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Abstract The authors describe the relationships between categories of B-branes in dif-
ferent phases of the non-Abelian gauged linear sigma model. The relationship is described
explicitly for the model proposed by Hori and Tong with non-Abelian gauge group that
connects two non-birational Calabi-Yau varieties studied by Rødland. A grade restriction
rule for this model is derived using the hemisphere partition function and it is used to map
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1 A Quick Preview

The goal of this paper is to use the non-Abelian GLSM (gauged linear sigma model) to

understand relationships between categories of B-branes of different theories. In certain cases,

this will lead to equivalences of derived categories

Db CohX ∼= Db CohY

for X and Y birationally distinct Calabi-Yau varieties. For this lecture we will focus on a

particular GLSM constructed in [1] which we shall call the Rødland model. It has two phases,

and in either of the two, the model reduces at low energies to a sigma model with smooth

Calabi-Yau target, X for one and Y for the other. Below, we describe what X and Y are.

In addition to mathematical applications, our story is motivated by studying boundary

conditions in two dimensional gauge theory with (2, 2) supersymmetry. This sheds light on

D-branes in string theory and field theory dualities. This can be viewed as a toy model for

similar phenomena in higher dimensional field theories.

Rødland Example We choose a collection of complex numbers (Aij
k )

7
i,j,k=1 which is anti-

symmetric in the upper indices, Aij
k = −Aji

k . We assume that it is generic in a certain sense.
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(1) Complete intersection in Gr(2, 7).

X is a complete intersection of seven hyperplanes in the Grassmannian Gr(2, 7),

7∑
i,j=1

Aij
k [xixj ] = 0, k = 1, · · · , 7,

where [xixj ] = x1
ix

2
j − x2

ix
1
j are the Plücker coordinates for Gr(2, 7). When (Aij

k ) is generic, it

is a smooth Calabi-Yau threefold with invariants∫
X

H3 = 42,

∫
X

c2 ·H = 85,

∫
X

c3 = χ = −98.

(2) Pfaffian Calabi-Yau.

Y is a Pfaffian Calabi-Yau. Put Aij(p) :=
7∑

k=1

Aij
k p

k and regard them as elements of a 7× 7

antisymmetric matrix A(p). When (Aij
k ) is generic, the rank of A(p) for non-zero p is either six

or four, and the rank four locus defines a smooth submanifold Y ⊂ P6 of codimension three. It

is a Calabi-Yau threefold with invariants∫
Y

H3 = 14,

∫
Y

c2 ·H = 56,

∫
Y

c3 = χ = −98.

(3) Smoothness.

Let V be a seven dimensional vector space. Then the collection of numbers Aij(p) can be

viewed as the coefficients of the map A : ∧2V → V. The Grassmannian Gr(2, 7) is a subvariety

P(∧2V ) under the Plücker embedding Gr(2, 7) ⊂ P(∧2V ). The variety X is the intersection

X = ker(A)∩Gr(2, 7) and is smooth if P(kerA) is transverse to Gr(2, 7). This is the condition

for the collection of numbers Aij(p) to be called generic. If Aij(p) is generic then Y is also

smooth (see [2]).

(4) A tale of two Calabi-Yau threefolds.

X and Y are birationally distinct, but they have equivalent categories of B-branes,

Db CohX ∼= Db CohY.

Rødland [3] argued that the families X and Y appear to have the same mirror family. Com-

bining this observation with Kontsevich’s homological mirror symmetry conjecture predicts the

equivalence of categories of B-branes on X and Y. The first proofs of the derived equivalences

were given by Borisov-Caldararu [2] and Kuznetsov [4]. Recently Addington-Donovan-Segal

[5] gave a new proof using ideas from Herbst-Hori-Page [6]. The equivalence was shown by

contructing a Fourier-Mukai functor:

Φ : Db CohY → Db CohX.

2 Introduction and Overview

The aim of this paper is to describe the grade restriction rule obtained in [7], for D-brane

transport along paths between the two phases of the non-Abelian GLSM of [1]. This provides

an equivalence Db CohY → Db CohX for each homotopy class of paths (window). The new

technique will be to use the hemisphere partition function in the derivation.
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Outline We will start by reviewing the data of the GLSM and the description of B-branes

in the GLSM. Then using the data associated to a B-brane, we will explain how to compute

the hemisphere partition function. The hemisphere partition function depends on a choice of

an integration contour, and only certain branes with charges satisfying a grade restriction rule

will have a convergent partition function along a path connecting two phases of the GLSM.

For the Rødland model we will determine the grade-restriction rule for several simple choices

of paths connecting the Grassmannian and Pfaffian phases. Finally we will then describe how

the grade restriction rule for a specific path relates to earlier proofs of the derived equivalence

between the two different phases by Borisov-Caldararu and Kuznetsov.

3 The Gauged Linear Sigma Model

The gauged linear sigma model is a class of two-dimensional (2, 2) supersymmetric gauge the-

ories introduced by Witten [8]. It can be used to construct a family of (2, 2) superconformal field

theories which may have limits corresponding to Calabi-Yau sigma models, Landau-Ginzburg

orbifolds and/or hybrids thereof.

The ingredients A 2d (2, 2) supersymmetric gauge theory is specified by a choice of

(1) G a compact Lie group (gauge group),

(2) V a C-representation of G (matter content),

(3) W (ϕ) a G-invariant polynomial function of ϕ ∈ V (superpotential),

(4) W̃ (σ) a G-invariant polynomial function of σ ∈ gC (twisted superpotential).

An adjoint invariant norm X 7→ 1
e2X

2 of ig and a G-invariant hermitian inner product on

V must also be chosen. These induce G-invariant symplectic structures on gC and V . The

associated moment map on V that vanishes at the origin is denoted by ϕ 7→ µ(ϕ). Physically,

the parameter e ∈ R is the coupling constant for the vector multiplet.

Two U(1) R-symmetries

(1) U(1)V R-symmetry.

The vector U(1) R-symmetry is preserved if there exists a diagonalizable R ∈ End(V ),

called the R-charge, such that W (λRϕ) = λ2W (ϕ), λ ∈ C×. It possesses charge integrality if

eπiR agrees with the action of a gauge group element, say J ∈ G. If the system has U(1)V
symmetry with charge integrality, one can apply the A-twist to obtain a topological field theory.

(2) U(1)A R-symmetry.

The axial U(1) R-symmetry is preserved at the classical level if the twisted superpotential

is linear, W̃ (σ) = −t(σ), for t = ζ − iθ ∈ (g∗C)
G. ζ and θ are called the Fayet-Iliopoulos (FI)

parameter and theta parameter respectively. To be precise, the theta parameter is subject to

a discrete identification, θ ∈ (ig∗)G/ ∼. It remains to be a symmetry of the quantum system

under the Calabi-Yau condition: The representation maps G to SL(V ). Under these conditions,

one can apply the B-twist to obtain a topological field theory.

We assume all of these conditions. Then, the gauge theory is expected to flow to a super-

conformal field theory with central charge c
3 = trV (1−R)− dimG.

Phases The classical potential is

U =
1

8e2
[σ, σ]2 +

1

2
(|σϕ|2 + |σϕ|2) + e2

2
(µ(ϕ)− ζ)2 + |dW (ϕ)|2.

A zero of this potential is called a classical supersymmetric vacuum. The space of the FI-

paramerter ζ is decomposed into chambers called phases according to the pattern of gauge
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symmetry breaking by the vacuum values of ϕ. Typically, and always if the gauge group is

Abelian, deep inside a phase, the gauge group is broken to a finite subgroup and hence σ = 0.

In such a “weakly coupled” phase, the nature of the low energy theory can be found by a

classical analysis. Sometimes the low energy theory is a non-linear sigma model with a smooth

Calabi-Yau target space ( geometric, or CY, phase), sometimes the target is an orbifold (orbifold

phase), sometimes the theory reduces to a Landau-Ginzburg orbifold (LG phase), and in general

it is a mixture of these (hybrid phase). On the boundary between different phases, there are

classical vacua with an unbroken continuous subgroup. There, σ can take any value in the

Cartan subalgebra of the unbroken subgroup. The emergence of a non-compact flat direction

in σ (Coulomb branch) is a sign of singularity. A typical picture of phases and their classical

boundaries is shown in Figure 1.

Figure 1 Classical phase boundaries

If the gauge group is non-Abelian, the unbroken gauge group can be continuous even deep

inside a phase. In such a “strongly coupled” phase, a hard physical analysis is needed to

understand the low energy behaviour.

Quantum Parameter Space Under the assumption of two U(1) R-symmetries, we have a

family of 2d (2, 2) superconformal field theories parametrized by the product space MA×MB ,

where MA is the space of FI-theta parameter t, and MB is the space of parameters that

determine the superpotential W (ϕ). To be precise, we need to avoid the discriminant locus,

where the theory is singular. The FI-theta parameter t is in the discriminant ∆ if there is a

quantum Coulomb branch. When projected to the FI parameter space, ∆ becomes an Amoeba

(see [9–10]) with spines that asymptote to the classical phase boundaries. An illustration is

shown in Figure 2. In a geometric phase, MA is the space of complexified Kähler class while

MB is the moduli space of complex structures.

Figure 2 Quantum corrected phase boundaries

4 Examples

Quintic

(1) G = U(1),

(2) V = C(−5)⊕ C(1)⊕5 where C(j) is the weight j representations of U(1),

(3) W = pf(x1, · · · , x5) where f is a quintic polynomial,
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(4) W̃ = −tσ with t = ζ − iθ ∈ C
2πiZ .

Table 1 Charges for the quintic GLSM

p x1,··· ,5
q −5 1
R 2 0

ζ ≫ 0 is a geometric phase where the gauge group is completely broken. It describes the

sigma model whose target space is the quintic hypersurface Xf ⊂ P4 defined by the equation

f(x) = 0. ζ ≪ 0 is the Landau-Ginzburg orbifold phase where the gauge group is broken to

the Z5 subgroup. The discriminant locus ∆ is a single point at t ≡ 5 log(−5) mod 2πiZ.

Rødland model

(1) G = U(2),

(2) V = (det−1 S)⊕7 ⊕ S⊕7 ∋ (p1, · · · , p7, x1, · · · , x7) where S ∼= C2 is the fundamental

representation of U(2),

(3) W =
7∑

i,j,k=1

Aij
k p

k[xixj ],

(4) W̃ = −t · trS(σ) with t ∈ C
2πiZ .

ζ ≫ 0 is a geometric phase where the gauge group is completely broken, with the Calabi-Yau

manifold X ⊂ G(2, 7) as the target. ζ ≪ 0 is a strongly coupled phase where the unbroken

subgroup is SU(2) ⊂ U(2) at any vacuum value of ϕ. The intermediate energy theory is a

Figure 3 SU(2) gauge theory fibered over P6

SU(2) gauge theory with fundamental doublets xi that have a mass matrix Aij(p), which is

fibered over the space of p’s. The nature of the theory depends on the number of massless

doublets, which is seven minus the rank of the mass matrix. The rank can be six or four.

(1) On a generic point p ∈ P6, the rank is six and the number of massless doublet is one.

Supersymmetry is broken in the SU(2) gauge theory with a single massless doublet. Therefore,

the low energy theory is not supported on the generic points of P6.

(2) On the rank four locus, we have SU(2) gauge theory with three massless doublets

X1, X2, X3. This flows to the free theory of the three mesons

B1 = [X2X3], B2 = [X3X1], B3 = [X1X2].
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Thus, near this locus, the effective theory is the Landau-Ginzburg model with the superpotential

Weff = δp1B1 + δp2B2 + δp3B3.

(3) The theory reduces to a sigma model whose target space is the critical locus of Weff ,

that is, the Pfaffian Calabi-Yau threefold Y .

In summary, we have a one parameter family of 2d (2, 2) superconformal field theories which

has two limits corresponding to the sigma models with target X and Y . The discriminant locus

∆ consists of the three points {α1, α2, α3} at t ≡ 7 log
(
2 cos

(
πa
7

))
+πia (a = 1, 2, 3). Of course,

the two limits are connected by paths that avoid these three points.

5 B-branes in the GLSM

From the general principle of 2d (2, 2) supersymmetry, we expect to have a category of

B-branes at each point of MA × MB, and it is invariant under deformations in MA. In a

geometric phase, the category is equivalent to the derived category of coherent sheaves on the

target. In a Landau-Ginzburg phase, it is the category of matrix factorizations. If a path in

MA between two phases is chosen, we have an equivalence of the categories at the two ends,

and the equivalence depends only on the homotopy class of the paths. We would like to find

such equivalences using GLSMs.

A B-brane in the GLSM is given by the following data:

(i) A Z2 graded vector space M = M ev ⊕Modd with an even representation of U(1)V ×G,

U(1)V ×G → GL(M), (λ, g) 7→ λr∗ρ(g).

We assume that the charge integrality: eπir∗ρ(J) is the Z2-grading; +1/−1 on even/odd ele-

ments of M .

(ii) A polynomial function Q(ϕ) of ϕ ∈ V with values in Endodd(M) such that

Q(ϕ)2 = W (ϕ)idM [matrix factorization],

ρ(g)−1Q(gϕ)ρ(g) = Q(ϕ) [G-equivariance],

λr∗Q(λRϕ)λ−r∗ = λQ(ϕ) [R-charge 1].

(iii) A Weyl invariant Lagrangian submanifold γ ⊂ tC.

Given the data B = (M,Q, γ), we have the boundary condition on the bulk fields as well

as interaction at the boundary, at the classical level. However, it is not a priori clear whether

the classical data defines a D-brane in the quantum theory. If it does, we are most interested

in the low energy behaviour, especially, the image of the D-brane at the infra-red fixed point.

It may happen that different data flow to the same brane in the superconformal field theory.

What is the full set of such relations among the classical data? Also, we would like to find the

rule of D-brane transport along paths in MA.

In [6], such questions were studied in Abelian GLSMs, and the grade restriction rule was

proposed as the key to the answer. It was found that:
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(i) Deep inside a phase, there is a class of γ’s such that the data (M,Q, γ) defines a D-brane

in the quantum theory for an arbitrary (M,Q),

(ii) That is not the case near the phase boundary. For each homotopy class of paths that

connect two phases, there is a set of allowed representations of G: One can find a family of

γ along the path so that (M,Q, γ) defines a D-brane as long as M consists of representations

from the allowed set. This is the grade restriction rule.

(iii) As far as the grade restricted (M,Q)’s are concerned, the two phases have a common

set of relations. In one parameter models, there is no non-trivial relation at all — the category

of grade restricted branes is equivalent to the category in the infra-red theory.

(i) and (ii) are obtained from the study of effective boundary potential Veff(σ) for large

values of σ. (iii) is a mathematical fact whose origin goes back to Kawamata [11] and van den

Bergh [12], and is refined/generalized by [13–15].

In [7], the analysis is extended to the Rødland model and its cousins. Rather than the

effective boundary potential Veff(σ), the hemisphere partition function is used in the analysis.

A new feature is that, in a strongly coupled phase with a continuous unbroken gauge group,

there is a non-trivial grade restriction rule, unlike in an Abelian theory where no such rule is

present (i).

The hemisphere partition function is, as the name suggests, the partition function on the

hemisphere with a certain background that preserves two supercharges,

where we place the boundary condition/interaction corresponding to the data B = (M,Q, γ)

at the boundary. It was computed in [16–18] and found to agree with the central charge of the

brane whenever the latter is known. Let

V =
⊕
i

C(Ri, Qi)

be the weight decomposition of the matter representation. Then, the hemisphere partition

function with the boundary condition interaction corresponding to B = (M,Q, γ) is given by

Z(B) = (rΛ)
c
6

∫
γ

dlσ
∏
α>0

α(σ)sinh(πα(σ))
∏
i

Γ
(
iQi(σ) +

Ri

2

)
eit(σ)fM (σ)

with

fM (σ) := trM (eπir∗ρ(e2πσ)).

In the above expression, r is the radius of the hemisphere, Λ is the renormalization scale,

dlσ := dσ1 ∧ · · · ∧ dσl is the flat holomorphic volume form on tC (l is the rank of G),
∏
α>0

is the

product over the positive roots of G, and Γ(z) is Euler’s gamma function.

The main concern is whether this integral is convergent. The grade restriction rule is

derived from the condition of absolute convergence. The absolute convergence can be derived

using Stirling’s approximation for the gamma function. For an Abelian GLSM, the growth of

the integrand is essentially e−rVeff (σ), and the rule from absolute convergence agrees with the

rule derived from Veff(σ) in [6].
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6 The Grade Restriction Rule in the Rødland Model

Let us summarize the result of [7]. As before, S stands for the fundamental representation

of G = U(2). We use the shorthand notation for other representations,

SlS(i) := SymlS ⊗ (detS)⊗i, l ∈ {0, 1, 2, · · · }, i ∈ Z.

We may also write C(i) = (detS)⊗i and S(i) = S ⊗ (detS)⊗i.

6.1 No GRR in the weakly coupled phase

In the Grassmannian phase ζ ≫ 0 where the gauge group is completely broken, there is no

non-trivial grade restriction rule. There is a universal contour, say, γ+ defined by

Imσ1 = (Reσ1)
2, Imσ2 = (Reσ2)

2

for which the integral is absolutely convergent for an arbitrary (M,Q).

6.2 GRR in the strongly coupled phase

In the Pfaffian phase ζ ≪ 0 where the SU(2) subgroup of the gauge group is totally un-

broken, there is a non-trivial grade restriction rule. In order for the integration in the SU(2)

direction to be convergent, the representation M should be a direct sum of the irreducible rep-

resentations from the three series C(i), S(i) and S2S(i) (i ∈ Z). If that is the case, the integral
is convergent, say for γ− given by

Imσ1 = Imσ2 = −(Reσ1 +Reσ2)
2.

6.3 GRR for the paths between the two phases

Let us consider the D-brane transport along paths that go between the Grassmannian phase

and the Pfaffian phase, as shown in Figure 4.

Figure 4 Paths in the complexified Kähler moduli space MA

When projected to the FI-parameter line, such a path goes through the phase boundary

where the unbroken gauge group becomes bigger than SU(2). Accordingly, there is a stronger

grade restriction rule than the one found in the Pfaffian phase. Below, we describe the rule.
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The allowed representations for path 3 are

C(1), · · · , C(6), C(7),
S, S(1), · · · , S(6),

S2S, S2S(1), · · · , S2S(6).

The allowed representations for path 1 are

C(1), · · · , C(6), C(7),
S(1), · · · , S(6), S(7),

S2S, S2S(1), · · · , S2S(6).

The allowed representations for path 5 are

C, C(1), · · · , C(6),
S, S(1), · · · , S(6),

S2S, S2S(1), · · · , S2S(6)

and the allowed representations for path 6′ are

C(2), · · · , C(6), C(7), C(8),
S(1), S(2), · · · , S(6), S(7),

S2S, S2S(1), S2S(2), · · · , S2S(6).

7 Derived Equivalences and Borisov-Caldararu

We now show how to obtain Borisov-Caldararu’s proof of the derived equivalence between

the Grassmannian X and Pfaffian Calabi Yau Y threefolds as an application of the non-Abelian

grade-restriction rule. The idea of the proof is to reconstruct the variety X from skyscraper

sheaves. In physical terms, this is the moduli space of a D0 brane. A more precise version of

this idea is the following theorem.

Theorem 7.1 (see [19]) Let X be a smooth irreducible projective varitiety with ample

canonical or anti-canonical sheaf. If Db CohX is derived equivalent to Db CohY for some

other smooth algebraic variety Y, then X is isomorphic to Y.

A key aspect of the Borisov-Caldararu proof of the Grassmannian-Pfaffian equivalence is to

determine where the skyscraper sheaf on the Pfaffian goes to under the equivalence. This will

be determined by a classical incidence correspondence which we now describe.

Incidence Correspondence The heart of the Borisov-Caldararu construction is construct-

ing a sheaf IC onX×Y which we now describe in terms of an incidence correspondence following

[20]. Recall that Y = Pf(4, 7) = Pf(4, V ∗) is the Pfaffian variety of 7 by 7 anti-symmetric

matrices A of rank at most 4. Y is singular along the locus Z = Pf(2, V ∗) = Gr(2, V ∗) where

the rank of A drops to 2. Y has a resolution Ỹ = {([w], [A])| w ∈ kerA}.
LetK ⊂ V⊗Gr be the universal subbundle of Gr = Gr(3, 7) = Gr(3, V ) and letK⊥ ⊂ V ∗⊗Gr

be the annihilator of K. Then Ỹ = PGr(∧2K⊥). In particular, Ỹ is a P5 bundle over Gr and is

therefore smooth. Define ∆0 ⊂ Gr(2, 7)⊗Gr(3, 7) by

∆0 = {([ξ], [w])| dim(ξ ∩ w) ≥ 1}.

Let I∆0 be the ideal sheaf of ∆0 and

I = (id× ρ)∗I∆0

be its pullback to X × Ỹ. Finally, let IC = I|X×Y be the restriction of I from X × Ỹ to X ×Y.
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Figure 5 Resolution of Ỹ

Theorem 7.2 (see [2]) The sheaf IC in X × Y gives rise to a Fourier-Mukai functor

Φ : Db CohY → Db CohX,

Φ(E) = RπX∗(π
∗
Y (E)⊗L IC).

Φ is an equivalence of categories,

ΦOy = ICy .

The functor takes the sky-skraper sheaf of a point y ∈ Y to the ideal sheaf ICy of a curve

Cy ∈ X, that is Φ(Oy) = ICy . The family of curves Cy has genus 6 and degree 14. The

resolution of OCy nearly fits into a window. Given the inclusion i : Cy ↪→ X, the ideal sheaf of

Cy is defined by the exact sequence

0 → IC → OX → i∗OC → 0. (7.1)

The structure sheaf OX of X can be obtained by taking the tensor product of the Koszul

resolutions for its seven defining hyperplane sections. The weights of the Koszul resolution for

OX would use the representations

C, C(1), · · · , C(6), C(7),

which is just one size too large to fit into a window. However we are interested in the weights

for the ideal sheaf IC . To proceed we follow Borisov-Caldararu and resolve the structure sheaf

of the curve i∗OC .

Let G = Gr(2, V ) be the Grassmannian of two-planes in V . Let K ⊂ V be a linear subspace.

We define S ⊂ G to be the locus of two-planes T ∈ V (points T ∈ G) which intersect K non-

trivially. As defined, S is a Schubert cycle corresponding to the increasing sequence (0, dimK, 7).

Let T be the rank two tautological subbundle on G. Assume dimK = 3 and let A = AnnK.

Then there exists a resolution of the structure sheaf OS (of the Schubert cell) on G of the form:

0 → ∧4A⊗ Sym2 T (−1) → ∧3A⊗ T (−1) → ∧2A⊗OG(−1) → OG → OS → 0.

The vector spaces ∧kA encode the multiplicity of the representations of the gauge group U(2).

The representations appearing in the resolution of OS are

C, C(1),
S(1),

S2S(1).

Note that S and T have opposite U(1) charges. The exact sequence for OCy can be obtained

by tensoring the exact sequence for OS with the exact sequence for the intersection of six

hyperplanes
C, C(1), · · · , C(7),

S(1), · · · , S(7),
S2S(1), · · · , S2S(7).
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From the exact sequence (7.1), we see that the graded character fM (σ) for the ideal sheaf ICy

can be obtained from the difference in weights of i∗OC and OX . Since the representation C
occurs with multiplicity one in both i∗OC and OX , its contribution to the character fM (σ) for

ICy cancels, and the weights occuring in the character for ICy precisely fit into the rectangle

of allowed representations

C(1), C(2), · · · , C(7),
S(1), S(2), · · · , S(7),

S2S(1), S2S(2), · · · , S2S(7).

This rectangular structure is a Lefschetz collection in Kuznetsov’s terminology. It corresponds

to path 5′. Conjecturally, the complex can be lifted to a B-brane B = (M,Q, γ) in the GLSM

that reduces to ICy on X and Oy on Y .

8 Parting Thoughts

The convergence of the hemisphere partition function can be used to determine the grade

restriction rule for branes in the GLSM. This gives a powerful new method to understand

derived equivalences. The derived equivalence of Hosono-Takagi [20–21] can be analyzed in

almost an identical fashion. The new pair of dual threefolds constructed by Miura [22] have a

GLSM description due to Galkin [23] and Gerhardus-Jockers [24]. We hope to find the grade

restriction rule in this GLSM that would yields the expected derived equivalence for Miura’s

example.

The new ingredient of our analysis is using analytical information to guide a purely algebraic

analysis. Hopefully this interplay between algebra, analysis, and physics will be fruitful for all

three subjects.
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