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Abstract.

In these notes, we provide an introduction to the hemisphere par-
tition function of 2d (2, 2) supersymmetric gauge theories, and discuss
its relation to the “D-brane central charge” which were studied in su-
perstring theory, in 2d supersymmetric quantum field theory, and in
topological string theory. We also discuss relation to “macroscopic
loop” in matrix models. They are mostly reviews of the work by the
authors, but contains some new results such as the partition function
for a rotated supersymmetry as well as the differential equations.
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1. Introduction

Quantum field theory provides a place where mathematicians and
physicists interact with each other, and supersymmetry has been the
key in the interaction for more than thirty years since the introduction
of Witten index [1]. Having infinite degrees of freedom, quantum field
theory so far resisted mathematical definition, and also, even the basic
physical property of a given theory is usually difficult to understand.
In the presence of supersymmetry, cancellation of infinities happens to
a class of observables, and they are sometimes exactly computable and
often provide important physical information of the theory. Attempts
to define such observables have generated new areas of mathematical
research, and certain relations among those observables, which hold for
trivial or non-trivial physical reasons, may have dramatic mathematical
consequences. For example, as a consequence of mirror symmetry, the
number of rational curves in a Calabi-Yau manifold was predicted [2],
and that motivated mathematicians to develop the theory of Gromov-
Witten invariants and further led to surprising relationship between al-
gebraic geometry and symplectic geometry.

More recently, in the physics side, the class of computable observ-
ables are enlarged by using superconformal transformations, which be-
come symmetries of the system in special spacetime backgrounds even
if the theory is not conformally invariant. Starting from [3] the par-
tition functions of various supersymmetric gauge theories on spheres
of dimensions ≤ 5 were computed and certain new information of the
theories were obtained. In particular, the partition function of 2d (2, 2)
supersymmetric gauge theories on the two sphere was computed in [4, 5].
When a certain condition called “the Calabi-Yau condition” is met, it
was observed in some examples [6] and later explained in [7, 8] that the
partition function determines the Kähler potential of the space of su-
perconformal fixed points of the theory. Motivated by these works, the
authors of these notes studied the partition function of 2d (2, 2) super-
symmetric gauge theories on the hemisphere [9]. (Related works [10, 11]
also appeared at the same time.) When the Calabi-Yau condition is
met, it was observed in examples that the hemisphere partition func-
tion computes the central charge of the D-brane that is placed at the
boundary.

The present notes consists of a review of that work [9] and some
introductory materials. We also include some new results such as the
partition function for a rotated supersymmetry as well as the differen-
tial equations. We elaborate on the relation to the central charge in the
Calabi-Yau case as well as the discussion of non-Calabi-Yau case. In
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a non-Calabi-Yau case where the theory is related to non-linear sigam
model with a Fano target space X, the hemisphere partition function
computes the “central charge” in the Gromov-Witten theory ofX. There
is also a rather surprising but suggestive relation to “macroscopic loop”
in matrix model. We shall discuss these matters in some detail as they
were only briefly mentioned in [9].

Notational Remarks

In these notes, we take the following convention. For a compact
Lie group G, we write G0, T and ZG for the identity component, a
maximal torus and the center, respectively. We write the Weyl group
of G and G0 by W and W0. We write g ⊃ t ⊃ z for the Lie algebras of
G (or G0) ⊃ T ⊃ ZG and regard them “pure imaginary”. “Reals” are
ig ⊃ it ⊃ iz in the complexfied Lie algebras gC ⊃ tC ⊃ zC. The weight
lattice of T is denoted by P ⊂ it∗. For a gC valued quantity X, we write
X = Re(X) + iIm(X) where both Re(X) and Im(X) are ig valued, and
write X = Re(X)− iIm(X).
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2. 2d (2, 2) Supersymmetric QFTs

Let us first describe the basics of quantum field theories (QFTs) in
two dimensions with (2, 2) supersymmetry, with emphasis on the math-
ematical aspects.

2.1. 2d (2, 2) supersymmetry

When formulated on the Minkowski spacetime, a 2d (2, 2) supersym-
metric QFT has the following symmetry operators: the time translation
H (Hamiltonian), the space translation P (momentum), the Lorentz
transformation M , the supercharges Q+, Q+, Q−, Q−, and possibly the
vector R-charge FV and/or the axial R-charge FA. They act on the
Hilbert space of states H which is Z2-graded. The supercharges Q±
and Q± are odd and are the adjoint of each other, while the other op-
erators are even and self-adjoint. With respect to the Lorentz group,
H and P form a vector, i[M,H ± P ] = ∓2(H ± P ), the supercharges
are spinors, i[M,Q±] = ∓Q±, i[M,Q±] = ∓Q±, and the R-charges are

scalars, [M,FV ] = [M,FA] = 0. The supercharges obey1

{Q±, Q±} = H ± P,(2.1)

all other anticommutators = 0.(2.2)

R-charges are phase rotations of the supercharges

[FV , Q±] = −Q±, [FV , Q±] = Q±,(2.3)

[FA, Q±] = ∓Q±, [FA, Q±] = ±Q±.(2.4)

2.2. A and B

Let us put

(2.5) QA := Q+ +Q−, QB := Q+ +Q−.

Then, (Q,F ) = (QA, FA) or (QB, FV ) obey

(2.6) Q2 = 0, [F,Q] = Q.

This means that the space of states forms a complex with differential Q
and grading F .2 The same applies also for the space of local operators.
In particular, cohomology classes of local operators form a ring called the

1There is a possible modification to (2.2) by central terms which we do not
consider in these notes.

2In this subsection, we make statements assuming that FA or FV is present,
but that is not necessary. We can use the Z2-grading instead.
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chiral ring, which we denote by RA for (QA, FA) and RB for (QB, FV ).
It is a graded commutative algebra.

When formulated on a half of the Minkowski space, say, where the
space coordinate is bounded as x ≤ 0 and the time t is unbounded, a
boundary condition on the fields must be specified at x = 0. There
are essentially two types of boundary conditions that preserve maximal
number of supercharges:

A-type: QA and Q†
A conserved.

B-type: QB and Q†
B conserved.

Boundary conditions of such types are called A-branes and B-branes
respectively. The pair (Q,F ) = (QA, FA) (resp. (QB, FV )) acts on lo-
cal operators inserted on the boundary with an A-type (resp. B-type)
boundary condition, obeying the same relation as (2.6). The cohomol-
ogy classes form an algebra, which is non-commutative in general. Two
differnt boundary conditions of the same type can be placed on the
boundary with a local operator inserted inbetween. The pair (Q,F )
acts also on such local operators obeying (2.6),3 and we may consider
the cohomology classes. Then, we have a category, which is denoted
by CA for A-branes and CB for B-branes. Objects are boundary con-
ditions and morphisms between boundary conditions are Q-cohomology
classes of local operators inserted between them, with the composition
represented by the product of operators.

We may also consider combinations of supercharges which are ro-
tated by “the other” R-charge: the vector rotation for the A-type,
eiαFV QA e−iαFV = eiαQ+ + e−iαQ−, and the axial rotation for the B-

type, eiβFAQB e−iβFA = eiβQ+ + e−iβQ−. D-branes preserving these
supercharges and their conjugates are called A e2iα-branes and B e2iβ -
branes respectively.

2.3. RG flow

In a general QFT, the behaviour of observables depends very much
on the energy scale, or inversely, the distance scale. For example, the
correlation function of two operators inserted as two points of distance
r is in general a complicated function of r. The behaviour at small r
i.e. short distance, or equivalently, high energy or ultra-violet (UV), is
in general very much different from the behaviour at large r i.e. long
distance, or equivalently, low energy or infra-red (IR). If the length scale
is increased (i.e. the energy scale is lowered), the behaviour of the theory

3There is a potential anomaly to the relations [12].
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changes — it may be identified as the behaviour of a different theory
before the change of the scale. This change of the theory under the
change of the scale is called the renormalization group flow, or RG flow
in short. A theory is scale invariant if it is invariant under the RG flow.
The two point correlation function of an operator O in such a theory
depends on the distance as its power,

(2.7) 〈O(x)O(y)〉 = 1

dist(x, y)2ΔO
.

The number ΔO is called the dimension of the operator.
In two-dimensions, scale invariance of a QFT is proven to be equiv-

alent to conformal invariance. For a general QFT, we have conformally
invariant field theories (CFTs) in the UV and IR limits. An invariant of
a CFT is its central charge c, and it is known that it descreases under
the RG flow, cUV ≥ cIR.

The same applies of course to QFTs with supersymmetry. In 2d
(2, 2) supersymmetric QFTs, there are a class of observables which are
invariant under the RG flow, even if the theory is not scale invariant.
The chiral ring and the category of branes, which are introduced above,
are examples of such observables which are “protected” from renormal-
ization. In a (2, 2) superconformal field theory (SCFT), it is convenient
to use ĉ = c/3 for the central charge.

2.4. Deformations

AQFT can be deformed by adding a local operatorO to its Lagrangian
density. If the theory is scale invariant, the deformation is called irrele-
vant, marginal and relevant if the dimension of the operator minus the
dimension of the spacetime, which is ΔO − 2 in a 2d theory, is posi-
tive, zero and negative, respectively. Under the RG flow, an irrelevant
deformation decays and a relevant deformation grows. A marginal de-
formation is called exactly marginal if it remains invariant under the RG
flow, while it is marginally irrelevant (resp. marginally relevant) if it de-
cays (resp. grows) under the RG. The moduli space of conformal field
theories is coordinatized by exactly marginal deformation parameters.
It has a natural metric G called the Zamolodchikov metric [13]: Let
v1 and v2 be tangent vectors at one theory that correspond to exactly
marginal operators O1 and O2. Then, their inner product G(v1, v2) is
provided (for 2d) by

(2.8) 〈O1(x)O2(y)〉 =
G(v1, v2)

dist(x, y)4
.
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In a 2d (2, 2) supersymmetric QFT, deformation operators that pre-
serve the supersymmetry are of the following three types,

ΔDL = Q+Q−Q−Q+K,(2.9)

ΔAL = Q+Q−OA and its adjoint,(2.10)

ΔBL = Q+Q−OB and its adjoint,(2.11)

for scalar operators K, OA and OB , where K is arbitrary, OA is A-chiral,
Q+OA = Q−OA = 0, and OB is B-chiral, Q±OB = 0. We shall call

them D-term, A-term, and B-term, respectively.4 We see from (2.1)–
(2.2) that a D-term is an A-term and a B-term at the same time, up to
total derivatives. It turns out that A-term deformations modulo D-term
deformations are in one to one correspondence with elements of the chiral
ring RA. Similarly, B-term deformations modulo D-term deformations
are in one to one correspondence with elements of the chiral ring RB .

It follows from the algebra (2.1)–(2.2) that D-terms and A-terms are
QB-exact while D-terms and B-terms are QA-exact, up to total deriva-
tives. In particular, the ring RB and the category CB are invariant
under D-term and A-term deformations, while RA and the category CA
are invariant under D-term and B-term deformations.

In a (2, 2) SCFT, the D-term deformations are irrelevant, since each
supercharge carry dimension 1

2 . Only a part of A-term and B-term
deformations are marginal or relevant.

The spaces of parameters of the theory corresponding to A-term de-
formations and B-term deformations are denoted by MA and MB. They
have complex structures: tangent vectors of MA (resp. MB) of type
(1, 0) correspond to operators of the form Q+Q−OA (resp. Q+Q−OB)
and can naturally be identified as elements of the chiral ring RA (resp.
RB). For a (2, 2) SCFT, the subspaces of exactly marginal parame-
ters, M 0

A ⊂ MA and M 0
B ⊂ MB, are complex submanifolds. They are

also submanifolds of the moduli space of conformal field theories. The
Zamolodchikov metric induced on M0

A and M0
B are known to be Kähler

[14].

2.5. Topological Twists

The theory can be formulated not just on the (half of) Minkowski
space. For example, we can consider the cylinder or the strip, again
with the Minkowski metric, which yield closed or open string states. We

4The standard terminology is: twisted F-term instead of A-term, and F-
term intead of B-term.
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may also formulate the theory on these manifolds with Euclidean met-
ric, by Wick rotation of the time line. Furthermore, we may formulate
the system on a two-dimensional manifold with an arbitrary metric and
spin structure, via the standard covariantization. Does the supersymme-
try survive? We can certainly extend the definition of supersymmetry
transformation of fields O

(2.12) δO = iε+Q−O − iε−Q+O − iε+Q−O + iε−Q+O,

by covariantization of the expressions Q±O and Q±O, and by taking the
variational parameters ε± and ε± to be sections of the spin bundles S±.
However, invariance of the covariantized action requires the variational
parameters to be covariantly constant, which is impossible on a curved
manifold. There are several ways to restore a part of the supersymmetry.
One is the topological twisting which we now describe. In Section 4, we
will consider an alternative way, which yields the main character of the
present notes.

Let us assume that F = FV or FA is conserved and has charge
integrality, that is, it generates a U(1) symmetry group under which the
non-spinorial and spinorial fields have even and odd charges respectively.
The topological twisting is to replace a field of R-charge q with values in

a vector bundle E by a field with values in E⊗T
⊗q/2
Σ , when we consider

the theory on an oriented Riemannian manifold Σ. Here, TΣ is the
holomorphic tangent bundle equipped with the Levi-Civita connection.

Note that, due to the constraint on the parity of the R-charge, E⊗T
⊗q/2
Σ

makes sense without choice of spin structure of Σ. The same change
occurs also for the variational parameters ε± and ε±, and some of them
become scalars. We can take such a parameter to be constant, and
the corresponding supercharge is conserved. It is called the A-twist for
F = FV and B-twist for F = FA. In the A-twisted (resp. B-twisted)
theory, the supercharges Q+ and Q− and hence their sum Q = QA (resp.

Q± and their sum Q = QB) are conserved. Forthermore, the correlation
functions ofQ-closed operators depend only on theQ-cohomology classes
of the operators and are invariant under deformation of the Riemannian
metric on Σ. In particular, they depend only on the topology of Σ —
we obtain a topological field theory.

We can further consider topological string theory by coupling the
twisted theory to a certain theory of 2d gravity called topological gravity.
A g-loop amplitude is obtained by integration over the moduli space of
curves of genus g.
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2.6. Examples

Non-linear sigma model

Let X be a compact Kähler manifold. Then, there is a 2d (2, 2)
supersymmetric QFT called the non-linear sigma model with target X.
As a part of the data, we also choose a class [B] ∈ H2(X,R/2πZ) called
the B-field. The model classically has both vector and axial U(1) R-
symmetries with charge integrality, but the axial R-symmetry is anoma-
lous if the first Chern class c1(X) is non-zero: the axial rotation shifts
[B] by c1(X). The model is classically scale invariant, but the target
metric changes under the RG flow. The Kähler class runs according to
the Ricci flow: [ω] → [ω′] = [ω] + c1(X) log(μ′/μ) for the change μ → μ′

of the energy scale.
The sigma model coupling is proportional to the curvature of X

which, roughly, is inversely proportional to the size of X or the Kähler
class [ω]. Therefore, the energy dependence of the sigma model coupling
is controlled by the signs of the eigenvalues of c1(X) � Ricci curvature.
When c1(X) > 0, i.e., when X is a Fano manifold, the Kähler class is
larger at higher energies and diverges in the limit μ → +∞. That is,
the sigma model is free in the ultra-violet limit (asymptotically free and
UV complete). At lower energies, the Kähler class is smaller and the
coupling is stronger. Finding the infra-red behaviour is a non-trivial
problem. When c1(X) = 0, i.e., when X is a Calabi-Yau manifold, the
Kähler class does not run under the RG. The theory flows in the infra-
red limit to an SCFT with central charge ĉ = dimC X. When c1(X)
has a negative component, the corresponding component of the Kähler
class becomes smaller at higher energies. That is, the coupling partly
diverges at some high energy (Landau pole) and the sigma model is not
UV complete. In particular, this is the case when c1(X) < 0, i.e., when
X is of general type. In that case, the sigma model is free in the infra-red
limit.
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The chiral ring etc of the model are

RA = QH∗(X) quantum cohomology ring,

RB = H∗(X,∧∗TX) cohomology ring of polyvector fields,

CA = Fuk(X) Fukaya category,

CB = Db
Coh(X) derived category of sheaves with coherent

cohomologies,

M0,c
A = the space of complexified Kähler class

[ω − iB] ∈ H2(X,R/2πiZ),

M0,c
B = the moduli space of complex structures of X.

M0,c
A/B is a submanifold of MA/B that corresponds to the marginal defor-

mations of the classical system. When c1(X) = 0, the space M0,c
A ×M0,c

B

is identified as an open subset of the moduli space of the IR SCFTs.
When c1(X) �= 0, there is an RG low on M0,c

A in the direction of c1(X),
and the shift in the direction of ic1(X) is absorbed by the axial rotaion.

As the model has vector U(1) R-symmetry with charge integrality,
A-twist is always possible. The corresponding topological string the-
ory is known as the Gromov-Witten theory in mathematics. B-twist is
possible if and only if X is a Calabi-Yau manifold.

Landau-Ginzburg model

Let W (x) be a polynomial of N variables x = (x1, . . . , xN ) with
complex coefficients, having only isolated critical points. Then, there
is a 2d (2, 2) supersymmetric QFT called the Landau-Ginzburg model
with superpotential W (x). It always have an axial U(1) R-symmetry
with charge integrality. A vector R-symmetry exists if and only if W (x)
is quasi-homogeneous, that is, with a change of coordinates if neces-
sary, there are some numbers R = (R1, . . . , RN ) such that W (λRx) =
λ2W (x), where λRx = (λR1x1, . . . , λ

RNxN ). In that case, the theory
flows in the infra-red limit to an SCFT with ĉ = tr(1 − R). The chiral
ring etc of the model are

RA = ?,

RB = Jac(W ) Jocobi ring C[x1, . . . , xN ]/(∂1W, . . . , ∂NW ),

CA = Fuk(W ) Fukaya category controled by W,

CB = MF(W ) category of matrix factorizations of W,

MA = ?,

MB = the moduli space of versal deformations of W.
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The authors do not know what are RA and MA at this moment.
As the model has axial U(1) R-symmetry with charge integrality,

B-twist is always possible. The corresponding topological string theory
at the tree level (genus zero) is closely related to K. Saito’s theory of
primitive forms [15–17]. When W is a Morse function, A. Givental
proposed a recipe to construct the higher genus amplitudes [18], and
C. Teleman proved that they satisfy a mathematical axiom of topological
string theory [19].

When W is quasi-homogeneous, there is also a vector R-symmetry.
However, it does not possess the charge integrality and the A-twist is
not possible. That problem may be cured by orbifolding. Gauge the
system by a finite group Γ ⊂ GL(N,C) of symmetries of W (x) that
include eπiR as its element. Then, the charge integrality holds for gauge
invariant fields, and the A-twist becomes possible. The corresponding
topological string theory is developed in [20] and is called the FJRW
theory.

2.7. Mirror Symmetry

The 2d (2, 2)supersymmetry algebra has an automorphism: Q− ↔
Q−, FV ↔ FA, and the other generators kept intact. A pair of 2d
(2, 2) supersymmetric QFTs are said to be mirror to each other when
there is an isomorphism between them under which the supersymme-
try generators undergo the above automorphism. There are immediate
consequences of the mirror symmetry: the ring RA of one theory is iso-
morphic to the ring RB of the mirror, the category CA of one theory is
equivalent to the category CB of the mirror, the parameter space MA

of one theory is isomorphic to the parameter space MB of the mirror,
and the topological A-model (the A-twisted model or the corresponding
topological string theory) of one theory is isomorphic to the topological
B-model of the other.

The most famous example of mirror symmetry is the one for the
sigma models with Calabi-Yau targets, say X and Y . As a part of the
above consequences, we have the relation between the Hodge numbers,
hp,q(X) = hn−p,q(Y ), where n = dimX = dimY . Other well known
examples are mirror symmetry between the sigma model with a non-
Calabi-Yau target and the Landau-Ginzburg model, and the one between
Landau-Ginzburg orbifolds. Some of the consequences in these examples
are mathematically proven.
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3. Gauged Linear Sigma Models

The main characters of the present notes are a class of 2d (2, 2) su-
persymmetric gauge theories called gauged linear sigma models (GLSMs).
In this section, we provide an introduction to GLSMs.

3.1. The Bulk Theory

A 2d (2, 2) gauge theory is specified by a choice of

• gauge group G: a compact Lie group,
• matter representation V : a finite dimensional complex repre-

sentation of G,
• superpotential W (φ): a G invariant polynomial function of φ ∈

V , and

• twisted superpotential W̃ (σ): aG invariant polynomial function
of σ ∈ gC.

As a minor part of the data, we also choose a G-invariant norm X ∈
ig �→ 1

e2 (X)2 ∈ R≥0 on ig (e is called the gauge coupling constant),
and a G-invariant hermitian inner product on V . The latter defines a
G-invariant symplectic structure on V , and we denote by μ : V → ig∗

the moment map that vanishes at the origin.
A vector U(1) R-symmetry exists when there is a linear map R :

V → V commuting with the G-action such that

(3.1) W (λRφ) = λ2W (φ).

The charge integrality holds when eπiR : V → V is the same as the
action of a gauge group element, say J ∈ G. An axial U(1) R-symmetry

with charge integrality exists at the classical level when W̃ (σ) is linear,
and it remains to be a symmetry of the quantum system under Calabi-
Yau condition: G ⊂ SL(V ). In the present notes, we assume all of
the above but the Calabi-Yau condition. We write the linear twisted
superpotential as

(3.2) W̃ (σ) = −t(σ),

for an adjoint invariant linear form

(3.3) t = ζ − iθ ∈ g∗GC ,

where ζ and θ, both in ig∗G, are called the Fayet-Illiopoulos (FI) param-
eter and the theta parameter respectively. Note that ζ and θ can also be
regarded as elements of it∗W or iz∗ thanks to the natural isomorphisms
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g∗G ∼= t∗W ∼= z∗. To be precise, the theta parameter is subject to a
discrete identification,

(3.4) θ ≡ θ + 2πn,

for an image n of a character G → U(1) under the differential map
Hom(G,U(1)) → Hom(g, u(1)) = ig∗. Therefore, the space of theta
parameter (or theta angle) is the compact torus ig∗G/2πΛG, where
ΛG := Image(Hom(G,U(1)) → ig∗G). When G is connected, ΛG is
isomorphic to Hom(G,U(1)) and is equal to the lattice PW of Weyl
invariant weights of T embedded in ig∗G via it∗W ∼= ig∗G.

The theory consists of two sets of fields called a matter multiplet
and a gauge multiplet, that include scalar fields, φ and σ, with values in
V and gC respectively. The classical potential for the scalar fields is
(3.5)

U(σ, φ) =
1

8e2
[σ, σ]2 +

1

2
|σφ|2 + 1

2
|σφ|2 + e2

2
(μ(φ)− ζ)

2
+ |dW (φ)|2.

Note that each term is non-negative. The space of zero points of U ,
called classical vacua, provides us with a first hint to understand the
low energy behaviour of the theory. The vacuum equation U = 0 reads

(3.6) [σ, σ] = 0, σφ = σφ = 0, μ(φ) = ζ, dW (φ) = 0.

The last two equations require φ to be in Crit(W )∩μ−1(ζ) and the first
two equations require σ to be in the Cartan subalgebra of the stabilizer
subgroup at φ. The space of the FI parameter ζ is separated into cham-
bers, called phases, according to the topology of the G-space Crit(W )∩
μ−1(ζ). Inside a phase, typically, the stabilizer subgroup is finite at each
point of Crit(W ) ∩ μ−1(ζ), so that σ is forced to vanish — the space
of classical vacua is the quotient Xζ = (Crit(W ) ∩ μ−1(ζ))/G, called
the Higgs branch. If that is the case, the theory reduces at low energies
to the Landau-Ginzburg model (μ−1(ζ)/G,Wζ) where Wζ is the func-
tion on μ−1(ζ)/G induced from W . If, in addition, Wζ is Bott-Morse,
the theory reduces further to the non-linear sigma model on Crit(Wζ),
which is nothing but the Higgs branch Xζ . Such a phase is called a
geometric phase. On a wall between chambers (phase boundary), there
are continuous stabilizer subgroups at some loci of Crit(W ) ∩ μ−1(ζ).
There develops a component of the space of classical vacua, called the
Coulomb branch, in which σ can take any value in the Cartan subalgebra
of the stabilizer subgroup. Emergence of this non-compact space may
be regarded as a singularity.

Quantum effects will yield significant modification of this picture. In
particular, classical Coulomb branch may be lifted, or quantum Coulomb
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vacua may emerge even in the absence of classical one. To see this, we
explore the region in the field space where σ takes large generic values in
a Cartan subalgebra tC of gC. Then, the second and the third terms of
(3.5) provide masses to many of the components of φ, typically all (which
we assume for now). Integrating out the massive modes, we obtain the
effective theory consisting of the gauge multiplet of the maximal torus
T only, with the effective twisted superpotential

(3.7) W̃eff(σ) = −t(σ) + 2πiρ(σ)−
∑
i

Qi(σ) (log(Qi(σ)/Λ)− 1) .

Here, ρ = 1
2

∑
α>0 α is half the sum of positive roots of g, Qi’s are the

weights of V , and Λ is a scale parameter which is needed for renormaliza-
tion. The gauge coupling constant of the effective theory is a complicated
function eeff(σ) but it approaches the given value e at |σ/Λ| � 1. The
effective potential is

(3.8) Ueff(σ) = min
n∈P

e2eff(σ)

2

∣∣∣dW̃eff(σ) + 2πin
∣∣∣2 .

Note that the choice of branch of the logarithms in (3.7) has no physical

effect — a different choice would shift W̃eff(σ) by an element of 2πiP(σ),
but that does not affect (3.8). A point σ∗ is a true Coulomb vacuum in

the quantum theory when Ueff(σ∗) = 0, that is, dW̃eff(σ∗) ∈ 2πiP.1 In
particular, a classical Coulomb branch may not survive in the quantum
theory, or true Coulomb vacua might appear even in the absence of
classical Coulomb branch. For completeness, one should also explore
the region in the field space where σ takes large generic values in a
Cartan subalgebra for a subgroup H ⊂ G and large values of H-neutral
components of φ, and examine whether there are true mixed Coulomb-
Higgs vacua.

The character of the theory depends very much on whether the
infinitesimal version of the Calabi-Yau condition, g ⊂ sl(V ), is satisfied
or not. That is, whether b1 defined by

(3.10) b1(X) := trV (X) X ∈ g

1The vacuum value of the twisted superpotential is

(3.9) W̃eff(σ∗) =
∑
i

Qi(σ∗).

This is the value of W̃eff(σ) on the branch of logarithms on which it is genuinely

critical at σ∗, dW̃eff(σ∗) = 0. Note that it is not affected by the 2πiP(σ)

ambiguity of W̃eff(σ).
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is zero or not. Note that b1 may be regarded as an element of PW ∼= PZG .
As an element of PW , it can also be written as b1 =

∑
i Qi.

Calabi-Yau case

Suppose it is satisfied, b1 = 0. In this case, the FI parameter is in-
variant under the renormalization group and the axial U(1) R-symmetry

exists in the quantum theory. Accordingly, W̃eff in (3.7) is independent

of the parameter Λ. In particular, the vacuum equation dW̃eff(σ) ∈ 2πiP
is invariant under the scaling, σ → λσ for λ ∈ C

×. This means that if σ
is a Coulomb vacuum, then, any of its scaling is also. In particular, the
space of such vacua, the Coulomb branch, must be non-compact. Also,
presence of Coulomb branch imposes a non-trivial constraint on the FI-

theta parameter t. In fact, the equation dW̃eff(σ) ∈ 2πiP produces a
parametric representation of t in terms of ratio of σ coordinates, defining
a complex hypersurface in the space of t. Let Δ ⊂ g∗G

C
/2πiΛG be the

discriminant locus on which there is a Coulomb branch and/or mixed
branches. It is a union of hyeprsurfaces. When projected to the the
ζ space, the discriminant locus Δ projects to an amoeba, in the sense
of [21], which asymptotes to the phase boundary. The space of regular
values of t is thus

(3.11) Mt = g∗GC /2πiΛG −Δ.

Since Δ ⊂ g∗G
C

/2πiΛG has complex codimension one, one can go from
one phase to another without meeting it. In particular, there is no sharp
transition between different phases.

The theory flows in the infra-red limit to an SCFT with ĉ = trV (1−
R) − dimG, and the FI-theta parameter (resp. parameters of W ) are
exactly marginal A-term (resp. B-term) deformation parameters of the
SCFT. That is, they parameterize submanifolds of the moduli space of
SCFTs

(3.12) Mt ⊂ M 0
A, MW ⊂ M 0

B.

Quite often, the inclusion ⊂ is equality =.
In a geometric phase, Mt and MW are respectively (parts of) the

moduli space of complexified Kähler class and the moduli space of com-
plex structures of the Higgs branch, respectively.

Non Calabi-Yau case

Suppose the condition is violated, b1 �= 0. In this case, the FI pa-
rameter runs under the renormalization group — for a change of energy
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scale μ → μ′ it changes as

(3.13) ζ → ζ ′ = ζ + log(μ′/μ)b1,

and the classical axial U(1) R-symmetry is anomalous — the axial ro-
tation eiβ ∈ U(1)A shifts the theta angle as

(3.14) θ → θ + 2βb1.

Accordingly, W̃eff in (3.7) depends non-trivially on Λ. The parameter t

in W̃eff is the FI-theta parameter at the scale Λ. Since the vacuum equa-

tion dW̃eff(σ) ∈ 2πiP has no scaling invariance, the space of Coulomb
vacua does not have to be non-compact. Quite often, there are isolated
Coulomb vacua. Such a vacuum cannot be found by the classical anal-
ysis of U(σ, φ) but should be taken into account as a sound vacuum of
the quantum theory. Of course, there can be vacua at special values of
σ, such as σ = 0, which can be found by the classical analysis.

The theory flows in the infra-red limit to one of the isolated Coulomb
vacua, which is typically a massive vacuum, or to the Higgs branch
theory (μ−1(ζIR)/G,WζIR) at σ = 0 where ζIR is the IR value of the FI
parameter, or to a mixture of these two types. Some of the Higgs branch
theory can be a non-trivial SCFT.

One should be careful for the use of the term “phase” for two reasons;
one is that the FI parameter runs under the renormalization group and
another is that there are other vacua at different regions of the field
space, such as Coulomb vacua. When we say “phase”, we mean the
theory at certain range of energy scales where ζ is in a certain chamber
and in the region of the field space where the gauge symmetry is broken
to a finite group and the classical analysis is valid. When we want to
make it clear, we shall sometimes use the term “regime” instead. In a
geometric regime, the flow of ζ corresponds to the flow of the Kähler
class and the axial shift of θ corresponds to that of the B-field.

Example T
U(1)
N,d

Let us consider a model T
U(1)
N,d labelled by two positive integers N

and d, with the following data

G = U(1),

V = C(−d)⊕ C(1)⊕N � (p, x1, . . . , xN ),

W = pf(x1, . . . , xN ),

W̃ = −tσ.
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C(i) is the representation of U(1) of weight i, f(x1, . . . , xN ) is a degree
d polynomial which is generic in the sense that ∂f/∂xi = 0 for all i
implies x1 = · · · = xN = 0, and t = ζ − iθ ∈ C/2πiZ.

The R-charge is unique up to gauge, R = (2 − dε, ε, . . . , ε), and
satisfies the charge integrality condition with J = eπiε. The space of FI-
parameter iz∗ ∼= R is separated into two phases — the geometric phase
ζ > 0 and the Landau-Ginzburg phase ζ < 0. In ζ > 0, the classical
vacuum equation U = 0 forces x to have a non-zero value which breaks
the gauge group completely. The theory reduces to the sigma model
whose target space is the degree d hypersurface Xf ⊂ CPN−1 defined
by f = 0. The Kahler and the B-field classes are approximately given
by

(3.15) [ω] � ζH ∈ H2(Xf ,R), [B] � [(θ + πd)H] ∈ H2(Xf ,R/2πZ),

where H is the hyperplane class of PN−1 restricted on Xf . More pre-
cisely, the correction is exponentially small in the ζ → +∞ limit, [ω −
iB] = [(t − dπi)H] + O(e−t). In ζ < 0, the classical vacuum equation
U = 0 forces p to have a non-zero value which breaks the gauge group
to the subgroup Zd ⊂ U(1) consisting of d-th roots of unity. The the-
ory reduces to the Landau-Ginzburg orbifold (CN/Zd,W = f) at low
energies. The FI parameter runs as ζ ′ = ζ + (N − d) log(μ′/μ), except
when the Calabi-Yau condition d = N is satisfied. The effective twisted
superpotential is

(3.16) W̃eff(σ) = −tσ + dσ(log(−dσ/Λ)− 1)−Nσ(log(σ/Λ)− 1),

and the equation for the Coulomb vacuum is ∂σW̃eff ≡ 0 mod 2πiZ, or

(3.17) (σ/Λ)N−d = (−d)d e−t.

When d = N , we have a family of superconformal field theories with
ĉ = N − 2 parametrized by t as well as the parameters for f . Since the
equation (3.17) has solutions (i.e. arbitrary σ �= 0) only for et = (−N)N ,
the discriminant locus Δ is one point at t ≡ N logN +Nπi,

(3.18) Mt = C/2πiZ− {[N logN +Nπi]}.

We see that the non-linear sigma model on the Calabi-Yau manifold Xf

is continuously connected to the Landau-Ginzburg orbifold (CN/ZN , f).
This is the basic example of CY/LG correspondence. In the present
model the inclusions in (3.12) are both equalities, Mt = M 0

A and MW =
M 0

B.
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When d < N , the FI parameter ζ runs from positive to negative.
The high energy theory is the non-linear sigma model on the Fano mani-
fold Xf whose size decreases as the energy scale is lowered. At lower en-
ergies, the sigma model description is no longer valid. There are (N−d)
Coulomb vacua with mass gap at σN−d = ΛN−d(−d)d e−t, as well as one
Higgs branch theory at σ = 0 (for d > 1) which is the Landau-Ginzburg
orbifold (CN/Zd, f). When 3 ≤ d < N , the Higgs branch theory fur-
ther flows in the infra-red limit to a superconformal field theory with
ĉ = N(1 − 2/d). When d = 2, the Higgs branch theory has two (resp.
one) supersymmetric ground states with a mass gap for even (resp. odd)
N .

When d > N , the FI parameter ζ runs from negative to positive.
The theory can be regarded as the superconformal field theory with ĉ =
N(1 − 2/d) corrsponding to the Landau-Ginzburg orbifold (CN/Zd, f)
which is perturbed by a relevant operator of dimension 2N/d. There are
(d − N) Coulomb vacua with mass gap at σd−N = Λd−N (−d)−d et as
well as one Higgs branch theory at σ = 0 which is the non-linear sigma
model on the hypersurface Xf of general type.

3.2. Boundary Conditions

Our main interests are B-branes in GLSM and their low energy
behaviour. The classical data for a B-brane is

• Chan-Paton vector space M = M ev ⊕Mod: a Z2-graded repre-
sentation of G,

• matrix factorization Q(φ): aG-equivariant polynomial function

of φ ∈ V with values in Endod(M) satisfyingQ(φ)2 = W (φ)idM ,
and

• γ ⊂ tC: a Weyl invariant Lagrangian submanifold which is a
deformation of the real locus it ⊂ tC

G-equivariance reads g−1Q(gφ)g = Q(φ). We assume that the vector
U(1) R-symmetry extends to the boundary: M is also a representation
of U(1)V , commuting with G, such that Q(φ) has R-charge 1. That is,
there is a linear map r : M → M commuting with the G-action such
that

(3.19) λrQ(λRφ)λ−r = λQ(φ).

We further assume that the charge integrality is maintained: eπirJ
agrees with the Z2 grading on M , which is +1 (resp. −1) on even (resp.
odd) elements of M . When the Lie algebra g has a non-zero center z,
there is an unphysical ambiguity in the R-charge: for each ε ∈ iz, we



Notes on the Hemisphere 145

may do

(3.20) R → R+ ε, J → J eπiε, r → r− ε.

Given this data, we have a boundary condition on the fields as well
as interaction terms at the boundary [22, 9]. Neumann boundary condi-
tion is imposed on the scalar φ in the matter multiplet while the scalar
σ in the gauge multiplet is required to have boundary values in the ad-
joint orbit of γ. Also, we have boundary interaction determined by the
data (M,Q), called the Chan-Paton factor : For Σ = (−∞, 0] × R with
coordinate (x, t), it is Pexp

(
−i

∫
∂Σ

Atdt
)
: M → M where2

(3.21)

At = vt−Re(σ)− 1

2
√
2π

ψi∂iQ(φ)+
1

2
√
2π

ψ
ı
∂ıQ(φ)†+

1

4π
{Q(φ), Q(φ)†}.

Here, vtdt is the gauge potential on the boundary, while ψi and ψ
ı
are the

boundary values of the fermionic components of the matter multiplet.
Of course, vt−Re(σ) in (3.21) should be understood as its representation
on M .

In the presence of boundary, the theta parameter is no longer peri-
odic: the shift θ → θ + 2πn for n ∈ ΛG generates a boundary term
−

∮
∂Σ

n(v) in the action. This, however, can be compensated by a
change of M : since n ∈ ΛG is the infinitesimal version of a character
fn ∈ Hom(G,U(1)), the shift is compensated if the Chan-Paton repre-
sentation M , m �→ gm, is replaced by a new representation M(f−1

n ),
m �→ fn(g)

−1gm. In other words,

(3.22) θ → θ + 2πn is equivalent to M → M(fn).

We may also consider Be2iβ -branes in the model. Since Be2iβ -type
supersymmetry is obtained from the B-type supersymmetry by the clas-
sical axial rotation eiβFA , we may obtain a Be2iβ -brane from the B-brane
(M,Q, γ) by performing a change of variable X → eiβFAX. In partic-
ular, σ in (3.21) is replaced by e2iβσ, and the submanifold γ ⊂ tC is
rotated as

(3.23) γ → e−2iβγ.

There is a possible mathematical application. The general principle
of supersymmetry dictates that the category of B-branes is invariant
under A-term deformations as well as under the renormalization group.

2Somewhat unusual appearance of powers of
√
2π in (3.21) is due to our

convention that the entire bulk action is divided by 2π. See (A.10).
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When the infinitesimal Calabi-Yau condition is satisfied g ⊂ sl(V ), the
GLSM defines a family of SCFTs over the parameter space Mt ×MW .
Since the FI-theta parameter is an A-term parameter, the category of
B-branes in the SCFT is locally constant on Mt. In particular, if we
draw a path in Mt, there must be an equivalence of categories at two
different points on the path. If the path connects two different phases,
there must be an equivalence of the categories of B-branes in the two
phases, and the equivalence should not change under deformation of the
path. If we draw a loop in Mt around the discriminant locus Δ, we
must have an autoequivalence of the category at any point of the loop.
When the infinitesimal Calabi-Yau condition is violated g �⊂ sl(V ), the
GLSM defines an RG flow from a UV theory to an IR theory. From
the RG-invariance, the category of B-branes in the UV theory must be
equivalent to the category of B-branes in the IR theory.

A natural problem is to learn about these equivalences, both in the
Calabi-Yau and non Calabi-Yau cases, by studying B-branes in GLSM.
The hemisphere partition function will play an important rôle in this
problem, as will be discussed in later sections.

At this stage, let us mention that there is a category DLSM =
MFG(V,W ) whose objects are B-brane data (M,Q). A morphism from
(M1, Q1) to (M2, Q2) is an C[φ]-module map a : M1⊗C[φ] → M2⊗C[φ]
compatible with the U(1)V × G action obeying Q2a = aQ1. This
may be regarded as the category of branes of the theory where the
gauge coupling constant is turned off, e ↘ 0. In a regime where the
gauge symmetry is broken to a finite subgroup by the non-zero values
of the matter fields and the theory reduces to a Higgs branch theory
(μ−1(ζ)/G,Wζ), the rôle of the gauge multiplet is expected to be unim-
portant, and the data (M,Q) alone, without reference to γ ⊂ tC, should
be enough to determine a D-brane. In such a regime, there is a functor
πζ : DLSM → MF(μ−1(ζ)/G,Wζ) that represents the reduction.3 Since
e ↘ 0 is a singular limit, unlike in the usual RG flow, this is far from
being an equivalence.

Example T
U(1)
N,d

The reduction of a B-brane data B = (M,Q) in the geometric and

LG regimes of the theory T
U(1)
N,d are described as follows. Suppose the

3In a geometric regime where Wζ : μ−1(ζ)/G → C is a Bott-Morse
function with a smooth critical locus Xζ = Crit(Wζ), the target cate-
gory MF(μ−1(ζ)/G,Wζ) is expected to be equivalent to the derived category
Db

Coh(Xζ). This is a global version of Knörrer periodicity [23]. Proofs in various
set ups have been given in [24–26].
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Chan-Paton vector space is

(3.24) M =
⊕
j

C(rj , qj)

where C(ri, qi) stands for a component of R-charge ri and U(1) gauge
charge qi. In the geometric regime, it is convenient to set ε = 0 so that
xi’s have R-charge zero, and we write r0j for rj at ε = 0. Then, the
geometric image of B is the complex of vector bundles on Xf ,

π+(B) = (E , d) : E =
∞⊕

n=0

⊕
j

OXf
(qj + dn)[r0j + 2n],(3.25)

d = Q(p+, x),

where p+ stands for the shift operator ⊗OXf
(d)[2]. To elaborate on

“d = Q(p+, x)”, if Q(p, x) has a term pmxα in the component that sends
C(r0j2 , qj2) to C(r

0
j1
, qj1), which is possible only if −qj1+qj2−dm+|α| = 0

and r0j1 − r0j2 +2m = 1, the corresponding term in d is multiplication by

xα in the components that sendOXf
(qj2+dn)[r0j2+2n] toOXf

(qj1+d(n+

m))[r0j2 + 2(n +m)] for n = 0, 1, . . . . This (E , d) is a complex of vector
bundles on Xf . It is infinitely long to the right but is exact beyond a
certain degree, and hence defines a bounded complex of coherent sheaves
on Xf . We should note that the B-field class is no longer periodic in
the presence of boundary, just like the theta parameter. The absolute
B-field class is approximately

(3.26) [B] � (θ + πd)H ∈ H2(Xf ,R).

In the LG regime, it is convenient to set ε = 2/d so that p has R-charge
zero, and we write rLGj for rj at ε = 2/d. Then, the LG image of B is
simply

π−(B) = (M−, Q−) :M− =
⊕
j

C(rLGj , qj) as U(1)V × Zd-module,

Q−(x) = Q(1, x).(3.27)

This is indeed a brane data in the LG orbifold (CN/Zd, f), that is, the
GLSM with gauge group Zd, matter representation V and superpotential
f(x).
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Let us present two examples of B-brane data, B1 = (M1, Q1) and
B2 = (M2, Q2), with

M1 = C(0, 0)⊕ C(1− dε, d),(3.28)

Q1 =

(
0 p

f(x) 0

)
,(3.29)

and

M2 =
N⊕
j=0

C(j − jε, j)⊕(
N
j ),(3.30)

Q2 =

N∑
i=1

(
xiηi +

1

d
p
∂f(x)

∂xi
ηi

)
.(3.31)

In the second data,M2 is a representation of the Clifford algebra {ηi, ηj} =
δi,j , {ηi, ηj} = {ηi, ηj} = 0, in such a way that ηi’s raise the (R, gauge)
charge by (1 − ε, 1) while ηi’s lower it by the same amount. We may
also consider B1(i, q) and B2(i, q) where the (R, gauge) charge of each
component of M1 and M2 is shifted by (i, q). For example, B1(i, q) has
M = C(i, q)⊕ C(1− dε+ i, d+ q) with everything else unchanged.

In fact, these data play crucial rôles in the study of low energy
behaviour of D-branes in the geometric regime or in the LG regime. For
Q = Q1 and Q2, let us compute {Q,Q†} that enters into (3.21) as the
boundary potential 1

4π{Q,Q†}:

{Q1, Q
†
1} =

(
|p|2 + |f(x)|2

)
idM1 ,(3.32)

{Q2, Q
†
2} =

N∑
i=1

(
|xi|2 +

1

d2

∣∣∣∣p∂f(x)∂xi

∣∣∣∣2
)
idM2 .(3.33)

In the geometric regime where x �= 0, {Q2, Q
†
2} is positive definite which

means that B2 and any of its shifts are empty at low energies. In

the Landau-Ginzburg regime where p �= 0, {Q1, Q
†
1} is positive definite

which means that B1 and its shifts are empty at low energies. We can
also see the emptiness by looking at the reductions, (3.25) and (3.27),
π+(B2(i, q)) ∼= 0 and π−(B1(i, q)) ∼= 0.

A side remark: In the geometric regime, B1 and its shifts can be non-trivial, as

{Q1, Q
†
1} vanishes at p = f(x) = 0. Indeed, B1(i, q) descends under the reduction (3.25)

to the line bundle O(q)[j] over the hypersurface Xf . In the LG regimes, B1 and its

shifts can be non-trivial, as {Q2, Q
†
2} vanishes at x = 0. Indeed, B2(i, q) descends under

the reduction (3.27) to a non-trivial B-brane in the LG orbifold, which further flows to a
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famous B-brane called “Recknagel-Schomerus brane” in Gepner model (when f is Fermat

polynomial) [27].

Presence of empty branes makes it manifest that different D-branes
in GLSM can lead to the same D-brane at low energies. In the geomet-
ric regime, the branes B2(i, q) can be added to any D-brane B with-
out changing its low energy behaviour. This holds even when we bind
B2(i, q)’s and B with a non-trivial map between them (cone construc-
tion). The resulting brane data can be simplified by cancelling a pair
of components. In this way, B can be replaced by another brane which
bahaves in the same way at low energies, but with a different set of Chan-
Paton gauge charges. If you wish, repeating this process if necessary,
you can increase the minimum gauge charge or lower the maximal gauge
charge. Since the set of gauge charges of B2(j, q) is {q, q+1, . . . , q+N},
the given brane B can be replaced by another brane B′ whose gauge
charges are in a set of N consecutive integers, say {0, 1, . . . , N −1}. The
same holds in the LG regime, where empty branes are B1(i, q) whose set
of gauge charges is {q, q+d}. A given brane can be replaced by another
brane whose gauge charges are in a set of d consecutive integers, say
{1, 2, . . . , d}, without changing the low energy behaviour.

This result has a categorical interpretation. The functors π+ :
DLSM → Db

Coh(Xf ) and π− : DLSM → MFZd
(f) that represent the

reduction in the geometric and LG regimes have huge kernels — many
many different objects are sent to the same object. But there are nice
slices. For a subset I ⊂ Z, we write TI ⊂ DLSM for the full subcategory
consisting of data whose gauge charges are in the set I. Then, for sets
I+ ⊂ Z and I− ⊂ Z of N and d consecutive integers respectively, the
functors

TI+ ↪→ DLSM
π+−→ Db

Coh(Xf ),(3.34)

TI− ↪→ DLSM
π−−→ MFZd

(f),(3.35)

are equivalences of categories. A proof can be found in [28] with a
combination of [24–26]. This was extended to a more general situation
in [29, 30].

4. The Hemisphere Partition Function

In this section, we present the partition function of gauged linear
sigma model on the hemisphere, and describe some of its properties,
such as the behaviour at large values of the radius r of the hemisphere,
expressions in the geometric and the Landau-Ginzburg regimes, and the
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differential equations with respect to the radius r as well as the FI-thtea
parameters.

4.1. Supersymmetry on the sphere and the hemisphere

We first present the supersymmetry on the sphere and the hemi-
sphere. The key is to employ the superconformal transformations. A
superconformal transformation has conformal Killing spinors as the vari-
ational parameters: holomorphic sections ε+ and ε+ of S+

∼=
√
TΣ and

anti-holomorphic sections ε− and ε− of S− ∼=
√
TΣ. It reduces to the su-

persymmetry transformation (2.12) for constant variational parameters
on a flat Euclidean or Minkowski space. The transformation is specified
by a choice of vector and axial R-transformations of the fields. The com-
mutator of the superconformal transformations δsc1 and δsc2 with different
variational parameters is the sum of conformal and R transformations

(4.1) [δsc1 , δsc2 ] = δconformal
X12

+ δvectorΘV,12
+ δaxialΘA,12

.

Let us first consider the sphere. It is covered by two charts, the z-
plane and the w-plane, which are related by zw = 1. We give it an O(3)
symmetric round metric of radius r, which is ds2 = 4r2|dz|2/(1 + |z|2)2
on the z-plane. There are four conformal Killing spinors

(4.2) s− 1
2
=

√
∂

∂z
, s 1

2
= z

√
∂

∂z
and s̃− 1

2
=

√
∂

∂z
, s̃ 1

2
= z

√
∂

∂z
.

Thus, we may consider the superconformal transformations δsc(ε+, ε−,
ε+, ε−) where the variational parameters are chosen from the four. How-
ever, we can accept only the combinations whose commutators are sym-
metries of the system. In particular, since we consider theories which
are not necessarily conformally invariant, like GLSM, the vector field
X12 that appear in (4.1) must be an o(3) isometry. There are essentially
two types of such combinations — A-type and B-type:

A-type supercharges are the four combinations

(4.3)
QA+

(+) = δsc(0, 0, s 1
2
, s̃− 1

2
), QA−

(+) = δsc(s− 1
2
, s̃ 1

2
, 0, 0),

QA+
(−) = δsc(0, 0, s− 1

2
,−s̃ 1

2
), QA−

(−) = δsc(s 1
2
,−s̃− 1

2
, 0, 0).

The o(3) rotations and the vector R-transformation appear as their
anti-commutators.
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B-type supercharges are the four combinations

(4.4)
QB+

(+) = δsc(s 1
2
, 0, 0, s̃− 1

2
), QB−

(+) = δsc(0, s̃ 1
2
, s− 1

2
, 0),

QB+
(−) = δsc(s− 1

2
, 0, 0,−s̃ 1

2
), QB−

(−) = δsc(0,−s̃− 1
2
, s 1

2
, 0).

The o(3) rotations and the axial R-transformation appear as their
anti-commutators.

To be precise, there are variants obtained by the other R-rotations.

Ae2iβ -type is obtained from A-type by the axial R-rotation: ε± →
e±iβε± and ε± → e∓iβε±; Be2iα -type is obtained from B-type by the
vector R-rotation: ε± → e−iαε± and ε± → eiαε±. Together with the

o(3) rotations and the R-charge (FV for Ae2iβ -type and FA for Be2iα-
type), they form a Lie super-algebra isomorphic to osp(2|2).

Next, let us consider the hemisphere, which is realized as a half of the
sphere, say, the region |z| ≤ 1 (“southern” hemisphere) in the z-plane.
We again give it the round metric of radius r. There are infinitely

many conformal Killing spinors, sr = zr+
1
2

√
∂
∂z and s̃r = zr+

1
2

√
∂
∂z

with r ∈ Z≥0 − 1
2 , but the boundary condition at |z| = 1 can admit

only the pairs (s 1
2
, s̃− 1

2
) and (s− 1

2
, s̃ 1

2
) as the variational parameters.

Note also that the hemisphere only has O(2) isometry, and hence we
can accept only the combinations whose anti-commutators (4.1) have
the o(2) isometry as X12. These constraints leave us with only four
possibilities: A(+), A(−), B(+) and B(−) where

A(±)-type supercharges are the two combinations

(4.5) QA+
(±) = δsc(0, 0, s± 1

2
,±s̃∓ 1

2
) and QA−

(±) = δsc(s∓ 1
2
,±s̃± 1

2
, 0, 0).

Their anticommutator is the sum of the o(2) rotation and the vector
R-rotation.

B(±)-type supercharges are the two combinations

(4.6) QB+
(±) = δsc(s± 1

2
, 0, 0,±s̃∓ 1

2
) and QB−

(±) = δsc(0,±s̃± 1
2
, s∓ 1

2
, 0).

Their anticommutator is the sum of the o(2) rotation and the axial
R-rotation.

Again, there are variants, Ae2iβ

(±) and Be2iα

(±) , by applying the other R-

rotation. The commutator algebra for (Q,Q,F ) = (e−
πi
4 QA±

(±), e
−πi

4 QA∓
(±),

±FV ) or (e
−πi

4 QB±
(±), e

−πi
4 QB∓

(±),±FA) and the o(2) rotation generator L
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is

Q2 = Q
2
= 0, {Q,Q} = −2L+ F,

[L,Q] = 1
2Q, [L,Q] = − 1

2Q,(4.7)

[F,Q] = Q, [F,Q] = −Q.

If we zoom in to a point on the boundary |z| = 1 and take the flat space
limit r → ∞, we see that the supercharges become

QA+
(±) ∝ eiβQ+ ± e−iβQ−, QA−

(±) ∝ e−iβQ+ ± eiβQ−,(4.8)

QB+
(±) ∝ eiαQ+ ∓ e−iαQ−, QB−

(±) ∝ e−iαQ+ ∓ eiαQ−.(4.9)

Therefore, the boundary condition at |z| = 1 must be a B± e2iβ -brane

(resp. A∓ e2iα -brane) for the Ae2iβ

(±) -type (resp. Be2iα

(±) -type) supersymme-
try.

Supergravity approach

A general approach for supersymmetry on a curved space is to couple
the system to the supergravity and to choose a supergravity background
that is invariant under a part of the supersymmetry. Topological twist-
ing, introduced in Section 2.5, is an example of such a procedure —
turn on the U(1) connection for an R-symmetry so that some of the
variational parameters can be constant scalars. The supersymmetry on
the (hemi)sphere discussed above is another example where a different
component of the supergravity multiplet is turned on. Certain linear
combinations, ε and ε, of the variational parameters satisfy the follow-
ing equations for some ω ∈ R/2πZ 1

(4.10) ∇με =
i

2r
γμ e

iωγ3ε, ∇με =
i

2r
γμ e

−iωγ3ε,

where γμ are the gamma matrices, γ3 is the chirality operator, γ3 = ±1
on S∓. This is indeed the condition for supersymmetry in a certain
supergravity background [31].

4.2. Formulation

We consider the GLSM on the sphere and the hemisphere preserving
A-type supersymmetry. In what follows, we describe the hemisphere
with A(±)-type supersymmetry and B-branes at the boundary. The

1ε = ε− + ε+, ε = ε− + ε+, ω = 2β − π
2

for Ae2iβ ; and ε = ε− + ε+,

ε = ε− + ε+, ω = 2α− π
2
for Be2iα .
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Fig. 1.

(B, γ)

r

The hemisphere

case of the sphere can be obtained from that easily. The supersymmetry
is specified for a choice of vector R-transformation of the matter field φ,
and for this we use the R-symmetry R : V → V of the system. We shall
write Q− = QA−

(±) and Q+ = QA+
(±), to simplify the notations.

The action consists of four scalar terms

(4.11) S = Sg + Sm + SW + St,

and a matrix term
∫
∂D2 A that enters into the Chan-Paton factor

(4.12) trMPexp

(
−

∫
∂D2

A
)
.

These are obtained by modifying the covariantized version of the Lagrangian
by terms that depend on the radius r as well as the bulk and the bound-
ary R-charges R and r. See Appendix A.4 for the detail. Sg and Sm are
respectively the kinetic terms for the gauge multiplet and the matter
multiplet. They are individually supersymmetric and Q-exact,

(4.13) Sg = Q−Q+(· · · ), Sm = Q−Q+(· · · ).

SW is the superpotential term. It is not supersymetric by itself, but the
combination e−SW trMPexp

(
−

∫
∂D2 A

)
is. If we deform the superpoten-

tial W → W + ΔW and the matrix factorization Q → Q + ΔQ while
maintaining the condition of supersymmetry, ΔQQ+QΔQ = ΔW idM ,
then, the combination changes by a Q-exact term

(4.14) Δ

[
e−SW trMPexp

(
−

∫
∂D2

A
)]

= (Q+ +Q−)(· · · ).

Finally, St depends on the FI-theta parameter and is supersymmetric by
itself. It is the sum of terms which are holomorphic and anti-holomorphic



154 K. Hori and M. Romo

in t, St = Shol
t +Santihol

t . For the A(+)-type (resp. A(−)-type) supersym-
metry, the latter (resp. former) is Q-exact,

A(+) : Santihol
t = Q−Q+(· · · ),

A(−) : Shol
t = Q−Q+(· · · ).

(4.15)

The partition function is defined to be the path-integral over the
fields on the hemisphere

(4.16) ZD2 =

∫
D [fields] exp (−S) trMPexp

(
−

∫
∂D2

A
)
.

Due to the exactness (4.14), the partition function is invariant under
the deformation of the superpotential W and the matrix factorization Q
that maintain the condition Q2 = W idM . Also, for the system preseving
the A(+)-type (resp. A(−)-type) supersymmetry, due to the exactness
(4.15), the partition function is annihilated by the antiholomorphic (resp.
holomorphic) derivative with respect to the FI-theta parameter t, that
is, it depends holomorphically (it resp. antiholomorphically) on t.

The exactness of the kinetic terms (4.13) is relevant for the compu-
tation. This means that the result does not change when these terms
are scaled up. In particular, the path integral localizes on the supersym-
metric locus where the bosonic part of the kinetic terms vanish — the
one-loop approximation around such locus yields the exact answer.

4.3. The result

Let us write down the result. Let

(4.17) V =
⊕
i

C(Ri, Qi)

be the weight decomposition of the matter representation V of U(1)V ×
G. We assume that the R-charges are chosen in the range

(4.18) 0 < Ri < 2.

The partition function of the system preserving the A(+)-type supersym-
metry on the hemisphere with the B-brane (M,Q, γ) at the boundary
is

Z
A(+)

D2 (M,Q, γ) = C(rΛ)ĉ/2
∫
γ′
d�σ′(4.19)

×
∏
α>0

α(σ′)sinh (πα(σ′))
∏
i

Γ

(
iQi(σ

′) +
Ri

2

)
× exp

(
itR(σ

′)
)
fM (σ′),
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with

(4.20) fM (σ′) := trM exp
(
πir+ 2πσ′

)
.

For the system preserving the A(−)-type supersymmetry on the hemi-
sphere with the B−1-brane (M,Q,−γ) at the boundary (see (3.23) for
the replacement γ → −γ), it is its complex conjugate,

(4.21) Z
A(−)

D2 (M,Q,−γ) =
(
Z

A(+)

D2 (M,Q, γ)
)∗

.

In the above expressions, r is the radius of the (hemi)sphere, Λ is the
energy scale that is needed to renormalize the theory, and ĉ = trV (1 −
R) − dimG. The integration variable σ′ takes values in tC and comes
from the Cartan zero mode of the field σ times the radius r. The contour
γ′ ⊂ tC in (4.19) is γ times r, and d�σ′ is the flat holomorphic volume
form

(4.22) d�σ′ = dσ′
1 ∧ · · · ∧ dσ′

�.

The product
∏

α>0 is over positive roots of the gauge group. tR is the
renormalized FI-theta parameter defined by

(4.23) tR = t− b1 log(rΛ).

Information of the D-brane enters into fM (σ′) which we call the brane
factor. Note that it depends only on M as the representation of U(1)V ×
G. The detail of the matrix factorization Q(φ) does not matter.

The above result is first derived for the case where γ is the real locus
it and then for a deformed γ using holomorphy. The integrand has poles
at the hyperplanes

(4.24) iQi(σ
′) +

Ri

2
= 0,−1,−2, . . .

which misses the real locus it under the condition (4.18). We propose
that γ is acceptable only when (i) it can be continuously deformed to
the real locus it without meeting the pole hyperplanes (4.24). Since the
integral (4.19) is over a non-compact contour, whether it is convergent
is a non-trivial question. The asymptotic behaviour of the integrand can
be found easily using Stirling’s formula for the Gamma function. For
the irreducible decomposition M = ⊕jUj with respect to the identity
component G0 of G, the brane factor fM (σ′) decomposes into the sum∑

j trUj e
πir+2πσ′

. Stirling’s formula says that the integrand for the term
corresponding to the representation Uj of highest weight λj behaves as

(4.25) a power of σ × exp
(
−irW̃eff,λj (σ)

)
,
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with2

(4.26)

W̃eff,λj (σ) = −t(σ) + 2πi(λj + ρ)(σ)−
∑
i

Qi(σ)

(
log

(
Qi(σ)

−iΛ

)
− 1

)
.

We see that the integrand may grow exponentially depending on the
direction of tC. This leads us to another condition — (ii) the integrand
must decay at infinity of γ. We shall call γ admissible for (M,Q) when
both of the conditions (i) and (ii) are satisfied. We may also say that γ
is admissible with respect to a representation U of G0 when the decay
condition holds if the brane factor is replaced by trU e2πσ

′
.

We propose that the classical data (M,Q, γ) defines a B-brane in
the quantum theory when γ is admissible for (M,Q).

The case of Landau-Ginzburg model

Let us also present the partition functions for the Landau-Ginzburg
model of N variables x1, . . . , xN with superpotential W (x1, . . . , xN ), on
the hemisphere with B(±)-type supersymmetry. For the hemisphere with
B(±)-type supersymmetry, we need to put an A∓1-type boundary condi-

tion at |z| = 1 which is specified by a Lagrangian submanifold L± ⊂ C
N

such that ∓Im(W ) are bounded below on L±. The partition function is

Z
B(+)

D2 (L+) = (rΛ)
N
2

∫
L+

exp
(
−irW (x)

)
dx1 ∧ · · · ∧ dxN ,(4.27)

Z
B(−)

D2 (L−) = (rΛ)
N
2

∫
L−

exp
(
−irW (x)

)
dx1 ∧ · · · ∧ dxN .(4.28)

These are absolutely convergent or convergent oscillatory integrals.
If W (x) is quasihomogeneous, W (λRx) = λ2W (x) for some linear

map x �→ Rx, and if the class of L+ is invariant under x �→ λRx, we see
from a change of variables that the partition function (4.27) depends on
the radius r simply as an overall power

(4.29) Z
B(+)

D2 (L+) = (rΛ)ĉ/2 · ZB(+)

D2 (L+)|rΛ=1,

2Each logarithm is required to have imaginary parts in the interval (−π, π).

Note that W̃eff,λ(σ) looks similar to the effective twisted superpotential W̃eff(σ)

on the Coulomb branch (3.7). There is a differnce though — While W̃eff(σ) is

defined only modulo shifts by 2πiP(σ), W̃eff,λ(σ) is defined absolutely by the
specific choice of branch of the logarithms. Nevertheless, there is a reason for
the similarity, as will be explained momentarily.
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where ĉ = tr(1 − R) is one third of the central charge of the SCFT to
which the LG model flows in the IR limit. The other function (4.28)
has the same dependence. This power behaviour is expected to be a
characteristic of the partition function of a superconformal field theory.

On the other hand, if W (x) is a Morse function and if L+ passes
through one of the critical points, the partition function (4.27) in the
large radius limit is dominated by the Gaussian integral near the critical
point x∗,

(4.30) Z
B(+)

D2 (L+) ∼ C∗ exp
(
−irW (x∗)

)
, r → ∞.

The other function (4.28) has a similar behaviour. This exponential
behaviour is expected to be a characteristic of the partition function of
a theory with massive vacua.

Rotated supersymmetry

We may also consider the partition functions on the hemisphere with

the rotated supersymmetry, Ae2iβ

(±) or Be2iα

(±) .

The effect of rotation is easiest to state in the LG model with B-type
supersymmetry. It is simply to make the replacement

(4.31) W (x) → e2iαW (x), W (x) → e−2iαW (x)

in the result, such as (4.27)–(4.28) and (4.30). Note that the brane L±
must be an A∓ e2iα -brane on which ∓Im(e2iαW ) is bounded below, so
that the result remains to be an absolutely convergent or convergent
oscillatory integral.

For GLSM with A-type supersymmetry, we may employ the classi-
cal axial R-symmetry eiβFA . Then, the effect is simply the change of
variables X → eiβFAX and the rotation of the contour γ → e−2iβγ,
which does not seem to change anything: we may simply denote r e2iβσ
again by σ′. However, this change of variables is possibly anomalous,
and will shift the theta angle as θ → θ + 2βtrV . The precise effect is
executed by the replacement

(4.32) Λ → e2iβΛ, σ → e2iβσ, γ → e−2iβγ,

with σ′ and γ′ unchanged, in all of the formula above for GLSM within
this subsection. This in particular changes the asymptotic behaviour of
the integrand (4.25) to

(4.33) a power of σ × exp
(
−ir e2iβW̃eff,λj (σ)

)
,

with the expression (4.26) for W̃eff,λj (σ) unchanged.
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Remarks

(i) Let us write down the expression for the partition functions on the
sphere. Let Q∨ ⊂ it be the cocharacter lattice, that is, the set of ele-
ments that takes integer values on the weight lattice P ⊂ it∗. Then, the
partition function of the GLSM on the sphere with the A-type super-
symmetry is

ZA
S2 = C|rΛ|ĉ

∑
m∈Q∨

∫
it

d�σ′

×
∏
α>0

(
α(m)2

4
+ α(σ′)2

)∏
i

Γ
(
iQi(σ

′)− Qi(m)
2 + Ri

2

)
Γ
(
1− iQi(σ′)− Qi(m)

2 − Ri

2

)
× exp

(
2iζR(σ

′) + i(θR + 2πρ)(m)
)
.(4.34)

Here tR = ζR − iθR. The integrand grows as a power in magnitude but
it rapidly oscillates along the contour it ⊂ tC of integration. Thus, it
is convergent though not absolutely. The partition function of the LG
model on the sphere with B-type supersymmetry is

(4.35) ZB
S2 = |rΛ|N

∫
CN

exp
(
−ir(W (x) +W (x))

)
d2Nx.

This is also a convergent oscillatory integral.

(ii) The similarity between W̃eff,λj (σ) in (4.26) and W̃eff(σ) in (3.7) is

not a coincidence. If W̃eff(σ) has a non-degenerate critical point σ∗, there
is a Coulomb vacuum with a mass gap. If γ passes through σ∗, the hemi-
sphere partition function should behave in the large radius limit r → ∞
as (4.30), that is, ∼ exp

(
−irW̃eff(σ∗)

)
. Note that the critical value

is W̃eff(σ∗) = b1(σ∗) and is not affected by the 2πiP(σ) ambiguity of

W̃eff(σ) — see the discussion around (3.9). This is indeed the behaviour

of the integral (4.19) provided W̃eff,λj (σ) ≡ W̃eff(σ) mod 2πiP(σ). This
comparison yields the precise relationship between the two Λ’s, the one

in (3.7) for W̃eff(σ) and the one for the hemisphere partition function
which appears in (4.26):

(4.36) Λ|(3.7) = −iΛ|(4.26).

(iii) Recall that there is an unphysical ambiguity (3.20) in the R-charge
when g has a non-zero center z. Let us see the effect of this change,
R → R+ ε and r → r− ε, on the hemisphere partition function (4.19).
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This affects the exponent ĉ of the prefactor as ĉ → ĉ − b1(ε) as well as
the Gamma function factors and the brane factor. The effect of these
functions is absorbed by the change of variables σ′ → σ′ + i

2ε. The net

effect is an overall factor e−t(ε)/2 and the shift of the contour γ′ → γ′− i
2ε.

As long as the bound (4.18) is not violated by the shift R → R + ε, we
can bring the contour back to γ′ without hitting the poles. Thus, the
effect is simply

(4.37) Z
A(+)

D2 −→ e−
1
2 t(ε)Z

A(+)

D2 .

The effect on the other functions are Z
A(−)

D2 → e−
1
2 t(ε)Z

A(−)

D2 and ZA
S2 →

e−
1
2 t(ε)− 1

2 t(ε)ZA
S2 .

(iv) The expression (4.19) can be simplified a little. Let M = ⊕jUj(rj)
be the irreducible decomposition with respect to the identity component
G0 of G. If U is the irreducible representation of G0 with highest weight
λ, we have the Weyl character formula

(4.38) trU e2πσ
′
=

∑
w∈W0

(−1)�(w) e2πw(λ+ρ)(σ′)∏
α>0

(
eπα(σ′) − e−πα(σ′)

) .

Notice that the denominator is nothing but the factor
∏

α>0 sinh(πα(σ
′))

in (4.19) up to a factor of 2. Note also that
∏

α>0 α(σ
′) is Weyl odd.

Using these as well as the Weyl invariance of γ, we see that the partition
function can be written as

(4.39)

Z
A(+)

D2 (M,Q, γ) = C
|W0|
2|Δ+| (rΛ)

ĉ/2
∑
j

eπirj
∫
γ′
d�σ′

×
∏
α>0

α(σ′)
∏
i

Γ

(
iQi(σ

′) +
Ri

2

)
exp

(
itR(σ

′) + 2π(λj + ρ)(σ′)
)
,

where |Δ+| is the number of positive roots. In fact, this has been used
in finding the behaviour (4.25).

(v) The gamma function has an integral expression

(4.40) Γ(z) =

∫ ∞

0

e−ttz−1dt,

when the real part of z is positive. The same holds for other range of
z provided the contour of integration is chosen appropriately. Applying
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this for each gamma function in (4.39), we find

Z
A(+)

D2 (M,Q, γ) = C
|W0|

2|Δ+|Λ�+|Δ+| (rΛ)
�+dV

2

∑
j

eπirj(4.41)

×
∫
Γ

d�σ ddV y
∏
α>0

α(σ)
∏
i

e−
Ri
2 yi exp

(
−irW̃ (σ, y)

)
,

with dV = dimC V and

(4.42) W̃ (σ, y) =

(∑
i

Qiyi − t+ 2πi(λj + ρ)

)
(σ)− iΛ

∑
i

e−yi ,

for a contour Γ ⊂ tC × CdV that projects onto γ ⊂ tC. Compared to
(4.27), the formula (4.41) looks to be the hemisphere partition function
ZB
D2 for an A-brane in the LG model with superpotential (4.42). In fact,

(4.41) is nothing but the formula for the central charge of the B-brane
in the mirror theory [32], except that the dependence on the brane is
made more precise and that the mirror superpotential modulo 2πiP(σ)
is corrected by a shift by 2πiρ(σ).

4.4. The example T
U(1)
N,d

Let us look at the hemisphere partition function ZD2 = Z
A(+)

D2 in

the example T
U(1)
N,d . We assign R-charge 2 − dε on p and ε on xi’s with

0 < ε < 2/d, so that the bound (4.18) is satisfied. Then, we have

ZD2(M,Q, γ) = (rΛ)ĉ/2
∫
γ

dσ′ Γ
(
−diσ′ + 1− dε

2

)
Γ
(
iσ′ + ε

2

)N
(4.43)

× eitR σ′
fM (σ′)

where ĉ = N − 2− (N − d)ε, tR = t− (N − d) log(rΛ), and

(4.44) fM (σ′) = trM eπir+2πσ′
=

∑
j

eπirj+2πqjσ
′
,

for the U(1)V × U(1) weight decomposition

(4.45) M =
⊕
j

C(rj , qj).

The Gamma function factor of the integrand has order N poles at σ′ =

i
(
nx + ε

2

)
with nx = 0, 1, 2, . . . and simple poles at σ′ = i

(
−np+1

d + ε
2

)
with np = 0, 1, 2, . . . . We shall call them x-poles and p-poles respectively.
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The x-poles are on the positive imaginary axis and the p-poles are on
the negative imaginary axis. By Stirling’s formula, the j-th term of the

integrand behaves as e−Aqj
(σ′) up to a power factor, where

Aq(σ
′) = Im(σ′)

(
ζ − d log d+ (N − d)

(
log

∣∣∣∣ σ′

rΛ

∣∣∣∣− 1

))
(4.46)

+ |Re(σ′)|
(
N + d

2
π + (N − d) arctan

[
Im(σ′)

|Re(σ′)|

])
− Re(σ′)(θ + 2πq).

The contour γ is admissible with repect to the charge q when Aq goes
to positive infinity at the ends of γ. We see that the behaviour of Aq

depends very much on whether (N − d) is zero, positive or negative.
Below, we shall discuss these cases separately.

Important rôles will be played by the brane data B1 and B2 intro-
duced earlier. They have the following brane factors

fM1(σ
′) = 1− e−πidε e2πdσ

′
,(4.47)

fM2(σ
′) =

N∑
j=0

(
N

j

)
eπij(1−ε) e2πjσ

′
= (1− e−πiε e2πσ

′
)N .(4.48)

We see that fM1(σ
′) has simple zero at σ′ = i

(
n
d + ε

2

)
, while fM2(σ

′)
has N -th order zero at σ′ = i

(
n+ ε

2

)
, both for n ∈ Z. In particular, the

integrand for B1 has vanishing residue at the p-poles but has non-zero
residues at the x-poles, while the integrand for B2 has vanishing residue
at the x-poles but has non-zero residues at some of the p-poles (four
out of the five series). Such a property does not change under the shift

B �→ B(i, q) which does fM (σ′) �→ fM (σ′)(−1)i e2πqσ
′
.

d = N Family of conformal field theories

Recall that the model with d = N defines a family of SCFTs param-
eterized by t = ζ − iθ, with ĉ = N − 2. In the presence of boundary, the
2π periodicity of θ is lost, and we should consider the unwrapped moduli

space M̃t = C − Δ̃, where Δ̃ is the set of singular points, ζ = N logN
and θ ∈ Nπ + 2πZ. ζ � 0 is the geometric phase and ζ � 0 is the
Landau-Ginzburg orbifold phase. By the general principle of supersym-
metry, we expect to have an equivalence Db

Coh(Xf ) ∼= MFZN (f) for each

homotopy class of paths in M̃t between the two phases, as well as an
autoequivalence for each loop around a singular point.

The dependence of ZD2 on the radius r is simply the overall power

(4.49) ZD2(B, γ) = (rΛ)
N−2

2 · ZD2(B, γ)|rΛ=1.
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This is indeed the characteristic behaviour of the partition function for
a superconformal field theory with ĉ = N − 2. The growth function Aq

also simplifies for d = N to

(4.50) Aq(σ
′) = (ζ −N logN)Im(σ′) +Nπ|Re(σ′)| − (θ + 2πq)Re(σ′).

Fig. 2.

γ+

γ−

Contours γ+ and γ−

In the geometric phase ζ � 0, the function Aq for any q blows up
linearly and the integrand decays expotentially in the direction where
Im(σ′)/|Re(σ′)| is large positive. Therefore, if we take γ = γ+ as in Fig 2,
it is admissible with respect to any q and hence for any (M,Q). The
contour γ+ can be deformed further up toward the positive imaginary
direction, so that the integral becomes the sum of residues at the x-poles.
This shows ZD2(B2(i, q), γ+) = 0 and ZD2(B1(i, q), γ+) �= 0. This is
consistent with the fact in the geometric regime that B2(i, q) is empty
but B1(i, q) is not. In particular, the hemisphere partition function
does not change under the brane replacement B � B′ introduced in
Section 3.2, ZD2(B, γ+) = ZD2(B′, γ+), since B′ is obtained from B by
binding B2 and its shifts and by cancelling identical pairs.

In the Landau-Ginzburg phase ζ � 0, the function Aq for any
q blows up linearly and the integrand decays expotentially in the di-
rection where Im(σ′)/|Re(σ′)| is large negative. Therefore, if we take
γ = γ− as in Fig 2, it is admissible with respect to any q and hence
for any (M,Q). The contour γ− can be deformed further down to-
ward the negative imaginary direction, so that the integral becomes the
sum of residues at the p-poles. This shows ZD2(B1(i, q), γ−) = 0 and
ZD2(B2(i, q), γ−) �= 0. This is consistent with the fact in the Landau-
Ginzburg regime that B1(i, q) is empty but B2(i, q) is not. In particular,
the hemisphere partition function does not change under the brane re-
placement, ZD2(B, γ−) = ZD2(B′, γ−), since B′ is obtained from B by
binding B1 and its shifts and by cancelling identical pairs.
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On the line ζ = N logN , the dependence on Im(σ′) disappears from
(4.50),

(4.51) Aq(σ
′) = Nπ|Re(σ′)| − (θ + 2πq)Re(σ′).

Note that θ+2πq never coinsides with ±Nπ unless t is one of the singular
points. If |θ+2πq| > Nπ, the function Aq goes down to negative infinity
for either Re(σ′) → +∞ or Re(σ′) → −∞; No γ is admissible with
respect to q. On the other hand, if |θ + 2πq| < Nπ, it goes up to
positive infinity for both Re(σ′) → ±∞; Admissibles are the real locus
γ = R as well as any of its deformation as long as it remains to extend
to Re(σ′) → ±∞. To summarize, at ζ = N logN , there is a unique
homotopy class of admissible contours if and only if

(4.52) −N

2
< q +

θ

2π
<

N

2
.

This yields the grade restriction rule concerning D-brane transport

along paths in M̃t from one phase to another. Such a path must go
through a window on the interface ζ = N logN , −Nπ + 2πn < θ <
−Nπ + 2(n + 1)π for some n ∈ Z. For each window w, the bound
(4.52) defines a set [w] of N consecutive integers. For example, if w is
(−N − 2)π < θ < −Nπ at ζ = N logN , the set is [w] = {1, 2, . . . , N}.
If w′ is the next one on the right, −Nπ < θ < (−N + 2)π, the set is
[w′] = {0, 1, 2, . . . , N − 1}. We shall say that a brane data B = (M,Q)
is grade restricted with respect to w when all the gauge charges of M
belong to the set [w].

Suppose a brane data B is grade restricted with respect to a window
w. Then, one can find a family of contours γ along a path through w,
interpolating γ+ at ζ � 0 and γ− at ζ � 0, so that it is admissible
for B all the way. This defines a family of quantum B-branes along the
path. This is the rule of D-brane transport in the grade restricted case.
Since the integral (4.43) is absolutely convergent all the way, Z(B, γ+)
at ζ � 0 and Z(B, γ−) at ζ � 0 are related by the analytic continuation
along the path.

Suppose, on the other hand, B is not grade restricted with respect
to w. Then, a family of admissible contours does not exist along any
path through w. The brane (B, γ+) does make sense in the geometric
phase ζ � 0, but it cannot go to the LG phase ζ � 0 through the
window w. In such a situation, we employ the idea of brane replacement
introduced in Section 3.2. While in the geometric phase ζ � 0, we
can replace B by another data B′ whose gauge charges belong to a set
of N consecutive integers without changing the low energy behaviour
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— without changing the hemisphere partition function ZD2(B, γ+) =
ZD2(B′, γ+) in particular. If we choose the set to be [w], then, B′

is grade restricted with respect to w. Then, we can find a family of
contours γ along a path throughw, starting from γ+ in ζ � 0 and ending
with γ− in ζ � 0, which is admissible for B′ all the way. This defines
a family of quantum B-branes along the path, starting with (B, γ+) ∼=
(B′, γ+) in the geometric phase and ending with (B′, γ−) in the LG
phase. This is the rule of D-brane tranport. In particular, ZD2(B, γ+)
in ζ � 0 analytically continues along the path to ZD2(B′, γ−) in ζ �
0. The same works for the transport backward. If we start from a
brane (B, γ−) in the LG phase ζ � 0, we first find a grade restricted
representative (B′′, γ−) before the transport, and then go through the
window w. The analytic continuation of ZD2(B, γ−) in ζ � 0 ends with
ZD2(B′′, γ+) in ζ � 0.

This rule allows us to find the monodromy. Let us consider a loop
around one of the singular points, say, t∗ = N logN + Nπi, with the
base point in the geometric phase ζ � 0. If the loop goes counter-
clockwise, it may be regarded as a concatenation of a path from ζ � 0
to ζ � 0 through the window w on the left of t∗ and a path from ζ � 0
to ζ � 0 through the window w′ on the right of t∗. Let us start from a
brane (B, γ+) at ζ � 0. While in the geometric phase, we replace B by
B′ which is grade restricted with respect to w and then move (B′, γ)
through w to ζ � 0. While in the LG phase ζ � 0, we replace B′ by
B′′ which is grade restricted with respect to w′, and then move (B′′, γ)
through w′ back to ζ � 0. Thus, we end up with (B′′, γ+).

By now it should be clear how to describe the (auto)equivalences
of categories. Recall the definition of TI ⊂ DLSM and the equivalences
(3.34) and (3.35) in the two phases. The transport along a path through
a window w results in the equivalence

(4.53) Db
Coh(Xf )

π−1
+−→ T[w]

π−−→ MFZN (f).

The monodromy along the loop in the previous paragraph is

(4.54) Db
Coh(Xf )

π−1
+−→ T[w]

π−−→ MFZN (f)
π−1
−−→ T[w′]

π+−→ Db
Coh(Xf ).

d < N Flow from sigma model

The model with d < N describes an RG flow from the sigma mode
with target Xf to the LG orbifold W = f(x)/Zd or one of the (N − d)
massive vacua at

(4.55) σk = −iΛ̃ exp

(
i
θ + πd+ 2πk

N − d

)
, k ∈ Z/(N − d)Z,
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where Λ̃ = Λd
d

N−d e−
ζ

N−d . Here Λ is the scale parameter for the hemi-
sphere partition function which we assume to be real positive. See (3.17)
and (4.36). The value of the twisted superpotential at these vacua are

W̃eff(σk) = (N − d)σk. Note that the UV limit has ĉLV = N − 2 while
the LG orbifold flows further to an SCFT with ĉLG = N(1 − 2/d). We
expect that Db

Coh(Xf ) is equivalent to a category that includes MFZd
(f)

and (N − d) exceptional objects.
Let us study the behaviour of the growth function (4.46). It can be

written as

(4.56) Aq(σ
′) = ζeffIm(σ′) +Neffπ|Re(σ′)| − (θ + 2πq)Re(σ′),

where

ζeff = (N − d)

(
log

∣∣∣∣ σ′

rΛ̃

∣∣∣∣− 1

)
,

Neff =
N + d

2
+

N − d

π
arctan

[
Im(σ′)

|Re(σ′)|

]
.(4.57)

ζeff is positive outside the circle |σ′| = rΛ̃ e and negative inside. Neff is
bounded as d < Neff < N — the lower (resp. upper) bound is approached
in the direction of the negative (resp. positive) imaginary axis.

The fact that ζeff is large positive for large enough |σ′| and that Neff

is bounded as d < Neff < N means that γ+ in Fig. 2 is admissible with
respect to any q. Thus for any brane data B = (M,Q), γ+ is admissible
and (B, γ+) defines a D-brane in the quantum theory. If we wish, we
can deform γ+ further up in the positive imaginary direction, and the
integral (4.19) is written as the sum of residues at the x-poles. This
shows

(4.58) ZD2(B2(i, q), γ+) = 0.

This vanishing allows us to employ the brane replacement using B2 and
its shifts, so that the brane data B can be taken from TI+ for a set I+
of N consecutive integers. In what follows, we study the behaviour of
ZD2(B, γ+) in the small radius limit rΛ ↘ 0 (UV limit) as well as in
the large radius limit rΛ ↗ ∞ (IR limit).

When rΛ � 1, ζeff quickly becomes large positive as σ′ goes away
from the origin, and the above deformation of contour is the best choice,
resulting in the sum of residues at the x-poles. Since tR is large positive
for rΛ � 1, the dominant is the residue at the first pole, σ′ = iε/2,
whose depenence on the radius is simply

(4.59) ZD2 ∼ (rΛ)ĉ/2 eitR·iε/2 ∼ (rΛ)
N−2

2 .



166 K. Hori and M. Romo

This is indeed the characteristic behaviour for an SCFT with ĉLV =
N − 2. We will find the precise expression of the residue in Section 4.5
which will show that it is non-zero whenever the geometric image of the
brane data B is non-trivial.

When rΛ � 1, ζeff is negative over an extended region |σ′| < rΛ̃ e
inside which Aq is positive (resp. negative) in a neighborhood of the
negative (resp. positive) imaginary axis. Therefore, we may deform the
contour γ+ to γ̃+ as in Fig. 3. The new contour can be separated into two

Fig. 3.

γ̃+

−irΛ̃

Deformed contour γ̃+

parts, γ̃+ = γ̃cent + γ̃rest, where γ̃cent is the central part that encircles a
large number of p-poles. Integration over γ̃cent yields the sum of residues
at the p-poles. Since tR is large negative for rΛ � 1, the dominant is
the residue at the first pole, σ′ = i(−1/d + ε/2), whose dependence on
the radius is simply

(4.60) ZD2 |central ∼ (rΛ)ĉ/2 eitR·i(−1/d+ε/2) ∼ (rΛ)
N(1−2/d)

2 .

This is the characteristic behaviour for a brane in an SCFT with ĉLG =
N(1 − 2/d). To see what the rest γ̃rest gives, let us examine whether

the integrand has critical points. When |σ′| ∼ rΛ̃ � 1 and Re(σ′) �= 0,
we can use the asymptotic behaviour (4.25) and look for the critical

points of W̃eff,q(σ). That is to find solutions to ∂σW̃eff,q = 0 literally,
not modulo 2πiZ. It turns out that this equation is equivalent to

(4.61) |σ′| = rΛ̃, (θ + 2πq)sgn(Re(σ′)) = Neffπ.
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We see that there is a solution only when dπ < |θ+2πq| < Nπ. In such
a case, the solution is unique and is nothing but one of the Coulomb
vacua in (4.55) — it is σk(q) with k(q) = q (resp. q− d) when θ+ 2πq is
in (−Nπ,−dπ) (resp. (dπ,Nπ)). The contour γ̃rest can be chosen to go
through it, and the saddle point approximation to the integral gives

(4.62) const× exp
(
−irW̃eff,q(σk(q))

)
.

This is the characteristic behaviour for a brane supported at the massive
vacuum σk(q). When |θ + 2πq| < dπ, there is no critical point. In this
case, we can choose γ̃rest along which the integrand is very small entirely,
and can show that the integral vanishes exponentially as rΛ → ∞, much

faster than any of e−irW̃eff(σk)’s. When |θ+2πq| > N , there is no solution
again. In this case, one cannot avoid γ̃rest to go through a region where
the integrand is large, and it is hard to estimate the integral. However,
we may avoid the case |θ+2πq| > N to begin with, via brane replacement
using B2 and its shifts. The special case |θ+2πq| = dπ (resp. Nπ) arizes
when θ ≡ dπ (resp. Nπ) modulo 2πZ. Then, one of the Coulomb vacua
σk is on the negative (resp. positive) imaginary axis where Stirling’s
formula breaks down. In order to avoid possible complications, we shall
assume θ �≡ dπ,Nπ modulo 2πZ.

Under this assumption, [θ; d ] and [θ;N ], with

(4.63) [θ;m] :=

{
q ∈ Z

∣∣∣−m

2
< q +

θ

2π
<

m

2

}
,

are sets of d and N consecutive integers. The above analysis leads us
to the following claim concerning the low energy behaviour of a brane
(B, γ+). If B belongs to T[θ;d], the brane flows purely to a brane in the
LG orbifold. If B belongs to T[θ;N ] but not to T[θ;d], there is at least
one gauge charge q such that dπ < |θ + 2πq| < Nπ. Let q∗ be the one

that maximizes ImW̃eff,q(σk(q)) among such q’s. Then, the brane at low
energies has a component supported at the Coulomb vacuum σk(q∗).

Let us examine the case of B = B1(i, q) which reduces to the shifted
line bundle O(q)[i] in the high energy sigma model. For any q, it does
not belong to T[θ;d] since the set of gauge charges, which is {q, q + d},
cannot fit into [θ; d]. It belongs to T[θ;N ] when q is one of the (N − d)
integers satisfying −Nπ < θ + 2πq < (N − 2d)π. In this case, q∗ is q if
θ+2πq is in (−Nπ,−dπ) and q+d if θ+2πq is in (−dπ, (N − 2d)π). In
either case, k(q∗) is q and hence the brane has a component supported
at σq. In fact, one can show that it is supported purely at σq. There-
fore, for q in this range, the low energy limit of the line bundle O(q) on
Xf is a brane supported purely at the Coulomb vacuum σq. When q is
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outside this range, we need to use its replacement in T[θ;N ], obtained by
binding B2 and its shifts. Since B2 and its shifts have non-zero residues
at the p-poles, the low energy brane may have an SCFT component as
well as components supported at Coulomb vacua. For example, let us
consider B1 in the theory with θ = −Nπ + δ for a small negative δ, for
which [θ;N ] = {1, 2, . . . , N}. Obviously B1 is not in T[θ;N ] since its set
of gauge charges is {0, d}. Its representative in T[θ;N ] can be obtained

by binding B1 with B2(−1, 0),3 which gives

(4.64)

C(1, d)
px��
f ′ C(0, 1)N

x��
pf ′ C(1, 2)(

N
2 )

x��
pf ′ · · ·

x��
pf ′ C(N − 1, N)

where x =
∑

i xiηi and f ′ =
∑

i ∂ifηi/d. Note that the last component
C(N − 1, N) yields a brane supported at σ0 which has the highest value

of ImW̃eff(σk). This shows that the low energy limit of the structure
sheaf O of Xf includes the Recknagel-Shomerus brane π−(B2(−1, 0)) of
the SCFT and is also supported at some of the Coulomb vacua including
σ0.

What happens when θ crosses the special values, dπ and Nπ modulo
2πZ? As remarked above, as θ crosses dπ (resp. Nπ) modulo 2πZ, one
of the Coulomb vacua crosses the negative (resp. positive) imaginary
axis on which there are p-poles (resp. x-poles). In fact, this is where
there is a zero mode for p (resp. x) localized near the boundary and
something special can happen. The example in the last paragraph can
be used to illustrate what happens when θ crosses Nπ (mod 2π), say,
from θ > −Nπ to θ < −Nπ, under which the vacuum σ0 crosses the
positive imaginary axis. Under this, [θ;N ] changes from {0, 1, . . . , N−1}
to {1, 2, . . . , N}, and B1 moves from inside T[θ;N ] to the outside. Before
the crossing, the brane (B1, γ+) is supported purely at the vacuum σ0

at low energies, but after the crossing, it flows to an SCFT brane as well
as branes supported at some of the Coulomb vacua including σ0. To
see what happens when θ crosses dπ (mod 2π), let us look at a brane
whose low energy limit is supported purely in the SCFT. To be specific,
we consider a move from θ < −dπ to θ > dπ, under which [θ; d] changes
from {1, 2, . . . , d} to {0, 1, . . . , d−1}. We are looking at a brane (B, γ+)
with B ∈ T{1,...,d}. Note that at each component of charge d, B is of
the form

(4.65) C(i, d)

p a
��

b
Brest,

3We take the limit ε ↘ 0 for a while, to simplify the expressions.
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for some a : C(i− 2, 0) → Brest such that b · a is C(i− 2, 0)
f(x)×−→ C(i, d).

This can be expressed as

C(i− 2, 0)

a
��

p b
Brest

−id

�
b

�
(4.66)

C(i− 1, 0)

f
��

p
C(i, d)

We see that C(i, d) can be replaced by C(i − 2, 0) by forming a bound
state with B1(i − 1, 0). Applying this for each component of charge d,
B ∈ T{1,...,d} can be expressed as a bound state of B′ ∈ T{0,...,d−1} and
a number of copies of B1(j, 0)’s. Note that the LG images of B and B′

are equivalent, π−(B) ∼= π−(B′), and also that B1(j, 0)’s are supported
purely at the Coulomb vacuum σ0 that crosses the negative imaginary
axis under the move. To summarize, as θ crosses −dπ, a brane supported
purely in the SCFT at low energies acquires components supported at
the Coulomb vacuum that crossed the negative imaginary axis while the
SCFT component remains the same. These effects of the move can be
regarded as the “brane creation” as discussed in [33]. See Fig. 4.

Fig. 4.

θ > −Nπ θ < −Nπ θ > −dπ θ < −dπ

Brane creations

Under the expected equivalence between Db
Coh(Xf ) and a category

including MFZd
(f) and (N−d) exceptional objects, MFZd

(f) is included
in Db

Coh(Xf ) by

(4.67) MFZd
(f) ∼= T[θ;d] ↪→ T[θ;N ]

∼= Db
Coh(Xf ).

As θ crosses dπ (resp. Nπ) mod 2π, the category T[θ;d] (resp. T[θ;N ])
moves inside DLSM, and accordingly, the inclusion (4.67) changes. This
change yields the brane creation discussed above.
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d > N Flow from Landau-Ginzburg model

The model with d > N describes a deformation of an SCFT cor-
responding to the LG orbifold W = f(x)/Zd, which flows to the sigma
model with target Xf or one of the (d−N) massive vacua at

(4.68) σk = iΛ̃ exp

(
i
θ + πN + 2πk

N − d

)
, k ∈ Z/(d−N)Z,

where Λ̃ = Λd
d

N−d e−
ζ

N−d , with W̃eff(σk) = (N − d)σk. Note that the
UV SCFT has ĉLG = N(1 − 2/d) while the IR sigma model has ĉLV =
N−2. We expect that MFZd

(f) is equivalent to a category that includes
Db

Coh(Xf ) and (d −N) exceptional objects. The analysis of the model
goes similarly to the case d < N and hence we shall only highlight the
main points.

For any brane data B = (M,Q), γ− as in Fig. 2 is admissible and
(B, γ−) defines a D-brane in the quantum theory. The hemisphere par-
tition function ZD2(B, γ−) may be written as the sum of residues at the
p-poles. In particular, we have

(4.69) ZD2(B1(i, q), γ−) = 0.

This vanishing allows us to assume B ∈ TI− for a set I− of d consecutive
integers.

When rΛ � 1, tR is large negative and the series of the p-pole
residues is dominated by the first term. Its radius dependence is simply

(4.70) ZD2 ∼ (rΛ)ĉ/2 eitR·i(−1/d+ε/2) ∼ (rΛ)
N(1−2/d)

2 ,

which is indeed the characteristic behaviour for an SCFT with ĉLG =
N(1− 2/d). This leading term is non-vanishing whenever the LG image
of B is non-trivial.

When rΛ � 1, the integrand is very small (resp. very large) in
a neighborhood of the positive (resp. negative) imaginary axis within

|σ′| < rΛ̃ e. Therefore, we may deform the contour γ− to γ̃− as in Fig. 5.
The new contour can be separated into two parts, γ̃− = γ̃cent + γ̃rest,
where γ̃cent is the central part that encircles a large number of x-poles.
Integration over γ̃cent yields the sum of residues at the x-poles. Since
tR is large positive for rΛ � 1, the dominant is the residue at the first
pole, σ′ = iε/2, whose dependence on the radius is simply

(4.71) ZD2 |central ∼ (rΛ)ĉ/2 eitR·iε/2 ∼ (rΛ)
N−2

2 .

This is the characteristic behaviour for a brane in an SCFT with ĉLV =
N−2. The bahaviour of the contribution from γ̃rest depends on the range
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Fig. 5.

γ̃−

irΛ̃

Deformed contour γ̃−

of the gauge charge q. We assume that θ �≡ dπ,Nπ modulo 2πZ so that
the Coulomb vacua σk are all away from the imaginary axis. WhenNπ <
|θ+2πq| < dπ, the integrand has a unique critical point at the Coulomb
vacuum σk(q) with k(q) = q (resp. q−N) when θ+2πq is in (−dπ,−Nπ)

(resp. (Nπ, dπ)), and the integral behaves as ∼ e−irW̃eff,q(σk(q)) as r →
∞. When |θ+2πq| < Nπ, the integral on γ̃rest is much smaller than any

of e−irW̃eff (σk)’s. The case |θ + 2πq| > Nπ where it is hard to estimate
the integral can be avoided by a choice of B. From this analysis, we
may make the following claim concerning the low energy behaviour of
the brane (B, γ+): If B belongs to T[θ;N ], the brane flows purely to a
brane in the sigma model on Xf . If B belongs to T[θ;d] but not to T[θ;N ],
some of the gauge charges q are in Nπ < |θ + 2πq| < dπ. Let q∗ be the

one that maximizes ImW̃eff,q(σk(q)) among such q’s. Then, the brane at
low energies has a component supported at the Coulomb vacuum σk(q∗).

Let us examine the case of B = B2(i, q) which reduces to the
Recknagel-Schomerus brane in the UV SCFT. For any q, it does not
belong to T[θ;N ] since the set of gauge charges {q, q+1, . . . , q+N} can-
not fit into [θ;N ]. When −dπ < θ+2πq < (d−2N)π, it belongs to T[θ;d],
and the brane (B2(i, q), γ−) is supported purely at the vacuum σq at low
energies. When q is outside this range, we need to use a replacement of
in T[θ;d] to find the low energy behaviour of (B2(i, q), γ−) .

When θ crosses the special values, dπ and Nπ modulo 2πZ, one (or
two) of the Coulomb vacua crosses the imaginary axis. This is where
there is a matter zero mode localized near the boundary, and something
special can happen. When θ crosses dπ (mod 2π), a brane supported
at the vacuum that crosses the negative imaginary axis will acuire a
component supported at the sigma model on Xf . When θ croses Nπ
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(mod 2π), a brane that flows to the sigma model brane will acquire a
component supported at the vacuum that crosses the positive imaginary
axis.

Under the expected equivalence between MFZd
(f) and a category

including Db
Coh(Xf ) and (d − N) exceptional objects, Db

Coh(Xf ) is in-
cluded in MFZd

(f) by

(4.72) MFZd
(f) ∼= T[θ;d] ←↩ T[θ;N ]

∼= Db
Coh(Xf ).

As θ crosses dπ (resp. Nπ) mod 2π, the category T[θ;d] (resp. T[θ;N ])
moves inside DLSM, and accordingly, the inclusion (4.72) changes. This
change yields the creation of new components as discussed above.

4.5. Geometric and LG expressions

In a regime where the gauge symmetry is broken to a finite subgroup,
the GLSM reduces to the Higgs branch theory (μ−1(ζ)/G,Wζ). From
the general result (4.19), we may attempt to extract the hemisphere
partition function of such a Higgs branch theory. The result for a brane
data B should be expressed in terms of the image πζ(B) in the reduced
theory.

In this subsection, we present the partition function of the theory in

the geometrc and the LG regimes of the model T
U(1)
N,d . As is clear from

the previous subsection, the one in the geometric regime is the sum of
residues at the x-poles, while the one in the LG regime is the sum of
residues at the p-poles. They may or may not capture the partition
function of the full theory. In the Calabi-Yau case d = N , the geometric
and the LG expressions are the limiting behaviour of the full partition
function in the two phases. In the non-Calabi-Yau case d �= N , one is
the full partition function in the short distance limit rΛ → 0, while the
other is a part of the full partition function in the long distance limit
rΛ → ∞.

To simplify some of the expressions, in what follows, we shall take
the limit ε ↘ 0 in which we write f0

M (σ′) for the brane factor. If we
wish, we can always bring back the ganeral ε using (4.37).

Geometric regime

We first consider the hemisphere partition function in the geometric
regime. The geometric image of a brane data B = (M,Q) is π+(B)
given in (3.25), with [B] � (θ+dπ)H. In particular, its Chern character
is

(4.73) ch(π+(B)) =
∞∑

n=0

∑
j

(−1)r
0
j e(qj+dn)H =

f0
M ( 1

2πH)

1− edH
.
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Since the x-poles are at σ′ = in with n = 0, 1, 2, . . . , the partition
function in the geometric regime is

Z
LV

D2(B) = (rΛ)
ĉLV
2

∞∑
n=0

∮
0

dz

2π
Γ
(
dn+ dz

2πi + 1
)
Γ
(
−n− z

2πi

)N
(4.74)

× e−tRn+ i
2π tRzf0

M

(
in+ z

2π

)
.

This is a power series in e−tR which is a small parameter when tR � 1.
Note that f0

M (in + z
2π ) = f0

M ( z
2π ) since e2πqj(in) = 1. Using this and

Γ(x)Γ(1− x) = π/ sin(πx), it can be written as

Z
LV

D2(B) = −C(rΛ)
ĉLV
2

∞∑
n=0

∮
0

dz

2πi

(
(−1)n

2 sinh
(
z
2

))N Γ
(
1 + dz

2πi + dn
)

Γ
(
1 + z

2πi + n
)N

(4.75)

× e−ntR+ i
2π tRzf0

M

(
z
2π

)
= C(rΛ)

ĉLV
2

∞∑
n=0

∮
0

dz

2πi

1

zN
· d · z · z

N−12 sinh
(
dz
2

)
d
(
2 sinh

(
z
2

))N Γ
(
1 + dz

2πi + dn
)

Γ
(
1 + z

2πi + n
)N

× (−1)Nn e−ntR e
i

2π (tR−dπi)z · f
0
M

(
z
2π

)
1− edz

,

with C = −i(−2πi)N . Using the identity

(4.76)

∮
0

dz

2πi

1

zN
· d · z · g(z) =

∫
PN−1

d ·H · g(H) =

∫
Xf

g(H),

for a power series g(z) in z, and the expression (4.73) for the Chern
character of π+(B), we find

Z
LV

D2(B) = C(rΛ)
ĉLV
2

∞∑
n=0

(−1)Nn e−ntR

∫
Xf

Γ̂Xf
(n)(4.77)

× exp

(
i

2π
(tR − dπi)H

)
ch(π+(B)),

with

(4.78) Γ̂Xf
(n) :=

HN−12 sinh
(
dH
2

)
d
(
2 sinh

(
H
2

))N · Γ
(
1 + d

(
H
2πi + n

))
Γ
(
1 + H

2πi + n
)N .

Note that

(4.79) Γ̂Xf
(0) = ÂXf

· Γ(1 + d
2πiH)

Γ(1 + 1
2πiH)N

= ÂXf
· 1

Γ̂∗
Xf

= Γ̂Xf
,



174 K. Hori and M. Romo

where ÂXf
, Γ̂Xf

and Γ̂∗
Xf

are the characteristic classes of the holomor-

phic tangent bundle of Xf obtained by inserting the roots of the total
Chern class

(4.80) c(Xf ) =
(1 +H)N

(1 + dH)

into the functions Â(x) = x/2
sinh(x/2) , Γ̂(x) = Γ

(
1− x

2πi

)
and Γ̂∗(x) =

Γ
(
1 + x

2πi

)
. We said earlier that the complexified Kähler class is related

to the FI-theta parameter by [ω − iB] = (t − dπi)H + O(e−t), but
this should be understood to be the relation between the renormalized
parameters, that is, [ωR − iB] versus tR, where

(4.81) ωR := ω − c1(Xf )︸ ︷︷ ︸
(N−d)H

log(rΛ).

We see that the asymptotic behaviour at ζR → ∞ is

Z
LV

D2(B)

(4.82)

= C(rΛ)̂
cLV
2

[∫
Xf

Γ̂Xf
exp

(
1

2π
(B + iωR)

)
ch(π+(B)) +O(e−ωR+iB)

]
,

whereO(e−ωR+iB) stands for a correction of the form
∑∞

n=1 cn e
−n〈ωR−iB,l〉

where l is a second homology class of Xf such that 〈H, l〉 = 1.
As seen in the previous subsection, in the case d < N (resp. d = N),

this is the expansion of the full partition function in the ultra-voilet limit
rΛ → 0 (resp. the large target volume limit ζ → +∞), while in the case
d > N , this is the expansion of a part of the full partition function in
the infra-red limit rΛ → ∞. Note the relation e−tR = e−t(rΛ)N−d. This
difference can also be seen from the growth of the power series (4.77).

The n-th term is roughly Γ(1+dn)
Γ(1+n)N

e−ntR times a constant. By Stirling’s

formula, it behaves for n � 1 as

(4.83)
Γ(1 + dn)

Γ(1 + n)N
e−ntR ∼ en(−tR+N−d+d log d)n(d−N)n− ĉLV+1

2

(
1 +O

(
1
n

))
.

We see that the series is abolutely convergent for any e−tR if d < N and
for | e−t| < N−N if d = N , while it is divergent if d > N . In the case
d ≤ N , the series can be summed up to an analytic function of e−tR in an
appropriate domain and may be used as a definition of the full partition
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function there. In the case d > N , on the other hand, one needs to
resort to some summation technique to define an analytic function, but
that usually involves choices. This reflects the fact that the sigma model
is ultra-violet complete for d ≤ N but not for d > N . In the latter case,
to say something about short distance rΛ � 1, the theory needs to be
embedded into a ultra-violet complete theory, but things can depend on
the choice of the completion. Of course, the GLSM provides one choice
of UV completion, and the full partition function is the fully analytic
completion of the divergent series (4.77).

Landau-Ginzburg regime

We next consider the hemisphere partition function in the LG regime.
The LG image of a brane data B = (M,Q) is π−(B) = (M−, Q−) given
in (3.27). From the charge integrality of B and π−(B), we see that

(−1)r
0

plays the rôle of the Z2-grading operator of M−.
Since the p-poles are simple poles at σ′ = −i(n + 1)/d with n =

0, 1, 2, . . . , the partition function in the LG regime is

(4.84) ZLG
D2 (B) =

2π

d
(rΛ)

N−2
2

∞∑
n=0

(−1)n

n!
Γ
(
n+1
d

)N
etR

n+1
d f0

M

(
−in+1

d

)
.

Note that (rΛ)
N−2

2 etR/d = et/d(rΛ)
N(1−2/d)

2 = et/d(rΛ)
ĉLG
2 and

(4.85) f0
M

(
−in+1

d

)
= trM

(
eπir

0

e−2πin+1
d

)
= StrM−

(
ω−n−1
1

)
,

where ω1 is the generator e2πi/d of Zd and StrM−(?) is the supertrace

trM−((−1)r
0

?). Thus, we find

ZLG
D2 (B)(4.86)

=
2π

d
et/d(rΛ)

ĉLG
2

∞∑
n=0

(−1)n

n!
entR/dΓ

(
n+1
d

)N
StrM−

(
ω−n−1
1

)
=

2π

d
et/dΓ

(
1
d

)N · (rΛ)
ĉLG
2 StrM−

(
ω−1
1

)︸ ︷︷ ︸+et/dO(etR/d).

The underbraced factor of the leading term in the limit tR → −∞ is
indeed the hemisphere partition function for the brane π−(B) of the LG
orbifold (CN/Zd, f), obtained by applying the result (4.19) to the theory
with gauge group Zd, matter representation V and superpotential f(x).

In the case d > N (resp. d = N), this is the expansion of the full
partition function in the ultra-voilet limit rΛ → 0 (resp. the LG limit
ζ → −∞), while in the case d < N , this is the expansion of a part of the
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full partition function in the infra-red limit rΛ → ∞. Note the relation
etR/d = et/d(rΛ)1−N/d. This difference can also be seen from the growth
of the power series (4.86). The n-th term behaves for n � 1 as

(4.87)
entR/d

n!
Γ
(
n+1
d

)N ∼ en(tR−N+d−N log d)/dn(N−d)n/d− ĉLG+1

2

(
1 +O

(
1
n

))
.

We see that the series is abolutely convergent for any etR/d if d > N
and for | et/N | < N if d = N , while it is divergent if d < N . In the
case d ≥ N , the series can be summed up to an analytic function of
etR/d in an appropriate domain and may be used as a definition of the
full partition function there. In the case d < N , on the other hand,
one needs to resort to some summation technique to define an analytic
function, but that usually involves choices. This reflects the fact that the
theory under question is a deformation of the LG orbifold by a relevant,
exactly marginal and irrelevant operator respectively for the case d > N ,
d = N and d < N . In the latter case, to say something about short
distances rΛ � 1, the theory needs to be embedded into a ultra-violet
complete theory, but things can depend on the choice of the completion.
Of course, the GLSM provides one choice of UV completion, and the
full partition function is the fully analytic completion of the divergent
series (4.86).

4.6. Differential Equations

As a function of the radius r and the FI-theta parameters t, the
hemisphere partition function of the GLSM satisfies certain differential

equations. We shall write down such equations for ZD2 = Z
A(+)

D2 .

Renormalization group eqaution

Let us first write down the renormalization group equation that
shows how the partition function ZD2 changes as the distance scale is
varied. That is, we look at the responce to the differentiation with
respect to the radius r of the hemisphere. The radius enters into the
prefactor (rΛ)ĉ/2 and possibly also in the factor eitR(σ′) of the integrand
as tR(σ

′) = t(σ)−b1(σ
′) log(rΛ), where we recall b1 =

∑
i Qi from (3.10).

Noting iσ′
a e

itR(σ′) = ∂
∂ta eitR(σ′), we find

(4.88) r
∂

∂r
ZD2 =

(
ĉ

2
− b1

(
∂

∂t

))
ZD2 ,

where b1
(

∂
∂t

)
:=

∑
a b

a
1

∂
∂ta . The equation is invariant under the unphys-

ical shift of R-charge, which does ĉ → ĉ− b1(ε) and ZD2 → e−t(ε)/2ZD2 .



Notes on the Hemisphere 177

For example, in the model T
U(1)
N,d (with ε ↘ 0), the equation is

(4.89) r
∂

∂r
ZD2 =

(
N − 2

2
− (N − d)

∂

∂t

)
ZD2 .

Picard-Fuchs equations

The partition function ZD2 satisfies another set of differential equa-
tions associated to relations of local operators. We may consider insert-
ing an operator O, say, at the center z = 0 of the hemisphere. The

Fig. 6.

(B, γ)
O

r

The hemisphere with an insertion of an operator

supersymmetric localization still work if O is invariant under the A(+)-

type supersymmetry, QA+
(+)O = QA−

(+)O = 0. For example, an adjoint

invariant polynomial Φ(σ) of the scalar σ in the gauge multiplet, in-
serted at z = 0, satisfies this condition. With insertion of such an
operator, the computation of the partition function goes through as be-
fore and the result is simply (4.19) with an insertion of Φ(σ′/r) in the

integrand. If the operator is QA+
(+) or Q

A−
(+) exact, then the path-integral

should vanish. In particular, if there is an operator relation at z = 0,
F (t; Φ1(σ),Φ2(σ), . . .) ≡ 0 modulo QA+

(+) or QA−
(+) exact operators, the

partition function must vanish. Note that inserting a central component
of σ′ in the integrand is implemented by differentiation with respect to
it. Therefore, for each relation F (t;σz1 , σz2 , . . .) ≡ 0 among the central
components σz1 , σz2 , . . ., we have a differential equation

(4.90) F

(
t;

1

ir

∂

∂tz1
,
1

ir

∂

∂tz2
, . . .

)
ZD2 = 0.

Note thatQA+
(+) andQA−

(+) at z = 0 approach the superchargesQ+ andQ−
in the limit r → ∞ where we get back the standard flat background. This
implies that the operator relation F (t; Φ1(σ),Φ2(σ), . . .) ≡ 0 approaches
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in this limit to a relation of the chiral ring RA. In other words, it should
be a deformation of a chiral ring relation by terms that vanish as r → ∞.

Let us illustrate this in the model T
U(1)
N,d . The equation can be found

by using the Gamma function identity

(4.91) zΓ(z) = Γ(z + 1),

and the property that the brane factor vanishes at σ′ = 0,

(4.92) f0
M (0) = trM (−1)r0 = dimM ev − dimMod = 0,

which follows from the matrix factorization equation Q2 = W idM . In-
deed, repeatedly using (4.91), we find

(iσ′)N−1 · Γ(−idσ′ + 1)Γ(iσ′)N = −dΓ(−idσ′)Γ(iσ′ + 1)N(4.93)

σ′→σ′+i−→ −dΓ(−idσ′ + d)Γ(iσ′)N

= −d(−idσ′ + d− 1) · · · (−idσ′ + 1) · Γ(−idσ′ + 1)Γ(iσ′)N .

Because of f0
M (0) = 0, the function (iσ′)N−1Γ(−idσ′+1)Γ(iσ′)N eitRσf0

M (σ′)
has no pole between γ′ and γ′ + i. Note also that f0

M (σ′ + i) = f0
M (σ′).

Therefore, for an admissible (B, γ) we have

0 =

[∫
γ′
−
∫
γ′+i

]
dσ′(iσ′)N−1 · Γ(−idσ′ + 1)Γ(iσ′)N eitRσf0

M (σ′)(4.94)

(4.93)
=

∫
γ′
dσ′D(σ′)Γ(−idσ′ + 1)Γ(iσ′)N eitRσf0

M (σ′)

with

(4.95) D(σ′) = (iσ′)N−1 + d e−tR(−idσ′ + d− 1) · · · (−idσ′ + 1).

The admissibility is used to ensure that the contour γ′ − (γ′ + i) can be
closed at infinity. This shows that the partition function is annihilated
by D(−i ∂

∂t ), that is, it satisfies the differential equation

(4.96)

[(
∂

∂t

)N−1

− (−d)d e−tR

d−1∏
n=1

(
∂

∂t
− n

d

)]
ZD2 = 0.

For N = d = 5, this is the famous Picard-Fuchs equation for the periods
of the mirror quintic [2]. The corresponding operator relation must be
D(rσ) = 0. Using e−tR = e−t(rΛ)N−d, it reads

(4.97) σN−1 − (−d)d e−t(−iΛ)N−d
d−1∏
n=1

(
σ + i

n

dr

)
= 0.
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In the limit r → ∞, this becomes

(4.98) σN−1 − (−d)d e−t(−iΛ)N−dσd−1 = 0.

This is indeed the chiral ring relation of the model that follows partially

from ∂σW̃eff(σ) ≡ 0 mod 2πiZ for (3.16) with (4.36). See [34]. The rela-
tion can also be derived using the mirror description [32]. The relation
in the sigma model for the case d < N is proved mathematically in [35].

We may try to find the equation in other models, say, in a model
with U(1) gauge group. Let us put

(4.99) D±(σ
′) :=

∏
±Qi>0

|Qi|−1∏
n=0

(
iQiσ

′ +
Ri

2
+ n

)
.

Using (4.91), we find

D±(σ
′)
∏
i

Γ

(
iQiσ

′ +
Ri

2

)
(4.100)

=
∏

±Qi<0

Γ

(
iQiσ

′ +
Ri

2

) ∏
±Qi>0

Γ

(
iQi(σ

′ ∓ i) +
Ri

2

)
,

which means that
(4.101)

D+(σ
′)
∏
i

Γ

(
iQiσ

′ +
Ri

2

)
σ′→σ′+i−→ D−(σ

′)
∏
i

Γ

(
iQiσ

′ +
Ri

2

)
.

Note that the left hand side of (4.101) has no pole between γ′ and γ′+ i
as long as the bound 0 < Ri < 2 is satisfied. Therefore, for an admissible
(B, γ) we have

0 =

[∫
γ′
−

∫
γ′+i

]
dσ′D+(σ

′)
∏
i

Γ

(
iQiσ

′ +
Ri

2

)
eitRσ′

fM (σ′)(4.102)

=

∫
γ′
dσ′ (D+(σ

′)− e−tRD−(σ
′)
)

×
∏
i

Γ

(
iQiσ

′ +
Ri

2

)
eitRσ′

fM (σ′),
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which yields the differential equation

⎡⎣ ∏
Qi>0

Qi−1∏
n=0

(
Qi

∂

∂t
+

Ri

2
+ n

)
− e−tR

∏
Qi<0

|Qi|−1∏
n=0

(
Qi

∂

∂t
+

Ri

2
+ n

)⎤⎦ZD2

(4.103)

= 0.

This holds in any model, with or without superpotential W . In the

model T
U(1)
N,d , this equation is one order higher than (4.96). In fact, it is

nothing but ∂
∂t (4.96). To get (4.96), we needed to use the property (4.92)

of the brane factor. Similarly, if the model has a non-zero superpotential
W , the brane factor fM (σ′) has an extra property by which we may be
able to find a lower order equation.

Let us show this in the model T
U(1)
�w,d labelled by �w = (w1, . . . , wN ) ∈

(Z>0)
N and d ∈ Z>0. The model is similar to T

U(1)
N,d , but is different just

in that C(1)⊕N is replaced by ⊕N
i=1C(wi) and f(x) is quasihomogeneous,

f(cw1x1, . . . , c
wNxN ) = cdf(x1, . . . , xN ). The R-charge is R = (2 −

dε, w1ε, . . . , wN ε), and we shall work again in the limit ε ↘ 0. ζ � 0
is the geometric phase with the target space being the hypersurface Xf

in the weighted projective space P(w1, . . . , wN ), and ζ � 0 is the phase
where we have the LG orbifold (⊕N

i=1C(wi)/Zd, f). We assume that

Xf misses the orbifold loci. This requires that f contains a term cix
di
i

(ci �= 0) for each i with wi > 1, which means d = diwi, and that wi’s
are pairwise coprime. Then, for each i with wi > 1, for a brane data
B = (M,Q), if Qi denotes Q with all xj with j �= i set equal to zero,

(M,Qi) is a matrix factorization of cipx
di
i . By the gauge invariance,

Qi commutes with the gauge action of gi = e2πi/wi on M and hence

preserves each subspace M
(i)
q ⊂ M of weight q ∈ Z/wiZ. That is, the

matrix factorization (M,Qi) decomposes into the sum of (M
(i)
q , Qi)’s.

Since the vanishing (4.92) holds for each component (M
(i)
q , Qi), we find

that, for any l ∈ Z,

(4.104) f0
M (il/wi) = trM (−1)r0gli =

∑
q∈Z/wiZ

e2πilq/witr
M

(i)
q
(−1)r0 = 0.

In the present case, D± are

(4.105) D+(σ
′) =

N∏
i=1

wi−1∏
ni=0

(iwiσ
′ + ni), D−(σ

′) =
d−1∏
n=0

(−idσ′ + 1 + n).
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Note that the factor C(σ′) = i(σ′ + i)
∏

wi>1

∏wi−1
ni=1 (iwi(σ

′ + i) + ni)

of D+(σ
′ + i) divides D−(σ′). Therefore, if we write D+(σ

′ + i) =

D̃+(σ
′ + i)C(σ′) and D−(σ′) = D̃−(σ′)C(σ′), we find

(4.106)

D̃+(σ
′)Γ(−idσ′+1)

∏
i

Γ(iwiσ
′)

σ′→σ′+i−→ D̃−(σ
′)Γ(−idσ′+1)

∏
i

Γ(iwiσ
′).

Between γ′ and γ′ + i, the left hand side of (4.106) has simple poles
at σ′ = 0 and σ′ = ili/wi for wi > 1 and li = 1, . . . , wi − 1, but the
brane factor f0

M (σ′) vanishes at each of these points, thanks to (4.104).
Therefore, for an admissible (B, γ) we have

(4.107)

0 =

[∫
γ′
−

∫
γ′+i

]
dσ′D̃+(σ

′)Γ(−idσ′ + 1)
∏
i

Γ(iwiσ
′)eitRσ′

f0
M (σ′)

=

∫
γ′
dσ′

(
D̃+(σ

′)− e−tRD̃−(σ
′)
)

× Γ(−idσ′ + 1)
∏
i

Γ(iwiσ
′)eitRσ′

f0
M (σ′),

which yields
[
D̃+(−i ∂

∂t )− e−tRD̃−(−i ∂
∂t )

]
ZD2 = 0, that is,

(4.108)

⎡⎢⎢⎣( ∂

∂t

)N−1

− (−d)d∏
i w

wi
i

e−tR
∏

1≤n≤d−1
n
d

�= ni
wi

(
∂

∂t
− n

d

)⎤⎥⎥⎦ZD2 = 0.

The corresponding operator relation is

(4.109) σN−1 − (−d)d∏
i w

wi
i

e−t(−iΛ)
∑

i wi−d
∏

1≤n≤d−1
n
d

�= ni
wi

(
σ + i

n

dr

)
= 0.

It reduces in the flat space limit r → ∞ to the chiral ring relation.
For example, for the cases (�w; d) = (1, 1, 1, 1, 2; 6), (1, 1, 1, 1, 4; 8),

(1, 1, 1, 2, 5; 10), the above equations agree with the Picard-Fuchs equa-
tions for the periods in the mirror of the Calabi-Yau three-folds Xf with
h1,1(Xf ) = 1 [36–38]. The analysis can be extended to more general
models. For example, if we apply it to models for Calabi-Yau hypersur-
faces in toric varieties, we obtain the system of Picard-Fuchs equations
as studied in, say, [39].
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5. D-Brane Central Charges

In this section, we discuss what the hemisphere partition function is
computing. It turns out that it is related to what is known as the central
charge of the brane. The central charge (in this context) is originally
defined in a particular situation in superstring theory, but is generalized
to other areas of reserach. The hemisphere is related both to the original
definition and to the generalizations. We will also find a surprising and
suggestive relation to “macroscopic loop” in matrix models.

5.1. The Central Charge in 4d N = 2 Compactifications

As is clear from the formulation and manifest in the resulting ex-
pression, the hemisphere partition function is invariant under continuous
deformations of the brane. In this sense, it may be regarded as a “topo-
logical invariant” of the brane. In particle mechanics, the basic examples
of invariant quantity of a particle are its electric and magnetic charges.
In superstraing theory, D-branes are dynamical objects and are charged
under Ramond-Ramond (RR) gauge potentials [40],1 just like the elec-
tron is charged under the electro-magnetic gauge potential. Therefore,
the first guess is that the hemisphere partition function is determined by

the RR-charges of the brane. Indeed, we have seen in the model T
U(1)
N,d

that the geometric expression depends on the brane E = π+(B) via its
Chern character ch(E), while the LG expression depends on the brane
(M−, Q−) = π−(B) via StrM−(ω), ω ∈ Zd \ {1}. They are known to
determine the RR charges of the branes in the sigma model [41, 42] and
in the LG orbifold [43] respectively.

There are several RR potentials in general and hence each D-brane
B has several RR charges. When we compactify Type II superstring
theory on a three-dimensional Calabi-Yau manifold, we obtain an N = 2
supersymmetric theory in the remaining four dimensions, and there is
a distiguished linear combination of the RR charges, denoted by Z(B)
and called the central charge. The name is after the fact that it is
the eigenvalue of the central element of the 4d N = 2 supersymmetry
algebra.2 The central charge plays a crucial rôle in determining the
stability of D-brane states, and motivated the mathematical study of
the stability condition of the category of branes. For Type IIA (resp.
Type IIB) string on a Calabi-Yau three-fold X, the relevant D-branes
are B-branes (resp. A-branes) in the sigma model with target X. For

1See Appendix B for what “RR” means.
2This should not be confused with the central charge c (or ĉ) which is the

central part of the 2d (super)conformal symmetry algebra.



Notes on the Hemisphere 183

Type IIB, the central charge of the A-brane wrapped on a Lagrangian
submanifold L is the period integral Z(L) =

∫
L
Ω of a holomorphic

volume form Ω of X. The corresponding state is stable (or BPS) when
L is a special Lagrangian submanifold of X so that |Z(L)| is equal to
the volume of L times |

∫
X
Ω ∧ Ω|1/2.

The theory T
U(1)
5,5 yields a family of SCFTs on M0

A = {et} = C \
{(−5)5} — a compactification of (3.18) at the LG point et = 0 — that
can be used for a 4d N = 2 compactification, say, of Type IIA string
theory. By mirror symmetry, it is equivalent to Type IIB string theory
on a family of Calabi-Yau three-folds Yt, and a detailed study of the
theory is performed by Candelas, de la Ossa, Green and Parkes in [2].
In particular, they computed the period integrals of Yt, that is, the
central charges of A-branes in Yt. Later, using mirror symmetry, the
results are rephrased as the formula for the central charge for B-branes
in the quintic three-fold Xf [44]. Comparing these results with the
results obtained in the previous section, we see that the central charge
agrees with the hemisphere partition function,

(5.1) ZD2(B) = Z(B) in T
U(1)
5,5 ,

up to the factor (rΛ)3/2 of radius dependence. Indeed, the integral
formula for the periods given in [2] matches exactly our integral formula
for the hemisphere (4.19), more specifically (4.43) with d = N = 5. For
example, see Eqn (3.14) in [2],

(5.2) �0(ψ) =
1

2πi

∫
C

ds
Γ(−s)Γ(5s+ 1)

Γ(s+ 1)4
eπis(5ψ)−5s,

where 0 < Arg(ψ) < 2π/5 and C is a contour parallel to the imaginary
axis located in −1/5 < Re(s) < 0, as depicted in Fig. 5 of [2]. The
parameter ψ is related to our t via et = −(5ψ)5. Using 1/Γ(s + 1) =
2i sin(πs)Γ(−s)/(−2πi), after the change of integration variables s =
−iσ′, we see that this integral is nothing but the integral (4.43) with

ε ↘ 0 and fM (σ′) = (eπσ
′ − e−πσ′

)4 for −π < θ < π, up to an overall
constant and (rΛ)3/2, where the contour γ′ is parallel to the real axis
located in −1/5 < Im(σ′) < 0. If this fM (σ′) comes from a brane data
B, its Chan-Paton charges would be from {0,±1,±2}. Thus, this would
be grade restricted with respect to the window −π < θ < π, and the
contour is the same as the one we proposed for the hemisphere for any
value of ζ. In the geometric phase, the corresponding Chern character
would be

(5.3) “ch(π+(B))” =
fM ( H

2π )

1− e5H
= −1

5
H3 = a generator of H6(Xf ,Z),
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which is the Chern character of the skyscraper sheaf at a point pf Xf

(a D0-brane). Another decisive support of the relation (5.1) can be
found in the geometric regime. The formula for the central charge for a
general B-brane in the quintic Xf is extracted in [44] from [2] via mirror
symmetry, and it agrees with the large volume expansion (4.77) for the
hemisphere partition function, up to (rΛ)3/2.

The relation (5.1) is supported also by the differential equation. It
was found in [2] that the period integrals in Yt satisfy the Picard-Fuchs
equation, which is the same as the equation (4.96) with d = N = 5
satisfied by the hemisphere partition function, as noted earlier. This
extends also to other models. Therefore, it is very plausible that the
relation between the hemisphere and the central charge holds in a general
model for 4d N = 2 compactification. In fact, the relation can be
extended to a wider range of models.

5.2. The Central Charge in 2d (2, 2) Supersymmetric QFTs

From the viewpoint of the string worldsheet, the RR charges of a
D-brane B are measured by taking the overlap of the boundary state of
the D-brane

RR
〈B| and the RR ground states. See Appendix B for the

definition of boundary states. And the central charge is the overlap with
a distingusihed ground state |0〉

RR
,

(5.4) Z(B) =
RR
〈B|0〉

RR
.

If B is a B-brane (resp. an A-brane), |0〉
RR

is the state that corresponds
to the identity operator under the A-type (resp. B-type) spectral flow.
That is, the overlap (5.4) can be represented in path-integral as the
partition function on the semi-infinite cigar, with the D-brane B as the
boundary condition and A-twist (resp. B-twist) in the curved region.
See Fig. 7. This formulation allows us to generalize the definition of

Fig. 7.

B

Z(B) = lim
L→∞

L

twist here

The CV Central Charge

the central charge in much wider range of theories than the SCFTs
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for 4d N = 2 string compactifications. The overlap (5.4) or the path-
integral Fig. 7 makes sense for a B-brane (resp. A-brane) in a 2d (2, 2)
supersymmetric QFT as long as the theory admits an A-twist (resp. a
B-twist). This is so in SCFTs with an arbitrary ĉ and even in models
which are not necessarily conformal. The only thing we need is A-twist
(resp. B-twist). We shall call it the CV central charge, after the work by
Cecotti and Vafa [45] who studied the inner products of RR ground states
using worldsheets like Fig. 7. We may then ask whether the hemisphere
partition function is equal to the CV central charge in general

(5.5) ZD2(B) ?
= ZCV(B).

The space of RR ground states form a vector bundle over the pa-
rameter space M = MA (resp. MB), which we shall call the vacuum
bundle Hv. To be specific, we consider states defined on the circle of
circumference β. This bundle is equipped with the hermitian inner prod-
uct g induced from the one on the full space of states, and also with a
holomorphic structure; the worldsheet like Fig. 7 with an insertion of a
chiral operator φ at the tip defines a RR ground state |φ〉

RR
, and if φ(t)

is a holomorphic family of chiral operaors over U ⊂ M, then |φ(t)〉
RR

is a
holomorphic section of Hv over U . We denote the associated hermitian
connection by D. For a local operator O, we denote by CO the operator
on Hv defined by multiplication by O followed by the projection to Hv.
In [45], it was shown that these structures satisfies a system of equations
called the tt∗ equations, which amounts to the flatness of the connection
∇ of Hv defined by

(5.6) ∇φ := Dφ + β eivCφ, ∇φ := Dφ + β e−ivCφ,

for an arbitrary phase eiv. Here, φ and φ are A-chiral and anti-A-
chiral operators (resp. B-chiral and anti-B-chiral operators) and may be
identified respectively as the holomorphic and anti-holomorphic tangent
vectors of M = MA (resp. MB) that correspond to the deformation of
the (Minkowski) action by −Q+Q−φ and Q+Q−φ (resp. −Q+Q−φ and

Q+Q−φ).
Properties of ZCV(B) = RR

〈B|0〉
RR
, or more generally, of the overlap

of the boundary state and all the RR ground states are studied in [47, 33].
It was found that

RR
〈B| defines a parallel section of H∗

v with respect to

the connection ∇ for the phase eiv = −i.3 In terms of local holomorphic

3More generally, the phase is eiv = −i eiu if B is a Beiu -brane (resp. Aeiu -
brane).
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coordinates tα, this is rephrased as follows. Let φα be the chiral operator
corresponding to ∂

∂tα and put ΠB
α =

RR
〈B|φα〉RR , which is obtained by the

path-integral as in Fig. 7 with φα inserted at the tip of the cigar. Then,

(5.7)
∂

∂ tα
ΠB

β = Aγ
αβΠ

B
γ − iβCγ

αβΠ
B
γ ,

∂

∂ tα
ΠB

β = iβCγ
αβΠ

B
γ .

Here Aγ
αβ , C

γ
αβ and Cγ

αβ are the representating matrices for Dφα , Cφα

and Cφα
with respect to the holomorphic frame {|φα〉RR}. C

γ
αβ is the same

as the structure function φαφβ = φγC
γ
αβ of the chiral ring. Using the tt∗

metric gαβ :=
RR
〈φα|φβ〉RR , the other two elements can also be written as

Aγ
αβ = gγλ∂αgλβ and Cγ

αβ = (gβνC
ν
αλg

λγ)∗. It was also found in [47, 33]

that ΠB
α’s are independent of the B-chiral (resp. A-chiral) parameters.

When we consider a family of superconformal field theories over a
subspace of M0

A (resp. M0
B), it follows from (5.7) that the CV cen-

tral charge ZCV(B) = ΠB
0 depends holomorphically on the parameters

(ti)�i=1 of the family and that it obeys holomorphic differential equations
which take the form of deformation of the chiral ring relation among the
corresponding marginal operators {φi}�i=1.

This can be shown as folows. Recall that the vector (resp. axial)
U(1) R-symmetry with charge integrality is used for the twist. A super-
conformal field theory also have an axial (resp. vector) U(1) R-symmetry,
which we shall call R’-symmetry for the moment. The chiral ring RA

(resp. RB) is graded by the R’-charge. The identity is the unique oper-
ator of the minimum R’-charge zero, and there is a unique operator of
the maximal R’-charge 2ĉ. The R’-charge of the state |φα〉RR is equal to
the R’-charge of the operator φα minus ĉ. This yields the selection rule:
gαβ = 0 unless φα and φβ have the same R’-charge, and in particular
g0α = δα,0g00. Therefore, Cγ

ı0 = (g0νC
ν
iλg

λγ)∗ = (g00C
0
iλg

λγ)∗. By the
R’-grading of the chiral ring, the product of a marginal operator φi with
any operator cannot include the identity component, C0

iλ = 0 for any λ.
This shows Cγ

ı0 = 0 for any γ and hence the second equations of (5.7)
read ∂ıΠ

B
0 = 0. That is, ΠB

0 is a holomorphic function of the marginal
parameters ti. Next, let us look at the first equations in (5.7) for the
components ΠB

ν where ν ranges over the basis of the subspace of the
chiral ring generated by the marginal operators under question, includ-
ing the identity. Let us align the components in the order of increasing

R’-charge, starting from ΠB
0 , and put them in a column vector �Π. Then,

the equations takes the form

(5.8) ∂i�Π = (Ai − iβCi)
T �Π,
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where Ai are R’-block diagonal and non-holomorphic matrices and Ci

are lower-triangular, holomorphic, and mutually commutative matrices.

By definition, all the components of �Π can be written as linear combi-
nations of holomorphic derivatives of the first component ΠB

0 , where the
coefficients are not necessarily holomorphic functions. Suppose there
is a chiral ring relation R(t;φ1, . . . , φ�) = 0 which we may assume ho-
mogeneous. It implies a matrix identity R(t;C1, . . . , C�) = 0 or its
transposed version. Then, using (5.8), we find an equation of the form

R
(
t; ∂

∂t1 , . . . ,
∂
∂t�

)
�Π = M�Π, for some matrix M which is the sum of

products of AT
i ’s, C

T
i ’s and their derivatives. Expressing �Π on the right

hand side in terms of the derivatives of Π0 and taking the first compo-
nent, we obtain a differential equation

(5.9)

[
R

(
t;

∂

∂t1
, . . . ,

∂

∂t�

)
+ δDR

]
ΠB

0 = 0,

for some differential operator δDR of lower order than R
(
t; ∂

∂t1 , . . . ,
∂
∂t�

)
.

The differentials in δDR are holomorphic ones by construction, but the
coefficients are not a priori holomorphic. However, the flatness of ∇
guarantees that they must be holomorphic.

This argument holds even when the theories are not exactly con-
formal — the only requirement is the existence of R’-symmetry with
the properties quoted at the begining of the previous paragraph. For
example, the sigma model with Calabi-Yau target X over the moduli
space of complexified Kähler class (resp. complex structure), the GLSM
obeying the Calabi-Yau condition over Mt (resp. MW ), and LG model
with a family of quasi-homogenious superpotentials. All these models
are expected to flow in the infra-red limit to a family of superconformal
field theories over the same parameter space. In the present discussion,
we shall call such theories “conformal” and the parameters “marginal”
by a slight abuse of language.

In the conformal case, we have seen that the CV central charge
ZCV(B) has all the properties that the hemisphere partition function
ZD2(B) has, concerning the dependence on the marginal parameters:
no dependence on the B-chiral (resp. A-chiral) parameters, holomorphic
dependence on the A-chiral (resp. B-chiral) parameters, and a differen-
tial equation for each relation among marginal A-chiral (resp. B-chiral)
operators. This is a strong support for the relation (5.5).

Another support for (5.5) can be obtained through the sphere par-
tition function ZS2 . Right after ZS2 for GLSM was computed in [4, 5],

it was observed in [6] in some Calabi-Yau examples including T
U(1)
5,5 that

it is related to the Kähler potential K for the Zamolodchikov metric on
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Mt ⊂ M0
A via

(5.10) ZS2 = e−K .

Later, this was shown to hold in general [7, 8]. In [45], it was shown that
the Kähler potential K on M0

A (resp. M0
B) is related to the RR-ground

state |0〉
RR

obtained via A-twist (resp. B-twist) by

(5.11) e−K =
RR
〈0|0〉

RR
.

Combining (5.10) and (5.11) we have

(5.12) ZS2 =
RR
〈0|0〉

RR
.

This was observed also in the Landau-Ginzburg model with quasihomo-
geneous superpotential: The inner product

RR
〈0|0〉

RR
is determined from

the tt∗ equation in [45], and it was found to be given by the same in-
tegral as in (4.35) for ZS2 . The relation (5.12) results in an important
consequence concerning (5.5). Note that, for any pair of basis {|i〉

RR
}

and {|j′〉
RR
} of the space H0

v of RR ground states with vector (resp axial)

R-charge zero4 we have

(5.13)
RR
〈0|0〉

RR
=

∑
i,j′

RR
〈0|j′〉

RR
gj

′ ı
RR
〈i|0〉

RR
,

where gj
′ ı is the inverse matrix to gıj′ =

RR
〈i|j′〉

RR
. If we can take

basis of H0
v corresponding to sets of D-branes, this can be regarded

as a “bilinear identity” expressing the sphere partition function as a
sum of products of the hemisphere partition functions, in view of the
fact (5.12) and supposing that the conjectural relation (5.5) is indeed
true. Indeed, such a relation seems to hold. Let {Bi} be a set of B-
branes (resp. A−-branes) such that the ground state projections of their
RR boundary states, {Pv|Bi〉RR}, form a basis of H0

v. This is the case
when Bi’s represent a basis of the Grothendieck group of the category
of B-branes (resp. A−-branes). Let {B′

i} be a set of B−-branes (resp.
A-branes) with the same properties. Then, we claim the factorization
formula

(5.14) ZS2
!
=

∑
i,j

Z
(−)
D2 (B′

j) · IBi,B′
j · Z(+)

D2 (Bi),

4Note that the state |0〉
RR

obtained by the A-twist (resp. B-twist) as well

as the boundary state of a brane preserving the vector (resp. axial) R-symmetry
have vanishing vector (resp. axial) R-charge.
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where IBi,B′
j is the inverse matrix of

(5.15) IB′
j ,Bi

:= TrHB′
j ,Bi

(−1)F e−βH ,

which is the Witten index for the open string with the boundary con-

ditions B′
j on the left and the boundary condition Bi on the right. See

Appendix B for the definition of the conjugation B �→ B of boundary

conditions. Here Z
(±)
D2 is the partition function on the hemisphere with

A(±)-type (resp. B(±)-type) supersymmetry. (Recall that we had been

looking at ZD2 = Z
(+)
D2 for a while.) Note that the conjecture (5.5)

is Z
(+)
D2 (Bi) =

RR
〈Bi|0〉RR and extends to Z

(−)
D2 (B′

i) =
RR
〈B′

i|0〉RR , where

RR
〈B′

i|0〉RR is obtained from the path-integral on the worldsheet as Fig. 7
but with anti -topological twist in the curved region. By rotation, we can
simply identify

RR
〈B′

i|0〉RR with
RR
〈0|B′

i〉RR . Note also that the open string
Witten index is given by IB′

j ,Bi
=

RR
〈Bi|Pv|B′

j〉RR . Therefore, if the conjec-
ture is true, the factorization formula (5.14) is nothing but the identity
(5.13) and hence must hold. In [9], the formula was indeed shown to hold
for GLSM in the geometric regime where we can use the Riemann-Roch

formula for the index, IEj ,Ei
=

∫
X
ch(E∗

j )ch(Ei)ÂX . The formula also

holds in the LG model due to Poincaré-Lifshetz duality: Let B± ⊂ Cn

be the subset defined by ±ImW > R for a large positive R. Then,
Hn(Cn, B±) is the group of RR-charges of A±-branes. Let us choose
a basis of these groups, {γi} ⊂ Hn(Cn, B−) and {γ′

i} ⊂ Hn(Cn, B+).
Then, the intersection matrix Ij,i = #(γ′

j ∩ γi) has an inverse Ii,j and
the folowing identity holds

(5.16)

∫
Cn

e−ir(W+W )Ω ∧ Ω =
∑
i,j

∫
γ′
j

e−irWΩ · Ii,j ·
∫
γi

e−irWΩ,

for a holomorphic volume form Ω such as dx1∧· · ·∧dxn. The intersection
number #(γ′

j ∩ γi) is identified as the Witten index for the open string

between γ′
j and γi, and hence the identity (5.16) is nothing but (5.14).

The perfect similarity bewteen ZD2 and ZCV goes away if we con-
sider non-conformal theoies, such as a non-Calabi-Yau GLSM or a LG
model with a non-quasi-homogeneous superpotential. While they are
both independent of B-chiral (resp. A-chiral) parameters, they differ in
the dependence on the A-chiral (resp. B-chiral) parameters: ZD2(B) is
holomorphic but ZCV(B) is not — the proof requires R’-symmetry which
is absent in a non-conformal theory. However, it is true that ZD2(B) de-
pends on the brane B only through its RR charge. Therefore, we may
still say ZD2(B) =

RR
〈B|Ω〉

RR
for some RR ground state |Ω〉

RR
. On the
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other hand, it was shown in [48] that the sphere partition function is in-
variant under a one parameter family of deformation of the background,
and the limit of the deformation can be interpreted as the inner product
of a pair of RR ground states, ZS2 =

RR
〈Ω′|Ω′′〉

RR
. If the ground states

|Ω〉
RR
, |Ω′〉

RR
, etc that appear in the above relations are related to each

other, then, via the identity like (5.13), we should again have a factor-
ization formula for the sphere partition function. Indeed, the formula
(5.14) was shown in [9] to hold in GLSM with a geometric regime with

Fano targets space as well, such as T
U(1)
N,d with d < N . Also, the iden-

tity (5.16) holds whether or not W is quasihomogeneous. The formula
suggests a more precise version of the relations: There are families of

RR ground states |Ωeiu

(±)〉RR = |Ω,Aeiu

(±)〉RR (resp. |Ω,Beiu

(±)〉RR) parametrized

by eiu ∈ U(1), such that the partition function on the sphere with the
A-type (resp. B-type) supersymmetry is given by

(5.17) ZS2 =
RR
〈Ω−1

(+)|Ω1
(+)〉RR =

RR
〈Ω−1

(−)|Ω1
(−)〉RR ,

and the partition function on the hemisphere with the A(±)-type (resp.
B(±)-type) supersymmetry and a B±1-brane (resp. A∓1-brane) B± at
the boundary is given by

Z
(+)
D2 (B+) = RR

〈B+|Ω1
(+)〉RR =

RR
〈Ω−1

(−)|B+〉RR ,(5.18)

Z
(−)
D2 (B−) = RR

〈B−|Ω1
(−)〉RR =

RR
〈Ω−1

(+)|B−〉RR .(5.19)

For the sphere or hemisphere with Aeiu or Aeiu

(±)-type (resp. Beiu or

Beiu

(±)-type) supersymmetry, we replace Ω±1
(±) by Ω±eiu

(±) in the above ex-

pressions.

5.3. The Central Charge in Topological String Theory

The hemisphere partition function can also be related to a natural
observable in topological field/string theory. A central element in this
relation is what is known as Dubrovin’s connection of a vector bundle on
the space M × C∗, where M is the space of supersymmetry preserving
parameters of the theory, MA or MB, and C

∗ is the space of an addi-
tional parameter. It turns out that this additional parameter is related
to the radius r of the hemisphere. We will also find a relation to what
is known as macroscopic loops in the theory of 2d quantum gravity. In
this connection, the radius r is related to the length � of the loop.

In the literature, several different symbols are used for Dubrovin’s
parameter. For convenience, we list below these symbols and the pa-
rameter z used in this section as well as the corresponding parameters
in the 2d gravity and the hemisphere:
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Reference A B C D E this section 2d gravity hemisphere

Notation δ �
−1 z z−1 u−1 −z−1 −� −rΛ

The references are: (A) Kyoji Saito’s original papers [15–17]; (B) Given-
tal’s earlier paper [49]; (C) Dubrovin’s paper [51]; (D) Givental’s later
paper [52] and Iritani [53]; (E) Katzarkov et al [54].

Frobenius Manifold

Recall that a 2d (2, 2) supersymmetric field theory with a vector
(resp. an axial) U(1) R-symmetry with charge integrality admits an
A-twist (resp. a B-twist). Local operators of the resulting topologi-
cal field theory are elements of the chiral ring R = RA (resp. RB),
and the sphere three point functions 〈O1O2O3〉S2 define a structure
of Frobenius algebra on R: it has a symmetric non-degenerate bilinear
form η(O1,O2) = 〈 id O1O2〉S2 under which the product is self-adjoint,
η((O1 · O2),O3) = η(O1, (O2 · O3)). Symmetry and self-adjointness
follow from the properties of topological correlation functions, and non-
degeneracy can be shown, say, by the spectral flow to RR ground states.
Recall that elements of R are naturally identified as tangent vectors of
type (1, 0) of the deformation space M = MA (resp. MB), and hence we
have an isomorphism TM

∼= R of holomorphic vector bundles on M. In
particular, each fiber of TM is equipped with a structure of Frobenuius
algebra. It varies holomorphically on M and the bilinear form η can be
regarded as a holomorphic metric on M, called the topological metric.

In [56], Dijkgraaf, Verline and Verlinde studied properties of the
sphere three point functions of the family of topological field theories
obtained by twisting a 2d (2, 2) superconformal field theory of central
charge c = 3 ĉ and its deformations. Later in [50, 51], Dubrovin extracted
the finding and summarized into the structure of Frobenius manifold on
the space M, which turned out to be the same as the flat structure
found by K. Saito a decade earlier [15–17]. In the formulation of [51], it
is stated as follows:

(i) The topological metric η is flat, i.e. the Levi-Civita connection
∇η has zero curvature.

(ii) The vector field corresponding to the identity is ∇η-parallel.

(iii) There is a holomorphic vectore field, called Euler vector field
E, such that LEη = (2− ĉ)η and that ∇ηE : TM → TM defined
by v �→ ∇η

vE is diagonalizable.
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(iv) The connection ∇̃ of the vector bundle TM over M×C∗
z defined

below is flat,

∇̃v := ∇η
v − z−1Cv,(5.20)

∇̃z ∂
∂z

:= z
∂

∂z
+ z−1CE + μ(5.21)

where Cv is the multiplication by v ∈ TM and

(5.22) μ := 1− ĉ

2
−∇ηE.

We emphasize that the connections ∇η and ∇̃ of TM are holomorphic
connections and are not the same as the C∞ connections D and ∇ of Hv

introduced in the previous subsection, even though TM
∼= R and Hv are

isomorphic as holomorphic bundles via the spectral flow. The relation
between them was discussed in [57] (see also [58]).

We can find flat coordinates (tα)N−1
α=0 of (M, η), such that ∂

∂t0 cor-
responds to the identity operator, the Euler vector field is of the form
E =

∑
α (Eα

0 + (1− qα)t
α) ∂

∂tα , and ηαβ is non-zero only if qα + qβ = ĉ,

for some constants Eα
0 and qα. In particular μα

β =
(
qα − ĉ

2

)
δαβ . If the

theory at the origin t = 0 is a superconformal field theory, then Eα
0 are

zero and 2qα is the R’-charge, that is, the axial (resp. vector) R-charge,
of the operator φα corresponding to ∂

∂tα . In particular, q0 is zero and ti

with qi = 1 are marginal parameters. In the flat coordinate system, a

section ξ = ξαdt
α of T ∗

M over M× C∗ is ∇̃-parallel when

∂

∂tβ
ξα = −z−1Cγ

βαξγ ,(5.23)

z
∂

∂z
ξα =

(
−Eβ ∂

∂tβ
+ qα − ĉ

2

)
ξα.(5.24)

The identity component satisfies

(5.25) z
∂

∂z
ξ0 =

(
−Eβ ∂

∂tβ
− ĉ

2

)
ξ0.

For each chiral ring relation R(t;φi1 , . . . , φis) = 0, following the same
procedure as in the derivation of (5.9), we find a differential equation of
the form

(5.26)

[
R

(
t; z

∂

∂ti1
, . . . , z

∂

∂tis

)
+ δDR

]
ξ0 = 0,

where δDR is a holomorphic differential operator of lower degree than
R.
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The equation (5.25) looks similar to the renormalization group equa-
tion (4.88) on the hemisphere partition function if we identify z with r−1

and the Euler vector field E as −b1
(

∂
∂t

)
. The fact that we have an equa-

tion (5.26) for each chiral ring relation R is also similar to the fact that
we have an equation (4.90) for each deformed relation among the central
components of σ (see (4.96) and (4.108) for concrete examples). This
suggests that the hemisphere partition function ZD2(B) for the GLSM

may be regarded as the identity component of a ∇̃-parallel section of
T ∗
M over Mt × C

∗, where the coordinate z of C∗ is identified as a com-
plexification of the inverse radius r−1.

We next confirm this in GLSM for the example T
U(1)
N,d for d ≤

N where the full partition function can be captured in the geometric
regime.

Gromov-Witten Theory

For the non-linear sigma model on a Kähler manifold X, as quoted
earlier, the chiral ring RA is the quantum cohomology ring (H∗(X;C), ·)
and the space MA may be identified as an open subset of H∗(X;C). The
topological metric is simply the Poincaré pairing η(ω1, ω2) =

∫
X
ω1 ∧

ω2 and therefore affine coordinates of MA ⊂ H∗(X;C) are flat. The
sigma model is not conformal in general, but may be regarded as a
“deformation” of a conformal theory with ĉ = dimC X =: D, which is
the model with a fine-tuned metric when X is Calabi-Yau and the model
with infinite volume when X is not Calabi-Yau. The conformal limit has
an axial R-symmetry where the axial R-charge of a chiral ring element
is the degree of the corresponding cohomology class.

Let {φα}N−1
α=0 ⊂ H∗(X;C) be a basis consisting of classes of definite

degrees, φα ∈ H2qα(X;C), and let (tα)N−1
α=0 be the corresponding affine

coordinates. We take φ0 = 1 ∈ H0(X;C) and {φi}�i=1 to be the basis of
H1,1(X). Note that ηαβ =

∫
X
φα∧φβ is non-zero only when qα+qβ = D.

The Euler vector field is given by

(5.27) E =
�∑

i=1

c1(X)i
∂

∂ti
−

N−1∑
α=0

(qα − 1)tα
∂

∂tα

where
∑

c1(X)iφi = c1(X) is the first Chern class of X.

∇̃-parallel sections of T ∗
MA

over MA × C∗ can be constructed us-
ing genus zero amplitudes in the associated topological string theory,
that is, the Gromov-Witten theory. In this theory, each element O ∈
H∗(X;C) = RA defines a primary operator denoted by the same sym-
bol (the one for O = φ0 = 1 is called the puncture operator P ), as
well as operators τnO = ψnO called the gravitational descendants, for
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n = 1, 2, . . . . See for example [59–63] for the definition and properties.5

For each O ∈ H∗(X;C), let us put

(5.28) w[O] :=
O

1 + z−1ψ
=

∞∑
n=0

(−1)nz−nτnO,

and

(5.29) ξα[O] :=
〈
P φα w

[
z−μ

(
zc1(X)O

)]〉
,

where 〈O1 · · · Os〉 is the genus zero amplitude in the background t. Then,

ξ[O] = ξα[O]dtα is a ∇̃-parallel section of T ∗
MA

. The construction is due
to Givental [49] and Dubrovin [51]. Givental introduced the combination
w[O] and showed that it defines parallel sections in the MA direction,
and Dubrovin put z−μzc1(X) to make it parallel also in the z-direction.
In view of its importance, let us give a proof of the assertion that ξ[O]

is ∇̃-parallel, that is, ξα[O] satisfy (5.23) and (5.24). Equation (5.23) is
an immediate consequence of the topological recursion relation [59],

∂

∂tβ
ξα[O] =

∞∑
n=0

(−1)nz−n〈φβ P φα τn(Oz) 〉(5.30)

=
∞∑

n=1

(−1)nz−n〈 τn−1(Oz)P φγ 〉〈φγφβφα 〉

= −z−1Cγ
βαξγ [O],

with Oz := z−μ(zc1(X)O) where we used 〈φγPφβφα〉 = 0. To see (5.24),
first note that

z
∂

∂z
ξα[O] =

∞∑
n=1

(−1)n(−n)z−n〈P φα τn(Oz) 〉(5.31)

+
∞∑

n=0

(−1)nz−n〈P φα τn(−μOz + z−1c1(X) ∧ Oz) 〉.

5σnO in [59, 61] is equal to n!× τnO.
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On the other hand, the divisor equation [64] for c1(X) and the selection
rule (degree-matching) yield

c1(X)i
∂

∂ti
ξα[O] =

(5.32)

∞∑
n=0

(−1)nz−n

[⎛⎝−D

2
+ qα + n+

∑
β

(qβ − 1)tβ
∂

∂tβ

⎞⎠ 〈P φα τn(Oz) 〉

+ 〈P φα τn(μOz) 〉
]
+

∞∑
n=1

(−1)nz−n〈P φα τn−1(c1(X) ∧ Oz) 〉.

Summing the above two, we find that (5.24) holds.
For a B-brane in the sigma model, E ∈ Db

Coh(X), following [53], we
define its GW central charge as the identity component of ξ[O] for a
particular O determined by the brane,

ZGW(E)
(5.33)

:=
1

(−2πi)D

〈
P P w

[
z−μ

(
zc1(X)(−2πi)

deg
2

(
Γ̂X ch(E)

))]〉∣∣∣
M0,c

A ×C∗

=
1

(−2πi)D
ξ0

[
(−2πi)

deg
2

(
Γ̂X ch(E)

)]∣∣∣
M0,c

A ×C∗
,

where M0,c
A ⊂ MA is the subspace in which only the Kähler parameters

−ti are turned on.6 The equation (5.25) reads

(5.34) z
∂

∂z
ZGW(E) =

(
−c1(X)i

∂

∂ti
− D

2

)
ZGW(E),

which looks a lot closer to the renormalization group equation (4.88),

epsecially to (4.89), with z → r−1. This means that ZGW(E) is z−
D
2

times a function of

(5.35) tR := t− c1(X) log(z).

Using the divisor equation repeatedly, we find

(5.36) ZGW(E) = z−
D
2

[ ∫
X

exp

(
− i

2π
tR

)
Γ̂X ch(E) + O(etR)

]
,

6ZGW is related to the central charge ZIritani of [53] by ZGW(E) =

(−1)Dz−
D
2 ZIritani(E∨)|

M
0,c
A ×C∗ .
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where O(etR) is a power series of the form
∑

cβ e
〈tR,β〉 where the sum is

over the effective classes of X. This matches with the large volume be-
haviour of the hemisphere partition function (4.82) up to the numerical
constant C, under

(5.37) z = (rΛ)−1, tR = −ωR + iB.

Let us examine the relation more closely, for the model T
U(1)
N,d with

d ≤ N where we have a large volume formula (4.77) that captures the
full partition function. For convenience, we copy the formula here with
rΛ → z−1

Z
LV

D2(B) = Cz−
D
2

∞∑
n=0

(−1)Nn e−ntR

∫
Xf

Γ̂Xf
(n)(5.38)

× exp

(
i

2π
(tR − dπi)H

)
ch(E),

where tR = t+ (N − d) log(z), E = π+(B) and

Γ̂Xf
(n) =

Γ
(
1 + H

2πi

)N
Γ
(
1 + H

2πi + n
)N Γ

(
1 + d

(
H
2πi + n

))
Γ
(
1 + d H

2πi

) · Γ̂Xf
(0)(5.39)

=

∏dn
a=1

(
a+ dH

2πi

)∏n
b=1

(
b+ H

2πi

)N · Γ̂Xf
.

The integral remains the same if we operate
(
− 2πi

z

) deg
2 to the integrand,

which does H → − 2πi
z H for example, and then divide the result by(

− 2πi
z

)D
. This transforms the expression to

(5.40)

Z
LV

D2(B) =
C

(−2πi)D

∫
Xf

IXf
(t̃, z)·z−μ

(
zc1(Xf )(−2πi)

deg
2

(
Γ̂Xf

ch(E)
))

,

where

(5.41) t̃ := t− dπi

and

(5.42) IXf
(t̃, z) := et̃H/z

∞∑
n=0

e−nt̃ ·
∏dn

a=1(dH − za)∏n
b=1(H − zb)N

.
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At this point, we quote Givental’s mirror theorem [49] on the relationship

between this IXf
(t̃, z) and the Gromov-Witten theory of Xf . Its states

that (see also [62])

(5.43)

∫
Xf

IXf
(t̃, z)α = Y(t̃, z) 〈P P w[α] 〉

∣∣∣
t=−T (t̃)

,

for any α ∈ H∗(Xf ,C), where

(5.44)

d ≤ N d = N − 1 d = N

Y(t̃, z) 1 exp
(
−d! e−t̃/z

)
C−1z

D
2 Z(D0)

T (t̃) t̃H t̃H −2πi
Z(D2)
Z(D0)

H

in which Z(D0) and Z(D2) are Z
LV

D2 for the brane data B such that
ch(π+(B)) is the point class [pt] and the line class l respectively. Ap-
plying this mirror theorem to (5.40), we find the relationship between

the hemisphere partition function of T
U(1)
N,d and the GW central charge

of Xf for the case d ≤ N :

(5.45) Z
LV

D2(B)
∣∣∣
rΛ=z−1

= C · Y(t̃, z) · ZGW(π+(B))|t=−T (t̃) .

That is, they are equal up to a multiplicative renormalization and a
change of parameter. As a consistency test, let us compute ZGW for the
D0-brane in a Calabi-Yau manifld X:

(5.46) ZGW(D0) = z−
D
2 〈P P w [[pt]]〉 = z−

D
2

∞∑
n=0

(−z)−n〈P P τn[pt]〉.

On M0
A×C∗, it follows from the selection rule that only the n = 0 term

is non-zero, and from the puncture equation [61] that only the degree
zero map without Kähler perturbation contributes, finding

(5.47) ZGW(D0)|M0
A×C∗ = z−

D
2 .

Therefore, for d = N we indeed have Z
LV

D2(D0) = C · C−1z
D
2 Z(D0) ·

z−
D
2 = Z(D0).

Macroscopic Loop

The development of topological string in [59–61], especially the in-
troduction of gravitational descendants, is motivated by the solution of
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two-dimensional quantum gravity via matrix models [65]. The partition
function of the one matrix model is

(5.48) Z(N,V ) =

∫
HN

dM exp
(
−N trV (M)

)
where HN is the space of N × N hermitian matrices, dM is the flat
measure and V is a polynomial with a quadratic and higher order terms.
The Feynman diagram expansion of this integral can be organized into
the sum over triangulated surfaces [66]. In a certain limit where the
size N is sent to infinity and the potential V is tuned at the same time
(double scaling limit), the expansion can be regarded as the sum over
closed oriented 2d Riemannian manifolds, including the sum over the
genus, with the weight given by the partition function of a conformal field
theory. That is, the theory can be regarded as the 2d quantum gravity
coupled to a CFT. There is a series of double scaling limits, labelled
by m = 1, 2, 3, . . ., where the CFT is the (p, q) = (2m − 1, 2) minimal
model. The m = 2 theory, where the CFT is empty, is the pure gravity.
The m = 1 theory is identified [67] with the pure topological gravity,
that is, the Gromov-Witten theory of a point. The model with ν matrix
variables yields the theory of gravity coupled to the (p, ν + 1) minimal
CFT, and the (1, ν + 1) theory is the topological string associated with
the LG B-model with superpotential W = xν+1, or equivalently, the
FJRW theory for (C/Zν+1, x

ν+1).
Insertion of trM j into the integrand of (5.48) creates a j-gonal hole

in the triangulated surfaces. See Fig. 8. In the double scaling limit,
certain linear combinations of trM j with finite j’s become local opera-
tors σ0=:P, σ1, σ2, . . . while a certain limit of trM j with j → ∞ yields
a macroscopic loop operator w(�) that creates a hole of length � in the
2d manifold [68]. The puncture operator and the gravitational descen-
dants, τn = τnφ0 with n = 0, 1, 2, . . . , in the topological gravity are the
local operators in the m = 1 theory. Correlation functions involving
macroscopic loops have been studied in [68–70] (see [71] for a review).
For example, at genus zero

〈P P w(�)〉 = const ·
√
� e−�〈PP 〉〈PPP 〉,(5.49)

〈P w(�1)w(�2)〉 = const ·
√
�1�2 e

−(�1+�2)〈PP 〉〈PPP 〉.(5.50)

The macroscopic loop w(�) for small � can be expanded as a power series
in � with coefficients given by the local operators. In the m = 1 theory
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Fig. 8. Insertion of trM9 creates a nine-gonal hole.

that corresponds to topological gravity, the series is

(5.51) w(�) = const ·
√
�

∞∑
n=0

(−1)n�nτn.

Indeed, under this, the results (5.49) and (5.50) can be reproduced from
the constitutive relations [61], n!m!〈τnτm〉 = 〈PP 〉n+m+1/(n +m + 1).
We would also like to quote that the Virasoro constraint in the double
scaled theory [73, 74] can be written via (5.51) as a loop equation on w(�)
or its Laplace transform ŵ(ζ), and that it can be stated as regularity of
the energy-momentum tensor of a free chiral CFT on the ζ-space [74].
For the ν matrix model, there are ν different macroscopic loop operators
w1(�), . . . , wν(�), and it was suggested [72] that the small � expansion of
wi(�) in the (1, ν + 1) theory is given by (5.51) where τn is replaced by
τnOi for some primary Oi.

We see that w[P ] (5.28) in the Gromov-Witten theory of a point is
nothing but the small � expansion (5.51) of the macroscopic loop w(�)

with � = z−1, up to a normalization factor including z−
1
2 . This sug-

gests that we may view Givental’s operator w[O] in the Gromov-Witten
theory of a general target X, or in a general topological string theory,
as an expansion of the macroscopic loop operator labelled by O that
creates a hole of length � = z−1. Furthermore, if the relation of the type
(5.45) holds generally, then, the partition function on the hemisphere of
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radius r is proportional to a genus zero correlation function involving a
macroscopic loop of length r in the topological string,

(5.52) ZD2(r)(B) ∼ 〈P P w[B](r)〉.

This would be a strikingly simple relation. It is a very interesting prob-
lem to find a precise formulation of macroscopic loops in the topological
string theory that leads to (5.28) in the small length expansion, and to
see whether such a relation can be derived naturally.
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Appendix

A. Lagrangian and supersymmetry

In this appendix, we describe the supersymmetric action on the
Minkowski spacetime as well as on the sphere and the hemisphere for
GLSMs and LG models. For the GLSMs on the (hemi)sphere, we de-
scribe the one that preserves A (or A(±)) type supercharges. For the LG
models on the (hemi)sphere, we describe the one that preserves B (or
B(±)) type supercharges.

A.1. Minkowski space

We describe the supersymmetry and the Lagrangian of GLSM on
the Minkowski space, with time and space coordinates x0 and x1 and the
metric ds2 = −(dx0)2 +(dx1)2. We often use the light-cone coordinates
x± = x0 ± x1.

The gauge multiplet with gauge group G consists of a G connection
vμ, as well as a scalar σ, a Dirac fermion λ and a scalar D with values
in gC, gC and ig. The matter multplet in representation V consists
of a scalar φ, a Dirac fermion ψ and a scalar F , all with values in
V . The gauge connection vμ is “real-valued” so that the curvature is
vμν = ∂μvν−∂νvμ+i[vμ, vν ] and the gauge covariant derivative is Dμφ =
∂μφ+ ivμφ.

The supersymmetry transformation δ = iε+Q−− iε−Q+− iε+Q−+

iε−Q+ is

δv± =
i

2
ε±λ± +

i

2
ε±λ±,

δσ = −iε+λ− − iε−λ+,

δλ± = iε±

(
(D ± iv01)±

1

2
[σ, σ]

)
+ ε∓(D0 ±D1)σ∓,(A.1)

δD =

[
1

2
ε+

(
(D0 −D1)λ+ + i[σ, λ−]

)
+

1

2
ε−

(
(D0 +D1)λ− + i[σ, λ+]

)]
+ c.c.,
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and

δφ = ε+ψ− − ε−ψ+,

δψ± = ±iε∓(D0 ±D1)φ∓ ε±σ∓φ+ ε±F,(A.2)

δF = −iε+(D0 −D1)ψ+ −iε−(D0 +D1)ψ−

+ ε+σψ− + ε−σψ+ +i(ε−λ+ − ε+λ−)φ.

where we use the notation σ+ = σ and σ− = σ just in here. The
transformation of the complex conjugates are obtained from these by
the rule (AB)† = B†A†. For example, δσ = iλ−ε++ iλ+ε− = −iε+λ−−
iε−λ+. Note that σ is A-chiral and φ is B-chiral

(A.3) Q+σ = Q−σ = 0, Q+φ = Q−φ = 0.

Before writing down the Lagrangian, we choose an adjoint invariant
innder product on ig and G-invariant hermitian inner product on V ,

(A.4) (X,Y ) ∈ ig× ig �−→ 1

e2
XY ∈ R, (φ1, φ2) ∈ V × V �−→ φ1φ2 ∈ C,

which are both positive definite. We also write 1
e2XX = 1

e2X
2, φφ =

|φ|2, etc. The supersymmetric Lagrangian is

L = Q+Q−Q+Q−

(
− 1

2e2
|σ|2 + |φ|2

)
(A.5)

+ ReQ+Q−W (φ) + ReQ+Q−

(
−t(σ)

)
+ total derivative

= Lg + Lm + LW + Lt,

where

Lg =
1

2e2

[
|D0σ|2 − |D1σ|2 + iλ−(D0 +D1)λ− + iλ+(D0 −D1)λ+

(A.6)

+ (v01)
2 +D2 − 1

4
[σ, σ]2 − λ+[σ, λ−] + [σ, λ−]λ+

]
,

Lm = |D0φ|2 − |D1φ|2 + iψ−(D0 +D1)ψ− + iψ+(D0 −D1)ψ+(A.7)

+ |F |2 + φDφ− 1

2
|σφ|2 − 1

2
|σφ|2 − ψ−σψ+ − ψ+σψ−

− iφλ−ψ+ + iφλ+ψ− + iψ+λ−φ− iψ−λ+φ,
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LW = Re

[
F i ∂W

∂φi
− ψi

+ψ
j
−

∂2W

∂φi∂φj

]
,(A.8)

Lt = −ζ(D) + θ(v01).(A.9)

The Lagrangian (A.5) is manifestly supersymmetric since σ is A-chiral
and φ is B-chiral (A.3).

The fields D and F are “auxiliary fields” — they do not have the
kinetic terms. They can be eliminated by the equations of motion. After
doing that, we obtain the scalar potential (3.5).

In the present notes, we take the convention that the action is the
integral of Lagragian density divided by 2π:

(A.10) S =
1

2π

∫
R2

d2xL.

In particular, the theta term enters into the action as 1
2π

∫
R2 d

2x θ(v01) =∫
R2 θ( i

2πFv) where Fv = iv01dx
0 ∧ dx1 is the g-valued (“imaginary”)

curvature two-form.

A.2. Wick rotation and covariantization

The Lagrangian and supersymmetry on the Euclidean space is ob-
tained by Wick rotation x0 → −ix2 and L → −LE . The auxiliary fields
are also rotated as

D → iDE , DE ∈ ig,(A.11)

(F, F ) → (if, if).(A.12)

The fermion pairs, (λ±, λ±) and (ψ±, ψ±), are no longer related by com-
plex conjugation.

It is starightforward to formulate the theory on a general two-manifold
Σ with a Riemannian metric h and a spin structure, by the standard co-
variantization. Note that choice of a principal G bundle P on Σ is a part
of the variables. A scalar with values in a representation U of G should
now be regraded as a section of the vector bundle P ×GU on Σ. A Dirac
fermion ξ = (ξ+, ξ−) is a section of the spinor bundle S = S+⊕S−. The
positive and negative chirality spinor bundles can also be regarded as
the square roots of the (holomorphic or anti-holomorphic) tangent or
cotangent bundles:

(A.13) S+
∼=

√
KΣ

∼=
√
TΣ, S− ∼=

√
KΣ

∼=
√
TΣ.

The Lagrangian and the supersymmetry transformation on a general
surface (Σ, h) can then be found straightforwardly, by covariantization.
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The variational parameters ε± and ε± should now be regarded as sections
of S±. The variation of the Lagrangian under this is
(A.14)

δL = ∇με+G
μ
− −∇με−G

μ
+ −∇με+G

μ

− +∇με−G
μ

+ + total derivative,

where Gμ
± and G

μ

± are the supercurrents corresponding to Q± and Q±.
This shows that the condition for supersymmetry is ∇με± = ∇με± = 0,
which is impossible on a curved manifold.

A.3. Superconformal transformation

The superconformal transformation of the fields are obtained from
the Weyl covariantization. For the fields in GLSM, this is specified by
a choice vector R-charge for the B-chiral scalar φ. For this, we use the
one R : V → V that determines the vector R-symmetry of the system.
Given this choice, the superconformal transformation is

δscv± = δv±,

δscσ = δσ, δscσ = δσ,

δscλ = δλ+ iσ �∇ε̃, δscλ = δλ− iσ �∇ε̃,(A.15)

δscDE = δDE − 1
2 〈�∇ε̃, λ〉 − 1

2 〈�∇ε̃, λ〉,
and

δscφ = δφ, δscφ = δφ,

δscψ = δψ + i
2Rφ �∇ε, δscψ = δψ − i

2Rφ �∇ε,(A.16)

δscf = δf − 1
2 〈�∇ε, Rψ〉, δscf = δf + 1

2 〈Rψ,�∇ε〉,

where δ is the transformation obtained from (A.1) and (A.2) via Wick
rotation and covariantization. In the above expressions, we use λ =
−iλ− + iλ+, λ = iλ− − iλ+, ψ = ψ− + ψ+, ψ = ψ− + ψ+, ε = ε− + ε+,

ε = ε− + ε+, ε̃ = ε− + ε+ and ε̃ = ε− + ε+; �∇ is the Dirac operator; and
〈ε, η〉 is the invariant pairing of spinors, which reduces to ε+η− − ε−η+
on the flat Minkowski space.

The commutator of the superconformal transformations δsc1 and δsc2
with different variational parameters is

(A.17) [δsc1 , δsc2 ] = LZ12 + L̃Z̃12
+ JΘ12 + J̃Θ̃12

,

where LZ (resp. L̃Z̃) is the conformal transfomation by a holomorphic

vector field Z (resp. anti-holomorphic vector field Z̃) and JΘ (resp. J̃Θ̃)

is the right-handed R-rotation 1
2 (FV −FA) (resp. left-handed R-rotation

1
2 (FV + FA)) with the variational parameter Θ (resp. Θ̃). Z12, Z̃12,Θ12
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and Θ̃12 are the bilinears of the two superconformal variational parame-

ters εi+ = εi(z)
√

∂
∂z , εi+ = εi(z)

√
∂
∂z , εi− = εi(z)

√
∂
∂z , εi− = εi(z)

√
∂
∂z

(i = 1, 2),

Z12 = −2iε[1(z)ε2](z)
∂

∂z
, Z̃12 = 2iε[1(z)ε2](z)

∂

∂z
,

Θ12 = −2iε[1(z)
←−
∂
−→
zε2](z), Θ̃12 = 2iε[1(z)

←−
∂
−→
zε2](z),

where A
←−
∂
−→
xB := 1

2A∂xB − 1
2 (∂xA)B.

A.4. Action on the (hemi)sphere

Let Lcov be the Lagrangian obtained from the one (A.5) on the
Minsowski spacetime by Wick rotation and covariantization. The action∫
Σ
Lcov

√
hd2x is not invariant under any of the superconformal tranfor-

mations in general. However, on the sphere or on the hemisphere, there
is a way to modify the action so that it is (mostly) invariant under a
part of the superconformal transformations. The modified action is of
the form

SS2 =

∫
S2

(Lcov +ΔL)
√
hd2x,(A.18)

SD2 =

∫
D2

(Lcov +ΔL)
√
hd2x+

∫
∂D2

Lbdrydτ,(A.19)

where ΔL and Lbdry are given below, h is the round (hemi)sphere metric
of radius r and dτ is the line element of ∂D2. ΔL is the sum of

ΔLg =
1

2e2

[
2

r

(
DERe(σ) +

v12√
h
Im(σ)

)
+

1

r2
σσ

]
,(A.20)

ΔLm = φ

[
2R2 −R2

4r2
− i

R

r
Re(σ)

]
φ,(A.21)

and Lbdry is the sum of

Lg, bdry = − 1

4e2

[
∂n(σσ)± 2i

(
DEIm(σ)− v12√

h
Re(σ)

)]
,(A.22)

Lm, bdry = ± i

2
〈ψ,ψ〉 ∓ φ Im(σ)φ,(A.23)

Lt, bdry = ±Im

(
1

2π
t(σ)

)
,(A.24)

where ∂n is the outward normal derivative. Then, SS2 is invariant un-
der A-type supercharges as defined in Section 4.1. For the hemisphere,
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SD2,g, SD2,m, and SD2,t (whose definition is hopefully obvious) are in-
variant under A(±)-type supercharges, but SD2,W transforms as

(A.25) δSD2,W = ∓ i

2

∫
∂D2

[
〈ε, ψi〉∂iW + 〈ε, ψı〉∂ıW

]
dτ.

This failure of invariance is compensated by the transformation of the
Chan-Paton factor (4.12), trMPexp

(
−

∫
∂D2 A

)
, with A = Aτdτ given

by

(A.26) Aτ = ivτ ∓ Re(σ)− 1

2
ψi∂iQ+

1

2
ψ

ı
∂ıQ

† +
1

2
{Q,Q†} ∓ i

2r
r.

In this expression,

(A.27) ψ :=
1√
r

[
z

1
2ψ

{z}
− ± z

1
2ψ

{z}
+

]
, ψ :=

1√
r

[
z

1
2ψ

{z}
− ± z

1
2ψ

{z}
+

]
,

where the superscript {z} is put for the component with respect to the “z

frames”. For example ψ+ = ψ
{z}
+

√
dz and ψ− = ψ

{z}
−

√
dz. Also, in the

last term of (A.26), r in the denominator is the radius of the hemisphere
while r in the numerator is the vector R-charge on the Chan-Paton
vector space M that appears, say, in Eqn (3.19). Note that ψ and ψ are
fermionic and antiperiodic along ∂D2. At first sight, it appears strange

to add the terms − 1
2ψ

i∂iQ + 1
2ψ

ı
∂ıQ

† and the rest in (A.26). In fact,

the Chan-Paton factor trMPexp
(
−

∫
∂D2 A

)
is defined so that ∂iQ and

∂ıQ
† are treated as fermionic, and it make a perfect sense only when ψ

and ψ are antiperiodic. See Appendix B of [9] for more details.

A.5. The case of Landau-Ginzburg model

The Landau-Ginzburg model associated with a polynomial
W (x1, . . . , xN ) can be regarded as the GLSM with the trivial gauge
group G = {1}, the matter representation V = CN and the superpoten-
tial W (φ) = W (x1, . . . , xN ) for φi = xi.

1 In particular, the Lagrangian,
the supersymmetry transformation and the superconformal transforma-
tion in the theory can be obtained from the above formulae by setting
(v, σ, λ,D) all zero (we shall denote this process by “(−)|”). That is, the
Minkowski Lagrangian is L = Lm + LW given by (A.7)| and (A.8) and
the supersymmetry transformation is given by (A.2)|. Wick rotation

1The Landau-Ginzburg orbifold associated with a pair (W,Γ) is obtained
likewise by taking G = Γ and V to be the representation corresponding to the
given Γ action on the variables x1, . . . , xN .



Notes on the Hemisphere 207

and covariantization are done in the standard fashion, though we fol-
low (A.12). The superconformal transformation with a vector R-charge
R : CN → CN is given by (A.16)|.

Let us describe the actions on the sphere and on the hemisphere of
radius r that are invariant under the B-type and the B(±)-type super-
charges. B-type supersymmetry does not require the theory to have a
vector U(1) R-symmetry, and we may pick an arbitrary R. In fact, the
B-type supercharge action on (φ, ψ, f) with R-charge R is the same as
the B-type supercharge action on (φ, ψ, f!) with the vanishing R-charge,
with

(A.28) f! = f +
R

2r
φ.

The B-type supersymmetric Lagrangian on the sphere is L = Lm +LW

with

Lm = Lm, cov|f→f! ,(A.29)

LW = LW, cov|f→f! +
i

r
Re(W ).(A.30)

When W is not quasihomogeneous, it is the simplest to choose R = 0,
so that f → f! is trivial. When W is quasihomogeneous, we may take
R to the the one that makes W (λRφ) = λ2W (φ). Then, we have LW =
LW, cov. On the hemisphere, the action

(A.31) SD2 =

∫
D2

L
√
hd2x+

∫
∂D2

Lbdrydτ,

in invariant under the B(±)-type supercharges with

Lm, bdry = −1

2
∂n(φφ)± (fφ− φf),(A.32)

LW, bdry = ∓Im(W ).(A.33)

B. Boundary States Etc

In this Appendix, we describe the definition of the boundary states
and related matters in order to set the convention used in Section 5.2.

Let us consider a unitary quantum field theory in 1+1 dimensions. If
we quantize the system on a Minkowski cylinder, with space S1 and time
R, we have the Hilbert space HS1 of states on S1 and the Hamiltonian
Hc (“c” for “closed” string). We employ the standard notation where
the conjugation |a〉 �→ 〈a| is defined by 〈a|b〉 = (|a〉, |b〉) for the hermitian
inner product (−,−) of HS1 . Of course, (〈a|b〉)∗ = 〈b|a〉. Let us consider
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the Euclidean path integral on the finite cylinder [−�, 0]× S1 where we
impose the boundary condition B at the end {0} × S1 and put a state
|a〉 at the beginning {−�}×S1. We define the boundary state 〈B| by the
property that this path integral is equal to 〈B| e−�Hc |a〉. (To be precise,
〈B| is not normalizable but 〈B| e−�Hc is.) By definition, 〈a| e−�Hc |B〉 is
the complex conjugate of this 〈B| e−�Hc |a〉 and can be regarded as the
Euclidean path integral on the finite cylinder [0, �] × S1 where we put
the conjugate state 〈a| at the end {�} × S1 and impose a “conjugate
boundary condition” B at the beggining {0} × S1.

For example, the path integral on the cylinder [0, L] × S1 with the
boundary condition Bf at the end {L}×S1 and the boundary condition

Bi at the beginning {0}×S1 is given by 〈Bf | e−LHc |Bi〉. This can also be
regarded as the partition sum of the open string states on [0, L] with the
boundary condition Bi at the left end {0} and the boundary condition
Bf at the right end {L}. If the circumference of the circle is β, then,
it is TrHBi,Bf

e−βHo where HBi,Bf
is the Hilbert space of open string

states and Ho is the Hamiltonian (“o” for “open” string). We obtained
a relation

(B.1) β〈Bf | e−LHc |Bi〉β = TrHBi,Bf
(L)

e−βHo ,

where the dependence of the boundary states and the Hilbert space on
the lengths β and L is made explicit.

More generally, let Σ be a surface with an outgoing boundary circle
∂Σ ∼= S1, having a neighborhood isomorphic to (−ε, 0] × S1 for some
ε > 0. The path integral on the fields on the interior of Σ defines a
state |Σ〉 ∈ HS1 . Then, the partition function on Σ with the boundary
condition B at ∂Σ is given by

(B.2) Z(B|Σ) = 〈B|Σ〉.

Its complex conjugate can be regarded as the partition function on a
“conjugate surface” Σ with the conjugate boundary condition B,

(B.3) Z(Σ|B) = 〈Σ|B〉.

The surface Σ has an incoming boundary circle ∂Σ ∼= −S1, with a neigh-
borhood isomorphic to [0, ε) × S1. Note that it can be regarded as the
outgoing boundary by the sign flip of the coordinates, which involves
the orientation reversal of the boundary. The conjugate boundary con-
dition B at the incoming boundary is sometimes equal to the original
boundary condition B when the boundary is regarded as outgoing. For
example, for the sigma model with target X, the D-brane B supporting
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a hermitian vector bundle on X with a unitary connection (E,A) is ob-
tained by putting the Chan-Paton factor trEPexp

(
−i

∫
∂Σ

φ∗A
)
in the

path integral weight. The complex conjugate of this factor is[
trEPexp

(
−i

∫
∂Σ

φ∗A

)]∗
= trE∨Pexp

(
i

∫
−∂Σ

φ∗AT

)
(B.4)

= trEPexp

(
−i

∫
∂Σ

φ∗A

)
where we used the unitarity of the connection, A∗ = AT , in the first
equality. The above equation means that the conjugate boundary con-
dition B supports the dual bundle with the dual connection (E∨,−AT ),
and that B at the incoming boundary −∂Σ is equal to the original B at
the outgoing boundary ∂Σ. In particular, we have Z(Σ|B) = Z(B|Σ),
that is,

(B.5) (〈B|Σ〉)∗ = 〈Σ|B〉 = 〈B|Σ〉.

A boundary condition is said to be unitary when it has this property.
All the boundary conditions we consider in this paper are unitary.

When the system has spinors among the fields, we need to specify
the spin structure on the domain surface. On the flat cylinder, for
each of the two chiralities, there are two choices — Ramond (R) sector
and Neveu-Schwarz (NS) sector in which the parallel transport along
the non-trivial circle is the identity and the sign flip respectively. In
total, there are four sectors on the cylinder, (R,R), (NS,NS), (R,NS)
and (NS,R), or RR, NSNS, RNS and NSR for short.1 At the boundary
of a surface, we need to specify an identification of the spin bundles
of the opposite chiralities (which is also a part of the spin structure).
Therefore, a boundary circle has two spin structures — RR sector and
NSNS sector. Accordingly, for each boundary condition B, there are
two boundary states — |B〉

RR
and |B〉

NSNS
. In particular, there are two

versions of the identity (B.1),

RR
〈Bf | e−LHc |Bi〉RR = TrHBi,Bf

(−1)F e−βHo ,(B.6)

NSNS
〈Bf | e−LHc |Bi〉NSNS

= TrHBi,Bf

e−βHo .(B.7)

In a supersymmetric system, when Bf and Bi preserve a common su-
persymmetry on the strip [0, L] × R, then, the right hand side of (B.6)

1The “RR gauge potentials” mentioned in Section 5.1 are degrees of freedom
coming from the closed string states in the RR sector.
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is the open string Witten index IBi,Bf
. Since the index does not depend

on the lengths, it must be the same as the value in the limit L → ∞.
Since e−LHc approaches the projection Pv to the subspace of zero energy
states (supersymmetric ground states) as L → ∞, we find

(B.8) IBi,Bf
=

RR
〈Bf |Pv|Bi〉RR .

Let us now consider a (2, 2) supersymmetric quantum field theory.
Let B be a B-brane boundary condition. If it is imposed at the right
boundary x = 0 of the left-half Minkoswki spacetime {(x, t)|x ≤ 0},
then the supercharges Q+ + Q− and Q+ + Q− are preserved. This
means that the space components of the supercurrents vanishes at the
boundary, (G

x

+ +G
x

−)|x=0 = (Gx
+ +Gx

−)|x=0 = 0. In order to translate
this into the condition on the boundary state, we need to perform the
Wick rotation t → −iτ first, and then the 90◦ rotation (x′, τ ′) = (−τ, x)
in order to trade the space and time. Note that z = x + iτ and z′ =
x′ + iτ ′ are related by z′ = iz. Since G+

√
dz = G+′

√
dz′, G−

√
dz =

G−′
√
dz′, G+

√
dz = G+′

√
dz′ and G−

√
dz = G−′

√
dz′, the equations

of the current become the condition on the boundary states

(B.9) 〈B|(Gτ ′

+′ + iG
τ ′

−′) = 〈B|(Gτ ′
+′ + iGτ ′

−′) = 0.

By conjugation, they become

(B.10) (G
τ ′

+′ − iG
τ ′

−′)|B〉 = (Gτ ′
+′ − iGτ ′

−′)|B〉 = 0.

These are both in RR and NSNS sectors. Undoing the 90◦ rotation and
the Wick rotation, this means that the conjugate boundary condition
B at the left boundary x = 0 of the right-half Minkowski spacetime
{(x, t)|x ≥ 0} preserves the supercharges Q+−Q− and Q+−Q−. That
is, B is a B−1-brane boundary condition. Likewise, if B is a Beiu-brane
(resp. Aeiu -brane), then B is a B−eiu-brane (resp. A−eiu-brane). As
noted earlier, (B.6) can be interpreted as an open string Witten index
and (B.8) holds, provided Bf and Bi preserve the same set of super-
charges. This is when Bf and Bi preserve the same types of supercharges
but with the opposite relative signs. For example, when Bf is a B-brane
and Bi is a B−1-brame.

The hemisphere partition function is the partition function on D2

with a particular background, having an outgoing boundary ∂D2 =
S1 in the NSNS sector. For example, the one preserving A(±)-type
supersymmetry with a B±1-type boundary condition B may be denoted
by

(B.11) Z
A(±)

D2 (B) = Z(B|D2,A(±)) = NSNS
〈B|D2,A(±)〉NSNS

.
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To see what the complex conjugate is, we first note that the conjugate
hemisphere is the northern hemiphere D2

∞ (if D2 is a southern hemi-
sphere) obtained by z → z−1. This transforms the conformal Killing
spinors as s± 1

2
→ ∓ĩs∓ 1

2
and s̃± 1

2
→ ±is∓ 1

2
. This implies that the

conjugate background is (D2,A(±)) = (D2
∞,A−1

(±)) with an incoming

boundary, giving Z(B|D2,A(±))
∗ = Z(D2

∞,A−1
(±)|B). Note that B is

an B∓1-brane and that is consistent with the fact that the background
D2

∞,A−1
(±) preserves the B∓1-type supersymmetry at the boundary. We

can regard the northern hemisphre as the southern hemisphere by the
map z → z−1. Under this, the conformal Killing spinors transform as
s± 1

2
→ ±is∓ 1

2
and s̃± 1

2
→ ∓ĩs∓ 1

2
. This means that (D2

∞,A−1
(±)) with in-

coming boundary can be regarded as (D2,A−1
(∓)) with outgoing boundary.

If B is unitary, we have Z(D2
∞,A−1

(±)|B) = Z(B|D2,A−1
(∓)). Combining

what we have seen, we find

(B.12) Z(B|D2,A(±))
∗ = Z(D2

∞,A−1
(±)|B) = Z(B|D2,A−1

(∓)),

that is,
NSNS

〈D2,A(±)|B〉NSNS
=

NSNS
〈B|D2,A−1

(∓)〉NSNS
. The same holds when

(A(±), A
−1
(±)) is replaced by (Aeiu

(±), A
−eiu

(±) ) or (Beiu

(±), B
−eiu

(±) ). Note that

the expressiond for the hemisphere partition functions, (4.21) and (4.32)
for GLSMs and (4.27)–(4.28) and (4.31) for LG models, obey this rule.

C. Additional References

After the first version of the present note is submitted for refereeing
process, we noticed a few relevant references on which we make some
comments.

C.1. Hemisphere versus central charge

A proof of the relation (5.5), ZD2(B) =
RR
〈B|0〉

RR
=: ΠB

0 up to a
constant multiple, between the hemisphere partition function and the
CV central charge was proposed by Bachas and Plencner in [75] in the
case where the theory is a (2, 2) superconformal field theory with charge
integrality and the boundary condition B is superconformal and “stable”.
A superconformal boundary condition B is said to be stable when there
is a phase eiϕ such that

(C.1)
RR
〈B|φα〉RR = eiϕ

NSNS
〈B|φα〉NSNS

,

for any chiral primary field φα where the states |φα〉RR and |φα〉NSNS
are

related by the spectral flow. Let us briefly review their logic. To be
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specific, we consider the hemisphere for a B-brane B, so that the focus
will be the dependence on the moduli spaceM0 = M0

A of superconformal
field theories parametrized by the exactly marginal A-term deformation
parameters.

The argument closely follows the lines of [8] for the proof of the
relation (5.10), ZS2 = e−K , between the sphere partition function and
the Kähler potential of the moduli space M0. First, they formulated
the system on a surface with boundary, coupled to a supergravity back-
ground, and wrote down the “anomaly formula” that determines the
possible form of the response of the partition function to a change of the
background. The formula includes the Kähler potential K and a holo-
morphic function hB on the moduli space M0, where the latter depends
on the boundary condition B. Integrating the formula, they found that
the hemisphere partition function is given by

(C.2) ZD2(B) = constant× eh
B
.

By conformal perturbation theory, K and hB are related to the one
point function of the A-term marginal operators Oi on the left half-
space C≤0 = {w ∈ C |Re(w) ≤ 0} as1

(C.3)
1

4π
∂i(K + hB) = 〈Oi(−1)〉BC≤0

.

The operator Oi is related to an A-chiral primary operator φi of con-
formal weight ( 12 ,

1
2 ) by the descent relation Oi = Q+Q−φi. By the

supersymmetric Ward identity, this one point function is proportional
to the one for φi, and by conformal Ward identity for w �→ z = 1+w

1−w , it is

proportional to the one point function on the discD2 = {z ∈ C | |z| ≤ 1}:

〈Oi(−1)〉BC≤0
= −i〈φi(−1)〉BC≤0

= − i

2
〈φi(0)〉BD2(C.4)

= − i

2
NSNS

〈B|φi〉NSNS

NSNS
〈B|1 〉

NSNS

= − i

2
RR
〈B|φi〉RR

RR
〈B|1 〉

RR

= − i

2

ΠB
i

ΠB
0

.

In the second line, we used the stability condition (C.1). On the other
hand, the first equation in (5.7) for the circumference β = 2π and for

1As noted in Section 5.2, we normalize the deformation as ΔSE =∫
Σ
d2x(ΔtiOi + Δt̄iOı). In this normalization, Zamolodchikov metric is

G(∂i, ∂j) = 〈Oi(1)Oj(0)〉C = 1
π2 ∂i∂jK.
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the operators φα = φi and φβ = 1 reads ∂iΠ
B
0 = −∂iKΠB

0 − 2πiΠB
i

since A0
i0 = g00̄∂ig0̄0 = −∂iK, where we used g0̄0 = e−K [45]. That is,

∂i(K + logΠB
0 ) = −2πiΠB

i /Π
B
0 . Thus, we find

(C.5) 〈Oi(−1)〉BC≤0
=

1

4π
∂i(K + logΠB

0 ).

Comparing (C.3) and (C.5), we find that hB = logΠB
0 up to a constant

addition. Combining this with (C.2), we obtain the wanted relation,
ZD2(B) = ΠB

0 up to a constant multiple.
Since the hemisphere partition function and the CV central charge

are both invariant under continuous deformation of the boundary con-
dition, the relation ZD2(B) = ΠB

0 holds for a general, not necessarily
superconformal nor stable, boundary condition B provided there exists
a superconformal and stable boundary condition in the same homotopy
class.

C.2. Mathematical works related to the renormalization group
flow

In [9] (see also Section 4.4), taking the example T
U(1)
N,d with N �= d

for illustration, we examined the behaviour of the hemisphere partition
function in the ultra-violet (r → 0) and infra-red (r → ∞) limits, and
the result was used to learn which brane in the UV theory flows to which
part of the IR theory. In [76–78], analogous problems were studied in
the context of the Gromov-Witten theory of a Fano manifold X.

In [76] (see also [77]), Galkin, Golyshev and Iritani studied the be-

haviour of solutions to the quantum differential equation ∇̃s = 0 in the
limit z → 0 and presented two conjectures, Gamma conjectures I and

II. Recall from Section 5.3 that the hemisphere partition function Z
LV

D2

of the sigma model is proportional to a component ZGW of a solution to
the quantum differential equation, when the parameter z in the latter
is set to be the inverse radius of the hemisphere, z ∝ r−1. Therefore,
z → 0 corresponds to the infra-red limit r → ∞. When translated into
the sigma model language via this connection, the conjectures become
assertions concerning the IR behaviour of B-branes in the sigma model.

Let h be the Fano index of X, the largest integer such that c1(X)/h
is an integral class. Then, the group GA of anomaly free axial R-
symmetries is isomorphic to Z2h. It includes the fermion sign flip (−1)F

which can never be spontaneously broken. We consider the sigma model
with vanishing B-field, B = 0. We assume that the set of vacua that

maximize |W̃ | is a single GA orbit with stabilizer {1, (−1)F } including

one with W̃ = |W̃ |. Then, the conjectures read as follows.
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Gamma conjecture I
The structure sheaf OX descends at low energies to a brane sup-

ported purely at the vacuum with W̃ = |W̃ |max.

Gamma conjecture II
Suppose that all the vacua, say v1, . . .vN , have mass gaps and that

Db
Coh(X) has a full exceptional collection. Then, for each phase eiφ

such that any non-zero W̃ (vi)− W̃ (vj) is not parallel to eiφR, there are

branes Eφ
1 , . . . , E

φ
N in the sigma model that descend at low energies to

branes supported purely at the vacua v1, . . .vN respectively. Moreover,

if Im(e−iφW̃ (vσ(i))) ≤ Im(e−iφW̃ (vσ(j))) for a permutation σ ∈ SN ,

Eφ
σ(1), . . . , E

φ
σ(N) form a full exceptional collection of Db

Coh(X).2

The model T
U(1)
N,d with d < N corresponds to the Fano sigma model

where the target space X is the degree d hypersurface f = 0 in the
projective space PN−1, with Fano index h = N − d. The theory has

N − d massive vacua at (σ/Λ)N−d = (−d)d e−t (see (3.17)) with W̃ =
(N − d)σ, breaking the axial R-symmetry GA = Z2(N−d) to Z2, and, for

d ≥ 2, axial symmetry preserving vacua with W̃ = 0 of an SCFT with
ĉ = N(1− 2/d), the infra-red fixed point of the LG orbifold (CN/Zd, f).

In the case d = 2, the sector at W̃ = 0 has ĉ = 0 and consists of one
massive vacuum (resp. two massive vacua) when N is odd (resp. even).
Note that B-field vanishes when θ = −πd (see (3.15)), in which case

the GA-breaking massive vacua are at σk = Λ(dd e−ζ)
1

(N−d) e
2πik
N−d for

k ∈ Z/(N − d)Z and have W̃ = (N − d)σk. Indeed, when Λ is real, the

vacuum σ0 has W̃ = |W̃ |max. In comparison with the results with the

hemisphere, we should rotate the twisted superpotential as W̃ → −iW̃
due to the change Λ → −iΛ (4.36). We have seen in Section 4.4 that
the line bundle OX(q) for −Nπ < θ + 2πq < (N − 2d)π descends to a
brane supported purely at σq. Note that the bound on q for θ = −πd
(for B = 0) reads −(N − d)/2 < q < (N − d)/2, and q = 0 satisfies
it. In particular, the structure sheaf OX descends to a brane at the

vacuum σ0 that has W̃ = −i|W̃ |max. Gamma conjecture I indeed holds.
In the case d = 1 (X ∼= PN−2) and d = 2 (X is a quadric in PN−1),
all the vacua are massive and Db

Coh(X) has an exceptional collection.
Thus, the set-up of Gamma conjecture II is satisfied. The phase eiφ

may be identified with the phase e−2iβ that determines the preserved
supersymmetry. The case d = 1 is as discussed in [76] and the conjecture

2The inequality appears to be opposite to the one in [76, 77], but this is due
to the duality E → E∨ that appears in the footnote in page 195.
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holds. For the case d = 2 we need to consider the vacua (vacuum) with

W̃ = 0 that preserve(s) the axial R-symmetry. It would be interesting
to explicitly contruct the branes in the sigma model that descend prely
to these (this) vacua (vacuum). In the case d ≥ 3, the theory has a non-
trivial SCFT as an IR fixed point and the set-up of Gamma conjecture
II is not satisfied. However, we certainly have a (non-full) exceptional
collection in Db

Coh(X) that descend to branes supported at the massive
vacua, and Db

Coh(X) admits a semi-orthogonal decomposition by these

objects and the category MFZd
(f) from the SCFT at W̃ = 0, where the

latter sits in the “middle”.
In [78], Acosta considered the Picard-Fuchs differential equation

(4.108) for the model T
U(1)
�w,d and studied the behaviour of solutions at

e−tR → 0 and at e−tR → ∞. Let us restrict the description of this work

to the model T
U(1)
N,d which is familiar to us, though extension to the model

with general �w is very easy. The focus of [78] is the comparison between
the solutions at e−tR ∼ 0 determined by the Gromov-Witten theory of
the hypersurface Xf and the solutions at e−tR ∼ ∞ determined by the
FJRW theory of (CN/Zd, f). When d < N where the UV theory is the
sigma model, the former is analytic while the latter is formal, and when
d > N where the UV theory is the LG orbifold, the former is formal
while that latter is analytic. In [78], it was shown that a part of the the
analytic solution, when continued to the opposite regime, has the formal
solution as its asymptotic expansion. This is relevant to our question:
which branes in the UV theory descend to branes in the non-trivial IR
fixed point.

C.3. Picard-Fuchs equations as deformed chiral ring relations

In Section 4.6, we presented a picture of Picard-Fuchs equations as a
consequence of operator relations at the origin of the hemisphere, which
approach the chiral ring relations in the flat space limit r → ∞.

Similar pictures were presented in [79] in a different but related con-
text (two point functions on the Ω-deformed sphere) and also in [80] in a
closer context (two point function on the sphere with the background of
[4, 5]); Picard-Fuchs equations are regarded as relations among correla-
tors and they are interpreted as consequences of the operator relations,
the Ω-deformed chiral ring relations in [79] and the relations identical
to ours in [80].
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