neumann

Zagier potential function as a classical limit of the partition function”,
Journal of Geometry and Physics 57, 1895 (2007), math/0604094.

[30] T. Dimofte, “Quantum Riemann Surfaces in Chern-Simons Theory”,
Adv. Theor. Math. Phys. 17, 479 (2013), arxiv:1102.4847.

[31] J. Ellegaard Andersen and R. Kashaev, “A TQFT from Quantum Teichmller
Theory”, Commun. Math. Phys. 330, 887 (2014), arxiv:1109.6295.

[32] T. D. Dimofte and S. Garoufalidis, “The Quantum content of the gluing equations”,
Geom. Topol. 17, 1253 (2013), arxiv:1202.6268.

[33] T. Ohtsuki and T. Takata, “On the Kashaev invariant and the twisted Reidemeister
torsion of two-bridge knots”, Geometry & Topology 19, 853 (2015).

[34] T. Ohtsuki, “On the asymptotic expansion of the Kashaev invariant of the 52 knot”,
Quantum Topology 7, 669 (2016).

[35] T. Ohtsuki, “On the asymptotic expansion of the Kashaev invariant of the
hyperbolic knots with 7 crossings”, preprint.

[36] T. Ohtsuki and Y. Yokota, “On the asymptotic expansions of the Kashaev invariant
of the knots with 6 crossings”, in: “Mathematical Proceedings of the Cambridge
Philosophical Society”, pp. 1–53.

[37] S. Gukov, “Three-dimensional quantum gravity, Chern-Simons theory, and the A
polynomial”, Commun. Math. Phys. 255, 577 (2005), hep-th/0306165.

[38] L. D. Faddeev and R. M. Kashaev, “Quantum dilogarithm”,
Modern Phys. Lett. A 9, 427 (1994),
http://dx.doi.org/10.1142/S0217732394000447.

[39] W. D. Neumann, “Extended Bloch group and the Cheeger-Chern-Simons class”,
Geom. Topol. 8, 413 (2004), math/0307092.

[40] L. F. Alday, P. Benetti Genolini, M. Bullimore and M. van Loon, “Refined 3d-3d
Correspondence”, arxiv:1702.05045.

[41] Y. Terashima and M. Yamazaki, “3d N=2 Theories from Cluster Algebras”,
PTEP 023, B01 (2014), arxiv:1301.5902.



22 DONGMIN GANG, MAURICIO ROMO, AND MASAHITO YAMAZAKI

[42] D. Gang, N. Kim, M. Romo and M. Yamazaki, “Taming supersymmetric defects in
3d–3d correspondence”, J. Phys. A49, 30LT02 (2016), arxiv:1510.03884.

[43] D. Gang, N. Kim, M. Romo and M. Yamazaki, “Aspects of Defects in 3d-3d
Correspondence”, JHEP 1610, 062 (2016), arxiv:1510.05011.

[44] R. Kirby, “A calculus for framed links in S3”, Invent. Math. 45, 35 (1978),
http://dx.doi.org/10.1007/BF01406222.

[45] T. Dimofte, S. Gukov, J. Lenells and D. Zagier, “Exact Results for Perturbative
Chern-Simons Theory with Complex Gauge Group”,
Commun. Num. Theor. Phys. 3, 363 (2009), arxiv:0903.2472.

[46] S. Axelrod and I. M. Singer, “Chern-Simons perturbation theory”, in: “Proceedings
of the XXth International Conference on Differential Geometric Methods in
Theoretical Physics, Vol. 1, 2 (New York, 1991)”, pp. 3–45, World Sci. Publ., River
Edge, NJ (1992).

[47] S. Axelrod and I. M. Singer, “Chern-Simons perturbation theory. II”,
J. Differential Geom. 39, 173 (1994),
http://projecteuclid.org/euclid.jdg/1214454681.

[48] W. D. Neumann and D. Zagier, “Volumes of hyperbolic three-manifolds”,
Topology 24, 307 (1985), http://dx.doi.org/10.1016/0040-9383(85)90004-7.

[49] T. Dimofte, M. Gabella and A. B. Goncharov, “K-Decompositions and 3d Gauge
Theories”, arxiv:1301.0192.

[50] H.-J. Chung, T. Dimofte, S. Gukov and P. Sulkowski, “3d-3d Correspondence
Revisited”, arxiv:1405.3663.

[51] J. Porti, “Reidemeister torsion, hyperbolic three-manifolds, and character varieties”,
ArXiv e-prints 24, J. Porti (2015), arxiv:1511.00400.

[52] M. Culler, N. Dunfield and J. R. Weeks, “SnapPy, a computer program for studying
the geometry and topology of 3-manifolds”,
http://snappy.computop.org 24, J. R. Weeks, http://snappy.computop.org.

[53] K. Habiro, “On the colored Jones polynomials of some simple links”,
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