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Abstract: We propose a formula for the exact central charge of a B-type D-brane that is
expected to hold in all regions of the Kähler moduli space of a Calabi–Yau. For Landau–
Ginzburg orbifolds we propose explicit expressions for the mathematical objects that
enter into the central charge formula. We show that our results are consistent with results
in FJRW theory and the hemisphere partition function of the gauged linear sigmamodel.
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1. Introduction and Summary

In the context of N = (2, 2) superconformal field theories with boundary, the central
charge Z(B) of a topological B/A-type D-brane B is defined as the correlator obtained
by inserting the boundary state associated to B on the bounding circle of an infinitely
long cigar that has a Ramond–Ramond (RR-) ground state corresponding to an element
of the (a, c)/(c, c) ring inserted at the tip. In this work the main focus will be on the
D-brane central charge of B-type D-branes in families of conformal field theories with
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central charge ĉ ∈ Z≥0. This is related to string compactifications on Calabi–Yau (CY)
spaces of complex dimension ĉ.

In practice, the central charge of a B-type D-brane B in a CY is difficult to compute,
as it receives instanton corrections depending on the Kähler moduli. One difficulty is
that the stringy Kähler moduli space MK is divided into chambers, and only some of
them have limiting regions that allow for a description of the CY compactification in
terms of geometry. In such large volume regions the central charge of a B-brane B on a
Calabi–Yau X has the form [1]

ZLV (B) ∝
∫
X
�̂Xe

B+ 1
2π ωch(BLV ) +O(e−t ), (1.1)

where B is the B-field,ω is the Kähler class, ch(BLV ) is the Chern character of the brane
at large volume, and �̂X is the Gamma class [2,3]. The subleading terms are instanton
corrections depending on the Kähler moduli t . The exact expression can be computed
using mirror symmetry [4,5], where it can be expressed in terms of periods of the mirror
CY, or directly in X , using supersymmetric localization [6–8].

The main goal of this work is to propose a definition of the exact central charge that
also holds in non-geometric regimes ofMK . We argue that it has a universal form:

Z(B) = 〈�̂∗ ◦ J|ch(B)〉, (1.2)

where the definition of the quantities entering this formula depends on the concrete real-
ization of the conformal field theory associated to the locus ofMK under consideration.
The intuition for such an expression to exist comes from various directions. One of them
is of course the worldsheet conformal field theory itself for which it does not play a role
whether the target space has a geometric description or not. The worldsheet point of
view in relation to (1.2) will be discussed in Sect. 2. Another motivation are the results
from supersymmetric localization [6–8] which showed that the hemisphere partition of
the gauged linear sigma model (GLSM) [9] computes Z(B). Since the GLSM provides
a common UV description of the CFTs parametrized by MK , this suggests a universal
structure in the conformal field theories and their observables in the IR.

To test (1.2) we will show that it works for the case of Landau–Ginzburg orbifolds
[10,11]. These are among the best-understood non-geometric descriptions of string com-
pactifications, and the quantities entering (1.2) have been defined in the context of FJRW
(Fan–Jarvis–Ruan–Witten) theory [12–14]. On the other hand, Landau–Ginzburg orb-
ifolds arise as phases, i.e. low-energy descriptions, of GLSMs. Therefore the hemisphere
partition function provides a means to test the central charge formula.

Let us summarize the main results of the article. We consider Landau–Ginzburg
orbifolds specified by (W,G, ρm,C

∗
L), whereW is the superpotential, G is the orbifold

group which we restrict to be abelian, ρm : G → GL(CN ) is the matter representation,
and C∗L is the left R-symmetry. We denote the corresponding R-charges by q1, . . . , qN .
For most of the discussion we will further assume that G is admissible, which means
that

〈J 〉 ⊆ G ⊆ Aut(W ), (1.3)

where J is the group element diag(e2π iq1 , . . . , e2π iqN ). The condition (1.3) guarantees
that the R-charges of the physical states are integral and that the theory allows for
a topological A-twist. Even though some of our results are more general, we further
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assume that the Landau–Ginzburg orbifolds we consider arise as limiting points in the
Kähler moduli space MK of a Calabi–Yau.

We propose a general formula for the J -function [15] J of abelian Landau–Ginzburg
orbifolds:

JLG(t) = ILG(u(t))

I0(u(t))
, (1.4)

where

ILG(u) =
∑
γ∈G

Iγ (u)e(a,c)γ , (1.5)

is the I -function. Here, e(a,c)γ denotes the basis elements of the narrow part (a, c) chiral
ring. “Narrow”, as opposed to “broad”, refers to those sectors of the (a, c)-ring that only
consist of the identity element, i.e. the vacuum. Furthermore, I0 is the component of
ILG corresponding to γ = id, and u(t) denotes a change from formal variables u to flat
coordinates t in the Landau–Ginzburg region of MK . Our proposal for the I -function
for a Landau–Ginzburg orbifold with G ∼= ∏h

a=1 Zda and h = dimHmar,0 parameters
u = (u1, . . . , uh) corresponding to the narrow marginal deformation sectors Hmar,0 in
the (a, c)-ring H(a,c) is

Iγ (u) = −
∑

k1,...,kh≥0
k′a=�a mod da

uk∏h
a=1 �(ka + 1)

N∏
j=1

(−1)〈−
∑h

a=1 kaqa,h+ j+q j 〉�(〈∑h
a=1 kaqa,h+ j − q j 〉)

�(1 +
∑h

a=1 kaqa,h+ j − q j )

(1.6)

with � = (�1, . . . , �h) determined by γ−1 J = ∏h
a=1 g

�a
a where ga is the generator of

Zda . The central piece of data is a matrix q with rational entries that encodes the action
of G on Hmar,0. Furthermore, 〈x〉 = x − 
x�. We show that ILG(u) satisfies a system
of GKZ differential equations.

For the Gamma class �̂∗ entering in (1.2) we propose the following definition for
Landau–Ginzburg orbifolds in terms of the matrix q:

�̂∗W,Ge
(a,c)
γ = �̂γ e(a,c)γ , �̂γ =

N∏
j=1

�

(
1−

〈
h∑

a=1
kaqa,h+ j − q j

〉)
. (1.7)

The information about the D-brane enters into (1.2) via the Chern character ch(B) ∈
H(c,c). B-type D-branes in Landau–Ginzburg orbifolds are matrix factorizations of W
[16,17]. For Landau–Ginzburg orbifolds the Chern character of a B-brane B has been
defined in [18]. Then (1.2) has the explicit realization in the Landau–Ginzburg orbifold
setting as

ZLG(B, u) =
〈∑

γ �̂γ Iγ e
(a,c)
γ

∣∣∣∑γ ′ ch(B)γ ′e
(c,c)
γ ′

〉
, (1.8)

where the pairing 〈e(a,c)γ |e(c,c)
γ ′ 〉 is related to the topological pairing 〈e(a,c)γ , e(a,c)

γ ′ 〉 through
〈e(a,c)γ |e(c,c)

γ ′ 〉 = 〈e(a,c)γ ,U ◦ e(c,c)
γ ′ 〉 where U is the spectral flow operator. All details can

be found in Sect. 3.
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The remaining sections are dedicated to testing ZLG(B, u) by various approaches.
One important reference point is FJRW theory where explicit expressions for the I -
function and the Gamma class have been given in [14,19], see also [20,21]. Extending
these results to orbifold groups other than G = 〈J 〉 and G = Aut(W ), and to several
marginal deformations, we compute the I -function in FJRW theory. Our result is

IW,G(u, z) =
∑
γ ′∈G

lim
λ→0

IT,γ ′(u, z; λ)eγ ′ (1.9)

with

IT,γ ′ (u, z; λ) = z1−
1
2 deg eγ ′

∑
{kγ≥0|γ∈G(2)}∏
γ∈G(2) γ

kγ =γ ′

∏
γ∈G(2)

(uγ )kγ

kγ !
N∏
j=1

�(
λ j
z − 〈

∑
γ∈G(2) θ

γ

j kγ + q j 〉 + 1)

�(
λ j
z −

∑
γ∈G(2) θ

γ

j kγ − q j + 1)
.

(1.10)

Here, eγ ′ is the basis of the FJRW state spaceHFJRW which is isomorphic to the (a, c)-
ring. The set G(2) = {γ ∈ G | ∑N

i=1 θ
γ

i = 2} labels those narrow twisted sectors of
HFJRW = ⊕

γ∈G HFJRW,γ that correspond to the marginal deformations of the (a, c)-

ring. Moreover, the θ
γ

j , j = 1, . . . , N , are the phases of γ ∈ G, and z is a parameter
that is arbitrary when one considers the Calabi–Yau case. We can show for a large class
of Landau–Ginzburg orbifolds that

IW,G(u,−1) = ILG(u). (1.11)

We also propose a more general definition of the Gamma class in FJRW theory as

�̂∗W,G =
⊕
γ∈G

∏
j∈Iγ

�(1− θ
γ−1
j )idHFJRW,γ

. (1.12)

where Iγ ⊂ {1, . . . , N } encodes the information on the narrow sectors. This also is
shown to coincide with the Landau–Ginzburg definition. The pairing onHFJRW is, up to
change of basis, the same as for the (a, c)-ring, the definition of the Chern character of
a B-brane is also the same as in the Landau–Ginzburg case. Given all this information
we can show that inserting the FJRW quantities into (1.2) yields the same result as the
Landau–Ginzburg orbifold case. Details on our results in the context of FJRW theory,
together with an overview of the FJRW formalism can be found in Sect. 4.

Section 5 is dedicated to the GLSM and the hemisphere partition function. The
explicit form of the hemisphere partition function ZD2(B, t′) for an abelian GLSM with
gauge group G = U (1)h , a charge matrix C = (L S) and a B-brane B is [8]:

ZD2(B, t′) = 1

(2π)h

∫
γ

dhσ
h∏

a=1
�

(
i

h∑
α=1

Lαaσα

)
N∏
j=1

�

(
i

h∑
α=1

Sα jσα + q j

)

· ei
∑

a,α σαLαa t′a
dimM∑
μ=1

eiπr
μ

e2π
∑

α w
μ
α σα ,

(1.13)
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where t′ ∈MK is the FI-theta parameter of the GLSM parametrizing the Kähler moduli
space MK . The last factor contains the information about the brane B, where M is its
Chan–Paton space and rμ and w

μ
α are its R- and gauge charges, respectively.

We show that the hemisphere partition function, evaluated in a Landau–Ginzburg
phase, coincides with the Landau–Ginzburg central charge:

ZLG
D2 (B, t′) = ZLG(B, e−t

′
), (1.14)

where B is the brane in the Landau–Ginzburg orbifold phase corresponding to B via
[22]. Note that the matrix q we have introduced in the Landau–Ginzburg orbifold is
related to the charge matrix C of the GLSM by

q = L−1C. (1.15)

The h × h matrix L is the matrix of gauge charges of those h chiral matter fields in the
GLSM that get a VEV in the Landau–Ginzburg orbifold phase.

In Sect. 6 we work out these various approaches to the D-brane central charge in
several examples. The first example is the inevitable quintic, where most results can be
found in the literature. For the quintic we also show that (1.2) also holds in the geometric
phase of MK . Then we move on to two-parameter models. In one of the examples we
also compute the FJRW invariants. To our knowledge, this is the first time such invariants
have been computed in a multi-parameter model. Furthermore, we consider an example
where the Landau–Ginzburg potential is not a Fermat polynomial. Finally, we discuss a
four-parameter model which has broad sectors—a case where our methods to compute
the central charge do not apply. We propose a way around this issue by introducing an
alternative formulation where all the moduli are realized in terms of narrow sectors. This
is the Landau–Ginzburg equivalent of a way to deal with non-torically realized moduli
in geometric settings [23], and seems to apply for a well-defined class of examples with
broad sectors.

2. D-Brane Central Charges in N = (2,2) SCFTs

In this section we will review the physics definition of the central charge of a topolog-
ical D-brane. Then we will write it in terms of objects that are more familiar from a
mathematical point of view. We will keep the point of view of an abstract SCFT during
this section. Hence, some of the objects will not be rigorously defined for mathemat-
ical standards but when we work on specific SCFTs we will be able to relate them to
geometric and/or categorical quantities.

2.1. Worldsheet definition of D-brane central charges. Following [24], we start by con-
sidering an N = (2, 2) SCFT of central charge c that has two unbroken (left and
right) R-symmetries which we will denote by U (1)L and U (1)R . In such theories we
have four supercharges Q± and Q± and we can define four nilpotent operators, namely
QA := Q+ + Q−, QB := Q− + Q+ and their corresponding conjugates Q

†
A and Q†

B . In
flat space andwith all the fermions havingNS–NS boundary conditions these charges are
globally defined. One can define four rings by taking the cohomology of these operators:

H(c,c) = HQB H(a,c) = HQA H(c,a) = HQ†
A

H(a,a) = HQ†
B
. (2.1)
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Table 1. Chiral rings and locality conditions

Locality condition Isomorphism defined by Ur,r̄
q − q̄ ∈ Z U(

1
2 ,

1
2

) ◦HR ∼= H(c,c)

q + q̄ ∈ Z U(
− 1

2 ,
1
2

) ◦HR ∼= H(a,c)

q ∈ 1
2Z U(1,0) ◦H(a,c) ∼= H(c,c)

In the RR sector of the theory, one defines the space of Ramond vacuaHR defined by the
states annihilated by Q and Q† where Q stands for either QA or QB . The isomorphisms
between these rings are implemented by the spectral flow operator U(r,r̄), which has
R-charges (ĉr, ĉr̄) (c = 3ĉ) [25]. We summarize these isomorphisms in Table 1. From
now on we will assume that the locality condition as indicated in the table is satisfied,
and hence U(r,r̄) is well defined. In particular, we will assume that ĉ ∈ Z and that the
charges of the physical operators are also integers.

In order for the rings to be well defined when we put our theory on an arbitrary
Riemann surface we need to perform a topological twist. We have again four options
labelled as A, A, B and B, depending on which supercharges become scalar.1 Upon
twisting, the fermions become periodic on contractible cycles and we have a natural map
from operators φ ∈ H(∗,∗) to Ramond ground states |φ〉R ∈ HR [24]. In physical terms,
this map can be described as follows: first, by the operator-state correspondence, one
defines the state |φ〉. This is a state in the NS sector. Then, one performs an appropriate
topological twist, depending onwhetherφ ∈ H(c,c) orφ ∈ H(a,c). In the former case this
is equivalent to inserting the operator U(− 1

2 ,− 1
2 )
and in the latter corresponds to inserting

U( 12 ,− 1
2 )
. This brings |φ〉 to the Ramond sector. The last step is to project onto a ground

state by attaching an infinitely long cylinder. More precisely, we have

|φ〉R = lim
L→∞ e−LHU ◦ |φ〉, (2.2)

where L is the coordinate along the cylinder, H is the Hamiltonian and U denotes the
twist implemented by the spectral flow operator, as described above. This projection
operation can be regarded as choosing a harmonic representative for φ ∈ HQ [25]. In
order to obtain a wave function from the vector |φ〉R we need to fix a boundary condition.
We have two options, namely we can preserve either QB (and Q†

B) or QA (and Q†
A). The

former corresponds to a B-brane and the latter to an A-brane. Since we have attached an
infinitely long flat cylinder, we can put in principle any boundary condition, i.e. either A-
or B-branes. In order to obtainD-brane central charges, which are themain subject of this
article, we should take boundary conditions preserving the opposite set of supercharges
compared to the ones corresponding to the cohomology we insert at the tip [24,26]. This
is an A-brane for the case of φ ∈ H(c,c) and a B-brane for the case of φ ∈ H(a,c). This
coupling of A/B-branes with (c, c)/(a, c)-operators is actually very natural2 [27]. We
illustrate this in Fig. 1. Therefore the central charge of an A- or B-brane B is defined by

Z(B) := 〈B|1(∗,∗)〉, (2.3)

1 Our convention is that theA-twist corresponds to twisting by the axial R-chargeU (1)A = U (1)R−U (1)L
and the B-twist to the twist by the vector R-charge U (1)V = U (1)L +U (1)R .

2 In a nutshell, the boundary state describing the boundary CFT with A/B-boundary conditions will be a
state in the (c, c)/(a, c) Hilbert space, respectively. Hence A/B-boundary conditions will naturally couple to
(c, c)/(a, c) local operators.
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B

T

L

Fig. 1. D-brane central charge, where we attach a flat cylinder of length L →∞ to a hemisphere with a twist
T = (A,B) and B = (B,A)-type boundary conditions

where 1(∗,∗) is the corresponding identity operator on the (c, c) or (a, c) ring. If we
consider specifically central charges of B-branes (as opposed to A-branes), it is known
that they are subject to quantum corrections, and their integrality properties are highly
nontrivial [1]. IfM is themoduli space of complex structures of a Calabi–Yau, the corre-
sponding central charge Z(B) of an A-brane is given by a period of the top holomorphic
form [27], and thus is a purely classical expression. On the other hand, ifM is the stringy
Kähler moduli spaceMK of a Calabi–Yau, which decomposes into chambers, not all of
which allow for a geometric description, a definition of Z(B) in purely geometric terms
(such as a period) will not suffice as a general expression for the D-brane central charge.
Our main goal in this section is to propose an expression for Z(B) for B-branes (even
though it can be applied to A-branes as well) in terms of objects that can be defined at
arbitrary loci of MK .

2.2. Vacuum bundle and J-function. The chiral rings admit a bi-grading given by the
left and right R-charges:

H(∗,∗) =
⊕
q,q̄

H(∗,∗)
q,q̄ , (2.4)

where (∗, ∗) stands for (c, c), etc. The range of the sum (q, q̄) depends on the ring. For
the case of the (c, c) ring, one has 0 ≤ q, q̄ ≤ ĉ, and 0 ≤ q̄ ≤ ĉ, 0 ≤ −q ≤ ĉ3 for the
case of the (a, c) ring. These rings are isomorphic as vector spaces for those theories
for which the spectral flow operators are local. Each of these rings has a special subring
called the deformation subring [28]. This subring is finitely generated by the elements
of conformal weight (h, h̄) = ( 12 ,

1
2 ). This corresponds to operators of charges (1, 1) for

the case of the (c, c) ring and (−1, 1) for the case of the (a, c) ring [25]. We collectively
denote the corresponding subspaces H(c,c)

1,1 and H(a,c)
−1,1 by HMar (Mar for “marginal”).

Then the deformation ring is defined by

Hdef := 〈HMar〉 dimHMar = h. (2.5)

3 This bound is a consequence of the N = 2 SCFT algebra.
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Because ofHdef being generated by operators satisfying |q| = q̄ , we denote the grading
as

Hdef =
⊕
q̄

Hq̄
def . (2.6)

Each generator ofHdef can be mapped to an exactly marginal deformation of the SCFT.4

If we consider φi ∈ HMar, then we can write a marginal deformation

t i
∫



O(1,1)
i i = 1, . . . , h, (2.7)

where theoperatorO(1,1)
i hasweights (1, 1) and is constructed fromφi as {Q−, [Q+, φ

(a,c)
i ]}

or {Q−, [Q+, φ
(c,c)
i ]} [24]. The deformation parameters t i , i = 1, . . . , h are coordinates

in a h-dimensional complex moduli space M of marginal deformations whose fibers
correspond to SCFTs. The moduli space, in general, takes the form M ∼= (C∗)h \ �
where� is a divisor determined by the values of t where the resulting theory is not well
defined.

As shown in [24] we can form a holomorphic bundle overM given by V = Hdef ⊗
OM, the vacuum bundle. It comes equippedwith a flat connection∇ (in fact, aP1-family
of connections). There is a special choice of coordinates on M called flat coordinates,
corresponding to the ti [29]. The ring structure ofHdef is given by the OPEs,

φa · φb = C c
abφc, (2.8)

where the structure constants are given in terms of genus 0 correlators:

C c
ab = 〈φaφbφd〉S2ηdc, ηab = 〈φaφb〉S2 . (2.9)

Here 〈. . .〉S2 stands for the topological correlator on S2, i.e. the A/B-twisted correlator
on S2, for the case of the (a, c)/(c, c) ring. We remark that these correlators depend
holomorphically on the coordinates ofM, because we are working with a basis of states
spanned by chiral operators. Such a basis is equivalent to a holomorphic basis of the
t t∗-connection [24]. We will work in the flat coordinates (2.7). They are characterized
by the fact that, in the path integral formalism, the derivative with respect to ti produces
an insertion of the operator

∫


O(1,1)

i [29]. In such coordinates the topological metric
ηab is constant, i.e. ∂aηbc = 0. Moreover, let us remark that there exists a hermitian
metric gab̄ onM, usually referred to as the t t∗-metric. This metric is defined by joining
two hemispheres by an infinitely long cylinder, with a T -twist on one hemisphere and
the conjugate T -twist on the other one:

〈φa |�φb〉 = gab̄, (2.10)

where � is a CPT conjugation operator. The flatness of the connection associated to
gab̄ is equivalent to the flatness of ηab by virtue of the t t∗-equation [30]. Hence, when
working with flat coordinates, we can set the connection to zero: g−1∂g = 0. Using the
state-operator correspondence, we chose the following frame for the bundle V:

ea = |φa〉 e0 := |1〉. (2.11)

4 We remark that the dimension ofHMar (andHdef ) is not necessarily the same for each topological ring.
Usually it is not.
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Therefore, given a section s = saea ∈ �(M,V), in flat coordinates we have

∇is = ∂i s
aea − saC c

iaec. (2.12)

This is the familiar form of the Gauss–Manin connection when acting on the D-brane
central charges/boundary entropy [26], written in such coordinates and in the appropriate
gauge [31]. There are twodistinguisheddirections in the frame, namely e0, corresponding
to the unique state with R-charges (0, 0) and eD ∈ H(c,c)

ĉ,ĉ (∈ H(a,c)
−ĉ,ĉ ), D := dim(Hdef)−

1, that is the unique state with maximal weight (ĉ/2, ĉ/2). Now, consider the equation
for flat sections:

∇is = 0. (2.13)

We consider a basis of solutions s(a), labelled by a = 0, . . . , dim(Hdef) − 1 and that
take the form

s(a) = ea + . . . (2.14)

where the terms . . . are along the directions eb of charges q̄b ≥ q̄a and b �= a. Explicitly,

s(a) = ea +
∞∑
n=1

1

n! 〈τn(φa), φc〉S2e
c ec := ηcbeb, (2.15)

where τn denotes the nth gravitational descendant. Also note that the sum on the right-
hand side of (2.15) automatically contains only terms proportional to eb with q̄b > q̄a
by the selection rule of 〈τn(φa), φc〉S2 , which is nonzero only if n + q̄a + q̄c = ĉ. This is
a solution due to the topological recursion relations at genus 0, satisfied by any SCFT
coupled to topological gravity [32,33]:

〈τn(φa),O,O′〉S2 = n〈τn−1(φa), φb〉S2ηbc〈φc,O,O′〉S2 . (2.16)

Hence, we have that

∂i 〈τn(φa), φb〉S2 = n〈τn−1(φa), φc〉S2C c
ib. (2.17)

We define the J -function as the following (not necessarily flat) section of V:

J := 〈s(a), 1〉S2ηabeb. (2.18)

As it will become useful later, let us give a more explicit expression for J, relating it to
topological invariants. First, it is easy to show that we can write

J = e0 +
∑
q̄c<ĉ

∞∑
n=1

1

n! 〈τn(φc), 1〉S2η
cbeb. (2.19)

Schematically, the correlators take the following form

〈τn(φa), 1〉S2 = 〈τn(φa), 1, et
i
∫
O(1,1)

i 〉|0. (2.20)
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We use the notation 〈· · · 〉|0 to emphasize that this has to be read as the expectation value
of an operator in the theory with all marginal deformations set to zero: t ≡ 0. Then, we
can can formally expand the exponentials

〈τn(φa), 1〉S2 =
∑

k1,...,kh≥0

h∏
i=1

(ti )ki

ki ! 〈τn−1(φa),
h∏
j=1

(

∫
O(1,1)

j )k j 〉|0,

(2.21)

wherewe used the puncture equation [32] (also known as string equation) to get rid of the
insertion 1. Intuition coming from the path integral formalism implies that a correlator
〈τn−1(φa),∏h

j=1(
∫
O(1,1)

j )k j 〉|0 is expected to be written as an integral over the moduli

space MBPS of maps5 on S2 of a differential form determined by the operators φ j

whose descendants areO(1,1)
j [32]. Then, the topological invariants we are interested in

are given by

〈τn(φa), φ j1 , φ j2 , . . . , φ jm 〉0,m+1 := 1

n! 〈τn(φa),
∫

O(1,1)
j1

,

∫
O(1,1)

j2
, . . . ,

∫
O(1,1)

jm
〉|0 .
(2.22)

Now we can finally write J as

J = e0 +
∑
q̄c<ĉ

∞∑
n=1

∑
k1,...,kh≥0

h∏
i=1

(ti )ki

ki ! 〈τn(φc),
h∏
j=1

φ
k j
j 〉0,|k|+1ηcbeb, (2.23)

where |k| = ∑
i ki . Notice that the correlators 〈τn1(φ j1), τn2(φ j2), . . . , τnm (φ jm )〉0,m

vanish unless the equality
m∑

a=1
(na + q̄ ja ) = ĉ − 3 + m, (2.24)

is satisfied. This can be used to simplify this expression further. In fact, for the compo-
nents along e j ∈ HMar, all correlators vanish except for the ones of the form 〈φa, φb, 1〉0,3,
giving us

J = e0 +
h∑

i=1
tiei +

∑
q̄c<ĉ−1

∞∑
n=1

∑
k1,...,kh≥0

h∏
i=1

(ti )ki

ki ! 〈τn(φc),
h∏
j=1

φ
k j
j 〉0,|k|+1ηcbeb.

(2.25)

ĉ = 3: Special geometry In the case of ĉ = 3, the holomorphic vector bundle over
V → M enjoys an extra structure: special Kähler geometry. Let us briefly recall the
properties of special Kähler manifolds that we will need. M being (locally) special
Kähler implies, by virtue of being the moduli space of anN = (2, 2) SCFT [34], that V
decomposes as V ∼= S ⊕ S where rk S = h + 1. Geometrically, H(∗,∗)

0,0 ⊗OM is a line
bundle L over M. Together withHMar ⊗OM, it forms S:

5 Here we are being vague. MBPS can stand for the moduli of stable maps if we are working in the A-
twisted sigma model, and hence referring Gromov–Witten (GW) theory, or for the moduli of maps satisfying
the Witten equation (as in FJRW theory) and so on.
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S = H(∗,∗)
0,0 ⊗OM ⊕HMar ⊗OM ∼= L⊕ (L⊗ TM). (2.26)

In our case we identify a local frame of S with the following states of the chiral ring:

{e0, ei }hi=1 ∈ H(∗,∗)
0,0 ⊕HMar. (2.27)

By spectral flow arguments we can show that, as vector spaces,

H2
def
∼= H1

def . (2.28)

Therefore, given φ
(2)
j ∈ H2

def and φ(3) ∈ H3
def , we can define

φi := ηi jφ
(2)
j φ0 := (〈1, φ(3)〉S2)−1φ(3). (2.29)

ThebundleS is then spannedby eb̄ = eagab̄,a, b̄ = 0, . . . , h. In the frame {e0, ei , e j , e0},
the section s is given by

s = s0e0 + siei + s je j + s0e0. (2.30)

Then, the flatness equation (2.13) is
⎛
⎜⎜⎝

∂ls
0

∂ls
i

∂ls j
∂ls0

⎞
⎟⎟⎠−

⎛
⎜⎜⎝

0 0 0 0
δil 0 0 0
0 Cli j 0 0
0 0 δ

j
l 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝
s0

si

s j
s0

⎞
⎟⎟⎠ = 0. (2.31)

In this particular case we can write our previously defined basis of solutions very ex-
plicitly and without need for gravitational descendants. For this purpose, we make use
of the existence of the prepotential F . In flat coordinates,

Ci jk = ∂2F
∂t i∂t j∂tk

. (2.32)

Then our basis of solutions is given by the sections:

s(0) = e0

s(k) = tke0 + ek

s(k) = ∂F
∂tk

e0 +
∂2F
∂tk∂t i

ei + ek

s(0) =
(
∂F
∂t i

t i − 2F
)
e0 +

(
∂2F
∂tk∂t i

t k − ∂F
∂t i

)
ei + t iei + e0.

(2.33)

Now we can define the J -function:

J := 〈s(0), 1〉S2e0 + 〈s(k), 1〉S2ek + 〈s(k), 1〉S2ek + 〈s(0), 1〉S2e0. (2.34)

In other words, we are taking the component along e0 of each section s. Explicitly,

J := e0 + tkek +
∂F
∂tk

ek +
(
∂F
∂t i

t i − 2F
)
e0. (2.35)

This is the familiar form, for example, for the SCFT corresponding to the IR fixed point
of a Calabi–Yau sigma model, whenHdef ⊂ H(a,c) i.e. for Gromov–Witten theory [35].
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2.3. D-brane central charge, �̂ class, and the J -function. We expect that topological
D-branes B and their associated boundary states |B〉 form a triangulated A∞-categoryD
(for a review see [36]). Well known examples areD corresponding to derived categories
of coherent sheaves or equivariant matrix factorizations, as is the case for B-branes B in
sigma models and Landau–Ginzburg orbifolds, respectively. Then we expect that there
exists a map, the Chern character,

ch : D→ Hdef

B �→ |φi 〉ηi j 〈φ j |B〉. (2.36)

The physics definition of this map is the A/B-twisted disk correlation function with
boundary conditions corresponding to an object B inD with the components alongHdef
obtained by inserting the corresponding elements φi ∈ Hdef . For example, for B-branes
in a geometric SCFT, this is the familiar Chern character [5]. For Landau–Ginzburg
orbifolds, the Chern character of a matrix factorization is less intuitive [18,37–39]. For
a general dg category, a definition of the Chern character can be found in [40].

The ingredient to the central charge formula that is not obvious from an SCFT point
of view is the Gamma class:

�̂ ∈ End(Hdef). (2.37)

Here we abuse the notation and use the expression “Gamma class” a bit loosely. In
principle the Gamma class is a multiplicative characteristic class, that is, a map6 � :
K0(D)→ Hdef such that �(E +F) = �(E)�(F), rather than an element of End(Hdef).
What we call �̂ here can be thought of as the map K0(D) → Hdef evaluated on a
particular class in K0(D). For example, when D = DbCoh(X), this class is [T X ] and
the endomorphism is given by the cup product in H•(X). In other cases we do not have
a prescription for selecting which element of K0(D) to take to obtain the desired map
�̂, so we resort to defining it abstractly as a linear map �̂ ∈ End(Hdef). Alternatively
we can view �̂ as a particular element of Hdef acting by the ring product induced from
the OPE.

One possible physics explanation for the appearance of �̂ are perturbative corrections.
Not much is known about the Gamma class except in geometric realizations, i.e. when
theN = 2 SCFT can be interpreted as the IR fixed point of a nonlinear sigmamodel with
target space X . We will now proceed to review this case and then formulate a proposal
for the structure of the central charge formula for B-branes that will be used in this work.

The RR charge of a B-brane, as an element of H even(X,Q) in a geometric situation,
does not involve the class �̂, but a closely related object. In geometric cases this has
been computed [42–44] by using the worldvolume of the D-brane as a guide. In this
case, the RR charge of a brane E ∈ DbCoh(X) is given by ch(E)

√
Â(T X), where√

Â(T X) is the ’real’ root (defined by the power series of the square root of Â) of the
characteristic class Â (= Td when c1(X) = 0). On the other hand, the characteristic
class �̂ := �̂(T X) �=

√
Â(T X), in general. Even though �̂ and

√
Â(T X) are roots

of Â (in a sense to be made more precise below), one can think of the Gamma class
as �̂(T X) =

√
Â(T X) exp(i�̂) where �̂ is some characteristic class [45] such that �̂

respects the integrality of the open Witten index χ(E,F) for E,F ∈ D, i.e.

χ(E,F) = 〈�̂∗ch(E∨), �̂ch(F)〉S2 ∈ Z, (2.38)

6 Here K0(D) denotes the Grothendieck group of the triangulated categoryD and can be defined in general
(see [41] for a review).
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where �̂∗ and E∨ are obtained from �̂ and E from an involution induced by the change of
orientation of the brane7 [26]. This condition is satisfied, for instance for ch(E)

√
Â(T X),

thanks to the Hirzebruch–Riemann–Roch theorem. The relation (2.38) imposes condi-
tions on �̂ [45] since it is required that (in the case X is Calabi–Yau)

�̂∗�̂ = Td(T X), (2.39)

which leads to a derivation of �̂ in such geometric cases. Upon compactification of the
type IIA superstring on a Calabi–Yau 3-fold X , the particles in the resulting 4d N = 2
theory associated to a an object E will have a central charge on their 4d supersymmetry
algebra which will be given by [47]∫

X
e−(B+i J )�̂ch(E) + instantons, (2.40)

where (B+ i J ) stands for the complexified Kähler class of X . Alternatively, this formula
can be written as∫

X
e−(B+i J )

√
Â(T X)ch(E) + i

ζ(3)χ(X)

8π3 + instantons, (2.41)

where the term ζ(3)χ(X) comes from perturbative corrections of the nonlinear sigma
model on X [48]. Hence, �̂ is a convenient way to encode the perturbative corrections to
the central charge of E . The appearance of this term in the prepotential F in (2.32) (and
hence in (2.35)) and its connection to these perturbative corrections has been already
been pointed out in [4] (see also [49]).

Returning to the central charge of a general B-brane B ∈ D, the expectation is that,
including the Gamma class, we can write

Z(B) = 〈�̂∗ ◦ Jpert|ch(B)〉 + instantons, (2.42)

where Jpert denotes the perturbative part of the previously defined J -function. For the
geometric SCFTs mentioned above, this has been observed in the mathematics literature
about central charges of objects in DbCoh(X). Rigorous definitions for �̂ have been
given [2,3,50]. Similar expressions have appeared in physics [1]. The exact formula is
expected to take the form

Z(B) := 〈�̂∗ ◦ J|ch(B)〉. (2.43)

Let us explain the pairing 〈·|·〉. We cannot just replace 〈·|·〉 by 〈·, ·〉 because �̂∗ ◦ J and
ch(B) live in different chiral rings. So if, say, φ(a,c) ∈ H(a,c) and φ(c,c) ∈ H(c,c), thanks
to the existence of the isomorphism provided by the spectral flow operator, we define

〈φ(a,c)|φ(c,c)〉 := 〈φ(a,c),U ◦ φ(c,c)〉S2 , (2.44)

where the 〈φ(a,c),U ◦ φ(c,c)〉S2 is the A-twisted two point function.
As a final comment, we remark that the image of the map �̂ ◦ ch : D → Hdef is a

lattice in Hdef , given (2.38) for instance. The map J :MK → Hdef does not preserve
the lattice structure when paired with ch(B) but �̂∗ ◦ J does. The integral local system
associated to this map is Ktop(X). Further discussions on this can be found in [1–3] from
a physics and mathematical point of view. It would be very interesting to understand this
integral structure from first principles in N = (2, 2) SCFTs.

7 The involution for a general compact complex manifold was studied in [46].
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2.4. Change of frame. In this subsection we want to give a few remarks about the be-
havior of (2.43) under a change of frame of V (i.e. gauge transformations). This becomes
very useful, because there are many situations where one can obtain an expression for
the central charge (for example, by UV computations) but it does not come in flat co-
ordinates, and not even in the same frame as (2.12). This will indeed be the case in the
subsequent sections where we will deal with the so called I -function instead, which
is equivalent to the J -function (2.18) up to a gauge transformation and a change of
coordinates. Denote the Chern character of a B-brane B, after spectral flow, by

U ◦ ch(B) = ch(B)ae(a,c)a . (2.45)

Then (2.43) takes the form

Z(B) = 〈s(a), 1〉S2ηab(�̂∗) c
b ηcdch(B)d . (2.46)

Under a frame transformation ea → A b
a ea all the contracted indices in (2.46) remain

invariant and therefore only the term 〈s(a), 1〉S2 = sb(a)ηb0 gives a nontrivial factor:

Z(B)→ ZA(B) = A l
0 s(a),lη

ab(�̂∗) c
b ηcdch(B)d . (2.47)

In the situations we will encounter in the following, it will be enough to consider A
lower triangular, because we will be dealing with frame transformations that respect the
filtration imposed by ∇. In other words, A b

a = 0 if q̄b > q̄a . This means in particular
that we can write A l

0 = G(t)δl0 for some function G(t) and (2.47) simplifies to

ZA(B) = G(t)Z(B). (2.48)

This is a rather common situation, when going for example from the frame obtained
from the Picard–Fuchs equations to the flat one [31].

3. D-Brane Central Charges for Landau–Ginzburg Orbifolds

In this section we apply the ideas of Sect. 2 to a specific class of superconformal field
theories that are of particular interest in string theory: Landau–Ginzburg orbifolds. They
arise as string backgrounds in non-geometric regions of the Kähler moduli space as
originally found by [51,52]. We mainly follow the standard physics references [10,11,
25].

3.1. Landau–Ginzburg orbifolds: a précis. We fix once and for all a basis on a vector
space V of rank N with coordinates denoted by φ j j = 1, . . . , N . We specify a left
R-symmetry given by a C

∗
L action on V with weights q j ∈ Q ∩ (0, 1). The orbifold

group will be specified by a finite abelian group G and a representation ρm : G →
GL(V) (m stands for matter). We specify a superpotential, that is a holomorphic, G-
invariant function W : CN → C, W ∈ C[φ1, . . . , φN ]. As an N = (2, 2) theory,
the Landau–Ginzburg orbifold is equipped with left and right R-symmetry. We will
denote its generators by FL and FR , and the charges of operators under them by q and
q̄ respectively. The vector and axial R-symmetries are defined by

FV := FL + FR FA := −FL + FR . (3.1)
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We want to have a nonanomalous vector R-symmetry, so we require W to be quasi-
homogeneous and of weight 1 under a C

∗
L . Then W (λqiφi ) = λW (φi ) [53]. So, W

has charge 2 under the vector R-symmetry. In addition we want to have a normalizable
vacuum. We assume that a sufficient condition is thatW satisfies dW−1(0) = {0} i.e.W
is called compact, or also nondegenerate in the mathematics literature.

Quasi-homogeneity of W guarantees that we always have the orbifold action φ j →
e2iπq jφ j . If d denotes the lowest nonzero integer such that dq j ∈ Z for all j , then this
specifies a Zd action we will denote by 〈J 〉 where J = diag(e2iπq1 , . . . , e2iπqN ).

GivenW ∈ C[φ1, . . . , φN ], denote by Aut(W ) the group of diagonal automorphisms
of W , i.e.

Aut(W ) =
{
diag(e2π iλ1 , . . . , e2π iλN ) ∈ U (1)N : W (e2π iλ jφ j ) = W (φ j )

}
. (3.2)

Using mathematical terminology, we will call an orbifold group G admissible if it sat-
isfies

〈J 〉 ⊆ G ⊆ Aut(W ). (3.3)

This condition guarantees that the left R-charges of the physical states are integral. Then
the orbifold theory has spacetime supersymmetry [10,52]. In particular, this means that
the theory is A-twistable. Even though this is a good string background [11], in order to
have a geometric interpretation in the context of string compactifications we need that
the right R-charges are also integral. This is attainable by requiring det(ρm(γ )) = ±1
for all γ ∈ G [11]. In particular, in various examples that are obtained from a GLSM
construction, ρm factors through8 SL(V). Note that det(ρm(J )) = ±1 if and only if
ĉ ∈ Z, where ĉ is the central charge:

ĉ = c

3
=

N∑
j=1

(1− 2q j ). (3.4)

Therefore we will be interested in Landau–Ginzburg orbifolds where G is admissible.
To summarize, in the following we will focus on Landau–Ginzburg orbifolds specified
by the data

(W,G, ρm,C
∗
L) (3.5)

satisfying:

(a) W is quasi-homogeneous of degree 1with respect to theC∗L action ofweights {q j }Nj=1,
with q j ∈ Q ∩ (0, 1), and W is compact.

(b) G is admissible.
(c) ĉ ∈ Z≥0.
Let us give somemore details onW and the admissible orbifold groups one can associate
to it. Denote the superpotential as (ν ≥ N ):

W (φ) =
ν∑

α=1
cα

N∏
j=1

φ
Mj,α
j M j,α ∈ Z≥0, cα ∈ C. (3.6)

8 There can be situations where det(ρm (J )) = −1 but after addition of extra massive fields, one can
construct an equivalent orbifold theory where det(ρm (J )) = 1 [52].
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We require that the exponent matrix M := (Mj,α) ∈ MatN×ν(Z) has maximal rank,
i.e. rk(M) = N . Quasi-homogeneous nondegenerate polynomials have been classified
in [54]. The different types are referred to as Fermat, chain and loop. While we will
mostly focus on the Fermat type, most of the results presented in this section also hold
for the more general cases.

The matrix M can be used to determine an explicit expression for Aut(W ). Consider
the Smith normal form of M :

M = V SU U ∈ GL(ν,Z), V ∈ GL(N ,Z). (3.7)

Thematrix S is zero outside the principal diagonal,whose values (the elementary divisors
of M) are denoted by d1, . . . , dN . Since rk(M) = N they are nonvanishing. The matrix
S is unique up to permutation of its eigenvalues. Then Aut(W ) ∼= Zd1 × · · · × ZdN and
is explicitly generated by

gi : φ j �→ e2π iλ
(i)
j φ j λ

(i)
j := d−1i (V−1)i j . (3.8)

The elements gi are not necessarily a minimal set of generators. There can be relations
among them and/or they can be trivial (act as the identity). In the special case where
N = ν, i.e. for the case of invertible polynomials, we can write the exponents λ(i)

j as

λ
(i)
j = (M−1)i j . (3.9)

In general, every element of Aut(W ) and consequently of G can be written uniquely as

γ = diag(e2π iθ
γ
1 , . . . , e2π iθ

γ
N ) θ

γ

j ∈ [0, 1), (3.10)

where the θγj are sometimes referred to as phases. In the following we consider Landau–
Ginzburg orbifolds with any admissible group G ⊆ Aut(W ).

Given an orbifold specified by (3.5), we will describe next how to define its chiral
rings, sometimes referred to as state spaces in the mathematics literature. In order to
compute the G-invariant Hilbert space one needs to consider, for each γ ∈ G, the γ -
twisted sectors. Let us clarifywhat thismeans in our notation.GivenG = Zd1×Zd2×. . .,

a group element γ ∈ G can be written as γ = gk11 gk22 . . . with gi = e2π iλ
(i)

and

ki = 0, . . . , di − 1. In this case θ
γ

j = 〈k1λ(1)
j + k2λ

(2)
j + . . .〉 for j = 1, . . . , N , where

〈x〉 = x − 
x� for x ∈ R. (3.11)

Given a sector labelled by γ ∈ G, fields in the γ -twisted sector satisfy φ j (e2π i z) =
e2π iθ

γ
j φ j (z). If θ

γ

j = 0 we say that the fields φ j satisfy untwisted boundary conditions
in the γ -twisted sector. For the purpose of characterizing the chiral rings, we can restrict
to zero modes as in [10,11]. In each sector, the G-invariant Hilbert space is built out of
the fields satisfying untwisted boundary conditions, and one projects onto G-invariant
states. So, schematically the G-invariant Hilbert space can be written as:

H :=
⊕
γ∈G

PHγ =
⊕
γ∈G

Hγ , (3.12)

where Hγ is the Hilbert space of the γ -twisted sector and P is the projector onto G-
invariant states. We will focus on the (c, c)-ringH(c,c) since the other rings, namely the
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(a, c)-ring and the ring of RR ground states, can be obtained from H(c,c) by spectral
flow. Write Fix(γ ) = {φi : θγi = 0} ⊂ C

N and the Jacobian ring of a polynomial F as

Jac(F) = R
(∂F)

F ∈ R, (3.13)

where R is some polynomial ring. We can write states in the unprojected (c, c)-ring in
the γ -twisted sector as

| f (φ)〉γ := f (φ)|0〉γ ∈ H (c,c)
γ , f (φ) ∈ Jac(W |Fix(γ )), (3.14)

where |0〉γ is the unique vacuum in the γ -twisted sector, with left/right R-charges:

FL |0〉γ =
⎛
⎜⎝age(γ )− N

2
+

∑
j :θγj =0

q j +
ĉ

2

⎞
⎟⎠ |0〉γ

FR |0〉γ =
⎛
⎜⎝−age(γ ) + N

2
− nγ +

∑
j :θγj =0

q j +
ĉ

2

⎞
⎟⎠ |0〉γ , (3.15)

where

age(γ ) =
N∑
j=1

θ
γ

j nγ = dim(Fix(γ )). (3.16)

The space H (c,c)
γ is not necessarily isomorphic to the unprojected RR ground states HR

γ .
However due to the fact that we are using admissible orbifolds, the isomorphism of
vector spaces holds for the projected Hilbert spacesH(c,c)

γ andHR
γ . The isomorphism is

realized by the spectral flow operator U( 12 ,
1
2 )

as (cf. Table 1)

U(− 1
2 ,− 1

2 )
|0〉γ = |0〉Rγ . (3.17)

Similarly for the (a, c)-ring:

U(−1,0)|0〉γ = |0〉(a,c)γ J . (3.18)

The pairing onHγ is given by the topological two-point function on S2, as reviewed
in Sect. 2. For the (c, c)-ring, this is given by the B-twisted correlator:

〈−,−〉γ : H(c,c)
γ ×H(c,c)

γ−1 → C. (3.19)

The pairing is symmetric and non-degenerate. The pairing onH is defined as⊕γ 〈−,−〉γ .
A situation that will be recurrent in the following is that we will focus on γ -twisted

sectors H(c,c)
γ of the (c, c)-ring such that nγ = 0, hence, they satisfy dim(H(c,c)

γ ) = 1.
We refer to these sectors as narrow sectors. All the other sectors are referred to as broad.
Note that zero-dimensional sectors, i.e. those where no state survives the projection,
are also referred to as broad. The classification in terms of broad and narrow sectors
is borrowed from the mathematics literature. We will say more about these sectors in



626 J. Knapp, M. Romo, E. Scheidegger

Sect. 4. For now, let us remark that the pairing (3.19) takes a very simple form when
φγ , φγ ′ belong to narrow sectors:

η(φγ , φγ ′) := 〈φγ , φγ ′ 〉 = 1

|G|δγ,γ ′−1 . (3.20)

We will define Hnarrow as:

Hnarrow :=
⊕
γ∈G0

Hγ , (3.21)

with G0 = {γ ∈ G|nγ = 0}. We will denote the corresponding subring of the deforma-
tion ring (2.5) as

Hdef,0 := 〈HMar ∩Hnarrow〉. (3.22)

To conclude this subsection we remark that, whenever we have a large volume point,
corresponding to a smooth geometry X , in the space of marginal deformations of a
Landau–Ginzburg orbifold, we have an isomorphism of vector spaces

Hĉ−q,q̄(X) ∼= H(c,c)
q,q̄ . (3.23)

3.2. D-branes inLandau–Ginzburgorbifolds. B-typeD-branes in (topological)Landau–
Ginzburg models are characterized in terms of matrix factorizations of the Landau–
Ginzburg superpotential [16,17]. A matrix factorization is defined by the set of data

B = (M, σ, Q, ρ, R) (3.24)

where M (the Chan–Paton space) is a free C[φ1, . . . , φN ]-module, σ is an involution
on M , inducing a Z2-grading (so we can write M = M0⊕M1, with σMi = (−1)i Mi )
and Q(φ) is a Z2-odd endomorphism on M satisfying

Q
2 = W · idM . (3.25)

This definition canbe extendedbyvarious gradings. ForLandau–Ginzburgorbifoldswith
orbifold groupG these are the vector R-charge and theG-grading. This has been defined
in [18], see also [22,55]. Under the vector R-charge FV , W has charge 2: W (λ2q jφ j ) =
λ2W (φ j )with the charges q j of the left R-symmetry as in Sect. 3.1. Therefore, by (3.25),
Q must have vector R-charge 1. This defines a representation R : U (1)V → GL(M) of
the vector R-symmetry satisfying

R(λ)Q(λ2q jφ j )R
−1

(λ) = λQ(φ j ), (3.26)

as well as another representation of G, ρ : G → GL(M), satisfying

ρ(γ )−1Q(e2π iθ
γ
j φ j )ρ(γ ) = Q(φ j ), (3.27)

and compatible with R.
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We denote the category of matrix factorizations as MFG(W ) and its objects are
identifiedwith theB (defined as in (3.24)). In [18] theRR-charge of an Landau–Ginzburg
brane has been defined9.

Pick a Landau–Ginzburg B-brane B, γ ∈ G, and a Ramond ground state in the γ -
twisted sector: |γ, α〉 ∈ HR

γ . We should think of this state, as we described in Sect. 2,

as coming from an element φ(α,γ ) ∈ H(c,c)
γ . Let |B〉 be the boundary state characterized

by the brane. Then the Chern character of B, is given by

ch : MFG(W )→
⊕
γ∈G

HR
γ B �→ 〈γ, α|B〉η(γ,α),(γ ′,α′)〈γ ′, α′| (3.28)

where 〈γ, α|B〉 is given by the following bulk-boundary two-point function on the disk
computed by the residue integral

〈γ, α|B〉 = 1

nγ !ResWγ

(
α · str [ργ (∂Qγ )

∧nγ ])

= 1

nγ !
∮

α · str [ργ (∂Qγ )
∧nγ ]∏

l∈I γ ∂lWγ

, (3.29)

where str(·) = TrM (σ ·), Qγ = Q|Fix(γ ), I γ are the labels of the coordinates in Fix(γ )
and (∂Qγ )

∧nγ denotes the antisymmetrized product of derivatives of Qγ with respect
to the untwisted fields in the γ -twisted sector.

Note that the RR-charge vanishes trivially whenever nγ is odd. In the special case
where nγ = 0, i.e. when we have a single RR ground state in that sector, the expression
(3.29) reduces to

R
γ 〈0|B〉 = str(ρ(γ )). (3.30)

As we will see in Sects. 5 and 6 , this is precisely what one gets when one evaluates
the brane factor of the hemisphere partition function of the associated GLSM in the
Landau–Ginzburg phase.

3.3. Marginal deformations. So far,we have only discussedLandau–Ginzburg orbifolds
that we view as located at specific points in the stringy Kähler moduli space. However,
many properties described here cannot be defined just considering Landau–Ginzburg
orbifolds on their own. In order to define the exact central charge of a B-type D-brane,
and in particular the I -function (and subsequently, the J -function) entering the proposed
formula,we also have to take into account deformations away from theLandau–Ginzburg
point.

To a Landau–Ginzburg orbifold (W,G, ρm,C
∗
L) and its deformations we associate a

rational matrix q which plays a central role in the definition of the I -function of FJRW
theory, and in the gauged linear sigma model associated to (W,G, ρm,C

∗
L).

To motivate q, recall [56] that there is an action of G on the chiral ringH, known as
quantum symmetry. This symmetry acts via the dual group G∗ = Hom(G,C∗) of G by
multiplication with a character of G:

γ · α = χγ (γ
′)α, α ∈ Hγ ′ , χγ ∈ G∗. (3.31)

9 See also [37] for a first principle derivation from orbifold defects.
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In particular it acts on the space of marginal deformationsHMar. We wish to reformulate
this G-action in terms of the original G-action on the chiral fields φ j ∈ C

N . In essence,
we want to infer the action of G on the (a, c)-ring, for which currently no explicit
description is known, from the action of G on the (c, c)-ring. This is possible because
of spectral flow/mirror symmetry. The interplay between quantum symmetry and mirror
symmetry has been studied in [57].We can express this reformulation in terms of a linear
map HMar → HMar × C

N . The associated h × (h + N ) matrix is the matrix q.
To determine the matrix q we proceed as follows. Consider the (−1, 1)-operators

in the (a, c)-ring of (W,G, ρm,C
∗
L). We denote them by Oγ,μ ∈ H(a,c)

γ,(−1,1) where

γ labels the twisted sector they belong to and μ = 1, . . . , dimH(a,c)
γ,(−1,1). Since we are

considering only admissible orbifolds, the operatorsOγ,μ can be represented by spectral
flow of operators in the (c, c)-ring of the form:

Oγ,μ = U(−1,0) ◦ fμ(φ)|0〉(c,c)γ J−1 fμ(φ) ∈ Jac(W |Fix(γ J−1)) (3.32)

for some monomial fμ(φ). We will be interested in operators that belong to narrow
sectors, i.e. whenever Fix(γ J−1) = {0}. Suppose that we have h operators spanning the
subspace ofH(a,c)

(−1,1) consisting only of narrow sectors. In such a case we considerOγa =
U(−1,0) ◦ |0〉(c,c)γa J−1 , a = 1, . . . , h. Then we define the matrix qLG ∈ Math×(h+N )(Q) as

qLGa,b = δa,b, qLGa,h+ j = −θ
γ−1a
j for

{
a, b = 1, . . . , h
j = 1, . . . , N .

(3.33)

The notation qLG is to emphasize that this matrix only depends on the (a, c)-operators
of charges (−1, 1) which are in one-to-one correspondence with exactly marginal de-
formations. We will see in the following that there are further definitions of the matrix
q which give equivalent I -functions.

To understand the subtleties in the definition of the matrix q, we will outline a mirror
interpretation which will become important in subsequent sections when comparing
different ways to obtain the central charges for B-type D-branes.

Since we have assumed rk(M) = N , i.e. the rank of the matrix of exponents of W
is maximal, we can always go to a point in the complex structure moduli space (i.e. a
choice in variables cα) whereW is invertible i.e. ν = N . From now on, we will assume

M ∈ MatN×N (Z≥0) det(M) �= 0. (3.34)

In order to distinguish columns and rows of M we will write Mj,α when referring to
its components, where j, α = 1, . . . , N . We will also assume G ⊆ SL(V). We remark
that, when thinking of the Landau–Ginzburg orbifold as a particular SCFT at a point in
MK , the I -function we are about to define is expected to depend only on deformations
along MK , and is independent of the choice of cα , as long as W still satisfies the
conditions of nondegeneracy at such a point. By the invertibility of W , we can describe
the generators of Aut(W ) explicitly in terms of the matrix elements (M−1)α, j . Then any
element γ ∈ Aut(W ) takes the form

γ · φ j = e2π i(n
T M−1) jφ j n ∈ Z

N . (3.35)

Moreprecisely, the integer vectorn takes values in thequotientZN /{v ∈ Z
N : (vT M−1) j

∈ Z} and is determined by γ . We choose a set of generators {g1, . . . , gN } of Aut(W )

by
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gα · φ j = e−2π iM
−1
α, jφ j . (3.36)

The fact that the gα generateAut(W ) is shown in [58]. Nowdefine the transpose potential
WT by

WT :=
N∑
j=1

N∏
α=1

y
MT

α, j
α . (3.37)

One can show that Aut(W ) ∼= Aut(WT ) [59]. Denote the generators of Aut(WT ) as ḡ j
acting on the y variables as

ḡ j · yα = e−2π iM
−T
j,α yα. (3.38)

Let ι : G ↪→ Aut(W ) be the embedding of G into Aut(W ). This embedding can be
described explicitly by using (3.36). Then any element on the image of ι takes the form

ι(g) · φ j = e2π i(n
T M−1) jφ j = ρm(g) · φ j n ∈ Z

N , g ∈ G. (3.39)

The integer vector n is determined by g ∈ G. There is an embedding

ι∨ : Aut(WT ) ↪→ G∗ (3.40)

given explicitly by10 exp(2π ivT M−1ṽ) for v, ṽ ∈ Z
N . Then we set

G∨ := ker ι∨ = {ṽ ∈ Z
N | ṽT M−T v ∈ Z, ∀v ∈ G}. (3.41)

In the following, by abusing notation, we will think of the elements g∨ ∈ G∨ as vectors
ṽ in an appropriate lattice ZN with a scalar product defined by M−T and write g∨ · v =
ṽM−T v. Among the generators of G∨ there is the distinguished generator J∨ satisfying
J∨ · (1, . . . , 1)T = 1. Now we define the following set:

Aext := {v ∈ (Z≥0)N | J∨ · v = 1, g∨ · v = 0modZ, ∀g∨ ∈ G∨} (3.42)

The condition on J∨ guarantees that the potential marginal deformations v have vector
R-charge 2. Note that it suffices to verify these conditions on the generators of G∨.
Then the elements of Aext are vectors v ∈ (Z≥0)N defining invariant monomials in
C[y1, . . . , yN ] under the action of G∨. We claim that this set characterizes the space
of marginal deformations of the (a, c)-ring, however with the ambiguity that some of
these deformations can be related by field redefinitions. A detailed discussion of this
interpretation will be given below.

Clearly, the row vectors of the matrix M belong to Aext. We arrange the vectors
v ∈ Aext as columns of a matrix M∨ = (M ′ MT ) where the columns of the matrix M ′
contain the solutions v that are not row vectors of M . Note that rk M∨ = rk M = N .
The linear relations among the vectors v will correspond to marginal deformations. To

10 Here we view ṽT M−T , ṽ ∈ Z
N as an element of Aut(WT ), acting on yα as yα �→

exp(2π i(ṽT M−T )α)yα . Then, we can define an element ϕ(ṽT M−T ) ∈ G∗ = Hom(G,C∗) through
the embedding of G into Aut(W ) by mapping g ∈ G to vT M−1 (for some v ∈ Z) and then to
exp(2π ivT M−1ṽ) ∈ C

∗.
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obtain them we choose a particular representative of the kernel of the matrix M∨. This
is encoded in the matrix qext:

qext ∈ Matĥ×(ĥ+N )
(Q), M∨(qext)T = 0, qext

â,b̂
= δâ,b̂ for â, b̂ = 1, . . . , ĥ .

(3.43)

The row vectors of qext span ker M∨ and the column vectors corresponding to the

columns of M ′ are the standard basis vectors ei ∈ R
ĥ , i = 1, . . . , rk M ′ = ĥ. We have

ĥ = rk qext ≥ dim(H(a,c)
Mar,0). For an alternative derivation of q

ext in the language of [60]
see “Appendix A”.

Excluding fromAext the vectors v that have exactly one component which is 0 corre-
sponds to restricting to a subset of linearly independent marginal deformations. On the
(geometric) mirror, this condition amounts tomodding out by non-linear automorphisms
on the toric ambient space preserving W [23,61,62]. This yields the set

Ageom := Aext \ {v ∈ (Z≥0)N | v has a single 0 entry}. (3.44)

We can repeat the same procedure usingAgeom and denote the resulting matrix qgeom ∈
Math×(h+N )(Q). Similarly, we can define the set

ALG := Aext \ {v ∈ (Z≥0)N |
N∏
j=1

y
v j
j = 0 ∈ Jac(WT )}. (3.45)

We will show in “Appendix A” that the matrix qLG obtained as the kernel of matrix of
the vectors in ALG agrees with the matrix defined in (3.33). The purpose of qext is that
we can obtain the matrices qLG and qgeom from it by removing rows and columns.

Let us give some physics intuition of the necessity for qext when taking into account
the global structure of MK . We are considering limiting points in MK that have some
concrete realization of the worldsheet CFT, e.g in terms of a Landau–Ginzburg orbifold
or a non-linear sigma model. The states corresponding to marginal deformations arise
from the cohomology of some BRST operator in the respective theory. A priori, these are
completely different theories and one should not expect a simple relation between the
elements of the different deformation spaces and their representatives. When comparing
Landau–Ginzburg and large volumepoints inMK the deformations coming fromnarrow
sectors are characterised, via mirror symmetry, in terms of monomials. However, a
monomial representative in geometry may be not necessarily be a “good” representative
in the Landau–Ginzburg theory and vice versa. We claim that the matrix qext captures
enough information to accommodate for all loci inMK and that the reduction to qLG or
qgeom then accounts for the “natural” set of representatives at the respective locus ofMK .
We further claim that the choices of qLG or qgeom lead to equivalent descriptions in the
following sense. The corresponding monomial representatives are related by non-linear
field redefinitions. The corresponding I -functions are related by rational functions of
the parameters they depend on and by a change of frame (gauge). This will be discussed
in Sect. 3.7.

Let us illustrate this by a simple example. Consider the Fermat polynomial WT =
y81 + y

8
2 + y

8
3 + y

8
4 + y

2
5 . Interpreting this equation as the mirror of the degree 8 hypersurface

in P(11114) with (h1,1 = 1, h1,2 = 149), the single complex structure deformation of
the model can be represented by m1 = y1y2y3y4y5. This corresponds to the interior
point in the associated N -lattice polytope. On the other hand, interpreting WT in the
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Landau–Ginzburg setting, m1 is not in the chiral ring but m2 = y21 y
2
2 y

2
3 y

2
4 is. From the

geometric viewpointm2 is a point in a facet of the polytope and hence would be excluded
[62]. Obviously, m1 and m2 are related by a field redefinition y5 �→ y5 + αy1y2y3y4
for some suitable α. In our prescription qext would capture both, m1 and m2, while
qgeom would take into account deformations by m1 and qLG would take into account
deformations by m2. Concretely, the matrices read

qext =
(
1 0 − 1

8 − 1
8 − 1

8 − 1
8 − 1

2
0 1 − 1

4 − 1
4 − 1

4 − 1
4 0

)
,

qgeom = (
1 − 1

8 − 1
8 − 1

8 − 1
8 − 1

2

)
,

qLG = (
1 − 1

4 − 1
4 − 1

4 − 1
4 0

)
.

(3.46)

For further examples we refer to Sect. 6.
To summarize, we have gone a long way round to define the matrix q encoding the

action of G on HMar. Lacking a direct description of the marginal deformations in the
(a, c)-ring (A-model after twist), we have used mirror symmetry to get a description of
these deformations in terms of the (c, c)-ring of the mirror. Looking at (3.41) and (3.42),
the data encoding the deformations does not really depend on mirror symmetry as it
only involves W , via M , and G. This suggests that a direct description of the marginal
deformations in the (a, c)-ring should be possible. In particular, the nonlinear automor-
phisms of WT should have a counterpart in terms of additional symmetries among the
unprojected twisted sectors Hγ of the (a, c)-ring. It would be interesting to find such a
description.

In the following we refer to any choice of qext, qLG, or qgeom by just q and its rank
by h. To conclude this section, we note two simple properties of q. First, multiplying the
condition M∨q = 0 by M−T from the right, the condition J∨v = 1 in (3.42) implies
the following relation:

N∑
j=1

qa,h+ j = −1, a = 1, . . . , h. (3.47)

Second, since ρm factors through SL(V) then the action of, g∨ ∈ G∨ on y variables,
also has determinant 1. Therefore v = (1, . . . , 1)T ∈ Aext and so, for some i0

qi0,h+ j = −q j , j = 1, . . . , N . (3.48)

We will take i0 = 1.

3.4. I -FunctionandGammaclass. Given aLandau–Ginzburgorbifold (W,G, ρm,C
∗
L),

we will propose a formula for the I -function and the Gamma class in terms of the matrix
q. The formula is more general than the explicit expressions that can be found in the
mathematics literature, as it covers the case with more than one Kähler parameter, and
the orbifold group can be more general than G = 〈J 〉 or G = Aut(W ).

To define the I -function and the Gamma class, we will need another matrix, L ,
which encodes a certain lattice of periodicities determined by the group G. Based on
this matrix, we can further define an integral matrix C = (L S) such that L−1C = q.
If the Landau–Ginzburg orbifold arises as a phase of an abelian GLSM then the matrix
C is nothing but the matrix of U(1) charges, and the prescription to obtain C is in some
sense the “inverse” of an algorithm derived in [63], based on a criterion formulated in
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[22], to find Landau–Ginzburg phases of abelian GLSMs. See Sect. 5 for further details
about this algorithm.

Recall from the previous section that the matrix q encodes the action of G on the
chiral ringH. We can reconstruct a group that is isomorphic toG from it in the following
way. Take all the h × h submatrices B of q and take any B for which |det(B)| = 1

|G| .
Then we set L = (B−1)T . Now consider the Smith normal form of the matrix LT : There
are matrices U, V ∈ GL(h,Z) such that

ULT V = D = diag(d1. . . . , dh), (3.49)

where the di satisfy di+1 | di , i = 1, . . . , h − 1. The choice of U, V is not unique, but
will lead to equivalent results. The abstract way of thinking about the Smith normal form
is that it yields a presentation of the group

Gorb := Zd1 × · · · × Zdh (3.50)

in terms of free abelian groups

0 −→ Z
h LT−→ Z

h −→ Gorb −→ 0. (3.51)

By construction of the matrix q there is a choice of L such that there exists an isomor-
phism of abelian groups

F : Gorb ∼= G. (3.52)

In this way, we have reconstructedG from q, up to isomorphism.We fix an isomorphism
F once and for all. The matrix L will play a central role in the following. For practical
purposes, we will choose an ordering of the elementary divisors such that the first factor
Zd1 ⊂ Gorb is identified under F with the subgroup of G generated by J , i.e. 〈J 〉 ⊂ G.
In all the examples we discuss, this is of order d1 = d, where d is the degree of W and
hence coincides with our conventions of the Smith normal form. From now on, we will
assume that this holds.

We have denoted this group in (3.50) by Gorb because it is related to the unbroken
gauge group of the associated GLSM with U(1) charge matrix C given by L−1C = q in
the corresponding Landau–Ginzburg orbifold phase. We will see in examples that often
different choices of L are related by an integral change of basis, and hence are equivalent.
From a physics point of view, obtaining the GLSM from a Landau–Ginzburg model is
highly non-trivial. In particular, one cannot expect the prescription to be unique, since
the same Landau–Ginzburg model could arise from different GLSMs. In other words, an
IR theory can have different UV completions. The conditions on the minors of q ensures
that the resulting GLSM does not have any gauge group elements that act trivially on the
fields. The latter happens for Landau–Ginzburg orbifolds with massive fields, i.e. when
n of the φ j have q j = 1

2 , and the matrix qLG. In this case, one may consider relaxing the

condition on the minors B above to |det(B)| = 2n
|G| . One such example is the qLG given

in (3.46). Then the prescription below to determine the I -function and the Gamma class
still works, but the meaningfulness of the GLSM needs further study11.

We can write (3.51) more explicitly as

Gorb = Z
h/LT

Z
h = {k ∈ Z

h}/{k ∼ k + LTm,∀m ∈ Z
h}. (3.53)

11 See Footnote 18.
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We can define an action of Gorb on C
N by defining a representation ρ̃m : Gorb → C

N

by

ρ̃m([k]) = diag(e2π i(k
T q)1, . . . , e2π i(k

T q)N ),

(kT q) j :=
h∑

a=1
kaqa,h+ j . j = 1, . . . , N .

(3.54)

The isomorphism F then implies that

ρ̃m = ρm ◦ F. (3.55)

Let ga be a (canonical) generator of Zda , i.e. da is the smallest positive integer such that
gdaa = 1. Then we can write an arbitrary element γ ∈ Gorb as

γ =
h∏

m=1
g�aa , (�1, . . . , �h) ∈ F . (3.56)

Here F ⊂ Z
h is a fundamental domain for LT

Z
h ⊆ Z

h in (3.51), isomorphic as a set to
Gorb, so that

k′a ≡ �a mod da, a = 1, . . . , h . (3.57)

where we use the matrix U to change to the basis of Zh in which the Gorb-action is
diagonal:

k′ := Uk ∈ Z
h . (3.58)

In the examples we will make the following choice for F :

F = {
� = (�1, . . . , �h) | �1 ∈ {1, . . . , d}, �a ∈ {0, 1, . . . , da − 1}, a = 2, . . . , h

}
.

(3.59)

We will often identify γ = F([k]) ∈ G with � = (�1, . . . , �h) ∈ F and write � as an
index instead of γ . Note in particular that the summation of �1 labeling the elements
of 〈J 〉 is chosen to start with 1. Under these conventions, the labelling (�1, . . . , �h)

coincides with the labels of the twisted sectors H(c,c)
γ−1 or, by (3.18), of H(a,c)

γ−1 J . This
will be practical in relation to the twisted sectors of the state space of FJRW theory in
Sect. 4.3 and the examples in Sect. 6.

Consider a narrow sector H(a,c)
γ , i.e. nJ−1γ = 0, and recall that this implies

dim(H(a,c)
γ ) = 1. This is the only situation that will be considered in the follow-

ing. Then H(a,c)
γ is canonically generated by a vector e(a,c)γ . We choose coordinates

u = (u1, . . . , uh) on the space of narrowmarginal deformationsH(a,c)
−1,1∩Hnarrow ∼= C

h .
We introduce the function Iγ−1 J (u) = I�(u) with

I�(u) = −
∑

k1,...,kh≥0
k′a≡�a mod da

uk∏h
a=1 �(ka + 1)

N∏
j=1

(−1)〈−
∑h

a=1 kaqa,h+ j+q j 〉�(〈∑h
a=1 kaqa,h+ j − q j 〉)

�(1 +
∑h

a=1 kaqa,h+ j − q j )
.

(3.60)
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The sum in I�(u) can be understood as a sum over all nonnegative h-tuples of integers
k ∈ (Z≥0)h such that the class [k′] = [Uk] ∈ Gorb satisfies [k′a] = [�a]. We have set
uk = ∏h

a=1 u
ka
a . We will view C

h as a local coordinate neighborhood in MK near the
Landau–Ginzburg point. We will relate them to the marginal deformation parameters in
Sect. 3.6. We define

ILG(u) =
∑
γ∈G

Iγ (u)e(a,c)γ . (3.61)

This is our proposal for the I -function of a Landau–Ginzburg orbifold (W,G, ρm,C
∗
L).

The I -function satisfies a system of GKZ differential equations and the I�(u) transform
diagonally under the G-action. For details, see Sect. 3.7.

In Sect. 4wewill see that this is consistentwith the I -function defined inFJRWtheory.
In Sect. 5 we will recover it from the hemisphere partition function of the associated
GLSM. In order to make contact with these results, it is useful to rewrite this expression.
We apply the reflection formula for the Gamma functions in the numerator of (3.60) in
the form

�(z) = 2π ie−iπ z

1− e−2π i z
1

�(1− z)
(3.62)

and obtain

I�(u) = −(2π i)N
∑

k1,...,kh≥0
k′a≡�a mod da

uk∏h
a=1 �(ka + 1)

N∏
j=1

1

�(1 +
∑h

a=1 qa,h+ j ka − q j )

· 1

1− e−2π i(
∑h

a=1 qa,h+ j ka−q j )

1

�(1− 〈∑h
a=1 qa,h+ j ka − q j 〉)

.

(3.63)

Note that the expression
〈∑h

a=1 kaqa,h+ j − q j

〉
= 〈

(kT q) j − q j
〉
depends on k only

through � since by (3.49) we can write k = U−1� + U−1Dm for some m ∈ Z
h . Then

the expression inside the angle brackets equals ((U−1�)T q) j modZ.
To finalize this section, we define a provisional Gamma class for Landau–Ginzburg

orbifolds. It is defined by the operator

�̂∗W,G : H(a,c) → H(a,c), (3.64)

where �̂∗W,G acts diagonally and its eigenvalue on H(a,c)
γ is

�̂∗W,Ge
(a,c)
γ = �̂γ e(a,c)γ �̂γ =

N∏
j=1

�

(
1−

〈
h∑

a=1
kaqa,h+ j − q j

〉)
. (3.65)

By the above reasoning the eigenvalue only depends on γ = F([k]). As for the I -
function, we will often write �̂γ−1 J = �̂�. We will argue in Sect. 4.5 that this operator
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represents the action of the Gamma class, as discussed in Sect. 2. Then we can apply
this operator to ILG and obtain

�̂∗W,G(ILG)(u) = −(2π i)N
∑
γ∈G

∑
k1,...,kh≥0

k′a≡�a mod da

uk∏h
a=1 �(ka + 1)

N∏
j=1

1

�(1 +
∑h

a=1 qa,h+ j ka − q j )

· 1

1− e−2π i(
∑h

a=1 qa,h+ j ka−q j )
e(a,c)γ .

(3.66)

3.5. The central charge formula. According to our proposal (2.43) in Sect. 2, provided
ILG(u) is related to the J -function by a change of frame and coordinates (to be made
precise in Sect. 3.6), the central charge function in Landau–Ginzburg orbifolds should
have the form

ZLG(B, u) = 〈�̂∗W,G(ILG(u))| ch(B)〉 (3.67)

with the pairing defined in (2.44), andwhere ch(B) and �̂∗W,G(ILG(u)) are given in (3.28)
and (3.66), respectively. Substituting these expressions yields

ZLG(B, u) =
∑

γ,γ ′∈G
�̂γ Iγ (u) chγ ′ (B)〈U(1,0) ◦ e(a,c)γ , e(c,c)

(γ ′)−1 〉S2

= 1

|G|
∑
γ∈G

�̂γ Iγ (u) chγ J−1 (B)

= 1

|G|
∑
�∈F

�̂� I�(u) strM ρ(J �1−1
h∏

a=2
g�aa )

= − (2π i)N

|G|
∑
�∈F

∑
k1,...,kh≥0

k′a=�a mod da

uk∏h
a=1 �(ka + 1)

N∏
j=1

1

�(1 +
∑h

a=1 kaqa,h+ j − q j )

· 1

1− e−2π i(
∑h

a=1 qa,h+ j ka−q j )
strM ρ(J �1−1

h∏
a=2

g�aa ).

(3.68)

Here we used the identification through F of the factor Zd1 in Gorb with the subgroup
〈J 〉 of G, and exhibited the corresponding contribution to the supertrace. If we use the

fact that γ = J �1
∏h

a=2 g
�a
a = J k

′
1
∏h

a=2 g
k′a
a by (3.57) to write the supertrace in terms

of the k′a , we can combine both sums into a single sum over ki and obtain

ZLG(B, u) = − (2π i)N

|G|
∑

k1,...,kh≥0

uk∏h
a=1 �(ka + 1)

N∏
j=1

1

�(1 +
∑h

a=1 kaqa,h+ j − q j )

· 1

1− e−2π i(
∑h

a=1 qa,h+ j ka−q j )
strM ρ(J k

′
1−1

h∏
a=2

g
k′a
a ).

(3.69)
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3.6. Flat coordinates and J-function. So far we have defined the function ILG(u), start-
ing from the Landau–Ginzburg orbifold, which depends holomorphically in some formal
coordinates u. We want to conjecture that the central charge function ZLG(B, u) we de-
fined in terms of ILG(u) differs from the central charge Z(B) (2.43) defined in terms
of the J -function by a change of coordinates and frame as discussed in Sect. 2.4. In the
following we will define such a change. For this, first the consider all the narrow sectors
which correspond to marginal deformations in the (a, c)-ring, i.e. the sectorsH(a,c)

γ that
satisfy

nγ J−1 = 0, −FL(H(a,c)
γ ) = FR(H(a,c)

γ ) = 1. (3.70)

Denote these elements by φ
(a,c)
a , a = 1, . . . , h, or their corresponding states by e(a,c)a .

Next, note that the state φ(a,c)
0 := φ

(a,c)
id (or e(a,c)0 ) is always narrow since nJ−1 = 0 (no

field has zero R-charge) and is the unique state with lowest charges (q, q̄) = (0, 0) in
the (a, c)-ring. So we expect that ILG(u) always has a nonzero component I0e

(a,c)
0 . We

use this to define the functions

ta := Iγa
I0

. (3.71)

These will be our flat coordinates, i.e. these are the coordinates that will be identified
with the exactly marginal deformations of the IR SCFT:

ta

∫
O(1,1)

a O(1,1)
a = {Q−, [Q+, φ

(a,c)
a ]}. (3.72)

The relations (3.71) are expected to be invertible and hence we can define u(t). Then,
the J -function is defined, in terms of ILG(u), by

JLG(t) = ILG(u(t))

I0(u(t))
. (3.73)

3.7. GKZ differential equations and monodromy. Now we show that the I -function
satisfies a system of GKZ differential equations and explain its dependence on the
various choices of the matrix q introduced in Sect. 3.3. Furthermore we discuss its
behavior under Landau–Ginzburg monodromy.

First, we give another interpretation of the data q and A defined in Sect. 3.3. The
sets Aext, Ageom and ALG are sets of integral points A = {v1, . . . , vp} in R

N , where
p = h + N , h = rk q. Until further specification q stands for any of qext, qgeom, or qLG.
By construction these vectors span the lattice ZN and satisfy v · J∨ = 1 for all v ∈ A.
Moreover, the rows of the matrix q generate the latticeL ⊂ Z

h of linear relations among
the elements of A,

L := {l = (l1, . . . , l p) |
p∑

i=1
livi = 0}. (3.74)

In fact, L is isomorphic the lattice LT
Z
h from (3.51). The GKZ system with parameter

β = (β1, . . . , βN ) ∈ C
N is a system of partial differential equations for functions
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�(u), u ∈ C
p given by the following equations [64] (see also [61,65]):

(
−β +

p∑
i=1

vi ui
∂

∂ui

)
� = 0, for vi ∈ A,

⎛
⎝ ∏

i :li>0

(
∂

∂ui

)li
−

∏
i :li<0

(
∂

∂ui

)−li⎞⎠� = 0, for l ∈ L .

(3.75)

To show that I�(u) in (3.63) satisfies the GKZ system for the set A with parameter
β = 0 we proceed as follows. First, since the expression in angle brackets appearing in
I�(u) only depends on � we can collect all the functions containing this expression into
an overall constant f�. Next, since the isomorphism L ∼= LT

Z
h is explicitly given by

li =∑
a qai ka , the sum over k can be written as a sum over l ∈ L. We shift k1 �→ k1−1

to remove the−q j . Then, we canwrite I�(u1, . . . , uh) = Ĩ�(u1, . . . , u p)|uh+1=···=uh+N=1
with

Ĩ�(u1, . . . , u p) = f�
∑

k1,...,kh≥0
k′i≡�i mod di

h∏
a=1

u
∑

b qbakb
a

�(1 +
∑h

b=1 qbakb)

N∏
j=1

u
∑

b qb,h+ j kb
h+ j

�(1 +
∑h

b=1 qb,h+ j kb)

= f�
∑

l∈L∩C

p∏
i=1

uli+γi

�(1 + li + γi )
,

(3.76)

where γ = 0 and C ⊂ LR is the cone corresponding to (R≥0)h ⊂ R
h . By [64], this is

a solution of (3.75). This proves the claim about I�(u). It would be interesting to show
that the I -function also satisfies a system of Picard-Fuchs differential equations.

The choice of the matrix L in Sect. 3.4 corresponds to a choice of a regular triangu-
lation of the convex hull convA ⊂ R

N of A. Equivalently, this corresponds to a choice
of a maximal cone C in the secondary fan of the polytope convA. This cone will play a
role in describing the Landau–Ginzburg phase of a GLSM in Sect. 5.1.

ChoosingAext as the set to define theGKZsystem, one also gets additional differential
operators compared to those coming from ALG, or Ageom. Besides those coming from
the additional vectors vi , there are additional first order differential operators of the form⎛

⎝
p∑

i1,i2=1
Cb
i1,i2ui1

∂

∂ui2

⎞
⎠� = 0, for b = 1, . . . , p − N − h, (3.77)

that encode polynomial relations among the variables u associated to the setAext. Here
p = |Aext|, but h = rk qLG = rk qgeom. If the subsets ALG and Ageom are dif-
ferent, then these relations correspond to polynomial relations among the monomial
deformation parameters ugeoma and uLGa , respectively. These yield rational functions
ugeoma = ugeoma

(
uLG1 , . . . , uLGh

)
, a = 1, . . . , h. In the context of periods in the geometric

mirror B-model, these additional differential operators have been introduced and stud-
ied in [61,66]. As a consequence, the I -functions obtained from qgeom and qLG will be
related schematically as follows:

ILG(u
LG; qLG) = ILG(ugeom(uLG); qgeom)

H(uLG)
, (3.78)
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where H(u) = H(u1, . . . , uh) is an invertible holomorphic function, and we have
exhibited the dependence of the I -function on the matrix q from which it is constructed.
Hence, this leads to a change of frame as discussed in Sect. 2.4. This is the fundamental
reason to introduce the extended set of vectors Aext and the corresponding matrix qext.
In the example given in (3.46) one finds uLG = 1

4 (ugeom)2 and H = 1.
Finally, let us discuss the monodromy properties of ILG(u). Since u are coordinates

onH(a,c)
−1,.1∩Hnarrow =⊕h

a=1H
(a,c)
γa , the quantum symmetry (3.32) induces an action of

G on them: uγa �→ χγ ′(γ−1a )uγa . Under this action, we have u
k �→ χγ ′(

∏h
a=1 γ

−ka
a )uk .

In the sum (3.60), such a term contributes to Iγ−1 J (u) if
∏h

a=1 γ
ka
a = γ . Therefore,

the action of G induces an action Iγ−1 J (u) �→ χγ ′(γ−1)Iγ−1 J (u). Moreover, ILG(u)
in (3.61) is invariant. Therefore, in this basis ofH(a,c), the action of the local monodromy
about the Landau–Ginzburg point inMK on the I -function is diagonal. This is closely
related to the Galois action discussed in [19].

4. FJRW Theory

Fan–Jarvis–Ruan–Witten (FJRW) theory is themathematical analog forLandau–Ginzburg
orbifolds of what Gromov–Witten theory is for nonlinear sigmamodels with target space
an almost complex, symplectic manifold. The essential ideas have been formulated in
physics byWitten in [12,67] in the one variable case12, and the correspondingmathemat-
ical theory has been worked out in [13,70] in the general case, again following ideas of
Witten. The actual computation of the FJRW invariants for a Landau–Ginzburg orbifold
with ĉ = 3 that corresponds to a compact Calabi–Yau threefold has been performed in
[14] for the quintic inP4 and generalized to other caseswith oneKähler parameter in [19].
These authors have also shown that the FJRW invariants contain the same information
as the Gromov–Witten invariants, as is expected from by Landau–Ginzburg/Calabi–Yau
correspondence [9]. For reviews of FJRW theory see also [71,72].

4.1. W-Spin structures. Gromov–Witten theory is the description of topologically non-
trivial holomorphic maps φ : C → X from a Riemann surface C to a symplectic
manifold X . In physics, these are worldsheet instantons in a nonlinear sigma model with
target X , i.e. they are solutions to the equations

∂̄φi = 0 (4.1)

in local coordinates on X .
In a Landau–Ginzburg model with potential W : CN → C whose critical points are

non–degenerate the analogous topologically nontrivial field configurations are given by
soliton solutions to the BPS equations [73,74]

∂̄φi + α∂φi W (φ) = 0 (4.2)

in coordinates (φ1, . . . , φN ) onCN and with |α| = 1. In the present situation the critical
point of W , however, is very degenerate.

Moreover, in the presence of a finite group G acting on CN such that (W,G) defines
a Landau–Ginzburg orbifold the Riemann surface C must carry an orbifold structure,

12 See Sects. 2 and 6 of [68] and Section 2.4 of [69] for a short review.
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too. Roughly speaking, the required orbifold structure is a d-spin structure, or more
generally a W -spin structure, to be described below. In [12] the solutions to (4.2) for
Riemann surfaces with a d-spin structure and the potential W = xd have been studied.
After generalization toW -spin structures, this leads to a moduli space of “maps” from a
Riemann surface C of genus g equipped with a W -spin structure to CN satisfying (4.2)
and compatible with the action of G. More precisely, these “maps” will be sections of
certain line bundles over C . For this purpose, we first need to understand the moduli
space Wg,n(W,G) of W -spin structures on C . The goal of this subsection is to give a
brief description of Wg,n(W,G).

The basic idea is as follows:13 Let Mg,n be the moduli space of complex Riemann
surfaces (or complex algebraic curves) of genus g with n marked points σ1, . . . , σn ,
and let Mg,n be its Deligne-Mumford compactification obtained by adjoining singular
curves with at most double points. This is the (compactified) moduli space of stable
curves where stable means that the maps only admit finite automorphism groups. In
Gromov–Witten theory one considers maps of such stable curves into a symplectic
manifold or an algebraic variety X [75].

In FJRW theory one instead starts with orbicurves. These are stable curves C for
which the marked points and the nodes (and only those) are allowed to be orbifold
points. If the orbifold groups at these points are all subgroups of Zd for some d, C is
called d-stable. Such a curve is canonically equipped with the sheaf ωC,log which is the
sheaf of logarithmic differential forms on C with simple poles only at the marked points
and the nodes. The next datum one needs is a d-spin structure on C which, roughly
speaking, is a d-th root of its (suitably twisted) canonical bundle. More precisely, it is
an orbifold line bundle L → C together with an isomorphism ϕ : L⊗d ∼= ωC,log. If
d = 2 and n = 0 this is an ordinary spin structure on the curve C. For L to have integer
degree, such a bundle only exists if 2g − 2 + n is divisible by d. When this condition is
met, there are d2g choices of pairs (L, ϕ) on C. The choice of an isomorphism class of L
determines locally a cover ofMg,n . But since the pair (L, ϕ) has Zd as its isomorphism
group, it may not exist globally overMg,n . The reason is that it can happen that ϕ ceases
to be an isomorphism at a node. Indeed, it is argued in [12] that globally the cover is
ramified over the boundary of Mg,n inMg,n .

Since we allow the marked points to be orbifold points, the orbifold line bundle
L can have nontrivial monodromy by γ (i) ∈ Zd around each of the marked points
σi , i = 1, . . . , n, i.e. Zd acts on the fiber Lσi by Mσi (Lσi ) = γ (i)Lσi . Therefore,
we need to specify a collection of elements (γ (1), . . . , γ (n)) ∈ (Zd)

n , or if we write
γ (i) = exp(2π i mi

d ), a collection of integers 0 ≤ mi ≤ d − 1, i = 1, . . . , n. We will
see in Sect. 4.2 that the theory has a very different behaviour depending on whether
γ (i) �= 1 for all i or γ (i) = 1 for some i .

A reformulation of the previous discussion is that this data can be used to define a
map from the d-stable curve to the (topologically twisted) Landau–Ginzburg orbifold
with potentialW (φ) = φd and orbifold group G = Zd . The relation to the choice of the
pair (L, ϕ) is roughly as follows. Before the topological twist, the field φ is a scalar with
U (1)V R-charge q = 2

d . After the A-twist, it becomes a section of L = ω
q
C and hence

W (φ) a section of ωC , where ωC is the canonical sheaf. Therefore, formally replacing
φ by L in W (φ) yields a line bundle W (L) on C, satisfying W (L) ∼= ωC . Taking into
account the marked points, one expects an isomorphism ϕ : W (L) = Ld ∼= ωC,log to
the sheaf of logarithmic differential forms. In [12] the equivalent descriptions in terms

13 For the sake of exposition we ignore many further technical details in the description below.
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of a topologically twisted N = 2 SU (2)/U (1) Kazama-Suzuki model or in terms of a
topologically twisted gauged WZW model on SU (2) with gauge group U (1), either of
them coupled to topological gravity, are considered. In the context of the gauged WZW
model, if C is a smooth curve, the bundle carrying theU (1) connection is the line bundle
L. The choice of γ (i) describes the choice of a flat connection on L, up to the action
of G. Ultimately, one is interested in the correlation functions with insertions of chiral
primary fieldsαi at themarked points σi . From the point of view of the Landau–Ginzburg
orbifold, the choice of γ (i) corresponds to the choice of a twisted sector in the chiral
ring H(a,c) for the chiral primary αi , which is labelled by γ (i).

The latter formulation is the starting point for a generalization to a large class
of Landau–Ginzburg orbifolds. For a general Landau–Ginzburg potential, i.e. a non-
degenerate, quasihomogeneouspolynomialW ∈ C[x1, . . . , xN ] as inSect. 3.1 (cf. (3.6)),

W (x1, . . . , xN ) =
ν∑

α=1
cαWα =

ν∑
α=1

cα

N∏
j=1

x
Mjα
j , (4.3)

we choose a line bundleL j on C for each variable x j , j = 1, . . . , N and an isomorphism

ϕα : Wα(L1, . . . ,LN ) :=
N⊗
j=1

L⊗Mjα
j

∼= ωC,log (4.4)

for each monomialWα , α = 1, . . . , ν. This collection of line bundles and isomorphisms
(L j , ϕα)1≤ j≤N ,1≤α≤ν is called a W -spin structure on C if the ϕα satisfy certain com-
patibility conditions depending on the choice of the group G. These will be described
shortly.

Again, we have to specify the monodromy γ j (i) of the line bundle L j at the marked
point σi for all j = 1, . . . , N and i = 1, . . . , n. A priori, we only know that γ j (i) ∈ Zm
for some m ∈ N. It is an amazing fact [13] that γ (i) = diag(γ1(i), . . . , γN (i)) act-
ing on C

N defines an automorphism of W . In fact, the orbifold structure of
⊕N

j=1 L j

is completely parametrized by Aut(W ), the group of all diagonal automorphisms of
W , cf. (3.10). Therefore we are actually working with a Landau–Ginzburg model orb-
ifolded by Aut(W ). Recall from Sect. 3.1 that we have the canonical grading element
J = diag(exp(2π iq1), . . . , exp(2π iqN )) ∈ Aut(W ), where (q1, . . . , qN ) are the (nor-
malized) weights of (x1, . . . , xN ), making W quasihomogeneous. It turns out that one
can define new W -spin structures by restricting to any subgroup G ⊂ Aut(W ), as long
as G contains the grading element J . The reason for this condition will be given be-
low. However, this implies that the isomorphisms ϕα must satisfy certain compatibility
conditions as alluded to above. These compatibility conditions are obtained as follows.
One adds to W any polynomial WG such that W + WG is a non-degenerate, quasiho-
mogeneous polynomial of the same weights as W and that Aut(W + WG) ∼= G. Then
the compatibility conditions are W ′(L1, . . . ,LN ) ∼= ωC,log for all monomials W ′ in
WG . By [13], the resulting W -spin structure is independent of the choice of WG . As
an example, consider G = 〈J 〉. In this case, a d-spin structure (C,L, ϕ) gives rise to a
W -spin structure by setting L j = L⊗q j d , j = 1, . . . , N , see [19]. In general, a W -spin
structure does not necessarily come from a d-spin structure in this way.
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We set γ = (γ (1), . . . , γ (n)) ∈ Gn . Given the data W,G, g, n and γ , the moduli
space (more accurately, moduli stack) of W -spin structures is defined in [13] as:

Wg,n(W,G)(γ ) =
{
(C; σ1, . . . , σn;L1, . . . ,LN ;ϕ1, . . . , ϕνG )

∣∣∣
ϕα : Wα(L1, . . . ,LN ) ∼= ωC,log for every α = 1, . . . , νG ,

Mσi (L j ) = γ j (i) for all j = 1, . . . , N , i = 1, . . . , n
}
/ ∼ ,

(4.5)

where Mσi (L j ) is the monodromy of the line bundle L j at the marked point σi and νG
is the number of monomials of W +WG with WG as above. We also set

Wg,n(W,G) =
⊔

γ∈Gn

Wg,n(W,G)(γ ) . (4.6)

This moduli space comes with a natural map to the moduli space of stable curves

st :Wg,n(W,G)→Mg,n (4.7)

which forgets the data (L j , ϕα)1≤ j≤N ,1≤α≤ν of theW -spin structure. In [13] it is shown
thatWg,n(W,G) is a finite cover ofMg,n if 2g − 2 + n > 0. In particular, it is smooth
and compact. This cover is the one of [12] reviewed at the beginning of this subsection.
For the compactness, it is essential that the grading element J is contained in G. An
explicit description of Wg,n(W,G) for the Fermat quintic W =∑5

i=1 x5i and G = 〈J 〉
has been worked out in [14].

Note that for the underlying physical theory to admit a topological A-twist, the
U(1)V symmetry must be preserved. This leads to a selection rule which translates into
a condition for Wg,n(W,G)(γ ) to be non-empty. It is empty unless

γ (1) · · · · · γ (n) = J 2g−2+n . (4.8)

This condition is equivalent to the requirement that the degree of |L j |, deg |L j | =
q j (2g − 2 + n) −∑n

i=1 θ
γ (i)
j , is an integer. Here |L j | is the pushforward of L j on the

orbicurve C to the underlying coarse curve C . There is also a selection rule coming from
the absence of U(1)A anomaly which will be reviewed in the next subsection.

4.2. A brief guide to FJRW theory. The moduli spacesWg,n(W,G) are the analogs for
Landau–Ginzburg orbifolds (W,G) of the moduli spaces of stable mapsMg,n(X, β) in
Gromov–Witten theory where (W,G) plays the role of X while there is no analog for
β ∈ H2(X,Z). The fact that Wg,n(W,G) is smooth and a finite cover of Mg,n makes
it much more tractable than Mg,n(X, β). There is a slight difference, though. While
the points in Mg,n(X, β) automatically satisfy (4.1), we still need to impose (4.2) on
sections of theL j corresponding to points inWg,n(W,G). For this reason, the evaluation
of the correlation functions is still hard.

InGromov–Witten theory the correlation functions are obtained by integrating certain
cohomology classes against the fundamental class of Mg,n(X, β). Since this is not
smooth in general, the ordinary fundamental class does not exist, and has to be replaced
by a so-called “virtual” fundamental class. In the present case, even thoughWg,n(W,G)

is smooth, the presence of L j leads to an obstruction and one still requires an analog of
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this virtual class in order to define the analogs of the Gromov–Witten classes, i.e. the
cohomology classes over which one has to integrate to get the invariants. For the moduli
space of d-spin structures, such an analog has been constructed in [76,77], following a
formal argument (for W (x) = xd ,G = Zd ) formulated by Witten in [67].

Basedon this argument, an analytic constructionof thevirtual cycle [Wg,n(W,G)]vir ∈
H∗(Wg,n(W,G))wasgiven in [13] for a general polynomial andgroup. It satisfies certain
key properties and axioms such that the set of correlations functions defines a cohomo-
logical field theory, called FJRW theory, in the sense of Kontsevich and Manin [78] (cf.
also [72]), on the spaceHFJRW(W,G) of chiral primary fields of the Landau–Ginzburg
orbifold (W,G). FJRW theory is then intersection theory onWg,n(W,G), generalizing
the case of topological gravity [75]. In the following, we are going to outline some of
the main ideas.

We wish to compute the genus g correlation functions with n insertions

〈τa1(α1)τa2(α2) . . . τan (αn)〉g,n , (4.9)

where αi are chiral primary fields in H(a,c), which is the state space HFJRW in FJRW
theory, to be discussed in Sect. 4.3. We recall that the operators τai for the gravitational
descendants [32] are defined as follows. Associated with each marked point σi , there is a
natural line bundle Li onMg,n whose fiber over the point (C, σ1, . . . , σn) is the cotan-
gent space to C at σi . Its first Chern class is usually denoted byψi ∈ H2(Mg,n). Pulling
these back to Wg,n(W,G) by the natural map (4.7) we get classes in H2(Wg,n(W,G))

which we will also denote by ψi . The gravitational descendants play an essential role
in the definition of the J -function (cf. Sect. 2). The properties of the J -function then
allow for a computation of the correlation functions in genus zero, as we will discuss in
Sect. 4.4.

In [12] an argument to compute (4.9) was given for the topologically twisted gauged
WZW model corresponding to W (φ) = φd . There should be a formulation in terms
of A-twisted Landau–Ginzburg theory for an arbitrary superpotential W (φ1, . . . , φN )

coupled to topological gravity. To our knowledge, this has not been done and we will not
perform a detailed discussion here. We restrict ourselves to outlining the required steps
to compute correlation functions since this will motivate the results of FJRW theory
from a physics perspective. After the A-twist the fermions (not to be confused with the
gravitational descendants ψi ) take values in

ψ
j
+ ∈ C∞(C,L j ⊗ ωC,log), ψ

j̄

+ ∈ C∞(C,L j ),

ψ
j
− ∈ C∞(C,L j ), ψ

j̄

− ∈ C∞(C,L j ⊗ ωC,log),
(4.10)

for j, j̄ = 1, . . . , N . This assignment is consistent with terms in the action of the form
ψ

j
+ψ

k−∂ j∂kW which is necessary for making a Landau–Ginzburg orbifold A-twistable
[79]. The coupling to gravity should work by making use of the standard Noether pro-

cedure. One expects to end up with an action S[φ j , ψ
j
±, ψ

j̄

±, hαβ, χαβ ], where hαβ is
the metric on C and χαβ is the gravitino. Following standard arguments [12,80,81], the
path integral with insertions of gravitational descendants ψi and states αi is expected to
reduce to

∫
MBPS

ctop(E )

n∏
i=1

ψ
ai
i

n∏
i=1

αi . (4.11)
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The integral over MBPS is determined by the fact the path integral localizes on the
fermionic zero modes. The vanishing locus of the variation of the fermions, Qψ

j
± = 0,

is the space of solutions to the BPS equation (4.2). By general arguments [80], we
expect that ctop(E ) represents the (generalized) Euler class of the (generalized) bundle
of fermionic zero modes that arises from evaluating the path integral of the two- and four
fermion terms in the action. A mathematical definition will be given below. In general,
it is not known how to evaluate this path integral since a representation of the states
αi in the terms of the fields φ j is lacking. In the special case W = xd ,G = Zd , the
path integral could be evaluated in [12] using the equivalent formulation in terms of the
topologically twisted gauged WZW model.

Now we give a description of MBPS in the framework of W -spin structures. Given
(C, σi ,L j , ϕk) ∈ Wg,n(W,G)(γ ), the BPS equation (4.2) describing the fixed point
of the fermionic symmetry is viewed as a system of PDEs for smooth sections s j ∈
C∞(C,L j ) of L j , j = 1, . . . , N (we choose α = 1 here):

∂̄s j + ∂ jW (s1, . . . , sN ) = 0, j = 1, . . . , N . (4.12)

These equations, called Witten equation in [13], make sense under the isomorphisms
ϕk and a suitable choice of a Hermitian metric on L j . The latter is needed since ∂̄s j ∈
�0,1(L j ) while ∂ jW ∈ C∞(C, ωC,log ⊗ L−1j ) and these two spaces can be identified
via such a metric. The Witten equation should be viewed as the counterpart in LG
theory to the Cauchy–Riemann equation ∂̄J u = 0 for a smooth map u : C → X in
Gromov–Witten theory.

When all the marked points σi correspond to the narrow sector, i.e. when γ j (i) �= 1
for all i and j , the zero sections are the only solutions to the BPS equations. In a broad
sector, however, we have fields other than the vacuum satisfying untwisted boundary
conditionsφ j (e2π i z) = γ (i)φ j (z)with γ (i) = 1 (see Sect. 3.1). After perturbingW into
a holomorphic Morse function, i.e. such that its critical points become nondegenerate,
the vacua corresponding to these untwisted fields allow for nontrivial solitonic solutions
[70] of the type studied in [74].

In [13] the moduli space of solutions to the BPS equations (or Witten equations) for
a fixed point inWg,n was defined as

{(s1, . . . , sN ) ∈ C∞(C,
N⊕
j=1

L j ) | ∂̄s j + ∂ jW (s1, . . . , sN ) = 0, j = 1, . . . , N }/ ∼ ,

(4.13)

where ∼ takes into account automorphisms of the sections. This describes a fiber in the
moduli space MBPS in (4.11).

It was shown that, after perturbing W into a holomorphic Morse function, the space
of solutions defines a homology class

[Wg,n(W,G)(γ )]vir ∈ H∗(Wg,n(W,G)(γ ))⊗
⊗
i

(
Hγ (i)

)∨
, (4.14)

called the virtual cycle, where Hγ (i) are the twisted sectors, cf. Sect. 4.3. This class is
independent of the perturbation and satisfies a number of key axioms that we will not
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spell out here. The real dimension of this cycle is

2D(γ ) = 6(g − 1) + 2n + 2
N∑
j=1

χ(|L j |), (4.15)

where χ(|L j |) is the holomorphic Euler characteristic of |L j |. Here the notion of a
W -spin structure bears fruit. It provides a natural setting for studying the solutions of
the BPS equations compatible with the action of the orbifold group G on W . The fact
that Wg,n(W,G) is a finite cover of Mg,n can be used to push forward the Poincaré
dual of the virtual cycle to Mg,n . Given αi ∈ H, i = 1, . . . , n, this procedure yields a
cohomology class on Mg,n defined as

�W,G
g,n (α1, . . . , αn) = |G|g

deg st
PD st∗

(
[Wg,n(W,G)(γ )]vir ∩

n∏
i=1

αi

)
∈ H∗(Mg,n),

(4.16)

where PD stands for Poincaré dual. This class is nonzero only if αi lies inHγ (i) and its
real dimension is 2D(γ )−∑N

i=1 dγ (i) where dγ (i) the dimension of the fixed point locus
(CN )γ (i) of γ (i). The axioms of the virtual cycle then guarantee that the collection of
classes�W,G

g,n satisfy the axioms of a cohomological field theory [13]. Ideally, one would
like to have [Wg,n(W,G)(γ )]vir = ctop(E )∩ [Wg,n(W,G)(γ )] where is E →Wg,n is
a vector bundle naturally associated to the line bundles L j .

We remark that while the original description [13] reviewed here was of analytic
nature, there have been algebraic constructions of [Wg,n(W,G)]vir in [82–84] which
are shown to be equivalent for narrow insertions. To our knowledge, the equivalence for
insertions from broad sectors is known for the ADE potentials and still open in general.

Now, we turn to the description of ctop(E ). This is a certain “top Chern class” of
the push-forward by π of the obstruction complex E •. The latter is a two-term com-
plex [E 0 → E 1] of coherent sheaves over Wg,n(W,G) built out of the universal line
bundles L j → Wg,n(W,G). Here, we denote the universal curve by π : C →
Wg,n(W,G). Let p = (C; σi ,L j , ϕk) ∈ Wg,n(W,G). Then the fiber of C over p
is the curve Cp = π−1(p) = C and the fiber of L j over p is L j,p = L j . The
coherent sheaves E i are then defined as E i = ⊕N

j=1 Riπ∗L j for i = 0, 1, where(
Riπ∗L j

)
p = Hi (π−1(p),L j,p) = Hi (C,L j ). The vector space H1(C,L j ) corre-

sponds to the fermionic zero modes in the path integral and was denoted by V in [32].
In general, it can happen that these zero modes are not independent. The map in the
complex describes the relations among them. More precisely, the first term comes from
ψ i
+, ψ

i− zero modes, the second comes from ψ i
+, ψ

i− zero modes.
In general, this “top Chern class” is difficult to construct. Since E • is in general not

a sheaf, but only a two-term complex of sheaves, the construction of an analog of the
top Chern class, sketched in [12] in terms of an index-theoretic construction, has not yet
been formulated in general mathematically. There are two notable situations in which
an effective method for computation of this class has been developed. These apply to
narrow sectors of Fermat and chain polynomials, respectively, and will be summarized
shortly.

We first discuss the special case when R•π∗L j is concave in genus g, i.e. when
H0(C,L j ) = 0 for every genus g W -spin curve C. One can show [19] that if W =
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∑N
j=1 x

1
q j
j is a Fermat polynomial and γ consists only of narrow sectors, thenR0π∗L j =

0 for every j . Moreover, in this case R1π∗L j is a vector bundle and the virtual class
becomes

[W0,n(W,G)]vir = (−1)N
N∏
j=1

ctop(R
1π∗L j ) ∩ [W0,n(W,G)] . (4.17)

The concave situation is in fact used as an axiom that the virtual class has to satisfy [13].
In general, even though neither of the terms in the complex E • is a vector bundle, E •

can be replaced by a complex of vector bundles [A→ B] that is quasi-isomorphic to E •

[82]. This complex is not unique. The naïve idea would be to define ctop(E •)′′=′′ ctop(B)ctop(A)
,

but this does not work at first since ctop is not an invertible class in general. Instead,
the following characteristic class is considered [20]. Let V → X be a complex vector
bundle of rank r over a complex manifold X with Chern roots α1, . . . , αr . Then we set

ct (V ) =
r∏

k=1

eαk − t

eαk − 1
αk ∈ H∗(X)[t], t �= 1. (4.18)

Note that limt→1 ct (V ) = ctop(V ).More generally, for aK-theory class V = [V0−V1] ∈
K (X) we set ct (V ) = ct (V0)

ct (V1)
, and the limit t → 1 generally diverges. In the present

context, viewing the complex [A→ B] as [B − A] ∈ K (Wg,n(W,G)), the idea then is
to set

[Wg,n(W,G)]vir = lim
t→1

ct ([B − A]) ∩ [Wg,n(W,G)] . (4.19)

Bymeans of the isomorphisms ϕk : Wk(L j ) ∼= ωC ,log, this idea can be made precise for
chain polynomials [20]. The author shows, in the algebraic formalism of [82], that the
limit exists and the resulting virtual class does not depend on the choice of the complex
[A→ B]. Therefore, one can define

ctop(E
•) := lim

t→1
ct (E

•) = lim
t→1

ct ([B − A]). (4.20)

To summarize, the mathematical formulation of (4.11) is as follows. The correlation
functions (4.9) are understood as multilinear maps from the state space H(W,G), i.e.
the chiral ringH(a,c), to the cohomology of the moduli space Mg,n :

�W,G
g,n : H(W,G)⊗n → H∗(Mg,n,C)

(α1, . . . , αn) �→ �g,n(α1 ⊗ · · · ⊗ αn) = 〈τa1(α1), . . . , τan (αn)〉g,n
(4.21)

In general, given the virtual class �vir
g,n in (4.16), the FJRW invariants are defined as

〈τa1(α1), . . . , τan (αn)〉g,n =
∫
Mg,n

�W,G
g,n (α1, . . . , αn) ∩

n∏
i=1

ψ
ai
i . (4.22)

The absence of the U(1)A anomaly implies that

〈τa1(α1), . . . , τan (αn)〉g,n �= 0 only if D(γ )− 1

2

N∑
i=1

dγ (i) =
n∑

i=1
ai . (4.23)
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These invariants “count” the number of solutions to theWitten equation (4.12) in a similar
way as the Gromov–Witten invariants “count” the number of solutions to the Cauchy–
Riemann equations, i.e. the number of holomorphic maps. In favorable circumstances,
these can be computed explicitly.

Equivalently, for a general CohFT with state space H, equipped with a symmetric
nondegenerate bilinear form (·, ·) and a distinguished nonzero element e1, we can define
a generating function as

Fg(t) =
∞∑
n=0

∑
a1,...,an≥0

0≤k1,...,kn≤M

〈τa1(ek1) . . . τan (ekn )〉g,n
tk1a1 . . . t

kn
an

n! , (4.24)

where M = dimH and e1, . . . , eM is a basis for H such that e1 is the identity of the
ring structure on H. The superscripts in tkiai are indices and not powers.

The generating function Fg of all the FJRW invariants in (4.22) satisfies the WDVV
equation, the dilaton equation, the string equation and the topological recursion relations
[13]. Since the string equation will play a role in several places, we reproduce it here for
completeness. With ta =∑M

k=1 tka ek it reads

∂Fg
∂t10

= 1

2
(t0, t0) +

∞∑
b=0

M∑
k=1

tkb+1
∂Fg
∂tkb

. (4.25)

The generating function Fg hence has the same structure as topological gravity and
Gromov–Witten theory [75]. Therefore, much of the formalism developed for Gromov–
Witten theory, such as Givental’s symplectic formalism, applies to FJRW theory, as we
will summarize in Sect. 4.4. While (4.22) is still abstract, Givental’s symplectic formal-
ism in particular allows for explicit computations of the FJRW correlation functions in
genus zero.

4.3. The state space and the chiral ring of LG orbifolds. In this subsection, we relate
the definitions and properties of the state spaceHFJRW in FJRW theory to the chiral ring
H(a,c) in physics.

Given an admissible group G and an element γ ∈ G, let (CN )γ ⊆ C
N denote the

subspace of CN of γ -invariants, i.e. the subspace of elements that are fixed by γ :

(CN )γ = {(x1, . . . , xN ) ∈ C
N | γ (x1, . . . , xN ) = (x1, . . . , xN )}. (4.26)

We denote the set of fixed indices by (writing γ as in (3.10))

I γ = { j ∈ {1, . . . , N } | θγj = 0} (4.27)

andwewrite dγ = |I γ | = dim(CN )γ . For the complement, we set Iγ = {1, . . . , N }\ I γ
and dγ = |Iγ | = N − dγ .

The state space for theLGorbifold (W,G) is defined as the vector space (cf. Sect. 3.1)

HFJRW(W,G) =
⊕
γ∈G

HFJRW,γ =
⊕
γ∈G

(
Jac(Wγ )⊗ dxγ

)G
, (4.28)

where Wγ = W |(CN )γ is the γ -invariant part of the polynomial W , Jac(Wγ ) is its
Jacobian ring, the differential form dxγ is

∧
j∈I γ dx j , and the superscript G stands for
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theG-invariant part. SinceW andG arefixed,wewill justwriteHFJRW forHFJRW(W,G)

for notational ease.
There are alternative, isomorphic definitions in terms of relative Chen–Ruan coho-

mology [13], and Hochschild homology of the category of G-equivariant matrix factor-
izations of W [82]. In the former case, we have HFJRW,γ

∼= Hdγ
((CN )γ ,W+∞

γ ;C)G .
In particular, the dual space (HFJRW,γ )

∨ can be identified with the relative homology
Hdγ ((CN )γ ,W+∞

γ ;C)G so that the virtual class in (4.14) can really be thought of as a
homology class of degree dγ .

For any γ ∈ Aut(W ), the set of broad variables with respect to γ is Bγ = {x j |
j ∈ I γ }. In physics, these variables are called untwisted fields in the γ -twisted sector
[11,18]. The direct summandHFJRW,γ when dγ = 0 or, equivalently, when Bγ = ∅ is
called a narrow sector and a broad sector otherwise. Note that a narrow sector satisfies
dimHFJRW,γ = 1. This coincides with the notion of broad and narrow that we have
used in the previous sections. We would like to point out that nontrivial broad sectors
can appear in a Fermat polynomial of Calabi–Yau type such as in the example discussed
in Sect. 6.4.

Next, we explain a number of additional structures on the state spaceHFJRW known
from Sect. 3.1. It carries a bigrading, a nondegenerate pairing, and a product.

Recall the natural Q grading on the Jacobian ring Jac(Wγ ), defined by the weights
q1, . . . , qN . This gives a Q grading on Jac(Wγ )⊗ dxγ defined by

degW (mdxγ ) = degC[x](m) +
∑
j∈I γ

q j . (4.29)

In other words, if m = ∏
j∈I γ x

v j
j , then degW (mdxγ ) = ∑

j∈I γ (v j + 1)q j . Recall

that
∑N

j=1 q j = age(J ). Following [14,72,85] we define the bigrading on HFJRW,γ as
follows: For α ∈ HFJRW,γ we set

(deg+ α, deg− α) = (
dγ − degW α + age(γ )− age(J ), degW α + age(γ )− age(J )

)
.

(4.30)

and for the total degree

degα = deg+ α + deg− α . (4.31)

In fact, we have a decomposition

HFJRW,γ =
⊕

p+q=dγ +2 age(γ )−2 age(J )
Hp,q

FJRW,γ ,

Hp,q
FJRW,γ = {α ∈ HFJRW,γ | deg+ α = p, deg− α = q}.

(4.32)

The state space of FJRW theory is then equipped with the bigrading

Hp,q
FJRW(W,G) =

⊕
γ∈G

Hp,q
FJRW,γ . (4.33)

As a bigraded vector space,HFJRW(W,G) is determined only by the weights q1, . . . , qN
and the actionof thegroupG onCN [72].Note that the degreeof the class�W,G

g,n (α1, . . . , αn)

in (4.16) can now be rewritten as

D(γ )− 1

2

n∑
i=1

dγ (i) = (̂c − 3)(1− g) + n − 1

2

n∑
i=1

degαi , (4.34)
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if αi ∈ HFJRW,γ (i) for i = 1, . . . , n.
The comparison to the original bigrading defined in [11] (cf. Sect. 2) for the H(c,c)

is

Hp,q
FJRW,γ

∼= H(c,c)
γ

q ,̂c−p ∼= H(c,c)
γ−1

ĉ−p,q . (4.35)

To see this, let q+ be the charge of FL and q− be the charge of FR . Then the left and
right U(1) charges of an element α = mdxγ ∈ HFJRW,γ = H(c,c)

γ are

q± = degC[x] m ±
∑
j∈Iγ

(
θ
γ

j − 
θγj � − 1
2

)
+

∑
j∈I γ

(
q j − 1

2

)
+ ĉ

2 . (4.36)

Assuming that 0 ≤ θ
γ

j < 1 we can drop the term 
θγj �. Moreover, since θ
γ

j = 0 for
j ∈ I γ , we can write

q± = degC[x] m ±
(
age(γ )− 1

2 (N − dγ )
)
+

∑
j∈I γ

q j − 1
2d

γ + ĉ
2 . (4.37)

Finally, using degW α = degC[x]m +
∑

j∈I γ q j and ĉ = N − 2 age(J ) we obtain

q+ = degW α + age(γ )− age(J ) = deg− α,

ĉ − q− = dγ − degW α + age(γ )− age(J ) = deg+ α.
(4.38)

From Sect. 3.1 we therefore get the isomorphism

Hp,q
FJRW,γ

∼= H(a,c)
Jγ−1

eγ �→ e(a,c)
Jγ−1 .

(4.39)

Even though we work in the A-model and hence with (a, c)-rings, for the FJRW formal-
ism and explicit calculations it is often more convenient to work in the FRJW/B-model
basis, which we will do in the following and in Sect. 6.

Note that in the Calabi–Yau case, we actually have a Z bigrading. There is also a
coarse Z/2Z grading given by the total degree mod 2, i.e. by dγ mod 2. We will call a
sector Hγ of even degree if dγ mod 2 = 0 and of odd degree otherwise.

Since (CN )γ = (CN )γ
−1
, i.e. γ and γ−1 have the same fixed point set, there is an

obvious isomorphism ε : HFJRW,γ → HFJRW,γ−1 . The residue pairing on Jac(Wγ )⊗dxγ
induces a pairing 〈−,−〉γ : HFJRW,γ ⊗HFJRW,γ−1 → C, ( f, g) �→ 〈 f, g〉γ = 〈 f, ε∗g〉
which is symmetric and non-degenerate. The pairing on HFJRW is defined as the direct
sum of the pairings 〈−,−〉γ on HFJRW,γ . Fixing a basis for HFJRW, we denote the
pairing by a matrix ηαβ = 〈α, β〉, with inverse ηαβ . The restriction of the pairing to the
narrow sectors then takes the following form (see (3.20))

ηγ,γ ′ = ηeγ ,eγ ′ =
1

|G|δγ,γ ′−1 , γ, γ ′ ∈ G . (4.40)

There are two types of twisted sectors of special interest. The sector HFJRW,J is
always narrow, hence has a canonical generator which we call 1J . By the Calabi–Yau
condition

∑
q j = d, we have deg 1J = 0. The second case is when

∑
q j = d and(

deg+(α), deg−(α)
) = (1, 1). This is the case if and only if dγ = 0mod 2 and age(γ ) =
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2− 1
2d

γ . These are the sectors that contain the deformation classes discussed in Sect. 3.3.
In particular, note that there can be broad sectors that are of even degree and therefore
contribute to the deformation classes. An example is given in Sect. 6.4.

From the general discussion in Sect. 2 we expect thatHFJRW(W,G) can be equipped
with a product tomake it into a ring.Todefine the product∗ : HFJRW×HFJRW → HFJRW,
we need the FJRW invariants. For α1, α2 ∈ HFJRW we set

α1 ∗ α2 =
M∑

k,k′=1
〈α1, α2, ek〉0,3ηek ,ek′ ek′ , (4.41)

where e1, . . . , eM is a fixed basis ofHFJRW(W,G). The state e1 := 1J is the unit of this
product. The product can only be determined once we have a prescription for computing
the FJRW invariants in genus zero.

We define the narrow part ofHFJRW byHnarrow =⊕
γ :dγ=0 HFJRW,γ and the broad

part byHbroad =⊕
γ :dγ >0 HFJRW,γ . The decompositionHFJRW = Hnarrow ⊕Hbroad

corresponds under the isomorphism HFJRW ∼= H∗(X,C) (Landau–Ginzburg/Calabi–
Yau correspondence) to the decomposition H∗(X,C) = H∗amb(X,C) ⊕ H∗prim(X,C)

of the cohomology of a Calabi–Yau hypersurface X .The two spaces in this decompo-
sition are defined starting from the embedding ι : X → P(
) into a (smooth) toric
varietry P(
) given by a fan
. Then the ambient cohomology is H∗amb(X,C) = im(ι∗ :
H∗(P(
),C) → H∗(X,C)) and the primitive cohomology is H∗prim(X,C) = ker(ι∗ :
H∗(X,C) → H∗(P(
),C)). The correspondence was shown in [85] for Calabi–Yau
hypersurfaces in weighted projective spaces. We expect it to hold more generally for
any Calabi–Yau hypersurface X in a toric variety that has a Landau–Ginzburg phase.
We would like to point out that the map ι∗ restricted to the even cohomology need not
be surjective. An example is discussed in Sect. 6.4. We will return to this point after we
have introduced the J -function.

4.4. I - and J -functions. In this subsection we review how Givental’s symplectic for-
malism [15] can be applied to FJRW theory in order to compute the genus zero FJRW in-
variants in the narrow sectors. This has been done for one-parameter families of Landau–
Ginzburg orbifolds of Calabi–Yau type with G = 〈J 〉 in [14,19] and G = Aut(W ) in
[20]. Here, we generalize it to multiparameter families with generalG ⊂ Aut(W ). From
now on we will restrict ourselves to genus zero. The genus zero descendant potential
F0 in (4.24) can be recovered from the so-called J -function of finitely many variables
via a reconstruction theorem [15] essentially due to [33,68]. It turns out that there ex-
ists a family of J -functions parametrized by a set of variables s = (s0, s1, . . . ) that
interpolates between the (rescaled) invariants of Mg,n and certain equivariant FJRW
invariants. The actual FJRW invariants are then obtained in the non-equivariant limit. In
the following we review this procedure and apply it to the case of multiparameter LG
orbifolds.

For computational purposes, the authors of [14,19] have made two modifications,
referred to as “extension” and “twist”, to the description of FJRW theory given so far.
This defines new invariants that are different from the invariants of the full theory, but
still are a natural and computable extension of the narrow sector invariants.

Let us first define the extended invariants. For this purpose, we define the extended
(narrow) state space replacing every broad sector by a one-dimensional auxiliary space
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Ceγ , thereby effectively making it narrow:

Hext
FJRW(W,G) =

⊕
γ∈G

Ceγ = Hnarrow ⊕
⊕
dγ >0

Ceγ . (4.42)

The grading (4.31) on Hext
FJRW(W,G) is modified in the way to include the new sectors

by setting

degα = 2dγ + 2 age(γ )− 2 age(J ). (4.43)

This extension is introduced for practical purposes. The new states are only a computa-
tional tool and play the role of placeholders in the theory. In this way, we can work with
all twisted sectors on equal footing, without paying attention to those which are absent,
or broad. The disadvantage of this modification is that we are ignoring contributions
from the broad sectors. This is because no computational description is known so far.
Moreover, this modification can introduce unphysical states, see e.g. the discussion in
Sect. 4.5.

In order to include the extended sectors properly, the moduli stack W0,n(W,G)(γ )

has to be modified accordingly: The essential idea is to undo the monodromy of L j at
σi by twistingL j to L̃ j = L j (−∑n

i=1 σi ). This procedure will guarantee that the new
invariants involving classes from the extended sectors vanish.

We define the extended FJRW invariants to be

〈τa1(α1) . . . τan (αn)〉ext0,n =
∫
W0,n(W,G)(γ )

ctop(
N⊕
j=1

R1π∗L̃ j ) ∩
n∏

i=1
ψ

ai
i ∩

n∏
i=1

αi

(4.44)

for αi ∈ Hext
FJRW,γ (i), i = 1, . . . , n. It is shown in [14,19] that the extended invariants

vanish if one of the entries α j does not belong toHnarrow. Otherwise

〈τa1(α1) . . . τan (αn)〉ext0,n = 〈τa1(α1) . . . τan (αn)〉0,n . (4.45)

The secondmodification concerns the Euler class of the obstruction complex. Rescal-
ing the fiber of each line bundleL j , defines a T = (C∗)N action on a W -spin structure
given by with character −λ j ∈ H2

T (pt), j = 1, . . . , N . This induces an action on
W0,n(W,G) and on the extended obstruction bundle E 1 = ⊕N

j=1 R1π∗L̃ j . Then the

T -equivariant Euler class eT of E 1 is given by

eT
(
E 1

)
=

N∏
j=1

r j∑
�=0

λ
r j−�

j ch�(R
1π∗L̃ j ), (4.46)

with r j = rk R1π∗L̃ j . Note that there is an explicit formula for expressing chk(R1π∗L̃ j )

in terms of the tautological classes in H∗(Wg,n(W,G)) [86]. In the non-equivariant limit
λ j → 0 we have

lim
λ j→0

eT (E
1) = ctop(E

1) . (4.47)
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More generally, we may express an invertible multiplicative characteristic class of E 1

as

e(s)(E 1) = exp

⎛
⎝ N∑

j=1

∑
�≥0

s( j)� ch�(R
1π∗L̃ j )

⎞
⎠ ∈ H∗(W0,n(W,G),C)⊗C C[[s]],

(4.48)

where we write s = (s( j)� )�∈Z≥0,1≤ j≤N with exp(s( j)0 ), s( j)� ∈ C for 1 ≤ j ≤ N , � > 0.
These variables can be collected into the generating functions

s( j)(x) =
∑
�≥0

s( j)�

x�

�! , j = 1, . . . , N . (4.49)

Following [14,19] we consider two specializations. On one hand, setting s( j)� = 0 for
all j and � yields e(0) = 1, and the virtual class becomes the ordinary fundamental
class. We will see below that in this case the corresponding correlators can be computed
explicitly. On the other hand, consider the specialization

s( j)� =
{
− log λ j � = 0
(�− 1)!(−λ j )

−� � > 0,
(4.50)

which we will abbreviate by s = λ. This specialization yields exp(−s( j)(x)) = x + λ j
and therefore recovers the T -equivariant Euler class

e(s)(E 1)|s=λ = eT (E
1) . (4.51)

In the limit λ j → 0 we obtain the virtual class. In particular, the variation by s interpo-
lates between integrals of ψ-classes over Wg,n(W,G) (which are generically |G|-fold
covers of M0,n and hence are easy to compute) and the FJRW invariants (which we
want to compute). Equations (4.50) and (4.51) are valid for the concave case. For the
non-concave case [20] one replaces ctop in (4.44) by (4.20). Furthermore λ j no longer
has an interpretation as an equivariant parameter, but formally the derivation is the same.

Given these modifications we define the s-twisted virtual class on W0,n(W,G) as
the class

[
W0,n(W,G)(γ )

]vir,s = e(s)(E 1) ∩ [
W0,n(W,G)(γ )

]
(4.52)

and the twisted invariants

〈τa1(α1) . . . τan (αn)〉ext,s0,n =
∫
W0,n(W,G)(γ )

e(s)(E 1) ∪
n∏

i=1
αi ∪

n∏
i=1

ψ
ai
i . (4.53)

There is an s-twisted pairing ηext,s : Hext
FJRW(W,G) ⊗C C[[s]] × Hext

FJRW(W,G) ⊗C

C[[s]] → C[[s]] given as follows: For any eγ , eγ ′ ∈ Hext
FJRW(W,G) we set

ηext,s(eγ , eγ ′) = 1

|G|
∏
j∈I γ

exp(−s( j)0 )δγ,(γ ′)−1 (4.54)
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and then extend it by linearity. As in the unmodified case in Sect. 4.2, we can define a
generating function for the invariants in (4.22) as

Fs
0 (t) =

∞∑
n=0

∑
a1,...,an≥0

γ (1),...,γ (n)∈G

〈τa1(eγ (1)) . . . τan (eγ (n))〉ext,s0,n
tγ (i)a1 . . . tγ (n)an

n! , (4.55)

where M = dimHext
FJRW(W,G) and eγ is the generator of Hγ (cf. (4.42)). We denote

its specialization to (4.49) by FT
0 (t) = Fs

0 (t)|s=λ. In the non-equivariant limit, this
becomes

lim
λ→0

FT
0 = F0. (4.56)

where we set λ j = −q jλ, j = 1, . . . , N , and then take the limit λ→ 0.
We briefly return to the specialization s = 0. In this case, some of these modified

invariants can be explicitly determined by reducing them to integrals overMg,n which
are explicitly known in many cases, see e.g. [87]. In particular for g = 0, the string
equation (4.25) implies that [14]

〈τa1 (e1), . . . , τan (en)〉s=00,n =
1

|G|
∫
M0,n

n∏
i=1

ψ
ai
i

=
{

1
|G|

(
∑n

i=1 ai )!
a1!···an ! if n − 3 =∑n

i=1 ai and γ (1) . . . γ (n) = Jn−2

0 otherwise

(4.57)

The vanishing conditions follow from the non-emptiness ofW0,n(W,G)(γ ) in (4.8) and
the absence of U(1)A anomaly (4.23).

Finally, we come to Givental’s symplectic formalism [15]. In this formalism a new
variable z is introduced and one considers the symplectic vector space of formal Laurent
series Vs = Hext

FJRW(W,G)⊗C C[[s]] ⊗C C[z][[z−1]] with symplectic form �( f, g) =
Resz=0(ηext,s( f (z), g(−z))). The variable z can be identified with the parameter z in
the t t∗ or Dubrovin connection [68,74]. Introducing Darboux coordinates (qγ

a , pγ,b)

dual to the basis of Vs given by (eγ za, η
γ γ ′
ext,seγ ′(−z)−1−b), γ ∈ G, a, b ∈ Z≥0, the

important point is that after the change of variables tγa = qγ
a − δ

γ

J δ
1
a the generating

function Fs
0 becomes a function of qγ

a . Its graph therefore defines a Lagrangian subspace

Ls = {(qγ
a , pbγ ) ∈ Vs | paγ = ∂Fs

0
∂qaγ
} ⊂ Vs which is a cone and has further very

special geometric properties that encode the dilaton equation, the string equation and
the topological recursion relations satisfied by Fs

0 .
This cone has an alternative characterization in terms of the twisted J -function. The

twisted J -function, J s : Hext,s
FJRW(W,G) → Vs, t �→ J s(t, z), is a family of points in

Vs parametrized by t = ∑
γ∈G tγ0 eγ ∈ Hext,s

FJRW(W,G). From now on, we will omit the

index 0 and write tγ = tγ0 . The function J s is defined as

J s(t, z) = z1J + t +
∞∑
n=2

∞∑
b=0

∑
γ,γ ′∈G

1

n! 〈t, . . . , t, τb(eγ )〉
ext,s
0,n+1η

γγ ′
s z−1−beγ ′ . (4.58)
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One can show that J s(t,−z) ∈ Ls ⊂ Vs and that it is the unique such function of the
form

J s(t,−z) = −z1J + t + O(z−1). (4.59)

It follows that the cone Ls is uniquely determined by the image of J s(t,−z) via the
string equation (4.25) [15].

We evaluate the untwisted (s = 0) correlators using (4.57) and find

J 0(t, z) =
∑

{kγ≥0|γ∈G}

∏
γ∈G

(tγ )kγ

kγ ! z1−|k|eγ̂ (k), (4.60)

where we have set γ̂ (k) =∏
γ∈G γ kγ and |k| =∑

γ∈G kγ . We write this function as

J 0(t, z) =
∑

{kγ≥0|γ∈G}
J 0{kγ }(t, z) (4.61)

with coefficients

J 0{kγ }(t, z) =
∏
γ∈G

(tγ )kγ

kγ ! z1−|k|eγ̂ (k) . (4.62)

To determine J s one introduces another function I s : Hext,s
FJRW(W,G) → Vs which

is obtained from J 0 by a symplectic transformation � : V0 → Vs . Following and
generalizing [14,19,20], we define the modification factor

Ms
{kγ }(z) =

N∏
j=1

exp

⎛
⎜⎝− ∑

0≤m<
∑γ∈G θ
γ
j kγ +q j �

s( j)

⎛
⎝
⎛
⎝〈∑

γ∈G
θ
γ

j kγ + q j 〉 + m

⎞
⎠ z

⎞
⎠
⎞
⎟⎠ ,

(4.63)

where the θγj ∈ [0, 1) are the phases of an element γ ∈ G andwherewe use the functions

s( j)(x) given in (4.49). Then the family of functions u �→ I s(u,−z) defined by

I s(u, z) =
∑

{kγ≥0|γ∈G}
Ms
{kγ }(z)J

0{kγ }(u, z) (4.64)

lies on the cone Ls . This formula is a natural generalization of the one given in [14,19]
to admissible arbitrary groups G and a derivation within the setting of FJRW theory will
be given elsewhere. Note that we have changed the notation for the parametrization of
Hext

FJRW from t to u =∑
γ∈G uγ eγ since for s �= 0, these variables do not satisfy (4.59).

The fact that I s(u,−z) lies on the Ls implies that it contains the same information as
J s . Therefore, we only need to bring it into the form (4.59). We will do this in the next
subsection, after we have set s = λ.
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4.5. The central charge in the FJRW formalism. In this subsection, we specialize the
formula (4.64) for the I -function to the equivariant case and evaluate it in the non-
equivariant limit. In particular, we consider Landau–Ginzburg orbifolds of Calabi–Yau
type with ĉ = 3 and age(J ) =∑N

j=1 q j = 1. Furthermore, we also discuss the Gamma
class.

For the specialization s = λ we obtain the so-called eT –twisted J -function
JT (t,−z; λ) := J s(t,−z)|s=λ

JT (t,−z; λ) = −z1J + t +
∞∑
n=2

∞∑
b=0

∑
γ,γ ′∈G

1

n! 〈t, . . . , t, τb(eγ )〉
ext,s
T,0,n+1η

γγ ′
T (−z)−1−beγ ′ ,

(4.65)

where

ηT,γ γ ′ = ηT (eγ , eγ ′) = 1

|G|
∏
j∈I γ

λ jδγ (γ ′)−1 (4.66)

and 〈t, . . . , t, τb(eγ )〉ext,sT,0,n+1 are the eT –twisted FJRW invariants obtained from the Euler
class in (4.51). Note that

lim
λ j→0

〈τa1(eγ (1)), . . . , τan (eγ (n))〉T,0,n = 〈τa1(eγ (1)), . . . , τan (eγ (n))〉ext0,n . (4.67)

The specialization of (4.63) is

Ms
{kγ }(z)|s=λ =

N∏
j=1

z

∑

γ∈G θ
γ
j kγ +q j ��(

λ j
z − 〈

∑
γ∈G θ

γ

j kγ + q j 〉 + 1)

�(
λ j
z −

∑
γ∈G θ

γ

j kγ − q j + 1)
. (4.68)

At this point, it is useful to introduce the grading operator Gr of [19]:

Gr(eγ ) = 1
2 deg(eγ )eγ , (4.69)

where “deg” was defined in (4.31). Furthermore, we introduce the set G(2) labeling
the sectors containing the deformation classes, i.e. in the present situation the elements
α ∈ Hext

FJRW with degα = 2 (cf. (4.43)):

G(2) = {γ ∈ G | age(γ ) = 2}. (4.70)

Then, we restrict t from the big phase space to the small phase space Hext,(1,1)
FJRW =⊕

γ∈G(2) Hγ by setting

uγ = 0, γ �∈ G(2) ,

u =
∑

γ∈G(2)

uγ eγ . (4.71)

Note that we always have J 2 ∈ G(2). In [14,19,20] one–parameter families along the
direction of eJ 2 were studied. If one of the weights qi is 1/2, however, then HJ 2 is
a broad sector and dimHJ 2 = 0. The corresponding state eJ 2 was only artificially
introduced in the definition (4.42) of the extended state space. From the discussion in
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Sect. 3 we have learned that in such situations there is a change of variables such that
the fake deformation along eJ 2 can be traded for a genuine deformation along a specific
state eγ ∈ Hnarrow with deg eγ . We will return to this point after the discussion of the
J -function below.

The reason to restrict to the degree two elements is the following. First, we notice
that the invariants with only even degree insertions span the entire FJRW theory. This
follows [13] from (4.23) and (4.34), which for ĉ = 3 yields

2n −
n∑

i=1
degαi − 2

n∑
i=1

ai = 0 , (4.72)

and the fact that F0 satisfies the string equation (4.25). The string equation implies that
every FJRW invariant containing an entry of the form τ0(eJ ) can be expressed in terms
of the remaining invariants unless it is of the form 〈τ0(eJ )τ0(α2) . . . τ0(αn)〉g,n . One
finds

〈τ0(eJ )τ0(α2) . . . τ0(αn)〉g,n =
{
ηγ (2),γ (3) (g, n) = (0, 3)
0 otherwise.

(4.73)

Now, we see from (4.72) that either degαi = 2 and ai = 0 for all i , or degαi = 2 and
ai = 0 for all but one i , and the remaining entry being τ1(eJ ). It therefore suffices to
compute the J -function for t ∈ Hp,q

FJRW with p + q = 2 only.
With these preparations, we define the eT -twisted I -function by14 IT (u, z; λ) =

I s(u, z)|s=λ and obtain the following expression

IT (u, z; λ) = z−Grz
∑

{kγ≥0|γ∈G(2)}

∏
γ∈G(2)

(uγ )kγ

kγ !
N∏
j=1

�(
λ j
z − 〈

∑
γ∈G(2) θ

γ

j kγ + q j 〉 + 1)

�(
λ j
z −

∑
γ∈G(2) θ

γ

j kγ − q j + 1)
eγ̂ (k).

(4.74)

Finally, in this form it is convenient to decompose the sum according to the twisted
sectors given by eγ :

IT (u, z; λ) =
∑
γ ′∈G

IT,γ ′(u, z; λ)eγ ′ , (4.75)

with

IT,γ ′ (u, z; λ) = z1−
1
2 deg eγ ′

∑
{kγ≥0|γ∈G(2)}∏
γ∈G(2) γ

kγ =γ ′

∏
γ∈G(2)

(uγ )kγ

kγ !
N∏
j=1

�(
λ j
z − 〈

∑
γ∈G(2) θ

γ

j kγ + q j 〉 + 1)

�(
λ j
z −

∑
γ∈G(2) θ

γ

j kγ − q j + 1)
.

(4.76)

Since the coefficient of z in IT (u, z; λ) is IT,J , the fact that IT (u,−z; λ) lies on Lλ,
together with the uniqueness of JT (t,−z; λ), implies that

JT (t,−z; λ) = IT (u,−z; λ)
IT,J (u,−z; λ) , (4.77)

14 We do not multiply I s with a factor of u J as in [14,19] since we require the eJ component IT,J of IT
to be the form IT,J = 1 + O(u).
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and hence

tγ (u) = IT,γ (u,−z; λ)
IT,J (u,−z; λ) , γ ∈ G(2) . (4.78)

This is the analogous statement to the ones in Sects. 2.4 and 3.6 . We finally define

IW,G(u, z) = lim
λ→0

IT (u, z; λ), JW,G(t, z) = lim
λ→0

JT (t, z; λ). (4.79)

The functions IT (u, z; λ) and IW,G(u, z) have a number of interesting properties.
First, by (3.33) and (3.61) we immediately have

IW,G(u,−1) = ILG(u) . (4.80)

where we use q = qLG in the definition of ILG(u). Second, from the discussion in
Sect. 3.7 it follows that IW,G(u, z) is a generating function for a subspace of solutions to
a GKZ system near a point with finite monodromy which is defined in terms of W and
G only. This subspace has dimension dimHnarrow and is closed under the monodromy
action. It is straightforward to see that this holdsmore generally for IT (u, z; λ). Finally, in
concrete examples, the sums over k in (4.76) can be rewritten by choosing a fundamental
domain for the action of G on {kγ ≥ 0 | γ ∈ G(2)}, so that the entire expression admits
a much nicer form. This is done in Sect. 6.

The procedure to determine the FJRW invariants is then as follows. Given (W,G),
one first sets up the GKZ system and determines its solutions which give the I -function.
Then one computes the change of variables (4.78), inverts the corresponding power
series to obtain uγ as functions of tγ

′
. After substituting u = u(t) in (4.77) the FJRW

invariants can be read off from the expansion (4.65) after taking the limit λ → 0 as
in (4.67). This is very reminiscent of the standard procedure in mirror symmetry. In fact,
the I -function has the interpretation of period integral on the mirror Landau–Ginzburg
model (W∨,G∨). In that context, the change of variables between the I - and J -function
is then nothing but the mirror map, see e.g. [88]. In the present context, however, no
input from the B-model is needed.

Now, we return to the deformations eγ ∈ Hext,(1,1)
FJRW which are not in the narrow

sector Hnarrow, for example eJ 2 if one of the weights is 1/2. Then IT,J 2 = 0, and

hence t J
2 = 0. This is in agreement with the vanishing of the extended invariants (4.44)

with insertions not in Hnarrow. However, there are still nonvanishing FJRW invariants
coming from genuine deformations eγ ∈ H(1,1)

narrow.
In the geometric framework, one can define a J -function associated to the anti-

canonical bundle K∨
P
(�)

of the toric ambient variety P
(�) of the Calabi–Yau X [35].

Naturally, this only depends on H∗amb(X,C). The Landau–Ginzburg analogue is the
extended J -function that only sees the narrow sectors of the genuine FJRW J -function.

The other ingredient, besides the I -function, we need for theD-brane central charge is
theGammaclass. The �̂-integral structure in orbifoldGWtheorywas introduced in [2,3].
The generalization to the case of FJRW theory for (CN ,W, 〈J 〉) was given in [19]. For
arbitrary LG orbifolds (W,G) we define the Gamma class �̂W,G ∈ EndHFJRW(W,G)

as

�̂W,G =
⊕
γ∈G

∏
j∈Iγ

�(1− θ
γ

j )idHFJRW,γ
, (4.81)
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where the product is taken to be 1 if Iγ = ∅. Note that we have excluded the broad
sectors here. Ifwe are replacingHFJRW(W,G)by the extended state spaceHext

FJRW(W,G)

in (4.42) we can let the product run from j = 1 to N , since then the Gamma class acts
by the identity on the auxiliary sectors. We also define the conjugate Gamma class as

�̂∗W,G =
⊕
γ∈G

∏
j∈Iγ

�(1− θ
γ−1
j )idHFJRW,γ

. (4.82)

Equivalently, if we define the map inv : HFJRW(W,G)→ HFJRW(W,G) induced from
the natural isomorphism ε : HFJRW,γ

∼= HFJRW,γ−1 , then

�̂∗W,G = inv∗�̂W,G (4.83)

The Gamma class and its conjugate satisfy

�̂W,G ◦ �̂∗W,G =
⊕
γ∈G

∏
j∈Iγ

(
2π ieiπθ

γ
j

e2π iθ
γ
j − 1

)
idHFJRW,γ

. (4.84)

The right-hand side looks like a Todd class of an orbifold [2]. It seems that the presence
of a Landau–Ginzburg potential is reflected in the restriction to j ∈ Iγ . This was first
observed in [18].

Weare nowgoing to show that the definition of the operator �̂∗W,G in (3.65) agreeswith
the definition of the conjugate Gamma class given in (4.82). This follows immediately
from the isomorphism (3.52) and from (3.54),

θ
γ

j = θ
F([k])
j =

〈
(kT q) j

〉
, j = 1, . . . , N . (4.85)

We have already shown in Sect. 3.4 that the expression on the right hand side only
depends on γ . By (4.39) the eigenvalue in the sector HFJRW,γ equals the eigenvalue in

the sector H(a,c)
γ−1 J . The shift by J is accounted for by the shift by q j in (3.65).

5. The Hemisphere Partition Function

One of the main cases of interest where Landau–Ginzburg orbifold models arise is when
they can be found at special points of the quantum Kähler moduli space of Calabi–Yau
manifolds. In this section we will use the hemisphere partition function [8] for GLSMs
to compute central charges of B-branes on Landau–Ginzburg orbifold phases and show
that it reproduces the results obtained from our proposed formula. To leading order this
has already been shown in [8].

5.1. GLSM and hemisphere partition function. We briefly summarize the necessary
definitions of the GLSM and the hemisphere partition function.

A GLSM can be specified by the quadruple (G,W, ρV,R), where G is the gauge
group (we will eventually takeG = U (1)h), ρV : G→ GL(V) is the matter representa-
tion, with the vector space V the space of chiral multiplets. We restrict ourselves to the
case where ρV : G → SL(V) i.e. where the axial R-charge U (1)A is non-anomalous.
Identifying V ∼= C

dimV we denote the coordinates on V by z which are identified with
the scalar components of the chiral multiplets.W ∈ Sym(V∗) is the superpotential, and
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R : U (1)V → GL(V) denotes the vector R-charge. We require W to have weight 2
under R and we also require charge integrality, i.e. R(eiπ ) = ρV(J) for some J ∈ G.
Denote by ζ and θ the FI-parameters and θ -angles, respectively. We define t = ζ − iθ
with et ∈ Hom(π1(G),C∗)π0(G). Note that t is different from the flat coordinate t in
Sects. 2 to 4.

A B-type D-brane15 B in the GLSM is characterized by the data B = (M,Q, ρM, r∗)
and a contour γ ⊂ tC := Lie(T)⊗R C (where T denotes the maximal torus of G). The
space M = M0 ⊕ M1 is a Z2-graded free Sym(V∗)-module—the Chan–Paton space.
Q ∈ End1(M) is a matrix factorization of W. The representations ρM : G → GL(M)

and r∗ : u(1)V → gl(M) are defined by the conditions that Q is gauge invariant and has
R-charge 1:

ρM(g)−1Q(gz)ρM(g) = Q(z) (5.1)

λr∗Q(λRz)λ−r∗ = λQ(z), (5.2)

for all g ∈ G and λ ∈ U (1)V . For the conditions on the contour γ we refer the reader to
[8] (see also [89] for a summary). We will not need many details about γ . It will suffice
to have in mind that γ is a continuous deformation of Lie(T) ⊂ tC in the region where
ZD2(B) (defined below) is convergent.

Given this data, we can now give a definition for the hemisphere partition function
in the Calabi–Yau case:

ZD2(B) = C
∫
γ

drkGσ
∏
α>0

α(σ) sinh(πα(σ ))

dimV∏
j=1

�

(
i Q j (σ ) +

R j

2

)
ei t(σ ) fB(σ ),

(5.3)

where α > 0 are the positive roots of G, C is a normalization constant and Qi and
Ri denote the weights of ρV and R, respectively. The information about the brane B is
encoded in the “brane factor”

fB(σ ) = trM
(
eiπ r∗e2πρM(σ )

)
=

dimM∑
μ=1

eiπr
μ

e2π
∑

α w
μ
α σα , (5.4)

wherewμ
α and rμ denote the weights of ρM and r∗, respectively. In the following we fix

G = U (1)h, (5.5)

and denote by

C ∈ Math×dimV(Z) (5.6)

the charge matrix of the GLSM. We identify the weights Qi with the columns of C.

15 Due to shortage of fonts, we denote GLSM B-branes with the same letter as B-branes in the CFT in Sect.
2.
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Landau–Ginzburg phases Whether or not a GLSM has a Landau–Ginzburg phase is in
general an open question. A sufficient criterion on the gauge charges and superpotential
was proposed in [22] and was later proved in [63]. In a nutshell, it is a criterion on the
matrix C and the superpotential W. The condition for C is that there exists a subset of
h linearly independent columns of C such that the remaining columns lie in a negative
cone C of the chosen h columns16. This is equivalent to saying that there exists a cone
C of the secondary fan such that the symplectic quotient (i.e. a solution to the D-term
equations) Y = μ−1(ζ )/U (1)h is isomorphic to C

dimV−h/� for some finite group17

� ⊂ G for any value of ζ in the interior of such a cone. (This is the cone C that appeared
in Sect. 3.7.) Then a Landau–Ginzburg phase exists for ζ deep in the interior of such
a cone if the restricted superpotential W : Y → C has an isolated critical point at the
origin. The action of G on z can be written as

z j �→ ei(C
T λ) j z j λ ∈ R

h . (5.7)

If the criterion on C is satisfied this means there exists a basis where C takes the block
form

C = (L S) L ∈ Math×h(Z), S ∈ Math×N (Z), (5.8)

where N = dimV − h and L is invertible (over Q) and formed by the h linearly
independent columns mentioned above. It coincides with the matrix L associated to
qgeom we defined in Sect. 3 up to a change of basis18. Using the Smith normal form of
LT (cf. (3.49)) it is clear that the elements

e2π i L
−T m ∈ G =

h∏
α=1

U (1)α m ∈ Z
h (5.9)

define an embedding of Gorb into G where Gorb denotes the finite subgroup defined by
the elementary divisors of L , cf. (3.50). Recall that Gorb is isomorphic to the Landau–
Ginzburg orbifold group G. In the following we will not distinguish between G and
Gorb. By writing

q = L−1C (5.10)

the action of Gorb on V is nontrivial only on the fields zh+1, . . . , zh+N , which we denote
as φ j , j = 1, . . . , N (to make the connection with Sect. 3) and is given by

φ j �→ e2π i(q
T m) jφ j m ∈ Z

h . (5.11)

The group Gorb is the unbroken gauge group deep in the phase defined by the matrix
C. However, there can be, in general, situations where we are forced to use F-term
and D-term equations simultaneously in order to break the gauge group G to a finite
subgroup. An example of this is presented in Sect. 6.3, where we have a Landau–
Ginzburg phase, even though C do not satisfy the aforementioned criterion of [63].
In that example, we can still decompose C = (L S) but the columns of S do not

16 In [63] the more general case of rkC < h is considered.
17 This is shown in [63] and μ denotes the moment map associated to the action of G on V.
18 It would be interesting to study the GLSMs one gets from qLG and qext . For a closely related discussion,

see [90,91].



660 J. Knapp, M. Romo, E. Scheidegger

lie in the negative cone of the columns of L . We also cannot exclude the possibility
of Landau–Ginzburg phases occurring nonperturbatively as strongly coupled phases in
nonabelian GLSMs, in an analogous way as some geometric phases are known to be
non-perturbatively realized in non-abelian models. In the context of mirror symmetry
of non-abelian GLSMs, Landau–Ginzburg models have recently made an appearance in
[92]. However we will not consider such scenarios in this work.

In general, for Landau–Ginzburg phases realized at weakly coupled points, the F-
term and D-term equations fix nonzero VEVs for exactly h of the fields, say {z1, . . . , zh}
which breaksG to G as described above and the superpotential in the Landau–Ginzburg
phase can be taken to be

W (φ1, . . . , φN ) :=W(1, . . . , 1, zh+1, . . . , zh+N ) φ j := zh+ j . (5.12)

The R-charge assignments for the massless fields can be obtained directly from the fact
that the fields that acquire nonzero VEVs must be assigned R-charge zero. This deter-
mines the R-charges of φ1, . . . , φN uniquely by imposing thatW is quasi-homogeneous
of weight 2. Denote these R-charges by R j ∈ (0, 2), then

W (λR jφ j ) = λ2W (φ j ), (5.13)

so we can identify
R j
2 with the values of the left R-charges q j of Sect. 3 which we assume

to hold from now on.
A GLSM brane data B reduces to a Landau–Ginzburg brane B = (M, σ, Q, ρ, R)

with

M = M|za=1,
Q(φ1, . . . , φN ) = Q(1, . . . , 1, φ1, . . . , φN ),

ρ = ρM|G,
R = eiπr∗ |Ra=0,Rh+ j=2q j ,

(5.14)

where a = 1, . . . , h and j = 1, . . . , N . Moreover, σ = eiπr∗ρM(J)with the restrictions
on M, ρM and eiπr∗ indicated in (5.14) and J ∈ G is an element satisfying the charge
integrality condition for ρV and R. The module M = ⊕dim M

μ=1 Mμ corresponds to the

module M over the specialization S = C[φ1, . . . , φN ] of S = C[z1, . . . , zdimV] at
za = 1, a = 1, . . . , h, za+ j = φ j , j = 1, . . . , N .

Let us now consider the hemisphere partition function and evaluate it in the Landau–
Ginzburg phase. Restricting to the abelian case, one gets

ZD2 (B) = C
∫
γ

dhσ
h∏

a=1
�

(
i

h∑
α=1

Lαaσα

)
N∏
j=1

�

(
i

h∑
α=1

Sα jσα + q j

)
ei t(σ )

dimM∑
μ=1

eiπr
μ

e2π
∑

α w
μ
α σα ,

(5.15)

where we identified R j/2 = q j . If C satisfies the criterion described above, i.e. when
ζ = Re(t) is in the interior of a cone (of the secondary fan) describing a Landau–
Ginzburg orbifold phase, it is easy to see that we can deform γ to enclose the poles of

the term
∏h

a=1 �
(
i
∑h

α=1 Lαaσα

)
. All of them are simple and located at

σα = i
∑
a

L−1aα ka, k ∈ Z
h≥0. (5.16)
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We expect this to hold when Re(t) is in a cone describing a Landau–Ginzburg orbifold
phase. More precisely, we expect that a decomposition of the form C = (L S) is always
possible, where L corresponds to the fields acquiring nonzero VEVs in the Landau–
Ginzburg orbifold phase and that the poles are all simple. Even when the criterion of
[63] is not satisfied, and the convergence of the integral is not obvious, we expect this to
be true.We observe this in all our examples. The mechanism at work is that the factor fB
can cancel some non-simple poles, thus forbidding terms polynomial in t in the result.
Assuming that this is always the case, we proceed to take the residue of the simple poles
at (5.16):

ZLG
D2 (B) = C(2π)h

| det L|
∞∑

k1,...,kh=0

(−1)
∑h

a=1 ka∏h
a=1 �(ka + 1)

N∏
j=1

�

(
−

h∑
a=1

qa,h+ j ka + q j

)

· e−
∑

a t
′
aka

dimM∑
μ=1

eiπr
μ

e2π i
∑

α,a w
μ
α L−1aα ka .

(5.17)

where we defined

t′a =
h∑

α=1
L−1aα tα. (5.18)

The superscript in ZLG
D2 (B) indicates that we have evaluated ZD2 in a Landau–Ginzburg

phase. By (5.9) and (5.14), we can write in a diagonal basis

eiπrμ
∣∣∣ = σμρ(J

−1)μ,

e2π i
∑

α,a w
μ
α L−1aα ka

∣∣∣ = ρ(γ )μ,
(5.19)

where (. . . )| denotes the restrictions indicated in (5.14). To obtain the second equation,
we associate an element γ = F([k]) ∈ G to [k] ∈ Gorb by (3.52). Moreover, we change
the representative k of [k] ∈ Gorb using a choice for the matrix U that appears in the
Smith normal form ULT V = D. To do this, we proceed as in (3.58) and define

k′ = Uk. (5.20)

This allows us to write γ =∏h
a=1 g

k′a
a for the canonical generators ga ofZda ⊂ Gorb. As

in Sect. 3.4 we choose U such that F(〈J 〉) = Zd1 and the fundamental domain F as in
(3.59). ThematrixV then defines (theweights of) the representationρ : Gorb → GL(M)

by

w′ = Vw. (5.21)

Different choices ofU and V yield equivalent elements γ and representations ρ, respec-
tively. Hence,

dimM∑
μ=1

eiπr
μ

e2π i
∑

α,a w
μ
α L−1aα ka

∣∣∣ = strM (ρ(J−1γ )). (5.22)



662 J. Knapp, M. Romo, E. Scheidegger

Then the formula reads

ZLG
D2 (B) = C(2π)h

| det L|
∞∑

k1,...,kh=0

(−1)
∑h

a=1 ka∏h
a=1 �(ka + 1)

N∏
j=1

�

(
−

h∑
a=1

qa,h+ j ka + q j

)
e−t′ ·kstrM (ρ(J−1γ )).

(5.23)

It has been shown in [8], that the leading order term of ZLG
D2 indeed reproduces that

RR-charge of the Landau–Ginzburg brane B. In the following we will show that the
subleading terms combine into the Landau–Ginzburg central charge function discussed
in Sect. 3.5.

For this purpose, we apply the reflection formula for the Gamma function in the form

�(z) = 2π ie−iπ z

1− e−2π i z
1

�(1− z)
(5.24)

to the numerator. This yields

ZLG
D2 (B) = −C(2π)h(2π i)N

|G|
∞∑

k1,...,kh=0

(−1)
∑h

a=1 ka∏h
a=1 �(ka + 1)

1∏N
j=1 �

(
1 +

∑h
i=1 qa,h+ j ka + q j

)

·
N∏
j=1

eiπ(
∑

a qa,h+ j ka+q j )

1− e2π i(
∑

a qa,h+ j ka+q j )
e−t′ ·k strM ρ(J k

′
1−1

h∏
i=2

g
k′i
i )

(5.25)

The relation (3.47) yields
∏N

j=1 eiπ(
∑

a qa,h+ j ka+q j ) = −(−1)
∑h

a=1 ka . So the final expres-
sion reads

ZLG
D2 (B) = −C(2π)h(2π i)N

|G|
∞∑

k1,...,kh=0

1∏h
a=1 �(ka + 1)

1∏N
j=1 �

(
1 +

∑h
a=1 qa,h+ j ka + q j

)

· 1∏N
j=1

(
1− e2π i(

∑
a qa,h+ j ka+q j )

) e−t′ ·k strM ρ(J k
′
1−1

h∏
m=2

g
k′m
m )

(5.26)

The comparison with the formula (3.69) for the central charge in the Landau–Ginzburg
theory yields the identification

ZLG(B, u) = ZLG
D2 (B, t) (5.27)

for C = (2π)−h and ua = e−t′a , a = 1, . . . , h.
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6. Examples

In the following we provide several examples for which we show that the proposed
formula for the central charge matches with the hemisphere partition function. Our main
focus is on Landau–Ginzburg phases. Section 6.1 is devoted to the quintic. Most of
the results presented there can be found in the literature, and it is easy to show that
that everything works as expected. While this article is mostly concerned with Landau–
Ginzburg orbifolds, we use the results of [8] and [19] to show that the central charge
formula also holds in geometric phases, thus providing evidence that it is indeed universal
all over the moduli space. Section 6.2 is devoted to a well-studied two-parameter family.
In Sect. 6.3 we consider another two-parameter family where the Landau–Ginzburg
potential is not Fermat. Here we show in particular that the methods to determine the
matrix q also apply to the non-Fermat case, which extends the scope of a criterion
to determine Landau–Ginzburg phases [22,63]. There are some interesting subtleties
related to the fact that for the GLSM of this orbifold the D-term equations are not enough
to determine the Landau–Ginzburg phase. Our final example, presented in Sect. 6.4, is a
four-parameter orbifold. In this case we consider two Landau–Ginzburg orbifolds. The
first has broad sectors and would thus lie outside the validity of the proposed central
charge formula. We then show that, by quotienting by an additional group, one gets a
Landau–Ginzburg orbifoldwith the sameHodge numberswhich has only narrow sectors.
This is the Landau–Ginzburg realization of an approach in geometry to associate to a
model where some moduli are not torically realized another model where all moduli are
accounted for by the toric geometry of the ambient space [23].

6.1. Quintic. Most of the results presented here can be found in [4,8,13,18]. Here we
show that everything matches up in the central charge formula.

6.1.1. Landau–Ginzburg orbifold We start with the Fermat polynomial

W = φ5
1 + φ5

2 + φ5
3 + φ5

4 + φ5
5 . (6.1)

We have d = 5 and qi = 1
5 for all i = 1, . . . , 5. Following the discussion of Sect. 3.1,

we define a 5× 5 matrix M = 5 · id5×5. Note that it is already in its Smith normal form.
The full automorphism group is Aut(W )  Z

5
5. In the following we will consider the

Landau–Ginzburg orbifold19 (W, 〈J 〉).
The state space is H =⊕

γ∈〈J 〉Hγ . When choosing a concrete basis we have to be
careful whether we use the labeling of the (a, c)-ring, the one of the (c, c)-ring which
is associated to the mirror B-model, or the one in FJRW theory. In this case we have the
following relation in accordance with (4.35) and (4.39):

e(a,c)Jγ = e(c,c)γ = eγ−1 . (6.2)

We further use γ = J �, � = 0, . . . , 4 and abbreviate eγ ≡ e�. The sector associated to

e(a,c)1 = e(c,c)0 is 204-dimensional and thus a broad sector. The sectors � = 1, . . . , 4 only
contain the vacuum as a ground state. Hence, these sectors are narrow. Restricting to nar-
row sectors, the definition (3.20) yields (e(c,c)γ , e(c,c)

γ−1 ) = (e(a,c)Jγ , e(a,c)
Jγ−1) = (eγ−1 , eγ ) =

19 For other quintic Calabi–Yaus and different quotients by subgroups of Aut(W ) in the context of the
Berglund-Hübsch-Krawitz mirror construction, see [93].
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1
5 . In the following we consistently use the FJRW-basis, because it provides the most
intuitive labeling, and only write the final results in terms of the (a, c)-rings.

To define the I -function and the Gamma class, we need the q-matrix:

q = (1 − 1
5 − 1

5 − 1
5 − 1

5 − 1
5 ). (6.3)

Related to this, we also define matrices C = (L S) so that q = L−1C. Here we have

C = (−5 1 1 1 1 1 ). (6.4)

The matrix L encodes the equivalence relations of Gorb. Using definition (3.53) and
choosing the fundamental domain (3.59), we define k ∈ Z satisfying k ∼ k + 5m.
Furthermore we choose � = k+1mod5. It is convenient to introduce states e[k] ∈ HFJRW

for classes [k] ∈ Gorb. The only sector containing marginal deformations is γ = J 2

(� = 2). We denote the corresponding coordinate by u.
Inserting into the definition (3.65) of the Gamma class restricted to the narrow sectors

we get

�̂ =
4⊕

�=1
�

(
1−

〈
−�

5

〉)5

=
4⊕

�=1
�

(
�

5

)5

. (6.5)

Next, we can define the I -function (3.61), after a shift k → k + 1:

ILG(u) = −
∞∑
k=1

(−1)5
〈
k
5

〉
uk−1

�(k)

�
(〈− k

5

〉)5
�

(
1− k

5

)5 e[k]

k=5n+�= −
∞∑
n=0

4∑
�=1

(−1)� u5n+�−1

�(5n + �)

�
(〈
− 5n+�

5

〉)5

�
(
1− 5n+�

5

)5 e�. (6.6)

In the next steps we use standard identities for Gamma functions and well-known re-
sults for the quintic. These are summarized in “Appendix B.1”. Applying the reflection
formula the expression can be rewritten as

ILG(u) = −
4∑

�=1

(−1)�
π5

�

(〈
−�

5

〉)5

sin5
π�

5

∞∑
n=0

(−1)5nu5n+�−1� (
n + �

5

)5
�(5n + �)

e�.

(6.7)

Now we use the reflection formula again in combination with the observation that 〈x +
n〉 = 〈x〉 and 〈−x〉 = 1− x for 0 < x < 1 and n ∈ Z. Upon the identification u = −5ψ
we can write the result in terms of the well-known Landau–Ginzburg periods (B.3):

ILG(u) =
4∑

�=1

1

�
(
�
5

)5 !̂� e� ≡
4∑

�=1
I1−� e

(a,c)
1−� . (6.8)

Note that the inverse of the Gamma class appears as a normalization factor. In our
identification with !̂� we have absorbed a factor 1

u in the definition. While !̂� was not
defined this way in [4], it is necessary from the point of view of D-brane masses that at
least one of the LG periods starts with a constant term. Otherwise all D-branes would
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be massless at the LG point u = 0 contradicting the fact that there is no singularity at
the LG point.

To give a complete definition of the central chargewe have to pick aLandau–Ginzburg
brane B = (M, σ, Q, R, ρ(g)). Since all the twisted sectors only contain the vacuum,
the formula (3.29) for the Chern character reduces to ch(Q) = str(ρ(J �)) e�. Putting
everything together, the central charge is

ZLG(B) = 1

5

4∑
�=1

str(ρ(J−1)�)!̂�. (6.9)

It is instructive to discuss an explicit example of a Landau–Ginzburg brane. Consider
the matrix factorization20 of (6.1)

Q = (φ1 + φ2)η1 + (φ4
1 − φ1φ

3
2 + φ2

1φ
2
2 − φ1φ

3
2 + φ4

2)η̄1 +
5∑

i=3
φiηi−1 + φ4

i η̄i−1,

(6.10)

where ηi , η̄i satisfy the Clifford algebra {ηi , η̄ j } = δi j , and all other anticommutators are
zero. To this matrix factorization we can associate five matrices ρk(J ) (k = 0, . . . , 4)

satisfying (3.27) and ρ5
k = id and str(ρk(J

−1))� = J k�(−1+ J �)4, where J = e
2π i
5 . The

dataBk ≡ (Mk, σ, Q, R, ρk) describes five branes in aZ5-orbit. The significance of our
choice of matrix factorization is that it describes a set of branes of minimal charge that
generate the K-theory lattice [94,95]. One of these branes is the analytic continuation
of the D0-brane to the Landau–Ginzburg point [22]. Furthermore one can show that
Bk → Bk+1 under Landau–Ginzburg monodromy. Let us consider the case k = 0.
Making use of (B.4) and (B.2) the central charge is

ZLG(B0) = 1

5

4∑
�=1

(−1 + J �)4!̂� = −(2π i)4!0. (6.11)

Similarly, one computes Z(Bk) = −(2π i)4!k .
Aswe have seen, two sets of periods, !̂� and!�, appear in the discussion. The former

transformsdiagonally undermonodromy transformations. Further note that !̂�

∣∣
u→0 = 0

for � �= 1. Since there are no massless branes at the Landau–Ginzburg point, the !̂�, in
contrast to the!�, do not have an interpretation as the quantum corrected central charge
of some physical brane.

6.1.2. GLSM We proceed to show that the hemisphere partition function of the quintic
evaluated in the LG phase yields the result (6.9) for the central charge. This calculation
has already been done in [8]. We repeat it for the readers’ convenience. The orbifold has
gauge group G = U (1) and one FI-theta parameter t = ζ − iθ . The maximal torus of
the gauge group is parameterized by the scalar σ . The chiral matter content is

p φ1, . . . , φ5 FI
U (1) −5 1 ζ

R 0 2
5 −

(6.12)

20 A further interesting example is the “canonical” matrix factorization Q = ∑5
i=1 φiηi + φ4i η̄i that has

also been used in [19].
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Here we have chosen the GLSMR-charges to match with the LG R-charges. The GLSM
superpotential isW = p ·G5(x), where G5 is homogeneous of degree 5. When we talk
about branes and matrix factorizations we will choose G5 to be the Fermat quintic. The
hemisphere partition function for the quintic is then

ZD2(B) = C
∫

dσ �(−5iσ)�
(
iσ +

1

5

)5

ei tσ fB(σ ). (6.13)

To evaluate (6.13) in the LG phase at ζ " 0 we have to close the integration contour in
the direction of negative imaginary axis, i.e. the contour is oriented clockwise. The first
Gamma-factor has a first order pole at σ = − i

5k with k ∈ Z≥0. This is easily evaluated

ZLG
D2 (B) = 2πC

5

∞∑
k=0

�
( 1
5 (1 + k)

)5
�(1 + k)

(−1)ket k5 fB
(
−i k

5

)
, (6.14)

where the brane factor is fB(σ ) =
∑

μ eiπr
μ
e2πwμσ . Inserting this explicitly and rewrit-

ing the sum using k = 5n + �− 1 with n ∈ Z≥0 and � = 1, . . . , 5 we get

ZLG
D2 (B) = 2πC

5

∞∑
n=0

5∑
�=1

�
(
n + �

5

)5
�(5n + �)

(−e t
5 )5n+�−1

∑
μ

eiπr
μ

e−
2π i
5 wμ(�−1). (6.15)

With J = e
2π i
5 we have the following identification for the brane data in the Landau–

Ginzburg phase:

eiπrμ = σμρ(J
−1)μ e−

2π i
5 wμ(�−1) = ρ(J 1−�)μ, (6.16)

where byμwedenote theμth diagonal component of the correspondingmatrix, andσμ is
the Z2-grading in the boundary Landau–Ginzburg orbifold. Putting everything together,
the brane factor reduces to the Chern character in the Landau–Ginzburg phase:

∑
μ

eiπrμe−
2π i
5 wμ(�−1) =

∑
μ

σμρ(J
−�)μ = str(ρ(J−1)�). (6.17)

Comparing with the definition (B.2), we immediately recover (6.9) upon identifying

u = e
t
5 and choosing C = (2π)−1. Note that we do not have to restrict to the narrow

sector since the Chern character for � = 5 corresponding to the broad sector vanishes
trivially. Our result is also in agreement with [8].

6.1.3. GLSM and geometry In [8,96] it was shown for geometric phases of GLSMs that
the hemisphere partition function computes the quantum corrected central charge of a
D-brane. Here, we repeat this discussion for the quintic to show that the central charge
formula (2.43) is consistent with these results. In geometric phases the I -function has
made an appearance in the context of supersymmetric localization in GLSMs in [97–
101].

We start off with (6.13) and change coordinates to σ = in + z
2π . In this section we

choose an R-charge assignment such that p has charge 2 and the φi have charge 0 in
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order to be in agreement with the R-charges in the large volume phase. Evaluation in
the large volume phase results in

ZLV
D2 =

∞∑
n=1

∮
0

dz

2π
�(5n + 5z

2π i + 1)�(−n − z
2π i )

5e−tn+
i
2π t z fB(in + z

2π ). (6.18)

Using e2πq j (in) = 1 on the brane factor and

�(−n − z
2π i ) =

2π i(−1)n+1e− z
2

�(1 + n + z
2π i )(1− e−z)

, (6.19)

by means of the reflection formula we obtain

ZLV
D2 = (2π i)5

∞∑
n=1

∮
0

dz

2π

�(5n + 5z
2π i + 1)

�(1 + n + z
2π i )

5

(−1)5n+5e− 5z
2

(1− e−z)5
e−tn+

i
2π t z fB( z

2π ). (6.20)

Making use of the identity z5
5z (1− e5z) = − z5

5z e
5z(1− e−5z) and taking into account the

theta angle shift at large volume [22] by defining t ′ = t − 5π i we rewrite this further as

ZLV
D2 = (2π i)5

∞∑
n=1

∮
0

dz

2π

5z

z5
�(5n + 5z

2π i + 1)

�(1 + n + z
2π i )

5

z5(1− e−5z)
5z(1− e−z)5

e−t ′n−
z

2π i t
′ fB( z

2π )

(1− e5z)
.

(6.21)

Now we use the following relation between the brane factor and the Chern character of
the brane BLV in the large volume phase [8]:

ch(BLV ) = fB( z
2π )

(1− e5z)
. (6.22)

Further, we use the following identity for any formal power series g in z
∫
X
g(H) =

∫
P4

5Hg(H) =
∮
0

dz

2π i

5z

z5
g(z), (6.23)

where X is the quintic. Then the hemisphere partition function can be rewritten as

ZLV
D2 (B, t; H) = (2π i)5

∞∑
n=1

∫
X

�(1 + 5n + 5H
2π i )

�(1 + n + H
2π i )

5

H5(1− e−5H )

5H(1− e−H )5
e−t ′n−

H
2π i t

′
ch(BLV )

= (2π i)5
∫
X
ch(BLV )e−

H
2π i t

′
∞∑
n=1

e−t ′n
�(1 + 5n + 5H

2π i )

�(1 + n + H
2π i )

5
td(X).

(6.24)

In the second line we used the definition of the Todd class for the quintic

td(X) = H5(1− e−5H )

5H(1− e−H )5
. (6.25)

Now we connect this result to the central charge formula. We have already recovered
the Chern character of the brane. We still need to identify the pairing, the I -function
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and the Gamma class. The pairing in H∗(X,C) is given by 〈α, β〉 = ∫
X α ∧ β for

α, β ∈ H∗(X,C). The Gamma class for the quintic and its conjugate are

�̂X = �(1 + H
2π i )

5

�(1 + 5H
2π i )

, �̂∗X =
�(1− H

2π i )
5

�(1− 5H
2π i )

.

Using the reflection formula and the definition of the Todd class above, they satisfy the
relation td(X) = �̂X �̂

∗
X . The definition for the I -function can be found for instance

in [19,35]. Specializing to the quintic and suitably choosing the parameters, it can be
written as

IX = e−
H
2π i t

′ �
(
1 + H

2π i

)5
�

(
1 + 5H

2π i

) ∑
n≥0

e−t ′n
�

(
1 + 5n + 5H

2π i

)

�
(
1 + n + H

2π i

)5 . (6.26)

Then we can write

ZLV
D2 (B, t; H) = (2π i)5〈ch(BLV ), �̂∗X IX (−t ′, H

2π i )〉. (6.27)

We thus have verified that the central charge formula holds with �LV = �̂∗X .

6.2. Two-parameter family 1. Our next example is well-studied in the mirror symmetry
literature. This model has been discussed in detail in [102].

6.2.1. Landau–Ginzburg orbifold Consider the Fermat polynomial

W = φ8
1 + φ8

2 + φ4
3 + φ4

4 + φ4
5 . (6.28)

The automorphism group is Aut(W ) = Z
2
8 × Z

3
4. We discuss the Landau–Ginzburg

orbifold (W, 〈J 〉) where 〈J 〉 acts on the φi with weights q = θ J = ( 1
8 ,

1
8 ,

1
4 ,

1
4 ,

1
4

)
.

The labeling conventions of the state space are as in (6.2) for the quintic. Choosing

J = e
2π i
8 , we label the sectors by γ = J � with � = 0, . . . , 7. This corresponds to the

FJRW labeling convention with basis vectors eγ ≡ e�. The sectors labelled by � = 0
and � = 4 are broad and have dimensions 168 and 6, respectively. They contribute to
the odd part of HFJRW. The remaining sectors have the vacuum as the only Ramond–
Ramond ground state, hence they are narrow. The sectors contributing to the marginal
deformations are γ ∈ G(2) = {J 2, J 5}. The coordinates are u1, u2, respectively. The
orbifold is the Landau–Ginzburg description of the degree 8 Calabi–Yau hypersurface
in weighted P

4
11222 with Hodge numbers (h1,1, h2,1) = (2, 86).

To determine thematrix q we follow the steps indicated in Sect. 3.3. The computation
is straightforward for this case, so we refrain from giving details. We refer the reader to
the subsequent examples which are slightly less trivial. The result for q is

q =
(
1 0 − 1

4 − 1
4 − 1

4 − 1
8 − 1

8
0 1 0 0 0 − 1

2 − 1
2

)
. (6.29)

From this, we can extract the matrix

L =
(−4 1

0 −2
)
, (6.30)
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so that there is a matrixC = L ·q that will be identified with the GLSM charge matrix. It
is convenient to introduce states e[k1,k2] ∈ HFJRW for classes [k1, k2] ∈ Gorb determined
by the equivalence relations encoded in L . Concretely, we have

(k1 + 4, k2) ∼ (k1, k2 + 1) (k1, k2 + 2) ∼ (k1, k2). (6.31)

Given this, one can assign a state e� ↔ e[k1,k2] with fixed (k1, k2) to each sector � of the
Landau–Ginzburg orbifold, as we will show below. In order to make contact with the
results of [102] we will not use the Smith decomposition as discussed in Sect. 3. Rather,
we choose the following decomposition:

k1 = 4n + r − 1, k2 = 2m + s, r = 1, . . . , 4, s = 0, 1. (6.32)

Inserting into the definition (3.65) of the Gamma class we get for the six narrow sectors:

�̂ =
3⊕

r=1
�

(r
4

)3
�

(r
8

)2 ⊕
3⊕

r=1
�

(r
4

)3
�

(
1

2
+
r

8

)2

. (6.33)

The assignment to the twisted sectors is discussed below in (6.42). For the I -function
(3.61) we get

ILG(u) = −
∑

m,n,r,s

u4n+r−11 u2m+s
2

(−1)G(k,q)

�(4n + r)�(1 + 2m + s)

· �
(〈−n − r

4

〉)3
�

(〈− n
2 − r

8 − m − s
2

〉)2
�

(
1− (

n + r
4

))3
�

(
1− ( n

2 + r
8 + m + s

2

))2 e[4n+r,2m+s], (6.34)

where we have chosen the abbreviation G(k, q) for the sign appearing in (3.60). To
further evaluate this expression we have to distinguish between cases where n+ s is even
or odd. Using the reflection formula this can be rewritten as

ILG(u) = −
∑

m,n,r,s

(−1)G(k,q)u4n+r−11 u2m+s
2

(−1)s� (
n + r

4

)3
�

(
m + r

8 + n+s
2

)2
�(4n + r)�(1 + 2m + s)

e4n+r,2m+s

·

⎧⎪⎨
⎪⎩

1
�( r

4 )
3
�( r

8 )
2 n + s even

− 1

�( r
4 )

3
�
(
r
8 +

1
2

)2 n + s odd.

(6.35)

Further details on the calculation can be found in “Appendix B.2”. Restricting to r =
1, 2, 3 amounts to restricting to the narrow sector. We note that there is a relative mi-
nus sign between between the two choices of n + s. This relative sign is removed by
(−1)G(k,q). Using the properties of 〈x〉 we find

G(k, q) = 3
〈r
4

〉
+ 2

〈r
8
+
n + s

2

〉
=

{
r n + s even
r + 1 n + s odd. (6.36)

We also observe the appearance of the inverse of the Gamma class in the definition of the
I -function. Tomake contactwith the periods,we recall the definitions in “AppendixB.2”.
We identify

u1 = (−212ψ4)
1
4 u2 = 2φ, (6.37)
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where φ and ψ parameterize the complex structure deformations of the mirror Landau–
Ginzburg potential away from the Fermat point, see (B.5). Given the definition of the
periods of the mirror in [102] it is useful explicitly divide the contributions from n + s
even into n ∈ 2Z, s = 0 and n ∈ 2Z + 1, s = 1 and those from n + s odd into
n ∈ 2Z+1, s = 0 and n ∈ 2Z, s = 1. Then one can define periods !̂ ev

r and !̂ od
r whose

explicit expressions are

!̂ ev
r =(−1)r+1

∑
n∈2Z≥0

�
(
n + r

4

)4
�(4n + r)

(−1)n+ r−1
4 (212ψ4)n+

r−1
4

∑
m

�
(
m + n

2 + r
8

)2
�

(
n + r

4

)
�(2m + 1)

(2φ)2m

+ (−1)r
∑

n∈2Z≥0+1

�
(
n + r

4

)4
�(4n + r)

(−1)n+ r−1
4 (212ψ4)n+

r−1
4

∑
m

�
(
m + n

2 + r
8 + 1

2

)2
�

(
n + r

4

)
�(2m + 2)

(2φ)2m+1,

(6.38)

!̂ od
r =(−1)r+1

∑
n∈2Z≥0+1

�
(
n + r

4

)4
�(4n + r)

(−1)n+ r−1
4 (212ψ4)n+

r−1
4

∑
m

�
(
m + n

2 + r
8

)2
�

(
n + r

4

)
�(2m + 1)

(2φ)2m

+ (−1)r
∑

n∈2Z≥0

�
(
n + r

4

)4
�(4n + r)

(−1)n+ r−1
4 (212ψ4)n+

r−1
4

∑
m

�
(
m + n

2 + r
8 + 1

2

)2
�

(
n + r

4

)
�(2m + 2)

(2φ)2m+1.

(6.39)

In terms of the expressions ξr , ηr that are defined in [102] (see “Appendix B.2”) we find
the relation

!̂ ev
r = −2π i

u1

α−2r

α − 1
(ξr + ηr ), !̂ od

r = −2π i

u1

α−2r

α + 1
(ξr − ηr ), (6.40)

where α is a primitive eighth root of unity.
In summary, we get the following expression for the full I -function

ILG(u) =
3∑

r=1

1

�
( r
4

)3
�

( r
8

)2 !̂ ev
r er +

1

�
( r
4

)3
�

( 1
2 + r

8

)2 !̂ od
r er+4. (6.41)

As for the quintic, we have absorbed an additional factor 1
u1

in the definition of the
periods so that !̂ ev

1 starts with a constant term. As promised above, we have defined e�
associated to the �-th twisted sector of the Landau–Ginzburg orbifold by identifying

� = r + 4[(n + s)mod 2]. (6.42)

One can show that the periods !̂ ev
r and !̂ od

r satisfy the Picard-Fuchs equations (B.7)
at the Landau–Ginzburg point. Furthermore the monodromy matrix for these periods is
diagonal. As for the quintic, the inverse of the Gamma class appears in the definition of
the I -function. The calculation of the Chern character works as for the quintic. Using
the pairing (3.20) we obtain

ZLG(B) = 1

8

3∑
r=1

[
str(ρ(J−1)r )!̂ ev

r + str(ρ(J−1)r+4)!̂ od
r

]
. (6.43)
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6.2.2. GLSM Let us consider the G = U (1)2 GLSM associated to the two-parameter
family. The charges are

p φ6 φ3 φ4 φ5 φ1 φ2 FI
U (1)1 −4 1 1 1 1 0 0 ζ1
U (1)2 0 −2 0 0 0 1 1 ζ2
U (1)a −8 0 2 2 2 1 1 2ζ1 + ζ2

R 0 0 1
2

1
2

1
2

1
4

1
4 −

(6.44)

The first two lines correspond to the matrix C = (L S). By U (1)a we denote the
combination of the U (1)-charges that is broken to Z8 in the Landau–Ginzburg phase.
For a suitable choice of complex structure parameters the GLSM superpotential can be
written as

W = p
((

φ8
1 + φ8

2

)
φ4
6 + φ4

3 + φ4
4 + φ4

5

)
. (6.45)

The generic form isW = p ·G(4,0)(φ1, . . . , φ6)whereG(4,0) is a homogeneous polyno-
mial of degree (4, 0). The orbifold has four phases. The Landau–Ginzburg phase sits at
ζ2 < 0 and 2ζ1 +ζ2 < 0 where the fields p and φ6 acquire a non-zero VEV. The geomet-
ric phase is at ζ1 > 0, ζ2 > 0 and corresponds to the smooth hypersurface G(4,0) = 0
in the ambient toric variety defined by the two U (1)s. There is also an orbifold phase
corresponding to a singular degree 8 hypersurface in P

4
11222, and a hybrid phase.

The hemisphere partition function is

ZD2(B) = C
∫

d2σ �

(
iσ1 +

1

4

)3

�

(
iσ2 +

1

8

)2

�(iσ1 − 2iσ2)�(−4iσ1)ei t1σ1+i t2σ2 fB(σ ). (6.46)

To evaluate it in the Landau–Ginzburg phase we follow the general discussion in Sect. 5.
It is convenient to change the coordinates to ρ = LT (iσ), i.e. ρ1 = −4iσ1, ρ2 =
iσ1 − 2iσ2. The partition function transforms into

ZD2(B) = −C

8

∫
d2ρ �

(
−1

4
ρ1

)3

�

(
−1

8
(4ρ2 + ρ1)

)2

�(ρ2)�(ρ1)e
1
2ρ2(−t2)+ 1

8ρ1(−2t1−t2) fB(ρ). (6.47)

Note that this change of coordinates amounts to transforming the charge matrix of the
GLSM into the q-matrix (6.29).

In the Landau–Ginzburg phase the first order poles at ρ1 = −l and ρ2 = −k with
k, l ∈ Z≥0 contribute. After further changing the summation variables to l = 4n + r − 1
and k = 2m + s with n,m ∈ Z≥0 and r = 1, 2, 3, 4, s = 0, 1 one ends up with

ZLG
D2 (B) = (2π)2C

8

∑
m,n,r,s

�
(
n + r

4

)3
�

(
m + n

2 + r
8 + s

2

)2
�(4n + r)�(2m + s + 1)

· (−1)r+s−1e 1
2 (2m+s)t2e

1
8 (4n+r−1)(2t1+t2) fB(m, n, r, s). (6.48)
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We still have to take into account the brane factor fB =
∑

μ∈M eiπr
μ
e2π(w

μ
1 σ1+w

μ
2 σ2).

Going through all the changes of coordinates and summation indices one gets for one
summand of fixed (w

μ
1 , w

μ
2 ):

e2π(w
μ
1 σ1+w

μ
2 σ2) = e−

2π i
8 (r−1)(2wμ

1 +w
μ
2 )e−iπw

μ
2 (n+s). (6.49)

We insert this into the hemisphere partition function, together with the identifications

e
2t1+t2

8 = u1 and e
t2
2 = u2, or

et1+
t2
2 = −(8ψ)4 et2 = (2φ)2. (6.50)

Then we get

ZLG
D2 (B) = − (2π)2C

8

∑
n,r

(−1)r
∑
μ

eiπrμe− 2π i
8 (r−1)(2wμ

1 +w
μ
2 )e−iπw

μ
2 (n+s)

�
(
n + r

4

)4
�(4n + r)

·(−1)n+ r−1
4 (212ψ4)n+

r−1
4

∑
m,s

�
(
m + n

2 + r
8 + s

2

)2
�

(
n + r

4

)
�(2m + s + 1)

(−1)s(2φ)2m+s .

(6.51)

The brane factor is not completely independent of the summation index n of the infinite
sum. However, the contribution only depends on whether (n + s) is even or odd. In

the even case, we get e− 2π i
8 (2wμ

1 +w
μ
2 )(r−1) with e 2π i

8 (2wμ
1 +w

μ
2 ) ∈ Z8. In complete analogy

to the quintic the brane factor reduces to ρ(J−r ). The contributions with (n + s) odd
effectively extend the range of r to r = 1, . . . , 8. To see this, note for instance that

e− 2π i
8 (2wμ

1 +w
μ
2 )·5 = e− 2π i

8 (2wμ
1 +w

μ
2 )e− 2π i

8 (8wμ
1 +4w

μ
2 ) = e− 2π i

8 (2wμ
1 +w

μ
2 )e−iπw

μ
2 . In the last

stepwe have used that the brane chargeswμ
α are integers.We have obtained a contribution

to the brane factorwith odd (n+s).Dividing the terms in the hemisphere partition function
accordingly, we recover the definitions (6.38) and (6.39) of the periods !̂ ev

r and !̂ od
r .

In this way we can write the hemisphere partition function as

ZLG
D2 (B) = (2π)2C

8

3∑
r=1

str(ρ(J−r )!̂ ev
r + str(ρ(J−(r+4))!̂ od

r . (6.52)

This confirms the result of the central charge formula with C = (2π)−2.

6.2.3. FJRW invariants Since we have all the necessary ingredients, we also compute
the FJRW invariants for this orbifold. The invariants given below remain conjectural, as
we have not checked them by independent methods. To our knowledge this is the first
time FJRW invariants have been computed for a multi-parameter orbifold.
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Table 2. The invariants FJRWn1,n2

n1\n2 0 1 2 3 4 5 6 7 8 9
2 0 1

8 0 1
256 0 7

4096 0 273
131072 0 5027

1048576
6 3

512 0 9
8192 0 243

262144 0 3717
2097152 0 398709

67108864 0
10 0 1143

262144 0 44559
8388608 0 1821915

134217728 0 250010901
4294967296 0 6399635103

17179869184

First we note that {eJ 2 , eJ 5} ∈ H(1,1)
FJRW and we write t = t1eJ 2 + t2eJ 5 . The J -function

(4.65) then takes the following form

J (t,−z) = 1(−z)eJ + t1eJ 2 + t2eJ 5+

+ (−z)−1
∑
n1,n2

〈(eJ 2)n1−1 (eJ 5)n2 eJ 2〉0,n1+n2 tn1−11 tn22
(n1 − 1)!n2!η

J 2 J 6eJ 6

+ (−z)−1
∑
n1,n2

〈(eJ 2)n1 (eJ 5)n2−1 eJ 5〉0,n1+n2 tn11 tn2−12

n1!(n2 − 1)!η
J 5 J 3eJ 3

+ (−z)−2
∑
n1,n2

〈(eJ 2)n1 (eJ 5)n2 τ1(eJ 1)〉0,n1+n2+1 t
n1
1 tn22
n1!n2!η

J 1 J 7eJ 7

= 1(−z)eJ + t1eJ 2 + t2eJ 5 + (−z)−1 (Ft1eJ 6 + Ft2eJ 3
)
+ (−z)−2F0eJ 7 ,

(6.53)

where we set z = 1. Now we use the connection (4.77) to the I -function. First we read
off the mirror map (4.78):

t1(u) = u1 +
3

128
u1u2

2 +
301

98304
u1u2

4 − 9

163840
u1

5u2 +
32677

62914560
u1u2

6 + O(u8)

t2(u) = u2 +
11

192
u2

3 − 1

1536
u1

4 +
15

2048
u2

5 − 11

98304
u1

4u2
2 +

1549

1310720
u2

7 + O(u8).

(6.54)

Inverting these series and inserting into (4.77) we can read off the invariants from (6.53).
There are only two types of invariants for which we define the following abbreviations.

FJRWn1,n2 := 〈
(
eJ 2

)n1 (eJ 5)n2〉0,n1+n2
FJRW0

n1,n2 := 〈
(
eJ 2

)n1 (eJ 5)n2 τ1(eJ 1)〉0,n1+n2+1. (6.55)

For both types of invariants the selection rule (4.8) leads to the constraint n1 + 4n2 =
6mod 8. The invariants are given in Tables 2 and 3 , respectively. One can verify that
there is anF such that the special geometry relationF0 = 2F−t1Ft1−t2Ft2 is satisfied,
where Fti = ∂F

∂ti
.

6.3. Two-parameter family 2. Our next example is a Landau–Ginzburg orbifold which
is not a Gorenstein singularity, i.e. the weights w j = q jd do not divide d for all j .
Such Landau–Ginzburg orbifolds have been studied in the context of mirror symmetry
and LG/CY-correspondence in [23,61,103]. The present example was considered in the
latter two references. The superpotential W is still invertible and consists of Fermat and
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Table 3. The invariants FJRW0
n1,n2

n1\n2 0 1 2 3 4 5 6 7 8 9
2 0 1

8 0 3
256 0 35

4096 0 1911
131072 0 45243

1048576
6 3

128 0 27
4096 0 243

32768 0 18585
1048576 0 1196127

16777216 0
10 0 10287

262144 0 490149
8388608 0 23684895

134217728 0 3750163515
4294967296 0 108793796751

17179869184

chain type polynomials. The hypersurface W = 0 in P
4(w1, . . . , wN ), however, has

non-Gorenstein singularities inherited from the ambient weighted projective space. In
[23,61,103] it is proposed to pass to a birationally equivalent hypersurface W̃ = 0 in a
Gorenstein toric varietyP�∗ for a reflexive polytope�∗. It was shown that this is possible
for all Landau–Ginzburg orbifolds with ĉ = 3 and N = 4, 5. The toric variety P�∗ is
the natural setting in which the LG/CY-correspondence can be studied with the gauged
linear sigma model. We will show that in the context of the latter there are some new
features as opposed to the Fermat hypersurfaces which are probably remnants of the fact
that one starts with a non-Gorenstein singularity. The outcome is that the I -functions as
defined in Sect. 3 in terms of the matrix q associated to (W,G), and as defined in Sect. 4
in terms of Givental’s formalism agree. In particular, the I -functions take the same form
independent of whether (W,G) is Gorenstein or not. In this subsection we focus on
determining the matrix q. The calculation of the I -function and the evaluation of the
hemisphere partition function are completely analogous to the previous example. We
point out, however, that due to the fact that W is not Gorenstein, there are contributions
from non-concave insertions in the computation of the FJRW invariants. Hence, one
needs to work with the more general virtual class (4.20) and use the results of [20].

6.3.1. Landau–Ginzburg orbifold We consider the following orbifold:

W = φ7
1 + φ7

2 + φ7
3 + φ3

4φ2 + φ3
5φ3, (6.56)

where the weights of the φi are q =
( 1
7 ,

1
7 ,

1
7 ,

2
7 ,

2
7

)
, and we chooseG = 〈J 〉 ∼= Z7. This

orbifold describes a Calabi–Yau threefold with Hodge numbers (h1,1, h2,1) = (2, 95).
The untwisted sector is broad and 192-dimensional. The six twisted sectors only contain
the vacuum, i.e. they are narrow.

Let us discuss the q matrix in some detail. FromW we obtain thematrix of exponents

M =

⎛
⎜⎜⎜⎝

7 0 0 0 0
0 7 0 1 0
0 0 7 0 1
0 0 0 3 0
0 0 0 0 3

⎞
⎟⎟⎟⎠ . (6.57)

From the Smith normal form of M we get Aut(W ) = Z7×Z21×Z21 whose generators
can be read off from the rows of M−1 in (3.9)

M−1 =

⎛
⎜⎜⎜⎜⎝

1
7 0 0 0 0
0 1

7 0 − 1
21 0

0 0 1
7 0 − 1

21
0 0 0 1

3 0
0 0 0 0 1

3

⎞
⎟⎟⎟⎟⎠ . (6.58)
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We denote the generators of Aut(W ) by g1, . . . , g5. Note that g72 = g−14 and g73 = g−15
so that Aut(W ) = 〈g1, g2, g3〉  Z7 × Z21 × Z21. The grading element is

J = g1 · . . . · g5 = ((V−1)T · (1, 1, 1, 1, 1)T ) = 1

7
(1, 1, 1, 2, 2)T , (6.59)

where, by abuse of notation we denote ρm(g) ≡ g. The columns of M−1 generate
Aut(WT ) and we denote the generators by g∨1 , . . . , g∨5 . They satisfy the relations g∨2 =
(g∨4 )−3 and g∨3 = (g∨5 )−3. We choose as minimal generators {g∨1 , g∨4 , g∨5 }. The grading
element of Aut(WT ) is

J∨ = g∨1 · . . . · g∨5 = (V−1 · (1, 1, 1, 1, 1)T ) = 1

21
(3, 2, 2, 7, 7)T . (6.60)

Recall furthermore that Aut(WT )  Hom(Aut(W ),C∗)  Aut(W ).
In order to determine G∨, it is useful to have J∨ among the generators of G∨. We

observe that

J∨ = g∨1 (g∨4 )−2(g∨5 )−2 ∈ SL(5,C), (6.61)

g∨ := g∨4 (g∨5 )−1 =
1

21
(0, 20, 1, 7, 14) ∈ SL(5,C). (6.62)

With g∨4 = ((g∨)2(J∨)−1g∨1 )16 and g∨5 = ((g∨)2 J∨(g∨1 )−1)5, we can write
Hom(Aut(W ),C∗) = 〈J∨, g∨, g∨1 〉. Since g∨1 /∈ SL(5,C) we have G∨ ∩ SL(5,C) =
〈J∨, g∨〉. The vectors v ∈ Aext have to satisfy J∨ · v = 1 and g∨ · v = 0modZ. The
solutions can be arranged into the columns of the following matrix:

M∨ =

⎛
⎜⎜⎜⎝

1 3 7 0 0 0 0
1 3 0 7 0 0 0
1 3 0 0 7 0 0
1 0 0 1 0 3 0
1 0 0 0 1 0 3

⎞
⎟⎟⎟⎠ (6.63)

where the first two columns form the submatrix M ′. Finally, the matrix q is

q =
(
1 0 − 1

7 − 1
7 − 1

7 − 2
7 − 2

7
0 1 − 3

7 − 3
7 − 3

7
1
7

1
7 .

)
(6.64)

Note that the bottom right entries are positive. Such situations have not been discussed
in [63], so this is an example, alluded to in Sect. 5, where the columns of S do not lie in
the cone spanned by the negative columns of L . The matrix L is

L =
(−3 1
−1 −2

)
. (6.65)



676 J. Knapp, M. Romo, E. Scheidegger

6.3.2. GLSM Let us briefly comment on the GLSM of this orbifold. The gauge group
is G = U (1)2 and the matter content is

p φ6 φ4 φ5 φ1 φ2 φ3 FI
U (1)1 −3 1 1 1 0 0 0 ζ1
U (1)2 −1 −2 0 0 1 1 1 ζ2
U (1)a −7 0 2 2 1 1 1 2ζ1 + ζ2

R 0 0 4
7

4
7

2
7

2
7

2
7 −

(6.66)

One can consider the GLSM potential

W = p
(
φ3
6

(
φ7
1 + φ7

2 + φ7
3

)
+ φ3

4φ2 + φ3
5φ3

)
. (6.67)

Finding the Landau–Ginzburg point of this GLSM is more difficult than for the GLSMs
related to Fermat-type Landau–Ginzburg potentials. The Landau–Ginzburg phase is at
2ζ1 + ζ2 < 0 and −ζ1 + 3ζ2 < 0, where in both cases ζ2 < 0. The associated D-terms
are

−|p|2 − 2|φ6|2 +
3∑

i=1
|φi |2 =ζ2

3
3∑

i=1
|φi |2 − (|φ4|2 + |φ5|2)− 7|φ6|2 =− ζ1 + 3ζ2

−7|p|2 +
3∑

i=1
|φi |2 + 2(|φ4|2 + |φ5|2) =2ζ1 + ζ2. (6.68)

In the Landau–Ginzburg phase we have p �= 0, φ6 �= 0. However, this cannot be
concluded from the D-terms alone since φ6 = 0 is not excluded. To see that φ6 �= 0, one
also has to take into account the F-term equations. If one sets φ6 = 0 the F-terms imply
that also φ1, . . . , φ5 are zero, which is disallowed by the D-terms. Hence one concludes
that φ6 �= 0.

This phenomenon is also reflected in the hemisphere partition function

ZD2 = C
∫

d2σ �

(
iσ1 +

2

7

)2

�

(
iσ2 +

1

7

)3

�(iσ1 − 2iσ2)�(−3iσ1 − iσ2)e
i t1σ1+i t2σ2 fB(σ ). (6.69)

After changing the coordinates to ρ = LT (iσ), we get

ZD2 = −C

7

∫
d2ρ �

(
1

7
(−2ρ1 + ρ2 + 2)

)2

�

(
1

7
(−ρ1 − 3ρ2 + 1)

)3

�(ρ2)�(ρ1)

· e ρ1
7 (−2t1−t2)+ ρ2

7 (−t1+3t2) fB(ρ). (6.70)

The integral converges in the Landau–Ginzburg phase for ρ1 ∈ Z≤0, ρ2 ∈ Z≤0. Apart
from the expected first order poles there seem to be additional poles from

�
( 1
7 (−2ρ1 + ρ2 + 2)

)2
. We claim that these will always be cancelled by the brane fac-

tor. To gather some evidence, consider matrix factorizations of (6.67). If one considers
matrix factorizations such as Q = φ4η1 + φ5η2 + pφ2

4φ2η̄1 + pφ2
5φ3η̄2 + ..., where the
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Table 4. The first few non-zero FJRW invariants FJRWn1,n2 =
〈(
eJ2

)n1 (
eJ4

)n2 〉
0,n1+n2

and FJRW0
n1,n2 =〈(

eJ2
)n1 (

eJ4
)n2 τ1 (eJ )

〉
0,n1+n2+1

(n1, n2) (2,1) (0,4) (5,0) (3,3) (1,6) (6,2) (4,5) (2,8) (9,1)

FJRWn1,n2
1
7

27
49

5
343 − 3

343
9612
16807

414
117649 − 6096

117649
3365820
823543

1692
823543

FJRW0
n1,n2

1
7

54
49

15
343 − 12

343
48060
16807

2484
117649 − 6096

16807
26926560
823543

13536
823543

monomials containing φ4, φ5 are factorized individually, the brane factor will always
contain a factor (1−e2πkσ1)(1−e2πlσ1)with k, l ∈ {1, 2}. This will cancel the unwanted
second-order poles. One could for instance avoid this by constructing a matrix factoriza-
tionQ = (φ4+αφ5)η1+. . ., whichwould only give a factor (1−e2πσ1) in the brane factor,
thus leaving an extra first order pole. However, this is not possible for generic φ2, φ3.
Also other standard types of matrix factorizations such asQ = pη+G(3,1)(φ1, . . . , φ6)η̄

do not change this, since the associated hemisphere partition function is zero. The fact
that one needs the brane factor to see that only the first order poles contribute is consis-
tent with the observation that one needs the F-terms to see the Landau–Ginzburg phase:
the brane factor is the only datum where F-term information enters.

Once the issue of the poles has been clarified, the evaluation of the hemisphere
partition function in the Landau–Ginzburg phase is the analogous to the two-parameter
family of Sect. 6.2, so we omit the details. We end with the FJRW invariants in Table 4.

6.4. 4-Parameter family andbroad sectors. Outfinal set of examples shows a connection
between an family with broad sectors and a related family where all the moduli are
encoded in narrow sectors.

6.4.1. Landau–Ginzburgorbifolds Weconsider twoLandau–Ginzburgorbifolds (W,G1)

and (W,G2) with Fermat superpotential

W = φ9
1 + φ9

2 + φ9
3 + φ3

4 + φ3
5 . (6.71)

The automorphismgroup isAut(W ) = Z
3
9×Z2

3. The orbifold groups areG1 = 〈J 〉 ∼= Z9
and G2 = 〈J, g〉 ∼= Z9 × Z3, where the generators J and g are specified in terms of
their phases as

θ J = 1

9
(1, 1, 1, 3, 3)

θ g = 1

3
(0, 0, 0, 1, 2).

(6.72)

Analyzing the two orbifolds with PALP one finds that in both cases (h1,1, h2,1) =
(4, 112). The way this is encoded in the twisted sectors is however very different, see
“Appendix C” for details on both cases.

Let us start with (W,G1). We label the sectors by γ = J � and write eγ = e�. The
� = 0 sectorH0 is broad and has dimension 226. This accounts for the odd part ofHFJRW.
For the twisted sectors labelled by � = 1, . . . , 8 we find that dimH3 = dimH6 = 2,
i.e. these sectors are broad but contribute to the even part of HFJRW. On the mirror, the
elements of the (c, c)-ring corresponding to the RR ground states are {φ4, φ5}. The other
twisted sectors are narrow, i.e. they are one-dimensional and only contain the vacuum.
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If we apply our definition of the central charge function ZLG to this orbifold we have
to restrict to the narrow sectors. The result therefore only depends on two of the four
moduli.

The second orbifold (W,G2) provides a way to make all four moduli visible with
the methods at hand. We use PALP to analyze the state space. We label the twisted
sectors of HFJRW corresponding to (J �1 , g�2) by (�1, �2) with �1 ∈ {0, . . . , 8} and
�2 ∈ {0, 1, 2}, and introduce basis vectors eγ = e�1,�2 as in (6.2). Now, only the sectors
(0, �2), �2 = 0, 1, 2 are broad and nonzero and contribute to the odd part of HFJRW.
All the other sectors are either zero or only contain the vacuum state. In particular the
sectors with �1 = 3, 6 – that were broad in the (W,G1) orbifold above – split up into
two narrow sectors labelled by �2 = 1, 2, respectively. Therefore all of the even part
of HFJRW is accounted for by narrow sectors, and the central charge function ZLG(u)
depends on all four marginal directions, as we will now demonstrate.

Let us construct the matrix q. The exponent matrix M = diag(9, 9, 9, 3, 3) is already
in Smith normal form. From this we can deduce Aut(W )  (Z9)

3× (Z3)
2  Aut(WT ).

As usual we denote the respective generators by g1, . . . , g5 and g∨1 , . . . , g∨5 . Note that
J = g1 · . . . · g5 and g = g4g

−1
2 . We only consider G2 here. To determine G∨2 we define

g∨ = g∨4 (g∨5 )−1, g̃∨1 = g∨1 (g∨2 )−1, g̃∨2 = g∨1 (g∨3 )−1. (6.73)

Hence, Hom(Aut(W ),C∗) ∩ SL(5,C) = 〈J∨, g∨, g̃∨1 , g̃∨2 〉, where J∨ = g∨1 · . . . · g∨5 .
From this we conclude that Hom(G2,C

∗) = 〈g̃∨1 , g̃∨2 〉. ThereforeAext in (3.42) consists
of v ∈ (Z≥0)5 satisfying

J∨v = 1, g̃∨1,2v = 0modZ. (6.74)

This has thirteen solutions:

Aext = {(0, 0, 0, 0, 3), (0, 0, 0, 1, 2), (0, 0, 0, 2, 1), (0, 0, 0, 3, 0), (0, 0, 9, 0, 0),
(0, 9, 0, 0, 0), (1, 1, 1, 0, 2), (1, 1, 1, 1, 1), (1, 1, 1, 2, 0), (2, 2, 2, 0, 1),

(2, 2, 2, 1, 0), (3, 3, 3, 0, 0), (9, 0, 0, 0, 0)}.
(6.75)

To get Ageom in (3.44) we remove each vector that only contains a single zero. We
arrange the vectors v ∈ Ageom into the matrix

M∨ =

⎛
⎜⎜⎜⎝

1 0 0 3 9 0 0 0 0
1 0 0 3 0 9 0 0 0
1 0 0 3 0 0 9 0 0
1 1 2 0 0 0 0 3 0
1 2 1 0 0 0 0 0 3

⎞
⎟⎟⎟⎠ . (6.76)

The sectors corresponding to the deformations of the polynomial WT are labelled by

γ ∈ {J 2, g, g2, J 4}. (6.77)

The kernel of this matrix, with the normalization determined by (3.43), determines the
matrix q

q ≡ qgeom =

⎛
⎜⎜⎝
1 0 0 0 − 1

9 − 1
9 − 1

9 − 1
3 − 1

3
0 1 0 0 0 0 0 − 1

3 − 2
3

0 0 1 0 0 0 0 − 2
3 − 1

3
0 0 0 1 − 1

3 − 1
3 − 1

3 0 0

⎞
⎟⎟⎠ . (6.78)
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In this example,ALG is different fromAgeom.Themarginal deformation sectorsH(a,c)
γ−1,(−1,1)

in (3.32) correspond to the twisted sectors HFJRW,γ with γ ∈ G(2) where

G(2) = {J 2, J 3g, J 3g2, J 4} (6.79)

in (4.70). By (A.3), these correspond to the vectors

(1, 1, 1, 1, 1), (3, 3, 3, 0, 0), (2, 2, 2, 0, 1), (2, 2, 2, 1, 0) ∈ Aext. (6.80)

Together with the column vectors of the matrix MT , these are precisely the vectors in
the set ALG in (3.45).

Given (6.78) we have

L =
⎛
⎜⎝
−3 2 2 1
0 −2 1 0
0 1 −2 0
0 0 0 −3

⎞
⎟⎠ . (6.81)

Note that this choice of L is not unique since q has more than one 4× 4 minor of value
1
27 . It is however easy to show that all the other choices of L are related by similarity
transformations. Erasing the second and third rows and columns L and second and third
rows and last two columns in q corresponds to the data for the orbifold (W, 〈J 〉). Again
we introduce representatives states e[(k1,k2,k3,k4)] ∈ HFJRW for classes [(k1, k2, k3, k4)].
The equivalence relations as encoded in L are:

(k1, k2 + 2, k3 + 2, k4 + 1) ∼ (k1 + 3, k2, k3, k4) (k1, k2, k3 + 1, k4) ∼ (k1, k2 + 2, k3, k4)

(k1, k2, k3 + 2, k4) ∼ (k1, k2 + 1, k3, k4) (k1, k2, k3, k4) ∼ (k1, k2, k3, k4 + 3).

(6.82)

In order to evaluate the central charge formula in the Landau–Ginzburg phase we use
the Smith decomposition. One choice for decomposing LT is given by

U =
⎛
⎜⎝
1 0 0 3
0 1 2 −6
0 0 1 −2
0 0 0 1

⎞
⎟⎠ S =

⎛
⎜⎝
9 0 0 0
0 3 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎠ V =

⎛
⎜⎝
−3 0 0 1
−6 −2 1 0
−6 −1 0 0
−1 0 0 0

⎞
⎟⎠ .

(6.83)

We define k′ = U · k:
k1 = k′1 − 3k′4, k2 = k′2 − 2k′3 + 2k′4, k3 = k′3 + 2k′4, k4 = k′4. (6.84)

The primed basis explicitly exhibits the periodicities of the orbifold (W,G2). Therefore
it makes sense to define

k′1 = 9n1 + �1 − 1 �1 = 1, . . . , 9, n1 ∈ Z≥0, (6.85)

k′2 = 3n2 + �2 �2 = 0, 1, 2, n2 ∈ Z≥0. (6.86)

Let us collect the ingredients that enter the central charge formula.Mapping the states
e[(k1,k2,k3,k4)] to the twisted sectors e(�1,�2) is obvious in the k′-basis:

e[(k1,k2,k3,k4)] = e[�1−1+9n1−3k′4,�2+3n2−2k′3+2k′4,k′3+2k′4,k′4] = e(�1,�2). (6.87)



680 J. Knapp, M. Romo, E. Scheidegger

In other words, a fixed (�1, �2) with any (n1, n2, k′3, k′4) contributes to the same sector.
The Gamma class reduces to21

�̂ =
⊕
�1,�2

�

(
1−

〈
− �1

9

〉)3

�

(
1−

〈
− �1

3
− �2

3

〉)
�

(
1−

〈
− �1

3
− 2�2

3

〉)
=

⊕
�1,�2

�̂�1,�2 .

(6.88)

Further, we get for the sign in (3.60):

(−1)G(k,q) = 3

〈
�1

9

〉
+

〈
�1

3
+

�2

3

〉
+

〈
�1

3
+
2�2
3

〉
. (6.89)

Next, we compute the I -function. We use the coordinates u1, . . . , u4 corresponding
to the elements in (6.77), respectively. Following the discussion in Sect. 3.3 these are
not the “natural” coordinates describing the deformations from the point of view of the
Landau–Ginzburg description as the sectorsHg andHg2 are actually zero. The “natural”
coordinates are instead uLGa , a = 1, . . . , 4 corresponding to the genuine marginal defor-
mation sectors labelled by (6.79). As discussed in Sect. 3.7 there is a change of variables
uLGa = uLGa (u1, . . . , u4), a = 1, . . . , 4 in terms of rational functions. In the present case,
they turn out to be rather involved, so we refrain from displaying them here. We now
continue our discussion using qgeom. In “Appendix B.3” we give the FJRW invariants
for this family, which we compute using qLG. Inserting into (3.61), the I -function is:

ILG(u) =−
∑

n1,n2,k′3,k′4

(−1)G(k,q)u
�1−1+9n1−3k′4
1 u

�2+3n2−2k′3+2k′4
2 u

k′3+2k′4
3 u

k′4
4

�(�1 + 9n1 − 3k′4)�(1 + �2 + 3n2 − 2k′3 + 2k′4)�(1 + k′3 + 2k′4)�(1 + k′4)

·
�

(〈
− �1

9

〉)3
�

(〈
− �1

3 − �2
3

〉)

�
(
1−

(
�1
9 + n1

))3
�

(
1−

(
�1
3 + 3n1 +

�2
3 + n2 + k′4

))

·
�

(〈
− �1

3 − 2�2
3

〉)

�
(
1−

(
�1
3 + 3n1 +

2�2
3 + 2n2 − k′3 + k′4

)) e(�1,�2). (6.90)

Note that the powers of the exponents of the ui are all positive, because they coincidewith
ki ≥ 0. The same holds for the arguments of the denominator of the Gamma functions
in the first line. It is convenient to rewrite this by applying the reflection formula to the
numerator and the denominator in the second and third line. Reflecting the numerator
immediately gives the inverse of the Gamma class. Let us consider the sin-factors on
gets after applying the reflection formula:

sin3 π
(

�1
9 + n1

)
sin π

(
�1
3 + 3n1 +

�2
3 + n2 + k′4

)
sin π

(
�1
3 + 3n1 +

2�2
3 + 2n2 − k′3 + k′4

)

sin3 π
(〈
− �1

9

〉)
sin π

(〈
− �1

3 − �2
3

〉)
sin π

(〈
− �1

3 − 2�2
3

〉)

= (−1)9n1+3n2−k′3+2k′4
sin3 π

(
�1
9

)
sin π

(
�1
3 + �2

3

)
sin π

(
�1
3 + 2�2

3

)

sin3 π
(〈
− �1

9

〉)
sin π

(〈
− �1

3 − �2
3

〉)
sin π

(〈
− �1

3 − 2�2
3

〉) (6.91)

21 Note that the labeling �̂�1,�2 does not coincide with the labeling of (3.65) which has been defined using
the labeling of the (a, c)-ring.
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This expression is well-defined in all the narrow sectors. We will now argue that this ex-
pression, in combinationwith−(−1)G(k,q), produces the sign (−1)�1−1−9n1+�2+3n2−k′3+2k′4
that we will also see in the hemisphere partition function below.

Whenever �2 = 0 and �1 corresponds to a narrow sector the numerator and the
denominator cancel without a sign. To see this, note first that for |x | < 1 and x > 0

sin π〈−x〉 = sin π(1− x) = − sin π(−x) = sin πx . (6.92)

Further note that there are no additional signs from the sin3-terms since the argument
can never become greater than 1 in the narrow sectors. There can be signs from the other
sin1-factors, but for �2 = 0 these will be the same in both sin1-factors in the numerator
and thus cancel.

Finally let us consider the cases with �2 = 1, 2, which we technically only have
to consider for �1 = 3, 6. For �2 = 2 the third sin-factor in the numerator gives an
additional minus sign.

Now let us consider (−1)G(k,q). Also here we immediately see that for �2 = 0 and �1
narrow we get that G(k, q) = �1, up to some shifts by even numbers that do not matter.
For the narrow sectors with �2 �= 0 there is a sign discrepancy between G(k, q) and
�1 + �2 whenever �2 = 2. This is precisely cancelled by the excess minus signs we got
when we have rewritten the I -function.

In the end we find that the I -function formally has the form

ILG(u) = 1

�̂�1,�2

∑
�1,�2

!̂�1,�2e(�1,�2), (6.93)

where the explicit form of the periods !̂�1,�2 is

!̂�1,�2 =
∑

n1,n2,k′3,k′4

(−1)�1−1+9n1+�2+3n2−k′3−2k′4u�1−1+9n1−3k′41 u
�2+3n2−2k′3+2k′4
2 u

k′3+2k′4
3 u

k′4
4

�(�1 + 9n1 − 3k′4)�(1 + �2 + 3n2 − 2k′3 + 2k′4)�(1 + k′3 + 2k′4)�(1 + k′4)

·�
(
�1 + 9n1

9

)3

�

(
�1 + 9n1

3
+

�2 + 3n2
3

+ k′4
)

·�
(
�1 + 3n1

3
+
2(�2 + 3n2)

3
− k′3 + k′4

)
. (6.94)

One can show that they satisfy theGKZdifferential equations of themirror Calabi–Yau at
theLandau–Ginzburg point and they transformdiagonally underLandau–Ginzburgmon-
odromy. Further details on these differential operators can be found in “Appendix B.3”.

Since we only have narrow sectors, the Landau–Ginzburg central charge (3.29) for
a Landau–Ginzburg brane (Q, ρ(J, g)) reduces to ch�1,�2(Q) = str(ρ(J �1g�2)e�1,�2 .
This is only non-zero in the narrow sectors. Using the standard pairing (3.20) the central
charge can be written as

ZLG = 1

27

∑
�1,�2

str(ρ(J �1−1g�2)!̂�1,�2 . (6.95)

Given the I -function we can also compute the FJRW invariants. The results can be found
in “Appendix B.3”.
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6.4.2. Relation between (W,G1) and (W,G2) A natural question to ask is whether this
four-parameter orbifold is equivalent to the four-parameter orbifold with broad sectors.
One criterion is that the chiral rings should isomorphic as rings and not only as vector
spaces. This is the case in geometry: For the geometry X2 associated to (W,G2) all the
divisor classes are induced fromdivisor classes of the ambient variety and the intersection
ring H∗(X2) can be computed by standard methods. For the geometry X1 associated to
(W,G1) only two of the four divisor classes come from the ambient variety. The other
two are primitive classes. Using the methods described in [61,104] we can show that
H∗(X1) ∼= H∗(X2) as rings.

For a Landau–Ginzburg orbifold the ring structure constants of the state spaceHFJRW
are the FJRW invariants. Since FJRW theory only sees the narrow sectors, one does not
get the full set of structure constants for (W,G1). Therefore it is currently not possible
to compare the rings of the two orbifolds. One way to show the equivalence would be
to proceed via analytic continuation to geometry.

Let us also briefly comment on the matrix factorizations of the two orbifolds. Let us
start with (W,G1). In [105] the matrix factorizations that account for the full RR-charge
lattice have been identified as

Q =(φ1 − β1φ2)η1 +
8∏
j=1

(φ1 − β
2 j+1
1 φ2)η̄1 + φ3η2 + φ8

3 η̄2

+ (φ4 − β2φ5)η3 +
2∏
j=1

(φ4 − β
2 j+1
2 φ5)η̄3 β1 = e

iπ
9 , β2 = {e iπ

3 ,−1}. (6.96)

The two choices of the parameter β2 means that one needs two matrix factorizations to
see the full charge lattice. Using (3.29) for either of the two matrix factorizations, one
finds non-zero contributions to the RR-charge from all twisted sectors, including the two
contributions from {φ4, φ5} in the sectors � = 3, 6. Note that this is not the case for the
“canonical” matrix factorization

Qcan =
∑
i

φiηi +
1

wi

∂W

∂φi
η̄i , (6.97)

where the contribution to the RR-charge in the sectors � = 3, 6 is zero.
On the other hand, if we consider the orbifold (W,G2) (6.96) is not a valid matrix

factorization because it is not equivariant under the Z3 action. However, if we consider
the canonical matrix factorization, each element of the narrow sector contributes to the
RR-charge. It would be interesting to further compare the D-brane categories of these
two orbifolds.

6.4.3. GLSM Consider a GLSM with G = U (1)4 and the following matter content:

p φ6 φ7 φ8 φ1 φ2 φ3 φ4 φ5 FI
U (1)1 −3 2 2 1 0 0 0 −1 −1 ζ1
U (1)2 0 −2 1 0 0 0 0 0 1 ζ2
U (1)3 0 1 −2 0 0 0 0 1 0 ζ3
U (1)4 0 0 0 −3 1 1 1 0 0 ζ4
U (1)a −9 0 0 0 1 1 1 3 3 3ζ1 + 6ζ2 + 6ζ3 + ζ4
U (1)b 0 −3 0 0 0 0 0 1 2 2ζ2 + ζ3

R 0 0 0 0 2
9

2
9

2
9

2
3

2
3 −

(6.98)
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This GLSM can also be obtained by following [23] where it was shown in examples how
to modify a lattice polytope associated to a Calabi–Yau with non-toric moduli to obtain a
Calabi–Yau with the same Hodge data where all the moduli are torically realized. As an
interesting side remark, we point out that thisGLSMexhibits a secondLandau–Ginzburg
phase by giving a VEV to the fields p, φ4, φ5, φ8. This yields q = ( 19 ,

1
9 ,

1
9 ,

1
3 ,

1
3 ) and

orbifold group 〈J 〉, hence corresponds to (W ′,G1) with W ′ consisting of Fermat and
loop terms.

The top left block in (6.98) encodes the matrix L . Indeed, this orbifold has a Landau–
Ginzburg phase where U (1)a and U (1)b are broken to Z9 × Z3. The GLSM that leads
to the Landau–Ginzburg orbifold with only the Z9-orbifold is obtained from (6.98) by
removing U (1)2 and U (1)3 and the matter fields φ6 and φ7.

The Fermat superpotential (6.71) lifts to the following GLSM potential

W = p
(
(φ9

1 + φ9
2 + φ9

3)φ
3
8 + φ3

4φ6φ
2
7 + φ3

5φ
2
6φ7

)
. (6.99)

The hemisphere partition function is

ZD2 (B) =C
∫

d4σ �(−3iσ1)�(2iσ1 − 2iσ2 + iσ3)�(2iσ1 + iσ2 − 2iσ3)�(iσ1 − 3iσ4)

· �
(
iσ4 +

1

9

)3

�

(
−iσ1 + iσ3 +

1

3

)
�

(
−iσ1 + iσ2 +

1

3

)
ei

∑
j t jσ j fB(σ ).

(6.100)

Using L , we change the coordinates to

ρ1 = −3(iσ1) ρ2 = 2(iσ1)− 2(iσ2) + (iσ3)

ρ3 = 2(iσ1) + (iσ2)− 2(iσ3) ρ4 = (iσ1)− 3(iσ4), (6.101)

which results in

ZD2 (B) = C

27

∫
d4ρ�(ρ1)� (ρ2) � (ρ3) �(ρ4)�

(
−ρ1

9
− ρ4

3
+
1

9

)3

�

(
−ρ1

3
− ρ2

3
− 2ρ3

3
+
1

3

)

· �
(
−ρ1

3
− 2ρ2

3
− ρ4

3
+
1

3

)
e−

1
9 ρ1(3t1+6t2+6t3+t4)e−

1
3 ρ2(2t2+t3)e−

1
3 ρ3(t2+2t3)e−

1
3 ρ4t4 fB(ρ).

(6.102)

In the Landau–Ginzburg phase the poles at ρi = −ki with ki ≥ 0 contribute. Again, we
use the Smith decomposition (6.83). Defining

w
μ
1 = w̄

μ
4 w

μ
2 = w̄

μ
3 w

μ
3 = −w̄

μ
2 − 2w̄μ

3 w
μ
4 = −w̄

μ
1 + 6w̄μ

2 + 6w̄μ
3 − 3w̄μ

4 ,

(6.103)

the exponent of e2π
∑

i w
μ
i σi becomes

2π i

9

(
w̄

μ
1 (�1 − 1) + w̄

μ
2 �2 + 9w̄μ

1 n1 + 9w̄μ
2 n2 + 9w̄μ

3 k
′
3 + 9w̄μ

4 k
′
4

) ∼ 2π i

9

(
w̄

μ
1 �1 + w̄

μ
2 �2

)
,

(6.104)
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wherewe have used that w̄μ
i and k′i are integer.Wehave implemented the same coordinate

changes as for the I -function. With

w̄
μ
1 = −3wμ

1 − 6wμ
2 − 6wμ

3 − w
μ
4 , w̄

μ
2 = −2wμ

2 − w
μ
3 , (6.105)

the whole brane factor reduces to ch�1,�2(Q).
With zi = e−ti we expect the Landau–Ginzburg periods to depend on the following

variables expressed in terms of the zi :

u1 = z
− 1

3
1 z

− 2
3

2 z
− 2

3
3 z

− 1
9

4 u2 = z
− 2

3
2 z

− 1
3

3 u3 = z
− 1

3
2 z

− 2
3

3 u4 = z
− 1

3
4 . (6.106)

This combines into

eit (σ ) = u
k′1
1 u

k′2
2

(
u3
u22

)k′3 (u22u
2
3u4

u31

)k′4
. (6.107)

This is the same combination that appears in the I -function. The Gamma terms in the
primed basis before applying any reflection formulas or performing the integral are

�
(−k′1 + 3k′4

)
�

(−k′2 + 2k′3 − 2k′4
)
�

(−k′3 − 2k′4
)
�

(−k′4)

·�
(
1

9
+
k′1
9

)3

�

(
1

3
+
k′1
3

+
k′2
3

+ k′4
)
�

(
1

3
+
k′1
3

+
2k′2
3
− k′3 + k′4

)
. (6.108)

While it is not obvious in the primed basis, all the poles come from the first four
Gamma factors. When we evaluate the residue we apply the reflection formula on them,
which will lead to sign contributions. Putting everything together, we arrive at the fol-
lowing result for the hemisphere partition function.

ZLG
D2 = (2π)4C

27

∑
�1,2,n1,2,k′3,4

(−1)�1−1+9n1+�2+3n2−k′3−2k′4u�1−1+9n1−3k′41 u
�2+3n2−2k′3+2k′4
2 u

k′3+2k′4
3 u

k′4
4

�(�1 + 9n1 − 3k′4)�(1 + �2 + 3n2 − 2k′3 + 2k′4)�(1 + k′3 + 2k′4)�(1 + k′4)

· �
(
�1 + 9n1

9

)3

�

(
�1 + 9n1

3
+

�2 + 3n2
3

+ k′4
)
�

(
�1 + 3n1

3
+
2(�2 + 3n2)

3
− k′3 + k′4

)

·
∑
M

eiπr e
2π i
9 (w̄

μ
1 (�1−1)+w̄μ

2 �2)

= (2π)4C

27

∑
�1,�2

str(ρ(J �1−1g�2 ))!̂�1,�2 . (6.109)

This matches precisely with the central charge formula. It would be interesting to study
D-branes and D-brane transport in this GLSM beyond the level of brane charges.

6.4.4. Scope of the construction We have demonstrated that it is consistent to replace
a Landau–Ginzburg orbifold with a broad sector by a different Landau–Ginzburg orb-
ifold, related by an orbifold, that only has narrow sectors so that the FJRW and GLSM
technology can be applied.

Normally, orbifolding changes a theory significantly, so we cannot expect that our
construction works for all orbifolds with broad sectors. The example we have given,
however, is not amere coincidence, and there are further ones in this class. To understand
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Fig. 2. Two-dimensional reflexive lattice polytope related via lattice refinements corresponding to a Z3 (left)
and a Z2 (right) orbifold

this, we consider the reflexive polytopes that encode the toric data of these orbifolds and
analyze how the additional orbifold acts on them.

We observe that the geometry X1 associated to (W, 〈J 〉) is a genus one fibration with
a 3-section. There is an additional Z3-action permuting the components of the 3-section.
The geometry of X2 associated to (W, 〈J, g〉) is an elliptic fibration. The idea is that
performing the orbifold with respect to this Z3-action on X1, one should get X2.

The fibers of genus one fibered Calabi–Yau hypersurfaces in a toric variety are char-
acterized by a two-dimensional reflexive section of the lattice polytope associated to the
toric variety.

Orbifolding is equivalent to a lattice refinement in the point lattice of the polytope.
Among the 16 reflexive lattice polytopes in two dimensions there are two pairs that are
related via a lattice refinement. This is depicted in Fig. 2. The corresponding orbifold
actions are a Z3-action with weights (1, 2) and a Z2-action with weights (1, 1). We
suspect that whenever the polytope associated to our orbifold contains these structures,
it is possible to resolve some of the broad sectors into narrow ones by orbifolding. Of
course this only works if the RR ground states in the broad sectors are built of the fiber
coordinates of the elliptic fibration. Broad sectors that do not have this property cannot
simply be resolved into narrow ones by orbifolding.

A further family where this works is theZ12 orbifold of the Fermat Landau–Ginzburg
orbifold with weightsw = (1, 1, 1, 3, 6). This corresponds to a Calabi–Yau with Hodge
numbers (h1,1, h2,1) = (3, 164). The twisted sectors k = 4, 8 are one-dimensional, but
broad, since the RR ground state is not the identity. It is easy to see that the corresponding
geometry is an elliptic fibration and one can show, using PALP, that a Z2-orbifold with
weights (0, 0, 0, 1, 1) does not change the Hodge numbers. One can further show that
all the twisted sectors of the resulting theory are narrow. The calculation of the central
charge in the Landau–Ginzburg orbifold and using the hemisphere partition function is
completely analogous to the four-parameter families presented here. In geometry these
families have been discussed in detail in [23]. There, the connection between the two
families has been established via modifications of the corresponding lattice polytopes.

Going through the list of Calabi–Yaus related to A-type Gepner orbifolds (see for
instance [105]) one easilyfinds further orbifolds that fit into this class.A full classification
should be straightforward.

An example where this construction does not work is the Z12-orbifold of the Fermat
Landau–Ginzburg orbifold with weightsw = (1, 1, 3, 3, 4). The Calabi–Yau has Hodge
numbers (h1,1, h2,1) = (5, 168). The broad sectors correspond to the twisted sectors
k = 4, 8, whose space of RR ground states is three-dimensional. An attempt to resolve
this into narrow sectors by a Z4-orbifold fails, as any such operation changes the Hodge
numbers. This is consistent with the fact that the toric geometry is not an elliptic fibration.
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7. Outlook

In this work we have proposed a formula for the exact central charge of a B-type D-brane
that we conjecture to hold in all regions of the Kähler moduli space of a Calabi–Yau.
For Landau–Ginzburg orbifolds, we proposed explicit expressions for the mathematical
objects that enter the central charge formula. Our results are in agreementwith theGLSM
and FJRW theory. There are various directions for further research.

The obvious direction is to consider regions in the moduli space that are neither
geometric, nor Landau–Ginzburg orbifolds. The majority of phases of GLSMs with
abelian and non-abelian gauge groups is of this more general type. The methods we have
applied in this article, in particular FJRW theory, should generalize to such situations.

Another challenging direction of research concerns broad sectors. Our proposal for
the central charge a priori only applies to narrow sectors. In multi-parameter models
broad sectors will typically contribute to the central charge. In an example, we have
worked around this issue by modifying the orbifold so that the broad sectors turn into
narrow ones, but this approach will not always work. In order to honestly take into
account broad sectors one should include them into the general formalism.

Furthermore it would be desirable to get a better physics understanding of the I -
function and the Gamma class. From aCFT perspective it is not obvious why theGamma
class plays a central role. It would be interesting to see the Gamma class arise from a
CFT argument. A similar issue concerns the I -function, which encodes all the quantum
corrections in the central charge formula. While one can give a mathematical definition
and have we proposed an explicit expression that works for a large class of examples,
it is not clear from a physics point of view why this particular object is of such central
importance.

One interesting issue concerns the differential equations satisfied by the I -function.
It can be shown that it satisfies the GKZ system. However, special geometry implies that
it also satisfies the Picard-Fuchs differential equations. The solutions spaces differ by
those solutions that are projected out by the action of G. One should therefore be able
to express the group action explicitly in terms of additional differential operators. These
operators are expected to constrain the GKZ system to the Picard-Fuchs system.

Another gap that should be filled is to give a detailed version of the path integral
derivation of the correlation functions in the A-twisted Landau–Ginzburg orbifold cou-
pled to topological gravity that we only sketched in Sect. 4.2, resulting in the FJRW
virtual class. Further aspects that we have not covered are the generalization to non-
abelian Landau–Ginzburg orbifolds and to ĉ �= 3.
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A. Alternative Derivation of qext

In this appendix we recall the mirror map for Landau–Ginzburg orbifolds following
[58,60] which suggests why our definition of qext could have a direct interpretation in
terms of the (a, c)-ring elements.
Consider an element inH(a,c) of (W,G, ρ̄m,C

∗
L), which we can represent as

∏
j∈I γ J−1

φ
l j
j |0〉(a,c)γ , l j ∈ Z≥0, j = 1, . . . N . (A.1)

We choose a set of generators ḡ1, . . . , ḡN of Aut(WT ) (as in (3.36) with M replaced by
MT ) and define the element γ̄ ∈ Aut(WT ) by

γ̄ :=
∏

j∈I γ J−1
ḡ
l j+1
j . (A.2)

By the isomorphism Aut(WT ) ∼= Aut(W ), this element gets mapped to γ J−1 ∈
Aut(W ). By (3.36) this defines exponents v1, . . . , vN via

γ J−1 =
∏
α∈I γ̄

gvα+1α . (A.3)

Then the mirror map is
∏

i∈I γ J−1
φ
l j
j |0〉(a,c)γ ←→

∏
α∈I γ̄

yvαα |0〉(c,c)γ̄ . (A.4)

A few remarks are in order. This mirror map is shown to be one-to-one in the case of
the so called atomic invertible polynomials [54,58] of chain and Fermat type and there
is some ambiguity for the case of loop type. Once this ambiguity is fixed, the mirror
map gives an isomorphism between H(a,c) of (W,G) and H(c,c) of (WT ,GT ), where
GT ≡ G∨ in (3.41). Then, the map is extended to an isomorphism when W is a sum of
atomic invertible polynomials, just by taking the tensor product of the individual maps
[58]. More important for us is that this map is an isomorphism even without projecting
to gauge invariant states [58,60], namely it provides an isomorphism between the spaces
H (a,c) of (W,G) and H (c,c) of (WT ,GT ).
Now we come to the matrix q of Sect. 3.3. When a state belongs to a narrow sector of

H (a,c) it is clear that (A.4) maps it to a state in the untwisted sector H (c,c)
e of the form∏N

α=1 y
vα
α |0〉(c,c)e . In particular, the marginal deformations Oγa ∈ H(a,c)

(−1,1),γa (cf. (3.32)
and (3.33)) are mapped to states in H(c,c)

e,(1,1) given by a vector va ∈ Z
N . The condition

that the R-charges (with respect to J∨ ∈ G∨) are 1 is equivalent to the condition
1 = J∨ · va , i.e. we can identify the state with a monomial deformation

∏N
α=1 y

vα
α of

WT . Furthermore, since also g∨ · v = 0 for all g∨ ∈ G∨, we find that va ∈ Aext. In fact,
one can argue that va ∈ ALG given in (3.45). We can repeat the procedure to obtain the
matrix q in (3.43) by replacing the set Aext by ALG. The resulting h × (h + N ) matrix
then agrees with the matrix qLG defined in (3.33).

Since we will also make a connection to the gauged linear sigmamodel and geometry,
we have found that it is useful to define an extended matrix qext that also captures
deformations which may seem unnatural from the Landau–Ginzburg point of view.
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A working hypothesis is that one should at least include unprojected sectors H (a,c)
γ

satisfying

FR(Oγ,μ)− FL(Oγ,μ) ∈ {1, 2}. (A.5)

This includes the marginal deformations, both narrow and broad, but can also include
further sectors that may be empty after projection. These correspond to trivial mono-
mial deformations of WT . The broad marginal deformations cannot be identified with
monomial deformations of WT . Ignoring the latter, we can define an extended matrix
qext ∈ Matĥ×(ĥ+N )

(Q) by

qext
â,b̂
= δâ,b̂, qext

â,ĥ+ j
= −θ

γ−1â
j for

{
â, b̂ = 1, . . . , ĥ ≥ h
j = 1, . . . , N .

(A.6)

We claim that the matrix qext defined in (3.46) agrees with the matrix defined in (3.43).

B. Details on Examples

B.1. Quintic. TheLandau–Ginzburg periods of the quintic can be found in [4]. There are
two bases of periods. These can be obtained, for instance, by solving the Picard-Fuchs
equation of the mirror quintic characterized by

φ5
1 + φ5

2 + φ5
3 + φ5

4 + φ5
5 − 5ψφ1φ2φ3φ4φ5. (B.1)

The Gepner point is at ψ = 0. This is related to the large complex structure coordinate
z via z = −(5ψ)−5. Comparing with the I -function we have u = −5ψ .
One basis of periods is given by

! j = −1

5

∞∑
m=1

ω2m �
(m
5

)
(5ψ)m

�(m)�
(
1− m

5

)4ω jm j = 0, . . . 4, (B.2)

with ω ≡ J = e
2π i
5 . Under monodromy around the Gepner point at ψ = 0 the periods

transform as ! j → ! j+1, modulo the relation
∑4

j=0 ! j = 0.
There is a second basis given by

!̂k =
∞∑
n=0

�
(
n + k

5

)5
�(5n + k)

(5ψ)5n+k k = 1, . . . , 4. (B.3)

The two bases are related via

! j = −1

5

1

(2π i)4

4∑
k=1

ω jk(−1 + ωk)4!̂k . (B.4)
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B.2. Two-parameter example 1. Two bases of LG periods of the two-parameter degree
8 example have been discussed in [102]. The periods can be obtained by solving the
Picard-Fuchs equation of the mirror hypersurface characterized by the equation

φ8
1 + φ8

2 + φ4
3 + φ4

4 + φ4
5 − 8ψφ1φ2φ3φ4φ5 − 2φφ4

1φ
4
2 . (B.5)

The Gepner point is at (ψ, φ) = 0. The relation to coordinates (z1, z2) at the large
complex structure point is given by

z1z
1
2
2 = −(8ψ)−4 z2 = (2φ)−2. (B.6)

The Picard-Fuchs operators at the Landau–Ginzburg point are

L1 = 32ψ2θ2ψθφ − φ(θψ − 1)(θψ − 2)(θψ − 3)

L2 = 16θφ(θφ − 1)− φ2(4θφ + θψ)2. (B.7)

One basis of periods is given by

! j (ψ, φ) = −1

4

∞∑
m=1

(−1)mαmj�
(m
4

)
�(m)�

(
1− m

4

)3 (212ψ4)
m
4 u−m

4
((−1) jφ), (B.8)

with α = e
2π i
8 and

uν(φ) = (2φ)ν2F1

(
−ν

2
,−ν

2
+
1

2
; 1; 1

φ2

)
. (B.9)

Since the Landau–Ginzburg point is at φ = 0 we have to analytically continue 2F1 to
φ = 0. This gives a sum of two terms

uν(±φ) = 1

4π i

1− eiπν

�(−ν)

∞∑
m=0

�
(− ν

2 + m
)2

�(2m + 1)
(2φ)2m

∓ 1

4π i

1 + eiπν

�(−ν)

∞∑
m=0

�
(− ν

2 + 1
2 + m

)2
�(2m + 2)

(2φ)2m+1. (B.10)

There is a second basis given by

ξr (ψ, φ) =
∞∑
n=0

�
(
n + r

4

)4
�(4n + r)

(212ψ4)n+
r
4 (−1)nu−(n+ r

4 )
(φ)

ηr (ψ, φ) =
∞∑
n=0

�
(
n + r

4

)4
�(4n + r)

(212ψ4)n+
r
4 u−(n+ r

4 )
(−φ). (B.11)

Upon evaluating the I -function one gets four contributions, depending on whether some
combinations of the summation variables are even or odd. Let is give some intermediate
steps of the calculation. The expression we want to rewrite is

ILG(u) = −
∑

m,n,r,s

(−1)G(k,q)u4n+r−11 u2m+s
2

�(1 + 2m + s)�(4n + r)

�
(〈−n − r

4

〉)3
�

(〈− n
2 − r

8 − m − s
2

〉)2
�

(
1− (

n + r
4

))3
�

(
1− ( n

2 + r
8 + m + s

2

))2 φ4n+r,2m+s (B.12)
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Applying the reflection formula to the denominator of the second quotient produces a
term

(−1)n
π5

sin3
r

4
sin2

(r
8
+
n + s

2

)
�

(
n +

r

4

)3
�

(
m +

r

8
+
n + s

2

)2
(B.13)

Next, we apply the reflection formula to the �(〈·〉) which simplifies to
�

(〈− r
4

〉)3
�

(〈− r
8 − n+s

2

〉)2. Here we have to distinguish between even and odd n + s.
With a ∈ Z and using �

(〈− k
d 〉

) = 1− k
d if d ∈ Z>0 and k ∈ {1, . . . , d − 1}, we get
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• n + s = 1 + 2a
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Combining all the expressions, we arrive at the result in the main text.

B.3. Four-parameter example.

B.3.1. Differential operators The GKZ differential operators at the Landau–Ginzburg
point are

L1 = 9 u1
3θ2θ3θ4 (θ3 − 1) (θ2 − 1)

+ u2
2u3

2u4 (θ1 − 1) (θ1 − 2) (θ1 − 3) (θ2 + θ1 + 2 θ3) (2 θ2 + θ1 + θ3)

L2 = 3 u3θ2 (θ2 − 1) + u2
2θ3 (2 θ2 + θ1 + θ3)

L3 = 3 u2θ3 (θ3 − 1) + u3
2θ2 (θ2 + θ1 + 2 θ3)

L4 = 729 θ4 (θ4 − 1) (θ4 − 2) + u4
3 (θ1 + 3 θ4)

3

(B.16)

where θi = ui
∂

∂ui
and the ui being the coordinates at the Landau–Ginzburg point. It can

be shown that the I -function satisfy the GKZ equations.

B.3.2. FJRW invariants The twisted sectors Hγ corresponding to the marginal defor-
mations are given by γ ∈ G(2) as in (6.79). Hence, there are two types of invariants

FJRWn1,n2,n3,n4 :=
〈(
eJ 2

)n1 (eJ 3g)n2 (eJ 3g2)n3 (eJ 4)n4 〉0,n1+n2+n3+n4
FJRW0

n1,n2,n3,n4 :=
〈(
eJ 2

)n1 (eJ 3g)n2 (eJ 3g2)n3 (eJ 4)n4 τ1 (eJ )〉0,n1+n2+n3+n4+1 .
(B.17)

In Table 5 we give the first few non-zero invariants organized in terms of |n| =∑
i ni .
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Table 5. The invariants FJRWn1,n2,n3,n4 and FJRW0
n1,n2,n3,n4

|n| (n1, n2, n3, n4) FJRWn1,n2,n3,n4 FJRW0
n1,n2,n3,n4

3 (0,1,1,1) 1
9

1
9

(1,0,0,2) 1
9

1
9

4 (1,0,3,0) 2
27

2
27

(1,3,0,0) 2
27

2
27

5 (3,1,1,0) 1
81

2
27

6 (0,1,1,4) 16
2187

64
2187

(1,0,0,5) 11
2187

44
2187

7 (0,1,4,2) 76
19683

380
19683

(0,4,1,2) 76
19683

380
19683

(1,0,3,3) 25
6561

125
6561

(1,3,0,3) 25
6561

125
6561

(7,0,0,0) 2
243

10
243

8 (0,1,7,0) 368
59049

736
19683

(0,4,4,0) 128
59049

256
19683

(0,7,1,0) 368
59049

736
19683

(1,0,6,1) 346
59049

692
19683

(1,3,3,1) 121
59049

242
19683

(1,6,0,1) 346
59049

692
19683

(2,2,2,2) 130
59049

260
19683

(3,1,1,3) 29
19683

58
6561

9 (0,1,1,7) 280
19683

1960
19683

(1,0,0,8) 4624
531441

32368
531441

(2,2,5,0) 584
177147

4088
177147

(2,5,2,0) 584
177147

4088
177147

(3,1,4,1) 58
19683

406
19683

(3,4,1,1) 58
19683

406
19683

(4,0,3,2) 4
2187

28
2187

(4,3,0,2) 4
2187

28
2187

C. PALP and Landau–Ginzburg Orbifolds

The program poly.x of software package PALP [59] is capable of analyzing Calabi–
YauLandau–Ginzburgorbifolds. It implements the results of [10,11].Theoptionpoly.x
-L provides the information on how the twisted sectors contribute to the Hodge num-
bers. Since this option has not been discussed in detail in the PALP manual [106], we
provide a detailed explanation here.
In general, there is no need to specify W only the group G needs to be entered. If

G = 〈J 〉 we simply enter the numbers d, w1, . . . , wN where q j = w j
d , j = 1, . . . , N .
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For illustration, consider the example from Sect. 6.4: W = x91 + x92 + x93 + x34 + x35 with
d = 9 and w = (1, 1, 1, 3, 3) and G = 〈J 〉.
./poly.x -L
type degree and weights [d w1 w2 ...]: 9 1 1 1 3 3
sec[0] th= 0 0 0 0 0 QL= 0/9 dQ= 0 q00+=1 q11+=112 q22+=112
q33+=1
sec[1] th= 1 1 1 3 3 QL= 0/9 dQ= 3 q03+=1
sec[2] th= 2 2 2 6 6 QL= 9/9 dQ= 1 q12+=1
sec[3] th= 3 3 3 0 0 QL= 6/9 dQ= 1 q12+=2
sec[4] th= 4 4 4 3 3 QL= 9/9 dQ= 1 q12+=1
sec[5] th= 5 5 5 6 6 QL=18/9 dQ=-1 q21+=1
sec[6] th= 6 6 6 0 0 QL=15/9 dQ=-1 q21+=2
sec[7] th= 7 7 7 3 3 QL=18/9 dQ=-1 q21+=1
sec[8] th= 8 8 8 6 6 QL=27/9 dQ=-3 q30+=1
WittenIndex=-216, Trace=236
9 1 1 1 3 3 M:145 5 N:7 5 V:4,112 [-216]

Here sec[i] corresponds toH(c,c)
γ with γ = J i , th= i1 i2 ... iN corresponds

to θγ = ( i1d , . . . ,
iN
d ).

The value of QL corresponds to q+, the value of dQ corresponds to dγ −2 age(γ )with
the notation as in Sect. 4.3. Finally, the pair (i, j) in qij corresponds to (i, ĉ − j) in

the sector H(c,c) i, j
γ

∼= Hi,ĉ− j
FJRW,γ , and the value of qij+= corresponds to dimH(c,c) i, j

γ .
Only the sectors with qij > 0 are displayed.

Note that it is easy to spot the broad sectors by looking for 0’s among th. In this
example, there are three broad sectors, sec[0], sec[3], sec[6]. The untwisted
sector has an odd number of zero phases, hence it is odd. While the J 3– and J 6–twisted
sectors have an even number of zero phases and therefore contribute to the even part of
HFJRW.
The penultimate line gives the Witten index and the sum of all Hodge numbers, as

computed by the Poincaré polynomial of the chiral ring. For comparison, the last line lists
the numbers of points and vertices of the corresponding M– and N–lattice polytopes.
This is explained in great detail in [106].

For a bigger group, one needs to add to d w1 w2 ... wN the further generators g
in the form /Zn: k1 k2 ... kN. Here, n is the order of the generator, and k1 k2

... kN are related to the phases of g by θ
g
j = k j

n . In the example above, we consider

now the group G = 〈J, g〉 where the generator g acts on C
5 by diag(1, 1, 1, ζ3, ζ 23 ),

ζ 33 = 1.
./poly.x -L
type degree and weights [d w1 w2 ...]: 9 1 1 1 3 3 /Z3: 0 0
0 1 2
sec[0:0] th= 0 0 0 0 0 QL= 0/9 dQ= 0 q00+=1 q11+=56 q22+=56
q33+=1
sec[0:1] th= 0 0 0 3 6 QL= 3/9 dQ= 0 q11+=28 q22+=28
sec[0:2] th= 0 0 0 6 3 QL= 3/9 dQ= 0 q11+=28 q22+=28
sec[1:0] th= 1 1 1 3 3 QL= 0/9 dQ= 3 q03+=1
sec[2:0] th= 2 2 2 6 6 QL= 9/9 dQ= 1 q12+=1
sec[3:1] th= 3 3 3 3 6 QL= 9/9 dQ= 1 q12+=1
sec[3:2] th= 3 3 3 6 3 QL= 9/9 dQ= 1 q12+=1
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sec[4:0] th= 4 4 4 3 3 QL= 9/9 dQ= 1 q12+=1
sec[5:0] th= 5 5 5 6 6 QL=18/9 dQ=-1 q21+=1
sec[6:1] th= 6 6 6 3 6 QL=18/9 dQ=-1 q21+=1
sec[6:2] th= 6 6 6 6 3 QL=18/9 dQ=-1 q21+=1
sec[7:0] th= 7 7 7 3 3 QL=18/9 dQ=-1 q21+=1
sec[8:0] th= 8 8 8 6 6 QL=27/9 dQ=-3 q30+=1
WittenIndex=-216, Trace=236
9 1 1 1 3 3 /Z3: 0 0 0 1 2 M:67 5 N:13 5 V:4,112 [-216]
In this case, sec[i;j] corresponds toH(c,c)

γ with γ = J i g j . The remaining quantities
have the same meaning as above.
Note that we can also determine SL(N ,C) ∩ Autdiag(W ) as follows:
./poly.x -fv | ./cws.x -N
Degrees and weights ‘d1 w11 w12 ... d2 w21 w22 ...’ or
‘#lines #columns’ (= ‘PolyDim #Points’ or ‘#Points PolyDim’):
9 1 1 1 3 3
Type the 20 coordinates as dim=4 lines with #pts=5 columns:
9 1 1 1 3 3 /Z9: 4 8 0 0 6 /Z3: 2 0 0 0 1 /Z3: 1 0 0 2 0

Hence, we read off that SL(N ,C) ∩ Autdiag(W ) ∼= μ9 × μ9 × μ3 × μ3. This works,
however, only for Fermat polynomials W . More generally, we can enter the exponent
matrix M explicitly as follows: We remove from M the column (or row) corresponding
to the highest weight. Then we shift the entries by −1. Consider the example W =
x71 + x72 + x73 + x2x34 + x3x35 .
./poly.x -fv | ./cws.x -N
Degrees and weights ‘d1 w11 w12 ... d2 w21 w22 ...’ or
‘#lines #columns’ (= ‘PolyDim #Points’ or ‘#Points PolyDim’):
4 5
6 -1 -1 -1 -1
-1 6 -1 -1 -1
-1 -1 6 -1 -1
-1 0 -1 2 -1
Type the 20 coordinates as dim=4 lines with #pts=5 columns:
7 1 1 1 2 2 /Z21: 9 9 0 4 20 /Z7: 5 3 0 6 0
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