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Abstract: We study BPS states of 5d N = 1 SU(2) Yang-Mills theory on S1 × R4.

Geometric engineering relates these to enumerative invariants for the local Hirzebruch sur-

face F0. We illustrate computations of Vafa-Witten invariants via exponential networks,

verifying fiber-base symmetry of the spectrum at certain points in moduli space, and match-

ing with mirror descriptions based on quivers and exceptional collections. Albeit infinite,

parts of the spectrum organize in families described by simple algebraic equations. Varying

the radius of the M-theory circle interpolates smoothly with the spectrum of 4d N = 2

Seiberg-Witten theory, recovering spectral networks in the limit.
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1 Introduction

In [1] Eager, Selmani and Walcher introduced the notion of exponential networks, a frame-

work to study BPS states of Type IIA string theory on a toric Calabi-Yau threefold X.

Mirror symmetry plays a central role, since exponential networks provide a way to study

special Lagrangian cycles in the mirror geometry Y , effectively probing the dual spectrum

of D3 branes in Type IIB string theory on Y rather than actual D4-D2-D0 boundstates

on X. It is well known that the mirror of a toric threefold is captured by the geometry of a

Riemann surface, the mirror curve Σ. Exponential networks build on two key observations

of [2]. The first one, is that the spectrum of special Lagrangians of Y can be studied by

focusing on the simpler problem of studying calibrated Lagrangian cycles on Σ. The second

key idea is that, viewing Σ as an algebraic curve in (C∗)2, one may choose a projection

π : Σ→ C∗ and study saddles on C∗ corresponding to images of the calibrated cycles on Σ

under the projection map π. One of the main results of [1] was a striking match between

the spectrum of saddles on C∗ and the spectrum of stable representations of the quiver

associated to X. A gap in this correspondence was the lack of a way to count the BPS

states represented by each saddle: on the quiver side one may compute the Euler charac-

teristics (or their refinement to Poincaré polynomials) of quiver representations varieties,

but there was no direct way to compute these from the viewpoint of exponential networks.

An attempt to fill this gap was put forth by the authors of the present paper in [3]. By

endowing exponential networks with additional combinatorial data attached to saddles,

an algorithm to compute the BPS index of any saddle was provided. Successful tests in-

clude the computation of boundstates of D0 branes in C3, and of D2-D0 boundstates in

O(−p)⊕O(p− 2)→ P1 for p = 0, 1 [3, 4]. The BPS spectra that we found in those cases

coincided with expectations coming, for instance, from computations of Gopakumar-Vafa

invariants via topological strings.

In the present paper we explore a yet richer class of examples, featuring compact

four-cycles. BPS states in these models include boundstates of D4 branes, which are not

directly captured by closed topological strings, and which are counted by Vafa-Witten

invariants [5]. Moreover, the simultaneous presence of compact two-cycles and compact

four-cycles changes the behavior of the BPS spectrum dramatically compared to examples

without four-cycles. For one thing, one may empirically observe that the spectrum is

generally much richer, and harder to describe in closed form. More fundamentally, the

spectrum is now sensitive to geometric moduli due to wall-crossing phenomena involving

D4 and D2 branes. We focus on the case X = KF0 , and study the BPS spectrum at a

special point Q0 in the moduli space of X (a definition can be found below). We also derive

equations characterizing generating functions of infinitely many BPS indices at once. For

example the spectrum of n(D2f -2D0) boundstates is packaged by a generating function

Q(x) =
∏
n≥1(1− xn)nΩ(n) obeying the algebraic equation

Q(x) = 1 + xQ(x)7 . (1.1)

Since the point Q0 corresponds to a symmetric choice of the moduli under fiber-

base exchange, it is natural to ask whether the BPS spectrum is also symmetric under
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exchange of D2f and D2b (D2 branes wrapping fiber and base P1s, respectively). By direct

inspection, we find that this is indeed the case. In fact, exponential networks provide a

natural set of ‘basis’ saddles which makes the fiber-base symmetry of the spectrum manifest.

This is in stark contrast with quiver descriptions of BPS states, where fiber-base exchange

symmetry is not manifest even at Q0.

The geometric nature of exponential networks lends itself nicely to exploring the be-

havior of the BPS spectrum as moduli of X are tuned to certain limits. Starting from

M-theory on X × S1 × R4, which engineers 5d N = 1 Yang-Mills theory on S1 × R4, we

explore how the spectrum varies with the radius R of the M-theory circle. In the limit

R → 0 the spectrum simplifies dramatically as some BPS states become infinitely heavy,

and we recover the spectrum of SU(2) Seiberg-Witten theory. In the 4d limit, exponential

networks reduce to spectral networks. Back at radius R = 1, we also consider a limit in

which some of the Kahler moduli grow infinitely large. Again, some states become heavy

and decouple, while others display a more subtle behavior with a jump in the BPS index

while remaining at finite mass. Eventually we recover the spectrum of the half-geometry

studied previously in [4]. Last, but not least, we use exponential networks to derive the

BPS quiver for KF0 and the associated potential, matching with recent studies based on

quivers and exceptional collections.

Brief review of BPS counting with exponential networks

This paper is a companion to [3, 4], to which we refer for definitions and technical details. To

provide context for the results in this paper, and in an attempt to provide a self-cointained

interpretation for them, we recollect the key ideas behind exponential networks.

The main idea behind the formulae of [3] came from switching the viewpoint from

string theory to the associated quantum field theory. Geometric engineering assigns to X

a gauge theory with eight supercharges, whose BPS spectrum precisely coincides with the

spectrum of D4-D2-D0 branes that exponential networks are supposed to capture. From

the viewpoint of the field theory, the mirror curve Σ corresponds to a Seiberg-Witten curve

for the Coulomb branch geometry, corroborating the correspondence between BPS states

and cycles on Σ. Another very useful viewpoint on the mirror curve, is that it arises as

the quantum-corrected (in genus zero) moduli space of an A-brane supported on a suitable

non-compact Lagrangian L ⊂ X. In many cases of interest, this coincides in fact with

the Aganagic-Vafa toric brane [6, 7]. Translated into field theory, a D4 wrapping L gives

rise to a codimension-two defect in the gauge theory engineered by X, the A-brane moduli

space is identified with the space of vacua of the defect theory.

From the viewpoint of the defect theory, exponential networks coincide with solutions

to the BPS equations characterizing solitons between two vacua. The counting of these

solitons is well-understood in terms of the CFIV index [8], whose computation can be

conveniently approached through tt∗ geometry [9, 10]. The study of BPS spectra of 2d

(2,2) models and their wall-crossing properties is a subject with a long history. On the

other hand, the study of BPS spectra of defects, such as 2d (2,2) models coupled to a

4d N = 2 gauge theory, is a much more recent endeavor. In seminal work [11], Gaiotto,

Moore and Neitzke explained how the BPS spectrum of such defects actually encodes the
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BPS spectrum of the bulk theory to which they couple. The power of this observation

lies in the fact that the defect spectrum is far easier to compute systematically, leading

to the birth of spectral networks [12]. The approach to BPS counting with exponential

networks is derived from the same principle, with the main difference stemming from the

replacement of a 2d-4d system by a 3d-5d one. The latter arises naturally in M-theory

on X × S1 × R4 with an M5 brane wrapping L. A circle-uplift of tt∗ geometry developed

by Cecotti, Gaiotto and Vafa [13] leads to an interpretation of the network in terms of

BPS states of the 3d defect theory. Another fundamental role of 3d tt∗ geometry is to

provide a meaningful way to count these states. Through the bulk-defect coupling, the

BPS spectrum on the defect encodes the BPS spectrum of the bulk, and the formulae of

[3] provide a way to extract this information from exponential networks.

Organization of this paper

In section 2 we introduce the geometry of KF0 and its mirror. We also comment on the 4d

limit to the Seiberg-Witten curve of 4d N = 2 Yang-Mills theory. Section 3 is devoted the

identification of cycles on the mirror curve Σ with sheaves on X. Section 4 contains the core

of this paper, namely a detailed analysis of exponential networks for X and an extensive

description of the BPS spectrum. In section 5 we consider a 4d limit obtained by shrinking

the M-theory circle, and a limit to the half-geometry obtained by sending one of the Kahler

moduli to infinity. Section 6 concludes with comments on the results obtained, puzzles that

we encountered, and relation to various other approaches to the problem studied in this

paper. The Appendix contains detailed plots of BPS states, addenda to computations, and

bonus technical material pertaining to the general framework of exponential networks.

2 Geometry of local F0 and its mirror

This section introduces the problem studied in this paper. We begin with a brief review

of geometric engineering of 5d N = 1 gauge theories via M-theory on toric Calabi-Yau

threefolds. We will then review how BPS states of the 5d gauge theory arise from M2 and

M5 branes wrapped on compact cycles, and how these are mapped to special Lagrangian

branes in the mirror geometry, where exponential networks allow to count stable bound-

states. At the end of this section we include a detailed analysis of the mirror geometry to

lay the groundwork for our later study of BPS states with exponential networks.

2.1 Geometric engineering from M-theory

The five-dimensional SU(2) super Yang-Mills theory with trivial Chern-Simons coupling

can be engineered in M-theory [14–17] by considering the spacetime geometry R4×S1×X
with

X = KF0 where F0 = P1
b × P1

f , (2.1)

and KF0 denotes the total space of the canonical bundle of F0. We will compactify the

theory on a circle of finite radius R4×S1
R×X, and effectively study the 4d N = 2 theory of

the Kaluza-Klein modes of the 5d theory. For this reason, we switch to a more appropriate

Type IIA description from now on.
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The fiber P1
f is associated with the U(1) symmetry surviving on the Coulomb branch,

while the base P1
b is associated with the topological U(1) symmetry. BPS states arise from

branes wrapping even-dimensional cycles of X, with charges valued in Heven(X), which is

four-dimensional. In the case of pure SU(2) gauge theory, W-bosons arise from D2-branes

wrapping P1
f , while the magnetic monopole (a string in 5d) arises from a D4-brane (M5

brane in 5d) wrapped on the entire F0. Recall that the the tension of BPS branes in

M-theory are

M =
vol(C)
`3p

, T =
vol(E)

`6p
(2.2)

where `p is the 11d Planck length. Consider then the compactification on the M-theory

circle, with R = `sgs as the radius and α′ = `2s = `3p/R, where gs is the string coupling

constant and ls string lengthscale. The resulting masses of BPS particles are then (up to

numerical factors)

MD0 =
1

R
, MD2 =

vol(C)
Rα′

, MD4 =
vol(E)

Rα′2
. (2.3)

The main goal of this paper is to study the spectrum of these and other BPS states, and

understand their properties in different regions of the Coulomb moduli space.

On the one hand, the geometric definition of exponential networks was originally moti-

vated by mirror symmetry in String Theory [1, 2]. On the other hand the construction of a

nonabelianization map, which allows to perform the counting of BPS states, was obtained

via a field-theoretic reinterpretation [3]. Either way, one is led to study the local mirror

geometry on the Type IIB side. If X is toric, as in our case, the mirror has the general

form uv = F (x, y) where u, v ∈ C and x, y ∈ C∗. The mirror curve

Σ : F (x, y) = 0 (2.4)

captures all the physics on the mirror side, and in particular all kinds of BPS states arising

from boundstates of D0-branes, D2-branes wrapping either fiber or base P1, and D4-branes,

map to special Lagrangian one-cycles on Σ, calibrated by a differential one-form. In the

case of interest to us, Σ is a torus with four punctures.

The geometry and its mirror. The mirror geometry can be computed starting from the

toric description of X. Starting from a U(1)×U(1) gauged linear sigma model with charges

(−2, 1, 1, 0, 0) and (−2, 0, 0, 1, 1) under the two U(1)’s, X is obtained via the symplectic

quotient

KF0 = {−2|w1|2+|w2|2+|w3|2 = 2Re log |Qb|, −2|w1|2+|w4|2+|w5|2 = 2Re log |Qf |}/(S1)2

(2.5)

where (w1, .., w5) are coordinates on C5. The curve Σ can be obtained by considering the

Hori-Vafa mirror [18]

x−2
1 x2x3 = Q2

b , x−2
1 x4x5 = Q2

f , x1 + x2 + x3 + x4 + x5 = 0. (2.6)

Choosing the patch x1 = 1 and x2 = −Qbx, x4 = −Qfy, one obtains

Qb(x+ x−1) +Qf (y + y−1)− 1 = 0. (2.7)
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Exponential networks and BPS state counting. Having reviewed the definition of

the mirror geometry, we now explain how exponential networks enter the story, following

the original motivations from M-theory [1] and the field theoretic reinterpretations in our

previous work [3, 4]. Consider a codimension-two defect engineered by wrapping a single

M5-brane on L× S1 ×R2, where L is special Lagrangian on X. The low energy dynamics

of the defect is described by a 3d N = 2 theory T [L] on S1 × R2, whose field content is

determined by the geometry of L. This theory couples to the bulk 5d theory engineered by

M-theory on X, this 3d-5d coupling is vital to the counting of 5d BPS states via exponential

networks. An in-depth discussion can be found in our previous, here we just indicate the

relevant BPS states that our exponential networks count.

Let us specialize to the case in which L is a toric brane, for simplicity. Then T [L]

admits a description as a U(1) gauge theory with a finite number of charged chiral multiplets

coupled to the bulk and background fields. Vevs and Wilson lines of the latter play the role

of twisted masse for T [L]. In a suitable regime, the 5d degrees of freedom may be integrated

away, leaving an effective 3d-5d twisted superpotential for the 3d degrees of freedom [19].

This encodes information about the 5d gauge theory, in fact the critical points coincide

with the 5d Seiberg-Witten curve, which is also identified with the mirror curve of (X,L).

The purpose of exponential networks is to probe this geometry and extract information

about 5d BPS states.

For concreteness, suppose the 5d theory has gauge group SU(N). The 3d theory is

then described by a circle-uplift of a 2d, N = (2, 2), U(1) GLSM to s 3d, N = 2 gauge

theory with a charged chiral miltiplet that transforming in the fundamental representation

of SU(N). The 3d-5d coupling consists of a minimal coupling for the 3d chiral field to the

5d vectormultiplet (restricted to the defect). Then the quantum moduli space of the vacua

can is argued to coincide with the mirror curve for the toric brane.

Concerning the BPS states of the 5d theory, they can be identified on the one hand with

cycles on the Seiberg-Witten curve. On the other hand, going back to the String Theory

engineering, they also map to special Lagrangian branes in the mirror. These A-branes

are supported on compact lagrangian submanifolds, which furthermore admit a projection

down to Σ. The calibrating differential on Σ is λ = log y d log x and descends directly

from the holomorphic top form on the mirror threefold [2]. The identification of the mirror

curve and the Seiberg-Witten curve ties together the field-theoretic and string-theoretic

viewpoints on these BPS states as one-cycles on Σ.

The study of calibrated cycles leads naturally to the geometric definition of exponential

networks. BPS states are counted by the BPS index (a.k.a. second helicity supertrace),

which can be computed from properties of a “nonabelianization map” associated with each

exponential network. This map was constructed in [3] following inspiration from spectral

networks and 2d-4d framed wall-crossing [11, 12]. In later sections, we will make explicit

use of this approach to determine the BPS spectrum for the case in interest.
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2.2 Mirror curve

The mirror geometry can be presented as a conic bundle degenerating over an algebraic

curve [18]

uv = F (x, y) (u, v, x, y) ∈ C2 × (C∗)2 . (2.8)

With a suitable choice of coordinates, the mirror curve Σ reads

Qb(x+ x−1) +Qf (y + y−1)− 1 = 0 , (2.9)

and depends on two complex moduli Qb,f ∈ (C∗)2. There is a manifest Z2 × Z2 symmetry

taking x, y to the respective inverse.

We will be interested in a presentation of this curve as a two-fold ramified covering

π : Σ→ C∗x . (2.10)

The number of sheets depends on a choice of framing, we will work with the choice implied

in (2.9). As a consequence of the Z2 symmetry acting on y, the two sheets obey the identity

y+y− = 1 , (2.11)

for all x. This implies

λ+ + λ− = (log y+ + log y−) d log x ≡ 0 . (2.12)

Below we will be interested in the four-dimensional limit of this curve, where this condition

maps to the tracelessness property of the su(2) Higgs field of the Hitchin system associated

to 4d N = 2 super Yang-Mills. 1

The branching locus of π consists of four points

xσ1,σ2 =
1 + 2σ1Qf + σ2

√
−4Qb

2 + 4Qf
2 + 4σ1Qf + 1

2Qb
(2.13)

for σi = ±1. Branch points coincide when

Qb ±Qf = ±1

2
(2.14)

with signs chosen independently, corresponding to four codimension-one strata in the mod-

uli space of the curve. Overall, there are six singular strata in the moduli space of the curve,

at loci (Qb, Qf )

Db := {(0, Q)}
D1 := {(Q,Q+ 1/2)}
D3 := {(Q,Q− 1/2)}

Df := {(Q, 0)}
D2 := {(Q,−Q+ 1/2)}
D4 := {(Q,−Q− 1/2)}

(2.15)

with Q ∈ C× a local coordinate along each divisor.

1The Z2 symmetry x→ x−1, is also preserved in the 4d limit.
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The mirror curve has four punctures, two above x = 0 and two above x = ∞. In the

limit x→ 0 the two sheets go respectively to zero and to infinity

y± ∼ −
(
Qf
Qb

x

)±1

+ . . . (2.16)

By Z2 symmetry, the same behavior occurs in the limit x→∞, therefore all four punctures

are of logarithmic type with λ ∼ (log x)2. We label punctures at position (x, y) as follows

p1 = (0, 0) p2 = (0,∞) p3 = (∞,∞) p4 = (∞, 0) (2.17)

2.3 Four-dimensional limit

To discuss the four-dimensional limit, it is necessary to introduce dependence on the radius

R of the M-theory circle. One way to do this, is to notice that the curve F (x, y) = 0,

endowed with the 1-form

λ = log y d log x ∈ Ω1(C∗)2 (2.18)

pulled back to Σ, coincides with the spectral curve of a relativistic Toda system. If 1/R

is identified (up to rescaling by numerical constants) with the the speed of light, the limit

R → 0 recovers to the non-relativistic Toda system associated to SU(2) Seiberg-Witten

theory. It was thus proposed in [20] that, at finite radius, Σ is the Seiberg-Witten curve of

5d N = 1 super-Yang-Mills theory on S1
R × R4 with vanishing Chern-Simons coupling.

We take both coordinates x, y and moduliQb, Qf to depend onR through the parametriza-

tion adopted in [20]

x = eq , y = e
√

2iRp , Qb = −Λ2R2 , Qf =
1

2
R4U(R)2 . (2.19)

In order to take the limit R→ 0, we further assume that U(R) behaves as follows

Qf =
1

2
R4U2 =

1

2
(1 + 2R2u+ . . . ) (2.20)

Expanding (2.9) near R = 0

0 = −2R2

(
p2

2
+ Λ2 cosh q − u

)
+O(R3) , (2.21)

we recognize the spectral curve of the Toda system associated to 4d N = 2 SU(2) super

Yang-Mills. In this limit, the differential becomes

λ = log y d log x = i
√

2Rpdq (2.22)

By an appropriate rescaling we define

λ4d =
1

i
√

2R
λ = p

dx

x
, (2.23)

in terms of which the curve becomes

λ2
4d =

(
−Λ2

x3
+

2u

x2
− Λ2

x

)
dx2 . (2.24)
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This is a two-fold covering of the x-plane with ramification at two branch points, and at

two irregular punctures located at x = 0,∞. This coincides with the class S presentation,

which will be useful to make contact with spectral networks.

It is interesting to observe what happens to branch points and punctures in this limit.

Using the R-dependent parametrization (2.19)-(2.20) into the expressions (2.13) for the

positions of branch points yields

x−,− →
u+

√
(u2 − Λ4)

Λ2
,

x−,+ →
u−

√
(u2 − Λ4)

Λ2
,

x+,− → −
Λ2R2

2
+O

(
R3
)
,

x+,+ → −
2

Λ2R2
+O (1)

(2.25)

Two branch points remain at finite distance, while x±,− end up respectively at x = 0,∞.

Those remaining at finite distance are x−,±, as was to be expected. Indeed, since y+y− = 1,

at branch points of the 5d curve one must have y = ±1, corresponding to log y equal to 0

or to iπ, moreover one has y±(xσ1,σ2) = −σ1. In the 4d limit we expect branch points to lie

at λ = 0, because of tracelessness of the Higgs field. The two other branch points, namely

x+,± end up absorbed into punctures at x = 0,∞. When this happens, a branch point

merges the two sheets of π, inducing a mutual cancellation of the logarithmic singularities

that are initially present on each sheet. What remains after this process is a standard class

S (irregular) puncture.

3 Exceptional collections in the mirror

A problem that arises as soon as one considers geometries with compact four-cycles, is

how to relate Lagrangian cycles, representing A-branes, on the mirror side and sheaves

on the toric side. In the context of exponential networks, we are concerned with certain

compact special Lagrangian cycles in the mirror Calabi-Yau (the conic bundle), which are

in one-to-one correspondence with calibrated 1-cycles on the mirror curve Σ. Therefore we

focus on the question of establishing a map between these 1-cycles in Σ and sheaves on X.

In certain cases, such as when X corresponds to line bundles over P1, it is easy to find

an answer because the periods of cycles on Σ coincide exactly with linear combinations of

(complexified) Kahler volumes of compact 2-cycles on the toric side, and the D0 central

charge (ZD0 = 2π/R in our choice of normalization). In general however this is no longer

true: instanton corrections are present, and contribute nontrivially to the mirror map,

making the problem significantly more challenging.

We will discuss two approaches. The first one is a systematic approach developed a

long time ago. The second one is more pedestrian and tailored to the case of interest to

us. While the material of this section is of fundamental importance to interpret results of

exponential networks in any setup involving compact four-cycles, readers who are mainly

interested in the results on the BPS spectrum can safely skip ahead.

3.1 A view from the Fukaya category

In this work we encounter that the counting of certain class of BPS objects on the 5d

theory corresponds to calibrated cycles in Σ. The purpose of this section is to motivate
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this interpretation from a categorical point of view. We are dealing with toric CY 3-folds

X, which can be written as KZ where Z is a smooth compact Fano manifold2. The BPS

states in the 5d theory are mapped to bound states of B-branes on X, that is, to objects in

DbCoh(X). However, we are not dealing with all the objects in DbCoh(X) but rather with

the full subcategory D of objects supported on the Fano base Z (the zero section of KZ , for

a more precise definition see [21]). When Z posses a full strong exceptional collection (which

is always our case), is known that DbCoh(KZ) is equivalent to Db(Mod−Q), the derived

category of a quiver Q with superpotential, constructed from the exceptional collection

[21], moreover, the full subcategory D is equivalent to the full triangulated subcategory

Db
0(Mod−Q) of Db(Mod−Q) generated by the simple modules Tj (i.e., the modules whose

dimension vector is 1 at a single node of Q and zero for the rest). We then have

D ∼= Db
0(Mod−Q) (3.1)

by homological mirror symmetry we have that the category DbCoh(KZ) is equivalent to the

derived Fukaya-Seidel category of the Lefshetz fibration (i.e. LG model) W : (C∗)n → C
where W is the mirror potential of Z and the mirror curve to KZ is given by Σ = W−1(0),

we denote this relation as

DbCoh(Z) ∼= DbFuk(W ) (3.2)

indeed, Fuk(W ) is a subcategory of Fuk(Σ) generated by a distinguished basis of vanishing

cycles (γ1, . . . , γk) [22–24], a concept we will define below. Hence the relevant category to

study the mirror of D is DbFuk(Σ) (more comments below) and also we have a quiver

theory interpretation via Db
0(Mod−Q). In order to make this concepts more precise for our

purposes, we need to define the distinguished basis of vanishing cycles. Given W : (C∗)n →
C such that all is critical points pk ∈ Crit(W ) are isolated and nondegenerate (which is the

case for example for mirrors of Fano manifolds and our present situation), we can associate

a vanishing path to it, this is a map γk : [0, 1]→ C satisfying

• γk(0) = 0.

• γk(1) = pk.

• γ(t) 6∈ Crit(W ) for 0 < t < 1.

The condition γk(0) = 0 can be changed to γk(0) = λ where λ is any regular value of W

i.e. W−1(λ) is smooth. In our case 0, is a regular value and is convenient to use it, since

Σ = W−1(0). Then, a distingushed set of vanishing paths {γk}sk=1 where s = |Crit(W )| is

an ordered set satisfying

• {γk(0)}sk=1 = Crit(W ).

• For k 6= k′, the paths γk, γk′ intersect only at 0.

• arg(γ′1(0)) > · · · > arg(γ′s(0)).

2Several features carries over if we consider a more general situation such as X = ⊕nLn where Ln are

line bundles over a Fano base.
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at pk a 1-cycle Lk ⊂ Σ = W−1(0) pinches off, we call this 1-cycle a vanishing cycle,

associated with pk. The objects of Fuk(W ) are given by the ordered set {Lk(0)}sk=1 (or

the Lefshetz thimbles Dk associated to γk, that satisfy ∂Dk = Lk) called a distinguished

set of vanishing cycles or more precisley, by small perturbations of them that intersect

transversely in Σ. Their morphisms can be then defined by

Hom(Li, Lj) =


R|Li∩Lj |, if i < j

R · id, if i = j

0, if i > j

(3.3)

where R is the base ring (usually the Novikov ring). Note that this definition of morphisms

is in agreement with the fact, found in [25] that the open string index between A-branes

in a LG model satisfying =(W (pk)) < =(W (pk′)) always vanishes. The full definition of

Fuk(W ) as a directed A∞-category (and DbFuk(W )) was given by P. Seidel [22–24], here

we collected the relevant facts for us. The category DbFuk(W ) is defined in such a way that

it does not depend on the choice of distinguish basis of vanishing cycles and any two basis

are related by mutations. Is important to remark though that the category DbFuk(W ) is

triangulated, hence comes with an appropriate defintion of a mapping cone Cone(φ : L→
L′) associated a morphism φ ∈ Hom(L,L′) between two objects. The cone can be, roughly,

defined as a surgery or connected sum between the Lagrangians L and L′ (for more details

see [22–24]). This then implies that it makes sense to think about the bound states betwen

branes as saddles. As a final remark/warning, we point out that, for the purposes of this

work, we treat the categories DbFuk(Σ), D and DbCoh(Z) ∼= DbFuk(W ) as equivalent,

it seems that for BPS numbers we are computing in the present paper, the distinction is

irrelevant, nevertheless is a point that deserves further clarification. In the next section we

will see how to map the vanishing cycles Lj to objects in D.

3.2 From sheaves to thimbles via helices: a review

In [26, 27] it was noticed that there is a certain parallel between the sructure of the derived

category of coherent sheaves on a Kahler manifold X and the approach to soliton counting

pioneered in works of Cecotti and Vafa. These observations were sharpened somewhat

in the work of Hori, Iqbal and Vafa [25], and formalized rigorously by Seidel [22] and in

particular Auroux, Katzarkov, Orlov [28] in the context of homological mirror symmetry

for weighted projective planes, including F0, which is the surface relevant for us.

We begin on the toric side, from exceptional bundles on the toric Calabi-Yau three-

fold X. Recall that an exceptional sheaf E over a d-dimensional manifold (which for us

will be F0) with c1 > 0, is defined by the condition that

Ext0(E,E) = C , Exti>0(E,E) = 0 . (3.4)

An exceptional collection is an ordered set of exceptional sheaves {E1, . . . , En} such that,

if i < j then Extk(Ei, Ej) = 0 for k 6= k0 for a certain k0 > 0, and Extk(Ej , Ej) = 0 for all
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k ≥ 0. One may also define a bilinear product on all sheaves

χ(E,F ) =
d∑
i=0

(−1)i dimC Exti(E,F ) . (3.5)

For an exceptional collection, the matrix Sij = χ(Ei, Ej) is thus δij+Aij where A is strictly

upper-triangular.

Given an exceptional collection, one may generate many new ones by an operation

called mutation. We will not need the full description of what a mutation does. It suffices

to recall that there are two types of mutation: a right-mutation and a left-mutation,

associated to an exceptional sheaf Ei and its neighbor Ei+1. They act as follows

LEi(Ei, Ei+1) = (LEi(Ei+1), Ei) , REi+1(Ei, Ei+1) = (Ei+1, REi+1(Ei)) , (3.6)

and the Chern-characters of the new elements in the exceptional collection are related to

the previous ones by

±ch(LEi(Ei+1)) = ch(Ei+1)− χ(Ei, Ei+1) ch(Ei)

±ch(REi+1(Ei)) = ch(Ei)− χ(Ei, Ei+1) ch(Ei+1)
(3.7)

Clearly, these two relations are inverse to each other, and in fact it is known that mutations

satisfy braid group relations. Given any such exceptional collection, one may define a helix

by introducing Ei+n = REi+n−1 ◦ · · · ◦REi+1(Ei) and Ei−n = LEi−n+1 ◦ · · · ◦LEi−1(Ei). This

generates the whole derived category, see e.g. [29, 30] for examples of applications in string

theory.

In string theory, exceptional sheaves arise in the study of D-branes wrapping cycles

of a Kahler manifold, where the groups Exti(E,E) correspond to ground states of open

strings stretching from E to E′ with fermion number F = i .

On the mirror side the relevant D-branes are A-branes wrapping special Lagrangian

cycles. In the case of toric Calabi-Yau threefolds the Fukaya category may be studied

directly on the mirror curve Σ, where special Lagrangians correspond to calibrated one-

cycles. Unlike in Seiberg-Witten theory, the relevant one cycles are, generally speaking,

not the whole H1(Σ,Z), but a certain sublattice thereof, whose description bears striking

similarities with the helices arising on the toric side.

Recall that Σ is an algebraic curve F (x, y) = 0 in C∗×C∗. For generic choice of complex

moduli, this is a smooth curve. There are however critical points (x∗i , y
∗
i ) ∈ C∗ × C∗ for

F (x, y) lying away from Σ. As the complex moduli are varied, some of the critical points

may end up on Σ, this happens in complex co-dimension one. In fact, when this happens,

a cycle of Σ pinches, and the choice of moduli corresponds to one of the singular divisors in

moduli space (such as the Di in (2.15)). The moral of this story, is that each critical point

of F is associated to an element of H1(Σ,Z), and the association is unique if we choose

a trivialization of the moduli space. An explicit example of this map will be discussed

below in subsection 3.3. At generic points in moduli space the curve is smooth, and

avoids all critical points. In other words F (x∗i , y
∗
i ) 6= 0 for all i = 1, . . . , n. Let us denote

wi = F (x∗i , y
∗
i ) the critical values of F (x, y), these will be functions of the complex moduli.

– 12 –



Recalling that F (x, y) defines a potential for the Landau-Ginzburg model describing

the mirror geometry, it follows from works of Cecotti and Vafa on the classification of 2d

(2, 2) theories [10], that the spectrum of D-branes on the mirror admits a description in

terms of Lefshetz thimbles emanating from wi. Each thimble obtained in this way is dual

to an element of an exceptional collection, with the ordering corresponding to how thimbles

attach to the anchoring point, which for us will be at F (x, y) = 0. Whenever a thimble

crosses a critical point, this results in a change of basis described by Picard-Lefshetz theory.

On the toric side, this is mirrored by a mutation of the exceptional collection.

3.3 Mapping Lefshetz thimbles and exceptional sheaves in F0

There are several ways to determine a correspondence between thimbles of critical points

of F (x, y), and exceptional sheaves on the toric side. A general strategy is to study suitable

variations of the moduli, such as shifts in the B-field, and leverage the parallel between

mutations of exceptional collections and Picard-Lefshetz jumps of a system of thimbles.

See [18] for details and examples.

In our case, however, we can take a shortcut since the identification between thimbles

and exceptional sheaves has already been worked out in the literature for the case of interest

to us. For this purpose, we consider the curve (2.7) at the point Qb = i, Qf = 1. The

positions of the four critical values

w1 = −1− 2Qb + 2Qf , w2 = −1 + 2Qb + 2Qf ,

w3 = −1 + 2Qb − 2Qf , w4 = −1− 2Qb − 2Qf .
(3.8)

are sketched in Figure 1, which also shows our choice of thimbles.

Figure 1: Lefshetz thimbles for the mirror curve at Qb = i, Qf = 1.

Thimbles are anchored at W = 0 which corresponds to the mirror curve, and attach to

one of the four critical points. Varying (Qb, Qf ) so that wi moves along the corresponding

thimble, one finds that a cycle of Σ pinches once wi ends up at the origin. Figure 2 shows

the four saddles of the exponential network corresponding to the four pinching cycles.3

Each saddle lifts to a cycle on Σ, we fix the orientation by requiring that central

charges (periods of 1
2πλ) are nearly aligned. The central charges of these saddles are shown

in Figure 3. We denote the cycles with these orientations by γ1, . . . , γ4.

3Incidentally, these saddles and thimbles match with those studied in [31] in the context of brick models.
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Figure 2: Saddles of the four cycles pinching when wi = 0. From left to right: w1, . . . , w4.

The exceptional collection associated to the thimbles we chose is well-studied, and

known to be (O(0, 0),O(1, 0),O(1, 1),O(2, 1)), see for example [32]. The map between

cycles and exceptional sheaves is then as follows4

γ1 : O(0, 0) , γ2 : O(1, 0) , γ3 : O(1, 1) , γ4 : O(2, 1) . (3.9)

From these sheaves, we may deduce the corresponding fractional brane charges5

γ1 : D4 , γ2 : D4-D2f , γ3 : D4-D2f -D2b-D0 , γ4 : D4-D2b . (3.10)

Relations (3.9) and (3.10) are the dictionaries we needed.

Figure 3: Periods of the four vanishing cycles.

In following sections we will study the mirror geometry at a slightly different point in

moduli space, namely Qb = −1, Qf = 1. This amounts to a rotation of Qb → iQb, under

which the geometry of the vanishing cycles of Figure 2 changes as shown in Figure 5. By

following the deformation, we can track γi. The dictionary is given below in (4.4). Notice

that, at the point Qb = −1, Qf = 1, the curve (2.7) has a symmetry under exchange of

fiber and base x↔ y, with Qb → −Qb and Qf → −Qf . This is reflected in the exchange of

w2 ↔ w4 in (3.8), which correspondings to the exchange of γ2 ↔ γ4 in (3.10), consistently

with the expected D2b ↔ D2f .6

4To compare with [32, Figure 3.1], note that authors studied the curve W = x − x−1 + y + y−1.

Up to an inessential shift by −1, this is related to (2.7) by rotating x → −i x in the latter with

Qb = i, Qf = 1. We thus identify (w1, w2, w3, w4) with (c4, c3, c2, c1), whose corresponding sheaves are

(O(0, 0),O(1, 0),O(1, 1),O(2, 1))
5The relation is obtained by considering the dual collection, see for example [33, eq. (4.22)]
6The apparent need for a change in orientation of certain cycles, as well as the fact that γ3 seems not

to be exactly invariant may worry a scrupulous reader. We will see below in (4.3) that a more natural, and

in fact fiber-base symmetric, choice of ‘basis cycles’ arises from networks.
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3.4 An alternative derivation of the map between thimbles and D-branes

For the case of interest to us, namely X = KF0 , we can also take an alternative and more

direct route to identifying thimbles for the mirror curve Σ with D-branes on the toric

Calabi-Yau threefold X.

Recall that M-theory on X engineers 5d N = 1 SU(2) Yang-Mills theory [14–17]. In

the limit where the M-theory circle shrinks to zero size, this reduces to 4d N = 2 Seiberg-

Witten theory [34]. In this limit the mirror curve approaches the 4d Seiberg-Witten curve,

as discussed in Section 2.3. We further show in Section 5.2 that the singular divisor D2 maps

to the dyon singularity in the Coulomb branch. Since the dyon has charge (e,m) = (1,−1),

this leads to the identification of the cycle γ2 (which shrinks at D2) with D2f -D4. Noting

that fiber-base duality exchanges w2 with w4 in (3.8), one readily deduces that γ4 isD2b-D4.

Similarly, the monopole point is seen to coincide with the divisor where γ1 vanishes, leading

to the identification of the latter with a pure D4 brane. As an extra check, one may take

a limit Qb → ∞ leading to the half-geometry O(0) ⊕ O(−2) → P1 where the surviving

2-cycle is known to be D2f , and this must correspond to the boundstate of monopole and

dyon. We also perform this check in following sections.

Finally, to determine the D-brane charge mirror to γ3, we may resort to simple numer-

ics. Computing periods of each cycle, we already have identified ZD4, ZD2b , ZD2f from the

identifications of γ1, γ2, γ4. We also know that ZD0 = 2π/R independently of moduli. By

computing the numerical period Zγ3 , see Appendix A, we deduce that the dual D-brane

charge is precisely D0-D2b-D2f -D4.

These charges coincide exactly with the ones obtained via mirror symmetry in (3.9),

providing a strong independent check on the dictionary between D-branes on the toric side

and homology cycles on the mirror curve.

4 BPS spectrum at a special point

To begin investigating the spectrum of BPS states, we must choose a point in the moduli

space parameterized by Qb, Qf . Since this model is expected to exhibit wall-crossing, the

spectrum that we will find will be sensitive to this choice. A natural choice is to consider

the fiber-base symmetric locus determined by Qb = Qf . Just like the discriminant locus

(2.15), this is also complex-codimension one, and the two loci meet at points. One should

also note that a change of coordinates x → −x and y → −y can be undone by changing

signs to Qb, Qf . Since rotations of C∗x,y do not affect the physics of BPS states, the full

extent of the symmetric locus is actually

Qb ±Qf = 0 . (4.1)

For the rest of this section we will study the BPS spectrum at Qb = −1, Qf = 1. We

refer to this as Q0. This does not belong to any of the singular divisors (2.15) and the

geometry of the curve is non-singular. For later reference, we fix once and for all a choice

of trivialization of the covering map7 π : Σ→ C∗x as depicted in Figure 4

7In fact, we also specify a choice of trivialization for the logarithmic covering π̃ : Σ̃→ Σ.
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Figure 4: Trivialization for mirror curve at the point Q0. Dashed lines are logarithmic

cuts, running on +/− sheets as indicated. The arrow ⇒ indicates the direction in which

crossing the cut induces a logarithmic shift log y → log y + 2πi.

4.1 Basic saddles and quiver

The spectrum of BPS states is encoded by saddles of exponential networks for the curve

Σ. Recall that the network is determined by a choice of phase ϑ through the differential

equation

(log yj − log yi + 2πin)
d log x

dτ
∈ eiϑR+ (4.2)

for a trajectory, known as E-wall, of type (ij, n). Whenever two or more E-walls intersect,

new ones may be generated. The specifics depend on certain soliton data attached to

each E-wall, we refer to [3] for background. Saddles appear at distinguished values of ϑ,

corresponding to argZγ where γ is the charge of the BPS state in question. To capture the

full spectrum, it is thus necessary to plot networks for various values of ϑ and record all

saddles that occur. The BPS index Ω(γ) can be computed form the soliton data attached to

the degenerate E-walls forming the saddle. Some saddles have a simple topology, while other

are more complicated, possibly involving several degenerated E-walls joined at intersections

or branch points.

At the point Q0 we are interested in, one finds five especially simple saddles: three

appearing at ϑ = 0 and two at ϑ = π, see Figure 5. Each saddle admits a unique lift to a

closed cycle on Σ,8 whose homology class corresponds to the charge of the BPS state. Each

of these is the mirror of a certain D4-D2-D0 boundstate in the mirror Calabi-Yau. From

the identification between vanishing cycles and exceptional collections described in Section

8More precisely, there is an infinite tower of lifts to the logarithmic-covering of Σ, branched at pi, and

denoted Σ̃ in [3]. We suppress this detail here, until it will become necessary to deal with it.
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Figure 5: Saddles of the exponential network at −Qb = Qf = 1. On the left ϑ = 0, on

the right ϑ = π/2. Only primary walls (generated directly at branch points) are shown.

3, we deduce the following correspondence between these saddle and D-brane boundstates9

p2 + p3 − p4 + p5 → D0

p3 + p5 → D2f

p3 + p4 → D2b

p3 → D4

p1 → D0-D2b-D2f -D4

p2 → D0-D2b-D2f -D4

p3 → D4

p4 → D2b-D4

p5 → D2f -D4

(4.3)

where D2b,f denotes a D2 brane wrapping, respectively, the base or fiber P1. Notice that

this collection of basic saddles is invariant under fiber-base duality D2b ↔ D2f which

exchanges p1 ↔ p2 and p4 ↔ p5 leaving p3 fixed.

The fact that multiple saddles appear at the same phase may be requires some expla-

nation, since it may signal the presence of a wall of marginal stability. In fact, by direct

inspection one may verify that all cycles appearing at ϑ = 0 are mutually local, and the

same holds for all those appearing at ϑ = π/2. Therefore we are not on a wall of marginal

stability and the BPS spectrum is well-defined.

The charge lattice has rank four, we choose the following basis

γ1 : [π−1(p3)] γ2 : [π−1(p5)] γ3 : [π−1(p2)] γ4 : −[π−1(p4)] (4.4)

or, in terms of D-brane charges

γ1 : D4 γ2 : D2f -D4 γ3 : D0-D2b-D2f -D4 γ4 : D2b-D4 .

9Here a sum (or difference) of saddles is understood as a sum (or difference) of the homology cycles

obtained by lifting the saddle to Σ. Then arrows → denote the map from H1(Σ) to Heven(KF0).
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The matrix of intersection pairings reads

〈γi, γj〉 =


0 −2 0 2

2 0 −2 0

0 2 0 −2

−2 0 2 0

 (4.5)

which is compatible with the pairing among D-brane charges

〈D2b,f , D4〉 = 2 , 0 otherwise . (4.6)

Figure 6: Left: quiver. Right: central charges of basic BPS states corresponding to the

five basic saddles, at the perturbed point (Qb, Qf ) = (−1, 1 + 0.1i).

The BPS quiver can be obtained by identifying the four distinguished saddles with

nodes, and deducing the arrows from the intersection pairing matrix. The result, shown in

Figure 6, coincides with descriptions found in the literature such as [35, (4.14)]. One way

to motivate the choice of saddles corresponding to quiver nodes, is via the discussion of

Section 3, that is, we consider distinguished paths in moduli space, which start from the

point Q0 = (Qb, Qf ) = (−1, 1) and end at each of the four divisors Di without crossing

any of the branch cuts.10 The vanishing cycles at the divisors are precisely the (lifts of)

saddles corresponding to nodes of the quiver. It is important to note that the periods of

the saddles at (Qb, Qf ) = (−1, 1) still lie within the same half-plane as the periods of the

same saddles at (Qb, Qf ) = (i, 1), cf. Figures 6 and 3. Therefore, the quiver description is

exactly the same, no mutations are involved.

To complete the quiver description we need to compute its potential. In [4] we explained

how to do this, by going to a point in moduli space where central charges BPS states are

10Branch cuts in moduli space, that trivialize the charge lattice, must be chosen in a way that is compatible

with the (pullback) of the Lefshetz thimbles. We gave the thimbles for Qb = i, Qf = 1 in Section 3. Here

we work at Qf = 1, Qb = −1, so one should deform the thimbles and the branch cuts accordingly.
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Figure 7: Superposition of basic saddles. A choice of trivialization is also shown, with

square-root cuts represented by wavy lines and logarithmic cuts (on Σ) by dashed lines.

Arrows of the quiver, corresponding to intersection points of basic saddles with charges

γi, γj are labeled φij , φ
′
ij . Here, φ41 and φ32 label interesections occurring on sheet i, while

φ′41, φ
′
23 label intersections on sheet j. Labels of saddles, including logarithmic ones, are

indicated by (i, 0), (j, 1) etc. Their orientation determines that of holomorphic disks.

maximally aligned, following the relation between BPS graphs and BPS quivers [36] (also

see [37]). Here we choose a different approach, following [1] we super-impose diagrams of

the four basic saddles as in Figure 7. The potential is generated by finite-area holomorphic

disks bounded by the saddles, which corresponding to special Lagrangians in the mirror

geometry [1, 4]. There are four disks, shown in Figure 8. The potential is thus the sum of

four terms

W = φ12φ23φ34φ
′
41 + φ′12φ

′
23φ
′
34φ41 − φ12φ

′
23φ34φ41 − φ′12φ23φ

′
34φ
′
41 . (4.7)

Let us describe how the first term is derived, the other three can be obtained in a similar

way. The term φ12φ23φ34φ
′
41 comes the bottom green disk: starting from the bottom-right

branch point (φ12) its boundary proceeds along saddle γ2 on sheet i, until the intersection

with γ3, where it turns (φ23) and proceeds along γ3 still on sheet i; the disk boundary

eventually reaches the leftmost branch point and turns onto γ4 (contribution φ34) after

crossing the branch cut and therefore passing to sheet j, it then meets γ1 at the intersection

φ′41 (since we are now on sheet j), then proceeds along γ1 crosing the branch cut again,

and closes off. The sign of each disk is determined by its orientation. The potential (4.7)

agrees with results from the literature [38, eq (6.30)].

4.2 Saddle topologies

Having identified the basic saddles, we begin to move on to the rest of the BPS spectrum.

At the point Q0 the spectrum is infinite, and BPS saddles come in a variety of shapes and
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Figure 8: Four holomorphic disks generating the quiver potential.

topologies. In this subsection we collect a few of of the relevant topological types of saddles

that appear, and explain how to compute their BPS indices. Later on we will identify these

with actual saddles from exponential networks.

Type-0 saddle

The simplest type of saddle consists of a pair of E-wall of opposite types (ij, n) and (ji,−n)

running anti-parallel to each other between two branch points, which source respectively

each of the two E-walls. Each of the saddles already encountered in Figure 5 is of this type,

other examples can be found in Appendix A. The analysis of soliton data, which can be

found in the companion paper [4], is quite straightforward and leads to the answer

Ω(γ) = 1 . (4.8)

Type-1 saddle

An interesting novelty is the type-1 saddle, shown in Figure 9. Real-world examples of this

type of saddle can be seen in Figures 28 and 35. To study it, let us start with a detailed

description. This type of saddle involves the presence of four branch points, as well as

logarithmic cuts, running around two of the branch points, and depicted as dashed lines.

Recall that logarithmic cuts are cuts for the differential λ, and therefore are defined on

Σ, as opposed to C∗x: for this reason we indicate on which sheet the logarithmic cut lies,

namely sheet i in the top of the picture, and sheet j in the bottom.

There are four distinguished E-walls, originating from the branch points, and denoted

p1, p2, p3, p4. As indicated, they are of types (ij, 0), (ij,−1), (ji, 1) (at junction J1, after

crossing the branch cut) and (ji, 0) respectively. Saddles with this type of topology are

frequently encountered in spectral networks, see e.g. [39, Figure 4] where they would have

BPS index equal to 1, corresponding to hypermultiplets. As we will see, this is not the

case for the saddle we are considering here: A special feature of exponential networks, as

opposed to spectral networks, is the existence of an ij − ji junction, extensively studied

in our previous work [3, Section 3.3]. The Type-1 saddle features two such junctions: one

between p1 and p3 denoted J1, and one between p2 and p4 denoted J2. There is a symmetry
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Figure 9: A saddle of Type-1.

between the two, so let us focus on the former one. When p3, which is of type (ji, 1), meets

p1, which is of type (ij, 0), they generate infinite families of new E-walls. The presence of

these walls is determined by wall-crossing of the 3d-5d framed BPS spectrum, see [3] for

a derivation. Among them, there are two towers of E-walls of types (ii, n) and (jj, n) for

n ≥ 1. A similar story applies to p2, p4 which generate (ii,−n) and (jj,−n) trajectories.

Together these imply that p5 is a double-wall, i.e. part of the saddle. The (ii/jj,−n) walls

intersecting p1 generate a descendant of type (ji, 0) at J1 (see Appendix C.3), which runs

anti-parallel to p1 making it a double-wall as well. Similarly p3 is made into a double wall

by the interaction of p1 and (ii/jj,−n), and likewise for p2, p4.

Identifying which walls are degenerate (a.k.a. “two-way streets”) is only the first step

for computing the BPS index. The second step involves computing soliton data for each of

p1, p2, p3, p4, p5. For this purpose we need to determine the outgoing soliton data in terms

of incoming one at each of the two junctions.

A full analysis of the junction is provided in Appendix B.1, here we sketch the main

result. For this purpose denote by Υi the generating function of solitons supported on

pi, running from the branch point towards the junction, and let ∆i be the generating

function of solitons oriented in the opposite way.11 Each of these generating functions

can be determined by considering flatness constraints for the nonabelianization map at

junctions and branch points. At the branch points we simply have

Υi = Xai i = 1, . . . , 4 (4.9)

where ai denote ‘simpletons’ paths obtained by lifting the wall pi, and connecting the two

strands at the branch point that sources the wall.12

11These were generically denoted Ξij,n in our previous work [3].
12Working on the logarithmic covering Σ̃ → Σ, a wall of type (ij, 0) can be lifted to sheets labeled by

(i,N) (with the opposite orientation) and to (j,N) (with the same orientation). The “simpleton” path runs

on these two lifts with the corresponding orientations, passing through the ramification point [3].
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Before proceeding let us comment on a technical point, which can be safely skipped

on a first reading. The above equation is actually slightly over-simplified, since we are sup-

pressing all information about logarithmic branching of λ over Σ. Due to a shift symmetry,

the dependence on the branch of the logarithm turns out to be somewhat trivial [3], and can

be effectively ignored to keep notation lighter. In actual computations one should however

keep track of this dependence. This can be unambiguously recovered from the equations

presented here by reintroducing dependence on N , for example Xai →
∑

N∈ZXai,N etc.

The flatness constraints at junction J1, connecting p1, p3, p5 are

∆1 =
2 + Υ

(jj,−1)
5 Υ3Υ1

(1 + Υ
(jj,−1)
5 Υ3Υ1)2

Υ
(jj,−1)
5 Υ3

∆3 = Υ1Υ
(jj,−1)
5

2 + Υ
(jj,−1)
5 Υ3Υ1

(1 + Υ
(jj,−1)
5 Υ3Υ1)2

∆
(ii,k)
5 =

1

k
(−Υ1Υ3)k ∆

(jj,k)
5 = −1

k
(−Υ3Υ1)k ,

(4.10)

where Υjj,n
5 ,∆jj,n

5 are generating functions of (jj, n) solitons supported on p5, see Ap-

pendix B.1 for the relation between this generating function and Stokes matrices of the

underlying E-walls. It is useful to note that Υ
(jj,−1)
5 Ξji = −ΞjiΥ

(ii,−1)
5 if Ξji is any shift-

symmetric soliton generating function [3]. The equations describing junction J2, which

connects p2, p4, p5, have a similar form

∆4 = ∆
(ii,1)
5 Υ2

2 + ∆
(ii,1)
5 Υ2Υ4

(1 + ∆
(ii,1)
5 Υ2Υ4)2

∆2 =
2 + ∆

(ii,1)
5 Υ2Υ4

(1 + ∆
(ii,1)
5 Υ2Υ4)2

Υ4∆
(ii,1)
5

Υ
(ii,−k)
5 = −1

k
(−Υ2Υ4)k Υ

(jj,−k)
5 =

1

k
(−Υ4Υ2)k .

(4.11)

Let γ denote the closure of the concatenation of a1 · a3 · a2 · a3, where all endpoints

are understood to be transported to a common position and joined (e.g. along p5). It then

follows directly from the above expressions that

Q(p1) = 1−Υ1 ·∆1 = 1 +Xγ
2−Xγ

(1−Xγ)2
= (1−Xγ)−2 , (4.12)

and similarly Q(p2) = Q(p3) = Q(p4) = Q(p1).

The factorization Q(p) =
∏
n≥1(1 −Xnγ)αnγ(p) leads to αγ(pi) = −2 for i = 1, 2, 3, 4.

The BPS index is computed by the ratio Ω(nγ) = [L(nγ)]/nγ, where L(nγ) =
⋃
i αnγ(pi) ·

π−1(pi). Notice that [
⋃5
i=1 π

−1(pi)] = γ, therefore the saddle of Type-1 gives an overall

contribution to the BPS index 13

∆Ω(γ) = −2 . (4.13)

Whenever this saddle appears simultaneously with other saddles, the total index is the sum

of each contribution.
13We did not determine α(p5) because this cannot be determined for ii/jj streets, see [3] for a discussion.
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Type-2 saddle

Another interesting novelty is the type-2 saddle, shown in Figure 10. Real-world examples

of this type of saddle can be seen in Figures 23 and 34. To understand it, let us start

with a detailed description. This type of saddle involves the presence of two branch points,

as well as a logarithmic cut, running around one of the branch points, and depicted as a

dashed line on the left. Recall that logarithmic cuts are cuts for the differential λ, and

therefore are defined on Σ, as opposed to C∗x: for this reason we indicate on which sheet

the logarithmic cut lies, namely sheet i in the top of the picture, and sheet j in the bottom.

Figure 10: A saddle of Type-2.

There are three distinguished E-walls, originating from the branch points, and denoted

p1, p2, p3. As indicated, they are of types (ij,±1) and (ji, 0). A special feature of expo-

nential networks, as opposed to spectral networks, is the existence of an ij − ji junction,

extensively studied in our previous work [3, Section 3.3]. The Type-2 saddle features two

such junctions: one between p1 and p3, and one between p2 and p4. There is a symmetry

between the two, so let us focus on the former one. When p3, which is of type (ji, 0), p1,

which is of type (ij, 1), they generate infinite families of new E-walls. Shown in red, is

a tower of walls of types (ii, k) and (jj, k) for k > 0 running from below the junction.14

Shown in blue is a tower of walls of types (ij, k) for k > 1 located between p1 and the red

E-walls. Also in blue, is a tower of walls of types (ji, k) for k > 0 located between p3 and

the red E-walls. The presence of these walls is determined by wall-crossing of the 3d-5d

framed BPS spectrum, see [3] for a derivation.

One should note that the walls generated by p1 and p3 have a chance to intersect p2,

generating further descendants. We only plot a green E-wall of type (ij, 0), arising from a

junction between p1 and the (ii,−1) red wall, as well as the (jj,−1) wall, if one works in

American resolution. The presence of this green wall makes p3 a two-way street, hence part

of the saddle. Likewise, p1 is also a 2-way street due to the presence of the anti-parallel

(ji,−1) wall generated by p2 and p3, and similarly p2 is also a two-way street.

14We only depict the wall of type ii, 1, as walls for other values of k are exactly overlapping.
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Identifying which walls are degenerate (a.k.a. “two-way streets”) is only the first step

for computing the BPS index. The second step involves computing soliton data for each

of p1, p2, p3. This involves two stages: first, solving the outgoing soliton data in terms of

incoming one at the junction among p1, p2, p3; second, taking into account identities for

soliton data coming from other endpoints of the saddle, namely branch points.

A full analysis of the junction is provided in Appendix B.2, here we sketch the main

result. For this purpose denote by Υi the generating function of solitons supported on pi,

running from the branch point towards the junction, and let ∆i be the generating function

of solitons oriented in the opposite way.15 These are related as follows

Υ1 = Xa1(1−Xa2∆2) Υ2 = Xa2 Υ3 = Xa3 ,

∆1 = −Υ3 ·Υ2 ·Υ3 ∆2 = −Υ3 ·Υ1 ·Υ3 Q(p3) = Q(p1)2 = Q(p2)2
(4.14)

Here, the first equation follows from homotopy across a branch point, see (C.5), and ai
denote ‘simpletons’ paths obtained by lifting the wall pi, and connecting the two strands at

the branch point that sources the wall, see footnote 12. We also denote Q(pi) = 1−∆iΥi.

For the sake of keeping notation light we will, as above, suppress information about

logarithmic branching of soliton data, keeping in mind that this can be restored in each of

the following expressions in a non-ambiguous way.

Returning to the computation of the BPS index, let γ denote the closure of the con-

catenation of a1 ·a3 ·a2 ·a3. Combining equations for Υ1 and ∆2, one immediately deduces

that Υ1 = Xa1(1−Xγ)−1. Therefore

Q(p1) = 1−Υ1 ·∆1 = 1 +Xγ(1−Xγ)−1 = (1−Xγ)−1 , (4.15)

which also implies

Q(p2) = (1−Xγ)−1 , Q(p3) = (1−Xγ)−2 . (4.16)

The factorization Q(p) =
∏
n≥1(1 − Xnγ)αnγ(p) leads to αγ(p1) = αγ(p2) = −1 and

αγ(p3) = −2. The BPS index is computed by the ratio Ω(nγ) = [L(nγ)]/nγ, where

L(nγ) =
⋃
i αnγ(pi) ·π−1(pi). Notice that [π−1(p1)∪π−1(p2)∪ (2×π−1(p3))] = γ, therefore

the saddle of Type-2 gives an overall contribution to the BPS index

∆Ω(γ) = −1 . (4.17)

Often, this saddle appears simultaneously with other saddles of Type-2. When this is the

case, the total index is the sum of each contribution.

Type-3 saddle

Another interesting example is the Type-3 saddle, shown in Figure 11. A real-world exam-

ple of this type of saddle can be seen in Figure 36. As for Type-2 saddles, there are two

branch points supporting the saddle, as well as a logarithmic cut running around one of

them, depicted as a dashed line on the left.

15These were generically denoted Ξij,n in our previous work [3].
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Figure 11: A saddle of Type-3.

There are five distinguished E-walls, originating from the points and junctions, and

denoted p1, . . . , p5. There are two junctions, denoted J1 and J2 in the left frame. Upon

closer inspection, and resolving the phase from the critical one ϑ = ϑc to British resolution

ϑ = ϑc + ε we see that each of Ji actually features a lot of sub-structure. This is depicted

in the right-top and right-bottom frames.

Let us describe J1 in detail, hopefully readers can infer the structure of J2 form the

picture, along similar lines. Junction J1 is generated by the intersection of p1 (of type

(ij, 1)) and p3 (of type (ji, 0)). These form an ij − ji junction which spawns, among other

walls, an E-wall of type (ji, 2). Due to an incoming (ij,−2) wall (depicted in light blue)

sourced from J2, this will be a two-way street and therefore will be part of the saddle,

it will be labeled p5. Furthermore, the incoming blue wall intersects the family of (ii, n)

walls generated at the p1-p3 junction. Interacting with the n = 2 wall, they give rise to a

(ij, 0)-wall (depicted in red), which runs anti-parallel to p3: this makes p3 a double-wall,

and therefore part of the saddle. On the other hand, when the blue wall interacts with

the (ii, 1) wall, they generate an (ij,−1) wall (depicted in red), which goes on to intersect

with p3 to generate an ij − ji junction marked by an orange dot. Among the descendants

generated from this junction, is an (ji,−1) wall (depicted in orange), which runs anti-

parallel to p1. This makes p1 a double wall, and therefore part of the saddle. We are only

considering a few of the intersections among one-way walls that occur near J1, omitting

those which are irrelevant for the study of the saddle. An exhaustive analysis, taking into

account the whole sub-structure, requires use of the flatness equations and is carried out

in Appendix B.3. The analysis of J2 is qualitatively similar, although there are subtle

differences in how walls intersect one another. This is also studied in appendix.

To compute the BPS index, our task is to study the soliton data on the two-way streets
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p1, . . . , p5. Let us collect our conventions for soliton generating functions

type description

p1
Υ1

∆1

(ij, 1)

(ji,−1)

from branch point to J1

opposite

p2
Υ2

∆2

(ij,−1)

(ji, 1)

from branch point to J2

opposite

p3
Υ3

∆3

(ji, 0)

(ij, 0)

from branch point to J1

opposite

p4
Υ4

∆4

(ji, 0)

(ij, 0)

from branch point to J2

opposite

p5
Υ5

∆5

(ij,−2)

(ji, 2)

from J2 to J1

opposite

(4.18)

We can determine these generating functions through the consistency conditions for

the nonabelianization map, see Appendix B.3. The consistency conditions at the left-most

branch point are

Υ1 = Xa1 , Υ2 = Xa2(1−Xa1∆1) , (4.19)

by a direct application of (C.5). Similarly, at the top-right branch point one has

Υ3 = Xa3(1−Xa4∆4) , Υ4 = Xa4 , (4.20)

where again we suppress information about logarithmic branching to keep notation light,

and ai denote ‘simpletons’, see footnote 12. At junction J1 we find the following relations

∆5 = Υ3Υ1Υ3Υ1Υ3

∆3 = Q(p5)2Υ1Υ3Υ1Υ3Υ5 +Q(p5)Υ1Υ3Υ5Υ3Υ1 + Υ5Υ3Υ1Υ3Υ1

∆1 = Υ3Υ1Υ3Υ5Υ3 (1−Υ5Υ3Υ1Υ3Υ1Υ3) + Υ3Υ5Υ3Υ1Υ3

(4.21)

where Q(pi) = 1−∆iΥi, and

Q(p1) = Q(p5)2 , Q(p3) = Q(p5)3 . (4.22)

A similar computation, also spelled out in Appendix, yields junction J2, which turn

out to imply

Υ5 = −Υ2Υ4Υ2

∆2 = −∆5Υ2Υ4 − (1 + ∆5Υ2Υ4Υ2) Υ4Υ2∆5

∆4 = −Υ2∆5Υ2

(4.23)

as well as

Q(p2) = Q(p5)2 , Q(p4) = Q(p5) . (4.24)

Now let us turn to the computation of Ω. Recall from [3] that Ω(γ) = [L(γ)]/γ

where L(γ) =
∑5

i=1 αγ(pi)π
−1(pi) is obtained by concatenation of lifts of walls pi with
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coefficients αγ(pi) determined by factorization Q(pi) =
∏
n≥1(1 ± Xnγ)αnγ(pi). Given the

above relations, we have

αnγ(p1) = αnγ(p2) = 2αnγ(p5) αnγ(p3) = 3αnγ(p5) αnγ(p4) = αnγ(p5) (4.25)

and therefore

γ = π−1[2p1 + 2p2 + 3p3 + p4 + p5] . (4.26)

This is consistent with formulae. Indeed, let us focus on Q(p5), since all other Q(pi) are

obtained from this in a straightforward way. By perturbative substitution, we find that

Q(p5) = 1−Υ5∆5 = 1 +Xa1a3a1a3a1a2a4a2 + · · · = 1 +Xγ +O(X2
γ) (4.27)

reflecting the fact that γ = cl(a1a3a1a3a1a2a4a2) is indeed the lift of 2 copies of p1 and p2,

3 copies of p3, and one copy of p4 and p5.

To solve for the full generating function Q(p5) we proceed as follows. Let

Υγ = −Υ3Υ1Υ3Υ1Υ3Υ2Υ4Υ2 , Xγ = Xa1a3a1a3a1a2a4a2 (4.28)

up to cyclic reorderings of factors in each expression. Note that Q(p5) = 1 − Υγ . It

is now straightforward to solve the equations by direct substitution: one readily obtains

Υ2 = Xa2(1 − Υγ)2 and Υ3 = Xa3(1 − Υγ), leading to Υγ = −Xγ (1 − Υγ)7. In terms of

Q(p5) this implies

Q(p5) = 1 +XγQ(p5)7 . (4.29)

From here we can extract Ω(nγ). For example

Q(p5) = 1 +Xγ + 7X2
γ + 70X3

γ + 819X4
γ + 10472X5

γ + 141778X6
γ +O(X7

γ) (4.30)

implying that16

Q(p5) =
∏
n≥1

(1−Xnγ)nΩ(nγ) (4.31)

Ω(γ) = −1 Ω(2γ) = −3 Ω(3γ) = −21

Ω(4γ) = −182 Ω(5γ) = −1855 Ω(6γ) = −20811

. . .

(4.32)

Note that equations like (4.29) appeared in [39, eq. (3.2)]. This equation is similar, but not

of the same type, due to the fact that the exponent (7 in this case) isn’t an exact square.

Nevertheless, this indicates the presence of wild BPS states. From this equation we may

easily obtain arbitrarily many BPS indices for states with charges nγ.

Type-4 saddle

The fourth and last type of saddle we will consider is shown in Figure 12. A real-world

example of this type of saddle can be found in Figure 33. Here only two-way streets are
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Figure 12: A saddle of Type-4.

shown (solid lines labeled p1, . . . , p5 and p′1, . . . , p
′
5), while the picture omits infinitely many

E-walls which are not part of the saddle.

The saddle involves four junctions, two of these are labeled J1 and J2. Resolving the

phase slightly away from the critical one ϑ = ϑc+ ε, one finds a lot of sub-structure at each

junction. An exhaustive analysis is provided in Appendix B.4.

To compute the indices of BPS states associated to this saddle, the first task is to

study the soliton data of all two-way streets. For clarity, we spell out the topological types

of all soliton generating functions for p1 . . . p5

type description

p1
Υ1

∆1

(ij, 1)

(ji,−1)

from branch point to J1

opposite

p2
Υ2

∆2

(ij,−1)

(ji, 1)

from branch point to J2

opposite

p3
Υ3

∆3

(ji, 0)

(ij, 0)

from branch point to J1

opposite

p4
Υ4

∆4

(ji, 0)

(ij, 0)

from branch point to J2

opposite

(4.33)

The counterparts for p′1 . . . p
′
5 can be deduced from Figure 12 in the same way.

Each of these generating functions can be determined by considering flatness con-

straints for the nonabelianization map at junctions and branch points. For the sake of

keeping notation light we will, as above, suppress information about logarithmic branch-

ing of soliton data, keeping in mind that this can be restored in each of the following

expressions in a non-ambiguous way.

16Recall that L[nγ] contains π−1(p5) precisely nΩ(nγ) times, this explains the exponents in this fac-

torization. The choice of sign in front of Xγ turns out to be the only one that gives integer Ω(nγ) for

all n.
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Flatness constraints at the left-most branch point are

Υ1 = Xa1 Υ2 = Xa2(1−Xa1∆1) (4.34)

by a direct application of (C.5). Likewise, at the top-right branch point one finds

Υ3 = Xa3 Υ′4 = Xa′4
(1−Xa3∆3) (4.35)

Similarly, at the two other branch points, one obtains

Υ′1 = Xa′1
Υ′2 = Xa′2

(1−Xa′1
∆′1)

Υ′3 = Xa′3
Υ4 = Xa4(1−Xa′3

∆′3)
(4.36)

As before, ai denote ‘simpleton’ paths, see footnote 12. The flatness constraints at junction

J1, connecting p1, p3, p5 are

∆1 =
2 + Υ

(jj,−1)
5 Υ3Υ1

(1 + Υ
(jj,−1)
5 Υ3Υ1)2

Υ
(jj,−1)
5 Υ3

∆3 = Υ1Υ
(jj,−1)
5

2 + Υ
(jj,−1)
5 Υ3Υ1

(1 + Υ
(jj,−1)
5 Υ3Υ1)2

∆
(ii,k)
5 =

1

k
(−Υ1Υ3)k ∆

(jj,k)
5 = −1

k
(−Υ3Υ1)k ,

(4.37)

where Υjj,n
5 ,∆jj,n

5 are generating functions of (jj, n) solitons supported on p5, see Ap-

pendix B.4 for the relation between this generating function and Stokes matrices of the

underlying E-walls. It is useful to note that Υ
(jj,−1)
5 Ξji = −ΞjiΥ

(ii,−1)
5 if Ξji is any shift-

symmetric soliton generating function [3]. The equations describing junction J2, which

connects p2, p4, p5, have a similar form

∆4 = ∆
(ii,1)
5 Υ2

2 + ∆
(ii,1)
5 Υ2Υ4

(1 + ∆
(ii,1)
5 Υ2Υ4)2

∆2 =
2 + ∆

(ii,1)
5 Υ2Υ4

(1 + ∆
(ii,1)
5 Υ2Υ4)2

Υ4∆
(ii,1)
5

Υ
(ii,−k)
5 = −1

k
(−Υ2Υ4)k Υ

(jj,−k)
5 =

1

k
(−Υ4Υ2)k .

(4.38)

Thanks to the Z2 symmetry relating x → x−1, the equations for the two additional junc-

tions, can be inferred from the ones for J1, J2

∆′1 = ∆′
(ii,1)
5 Υ′3

2 + ∆′
(ii,1)
5 Υ′3Υ′1

(1 + ∆′
(ii,1)
5 Υ′3Υ′1)2

∆′3 =
2 + ∆′

(ii,1)
5 Υ′3Υ′1

(1 + ∆′
(ii,1)
5 Υ′3Υ′1)2

Υ′1∆′
(ii,1)
5

Υ′
(ii,−k)
5 = −1

k
(−Υ′3Υ′1)k Υ′

(jj,−k)
5 =

1

k
(−Υ′1Υ′3)k .

(4.39)
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∆′4 = Υ′
(jj,−1)
5 Υ′2

2 + Υ′
(jj,−1)
5 Υ′2Υ′4

(1 + Υ′
(jj,−1)
5 Υ′2Υ′4)2

∆′2 =
2 + Υ′

(jj,−1)
5 Υ′2Υ′4

(1 + Υ′
(jj,−1)
5 Υ′2Υ′4)2

Υ′4Υ′
(jj,−1)
5

∆′
(ii,k)
5 =

1

k
(−Υ′4Υ′2)k ∆′

(jj,k)
5 = −1

k
(−Υ′2Υ′4)k .

(4.40)

It follows from the above equations that

Q(pi) = Q(p′i) = Q(Xγ) = (1 + Υγ)−2 (4.41)

where Q(pi) = 1 − ∆iΥi (similarly for p′i) and we introduced γ = [cl(a3a1a4a2)] =

[cl(a′3a
′
1a
′
4a
′
2)]17 as well as

Υγ = Υ
(jj,−1)
5 Υ3Υ1 = ∆

(ii,1)
5 Υ2Υ4 = ∆′5

(ii,1)
Υ′3Υ′1 = Υ′

(ii,−1)
5 Υ′4Υ′2 . (4.42)

From the equations it is straightforward to obtain an expression for Υγ

Υγ = Υ
(jj,−1)
5 Υ3Υ1

= −Υ2Υ4Υ3Υ1

= −Xa2(1−Xa1∆1)Xa4(1−Xa′3
∆′3)Xa3Xa1

= −Xa2Q(p1)Xa4Q(p′3)Xa3Xa1

= −Xγ(1 + Υγ)−4

(4.43)

In terms of Q(p), we arrive at the following equation

Q = (1−Xγ Q
2)−2 . (4.44)

From here we may easily obtain a series expansion for Q(Xγ) to arbitrary order

Q(Xγ) = 1 + 2Xγ + 11X2
γ + 80X3

γ + 665X4
γ + 5980X5

γ

+ 56637X6
γ + 556512X7

γ + 5620485X8
γ +O(X9

γ)
(4.45)

To compute BPS indices, we must factorize this generating function. Choosing

Q(Xγ) =
∏
n≥1

(1− (−1)nXnγ)nβnγ (4.46)

with integer coefficients

β1 = 2, β2 = −5 β3 = 20 β4 = −120

β5 = 850 β6 = −6602 β7 = 54894 β8 = −480624

. . .

(4.47)

The contribution of the saddle to the BPS index is ∆Ω(nγ) = [L(nγ)]/(nγ), where L(nγ) =⋃
p αnγ(p)π−1(p) where αnγ(p) = nβnγ are the exponents of the factorization. Taking into

account both streets pi and p′i this yields

∆Ω(nγ) = 2βn . (4.48)
17Physical charges are identified by a quotient of a homology (sub-)lattice of Σ, which identifies cycles

with the same λ-period [3].
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4.3 Description of the spectrum

Having completed our preliminary analysis of a selection of saddle types, we are now in

the position to explore the geometry of exponential networks at the point Q0.

We will adopt a mixed approach, blending the use of exponential networks with quiver

representation theory and wall-crossing. In principle, exponential networks are expected to

capture all BPS states. However, for practical reasons, it is more convenient to rely on all

available techniques. There are two main technical difficulties involved with working with

exponential networks: the fact that the spectrum is infinite at Q0, and the fact that the

saddles of certain BPS states can be somewhat complicated to study. On the other hand,

there are also important advantages: it is not easy to obtain information about BPS states

with charges γ =
∑4

i=1 diγi where all di > 0 using quivers, while from the viewpoint of

networks these states are just like all others. Even better, for charges γ such that Ω(nγ) 6= 0

for several (possibly all) n > 0, networks often encode the full generating function of all

BPS indices in a neat algebraic equation. We will come across an illustration of both these

points shortly.

Without further ado, let us list the BPS states at Q0, where we make a note of which

techniques were used to compute them. First of all, there are the basic saddles p1, . . . , p5

encountered in Figure 5

γ D-brane charge Ω(γ) Figure

(1, 0, 0, 0) D4 1 5

(0, 1, 0, 0) D2f -D4 1 5

(0, 0, 1, 0) D0-D2b-D2f -D4 1 5

(0, 0, 0, 1) D2b-D4 1 5

(0, 2, 1, 2) D0-D2b-D2f -D4 1 5

(4.49)

Next, we consider states supported on pairs of nodes γa, γb of the quiver. Besides

plotting their saddles, it is worth noting that any pair of nodes forms a sub-quiver that

is either trivial (no arrows) and hence without boundstates, or a Kronecker quiver with

two arrows. The representation theory of the Kronecker quiver is well known, and is fully

determined by the relative ordering of argZγa , argZγb , see Figure 6 for comparison.

γ D-brane charge Ω(γ) Figure

(0, 0, 1, 1) D0-D2f −2 23

(0, 0, n, n+ 1) nD0-D2b-nD2f -D4 1 24, 26

(0, 0, n+ 1, n) (n+ 1)D0-D2b-(n+ 1)D2f -D4 1 25, 27

(0, 1, 1, 0) D0-D2b-2D4 −2 28

(0, n, n+ 1, 0) (n+ 1)D0-(n+ 1)D2b-D2f -(2n+ 1)D4 1

(0, n+ 1, n, 0) nD0-nD2b-D2f -(2n+ 1)D4 1 30, 32

(4.50)

This table illustrates the advantage of using quiver representation theory over networks,

for those BPS states supported on a sub-quiver whose representations are well understood.

Next we consider the class of BPS states whose charges are supported on three nodes of

the quiver, in other words γ =
∑4

i=1 diγi and exactly one of the di = 0. We will henceforth
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suppress D-brane charges, these can always be recovered by the dictionary (4.3). For

charges with only d1 = 0 we find, up to d2 + d3 + d4 ≤ 9,

γ Ω(γ) Figure

(0, 1, 1, 1) Ω = 4 33

(0, 2, 1, 1) Ω = −2 34

(0, 1, 2, 1) Ω = −4

(0, 1, 1, 2) Ω = −2 35

(0, 2, 2, 1) Ω = 10

(0, 1, 2, 2) Ω = 10

(0, 2, 1, 2) Ω = 1

(0, 3, 2, 1) Ω = −4

(0, 2, 3, 1) Ω = −14

(0, 2, 2, 2) Ω = −12 33

(0, 1, 3, 2) Ω = −14

(0, 1, 2, 3) Ω = −4

(0, 4, 2, 1) Ω = 1

(0, 3, 3, 1) Ω = 20

(0, 3, 2, 2) Ω = 10

(0, 2, 4, 1) Ω = 6

γ Ω(γ)

(0, 2, 3, 2) Ω = 27

(0, 1, 4, 2) Ω = 6

(0, 1, 3, 3) Ω = 20

(0, 2, 2, 3) Ω = 10

(0, 1, 2, 4) Ω = 1

(0, 4, 3, 1) Ω = −6

(0, 3, 4, 1) Ω = −24

(0, 3, 3, 2) Ω = −72

(0, 2, 4, 2) Ω = −16

(0, 1, 4, 3) Ω = −24

(0, 2, 3, 3) Ω = −72

(0, 3, 2, 3) Ω = −4

(0, 1, 4, 3) Ω = −6

(0, 1, 3, 4) Ω = −6

(0, 5, 3, 1) Ω = 4

(0, 5, 4, 0) Ω = 1

γ Ω(γ) Figure

(0, 4, 5, 0) Ω = 1

(0, 4, 4, 1) Ω = 35

(0, 4, 3, 2) Ω = 49

(0, 4, 2, 3) Ω = 1 29

(0, 3, 5, 1) Ω = 16

(0, 3, 4, 2) Ω = 172

(0, 3, 3, 3) Ω = 60 33

(0, 2, 4, 3) Ω = 172

(0, 1, 5, 3) Ω = 16

(0, 3, 2, 4) Ω = 1

(0, 2, 3, 4) Ω = 49

(0, 1, 4, 4) Ω = 35

(0, 0, 5, 4) Ω = 1

(0, 0, 4, 5) Ω = 1

(0, 1, 3, 5) Ω = 4
...

...

(4.51)

This part of the spectrum is obtained as follows. The three-node sub-quiver obtained by

dropping node γ1 admits a choice of moduli, corresponding to argZγ4 > argZγ3 > argZγ2 ,

for which the only stable representations correspond to Ω(γ2) = Ω(γ3) = Ω(γ4) = 1. This

enables to write down the Kontsevich-Soibelman invariant [40], or spectrum generator [41],

for this sub-quiver

S = Kγ4Kγ3Kγ2 . (4.52)

BPS states in (4.51), in fact any of those with charges (0, d2, d3, d4), can be obtained by

factorizing S at Q0. This requires knowing the exact values of Zγi , we provide numerical

estimates in (A.2) and (A.3). Given the simplicity of (4.52), it would be just as straight-

forward to write down the motivic spectrum generator, whose factorization would in turn

yield protected spin characters (PSCs). 18

Let us comment on how the results obtained by factorization of the spectrum generator

compare with results obtained from exponential networks. We just focus on states with

charges (0, n, n, n). These states are represented by a Type-4 saddle like the one of Figure

12, see Figure 33. For n = 1 we obtain Ω = 4 from the analysis of the saddle, see (4.48),

18A similar strategy may also be applied to subquivers defined by suppressing one of the nodes γ2, γ3 or

γ4. In this way, the BPS indices (or their motivic deformations to PSC) can be directly computed. However

we obtain no new information, due to how central charges are arranged. For Ω(d1γ1 + d2γ2 + d3γ3) we

find that the only non-vanishing boundstates are the ones we already found, namely Ω(γ2 + γ3) = −2 and

Ω(γ2 + n(γ2 + γ3)) = Ω(γ3 + n(γ2 + γ3)) = 1. For Ω(d1γ1 + d1γ2 + d1γ4) we find that this always vanishes

unless d1 + d2 + d4 = 1. For Ω(d1γ1 + d3γ3 + d4γ4) we find that the only non-vanishing boundstates are the

ones we already found, namely Ω(γ3 + γ4) = −2 and Ω(γ3 + n(γ3 + γ4)) = Ω(γ4 + n(γ3 + γ4)) = 1. Also

worth noting, is that these results may, at least in part, be obtained using Reineke’s formula [42].
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which matches the expectation from the spectrum generator. For n > 1 however the result

obtained from analyzing the saddle systematically undercounts the prediction from the

spectrum generator (comparing |Ω|). A possible explanation is that the Type-4 saddle is

only a part of the BPS state, which may consists of additional 2-way streets that we haven’t

detected in Figure 33. This issue illustrates how, sometimes, computing BPS indices with

exponential networks can be rather subtle due to the intricacy of the network.

Finally, we consider states whose charges are supported on all four nodes. This is

where exponential networks are most useful, since we cannot invoke simple results for the

quiver representation theory. For example, in Figure 36 we observe a pair of saddles of

Type-3. We deduce the following spectrum from (4.32)

γ Ω(γ) Figure

(1, 1, 2, 2) Ω = −2 36

(2, 2, 4, 4) Ω = −6 36

(3, 3, 6, 6) Ω = −42 36

(4, 4, 8, 8) Ω = −364 36
...

...

(4.53)

This is a case in which an infinite tower of BPS states is encoded by a single saddle (or two

disjoint copies thereof). The generating function of BPS indices is elegantly encoded by

the algebraic equation (4.29). The same phenomenon was observed in spectral networks,

in the context of SU(3) super Yang-Mills theory [39]. In [43] it was shown how this sort of

equations can be deformed to a functional equation for the generating function of protected

spin characters.

Notice that the first state in this series, namely (1, 1, 2, 2) corresponds to the vec-

tormultiplet (0, 0, 1, 1) = D0-D2f plus a D0, and has the same BPS index as (0, 0, 1, 1).

It thus seems natural to ask whether there is a whole KK tower of such states, namely

Ω(n, n, n+ 1, n+ 1) = −2 for all n ≥ 0.

Bearing in mind the subtleties encountered previously with the BPS index of γ =

(0, n, n, n), a word of caution is in order: it is possible that, once again, we may be missing

parts of the saddle in plotting Figure 36. If this were the case, the (absolute values of)

BPS indices (4.53) would presumably underestimate of the actual answer. It would be

interesting to verify these results independently. Another natural question that arises, is

to what extent the above description of the spectrum is exhaustive. The full spectrum is

certainly infinite, and it certainly includes infinitely many states that are missing in the

description above. For charges γ = (d1, d2, d3, d4) with
∑

i di ≤ 6, we believe our spectrum

is exhaustive, with the exception of three states: Ω(1, 1, 1, 1) = −4 corresponding to a D0

brane, Ω(1, 1, 2, 1) = 4 and Ω(1, 2, 2, 1) = −2.19 In principle, these states should be visible

in the networks tuned to the appropriate phase ϑ = argZγ .

19We obtained these using the ‘Coulomb branch formula’ with stability parameters calculated on central

charges (A.2), using the mathematica code [44].
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4.4 Fiber-base symmetry

As noted below (4.3), the set of basic saddles in Figure 5 is manifestly invariant under the

exchange of fiber and base P1s. In the quiver picture, this duality is hidden: this is because

the quiver description is based on a choice of ‘basis cycles’ (4.4) which is not invariant

under fiber-base exchange. Nevertheless, since we are studying BPS states at a fiber-base

symmetric point, we expect the spectrum to be invariant under exchange of D2b ↔ D2f .

Using the charge dictionary from (4.4) we can verify that the spectrum is indeed

symmetric under exchange of fiber and base. For example consider the infinite towers of

states in (4.50). The first tower of states corresponds to the cohort of the vectormultiplet

(0, 0, 1, 1) which corresponds to p2 ∪ p4 (where pi denotes the orientation-reversal of pi).

Recall that, under fiber-base exchange, p2 maps to p1 and p4 maps to p5, then we expect

another tower of states obtained by mapping

p2 : (0, 0, 1, 0) ↔ p1 : (0, 2, 1, 2)

p4 : (0, 0, 0,−1) ↔ p5 : (0, 1, 0, 0)
(4.54)

While fiber-base exchange acts in a very simple way on saddles pi from Figure 5, its

action on quiver charges appears to be quite involved: in particular it mixes states with

positive dimension vector to ones with negative dimension. This is an artifact of the quiver

description, and the BPS spectrum is invariant under fiber-base exchange.

The fiber-base map (4.54) maps the states in (4.50) to the following ones

γ D-brane charge Ω(γ) Figure

(0, 1, 1, 2) D0-D2b −2 35

(0, n− 1, n, 2n) nD0-D2f -nD2b-D4 1 24

(0, n+ 2, n+ 1, 2n+ 2) (n+ 1)D0-D2f -(n+ 1)D2b-D4 1

(0, 2, 1, 1) D0-D2f -2D4 −2 34

(0, 2n, n, n− 1) (n+ 1)D0-(n+ 1)D2f -D2b-(2n+ 1)D4 1 30

(0, 2n+ 2, n+ 1, n+ 2) nD0-nD2f -D2b-(2n+ 1)D4 1 29, 31

(4.55)

Unlike the argument leading to (4.50), based on Kronecker-subquivers visible in Figure 6,

the infinite towers of states predicted by the fiber-base exchange map are highly nontriv-

ial to see from the viewpoint of the quiver. This prediction can nonetheless be checked

directly. We plot the saddles of both vectormultiplets and of some of the hypermultiplets

in Appendix A (see links to figures in the table above). We also find the states (0, 1, 2, 4),

(0, 3, 2, 4), (0, 4, 2, 1) already present in (4.51) with the correct BPS indices, as part of the

prediction from the wall-crossing formula. This partial evidence for (4.55) supports the

prediction these new towers of states that would be otherwise challenging to obtain.

Both (4.50) and (4.55) have an especially simple description in terms of saddles. Let

us introduce the notion of ‘cohort’ following [39]: given γ, γ′ their 2-cohort is the set of

BPS states

C2(γ, γ′) = {Ω(γ + γ′) = −2, Ω(γ + n(γ + γ′)) = Ω(γ′ + n(γ + γ′)) = 1 , n ≥ 1} (4.56)
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then (4.50) and (4.55) are simply the cohorts formed by saddles

C2(p2, p4) , C2(p2, p5) , C2(p1, p5) , C2(p1, p4) . (4.57)

The simplicity of this description, as opposed to the organization by quiver charges or even

D-brane charges, suggests that saddles of Figure 5 provide an especially natural basis for

the BPS spectrum at the point Q0.

Fiber-base symmetry may be also studied on the BPS states of table (4.51). The map

relates some BPS states with the same BPS index, as follows

(0, 0, 1, 0)↔ (0, 2, 1, 2)

(0, 1, 1, 0)↔ (0, 2, 1, 1)

(0, 0, 1, 1)↔ (0, 1, 1, 2)

(0, 1, 2, 0)↔ (0, 4, 2, 3)

(0, 0, 2, 1)↔ (0, 3, 2, 4)

(0, 1, 2, 1)↔ (0, 3, 2, 3)

(0, 3, 2, 0)↔ (0, 4, 2, 1)

(0, 2, 2, 1)↔ (0, 3, 2, 2)

(0, 1, 2, 2)↔ (0, 2, 2, 3)

(0, 0, 2, 3)↔ (0, 1, 2, 4)

(4.58)

There are also charges which are invariant under fiber-base symmetry, these include

(0, 0, 1, 2), (0, 2, 1, 0), (0, n, n, n), (0, 3, 2, 1), (0, 1, 2, 3),

(0, 5, 3, 1), (0, 4, 3, 2), (0, 2, 3, 4), (0, 1, 3, 5) .

Finally, the remaining charges are dual to states which we have not encountered so far.

This gives predictions for new BPS states, based on the assumption that the spectrum

enjoys fiber-base symmetry:

γ Ω(γ)

(0, 2, 3, 5) Ω = −6

(0, 2, 3, 6) Ω = 1

(0, 3, 3, 4) Ω = −72

(0, 3, 3, 5) Ω = 20

(0, 3, 4, 8) Ω = 1

(0, 4, 3, 3) Ω = −72

(0, 4, 3, 4) Ω = 27

(0, 4, 3, 5) Ω = −14

(0, 4, 3, 6) Ω = 1

(0, 4, 4, 7) Ω = 35

(0, 5, 3, 2) Ω = −6

(0, 5, 3, 3) Ω = 20

(0, 5, 3, 4) Ω = −14

(0, 5, 4, 6) Ω = 172

(0, 5, 4, 7) Ω = −24

γ Ω(γ)

(0, 5, 4, 8) Ω = 1

(0, 6, 3, 2) Ω = 1

(0, 6, 3, 4) Ω = 1

(0, 6, 4, 5) Ω = 172

(0, 6, 4, 6) Ω = −16

(0, 6, 4, 7) Ω = 6

(0, 6, 5, 10) Ω = 1

(0, 7, 4, 4) Ω = 35

(0, 7, 4, 5) Ω = −24

(0, 7, 4, 6) Ω = 6

(0, 7, 5, 9) Ω = 16

(0, 8, 4, 3) Ω = 1

(0, 8, 4, 5) Ω = 1

(0, 9, 5, 7) Ω = 16

(0, 10, 5, 6) Ω = 1

(4.59)
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Likewise, applying fiber-base symmetry to the BPS states in (4.53) yields the prediction

γ Ω(γ)

(1, 2, 2, 3) Ω = −2

(2, 4, 4, 6) Ω = −6

(3, 6, 6, 9) Ω = −42

(4, 8, 8, 12) Ω = −364
...

...

(4.60)

One should note that the first state can be viewed as a boundstate of the vectormultiplet

(0, 1, 1, 2) = D0−D2b and a D0 brane, so it is natural to ask whether there is a whole KK

tower of states with charges (n, n+ 1, n+ 1, n+ 2). This would of course be the fiber-base

symmetric image of the tower mentioned below (4.53).

5 BPS spectrum in various limits

This section studies how exponential networks, and saddles representing BPS states, behave

under two different limits of the mirror geometry. We will first consider a four-dimensional

limit obtained by shrinking the S1 radius to zero. Later we will also consider a factorization

limit into a half-geometry obtained by sending either of the complex moduli to zero or to

infinity. Since BPS states of the models appearing in either limit are well-understood, the

study of these limits will provide further checks on brane-charge dictionary (4.3) for saddles

of KF0 .

5.1 Spectral networks in 4d N = 2 SU(2) super Yang-Mills theory

Before we consider the four-dimensional limit of exponential networks, let us briefly recol-

lect basic results about spectral networks for 4d N = 2 super Yang-Mills with gauge group

SU(2). The class S presentation of Seiberg-Witten theory can be written in the following

form [41]

λ2 =

(
−Λ2

x3
+

2u

x2
− Λ2

x

)
dx2 (5.1)

where x is a local coordinate on the UV curve, u is the Coulomb branch modulus and Λ

is the dynamical sQCD scale. This curve has a Z2-symmetry sending x→ 1/x, as well as

a Z2 symmetry acting as λ→ −λ. The Coulomb branch also has a Z2 symmetry, sending

u → −u.20 This curve has two branch points, where λ = 0. The branch points coincide

if u = Λ2 (the dyon point) or if u = −Λ2 (the monopole point).21 The chamber structure

of the Coulomb branch consists of two chambers, separated by walls of marginal stability

connecting the monopole and dyon points, see Figure 13.

The BPS spectrum in the strong coupling chamber consists of two BPS states: a

monopole and a dyon, both are BPS hypermultiplets with Ω = 1. To illustrate this we plot

the spectral network at a point us in the Coulomb branch, and find two saddles. Choosing

us on the positive real axis and close to the dyon point22 we find the dyon and monopole as

20Combining this with a change of coordinates (λ, x)→ (iλ,−x) leaves the curve invariant.
21Assuming these conventions are compatible with those of [34], where this identification is made on p.28.
22We fix us = 95

100
Λ2
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Figure 13: Coulomb branch of 4d N = 2 SU(2) Yang-Mills theory.

shown in Figure 14. Moving to the weak coupling chamber, the BPS spectrum jumps and

includes infinitely many BPS states. In addition to the monopole and the dyon there are

several boundstates, including a vectormultiplet with Ω = −2. To illustrate this we plot

the spectral network at a point uw on the positive real axis and close to the dyon point23

we find the BPS spectrum partially shown in Figure 15.

Figure 14: Left: monopole appearing for ϑ = 0. Right: dyon appearing for ϑ = π/2.

(a) Monopole (b) Mono.+v.m. (c) V.m. (d) Dyon+v.m. (e) Dyon

Figure 15: Weak coupling BPS states.

In the limit u � Λ2, e.g. along the positive real axis, the separation between two

branch points increases arbitrarily. The system eventually decouples into two separate

23We fix uw = 105
100

Λ2

– 37 –



parts, where only one BPS state remains of finite mass: it is a half of the vectormultiplet,

consisting of a circular saddle supported on a single branch point. In fact, what remains is

the spectral network of the CP1 2d sigma model, reflecting the fact that after decoupling

the 4d theory only the 2d (2, 2) defect theory remains dynamical [11, 19].

5.2 Four-dimensional limits to Seiberg-Witten theory

In section 2.3 we reviewed how dependence on the radius of compactification may be

introduced in the geometry of the mirror curve, showing that the latter approaches the

Seiberg-Witten curve of 4d N = 2 super Yang-Mills as R → 0. In this section we explore

how exponential networks behave in this liimit.

Limit to strong coupling

The Coulomb branch of the 4d theory has a strong coupling region, corresponding to

u/Λ2 . 1. Going all the way to the center of the strong coupling region corresponds to

sending this ratio to zero, which in terms of 5d moduli implies

Qf
Qb

= −1

2

(
1

Λ2R2
+ 2

u

Λ2
+ . . .

)
. (5.2)

We will henceforth specialize Qf ∼ −Qb/(2Λ2R2), and study the limit R → 0 keeping

Λ fixed. Let us focus on a small patch of the moduli space near one of the singularities,

namely near the divisor D2 in (2.15), where Qf + Qb = 1/2. As is clear from (2.19), this

corresponds in the 4d limit to the dyon point u = Λ2.24

We shall fix 4d moduli to be

Λ = 1, u = 0.95Λ2, (5.3)

which, at radius R = 1 correspond approximately to Qb = −1, Qf = 1/2 + u = 1.45.

Focusing on the simplest BPS saddles encountered in Section 4, we consider exponential

networks at ϑ = 0, π/2 shown in Figure 16.

These should be compared with the saddles of Figure 5. Indeed, highlighted in black

we recognize p3 at ϑ = 0 and p5 at ϑ = π/2. As we argued above, the two branch points

supporting p3, p5 survive in the 4d limit, while the two other branch points will end up

disappearing into punctures. In terms of BPS states, whose charges can be read from (4.3),

this means the following

• D4, which corresponds to p3, remains of finite mass. This should descend to a purely

magnetic state, the BPS monopole of Seiberg-Witten theory.

• likewise D2f -D4, which corresponds to p5, remains of finite mass. This should de-

scend to a dyon with (e,m) = (1,−1), the BPS dyon of Seiberg-Witten theory

• instead D0 branes, which correspond to red towers of saddles at ϑ = 0 will become

infinitely massive and eventually disappear into the punctures

24Due to symmetries of the curve, corresponding to (x,Qb)→ (−x,−Qb) and (y,Qf )→ (−y,−Qf ), the

analysis of divisor D3 will be essentially identical. Likewise divisors D1,D4 should be equivalent.
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Figure 16: Left: ϑ = 0. Right: ϑ = π/2

• likewise D2b, corresponding to the red saddle at ϑ = π/2 (or p4 in Figure 5) becomes

infinitely massive due to the fact that the two branch points that support it become

infinitely separated and disappear

These expectations can be verified directly, as shown in Figures 17 and 18. As the ra-

dius decreases, the exponential network approaches precisely the spectral network of SU(2)

Seiberg-Witten theory, corresponding to the last frame, which coincide with saddles shown

in Figure 14. Comparing with spectral networks offers another check of our identification

of the p3 saddle with the monopole (hence a D4 brane) and of the p5 saddle with a dyon

(hence a D2f -D4 boundstate). These are the only states present in the strong coupling

chamber, providing an unambiguous check of (4.3).

Figure 17: Exponential networks at ϑ = 0, for R = {0.85, 0.65, 0.45, 0.25, 0.05}. Only

primary walls are shown. This interpolates between Figures 16 and 14.

Limit to weak coupling

We next take a 4d limit that approaches the weak coupling chamber of SU(2) Seiberg-

Witten theory. For this purpose, we switch from moduli chosen as in (5.3) to

Λ = 1, u = 1.05Λ2 , (5.4)
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Figure 18: Exponential networks at ϑ = π/2, for R = {0.85, 0.65, 0.45, 0.25, 0.05}. Only

primary walls are shown. This interpolates between Figures 16 and 14.

which, at radius R = 1, correspond approximately to Qb = −1, Qf = 1/2 + u = 1.55.

Comparing to the strong coupling point analyzed earlier, this point is on the other side of

the dyon singularity D2 at u = Λ2, where p5 shrinks to zero length. Again focusing on the

simplest BPS saddles, we consider exponential networks at ϑ = 0, π/2 shown in Figure 19.

Figure 19: Left: ϑ = 0. Right: ϑ = π/2. Some of the states surviving in the 4d limit are

visible already at R = 1, compare with 15.

These saddles consist of just a tiny sample of the full BPS spectrum, but we may again

recognize some familiar states.

• D2f , which corresponds to the black saddle at ϑ = 0, arises as a boundstate of

p3 ∪ p5, and remain of finite mass. This should descend to a purely electric state, the

W-bosons in the BPS vectormultiplet of Seiberg-Witten theory.

• likewise D2f -D4, which corresponds to p5 (after a flop across the dyon singularity)

remains of finite mass. This again descends to a dyon with (e,m) = (−1, 1), the BPS

dyon of Seiberg-Witten theory
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• as in the case of strong coupling, D0 branes, which correspond to red towers of saddles

at ϑ = 0 will become infinitely massive and eventually disappear into the punctures

• likewise D2b, corresponding to the red saddle at ϑ = π/2 (or p4 in Figure 5) becomes

infinitely massive due to the fact that the two branch points that support it become

infinitely separated and disappear

Comparing with the strong coupling spectrum, we observe a change in a part of the spec-

trum corresponding to the well-known wall-crossing phanomenon in Seiberg-Witten theory.

The two regions are separated by a wall of marginal stability for D4 and D2f -D4 states,

the vectormultiplet D2f is one of the boundstates formed in this process. The match with

spectral networks at weak coupling offers yet another check of our identification of D-brane

charges: the vectormultiplet should indeed carry pure electric charge under the U(1) gauge

symmetry associated with the fiber P1.

While we omit the details, it is worth noting that these expectations can be verified

directly, along the same lines of Figures 17 and 18. Plotting exponential networks for

decreasing values of R, one observes that red saddles grow infinitely large, while black ones

remain finite. Black saddles can be identified directly with the vectormultiplet and dyon

from Figure 15.

5.3 The half-geometry

The mirror curve admits two types of factorization limits, corresponding to | logQb| → ∞
or | logQf | → ∞. In each case it reduces to the mirror curve of O(0)⊕O(−2)→ P1. Let us

start by briefly recalling salient features of the exponential networks for this half-geometry,

a more comprehensive analysis can be found in [4]. The mirror curve25

1− y − xy +
Q

(1 +Q)2
y2 = 0 (5.5)

enjoys a Z2 symmetry, which becomes manifest after rescaling y′ =
√
Q(1 + Q)−1y, ex-

changing y′ ↔ 1/y′ There are two logarithmic punctures above x = ∞, as well as two

regular punctures at x = 0 where y± → c± for constants c±.

The BPS spectrum consists of boundstates of D2 and D0 branes. All states are mu-

tually local, this allows to capture the whole set of saddles by going to a point in the

moduli space where argZD2 = argZD0. Introducing Qf defined by Q2
f = Q(1 + Q)−2,

we fix Qf = 0.8. Then all BPS states have real positive central charges, corresponding

to ZD0 = 2π and ZD2 = i logQ (at R = 1). All saddles appear therefore at ϑ = 0, see

Figure 20. Highlighted in red is an infinite tower of double walls corresponding to pure D0

boundstates, while highlighted in black is a simpler saddle corresponding to a D2 brane

wrapping the P1.

Limit Qb → 0

Going back to the full geometry KF0 , we now study how it degenerates to O(0)⊕O(−2)→
P1 and what happens to BPS states using exponential networks. Consider the ‘weak

25This corresponds to the curve studied in [4] after a change of framing.
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Figure 20: Exponential network of O(0)⊕O(−2)→ CP1 at ϑ = 0.

coupling’ regime defined by moduli (5.4). Starting from here we will take Qb → 0 along

the negative real axis, while Qf is kept finite. In this limit, two of the branch points fall

into x = 0 with positions x = Qb
1±2Qf

, while (by Z2-symmetry x→ x−1) the other two tend

to infinity as x =
1±2Qf
Qb

. Changing variables to x = x′/Qb to focus near the region x =∞
where x′ is finite, we observe the limiting behavior of the exponential network shown in

Figure 21. In the limit, the exponential network of the half-geometry emerges (cf. Figure

20). By Z2 symmetry a similar picture emerges near x = 0.

The vectormultiplet corresponding to a D2 wrapping P1
f (the black saddle) starts out

with BPS index Ω = −2, but in the limit only half of it remains, ending up with Ω = −1

as expected [4]. Comparing with the known spectrum for the half-geometry, this yields

another check that our identification of D2f is correct. Likewise, the spectrum of D0-

branes is halved in the limit, as half of the red saddles disappears into the puncture. The

way the BPS spectrum changes in this degeneration limit is quite different from what we

observed in the 4d limit. While in the 4d limit certain BPS states became very heavy and

disappeared altogether (as in the case of D0), here they remain of finite mass but their

BPS index changes. It still happens that certain BPS states become infinitely heavy. This

is the fate of both saddles previously at ϑ = π/2 in Figure 19, as shown in Figure 22. The

heavy states correspond to the D4 (black saddle) and to D2b-D4, in line with expectations

from the mirror side where P1
b and the whole F0 grow to infinite size.

Also worth of notice is the behavior of punctures and branch points: in the 4d limit

we observed one branch point falling into x = 0 and one into x = ∞. Here (after a

rescaling of x) there are two branch points falling into x = 0, resulting into a simple

puncture log y dxx ∼
dx
x instead of an irregular one (as in the 4d limit). At the same time,

the puncture at x =∞ remains logarithmic. This behavior is consistent with expectations

about the degeneration of the mirror curve from the corresponding factorization of the
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toric diagram.

Figure 21: Exponential networks at ϑ = 0 for (Qb, Qf ) = (−1 + 0.2 · k, 1.55 − 0.15 · k)

and k = 0, 1, 2, 3, 4, 5. Only primary walls are shown. This interpolates between Figures

15 and 20.
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Figure 22: Exponential networks at ϑ = π/2 for (Qb, Qf ) = (−1 + 0.2 · k, 1.55− 0.15 · k)

and k = 0, 1, 2, 3, 4, 5. Only primary walls are shown
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6 Conclusions

In this paper we investigated the BPS spectrum of M-theory on X×S1×R4 when X = KF0 .

More precisely, we focused on the sector of BPS states obtained by wrapping M2 and M5

branes on compact holomorphic two- and four-cycles on X. Via geometric engineering,

this is directly related to the BPS spectrum of instanton-particles and monopole-strings

in 5d N = 1 SU(2) Yang-Mills theory on S1 × R4. Due to wall-crossing, the spectrum

depends on a choice of moduli, and we focused on the special point Q0 (corresponding to

Qb = −1, Qf = 1) in the moduli space of the mirror curve (2.7).

Our approach to this problem is based on exponential networks. For practical reasons

we used a combination of techniques to obtain extensive information about BPS states,

although in principle the same information (and more) could be obtained just by studying

networks. The spectrum contains infinitely many BPS states, including ‘wild BPS states’,

making it challenging to provide a closed-form description. We computed part of the

spectrum , corresponding to the lowest-energy (more precisely, lowest-charge) states. A

detailed description of results can be found in Section 4.3, here we recall the a few salient

features.

We found a system of ‘basic’ BPS saddles at ϑ = 0 and ϑ = π/2, corresponding

to specific D-brane boundstates D4, D2f -D4, D0-D2b-D2f -D4 and the fiber-base duals

obtained by switching D2b ↔ D2f . Here D2f and D2b denote D2 branes wrapping the

fiber and base P1 in F0. We found evidence that the BPS spectrum enjoys fiber-base

symmetry. In fact, the structure of the spectrum appears to simplify when expressed in

terms of the five basic BPS saddles, presumably because both the spectrum and the setof

basic saddles are invariant under fiber-base symmetry.

We also derived the BPS quiver and its potential from exponential networks. The

quiver has four nodes, corresponding to four of the five basic saddles. This choice however

breaks fiber-base symmetry, which is no longer manifest when the spectrum is described

in terms of quiver representations.

Having obtained the spectrum at the point Q0, we studied how BPS states behave

in different limits. First, we considered a 4d limit obtained by shrinking the M-theory

circle. One can see how certain BPS states grow to infinite size in this limit. For example

the D0 brane central charge is a unit of Kaluza-Klein momentum ZD0 = 2π/R, causing

all boundstates including one or more D0 branes to disappear from the spectrum. In the

strict 4d limit we recovered spectral networks for 4d N = 2 SU(2) Yang-Mills theory, both

at strong and at weak coupling. For each value of the radius one can follow the fate of

individual states, as some grow to infinite size, others may disappear (or appear) because

of wall-crossing and so on.26 We also consider the limit to a half-geometry, by sending

Qb → 0, and recovering exponential networks for O(0) ⊕ O(−2) → P1. Once again one

can follow the behavior of each BPS saddle in the spectrum, tracking which saddles grow

infinitely large and which ones disappear because of wall-crossing.

Besides obtaining the spectrum itself, one of the motivations for this work was the goal

of validating and exploring the framework of exponential networks developed in [1, 3]. In

26Similar questions were posed, and explored with different techniques, in [45].
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particular, after studying geometries with compact two-cycles in [4], in this work we explore

for the first time a geometry with compact four-cycles. From the viewpoint of enumerative

geometry, exponential networks provide a systematic way to compute rank-zero numerical

Donaldson-Thomas invariants of X. When the geometry features compact four-cycles,

these include Vafa-Witten invariants. It would be interesting to refine BPS counting with

exponential networks to compute protected spin characters (or motivic Donalson-Thomas

invariants). A natural attempt in this direction would be to promote approaches developed

in the context of spectral networks [43, 46]. A further step forward would be to switch from

the study of single BPS states to the computation of the motivic Kontsevich-Soibelman

invariant. As shown in [41, 47] this may be achieved directly from spectral networks at

certain points in moduli space. This construction should admit a direct lift to exponential

networks, and would be certainly interesting to explore. More ambitiously, one may ask

for a full-fledged categorification, to really make contact with the description of D-branes

in the context of homological mirror symmetry. We expect this to be possible, and believe

that the recent developments of [48], based on [49], would provide a good starting point

towards this goal. Another interesting direction is the study of framed BPS states. It

is unclear to us how to include non-compact D2, D4 or D6 branes on the mirror side,

although we expect that it would involve some version of a wrapped Fukaya category.

Direct computations of framed BPS states in presence of non-compact D-branes have been

performed by various methods, see e.g. [50–55], and it would be interesting to reproduce

them with exponential networks. This also points to interesting applications to the study

of black hole entropies in connection to [56–58]. Indeed, one of our results is the fact that

the growth of BPS degeneracies with mass, along a fixed direction in the charge lattice,

can be described in terms of algebraic equations like (1.1). As pointed out in [39], where

similar equations were found in the context of 4d N = 2 Yang-Mills theories, it is possible

to deduce information about asymptotic growth of BPS degeneracies.

Relation to other work

Over the past year, several works studying related questions have appeared.

The authors of [59] considered the same geometry studied in this paper using BPS

quivers [60–66]. The computation of BPS states relies on the assumption of existence of

stability conditions corresponding to a ‘tame’ chamber, where the mutation method can

be applied to great effect. It would be interesting to compare the results with ours using

wall-crossing formulae. For this one would need to know the exact central charges corre-

sponding to the putative tame chamber. Interesting extensions of the mutation method

were considered in [67, 68], based on the discrete-time evolution of the integrable system

associated to the quiver.27

Another approach based on quivers was taken in [33], using the ‘Coulomb branch’

and the ‘flow tree’ formula of [71–74] and [75]. The workings of this formula are rather

involved, with complexity growing quickly with the dimension of the quiver representation.

27Another very interesting approach connected to quivers is based on scattering diagrams [69], this has

been recently applied to great effect to the study of sheaves on P2 [70].
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Using the mathematica package [44] provided with the paper, we were able to check their

predictions against our results, for charges γ = (d1, d2, d3, d4) with
∑

i di ≤ 6, and found

an exact match.

The first main difference with these approaches, is that exponential networks only

rely on information of the mirror geometry. Connecting with enumerative invariants on

the toric side, such as Vafa-Witten invariants, then requires establishing a map between

D-branes between the toric side and the mirror side. The details of such a map are spelled

out in Section 3. On the other hand, one of the advantages is that it is straightforward to

obtain information about central charges (hence stability parameters for the quiver) from

the mirror geometry, where they are encoded by periods of λ = log y d log x on Σ. This

sidesteps any assumptions on the existence of suitable chambers, or the necessity to study

very special limits of the spectrum, since networks are well-defined over the entire moduli

space (with the exception of singular divisors (2.15)). Another nice feature is the fact that,

in some cases, a single BPS saddle encodes information about whole towers of BPS states:

the corresponding BPS indices (or rank-zero numerical Donaldson-Thomas invariants) are

encoded in algebraic equations like (1.1). Perhaps the main drawback, is that whenever the

BPS spectrum is complicated, saddles tend to be harder to study. Overall, each of these

techniques has its strengths, and we found that the the most effective approach was to

use a combination of exponential networks, quiver representation theory and wall-crossing

identities of [40, 76].

A third approach to compute the Vafa-Witten invariants is through exploiting modu-

larity. The elliptic genus for the M5-branes on D × T 2, where D corresponds to a divisor,

is expected to be a (higher depth, mock) modular form of certain weight [57, 77–79]. On

the type IIA side, this descends to the D4-D2-D0 branes boundstate configuration of the

N = 2 supersymmetric black holes. From the fact that this partition function has spe-

cific modularity properties, one can then derive the BPS degeneracies explicitly, which in

mathematical terms provides predictions for Donaldson-Thomas invariants for sheaves of

various ranks. This is a strategy which has been implemented to great extent in several

recent works [80, 81]. In particular this was invoked in the papers [33, 82, 83]. Several

recent works of mathematicians also take this approach for computing the DT invariants,

for example the works [84–97]. This remarkable connection of the DT invariants was in fact

a source of inspiration for recent developments in the field of modular forms [98], which

provide a remarkable generalization of Zwegers’ construction of mock modular forms [99].

However, this connects to our story of exponential networks in a slightly non-trivial fash-

ion. In particular, this powerful modularity property holds in the chamber corresponding

to the so called large volume point. From there, coming to our chamber involves intricate

wall-crossing phenomena. The compatibility of our results with that of this large volume

chamber, as deduced by the match with [33] mentioned above, corroborates the remarkable

consistency of several of these methods.

One more approach worth of mention is based on the mirror geometry like exponential

networks, and revolves around the study of quantum periods of the (quantized) mirror

curve. The connection to BPS counting is not entirely clear to us at this point, but it

seems plausible that applying the techniques recently developed in [100, 101] to quantum
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periods of mirror curves considered e.g. in [102–104], should lead to a computation of

the same kind of BPS indices studied in this paper. These expectations are based on

the better-understood relation between the two frameworks in the context of 4d N = 2

theories, and quantum periods (obtained via exact WKB analysis) for their Seiberg-Witten

curves [41, 105].
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A Central charges and plots of BPS saddles at Q0

Central charges of BPS saddles can be evaluated numerically, by integrating

λij = (log yj − log yi + 2πn)
dx

x
(A.1)

along a double-wall (saddle) composed of underlying E-walls (ij, n)/(ji,−n). The direction

of integration corresponds to the orientation of the (ij, n) wall.

The periods of the five basis saddles, obtained by integrating 1
2πλij along each sad-

dle, are reported below together with the corresponding central charges of D-branes. We

evaluated these numerically, both both at the point Q0 and at a slightly perturbed point

in moduli space. The normalization corresponds to ZD0 = 2π/R independent of moduli,

where R = 1.

(Qb, Qf ) (−1, 1)

Z1 4.34600

Z2 4.34600

Z3 1.93718

Z4 0.502661i

Z5 0.50266i

(Qb, Qf ) (−1, 1 + 0.1i)

Z1 4.54916 − 0.0546797i

Z2 4.15047 − 0.034779i

Z3 1.93337 + 0.0447295i

Z4 −0.0743764 + 0.506038i

Z5 0.124961 + 0.496088Ii

(A.2)

(Qb, Qf ) (−1, 1)

ZD0 6.28318

ZD2f 1.93718 + 0.502661i

ZD2b 1.93718 + 0.502661i

ZD4 1.93718

(Qb, Qf ) (−1, 1 + 0.1i)

ZD0 6.28318

ZD2f 2.05833 + 0.540817i

ZD2b 1.85899 + 0.550767i

ZD4 1.93337 + 0.0447295i

(A.3)

This information is essential for studying BPS states with exponential networks, since

to see the corresponding saddles one needs to tune the phase ϑ to the one of the central

charge argZγ . Below we collect plots of saddles for some of the BPS states found at Q0.
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Figure 23: Saddle of BPS state with charge γ = (0, 0, 1, 1), corresponding to D0-D2f .

There are two saddles of Type-2, giving overall Ω(γ) = −2, corresponding to a BPS vec-

tormultiplet.

– 49 –



Figure 24: Saddle of BPS state with charge γ = (0, 0, 1, 2), corresponding to D0-D2b-

D2f -D4. This is a saddle of Type-0, so Ω(γ) = 1 corresponding to a hypermultiplet.
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Figure 25: Saddle of BPS state with charge γ = (0, 0, 2, 1), corresponding to 2D0-D2b-

2D2f -D4. This is a saddle of Type-0, so Ω(γ) = 1 corresponding to a hypermultiplet.
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Figure 26: Saddle of BPS state with charge γ = (0, 0, 2, 3), corresponding to 2D0-D2b-

2D2f -D4. This is a slight variant of a saddle of Type-0 (see e.g. [12, Figure 35]), so

Ω(γ) = 1 corresponding to a hypermultiplet.
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Figure 27: Saddle of BPS state with charge γ = (0, 0, 3, 2), corresponding to 3D0-D2b-

3D2f -D4. This is a saddle of Type-0, so Ω(γ) = 1 corresponding to a hypermultiplet.
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Figure 28: Saddle of a BPS state with charge γ = (0, 1, 1, 0), corresponding to D0-

D2b-2D4. This is a saddle of Type-1, giving overall Ω(γ) = −2, corresponding to a BPS

vectormultiplet.
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Figure 29: Saddle of BPS state with charge γ = (0, 4, 2, 3), corresponding to 2D0-D2b-

2D2f -3D4. This is a saddle of Type-0, so Ω(γ) = 1 corresponding to a hypermultiplet.
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Figure 30: Saddle of BPS state with charge γ = (0, 2, 1, 0), corresponding to D0-D2b-

D2f -3D4. This is a saddle of Type-0, so Ω(γ) = 1 corresponding to a hypermultiplet.
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Figure 31: Saddle of BPS state with charge γ = (0, 6, 3, 4), corresponding to 3D0-D2b-

3D2f -5D4. This is a saddle of Type-0, so Ω(γ) = 1 corresponding to a hypermultiplet.
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Figure 32: Saddle of BPS state with charge γ = (0, 3, 2, 0), corresponding to 2D0-2D2b-

D2f -5D4. This is a slight variant of a saddle of Type-0 (see e.g. [12, Figure 35]), so

Ω(γ) = 1 corresponding to a hypermultiplet.
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Figure 33: Saddle for the BPS states of charge nγ = (0, n, n, n) with n ≥ 1, corresponding

to n× (D0-D4). This is a saddle of Type-4, therefore Ω(γ) = 4. Due to the special choice

of moduli (Qb = −1, Qf = 1), central charges satisfy the relation Zγ2 + Zγ4 = 0, and

for this reason this saddle appears at the same exact phase of γ1, γ2, γ3 (and many other

saddles), making it hard to define from this picture alone To properly identify this saddle,

we worked at the perturbed point Qb = −0.9 − 0.1i, Qf = 1.1 + 0.1i where this becomes

well-distinguished from other saddles.
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Figure 34: Saddle of a BPS state with charge γ = (0, 2, 1, 1), corresponding to D0-D2f -

2D4. There are two saddles of Type-2, giving overall Ω(γ) = −2, corresponding to a BPS

vectormultiplet.
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Figure 35: Saddle of a BPS state with charge γ = (0, 1, 1, 2), corresponding to D0-

D2b. This is a saddle of Type-1, giving overall Ω(γ) = −2, corresponding to a BPS

vectormultiplet.
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Figure 36: Saddle of a BPS state with charge nγ = (n, n, 2n, 2n) for n ≥ 1, corresponding

to n× (2D0-D2f ). There are two saddles of Type-3, giving overall Ω(γ) = −2, correspond-

ing to a BPS vectormultiplet.
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B Soliton equations for selected BPS saddles

B.1 Type-1

Here we study the junctions appearing in the Type-1 saddle. Junction J1 is depicted in

Figure 37. There are three double-walls, and infinitely many one-way walls.

Figure 37: Junction J1 in the saddle of Type-1.

The soliton labels for each wall are as follows

Υ1 ∆1 Υ3 ∆3 Υ
(ii,−n)
5 /Υ

(jj,−n)
5 ∆

(ii,n)
5 /∆

(jj,n)
5

(ij, 0) (ji, 0) (ji, 1) (ij,−1) (ii,−n)/(jj,−n) (ii, n)/(jj, n)
(B.1)

We consider paths ℘1, ℘2 across the junction, as shown in Figure 41. To write down the

parallel transport along ℘1 let us introduce the following conventions on notation. We will

work with two-dimensional matrices, with index 1 corresponding to sheet i, and index 2

corresponding to sheet j. We will keep track of the logarithmic shift carried by a soliton

by introducing an auxiliary variable z. For example, the transition function associated to

a wall of type (ij, n) would be

eΞij,n = 1 + Ξij,n →

(
1 znΞij,n
0 1

)
(B.2)

The transport F (℘1) then has the following form

F (℘1) = e∆3e−Υ3

∏
k≥1

eΞij,−(k+1)

∏
k≥1

eΞii,−keΞjj,−k

∏
k≥1

eΞji,−k

 e∆1e−Υ1

=

(
1−∆3Υ3 z

−1∆3

−zΥ3 1

)(
1 Ξij,<(z)

0 1

)(
Sii,<(z) 0

0 Sjj,<(z)

)

×

(
1 0

Ξji,<(z) 1

)(
1 −Υ1

∆1 1−∆1Υ1

)
(B.3)
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where we introduced

Ξji,<(z) =
∑
k≥1

z−kΞji,−k , Ξij,<(z) =
∑
k≥1

z−(k+1)Ξij,−(k+1) ,

Sii,<(z) =
∏
k≥1

ez
−kΞii,−k , Sjj,<(z) =

∏
k≥1

ez
−kΞjj,−k .

(B.4)

A bit of algebra yields the following expressions for components of the transport matrix

F (℘1)ii(z) = (1−∆3Υ3)Sii,<(z)

+
[
z−1∆3 + (1−∆3Υ3)Ξij,<(z)

]
Sjj,<(z) [∆1 + Ξji,<]

F (℘1)ij(z) =
[
z−1∆3 + (1−∆3Υ3)Ξij,<(z)

]
Sjj,<(z) [1− (∆1 + Ξji,<(z)) Υ1]

− (1−∆3Υ3)Sii,<(z) Υ1

F (℘1)ji(z) = −zΥ3Sii,<(z)

+ (1− zΥ3Ξij,<(z)) Sjj,<(z) (∆1 + Ξji,<(z))

F (℘1)jj(z) = zΥ3Sii,<(z) Υ1

+ (1− zΥ3Ξij,<(z))Sjj,<(z) [1− (∆1 + Ξji,>(z)) Υ1]

(B.5)

Similarly, the formal parallel transport along ℘2 is

F (℘2) =

∏
k≥0

e−Ξij,k

∏
k≥1

eΥ
(ii,−k)
5 eΥ

(jj,−k)
5

∏
k≥1

e−∆
(ii,k)
5 e−∆

(jj,k)
5

∏
k≥0

e−Ξji,k+1


=

(
1 −Ξij,>(z)

0 1

)(
Sp5
ii,<(z)Sp5

ii,>(z)−1 0

0 Sp5
jj,<(z)Sp5

jj,>(z)−1

)(
1 0

−Ξji,>(z) 1

)
(B.6)

where we introduced

Ξji,>(z) =
∑
k≥0

zk+1Ξji,k+1 , Ξij,>(z) =
∑
k≥0

zkΞij,k ,

Sp5
ii,>(z) =

∏
k≥1

ez
k∆

(ii,k)
5 , Sp5

jj,>(z) =
∏
k≥1

ez
k∆

(jj,k)
5 ,

Sp5
ii,<(z) =

∏
k≥1

ez
−kΥ

(ii,−k)
5 , Sp5

jj,<(z) =
∏
k≥1

ez
−kΥ

(jj,−k)
5 .

(B.7)

Components of the transport matrix are as follows

F (℘2)ii(z) = Sp5
ii,<(z)Sp5

ii,>(z)−1 + Ξij,>(z)Sp5
jj,<(z)Sp5

jj,>(z)−1Ξji,>(z)

F (℘2)ij(z) = −Ξij,>(z)Sp5
jj,<(z)Sp5

jj,>(z)−1

F (℘2)ji(z) = −Sp5
jj,<(z)Sp5

jj,>(z)−1Ξji,>(z)

F (℘2)jj(z) = Sp5
jj,<(z)Sp5

jj,>(z)−1

(B.8)

Now studying the equations F (℘1) = F (℘2) for each matrix element, and term by

term in z, yields the generating functions of outgoing solitons in terms of those of incoming

ones.

– 64 –



Without loss of generality, we introduce Θ,Θ as follows28

Sp5
ii,<(z) =

1

1 + z−1Θ
, Sp5

jj,<(z) = 1 + z−1Θ . (B.9)

These generating functions are formally inverses of each other, as should be expected by the

fact that all transport matrices have unit determinant. There is thus no loss of generality

in expressing the transport in this way. The notation chose here is inspired to reflect our

earlier work on the ij − ji junction in [3, Section 3].

After a bit of algebra29, we obtain the following solution

∆1 = −(2−ΘΥ3Υ1)Q(p) ΘΥ3

∆3 = −Υ1Θ (2−ΘΥ3Υ1)Q(p)

Ξij,>(z) = Υ1
1

1 + zΥ3Υ1
Q(p) ,

Ξji,>(z) =
1

1 + zΥ3Υ1
zΥ3 ,

Sp5
ii,> =

1

1 + zΥ1Υ3
,

Sp5
jj,> = 1 + zΥ3Υ1 ,

Ξij,<(z) = z−2Υ1Θ
2 3 + 2z−1Θ(1− zΥ3Υ1)− z−1 Θ

2
Υ3Υ1

1 + 2z−1 Θ(1− zΥ3Υ1) + z−2 Θ
2

(1− zΥ3Υ1 + z2(Υ3Υ1)2)

Ξji,<(z) =
3 + 2z−1Θ(1− zΥ3Υ1)− z−1 Θ

2
Υ3Υ1

1 + 2z−1 Θ(1− zΥ3Υ1) + z−2 Θ
2

(1− zΥ3Υ1 + z2(Υ3Υ1)2)
z−1 Θ

2
Υ3 ·Q(p)

Sii,<(z) =
1 + z−1Θ

1 + 2z−1 Θ(1− zΥ3Υ1) + z−2 Θ2 (1− zΥ3Υ1 + z2(Υ3Υ1)2)
Q(p)−1

Sjj,<(z) =
1 + 2z−1Θ(1− zΥ1Υ3) + z−2Θ

2 (
1− zΥ1Υ3 + z(Υ1Υ3)2

)
1 + z−1Θ

Q(p)

(B.10)

where

Q(p) = Q(p1) = Q(p3) = (1−∆1Υ1) = (1−∆3Υ3) = (1−ΘΥ3Υ1)−2 . (B.11)

Let us comment on the limiting behavior of this solution. When Υ1 is set to zero, this

28This parametrization appears to be the inverse of the one used in [3, Sec. 3.3]. The difference can

be tracked to the choice of sign rule in (C.1): repeating the computation of [3] with this rule would give

(B.106). This boils down to a change of conventions for the signs of soliton degeneracies, since logSii/jj,<
is a linear combination of them. See also footnote 33.

29The equations for ℘1, ℘2 as written above seem to be insufficient. We actually used a resolution of the

network, and chose several more refined choices of paths. This allowed us to focus separately on certain

sub-junctions that appear in the resolution, individually. This gives far more equations than the whole big

junction at once. It makes the problem solvable, at the price of introducing more equations.
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becomes

∆1 = −2 ΘΥ3

∆3 = 0

Ξij,>(z) = 0 ,

Ξji,>(z) = zΥ3 ,

Sp5
ii,< = Sp5

jj,< = 1

Ξij,<(z) = 0

Ξji,<(z) =
3 + 2z−1Θ

(1 + z−1 Θ)2
z−1 Θ

2
Υ3

Sii,<(z) = (1 + z−1Θ)−1

Sjj,<(z) = 1 + z−1Θ

(B.12)

Notice that this agrees with the computation in Appendix C.3. A similar limit can be

checked to hold when Υ3 is set to zero.

One may also set Θ = Θ = 0, this yields

∆1 = 0

∆3 = 0

Ξij,>(z) = Υ1
1

1 + zΥ3Υ1
,

Ξji,<(z) =
1

1 + zΥ3Υ1
zΥ3 ,

Sp5
ii,> =

1

1 + zΥ1Υ3
,

Sp5
jj,> = 1 + zΥ3Υ1 ,

Ξij,>(z) = 0

Ξji,>(z) = 0

Sii,>(z) = 1

Sjj,>(z) = 1

(B.13)

recovering exactly the descendant wall structure of the ij − ji junction [3, Section 3].

B.2 Type-2

Here we work out the soliton equations for the junction appearing in the Type-2 saddle,

depicted in Figure 38. There are three double-walls, and infinitely many one-way walls.

The soliton labels for each wall are as follows

Υ1 ∆1 Υ2 ∆2 Υ3 ∆3

(ij, n) (ji,−n) (ij,−n) (ji, n) (ji, 0) (ij, 0)
(B.14)

We consider paths ℘1, ℘2 across the junction, as shown in Figure 38. As above, we adopt

matrix notation to keep track of finite indices i, j and of a formal variable z to keep track
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Figure 38

of logarithmic indices. We can then write F (℘1) as follows

F (℘1) = e−∆1eΥ1

∏
k≥1

e−Ξji,−n(k+1)

∏
k≥1

e−Ξii,−nke−Ξjj,−nk

∏
k≥1

e−Ξij,−n(k+1)

 e−Υ2e−∆3eΥ3

=

(
1 znΥ1

−z−n∆1 1−∆1Υ1

)(
1 0

−Ξji,<(z) 1

)(
Sii,<(z)−1 0

0 Sjj,<(z)−1

)

×

(
1 −Ξij,<(z)

0 1

)(
1 −z−nΥ2

0 1

)(
1−∆3Υ3 −∆3

Υ3 1

)
(B.15)

where we introduced

Ξji,<(z) =
∑
k≥1

z−n(k+1)Ξji,−n(k+1) , Ξij,<(z) =
∑
k≥1

z−n(k+1)Ξij,−n(k+1) ,

Sii,<(z) =
∏
k≥1

ez
−nkΞii,−nk , Sjj,<(z) =

∏
k≥1

ez
−nkΞjj,−nk .

(B.16)
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A bit of algebra yields the following expressions for components of the transport matrix

F (℘1)ii(z) = [1− znΥ1Ξji,<(z)] Sii,<(z)−1
[
1−∆3Υ3 −

(
z−nΥ2 + Ξij,<(z)

)
Υ3

]
+ znΥ1 Sjj,<(z)−1 Υ3

F (℘1)ij(z) = [1− znΥ1Ξji,<(z)] Sii,<(z)−1
[
−∆3 −

(
z−nΥ2 + Ξij,<(z)

)]
+ znΥ1 Sjj,<(z)−1

F (℘1)ji(z) = −
[
z−n∆1 + (1−∆1Υ1)Ξji,<(z)

]
Sii,<(z)−1

[
1−∆3Υ3 −

(
z−nΥ2 + Ξij,<(z)

)
Υ3

]
+ [1−∆1Υ1] Sjj,<(z)−1 Υ3

F (℘1)jj(z) =
[
z−n∆1 + (1−∆1Υ1)Ξji,<(z)

]
Sii,<(z)−1

[
∆3 +

(
z−nΥ2 + Ξij,<(z)

)]
+ [1−∆1Υ1]Sjj,<(z)−1

(B.17)

Similarly, the formal parallel transport along ℘2 is

F (℘2) = eΥ3e−Υ2e∆2

∏
k≥1

eΞji,n(k+1)

∏
k≥1

eΞii,nkeΞjj,nk

∏
k≥1

eΞij,n(k+1)

 eΥ1

=

(
1 0

Υ3 1

)(
1−Υ2∆2 −z−nΥ2

zn∆2 1

)(
1 0

Ξji,>(z) 1

)

×

(
Sii,>(z) 0

0 Sjj,>(z)

)(
1 Ξij,>(z)

0 1

)(
1 znΥ1

0 1

)
(B.18)

where we introduced

Ξji,>(z) =
∑
k≥1

zn(k+1)Ξji,n(k+1) , Ξij,>(z) =
∑
k≥1

zn(k+1)Ξij,n(k+1) ,

Sii,>(z) =
∏
k≥1

ez
nkΞii,nk , Sjj,>(z) =

∏
k≥1

ez
nkΞjj,nk .

(B.19)

A bit of algebra yields the following expressions for components of the transport matrix

F (℘2)ii(z) = (1−Υ2∆2) Sii,>(z)− z−nΥ2 Ξji,>(z)Sii,>(z)

F (℘2)ij(z) = (1−Υ2∆2) Sii,>(z)
(
Ξij,>(z) + znΥ1

)
− z−nΥ2 Sjj,>(z)

F (℘2)ji(z) =
[
Υ3 (1−Υ2∆2)− zn∆2

]
Sii,>(z) +

(
1− z−nΥ3Υ2

)
Ξji,>(z)Sii,>(z)

F (℘2)jj(z) =
[
−Υ3 (1−Υ2∆2) + zn∆2

]
Sii,>(z)

[
−Ξij,>(z)− znΥ1

]
+
(
1− z−nΥ3Υ2

)
Sjj,>(z)

(B.20)

Now studying the equations F (℘1) = F (℘2) for each matrix element, and term by

term in z, yields the generating functions of outgoing solitons in terms of those of incoming

ones. Let us adopt the following definitions

Sii,< = 1 +
∑
k≥1

z−knSii,−kn Sii,> = 1 +
∑
k≥1

zknSii,kn

Ξij,< =
∑
k≥2

z−knΞij,−kn Ξij,> =
∑
k≥2

zknΞij,kn
(B.21)
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and similarly with i↔ j.

Our goal is now to derive expression for ∆1,∆2 in terms of Υ1,Υ2,Υ3. To compute

∆1, let us consider the (ji,−n) equation, that is the equation F (℘1)ji = F (℘2)ji restricted

to the coefficient of z−n:

∆1 (1−∆3Υ3)− (1−∆1Υ1)S−1
jj,−n Υ3 = 0 . (B.22)

Next let us note that the (jj,−n) equation, which reads

∆1∆3 + (1−∆1Υ1)S−1
jj,−n = −Υ3Υ2 (B.23)

can be multiplied from the right by Υ3, then used to substitute into the (ji,−n) equation

to obtain

∆1 = −Υ3Υ2Υ3 . (B.24)

Now using the (ji, 0) equation, which reads

(1−∆1Υ1)Υ3 = Υ3(1−Υ2∆2) (B.25)

we arrive at

∆1 = −Υ3Υ2Υ3
1−∆1Υ1

1−Υ2∆2
(B.26)

where we used the fact that Q(pi) = 1−∆iΥi can be formally traded for generating series

of closed paths, which commute with other soliton generating functions.

Similarly, to obtain ∆2 we consider the (ji, n) equation

−∆2 −Υ3(1−Υ2∆2)Sii,n + Υ3Υ2Ξji,2n = 0 . (B.27)

Combining this with the (ii, n) equation, which reads

(1−Υ2∆2)Sii,n −Υ2 Ξji,2n = Υ1Υ3 (B.28)

yields

∆2 = −Υ3Υ1Υ3 = −Υ3Υ1Υ3
1−∆1Υ1

1−Υ2∆2
(B.29)

where we again used the (ji, 0) equation already invoked above. Now from these expressions

for ∆1,∆2 one can immediately see that ∆1Υ1 = Υ2∆2 (upon taking closure of paths),

leading to

∆1 = −Υ3Υ2Υ3 , ∆2 = −Υ3Υ1Υ3 . (B.30)

For later convenience, let us note that this also implies Υ3 = Υ3. Expressions (B.30) imply

that

Q(p1) = 1−Υ1∆1 = 1−Υ2∆2 = Q(p2) . (B.31)

Let us move on to ∆3 by considering the (ij, 0) equation

∆3 −Υ1 Sjj,−n = Υ2 Sjj,n (B.32)
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Consider the (jj,−n) equation

∆1∆3 + (1−∆1Υ1)Sjj,−n = −Υ3Υ2 , (B.33)

solving this for Sjj,−n and plugging into the (ij, 0) equation above, we obtain

∆3 + Υ1Υ3Υ2 = (1−Υ1∆1)Υ2Sjj,n . (B.34)

Now using the (jj, 0) equation

∆1Υ1 = Υ3Υ2Sjj,n (B.35)

and recalling that Υ3 = Υ3, we can multiply (B.34) from the left by Υ3 to obtain

Υ3∆3 = −Υ3Υ1Υ3Υ2 + (1−Υ1∆1)Υ3Υ2Sjj,n

= −Υ3Υ1Υ3Υ2 + (1−Υ1∆1)∆1Υ1

(B.36)

which can be recast as follows

1−Q(p3) = (1−Q(p1)) +Q(p1)(1−Q(p1)) = 1−Q(p1)2 , (B.37)

implying that

Q(p3) = Q(p1)2 = Q(p2)2 . (B.38)

B.3 Type-3

Here we work out the soliton equations for the junctions appearing in the Type-3 saddle.

Junction J1

We begin with junction J1, depicted in Figure 39. There are three double-walls, and

infinitely many one-way walls.

Figure 39: Junction J1 in the saddle of Type-3. Here m = 0, n = 1.
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The soliton labels for each wall are as follows

Υ1 ∆1 Υ3 ∆3 Υ5 ∆5

(ij, 1) (ji,−1) (ji, 0) (ij, 0) (ij,−2) (ji, 2)
(B.39)

We consider paths ℘1, ℘2 across the junction, as shown in Figure 39. Adopting the formal

variable z as above to keep track of logarithmic indices, we can write F (℘1) as follows

F (℘1) = e∆3e−Υ3

∏
k≥1

eΞij,−k

∏
k≥1

eΞii,−keΞjj,−k

∏
k≥1

eΞji,−n(k+1)

 e∆1e−Υ1

=

(
1−∆3Υ3 ∆3

−Υ3 1

)(
1 Ξij,<(z)

0 1

)(
Sii,<(z) 0

0 Sjj,<(z)

)

×

(
1 0

Ξji,<(z) 1

)(
1 −zΥ1

z−1∆1 1−∆1Υ1

)
(B.40)

where we introduced

Ξji,<(z) =
∑
k≥1

z−(k+1)Ξji,−(k+1) , Ξij,<(z) =
∑
k≥1

z−kΞij,−k ,

Sii,<(z) =
∏
k≥1

ez
−kΞii,−k , Sjj,<(z) =

∏
k≥1

ez
−kΞjj,−k .

(B.41)

A bit of algebra yields the following expressions for components of the transport matrix

F (℘1)ii(z) = (1−∆3Υ3)Sii,<(z) + z−1 [∆3 + (1−∆3Υ3)Ξij,<(z)]Sjj,<(z)∆1

F (℘1)ij(z) = [∆3 + (1−∆3Υ3)Ξij,<(z)]Sjj,<(z)
[
1−

(
z−1∆1 + Ξji,<(z)

)
zΥ1

]
(1−∆3Υ3)Sii,<(z) zΥ1

F (℘1)ji(z) = −Υ3Sii,<(z) + (1−Υ3Ξij,<(z)) Sjj,<(z)
(
z−1∆1 + Ξji,<(z)

)
F (℘1)jj(z) = Υ3Sii,<(z) zΥ1 + (1−Υ3Ξij,<(z))Sjj,<(z)

[
1−

(
z−1∆1 + Ξji,<(z)

)
zΥ1

]
(B.42)

Similarly, the formal parallel transport along ℘2 is

F (℘2) = e−Υ1

∏
k≥1

e−Ξij,k+1

∏
k≥1

e−Ξii,ke−Ξjj,k

∏
k≥3

e−Ξji,k

 eΥ5e−∆5e−Ξji,1e−Υ3

=

(
1 −zΥ1

0 1

)(
1 −Ξij,>(z)

0 1

)(
Sii,>(z)−1 0

0 Sjj,>(z)−1

)(
1 0

−Ξji,>(z) 1

)

×

(
1−Υ5∆5 z

−2Υ5

−z2∆5 1

)(
1 0

−z Ξji,1 1

)(
1 0

−Υ3 1

)
(B.43)

where we introduced

Ξji,>(z) =
∑
k≥3

zkΞji,k , Ξij,>(z) =
∑
k≥1

zk+1Ξij,k+1 ,

Sii,>(z) =
∏
k≥1

ez
nkΞii,nk , Sjj,>(z) =

∏
k≥1

ez
nkΞjj,nk .

(B.44)
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A bit of algebra yields the following expressions for components of the transport matrix

F (℘2)ii(z) = Sii,>(z)−1
[
1− z−2Υ5

(
z2∆5 + zΞji,1 + Υ3

)]
+
[
zΥ1 + Ξij,>(z)

]
Sjj,>(z)−1

[
z2∆5 + Υ3

+ Ξji,>(z)
(
1− z−2Υ5 (z2∆5 + Υ3)

)
+
(
1− Ξji,>(z) z−2Υ5

)
zΞji,1

]
F (℘2)ij(z) = Sii,>(z)−1 z−2Υ5 −

[
zΥ1 + Ξij,>(z)

]
Sjj,>(z)−1

[
1− Ξji,>(z) z−2Υ5

]
F (℘2)ji(z) = −Sjj,>(z)−1

[
Υ3 + z2∆5 + Ξji,>(z)(1−Υ5∆5 − z−2Υ5Υ3)

+ (1− Ξji,>(z) z−2Υ5) zΞji,1

]
F (℘2)jj(z) = Sjj,>(z)−1

(
1− Ξji,>(z) z−2Υ5

)

(B.45)

Now studying the equations F (℘1) = F (℘2) for each matrix element, and term by

term in z, yields the generating functions of outgoing solitons in terms of those of incoming

ones. Let us adopt the following definitions

Sii,< = 1 +
∑
k≥1

z−kSii,−k Sii,> = 1 +
∑
k≥1

zkSii,k

Ξij,< =
∑
k≥1

z−kΞij,−k Ξij,> =
∑
k≥1

zk+1Ξij,k+1

(B.46)

and similarly with i↔ j.

Our goal is now to derive expressions for ∆1,∆3,∆5 in terms of Υ1,Υ3,Υ5. To start,

let us note that the (ji, 0) equation reads

Υ3 = Υ3 . (B.47)

To compute ∆1 we consider the (ji,−1) equation

∆1 −Υ3 Sii,−1 = 0 (B.48)

To compute ∆3 we consider the (ij, 0) equation

−∆3(1−∆1Υ1) + (1−∆3Υ3)Sii,−1Υ1 = −S−1
ii,2 Υ5 (B.49)

To compute ∆5 we consider the (ji, 2) equation

∆5 + S−1
jj,2Υ3 + S−1

jj,1 Ξji,1 − S−1
jj,1 Ξji,3 Υ5Υ3 − Ξji,3 Υ5 Ξji,1 − Ξji,4Υ5Υ3 = 0 (B.50)

From the (ii,−1) equation, which reads

(1−∆3Υ3)Sii,−1 + ∆3∆1 = −S−1
ii,1Υ5Υ3 −Υ5Ξji,1 , (B.51)

we can solve for Sii,−1, and use this to plug into the (ji,−1) equation above, yielding

∆1 = −Υ3S
−1
ii,1Υ5Υ3 −Υ3Υ5Ξji,1 (B.52)
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We need to evaluate both Ξji,1 and Sii,1. The former can be obtained by considering the

(ji, 1) equation

Ξji,1 = Ξji,3Υ5Υ3 − S−1
jj,1Υ3 , (B.53)

together with the (jj, 1) equation

Υ3Υ1 = S−1
jj,1 − Ξji,3 Υ5 , (B.54)

which together imply

Ξji,1 = −Υ3Υ1Υ3 . (B.55)

To obtain Sii,1 we consider the (ii, 1) equation

0 = Υ1Υ3 + S−1
ii,1(1−Υ5∆5)− S−1

ii,3Υ5Υ3 − S−1
ii,2Υ5Ξji,1 . (B.56)

From the (ii, 0) equation

∆3Υ3 = Υ5∆5 + S−1
ii,2Υ5Υ3 + S−1

ii,1Υ5Ξji,1 (B.57)

we solve for S−1
ii,2Υ5Υ3 and plug into the term S−1

ii,2Υ5Ξji,1 = −S−1
ii,2Υ5Υ3Υ1Υ3 in the above

(ii, 1) equation. Moreover, from the (ij, 1) equation

(1−∆3Υ3)Υ1 = Υ1 − S−1
ii,3Υ5 (B.58)

we solve for S−1
ii,3Υ5 and also use this in the above (ii, 1) equation. Overall, we arrive at an

explicit exact expression for Sii,1

S−1
ii,1 = − 1−Υ5∆5

1−Υ5∆5 + Υ5Υ3Υ1Υ3Υ1Υ3
Υ1Υ3 (B.59)

We can finally plug this into the expression for ∆1 together with the expression found

above for Ξji,1 to obtain

∆1 =
1−Υ5∆5

1−Υ5∆5 + Υ5Υ3Υ1Υ3Υ1Υ3
Υ3Υ1Υ3Υ5Υ3 + Υ3Υ5Υ3Υ1Υ3 (B.60)

This is not the final expression though, since it still involves ∆5, we will simplify it further

below.

Next we turn to ∆5. Equation (B.50) can be simplified by employing the (jj, 2)

equation:

S−1
jj,2 − S

−1
jj,1Ξji,3Υ5 − Ξji,4Υ5 (B.61)

which gives

∆5 + (S−1
jj,1 − Ξji,3Υ5)Ξji,1 = 0 . (B.62)

Next recall the (ji, 1) equation already discussed above, which implies

(S−1
jj,1 − Ξji,3Υ5)Υ3 = −Ξji,1 . (B.63)

Together with the explicit expression for Ξji,1 obtained previously, this implies

∆5 = Υ3Υ1Υ3Υ1Υ3 . (B.64)
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This is the desired exact expression for ∆5.

In a similar way, having obtained ∆5 we can simplify Sii,1 as follows

S−1
ii,1 = −(1−Υ5Υ3Υ1Υ3Υ1Υ3)Υ1Υ3 (B.65)

Now we can use this to further simplify ∆1

∆1 = Υ3Υ1Υ3Υ5Υ3(1−Υ5Υ3Υ1Υ3Υ1Υ3) + Υ3Υ5Υ3Υ1Υ3 , (B.66)

this is the desired expression for ∆1.

We can say something nice at this point: let Υγ = −Υ5Υ3Υ1Υ3Υ1Υ3 = −Υ1Υ3Υ5Υ3Υ1Υ3,

then we deduce that

Q(p1) = 1−∆1Υ1 = (1 + Υγ)2 = Q(p5)2 . (B.67)

Next we study ∆3. Starting with the (ij, 0) equation written above, solving for ∆3 we

obtain

∆3 = S−1
ii,2Υ5 + Sii,−1Υ1 . (B.68)

Now consider the (ii, 2) equation

0 = S−1
ii,2Q(p5)

+
(
−S−1

ii,4Υ5 + Υ1S
−1
jj,1 + Ξij,2 + Υ1Ξji,3Υ5

)
Υ3

+
(

Υ1 − S−1
ii,3Υ5

)
Ξji,1

(B.69)

The term in brackets in the second line vanishes, by virtue of the (ij, 2) flatness equation,

while the (ij, 1) transport equation implies that the term in brackets in the third line equals

Q(p3)Υ1. Overall we find

S−1
ii,2 = −Q(p3)

Q(p5)
Υ1Ξji,1 . (B.70)

Next we need to evaluate Sii,−1. For this purpose we recall the (ii,−1) equation written

above, from which we deduce

Sii,−1 = − 1

Q(p3)
[(1−Υ5Υ3Υ1Υ3Υ1Υ3)Υ1Υ3Υ5Υ3 + ∆3∆1] (B.71)

Plugging these into the expression for ∆3 we find

∆3 = − 1

Q(p1)

[
− Q(p3)

Q(p5)
Υ1Υ3Υ1Υ3Υ5 − (1−Υ5Υ3Υ1Υ3Υ1Υ3)Υ1Υ3Υ5Υ3Υ1

−Υ5Υ3Υ1Υ3Υ1 + ∆3∆1Υ1

] (B.72)

Next, let us use this to derive a formula for Q(p3). Multiplying from the right by −Υ3,

this becomes

Q(p3)−1 =
1

Q(p1)

[
Q(p3)

Q(p5)
(Q(p5)− 1) + (Q(p5)− 1)(Q(p5) + 1) + (Q(p3)− 1)(Q(p1)− 1)

]
(B.73)
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Now using the fact that Q(p1) = Q(p5)2, the above equation simplifies to

Q(p3) = Q(p5)3 . (B.74)

Plugging this into the expression for ∆3 eventually gives

∆3 = Q(p5)2Υ1Υ3Υ1Υ3Υ5 +Q(p5)Υ1Υ3Υ5Υ3Υ1 + Υ5Υ3Υ1Υ3Υ1 (B.75)

where the expression for Q(p5) in terms of Υi was given above. This is the desired final

expression for ∆3.

Junction J2

Figure 40: Junction J2 of the saddle of Type-3.

The soliton labels for each wall are as follows

Υ2 ∆2 Υ4 ∆4 Υ5 ∆5

(ij,−1) (ji, 1) (ji, 0) (ij, 0) (ij,−2) (ji, 2)
(B.76)

We consider paths ℘1, ℘2 across the junction, as shown in Figure 40. Adopting the formal

variable z as above to keep track of logarithmic indices, we can write F (℘1) as follows

F (℘1) = e∆2e−Υ2

∏
k≥2

eΞji,k

∏
k≥1

eΞii,keΞjj,k

∏
k≥1

eΞij,k

 e∆4e−Υ4

=

(
1 z∆2

−z−1Υ2 1−∆2Υ2

)(
1 0

Ξji,>(z) 1

)(
Sii,>(z) 0

0 Sjj,>(z)

)

×

(
1 Ξij,<(z)

0 1

)(
1−∆4Υ4 ∆4

−Υ4 1

)
(B.77)
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where we introduced generating functions Ξij,>(z),Ξji,>(z), Sii,>(z), Sjj,>(z) defined as

usual. A bit of algebra yields the following expressions for components of the transport

matrix

F (℘1)ii(z) = z−1Υ2Sjj,>(z)Υ4 + (1− z−1Υ2Ξji,>(z))Sii,>(z)(1− (Ξij,>(z) + ∆4)Υ4)

F (℘1)ij(z) = z−1Υ2Sjj,>(z) + (1− z−1Υ2Ξji,>(z))Sii,>(z)(Ξij,>(z) + ∆4)

F (℘1)ji(z) = [z∆2 + (1−∆2Υ2)Ξji,>(z)] Sii,>(z) [1− (Ξij,>(z) + ∆4) Υ4]

− (1−∆2Υ2)Sjj,>(z)Υ4

F (℘1)jj(z) = (1−∆2Υ2)Sjj,>(z) + [z∆2 + (1−∆2Υ2)Ξji,>(z)] Sii,>(z) [Ξij,>(z) + ∆4]

(B.78)

Similarly, the formal parallel transport along ℘2 is

F (℘2) = e−Υ4

∏
k≥1

e−Ξji,−k

∏
k≥1

e−Ξii,−ke−Ξjj,−k

∏
k≥3

e−Ξij,−k

 e∆5e−Υ5e−Υ2

=

(
1 0

−Υ4 1

)(
1 0

−Ξji,<(z) 1

)(
Sii,<(z)−1 0

0 Sjj,<(z)−1

)(
1 −Ξij,<(z)

0 1

)

×

(
1 −z−2Υ5

z2∆5 1−∆5Υ5

)(
1 −z−1 Υ2

0 1

)
(B.79)

where we introduced generating functions Ξji,<(z) etc, defined as usual. A bit of algebra

yields the following expressions for components of the transport matrix

F (℘2)ii(z) = Sii,<(z)−1
(
1− Ξij,<(z) z2∆5

)
F (℘2)ij(z) = −Sii,<(z)−1

[
z−1Υ2 + z−2Υ5 + Ξij,<(z)

(
1−∆5(Υ5 + zΥ2)

)]
F (℘2)ji(z) = Sjj,<(z)−1 z2∆5 −

(
Υ4 + Ξji,<(z)

)
Sii,<(z)−1

(
1− Ξij,<(z) z2∆5

)
F (℘2)jj(z) =

[
Sjj,<(z)−1 +

(
Υ4 + Ξji,<(z)

)
Sii,<(z)−1Ξij,<(z)

] (
1−∆5(Υ5 + zΥ2)

)
+
(
Υ4 + Ξji,<(z)

)
Sii,<(z)−1

(
z−1Υ2 + z−2Υ5

)
(B.80)

Now studying the equations F (℘1) = F (℘2) for each matrix element, and term by

term in z, yields the generating functions of outgoing solitons in terms of those of incoming

ones. Let us adopt the following definitions

Sii,< = 1 +
∑
k≥1

z−kSii,−k Sii,> = 1 +
∑
k≥1

zkSii,k

Ξij,< =
∑
k≥1

z−kΞij,−k Ξij,> =
∑
k≥1

zk+1Ξij,k+1

(B.81)

and similarly with i↔ j.

Our goal is now to derive expressions for ∆2,∆4,Υ5 in terms of Υ2,Υ4,∆5. To begin

with, note that the (ij,−1) equation implies

Υ2 = Υ2 . (B.82)
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To compute ∆2 we consider the (ji, 1) equation

−∆2 (1−∆4Υ4) + (1−∆2Υ2)Sjj,1Υ4 = −S−1
jj,−1∆5 (B.83)

To compute ∆4 we consider the (ij, 0) equation

∆4 −Υ2Sjj,1 = 0 (B.84)

To compute Υ5 we consider the (ij,−2) equation

0 = Υ5 +
(
S−1
ii,−1 − Ξij,−3∆5

)
Υ2 (B.85)

Let us start from Υ5. The (ii,−1) equation

Υ2Υ4 = S−1
ii,−1 − Ξij,−3∆5 (B.86)

immediately gives the result

Υ5 = −Υ2Υ4Υ2 . (B.87)

This is the desired expression for Υ5.

Next consider the (jj, 1) equation

(1−∆2Υ2)Sjj,1 + ∆2∆4 = −∆5Υ2 (B.88)

solving for Sjj,1 and substituting into the (ij, 0) equation above leads to

∆4 = −Υ2∆5Υ2 (B.89)

This is the desired expression for ∆4. Note that this implies

Q(p4) = Q(p5) . (B.90)

Substituting the (jj, 1) equation into the (ji, 1) equation above gives

∆2 = −∆5Υ2Υ4 + S−1
jj,−1∆5 (B.91)

To obtain S−1
jj,−1 consider the (jj,−1) equation

S−1
jj,−1(1−∆5Υ5) +

(
Υ4 − S−1

jj,−2∆5

)
Υ2 = 0 . (B.92)

Using the (ji, 0) equation

(1−∆2Υ2)Υ4 = Υ4 − S−1
jj,−2∆5 (B.93)

we obtain

S−1
jj,−1 = −Q(p2)

Q(p5)
Υ4Υ2 . (B.94)

Plugging this into the expression for ∆2 gives

∆2 = −∆5Υ2Υ4 −
Q(p2)

Q(p5)
Υ4Υ2∆5 (B.95)
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Multiplying from the right by−Υ2 and denoting Υγ any cyclic permutation of−∆5Υ2Υ4Υ2,

this can be rewritten as

Q(p2)− 1 = −
(

1 +
Q(p2)

Q(p5)

)
Υγ (B.96)

Noting that Q(p5) = 1−∆5Υ5 = 1−Υγ we obtain

Q(p2) = Q(p5)2 (B.97)

where the right-hand side is known explicitly in terms of Υ2,Υ4,∆5. Finally, we have the

following expression for ∆2

∆2 = −∆5Υ2Υ4 − (1 + ∆5Υ2Υ4Υ2)Υ4Υ2∆5 . (B.98)

B.4 Type-4

All four junctions appearing in the Type-4 saddle are of the same type, up to changes of

labels. Here we focus on junction J1, depicted in Figure 41. There are three double-walls,

and infinitely many one-way walls. Note that this is very similar to the junction of the

Type-1 saddle.

Figure 41: Junction J1 in the saddle of Type-4.

The soliton labels for each wall are as follows

Υ1 ∆1 Υ3 ∆3 Υ
(ii,−n)
5 /Υ

(jj,−n)
5 ∆

(ii,n)
5 /∆

(jj,n)
5

(ij, 1) (ji,−1) (ji, 0) (ij, 0) (ii,−n)/(jj,−n) (ii, n)/(jj, n)
(B.99)

We consider paths ℘1, ℘2 across the junction, as shown in Figure 41. Adopting the formal
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variable z as above to keep track of logarithmic indices, we can write F (℘1) as follows

F (℘1) = e∆3e−Υ3

∏
k≥1

eΞij,−k

∏
k≥1

eΞii,−keΞjj,−k

∏
k≥1

eΞji,−n(k+1)

 e∆1e−Υ1

=

(
1−∆3Υ3 ∆3

−Υ3 1

)(
1 Ξij,<(z)

0 1

)(
Sii,<(z) 0

0 Sjj,<(z)

)

×

(
1 0

Ξji,<(z) 1

)(
1 −zΥ1

z−1∆1 1−∆1Υ1

)
(B.100)

where we introduced

Ξji,<(z) =
∑
k≥1

z−(k+1)Ξji,−(k+1) , Ξij,<(z) =
∑
k≥1

z−kΞij,−k ,

Sii,<(z) =
∏
k≥1

ez
−kΞii,−k , Sjj,<(z) =

∏
k≥1

ez
−kΞjj,−k .

(B.101)

A bit of algebra yields the following expressions for components of the transport matrix

F (℘1)ii(z) = (1−∆3Υ3)Sii,<(z)

+ [∆3 + (1−∆3Υ3)Ξij,<(z)]Sjj,<(z)
[
z−1∆1 + Ξji,<

]
F (℘1)ij(z) = [∆3 + (1−∆3Υ3)Ξij,<(z)]Sjj,<(z)

[
1−

(
z−1∆1 + Ξji,<(z)

)
zΥ1

]
− (1−∆3Υ3)Sii,<(z) zΥ1

F (℘1)ji(z) = −Υ3Sii,<(z)

+ (1−Υ3Ξij,<(z)) Sjj,<(z)
(
z−1∆1 + Ξji,<(z)

)
F (℘1)jj(z) = Υ3Sii,<(z) zΥ1

+ (1−Υ3Ξij,<(z))Sjj,<(z)
[
1−

(
z−1∆1 + Ξji,<(z)

)
zΥ1

]

(B.102)

Similarly, the formal parallel transport along ℘2 is

F (℘2) =

∏
k≥0

e−Ξij,k+1

∏
k≥1

eΥ
(ii,−k)
5 eΥ

(jj,−k)
5

∏
k≥1

e−∆
(ii,k)
5 e−∆

(jj,k)
5

∏
k≥0

e−Ξji,k


=

(
1 −Ξij,>(z)

0 1

)(
Sp5
ii,<(z)Sp5

ii,>(z)−1 0

0 Sp5
jj,<(z)Sp5

jj,>(z)−1

)(
1 0

−Ξji,>(z) 1

)
(B.103)

where we introduced

Ξji,>(z) =
∑
k≥0

zkΞji,k , Ξij,>(z) =
∑
k≥0

zk+1Ξij,k+1 ,

Sp5
ii,>(z) =

∏
k≥1

ez
k∆

(ii,k)
5 , Sp5

jj,>(z) =
∏
k≥1

ez
−k∆

(jj,−k)
5 ,

Sp5
ii,<(z) =

∏
k≥1

ez
kΥ

(ii,k)
5 , Sp5

jj,<(z) =
∏
k≥1

ez
−kΥ

(jj,−k)
5 .

(B.104)
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Components of the transport matrix are as follows

F (℘2)ii(z) = Sp5
ii,<(z)Sp5

ii,>(z)−1 + Ξij,>(z)Sp5
jj,<(z)Sp5

jj,>(z)−1Ξji,>(z)

F (℘2)ij(z) = −Ξij,>(z)Sp5
jj,<(z)Sp5

jj,>(z)−1

F (℘2)ji(z) = −Sp5
jj,<(z)Sp5

jj,>(z)−1Ξji,>(z)

F (℘2)jj(z) = Sp5
jj,<(z)Sp5

jj,>(z)−1

(B.105)

Now studying the equations F (℘1) = F (℘2) for each matrix element, and term by

term in z, yields the generating functions of outgoing solitons in terms of those of incoming

ones.

Without loss of generality, we introduce Θ,Θ as follows30

Sp5
ii,<(z) =

1

1 + z−1Θ
, Sp5

jj,<(z) = 1 + z−1Θ . (B.106)

These generating functions are formally inverses of each other, as should be expected by the

fact that all transport matrices have unit determinant. There is thus no loss of generality

in expressing the transport in this way. The notation chose here is inspired to reflect our

earlier work on the ij − ji junction in [3, Section 3].

After a bit of algebra31, we obtain the following solution

∆1 = −(2−ΘΥ3Υ1)Q(p) ΘΥ3

∆3 = −Υ1Θ (2−ΘΥ3Υ1)Q(p)

Ξij,>(z) = zΥ1
1

1 + zΥ3Υ1
Q(p) ,

Ξji,>(z) =
1

1 + zΥ3Υ1
Υ3 ,

Sp5
ii,> =

1

1 + zΥ1Υ3
,

Sp5
jj,> = 1 + zΥ3Υ1 ,

Ξij,<(z) = z−1 Υ1Θ
2 3 + 2z−1Θ(1− zΥ3Υ1)− z−1 Θ

2
Υ3Υ1

1 + 2z−1 Θ(1− zΥ3Υ1) + z−2 Θ
2

(1− zΥ3Υ1 + z2(Υ3Υ1)2)

Ξji,<(z) =
3 + 2z−1Θ(1− zΥ3Υ1)− z−1 Θ

2
Υ3Υ1

1 + 2z−1 Θ(1− zΥ3Υ1) + z−2 Θ
2

(1− zΥ3Υ1 + z2(Υ3Υ1)2)
z−2 Θ

2
Υ3 ·Q(p)

Sii,<(z) =
1 + z−1Θ

1 + 2z−1 Θ(1− zΥ3Υ1) + z−2 Θ2 (1− zΥ3Υ1 + z2(Υ3Υ1)2)
Q(p)−1

Sjj,<(z) =
1 + 2z−1Θ(1− zΥ1Υ3) + z−2Θ

2 (
1− zΥ1Υ3 + z2(Υ1Υ3)2

)
1 + z−1Θ

Q(p)

(B.107)

30This parametrization appears to be the inverse of the one used in [3, Sec. 3.3]. For a discussion see

footnote 28
31Similarly to what we have found for the junction of the TYpe-1 saddle, the equations for ℘1, ℘2 as

written above seem to be insufficient. See footnote 29.
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where

Q(p) = Q(p1) = Q(p3) = (1−∆1Υ1) = (1−∆3Υ3) = (1−ΘΥ3Υ1)−2 . (B.108)

Let us comment on the limiting behavior of this solution. When Υ1 is set to zero, this

becomes

∆1 = −2ΘΥ3

∆3 = 0

Ξij,>(z) = 0 ,

Ξji,>(z) = Υ3 ,

Sp5
ii,> = Sp5

jj,> = 1

Ξij,<(z) = 0

Ξji,<(z) =
3 + 2z−1Θ

(1 + z−1 Θ)2
z−2 Θ

2
Υ3

Sii,<(z) = (1 + z−1Θ)−1

Sjj,<(z) = 1 + z−1Θ

(B.109)

Notice that this agrees with the computation in Appendix C.3. A similar limit can be

checked to hold when Υ3 is set to zero.

One may also set Θ = Θ = 0, this yields

∆1 = 0

∆3 = 0

Ξij,>(z) = zΥ1
1

1 + zΥ3Υ1
,

Ξji,>(z) =
1

1 + zΥ3Υ1
Υ3 ,

Sp5
ii,> =

1

1 + zΥ1Υ3
,

Sp5
jj,> = 1 + zΥ3Υ1 ,

Ξij,<(z) = 0

Ξji,<(z) = 0

Sii,<(z) = 1

Sjj,<(z) = 1

(B.110)

recovering exactly the descendant wall structure of the ij − ji junction [3, Section 3].

C Some technical results

This appendix collects computations of homotopy invariance across a branch point and

across a junction of one-way E-walls of types ii and ij. The latter was not included in our

previous works, but appears in the main body of this work. In this paper we adopt slightly
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different conventions from our previous papers concerning rules for writing down parallel

transport matrices, in this appendix we spell out the convention and illustrate how certain

signs are fixed.

C.1 Convention on signs for the parallel transport

In our previous work [3, 4] we adopted the convention of working with a twisted flat

connection on Σ, following [12]. It is however possible to keep track of signs in a more

convenient manner, which is the convention we adopt in this paper. Given an E-wall p of

type (ij, n), and a path ℘ intersecting the wall transversely at a point x0, we define the

parallel transport along ℘ as follows

F (℘) = D(℘+) eσ Ξij,n D(℘−) where σ = sgn (℘̂ ∧ p̂) . (C.1)

Here D(℘) =
∑

kX℘(k) is the diagonal transport on each sheet, and ℘ = ℘+ ◦ ℘− is

the splitting of ℘ at x0. The generating function Ξij,n =
∑

N∈Z
∑

a∈Γij,N,N+n
µaXa counts

soliton paths supported on p. The wedge product ℘̂∧p̂ between the two tangent (co)vectors

is understood to be taken at the common fiber at x0, and is dualized by the Hodge star to

a scalar.32

The role of the sign σ is to ensure that the inverse of the transition matrix is applied

when reversing the direction in which an E-wall is crossed. When i 6= j one has eσ Ξij,n =

1 + σ Ξij,n, but when i = j al powers in the expansion fo the exponential survive [3].

C.2 Homotopy at a branch point

Consider a branch point with one (or possibly more) double walls ending on it, as in

Figure 42. The flatness property of the nonabelianization map enables to determine the

‘flow of soliton data’ at the branch point: all soliton generating functions of outgoing

E-walls can be determined in terms of generating functions of incoming E-walls.

Figure 42: Homotopy of transport paths ℘1, ℘2 across a branch point.

There are three outgoing E-walls, with soliton generating functions Υi for i = 0, 1, 2.

In this simple example we consider only one incoming wall, with soliton data encoded by

32For clarity, in the (x, y) plane we have dx ∧ dy = +1.
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∆1 is an incoming wall giving rise to a two way street with Υ1 in the British resolution.

The three outgoing walls carry types Υ0 : (ji, 0), Υ1,Υ2 : (ij, 0). Correspondingly, ∆1 has

type (ji, 0). The parallel transport along ℘1 reads

F (℘1) = D(℘+
1 )(1 + Υ2)D(℘0

1)(1 + Υ0)D(℘−1 )

= D(℘1) +X℘+
1,i

Υ2X℘0−
1,j

+X℘+0
1,j

Υ0X℘−1,i
+X℘+

1,i
Υ2X℘0

1,j
Υ0X℘−1,i

(C.2)

where we adopted the sign rule (C.1), and split the path at crossings as ℘1 = ℘+
1 ◦℘0

1 ◦℘
−
1 .

For ℘2 one finds

F (℘2) = D(℘+
2 )(1 + ∆1)(1−Υ1)D(℘−2 )

= D(℘2) +X℘+
2,ij

∆1X℘−2,i
−X℘+

2,ji
Υ1X℘−2,j

−X℘+
2,ij

∆1Υ1X℘−2,j

(C.3)

where now D(℘2 is off-diagonal due to the branch cut.

Comparing the ij-components of the parallel transport gives

X℘+
1,i

Υ2X℘0−
1,j

= X℘2,ij −X℘+
2,ij

∆1Υ1X℘−2,j
(C.4)

now shrinking ℘1, ℘2 to infinitesimal size, with endpoints approaching the branch point,

we arrive at

Υ2 = Xa2(1−Xa1∆1) , (C.5)

where ai are simpleton paths on streets pi, see footnote 12.

Here we have performed the computation using the sign rule (C.1). For an alternative

approach using twisted flat connections see [3, 12].

C.3 The ii− ij junction

In this section, we focus on the interaction of the walls of type (ii/jj, kn)for k ≥ 1 and

(ij,m). One important thing to notice for this computation is that the walls ii and jj

appear together and one needs to consider the infinite set of these walls together. This

follows from how they are generated in ij − ji junctions [3].

Using the auxiliary variable z as a placeholder for the logarithmic label, we have

F (℘1) =
∏
k≥0

[
e−z

knΞii,kn e−z
knΞjj,kn

]
(1− zmΞij,m)

F (℘2) =
∏
l≥0

(
1− zm+lnΞ̄ij,m+ln)

) ∏
k≥0

[
e−z

kΞii,kn e−z
kΞjj,kn

] (C.6)

Let us denote

Σii(z) =
∏
k≥0

e−z
kΞii,kn − 1, Σjj(z) =

∏
k≥0

e−z
kΞjj,kn − 1 (C.7)

Then the flatness equations become

F (℘1) = 1 + Σii + Σjj − (1 + Σii)z
mΞij,m

F (℘2) = 1 + Σii + Σjj −
∞∑
l=0

zm+lnΞ̄m+ln(1 + Σjj)
(C.8)
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Figure 43: One way junction of of type ii− ij.

Any walls of ii/jj type must be generated from an ij − ji junction, from the results

of [3] one therefore has33

Σii = − znΘ

1 + znΘ
, Σjj = znΘ̄ (C.9)

and as a consequence of the shift symmetry [3],

ΘΞij,p = Ξij,pΘ̄, Ξji,pΘ = Θ̄Ξji,p . (C.10)

Plugging these into the flatness equation yields∑
l≥0

zm+lnΞ̄ij,m+ln = (1 + znΘ)−1Ξij,m(1 + znΘ̄)−1

= (1 + znΘ)−2Ξij,m

(C.11)

Expanding in z and matching terms with the same logarithmic shifts, we obtain

Ξ̄ij,m+ln = (−1)l(l + 1)ΘlΞij,m, (C.12)

and in particular for l = 0, Ξ̄ij,m = Ξij,m.
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