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Abstract: This paper studies a notion of enumerative invariants for stable A-branes,

and discusses its relation to invariants defined by spectral and exponential networks. A

natural definition of stable A-branes and their counts is provided by the string theoretic

origin of the topological A-model. This is the Witten index of the supersymmetric quantum

mechanics of a singleD3 brane supported on a special Lagrangian in a Calabi-Yau threefold.

Geometrically, this is closely related to the Euler characteristic of the A-brane moduli

space. Using the natural torus action on this moduli space, we reduce the computation of

its Euler characteristic to a count of fixed points via equivariant localization. Studying the

A-branes that correspond to fixed points, we make contact with definitions of spectral and

exponential networks. We find agreement between the counts defined via the Witten index,

and the BPS invariants defined by networks. By extension, our definition also matches with

Donaldson-Thomas invariants of B-branes related by homological mirror symmetry.
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1 Introduction

A recurring theme in research at the interface of physics and mathematics is the subject

of BPS states. In physics BPS states are associated with symmetry-protected sectors of a

gauge or string theory, whereas in mathematics they arise in various guises in the domains

of geometry, algebra, low-dimensional topology, and beyond.

In this work we focus on a class of BPS states modeled by Lagrangian A-branes in

a class of Calabi-Yau threefolds. Our main goal is to define a notion of ‘counting’ sta-

ble A-branes that is motivated by physics, and that is meaningful from the viewpoint of

mathematics.

Let X be a hypersurface in C2 × (C∗)2 defined by uv = F (x, y) for a certain Laurent

polynomial F (x, y), and let Ω3,0 denote a normalized holomorphic three-form on X. At

zero string coupling, an A-brane is characterized by a choice of special Lagrangian L ⊂ X
calibrated by Ω3,0, together with a choice of flat abelian local system L → L. In this

work we restrict attention to cases where L is a primitive cycle in H3(X,Z). Each of these

geometric data has a moduli space: let M be the moduli space of L, and let T b1(L) be

the moduli space of the local system. The A-brane moduli space M is fibered by T b1(L)

over M, with fibers degenerating at points L ∈ M where cycles in H1(L,Z) pinch. Let

D ⊂ M denote the locus where a maximal collection of cycles pinches, namely where the

whole torus fiber shrinks to a point. Since dimRM = b1(L) by a theorem of [1], it follows

that D is a finite collection of points. Our definition for counting A-branes is given by the

following formula1

Ω(L) = (−1)b1(L)|D| . (1.1)

The proposal (1.1) is motivated by physical reasoning. If we consider type IIB string

theory on X ×R4, then A-branes descend from D3 branes wrapping L×R. L is assumed

to be compact, and we consider the dimensional reduction of the D3 worldvolume theory

to a 1d N = 4 quantum mechanics on R. We argue that this theory factorizes into a

free U(1) gauge theory and a nonlinear sigma model. The U(1) degrees of freedom are

identified with transverse motion of the particle in R4, while the target of the nonlinear

1Here and throughout the paper it is understood that invariants are always defined on homology classes

of Lagrangians cycles [L], although we slightly abuse notation and omit the brackets.
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sigma model is a Kähler manifold M corresponding to internal moduli of the A-brane.

Neglecting translational degrees of freedom, the Hilbert space of supersymmetric vacua for

the nonlinear sigma model is given by a suitable notion of cohomology HBPSL ' H∗(M),

details of which are discussed in the main text. The Witten index provides an invariant

graded count of supersymmetric vacua, and corresponds to the Euler characteristic χ(M)

up to a sign.

The fact that M admits a Lagrangian torus fibration, implies that there is a natural

torus action T b1(L) rotating the fibers. Equivariant localization with respect to this action

allows to express the Euler characteristic as a sum over fixed points, counted without signs

χ(M) =
∑
F

1 = (# of fixed points) . (1.2)

Fixed points of the torus action coincide with degenerate loci D in the moduli space M of

the underlying special Lagrangian. This leads to our formula (1.1) up to an overall shift

by a sign.

We next consider how this definition of counting A-branes compares with known enu-

merative invariants in related contexts. One reason for restricting to the class of Calabi-Yau

hypersurfaces considered here, is that they admit a class of special Lagrangians fibered by

two-spheres over paths x(t) ⊂ C∗ [2]. Calibration of L translates into calibrations of the

path x(t) by a suitable abelian differential. This enables to model M by the space of folia-

tions on C∗ defined by the differential, or a certain generalization that we introduce, which

involves multiple foliations interacting with each other. For S2-fibered special Lagrangians

of this sort, we develop a description of M in the language of foliations. We then identify

the locus D of degenerate Lagrangians with a certain class of leaves known as ‘critical

leaves’. Through this observation we make contact with work of [3–6] on spectral networks

and exponential networks. We argue that counts of BPS states performed via networks

techniques correspond to counting fixed points D of the torus action on the moduli spaces

M of A-branes. This argument is only expected to hold for primitive cycles, while a more

involved relation to networks is foreseen in the non-primitive case.

The connection with spectral and exponential networks indicates that (1.1) should

reproduce the ‘BPS index’ (second helicity supertrace) of 4dN = 2 gauge theory engineered

by Type IIB on X.2 When X is the mirror of a toric Calabi-Yau threefold our definition

then coincides with the generalized (rank-zero) Donaldson-Thomas invariants of B-branes

in the mirror, as computed via exponential networks in [6, 7, 9].

This observation fits naturally in the mathematical framework of homological mirror

symmetry. From this viewpoint the category of B-branes is described by the bounded

derived category of coherent sheaves on the mirror toric Calabi-Yau. This is a triangulated

category which admits a notion of Bridgeland stability condition [10–12]. Generalizations

of Donaldson-Thomas theory formulated in [13, 14] define numerical invariants counting

stable objects in this category. Homological mirror symmetry establishes an equivalence

with the Fukaya-Seidel category of X, whose objects are precisely the A-branes considered

2In the case of exponential networks, this would be a Kaluza-Klein 4d N = 2 theory in the sense

discussed in [7, 8].
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here. At present there does not seem to be a definition of stability conditions for Fukaya-

Seidel categories formulated directly in terms of geometric data on the Calabi-Yau [15–22].

However, triangulated categories always admit a notion of Bridgeland stability. Similarly,

there seems no existing definition of enumerative invariants for A-branes defined directly

in terms of geometric data, but once again the high-level constructions of [13, 14] apply to

the triangulated structure on a Fukaya-Seidel category, motivating the possibility that a

‘down to earth’ definition of enumerative invariants may exist. Our findings suggest that

(1.1) would be a viable candidate, at least if restricted to primitive cycles.

In conclusion, we hope this paper may fulfil two purposes. First, we show that a natu-

ral definition of enumerative invariants of A-branes, the Euler characteristic of their moduli

space of a special Lagrangian with a flat abelian local system, is actually well-motivated

and natural from a physics perspective. Although our definition readily applies to the case

of primitive cycles, the evidence provided in support of it may serve as motivation to search

for a broader, and more rigorous, definition. One quality of this definition that we stress,

is its close connection to classical geometric data, as opposed to the abstraction of cate-

gories. A not too far-fetched parallel may be the contrast between categorical definitions

of (generalized) Donaldson-Thomas invariants [13, 14], and the original definition of [23]

based entirely on geometric data.3

The second purpose of this work is to show how the definition we propose is amenable

to computations via localization, and how this leads naturally to the framework of spectral

and exponential networks. In particular we hope the simplicity of our definition may offer

a useful reinterpretation of how networks capture Donaldson-Thomas type invariants.4

Again we stress that our definition only applies to primitive cycles, and in this sense our

results only reproduce a ‘linearization’ of the K-wall formula of [4]. This is, in our opinion,

a sign that we only scratched the surface, and that understanding higher orders of the

networks K-wall formula from an enumerative-geometric point of view, may uncover yet

more beautiful secrets.

Organization

In the attempt to be reasonably self cointained, we start in Section 2 with a review of

notions of stability for A-branes that arise by embedding the topological A-model into

string theory, and related definitions of BPS counting. In Section 3 we motivate and present

our proposal for enumerative invariants of A-branes. Section 4 contains a discussion of the

structure of moduli spaces of A-branes in terms of foliations and a certain generalization

thereof. These structures are illustrated with examples in Section 5, which also includes

a discussion of Lagrangian A-branes that are not generically described by foliations such

as SYZ fibers. In Section 6 we make contact with equivariant localization, explaining how

it leads to counting critical leaves of foliations. Section 7 contains a discussion of how

3In this vein, the passage from primitive to non-primitive cycles may involve the introduction of weighted

sums of Euler characteristics, as argued in [24] for the original Donaldson-Thomas invariants.
4Discussions of stability conditions and categorical Donaldson-Thomas invariants related to A1 networks

can be found in [25–27]. Analogous structures for higher-rank networks are studied e.g. in [22, 28, 29].
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the count of critical leaves compares with counting of BPS states defined by spectral and

exponential networks.
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2 Lagrangian A-branes and stability

This section is a review of known facts about Lagrangian A-branes. There are many

excellent (and richer) expositions in the literature, we follow [30, 31]. Our exposition will

be aimed at presenting two existing notions of ‘counting’ stable A-branes. The first one

arises in physics, in the setting of geometric engineering and 4d N = 2 field theories. The

second one arises in mathematics through the setting of homological mirror symmetry and

related constructions of stability conditions and generalized Donaldson-Thomas theory.

The existence (and agreement) of these definitions serves as motivation for this work.

In later sections we propose a third and alternative way of defining ways to count A-branes,

and argue that it agrees with the two well-known definitions reviewed here, under certain

assumptions.

2.1 A-branes and BPS branes

The notion of A-branes arises in the context of the topological twists of 2d (2, 2) worldsheet

superconformal field theories [32, 33]. Unless otherwise stated we will assume vanishing

string coupling in what follows. As a consequence we will think of branes as modeled

by classical geometric objects, namely submanifolds of the ambient space, endowed with

certain vector bundles.5 In order to preserve half of the worldhseet supersymmetry, it can

be shown that A-branes must be supported on Lagrangian submanifolds and must carry an

Abelian flat connection. In addition the Lagrangian needs to have vanishing Maslov class

and must satisfy the tadpole vanishing condition.6 In fact, from the viewpoint of the full

(untwisted, type II) string theory, preserving half of the spacetime supersymmetry requires

5We restrict attention to Lagrangian A-branes. There are however other types of A-branes, see [34].
6With a choice of holomorphic structure on the Calabi-Yau, and the holomorphic top form denoted by

Ω3,0, a quick definition of Maslov class is as follows. Let ζ(p) be the phase of Ω3,0 at p ∈ L. Then consider a

loop c ∈ π1(L), and follow ζ(p) along this loop. The Maslov index is (ζ(c(1))− ζ(c(0)))/2π. The vanishing

of the Maslov class requires that the index vanishes for any loop in π1(L). In a nutshell, this arises by the

requirement of anomaly cancellation for the ghost number for the BRST complex of the twisted theory,

see e.g. [35, Chapter 40]. The tadpole condition asserts that all open worldhseet instanton contributions

to tadpole expectation values should vanish, and ensures that the brane is stable when wrapped on the

Lagrangian.
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that the Lagrangian supporting an A-brane (rather its uplift to the full theory) should be a

special Lagrangian [36]. This means that the phase of the holomorphic top form restricted

to L must be constant7

ζ−1ι∗Ω3,0(TL|p) ∈ R>0 . (2.1)

where ι : L → X is the immersion of L in the Calabi-Yau X, ζ ∈ C∗ is a constant, and

p ∈ L is any point. A special Lagrangian L is a calibrated submanifold [37], and therefore

minimizes volume in the respective homology class [L] ∈ H3(X,Z). In this sense (2.1), is

a natural condition for BPS branes: for given brane tension, the special Lagrangian cycle

minimizes the mass, and therefore provides a brane that is stable against decay into a

lighter objects L′ with the same charge [L].

Clearly the existence of a special Lagrangian will depend on the choice of complex

structure through Ω3,0. In fact, for a given complex structure there may be a whole family

M of special Lagrangians in the same class [L]. Given a member of this family L ∈M, it

is known that it admits b1(L) integrable deformations [1], implying that dimRM = b1(L).

Moreover, given a smooth L ∈ M, the flat Abelian connection carried by the A-brane is

characterized by b1(L) holonomies. So the moduli space of Lagrangian A-branes M in

class [L] has the form of a Lagrangian torus fibration

T b1 →M→M . (2.2)

Varying the complex structure of X changes Ω3,0, and therefore the types of solutions to

(2.1). This may deform of M, possibly including changes of topology and altogether disap-

pearance. When this happens, the spectrum of A-branes jumps, see [38–41] for discussions

of the physics and geometry behind A-brane decay.

2.2 A first look at BPS counting for A-branes: geometric engineering

So far we have assumed vanishing string coupling, and the picture of A-branes has been

firmly grounded into classical geometry. As soon as the coupling is turned on, this classical

picture is replaced by a quantum one [42], and the moduli space M gets replaced by a

Hilbert space. later we will return to a more detailed description of the relevant Hilbert

spaces, while for the moment we note that their dimension provides a notion of the ‘number’

of BPS states. A more appropriate definition of counts of BPS states would actually

involve an index that is invariant under small deformations of M and only feels jumps in

its topology. Discussing and computing an appropriate notion of such an index will be one

of the central points of this paper.

For now we observe that a closely related way of counting BPS states already appeared

in physics. Stable Lagrangian A-branes correspond to BPS branes of the full string theory

on X. In the geometric engineering limit [43] the full string theory is described by an

effective 4d N = 2 theory on the directions transverse to X. BPS D3 branes wrapping

a special Lagrangian L in X then descend to BPS particles in 4d. In the Seiberg-Witten

description of 4d BPS states, the central charge of BPS particles is computed by the period

of a meromorphic one-form λSW on a cycle of a Riemann surface Σ [44]. From the viewpoint

7This implies the vanishing of the Maslov class as a consequence.
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of geometric engineering the central charge coincides with the period of the holomorphic

top form on L [2]

Zγ =
1

π

∮
γ
λSW =

1

π

∫
L
ι∗Ω3,0 . (2.3)

From the viewpoint of the 4d theory, it is the central charge that determines whether a BPS

particle is stable or not. In recent years, much progress has been made on understanding

BPS states of 4d N = 2 theories and their wall-crossing from several different angles

[3, 13, 14, 45, 46].

In particular, in the context of 4d N = 2 theories there is a well-defined index that

expresses invariant counts of BPS states, up to wall-crossing. This is known as the BPS

index, or second helicity supertrace8

Ω(γ) ∈ Z . (2.4)

2.3 Another look at BPS counting: homological mirror symmetry

As reviewed above, under certain conditions such as vanishing string coupling, A-branes

have a well-defined geometric interpretation as special Lagrangian submanifolds with a flat

local abelian system. These objects come in families parameterized by a moduli space M
as described in (2.2). In physics there is a notion of counting A-branes that comes from

counting BPS states reviewed in section 2.2. It is then natural to ask whether this count

is related in any way to enumerative invariants associated to M. Even better, it would

be desirable to categorify the count of BPS states, by finding a definition of vector spaces

isomorphic to the Hilbert spaces of BPS states of 4d N = 2 theories. Ideally, the definition

of these vector spaces (or the related enumerative invariants) would only rely on geometric

properties of A-branes without any references to physics.

A natural setting where enumerative geometry of A-branes may be formulated is the

Fukaya-Seidel category, see [31, 35, 48–51] for a sample of reviews. We will not need to delve

into definitions here, except for mentioning that A-branes correspond to objects, morphisms

are generated by Floer complexes associated to pairs of A-branes, and the composition

of morphisms is governed by an A∞ structure. Although the subject of Fukaya-Seidel

categories is an active area of research, there is in fact a large volume of literature devoted

to its study. It may then be not too hopeless to ask whether an enumerative theory tailored

to A-branes has been developed. At present, it seems that no such framework has been

formulated in definitive form yet, although interesting work in this direction has appeared

in several places e.g. [15, 16, 20, 22, 52].

A less direct approach to enumerative invariants for A-branes goes through homological

mirror symmetry [53]. In this setting the Fukaya-Seidel category of A-branes on a Calabi-

Yau threefold X is related to the bounded derived category of coherent sheaves on the

mirror Calabi-Yau X∨. This relation is relevant for our purpose, as the latter has been

known for some time to admit both a notion of stability [10–12, 54, 55], and a notion of

enumerative invariants ‘counting’ stable objects [13, 14, 23]. Both of these constructions

8See the appendices of [47] for a definition and discussion of properties of helicity supertraces.
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may be interpreted, through homological mirror symmetry, as stability conditions for A-

branes and as enumerative invariants to count stables ones. For the purpose of this work,

this line of reasoning provides strong motivation to expect that a well-defined notion of

‘counting’ A-branes should exist. We will later attempt to provide a basic definition of

these invariants without invoking mirror symmetry or the relation to B-branes.

With a view towards our definition, we mention here one particular way to model enu-

merative invariants for B-branes. We keep details to a minimum, and refer to our previous

work [9] for notation, further details, and references. The bounded derived category of co-

herent sheaves is equivalent to the derived category of representations of the path algebra

of a quiver Q with potential W [56, 57]

DbCoh(X∨) ' Db(Mod− (Q,W )) . (2.5)

The quiver description provides a somewhat more manageble handle on the definitions of

stability and enumerative invariants. The relevant notion of stability for quivers corre-

sponds to King’s stability [58], see e.g. [42, 45] for a review of its physical interpretation.

Let Q be a quiver with potential W , corresponding to a formal sum of loops in the path

algebra. Given a choice of stability condition, a BPS particle is characterized by a cer-

tain dimension vector ~d. Entries of this vector are positive integers, and correspond to

dimensions of vector spaces Vi ' Cdi associated to each vertex of Q. For each arrow of

the quiver, starting from vertex i and ending on vertex j, one considers the space of linear

maps Hom(Vi, Vj). The representation variety M~d
is obtained by considering the space

of all such maps, subject to linear constraints arising from ∂W = 0, modulo
∏
iGL(Vj).

Then the appropriate enumerative invariant is the Euler characteristic of χ(M~d
).

It is worthwhile mentioning the invariants associated to quiver representation theory

because, at least under certain circumstances, one may expect a certain correspondence

between quiver moduli spaces and the moduli spaces of A-branes [42]. This already suggests

that the invariants we are after may be related to Euler characteristics χ(M) of A-brane

moduli spaces, which indeed comes close to the definition we will propose below. Later we

will see several examples where indeed we find that the moduli space of A-branes coincides,

at least topologically, with the moduli space of suitable quiver representationsML 'M~d
,

corroborating the hypothesis that a putative enumerative invariant Ω(L) counting A-branes

in class [L] would be

Ω(L) ∼ χ(ML) . (2.6)

3 Enumerative invariants for A-branes

Having reviewed notions of stability for A-branes, we will now start over from scratch and

build towards a working definition of the Hilbert space of A-branes and the associated

enumerative invariants. The starting point will be to lift A-branes, defined by the A-model

on a certain class of local Calabi-Yau threefolds, to D3 branes in type IIB string theory.
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3.1 Supersymmetric quantum mechanics of D3 branes

Type IIB string theory on a Calabi-Yau threefold X features a spectrum of D3 branes

wrapping compact special Lagrangian cycles L ⊂ X and a worldline R in the transverse R4.9

A middle-dimensional homology class [L] ∈ H3(X,Z) may support stable BPS states only

if there exist calibrated Lagrangian cycles L in that class. Calibration, as defined in [37],

means that the holomorphic top form Ω3,0 has fixed phase θ when restricted to L, namely

Ω3,0(TL) = eiθ |Ω3,0(TL)| (pullback of Ω3,0 to L is understood). A D3 brane wrapping a

calibrated cycle preserves four supercharges, thus carrying a worldvolume 4d N = 1 field

theory of a U(1) vectormultiplet. Dimensional reduction along L yields a 1d N = 4 theory

on R. On the classical level, fields of this theory arise from modes of open-strings with

both endpoints on the D3 worldvolume. Details of the dimensionally reduced theory will

depend on the geometry of L and its embedding in X. Switching on the string coupling

gs quantizes the one-dimensional worldvolume theory, leading to a N = 4 supersymmetric

quantum mechanics on R that will be denoted T 1dN=4
L .

BPS states of the bulk theory are defined by the condition of preserving certain super-

charges. On the other hand, the preserved supercharges are precisely those that descend

to the worldvolume theory on the D3 brane. A well-known consequence of the 1d N = 4

super-Poincaré algebra, is that if a state in the Hilbert space of the quantum mechanics

is annihilated by one of its supercharges, it must be a groundstate [59]. This leads to a

natural definition for the Hilbert space of BPS states corresponding to the D3 brane on

L× R: it is identified with the space of groundstates of this quantum mechanics

H̃BPSL := H0[T 1dN=4
L ] . (3.1)

3.2 Nonlinear sigma models on A-brane moduli spaces

Having settled on a definition of H̃BPSL , the next question we address is what can be said

about its structure on general grounds. This will depend on the theory T 1dN=4
L .

The simplest type of theory arises when H1(L,Z) = 0, since in this case there is a

unique calibrated cycle L in class [L] for given complex moduli Ω3,0 ∈ H3,0(X) [60–62].

The gauge theory features only a 1d N = 4 vectormultiplet, whose bosonic degrees of

freedom include a one-form and a triplet of scalars.10 The vacuum equations imply that

the connection is flat, and since the quantum mechanics is on R, the connection must be

pure-gauge and gives rise to no moduli. The moduli space of vacua consists entirely of

the Coulomb branch R3, parameterized by the v.e.v.s of the scalar triplet. Values of the

three scalars xi(t) parameterize the transverse position of the BPS particle with worldline

R ⊂ R4.

When H1(L,Z) 6= 0 the theory T 1dN=4
L is more interesting. On a purely geometric

level, there is now a nontrivial moduli space ML of special Lagrangians in class [L].11

9More accurately, the classical picture of D3 branes as geometric objects is valid only in the limit gs → 0.
10This theory is the simplest instance of a quiver gauge theory of the type discussed in [42], corresponding

to the case of a single-node quiver.
11While it would be more appropriate to denote this moduli space by M[L], in an effort to keep notation

light we simply denote this by ML.

– 8 –



Locally ML is modeled by the vector space of harmonic one-forms on L [1]. Using the

metric on L, this space can be identified with cohomology classes on L

TML

∣∣
L
' H1(L,R) . (3.2)

These new geometric moduli of the underlying Lagrangian yield new degrees of freedom

in the theory T 1dN=4
L . In addition to the U(1) vectormultiplet described previously, there

will now be b1(L) chiral multiplets, arising as follows.

On the one hand, there are moduli for the flat connection on L, corresponding to

periods of the flat connection θi =
∮
ωi
A along generators ωi of H1(L,Z). Due to large

gauge transformations, these moduli are periodic θi ∈ R/2πZ ' S1 for i = 1, . . . , b1(L).

On the other hand there are moduli corresponding to the decomposition of the (also flat)

dual connection Ã, along a basis of harmonic 1-forms on L, namely Ã = ρiω
i with ρi ∈ R.

Together they give rise to b1(L) complex-valued scalars σj = exp (ρj + iθj) ∈ C∗. These

chiral fields parameterize deformations of an A-brane on L: deformations of L correspond

to fluctuations of ρi(t), while deformations of the abelian flat local system correspond to

fluctuations of holonomies θi(t).

In conclusion, the 1d N = 4 theory arising from a single D3 brane on a special

Lagrangian L consists of two non-interacting parts

U(1) gauge theory︸ ︷︷ ︸
center-of-mass d.o.f.

× sigma model with target ML︸ ︷︷ ︸
internal d.o.f.

(3.3)

reflecting the separation between translational and internal degrees of freedom of the BPS

particle. The former are described by the adjoint (neutral) scalars of a 1d N = 4 U(1)

vector multiplet. On the other hand, internal degrees of freedom are described by a sigma

model of b1(L) neutral chiral multiplets with target ML, the moduli space of A-branes

on L.12 This moduli space fibers over the moduli space of the underlying calibrated cycle L

T b1(L) →ML →ML , (3.4)

where fibers T b1(L) parameterize flat abelian local systems on L. ML admits a Kähler

metric [62], consistently with N = 4 supersymmetry on the particle worldvolume.

3.3 The Hilbert space of BPS states

With a clearer picture of the worldvolume theory of a BPS particle engineered by a D3

brane on L, we return to the Hilbert space introduced in (3.1). Since center-of-mass degrees

of freedom and internal ones do not interact (3.3), we consider their quantization separately.

Quantization of the center-of-mass degrees of freedom, together with fermionic part-

ners, gives rise to the half-hypermultiplet ρhh. As a representation of spin(3) ⊕ su(2)R of

transverse spacetime rotations and R-symmetry of the bulk theory, the half-hypermultiplet

corresponds to (1,2)⊕ (2,1), see e.g. [63] for more details.

12All chirals are neutral under U(1) since they all descend from the 4d adjoint vectormultiplet, or from

strings with both endpoints on the same D3 brane.
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For the sigma model with target ML, the Hilbert space of supersymmetric vacua can

be identified with Dolbeault cohomology
⊕

p,qH
p,q

∂̄
(ML) [35, 64]. The Dolbeault (p, q) bi-

grading translates physically into Fermion number F = p+ q−dimML (p+ q corresponds

to k-form degree) and R-charge R = p − q. Here the overall shift of Fermion number by

−dimML arises through a careful analysis of the fields involved in the sigma model, which

leads to identifying vacuum configurations with sections of KML
⊗∧TML

.13 This bundle is

indeed isomorphic to ∧T ∗ML
, but only up to an overall shift of k-form degree by −dimML

due to the factor KML
. A derivation with details can be found in [65, eq. (2.72)]. For

simplicity we will suppress the grading by R-charge, and pass from Dolbeault to de Rham

cohomology
⊕

kH
k
dR(ML).

This definition is still incomplete, since there are cases when the moduli space ML is

noncompact, due to non-compactness of the underlying moduli space of calibrated cycles

ML.14 When the target space is noncompact, there are several possible definitions of

cohomology, potentially leading to different Hilbert spaces. A physically motivated choice

would be to consider L2-cohomology [65–68]. On the other hand, if we wish to make contact

with Donaldson-Thomas theory in mathematics, a more appropriate choice would be to

consider cohomology with compact support [69, 70].15 These choices do lead to different

Hilbert spaces: for example if ML ' C one has

H0
dR(C) = C H1

dR(C) = 0 H2
dR(C) = 0 (de Rham)

H0
c,dR(C) = 0 H1

c,dR(C) = 0 H2
c,dR(C) = C (compact support)

H0
L2(C) = 0 H1

L2(C) = 0 H2
L2(C) = 0 (L2 cohomology)

(3.5)

In our approach, tailored to studying geometric properties of A-branes, it is natural to

adopt the second option [9]. We thus identify the Hilbert space of internal degrees of

freedom with compactly supported de Rham cohomology of the moduli space of A-branes

HBPSL =
⊕
k

Hk
c,dR(ML)[−dimML] , (3.6)

where [−dimML] denotes the shift by dimML in the Fermion number, explained earlier.

The full Hilbert space H̃BPSL in (3.1), of BPS states of a wrapped D3 brane on the cycle

[L] × R, is ρhh ⊗ HBPSL . But since A-branes know nothing about the transverse R4, and

any associated degrees of freedom, we drop ρhh and simply define HBPSL as the Hilbert

space of BPS states.

13By KML we denote the canonical line bundle of ML and by TML the holomorphic tangent bundle.
14An example of this is the moduli space of L ' T 3 the SYZ fiber, whose mirror dual is a D0 brane: in

fact the moduli space of the D0 is the whole mirror Calabi-Yau X∨, which is always noncompact for the

class of geometries we consider.
15Here we refer to Donaldson-Thomas theory on the mirror Calabi-Yau. By mirror symmetry the moduli

space of stable B-branes on X∨ are expected to coincide with moduli spaces of A-branes on X. Then,

roughly, Euler characteristics of compactly supported de Rham cohomology of moduli spaces of B-branes

coincide with Donaldson-Thomas invariants. A more precise relation between Donaldson-Thomas invariants

and Euler characteristics is discussed in [24].
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3.4 Witten index

The Hilbert space of BPS states (3.6) comes equipped with a natural enumerative invariant,

the Witten index of the supersymmetric quantum mechanics on ML. We take this as the

definition of an enumerative invariant for A-branes

Ω(L) = Tr(−1)F e−βH = TrHBPSL
(−1)2J3 . (3.7)

Here J3 is a Cartan generator of the spin algebra spin(3), realized by the su(2) Lefshetz

action on cohomology [42]. Following the identification with compactly-supported de Rham

cohomology in (3.6), the Witten index computes the Euler characteristic of the moduli

space of A-branes, up to an overall sign due to the shift in Fermion number

Ω(L) = (−1)dimML
∑
k

(−1)k dimHk
c,dR(ML)

= (−1)dimML χ(ML) .

(3.8)

This is the main point of this section: supersymmetric quantum mechanics on the

worldvolume of D3 branes provides a natural definition for enumerative invariants of A-

branes, corresponding to the Euler characteristic of their moduli spaces up to a sign.

We close this section with a remark on the two-fold role of string theory for the def-

inition of enumerative invariants (3.8) and their categorification (3.6). On the one hand,

embedding A-branes into string theory naturally leads to a supersymmetric quantum me-

chanics of D3 branes, whose Witten index corresponds to the invariants considered here.

On the other hand, mirror symmetry further relates these to D4-D2-D0 boundstates in the

mirror Calabi-Yau X∨, whose own enumerative invariants are the rank-zero (generalized)

Donaldson-Thomas invariants [13, 14]. Recall from section 2 that the category of A-branes

admits a definition of generalized DT invariants. Homological mirror symmetry further

relates those to the categorical DT invaraints for B-branes on X∨. This web of relations

suggests that our definition of enumerative invariants should agree with the categorical

one, providing an alternative definition based entirely on classical geometric data.

Comment 1 In relation to the definition of DT invariants based on BPS quivers, it should

be noted that ML can be viewed as the Higgs branch of a supersymmetric quiver quantum

mechanics. The relevant theory is a 1d N = 4 GLSM with superpotential [42, 71, 72].

There is an overall U(1) parameterizing the center of mass degrees of freedom, which de-

couples. The moduli space of vacua features both Higgs and Coulomb branches. The Higgs

branch describes the fusion of parton branes corresponding to nodes of the quiver, which in

the limit gs → 0 should correspond precisely to the A-brane on L that we discuss above [42].

Then the Higgs branch is identified with the moduli space ML of an A-brane in class [L].

The definitions of BPS Hilbert space (3.6) and of enumerative invariants (3.8) then coin-

cide with the definitions based on quiver representation theory in the context of generalized

DT theory [14].
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4 Moduli spaces of S2-fibered special Lagrangians

The definition of enumerative invariants for A-branes in (3.8) and their categorification

(3.6) are based on the notion of a moduli space ML of A-branes in class [L]. In this

section we begin discussing the structure of ML, starting from the observation that it

admits a natural fibration (2.2). Here we study the base ML of this fibration, which

parameterizes moduli of the underlying special Lagrangians, and will later return to the

discussion of moduli of local systems on L. In this section we focus entirely on a class of

special Lagrangians characterized by the fact that they admit fibrations by S2, although

in later sections we will also discuss the case of SYZ fibers.

4.1 A class of Calabi-Yau hypersurfaces

Let X be a Calabi-Yau hypersurface described as the vanishing locus of a function

H = uv − F (x, y) ⊂ C2 × (C∗)2 (4.1)

for some Laurent polynomial F of variables (x, y). This class of geometries arises in at least

two distinct, though overlapping, settings. On the one hand, varieties like X may arise as

Hori-Vafa mirrors of toric Calabi-Yau threefolds, with toric data encoded by the polynomial

F (x, y) [73]. On the other hand, the curves F (x, y) = 0 also appear as semiclassical moduli

spaces of A-branes on noncompact special Lagrangians in toric Calabi-Yau threefolds, such

as toric Lagrangians [74, 75] and knot conormals [76–79].

The holomorphic three form on the Calabi-Yau is given by the pull-back of

Ω3,0 =
1

2π

∮
γH

du ∧ dv ∧ d log x ∧ d log y

H
(4.2)

where γH is a small loop around the locus H = 0. By an application of the Poincaré residue

theorem in the v-plane, this reduces to

Ω3,0 = i
du ∧ d log x ∧ d log y

∂H/∂v
= i d log u ∧ d log x ∧ d log y. (4.3)

A special Lagrangian cycle L immersed via ι : L→ X into X is defined by the condition

ζ−1ι∗Ω3,0(TL|p) ∈ R>0 (4.4)

when evaluated on the fiber of TL|p for all p ∈ L. Here ζ is a constant phase, which

coincides by definition with the phase of the BPS central charge16

ZL =
1

4π2

∫
L
ι∗Ω3,0 ∈ ζ R>0 . (4.5)

16Normalization is chosen to agree with [6] where the central charge of D0 branes is 2π/R (R = 1 here).
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4.2 S2-fibered Lagrangians and graded lifts

We now restrict attention to a specific class of calibrated Lagrangian cycles, having the

property that they admit fibrations by two-spheres. One motivation for studying these

cycles is the direct connection to cycles on Seiberg-Witten curves in 4d N = 2 theories [2].

Let us start with generic Lagrangians, temporarily postponing a discussion of calibra-

tion. To describe the structure of a generic Lagrangian L of this type, it will be convenient

to view the ambient space of X as a fibration of C2 over (C∗)2. At each (x, y) ∈ (C∗)2 there

is a complex conic in C2 described by uv = c, with c = F (x, y) ∈ C. If c 6= 0 the conic

is a one-sheeted hyperboloid, with a noncontractible S1. This circle shrinks when c = 0,

which happens when (x, y) lie on the complex curve Σ ⊂ (C∗)2 defined by F (x, y) = 0.

The geometry is sketched in Figure 1.

Figure 1: Left: The conic fibration over the universal cover of (C∗)2. An S2 fibered over

the dashed segment Ĩij,M,N (x) is shown, stretching between log yi+2πiM and log yj+2πiN .

Right: the segment maps to a path in C∗ winding N −M times around y = 0.

We consider a segment Ĩij,M,N (x) parameterized17 by s ∈ [0, 1]

x(s) = x log y(s) = (1− s)(log yi(x) + 2πiM) + s(log yj(x) + 2πiN) (4.6)

for any two roots yi, yj of F (x, y) = 0 and any choice of logarithmic branches M,N ∈ Z.

Here and in the following, a choice of trivialization for the covering Σ → C∗ over the

x-plane is understood, so that we may unambiguously assign labels i, j, . . . etc to roots

yi, yj , . . . of F (x, y) = 0. Note that Ĩij,M,N (x) is defined on the universal covering of the

C∗ y-plane, namely C with local coordinate log y. This plane is divided into horizontal

strips of height 2πi corresponding to different branches of the logarithm. The segment

(4.6) stretches between branches labeled by M,N . Let

Iij,n(x) = π̃(Ĩij,M,N (x)) (4.7)

be the projection down to C∗ by the exponential map π̃. This will be a path from yi to yj
with winding number around y = 0 (rounded to)

n = N −M . (4.8)

17At this point the segment is defined up to relative homotopy, and needs not have the geometry described

in (4.6). However, later we will derive this precise shape from the study of the special Lagrangian condition.
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A sketch of this projection is provided in Figure 1.

We define a two-sphere S̃2
ij,M,N (x) by considering a circle on the complex conic, fibered

over Ĩij,M,N (x)18. This two-sphere lives in the universal cover, and maps to a two-sphere

on the base

S2
ij,n(x) = π̃(S̃2

ij,M,N (x)) . (4.9)

Of course, the latter is fibered by circles over the path Iij,M,N (x) winding n-times around

y = 0, above a fixed x ∈ C∗.
At this point it is important to observe that S2

ij,n(x) contains slightly less information

than its preimage S̃2
ij,M,N (x), having traded two integer labels M,N for the single n. This

is because any simultaneous shift (M,N)→ (M +k,N +k) by k ∈ Z would leave invariant

the projection by π̃ to a two-sphere on the base. The information that gets lost corresponds

to a choice of graded lift for S2 to a two-sphere in the universal cover.

Figure 2: A three-manifold locally fibered by S2 over a segment.

Now an S2-fibered three-manifold can be obtained by choosing a path x(t) on C∗, for

t ∈ [0, 1], and considering the family of S2
ij,n(x) fibered over such a path, see Figure 2. The

three-manifold obtained in this way will generically have a boundary at the endpoints of

the path x(t), namely ∂M = S2
ij,n(x(1))−S2

ij,n(x(0)). To obtain a compact three-manifold

one needs to impose conditions on what happens to these boundaries. There are essentially

three types of conditions:

c1. The most natural option is to pick a periodic path, namely x(0) = x(1). However,

not every such path will produce a closed three-manifold. The essential requirement

is that, as we proceed along the path and come back to the initial point, the shifts in

logarithmic branches of log yi → log yi + 2πik and log yj → log yj + 2πik′ are equal

k = k′. This ensures that the two-sphere S2
ij,n(x(0)) gets transported back to itself

S2
ij,n+k′−k(x(1)) ≡ S2

ij,n(x(1)). In this case, we get a closed Lagrangian with topology

L ' S2 × S1 . (4.10)

c2. The second option is that an endpoint, say x(0), corresponds to a branch point of

Σ → C∗ (a point where yi(x) = yj(x)). If we take the 2-sphere S2
ij,n=0, it shrinks

18We consider the pullback of the bundle of complex conics over (C∗)2 to a family of complex conics over

the universal cover.
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at the endpoint and the three-manifold locally has the topology of a three-ball. In

particular if both endpoints lie on branch points (where the same two-sphere shrinks,

as in Figure 9), the overall topology is

L ' S3 . (4.11)

c3. The third option is more sophisticated. We may allow the path x(t) to have an

endpoint at generic x ∈ C∗, as long as it joins two other paths at a junction, see

Figure 4. At junctions we require certain compatibility conditions on the types of S2

fibered over each adjoining path, to ensure that they can all be glued consistently.

We will discuss these conditions shortly. With junctions in the game, all sorts of

interesting topologies can arise for L, we will later encounter examples with

b1(L) = 0, 1, 2, 3 . . . (4.12)

Having constructed different types of closed Lagrangian 3-manifolds fibered by 2-

spheres, we return to the issue of graded lifts. As explained above, the 2-sphere S̃2
ij,M,N in

the universal cover represents a choice of graded lift of the two-sphere S2
ij,n on the base,

with n = N −M . The Lagrangian L is locally fibered by S2
ij,n over a path x(t) in C∗, and

locally can be lifted to a graded Lagrangian fibered by S2
ij,M,N over the same path x(t). The

consistency conditions (c1)-(c2)-(c3) enforced at endpoints of x(t) ensure that the grading

determined by S2
ij,M,N extends globally. In conclusion, we have described a construction

of S2-fibered Lagrangians in X, endowed with the notion of a graded lift to the universal

cover of the C∗ y-plane.

The data of graded lifts plays an important role in the definition of Fukaya-Seidel

categories [31, 48, 51]. In fact our definition agrees with the one arising in that context.

The Z-grading of Lagrangians is defined provided that the Maslov class of L vanishes,

which is automatically the case for special Lagrangians, which is the case we restrict to.

In that case, the grading is defined as a lift of the phase of the holomorphic top form Ω3,0

from values in S1 to values on the covering R. In our case, the top form restricted to X is

in local coordinates given by Ω3,0 = i dx∧dy∧duxyu (recall (4.3)), therefore its phase is linearly

related to the phases of the x, y, u-coordinates. Since N is defined as a choice of branch for

log y, it indeed coincides with the Z-grading induced by trivializing the phase of the top

form. Another interpretation of N , arising from a spacetime point of view, was discussed

in [6].

4.3 Junctions

A junction is a point x ∈ C∗ where three distinct segments can end. Recall that we

consider a two-sphere S2
ij,n fibered above each segment, we may keep track of this data by

attaching a label (ij, n) to the segment itself. Moreover, reversing the orientation of the

segment while keeping the orentation of the three-manifold unchanged requires reversing

the orientation of the two-sphere. Therefore an (ij, n) segment is equivalent to a (ji,−n)

segment with the opposite orientation, see Figure 3. By convention, all segments attached

to a junction will be understood to be incoming, when referring to their labels.
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Figure 3: Segments with opposite orientations and flipped labels are equivalent.

The main issue we need to deal with, is that the three-manifolds fibered over the three

incoming segments have disjoint boundaries, which need to be glued together in some way

in order to produce a closed three-manifold. We propose the following construction. The

boundary of a segment ending at the junction x is a two-sphere S2
ij,n. Recall that this sphere

is fibered over an interval Iij,n in the C∗ y-plane above x. We may choose a graded lift to

a segment Ĩij,M,N in the covering C-plane with coordinate log y, for an arbitrary M ∈ Z.

Correspondingly there is a lift of the two-sphere to S̃2
ij,M,M+n as described previously. In

choosing a graded lift, we require that the endpoints of lifted segments match together,

bounding a polygon in the C-plane. We then take a circle fibration over such polygon,

this produces a three-manifold whose boundary matches precisely with the boundaries of

the three incoming pieces that we wish to glue. We illustrate this construction with a few

concrete examples.

Example 1. First consider the case of three paths of types (ij, n), (jk,m) and (ki,−m−n)

with i, j, k not necessarily all distinct. Let us choose graded lifts for each path as follows

(ij, n)→ (ij,M,M + n) ,

(jk,m)→ (jk,M + n,M + n+m) ,

(ki,−m− n)→ (ki,M + n+m,M) ,

(4.13)

for arbitrary M ∈ Z. We take two-spheres fibered above these paths in the corresponding

logarithmic branches on the C-plane of log y. Figure 4 shows these spheres represented by

the respective segments Ĩij,M,M+n etc. The segments bound a triangle in C, and we build

a three-manifold by fibering a circle on the complex conic uv = F (x, y) over the triangle.

By construction this is a three-manifold whose boundary are the two-spheres associated

to edges of the triangle. A variant of this example, is when two labels coincide. The

corresponding picture is shown in Figure 5

Example 2. Next let us consider the case of three paths of types (ij, n), (ji,m) and (ii, s)

with p(m+n)+s = 0 for some p ∈ N. In this case we take p lifts of both (ij, n) and (ji,m)

S2-fibered 3-manifolds to the universal cover, graded as follows

(ij, n)→ (ij,M,M + n), (ij,M +m+ n,M +m+ 2n) . . .

. . . (ij,M + (p− 1)(m+ n),M + (p− 1)m+ pn) ,

(ji,m)→ (ji,M + n,M + n+m), (ji,M +m+ 2n,M + 2m+ 2n) . . .

. . . (ji,M + (p− 1)m+ pn,M + p(m+ n))

(ii, s)→ (ii,M + p(m+ n),M) ,

(4.14)
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Figure 4: Left: the junction of three paths in the C∗ x-plane. Right: the C plane with

local coordinate log y, above the junction point. The two-spheres S̃2
ij,0,2 etc are represented

by segments Ĩij,0,2 etc (we fixed n = 2,m = 0 for illustration). The junction three-manifold

is obtained by fibering the geodesic circle of the conic uv = F (x, y) over the shaded triangle.

Figure 5: A variant of the junction considered in Figure 4 with j = k. (Here we fixed

n = 2,m = −1 for illustration).

for arbitrary M ∈ Z. These lifts mean that we take two-spheres fibered above these

paths in the corresponding logarithmic branches on the C-plane of log y. Figure 6 shows

these spheres represented by the respective segments Ĩij,M,M+n etc. The segments bound

a polygon in C. We then fiber a circle over this polygon to obtain the three-manifold to

be glued at the junction.

Example 3. The third and last example that will be relevant to us is when the three

paths have types (ij, n), (ji,m) and (ji,−n − p(m + n)) for some p ∈ N. In this case we

take p+ 1 lifts of (ij, n) and p lifts of (ji,m) segments, graded as follows

(ij, n)→ (ij,M,M + n), (ij,M +m+ n,M +m+ 2n) . . .

. . . (ij,M + p(m+ n),M + pm+ (p+ 1)n) ,

(ji,m)→ (ji,M + n,M + n+m), (ji,M +m+ 2n,M + 2m+ 2n) . . .

. . . (ji,M + (p− 1)m+ pn,M + p(m+ n))

(ii, s)→ (ii,M + p(m+ n),M) ,

(4.15)
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Figure 6: Left: the junction of three paths in the C∗ x-plane. Right: the C plane with

local coordinate log y, above the junction point. (Here we fixed n = 0,m = 1, p = 2 for

illustration).

for arbitrary M ∈ Z. The corresponding two-spheres S̃2
ij,M,M+n etc., fibered over the C-

plane of log y are shown in Figure 7, where they are represented by segments Ĩij,M,M+n

etc.. These segments now bound a collection of polygons. We take a circle in the complex

conic uv = F (x, y) fibered over these fragments to build a three-manifold, and use this

three-manifold with boundary to glue at the junction.19

Figure 7: Left: the junction of three paths in the C∗ x-plane. Right: the C plane with

local coordinate log y, above the junction point. (Here we fixed n = 0,m = 1, p = 2 for

illustration).

19The polygon resulting from this construction may be non-convex in certain cases, as shown in figure.

In this case we consider a circle fibered over the shaded triangles, and fibered above the segments Ĩij,N,N+n

in the log y plane. Note that, at the intersection of segments of types Ĩij,N,N+n and Ĩji,M,M+m, the u-plane

circles that fiber above each segment respectively need not coincide. If they do not, then there is a hole in

the u-plane above the intersections of these segments, that has the form of an annulus stretching between

the u-circle of one segment, and the u-circle of the other segment (As we show in Section 4.4, the u-plane

circle must be round and centered at u = 0). In this case, we define the full 3-manifold by filling in this

hole by an annulus in the u-plane.
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As a closing remark on junctions, we note that the polygons that we introduce for

gluing have null area. This is simply because Ω3,0 restricts to zero along the 3-manifold

that we build, since it has no extension along x. In particular, since the complex number

Z = 0 can be given any phase, the circle fibrations over these polygons may be regarded

as a convex hull that satisfies trivially the condition (4.4). This is important since in the

end we wish to construct calibrated cycles using junctions as building blocks. We turn to

a discussion of calibration next.

4.4 Calibration and graded lifts

So far we described a class of compact Lagrangians in X, with the property that they

admit S2 fibrations over paths x(t) in C∗. Enforcing the condition that these are special

Lagrangians imposes precise restrictions on the shape of the path x(t).

For concreteness let us introduce a local parametrization of a three-cycle L by

(t, s, θ) ∈ [0, 1]× [0, 1]× S1 , (4.16)

where

• x(t) only depends on t

• for fixed t, y(t, s) traces a segment in the y-plane connecting two (possibly coincident)

sheets of Σ above x(t)

• at fixed (t, s), both x, y are fixed, and L traces a circle on the u-cylinder, by initial

assumption on its topology. This u-circle fibers over the segment parameterized by

s, shrinking at the endpoints to yield a two-sphere at each t.

The special Lagrangian condition fixes the dependence of coordinates (x, y, u) on the

local parameters (t, s, θ) as follows.

We start from the dependence of u on θ for fixed (t, s). It is easy to see that this circle

must be round, since the holomorphic top form Ω3,0 restricts to du/u, and the special

Lagrangian condition

ι∂θ
du

u
=
∂ log u

∂θ
∈ ζ ′R≥0 (4.17)

is solved by u = u0 ·eζ
′θ. Now this is a periodic function of θ only if ζ ′ = k i for some k ∈ Z,

and this gives a round circle of radius |u0|. Primitive cycles will have k = ±1, with the sign

determined by their orientation. At this point we have not yet determined the dependence

of the u-circle radius on the (x, y) coordinates. We will return to this in a moment.

Next we consider the s-dependence of y(t, s) at fixed t. By our assumptions on the

topology of L, this must trace a line in the y cylinder C∗, connecting two sheets of Σ at

x(t). The special Lagrangian constraint restricted to the y-cylinder C∗ is then

ι∂s
dy

y
=
∂ log y

∂s
∈ ζ ′R≥0 (4.18)

for some choice of ζ ′. This is the equation of a straight line in coordinate log y, which

is uniquely fixed by the choice of two sheets of Σ together with a choice of logarithmic
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branch for each. Without loss of generality, let these sheets be labeled log yi + 2πiM and

log yj + 2πiN (it could be that i = j as long as M 6= N in that case), then the explicit

solution is exactly (4.6). We rewrite this as

y(s) = y1−s
i ysj e

2πi (N−M)s . (4.19)

From here it is manifest that the shape of the Lagrangian L only depends on the relative

winding number n = N −M defined in (4.8), at least in the y-plane. Only the graded lift

of L keeps track of M,N .

Now we come back to the question of how the u-circle radius depends on y, at fixed x.

The main point we wish to make here, is that the functional dependence of the radius on y

is uniquely fixed by the special Lagrangian condition. This is important because we wish to

study moduli spaces of special Lagrangians, and our claim implies that the u-circle radius

is not a modulus. The argument is simple and goes as follows. At fixed x, we have a slice

Xx of the Calabi-Yau X, which consists of the u-cylinder C∗ fibered over the y-cylinder C∗,
with degenerations over the sheets of Σ at yi(x) where the u-cylinder C∗ is replaced by a

u-plane C. Let X∗x denote the complement of the degenerate loci, i.e. where we remove the

fibers at yi. On X∗x we the holomorphic top form restricts to Ω2,0 = du
u
dy
y , and the special

Lagrangian L restricts to a special Lagrangian S2 in Xx, calibrated by Ω2,0.20 The S2 has

the north and south poles at the singular loci (yi, u = 0) and (yj , u = 0), but elsewhere it is

calibrated by Ω2,0. McLean’s theorem asserts that this must be a rigid special Lagrangian

cycle in Xx, since π1(S2) is trivial. The absence of moduli implies that the u-circle radius

must be a uniquely determined function of s, as claimed.21

Having completely fixed the u and y dependence on θ and s, the only moduli of L can

be encoded in the x(t) dependence. This observation is very important, because it means

that the whole moduli space of L can be captured by studying the dependence of x on t,

to which turn next.

The pullback of the holomorphic top form to L can now be evaulated explicitly

ι∗Ω3,0(∂t, ∂s, ∂θ) = i ι∗
(
du

u

dx

x

dy

y

)
(∂t, ∂s, ∂θ)

= i

(
k i dθ

d log x

dt
dt
d log y

ds
ds

)
(∂t, ∂s, ∂θ)

= −k d log x

dt
(log yj(x)− log yi(x) + 2πi n) ,

(4.20)

where we used the solution to (4.17) discussed previously, and (4.19). The special La-

20This follows because L is fibered by S2 over a segment in the x-plane, by assumption, and the fact that

Ω3,0 is compatible with this fibration.
21By contrast in the case of SYZ fibers where L ' T 3, the radius of the u-plane circle will be a true

modulus, see Section 5.6. The crucial difference lies precisely in the fact that the north/south poles of S2

lie on singular fibers in Xx: here the u-circle shrinks to a point, and this is what makes π1(S2) trivial,

freezing the deformation associated to the u-circle.
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grangian constraint (4.4) translates22 into the first-order differential equation

d log x

dt
(log yj(x)− log yi(x) + 2πi n) ∈ ζR+ (4.21)

as first observed in [2] (here we assumed k < 0 for the orientation of the u-circle, we fix this

choice of convention). This is the equation describing Exponential Networks, see [5, 6], or

Spectral Networks [4] in the case n = 0.

As a check, the period of Ω3,0 along such a three-manifold is∫
L
ι∗Ω3,0 = i

∫
L

dx

x

dy

y
d log u =

∫
L

dx

x

dy

y
dθ = 2π

∫
R

d log x

dt

∫
[0,1]

d log y

ds
ds

= 2π

∫
R

d log x

dt
(log yj(x)− log yi(x) + 2πi n) .

(4.22)

There are three points we wish to stress about this computation. First, the phase of this

period is ζ, as expected by the special Lagrangian condition. Second, the computation of

periods of Ω3,0 reduces to integration of an abelian differential (in the second line) along the

path x(t) ⊂ C∗. And last, but not least, the calibrating equation (4.21) for the path x(t)

only depends on n, and not on the choice of graded lift, corroborating earlier observations

on the geometry over the y-plane. This means that a compact special Lagrangian L ⊂ X

constructed locally from a solution to (4.21) and glued together globally with boundary

conditions of types (c1)-(c2)-(c3) admits a whole Z-worth of graded lifts

π̃−1(L) =
⋃
N∈Z

L̃N (4.23)

to special Lagrangians on the universal cover.

4.5 Foliations

In previous parts of this section we have discussed how a special Lagrangian L fibered by S2

can be built out of certain building blocks. Each building block consists of a segment x(t) in

C∗, above which we consider a family of two-spheres S2
ij,n. The calibrating equation (4.21)

governs the shape of the segment, and we have argued above that the whole Lagrangian

can be represented by this collection of segments. In other words, the geometry of L is

rigid along S2 and the whole moduli space of L coincides with the moduli space of the

system of segments x(t).

In order to build a compact special Lagrangian, all that remains to be done is to find

suitable pieces that glue together consistently, according to the rules outlined above. This

step involves passing from a local description of L to a global one: while the calibrating

equation (4.21) admits solutions for generic choices of i, j, n, ζ and of boundary conditions,

only certain choices will lead to integral solutions x(t) that close up globally into compact

trajectories (possibly with junctions).

22This is based on the fact that the volume form on L is a positive real function of (s, t, θ). We just

demand that restriction of Ω3,0 is proportional to the volum form up to a phase.
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A systematic way to approach this problem goes as follows. First, we fix a choice

of cycle [L] ∈ H3(X,Z). Then we define ζ = exp(i arg
∫

[L] Ω) as the phase of the period

of Ω. We then consider foliations of C∗ induced by abelian differentials as in (4.21) for

all possible combinations of i, j, n. Concretely, we integrate the calibrating equation with

boundary conditions x0 taken at generic points in C∗ and study the resulting trajectories

x(t) with x(t) = x0.23 Let φij,n(ζ) denote the foliation described by (4.21). In general,

leaves of φij,n(ζ) will tend to x = 0,∞ or other singularities of the abelian differential (if

present). Several examples will be given in Section 5.

For the purpose of studying compact special Lagrangians, the interesting leaves are

those that do not end on any puncture. There are several possitiblities.

• Foliations of types φij,0 are special, since they admit critical leaves, characterized by

the fact that they run into branch points xb where yi(xb) = yj(xb). If a critical leaf

has both endpoints at branch points, we obtain a Lagrangian of the type discussed

in (c2), also shown in Figure 9.

• Likewise, foliations of type φii,0 are also special since they admit compact leaves that

run in circles around x = 0. Indeed if ζ ∈ R the parametric form of these leaves is

x(t) = x0 exp( ζ
2πin t). In this case we have a Lagrangian of the type discussed in (c1).

• More generally, one may allow leaves to end at junctions. A junction is a generic

point x ∈ C∗ which we take as the boundary condition for three leaves of three

different foliations φij,n, φjk,m and φki,s. Constraints on the labels appearing in these

foliations have been discussed above in section 4.3, also see [6].

If complex moduli of X are generic enough, then any compact special Lagrangian

arising in this way will be of class [L]. If ML is nontrivial, the foliation will feature families

of compact leaves, possibly including junctions. In this way, studying foliations provides a

direct handle on the moduli space of calibrated special Lagrangians fibered by two-spheres.

As we will see, we will be able to deduce basic facts about the topology of ML, and

ultimately ofML, by studying compact leaves of appropriate foliations. We illustrate this

with a few examples next.

5 Some moduli spaces

We will now analyze directly the moduli spaces of special Lagrangians encoded by certain

types of foliations. Here we will focus on topological properties of foliations and of their

moduli spaces. For convenience we skip the process of finding numerical solutions of (4.21)

and discuss abstract topological toy examples. Nevertheless, each of the examples we

will discuss corresponds to an actual foliation by abelian differentials, we include relevant

references for interested readers.

23A global assignment of i, j, n labels for trajectories is subject to a choice of trivialization over C∗, which

we always assume fixed in this paper. See [6] for an extensive discussion of trivializations.
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5.1 The bi-critical leaf

Consider a foliation φij,0, with at least two branch points where yi = yj . An example is

shown in Figure 8. There is a closed cycle [L] ∈ H3(X,Z) obtained by fibering a two-sphere

S2
ij,0 from one branch point to the other. A three-cycle in this class projects down to a

segment of type (ij, 0) running from one branch point to the other, and the calibrating

equation (4.21) implies that this path must be a leaf of φij,0 with endpoints on both branch

points. We call this a bi-critical leaf.

Figure 8: Foliation with a bi-critical leaf.

There is a unique leaf in this foliation that supports a compact special Lagrangian.

Therefore the moduli space ML is a point in this case. As a check, the topology of L is

also easy to read off: it is an S3 fibered over a segment by S2 that shrink at the endpoints,

see Figure 9. Indeed b1(L) = 0 matches the dimension of the moduli space. It follows that

H1(L) is trivial, and therefore

ML = {pt} ⇒ Ω(L) = (−1)dimMLχ(ML) = 1 (5.1)

This kind of saddle, and the corresponding special Lagrangian, appears commonly in

relation to hypermultiplets of 4d N = 2 theories theories [2, 3, 80, 81]. It also appears in

the study of mirrors of D2 branes wrapping rigid P1’s in toric Calabi-Yau threefolds, such

as the conifold, and as hypermultiplets of 5d N = 1 theories [5, 7].

5.2 Unbounded compact leaves

Consider a foliation φij,0, with at least one branch point where yi = yj , and a puncture

nearby where log yi − log yj ∼ 1/(x − x0). An example is shown in Figure 10. There is

a closed cycle [L] ∈ H3(X,Z) obtained by fibering a two-sphere S2
ij,0 along a closed path

surrounding the puncture. A three-cycle in this class projects down to closed path of type

(ij, 0) running around the puncture. The calibrating equation (4.21) implies that this path

must be a leaf of φij,0.

There is a whole family of leaves in this foliation that support a compact special

Lagrangian in class [L], corresponding to circles of radius 0 < r ≤ r0. The circle of
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Figure 9: The bi-critical leaf corresponds to a special Lagrangian S3 (in blue) fibered by

S2 (in black) over the compact leaf. Each S2 is itself fibered by an S1 (red) in the u-plane,

over a segment in the log y-plane.

Figure 10: Foliation with an unbounded family of compact leaves.

maximal radius corresponds to a bi-critical leaf of φij,0, with both endpoints on the branch

point. The moduli space is therefore

ML ' R≥0 (5.2)

with coordinate ξ = log r0/r. We may check that dimRML = b1(L), in fact the generic

leaf corresponds to a topology L ' S2 × S1. It follows that H1(L,Z) ' Z is generated by

the class of the circle path on the x-plane. This generator disappears when r = r0. At r0

the base circle attaches to the branch point, where the sphere fibered over the base circle

S2
ij,0 collapses. The topology of L changes from S2 × S1 to S3 with north and south pole

identified. Despite the identification of the poles, there is no well-defined holonomy for the

flat Abelian connection on L however. This is because the tangent (and cotangent) space

to the Lagrangian at the north pole of S3 does not glue with the one at the south pole, as

can be seen by the different slopes of segments attaching to the branch point.24

The A-brane moduli space is then an S1-fibration over ML, with S1 shrinking at

r = r0 where the holonomy is ill-defined. This gives a manifold homeomorphic to C with

24A flat connection with holonomy would be gauge equivalent to A ∼ c dt for some constant c ∈ R, where

t ∈ 2πR/Z is the local coordinate on the circle. But now dt is ill-defined at the branch point, therefore the

connection and its holonomy become ill-defined.
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coordinate z = ξ ei
∮
A, from which we deduce the enumerative invariant

ML ' C ⇒ Ω(L) = (−1)dimMLχ(ML) = −1 . (5.3)

Here we used compactly supported de Rham cohomology (3.5) to compute χ(C). Note

that, had we chosen, say, L2 cohomology, the result would have been different.

This kind of foliation and the corresponding family of special Lagrangians appears in

the study of the CP1 sigma model, and other 2d BPS states in coupled 2d-4d systems [3, 82].

Our result, based on compactly supported de Rham cohomology, agrees with results from a

field theoretic analysis for the CP1 sigma-model [82, 83]. This foliation also appears in the

context of mirror symmetry: this family of Lagrangians is mirror to D2 branes supported

on non-rigid P1’s in toric Calabi-Yau threefolds, such as O(0)⊕O(−2)→ P1 [7].

5.3 Bounded compact leaves

A closely related type of foliation, also of type φij,0, involves two branch points where

yi = yj , and a higher-order puncture somewhere between them, see Figure 11. Just as in

the previous example, there is a closed cycle [L] ∈ H3(X,Z) obtained by fibering a two-

sphere S2
ij,0 along a closed path of type (ij, 0) surrounding the puncture. The calibrating

equation (4.21) implies that this path must be a leaf of φij,0.

Figure 11: Foliation with a bounded family of compact leaves.

Again one finds a whole family of compact leaves in this foliation supporting a compact

special Lagrangian in class [L]. However this time the circles have radius r0 ≤ r ≤ r1. The

circle of maximal radius corresponds to a bi-critical leaf attached to one branch point, and

the one of minimal radius corresponds to a bi-critical leaf attached to the other branch

point. The moduli space is therefore

ML ' [r0, r1] (5.4)

This again matches with the expectation dimRML = b1(L), since the topology is again

L ' S2 × S1. The homology generator disappears when r = r0 and r = r1, therefore the

A-brane moduli space is

ML ' P1 ⇒ Ω(L) = (−1)dimMLχ(ML) = −2 (5.5)

– 25 –



This kind of saddle, and the corresponding special Lagrangian, appears commonly in

relation to vector multiplets of 4d N = 2 theories theories [2, 3, 80]. It also appears in the

study of mirrors of D2 branes wrapping P1’s in certain toric Calabi-Yau threefolds, such

as O(−2,−2)→ P1 × P1 [9].

5.4 A junction with critical leaves

As the first example with a junction, let us consider three foliations φij,0, φjk,0 and φki,0,

with at least one branch point each (namely, a branch point where yi = yj for φij,0 and so

on). An example is shown in Figure 12. There is a closed cycle [L] ∈ H3(X,Z) obtained by

as the union of three 3-balls glued along a junction like the one from Figure 4. Consider

a path of type (ij, 0) starting from the ij branch point and ending at the junction, with

an S2
ij,0 fibered over it. Since the two-sphere shrinks at the branch point, the resulting

3-manifold has topology B3. Similarly consider three-balls fibered over paths from the

two other branch points to the junction. The calibrating equation (4.21) implies the three

paths must be leaves of respective foliations φij,0, φjk,0 and φki,0.

Figure 12: A junction of three critical leaves of three different foliations.

There is a unique leaf in each of the three foliations that combines with the others

to support a compact special Lagrangian in class [L]. These are the critical leaves that

emanate from the respective branch points. The moduli space is therefore a point ML =

{pt}. This agrees with the fact that the three B3’s glue together into a three-sphere
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topology L ' S3, which has b1 = 0. The A-brane moduli space is also a point

ML ' {pt} ⇒ Ω(L) = (−1)dimMLχ(ML) = 1 (5.6)

This kind of foliation can be found in the study of hypermultiplets in higher-rank 4d N = 2

theories of class S [4].

5.5 Sliding junctions

A more interesting example with junctions involves considering multiple ones at the same

time. Again let us consider three foliations φij,0, φjk,0 and φki,0, with at least two branch

points of type ij and at least two branch points of type jk. An example is shown in Figure

13, the picture is drawn on a cylinder.

Above the red paths coming into each junction, we have spheres of three different types:

S2
ij,0, S

2
jk,0 and S2

ki,0 respectively. If a path ends on a branch point, the resulting 3-manifold

has the topology of a three-ball B3. Instead if a path has both endpoints on junctions,

the resulting 3-manifold has topology S2 × I. All pieces glue together at junctions of the

type shown in Figure 4. The result is a closed three-manifold in class [L] ∈ H3(X,Z).

The calibrating equation (4.21) implies each of the paths underlying L must be leaves of

respective foliations φij,0, φjk,0 and φki,0.

Figure 13: Multiple junctions joining leaves of three different foliations.

There is a whole family of (systems of) leaves that join together at junctions in this

way. The family is parameterized by the heights h1, h2, h3 of the three vertical segments in

Figure 13. Each segment can extend or shrink, while keeping angles of attaching segments

unchanged. The latter condition implies that when a segment shrinks, the others must

extend, and vice versa. Overall the moduli space is described by the condition that, in a

suitable normalization

h1 + h2 + h3 = 1 , hi ≥ 0 . (5.7)

This describes a 2-simplex ∆2, also shown in Figure 13. The moduli space is therefore

ML = ∆2. As a check, it is not hard to see that b1(L) = 2: there are two non-trivial cycles
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stretching (roughly) horizontally in Figure 13. The first cycle bounces off the lower end of

segment h1, and off the upper end of h2, going from left to right, and then back on the

other side of the cylinder. The second one does the same, bounding off the lower end of h2

and the upper end of h3. The first cycle degenerates when h1 = 0 or h2 = 0. The second

cycle degenerates if h2 = 0 or if h3 = 0.

The A-brane moduli space is a T 2 fibration over ∆2, with T 2 degenerating to a circle

on the edges, and to a point at the vertices. This is the toric description of CP2

ML ' CP2 ⇒ Ω(L) = (−1)dimMLχ(ML) = 3 (5.8)

This kind of foliation can be found in the study of wild BPS states in higher-rank 4d

N = 2 theories of class S [84].25 In fact, it is closely related to the construct of k-herds, to

which we will return later. There is a generalization of the above family of Lagrangians,

parameterized by h1, . . . , hk internal vertical segments. The moduli space ML in that

case if the k − 1-simplex ∆k−1. The A-brane moduli space is then a T k−1 fibration over

∆k−1, where T k−1 degenerates to T k−1−l on boundaries of codimension l. This is the toric

description of CPk−1. Therefore for an example with 2k junctions we have

ML ' ∆k−1 , ML ' CPk−1 , Ω(L) = (−1)k−1k . (5.9)

As a check, we observe that BPS states of k-herds correspond to representation of Kronecker

quivers with k arrows, and dimension vectors (1, 1) [84]. These quiver representation

varieties coincide exactly with ML, for appropriate choice of stability data [42, 85].

5.6 SYZ fibers

The last example we are going to discuss, is the first one where we consider foliations with

nontrivial shifts of the logarithmic branch in the abelian differential, namely φij,n with

n 6= 0. These arise, for instance, in the study of special Lagrangians arising as fibers of the

SYZ-fibration, namely L ' T 3. Note that a smooth T 3 does not admit an S2-fibration,

therefore the upcoming discussion will require a certain extension of the ideas from section

4. By SYZ mirror symmetry, the moduli space of an A-brane wrapping a T 3 fiber should

correspond to the moduli space of a D0 on the mirror X∨, namely we expect ML ' X∨.

5.6.1 Smooth fibers

Consider a Lagrangian cycle parameterized by (t, s, θ) as follows

x(t) = x0e
it , y(s) = y0e

is , u(θ) = u0e
iθ . (5.10)

Let yi(x) denote roots of F (x, y) = 0 at x ∈ C∗. Also let x̃j denote any punctures in the

x-plane, corresponding to roots of F (x, 0) = 0 or F (x,∞) = 0. Choose |x0| < minj |x̃j |
to define a sufficiently small circle in the x-plane. Likewise choose |y0| < mint,i |yi(x(t))|

25As often happens, there may be different families of foliations with isomorphic moduli spaces. In fact

the same moduli space as for the 3-herd, namely CP2 was observed to arise in the context of exponential

networks for the mirror of local P2 in [5, Figure 30].
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fixing a sufficiently small circle in the y-plane. Then the T 2 parameterized by (x(t), y(s))

never crosses the locus F (x, y) = 0, and the conic uv = F (x, y) never degenerates, when

restricted to this T 2. Thus the u-circle never shrinks, and gives L the overall topology

of T 3. It is straightforward to check that ι∗Ω = dt ∧ ds ∧ dθ, and therefore the special

Lagrangian condition (4.4) is satisfied with ζ = 1. By McLean’s theorem [1] the moduli

space of L has dimension dimRML = b1(L) = 3. The three moduli correspond to the radii

|x0|, |y0|, |u0|.

5.6.2 Degenerate fibers

The Lagrangian T 3 that we just described is only one possible choice of special Lagrangian

in class [L]. It does not belong to the class of examples discussed in section 4, since T 3 does

not admit an S2-fibration. However varying the moduli of L we may run into a locus on

ML where L degenerates and admits an S2-fibration. When this happens, that sub-locus

of L can be sometimes studied using foliations.

To illustrate this with a simple example, consider F (x, y) = 1 − y − x, corresponding

to the Hori-Vafa mirror of C3. Here we can take a Lagrangian parameterized as follows

x(t) = x0e
it , y(t, s) = (1− x(t))eis , u(s, t, θ) = u0(t, s)eiθ . (5.11)

Now we have a fixed circle in the x-plane parameterized by t, but over it we fiber a whole

family of y-circles with varying radius |1− x(t)|. Such y-circles are paramterized by s, and

moreover the y-circle intersects Σ precisely at s = 0, for each t. In turn this means that

the u-circle fibers continuously over s 6= 0 shrinking at s = 0. So at fixed t, coordinates

(s, θ) parameterize a T 2 with a cycle pinching above point y(s = 0). This can be viewed

as a two-sphere with north and south poles identified, see Figure 14. This topology has

b1(L) = 2, with one circle parameterized by t and one by s, while the u-circle has become

contractible on S2. Correspondingly [1], the radius |u0(t, s)| is not a deformation modulus,

but is determined by the special Lagrangian constraint as a function of (t, s).

Noting that y(s = 0) = 1−x is the (only) sheet yi(x) of Σ, we identify the degenerate T 2

precisely with the two-sphere S2
ii,1 introduced in (4.9). Thus the x(t)-circle must correspond

to a leaf of the foliation φii,1. Indeed such a foliation is characterized by the differential

equation (4.21) which reduces to

φii,1 :
d log x

dt
· 2πi ∈ R+ , (5.12)

of which (5.11) is indeed a solution.

The two deformations corresponding to b1(L) = 2 are the sizes of circles x(t) and

y(t, s). However the y-radius deformation is frozen by the choice to restrict to degenerate

special Lagrangians of the specific form (5.11). Going back to our derivation of (4.21),

recall that it was crucial that log y depended linearly on s, this is what we have chosen in

(5.11). A more general choice would have allowed for s-dependence of the y-circle radius

(still demanding that y(t, s = 0) = 1 − x(t)), but this would not have led to a circle like

(5.12) in the x-plane. Taking into account the freezing of both the y-radius and the u-

radius, we conclude that this type of foliations actually sees a codimension-two subspace

of the moduli space of SYZ fibers, parameterized uniquely by radius |x0|.
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Figure 14: Compact leaves of φii,1 in the x-plane are parameterized by t. Black dots

denote punctures at x = 0 and x = 1. Shown in the top-left is the y-plane above x(t).

The Lagrangian projects to a circle parameterized y(s) that goes through yi(x). There is

an additional circle in the u-plane parameterized by θ that fibers over the y-circle, which

pinches in correspondence of yi(x).

5.6.3 SYZ fibers without a leaf representative

The degenerate Lagrangian (5.11) is closely related to the smooth fiber (5.10). The main

difference is that we have frozen two of the moduli, namely the freedom to shift the y-circle

and u-circle radii. Recall thatML ' X∨ for SYZ fibers, and note that ML must therefore

resemble the base of the T 3-fibration of C3, namely the positive octant (R≥0)×3 spanned

by ρi = |zi| for i = 1, 2, 3.

Fixing two moduli may lead to a degeneration of the T 3 fiber of C3 to a T 2 or to an

S1, constraining us respectively onto a 2-dimensional or a 1-dimensional slice of the base.

When we considered the degenerate Lagrangian we fixed |y| and |u| moduli to certain

functions of (t, s, θ), which moreover changed the topology of L from T 3 to S1 × S2/S0

(S2/S0 denotes a two-sphere with poles identified). The u-circle got pinched at s = 0,

inducing b1(L) to decrease from 3 to 2. In the language of a D0 on X∨ ' C3 it means

we have ‘hit a wall’ where, say ρ1 corresponding to variations of |u|, got fixed to zero. In

the example above we further imposed (by hand) a restriction on the y-radius, and for this

reason we only saw a one-dimensional slice of this 2-dimensional subspace.

One may ask whether it is possible to explore more of the moduli space ML, and

perhaps see the other walls too. In particular, what about the locus corresponding to the

boundary for the modulus |x|? Given the symmetry of the curve F (x, y) = 1− y−x under

exchange of x, y we may simply consider

x(t) = (1− y(s))eit , y(s) = y0e
is , u(θ) = u0(t, s)eiθ . (5.13)

Now the y-circle has fixed radius, while it is the x-circle whose radius depends on y. This
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is a special Lagrangian, a point in ML, with a pinched cycle corresponding to the S1

paramterized by θ. Hence b1(L) = 2 and this choice of Lagrangian corresponds to another

wall in moduli space.

But one should note that this Lagrangian is not represented by a single leaf of the folia-

tion in the x-plane: in fact for each s ∈ S1 we have a different x-circle with radius |1−y(s)|.
This shows that single leaves of foliations in the x-plane cannot model special Lagrangians

at generic points in the moduli space, when it comes to A-branes wrapping SYZ fibers. This

should not come as as surprise, since after all SYZ fibers have topology T 3 and therefore

evade the framework developed in section 4 to study S2-fibered special Lagrangians.

5.7 Codimension-one strata for SYZ fibers

Despite the fact that foliations in the x-plane cannot capture the whole moduli space

of A-branes wrapping SYZ fibers, foliations can still detect a real-codimension one (or

higher) stratum, as illustrated by the example (5.11). Surprisingly, despite the lack of a

global picture of the whole ML, nonetheless foliations still contain enough information to

compute the correct Euler characteristic of ML. We will later explain this fact through

the localization principle.

To set the stage for the main example in support of this claim, we consider a curve

defined by the vanishing of

F (x, y) = y2 + y + x . (5.14)

This is a two-sheeted cover of the x-plane C∗, and corresponds to the mirror curve of a toric

brane in C3 is a specific choice of framing, see [6] for a detailed analysis of its trivialization.

It is important to note that the puncture at x = 0 lifts to two punctures on the curve,

while the puncture at infinity lifts to a single puncture on the curve: this means there is a

square-root branch cut starting from a branch point at x = 1/4 and landing at x =∞.

We label the two sheets by i = ±. Then we consider foliations φ+−,n and φ++,n. (The

calibrating equation for φ−−,n coincides with the one for φ++,n) There is one nontrivial

three-cycle in this geometry, corresponding the the SYZ fiber [L], or equivalently the mirror

of a D0 brane in C3. Since the D0 central charge is real and positive, we shall study

foliations defined by (4.21) with ζ = 1.

As explained previously, foliations cannot probe the whole moduli space of SYZ fibers

ML, but only a codimension-one stratum. Here we will discuss this stratum following and

expanding upon an analysis sketched in [5]. Since we can only see part of the moduli space

through foliations, we will not be able to compute Ω(L) here by applying the definition of

Euler characteristic. We will explain in the next section how to overcome this difficulty

without the need for any additional data.

5.7.1 Circular leaves

It is natural to begin with the degeneration of T 3 already discussed in (5.11). Here we

study the foliation (5.12), which is independent of the specific form of F (x, y). Leaves are

circles centered at x = 0, see Figure 15
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Figure 15: Circular leaves of the foliation φ++,1. The black dot is the puncture at x = 0,

the yellow dot is the branch point at x = 1/4. There is a square-root branch cut exchanging

φ++,1 and φ−−,1 running from x = 1/4 to∞. Circular leaves with radius > 1/4 must wrap

twice around to produce a closed 3-manifold fibered by S2
±±,1.

There is here one subtlety to take into account: if the radius of the circle x(t) is

0 < r < 1/4 then a leaf of type (++, 1) comes back to a leaf of type (++, 1) after a full

turn. On the other hand, if r > 1/4 the leaf will cross the branch cut running between

x = 1/4 and ∞, and the leaf will come back of type (−−, 1). Thus, for circles of radius

r > 1/4 the leaf must go around twice to come back to the same type. This is essential in

order to obtaine a closed 3-cycle L, obtained by fibering an S2 over the circle x(t).

5.7.2 Junction bubbling

As explained before, the topology of the degenerate Lagrangians captured by (ii, 1)-foliations,

such as those in Figure 15, is such that b1(L) = 2. One deformation is obviously the free-

dom to choose the radius of the x-circle. The second one is more subtle. As it turns out, it

is possible to turn on a topology-changing deformation on the x-plane, involving junctions.

Here we discuss the relevant topologies and explain how they connect to the circular leaves

of φ++,1 discussed so far.

The essential process, identified in [5], is the phenomenon by which a circular leaf of

φii,1 may develop a pair of junctions. The process is detailed in Figure 16. When the pair

of junctions bubbles up, we have a system with new leaves of types φij,0 and φji,1. The

moduli space is 2-dimensional, in agreement with b1(L) = 2.
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The two moduli can be described as follows. Consider the φij,0 leaves, there is a

modulus corresponding to the coordinate in leaf-space. There is another leaf-space modulus

for φji,1. For any choice of these moduli, those leaves will intersect (they have different

angles on C∗ according to (4.21)). The intersections always lie on the same circle centered

at x = 0, therefore one may always connect the intersections with a leaf of φii,1.

Figure 16: A path in a codimension-one stratum of ML, connecting different calibrated

Lagrangians in class [L]. The top-left and bottom-right belong to different codimension-

two strata. The bottom-right stratum is parameterized by overall size, and contains the

codimension-three fixed point shown in Figure 22.

6 Localization

In the previous section we have illustrated the use of foliations for the purpose of exploring

the global topology of the moduli space of special Lagrangians ML and the associated

moduli space of A-branes ML. While in certain cases it is possible to capture the global

topology of ML, and therefore compute the Euler characteristic χ(ML), in other cases

this is not possible. A notable counterexample that we encountered in sections 5.6 and 5.7

is provided by A-branes wrapped on SYZ fibers.

Equivariant localization offers a way to sidestep the need to see the global structure of

a manifold. The computation of topological invariants, such as the Euler characteristic, are

reduced to the study of a finite number of points in the moduli spaceML, corresponding to

fixed points of a certain G-action. In this section we explore how this idea can be applied

to moduli spaces of A-branes.
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6.1 Equivariant fixed point formula for the Euler characteristic

Let M be a smooth manifold endowed with a smooth G-action by a Lie group G. In our

setting we will be only concerned with torus actions by G = Tm. Existence of a nontrivial

G action on a manifold M carries implications on the topology of M . Of particular interest

is the space of G-orbits and their type, as classified by the respective stabilizer group. One

way to access this information is provided by equivariant cohomology, which we briefly

review.26

The universal bundle of G is a contractible space carrying a free G-action. This space

is denoted EG and is unique up to homotopy [94, 95]. The quotient space EG/G is a

smooth manifold called the classifying space of G, and denoted BG. The name derives

from the fact that any G-bundle on M can be pulled back from EG → BG via a map

i : M → BG. For the case G = S1 the universal bundle is the infinite-dimensional sphere,

and the classifying space is CP∞. For Tm we simply take BTm = (BS1)×m. We introduce

the homotopy quotient

MG = EG×GM (6.1)

defined as the quotient of the direct product EG ×M by (e, gm) ∼ (eg,m) for all g ∈
G. An important property of MG is that it admits a fibration over M , with different

fibers depending on the G-orbit. More speficically, given a G-orbit [Gm] through m, the

corresponding fiber is the quotient EG/{g ∈ G; gm = m} by the stabilizer group of the

orbit. The two extreme cases are: i) if m belongs to a free orbit, the fiber is the whole

EG, and ii) if m is a fixed point with stabilizer the whole G, then the fiber is BG. The

G-equivariant cohomology of M is defined as ordinary de Rham cohomology of MG.

H∗G(M) = H∗(MG) . (6.2)

Observe that if G acts freely on all of M , then MG ' EG×M/G fibers trivially over the

space of G-orbits. Since EG is contractible it follows that H∗G(M) = H∗(EG ×M/G) =

H∗(M/G) in this case. Conversely, for a trivial G-action we obtain MG ' BG × M ,

implying H∗G(M) = H∗(M) × H∗(BG). More generally there are orbits with different

stabilizers, and equivariant cohomology may have a richer structure. For example if M =

S2 and G = S1 acts by rotations around an axis, then MG is fibered over the segment

[0, 1] with generic fiber EG, except at the endpoints where the fiber is BG. In this case

H∗G(M) ' H∗(CP∞)⊕2 is generated by the G-fixed points.

More generally, let F ⊂M denote the fixed locus of the G = Tm-action. By pullback

through the inclusion map i : F →M we have27

H∗Tm(M)
i∗→H∗Tm(F ) = H∗(F )×H∗(BTm) . (6.3)

26Here we follow [35] in reviewing the Borel model of equivariant cohomology, which is suitable for stating

the main result that we will need: the localization formula of Atiyah-Bott-Berline-Vergne [86–88]. See [89–

93] for pedagogical accounts of some other models of equivariant cohomology, and their applications to

geometry and quantum field theory.
27Functoriality of equivariant cohomology is used in application of pullback. Although we didn’t discuss

this property here, it is well-known to hold.
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The localization theorem asserts that this map is in fact an isomorphism, up to torsion.

In other words, the whole G-equivariant cohomology of M , except for the torsion part, is

captured by equivariant cohomology of the fixed locus F . Furthermore this corresponds

simply to cohomology of the fixed locus itself, times the cohomology of the classifying space

H∗(BTm,C) ' H∗((CP∞)×m) ' C[ε1, . . . , εm].

There is a natural G action on the restriction of TM to F , which induces a splitting

TM |F ' TF ⊕NF/M into the ‘fixed’ and ‘moving-away’ parts with respects to the action

of G. Given the inclusion map i : F → M , it can be used to push forward cohomology

i∗ : H∗(F ) → H∗(M). 28 This operation is accomplished by using the Thom form ΦF

associated to F , by taking ω ∈ H∗(F ) to ΦF ∧ ω as a form on the normal bundle NF/M .

Viewing NF/M as a neighbourhood of F and extending the Thom form by zero as usual,

this gives a map to H∗(M). In particular, pushing forward the trivial cohomology class

gives the Thom class in H∗(M). Its pullback by i∗ is the Euler class of the normal bundle

i∗i∗1 = e(NF/M ). This construction extends to the equivariant setting, producing the

G-equivariant Euler form on the normal bundle to F .

In the case when F is a point, or a finite collection of points, NF/M ' TM |F is

just the restriction of TM to the fixed locus. Representations of G = Tm on TM are

labeled by m weights ai ∈ R. In this case the Euler form is a top form on M , in fact

e(NF/M ) =
∏m
i=1 ai dx1 ∧ · · · ∧ dxd for a given fixed point F . Since ai 6= 0, the Euler form

is invertible. The Atiyah-Bott-Berline-Vergne localization theorem [87, 88] asserts that the

Euler class of NF/V is always invertible if F is the fixed locus of a G action. This implies

that
∑

F (e(NF/M ))−1 i∗i
∗, where the sum runs over components of the fixed locus, acts as

the identity on H∗(M). It follows that the integral of an equivariant form φ ∈ Ω∗G(M) over

all M ∫
M
φ =

∑
F

∫
F

i∗φ

e(NF/M )
(6.4)

reduces to contributions at the fixed points. This is the celebrated localization formula.

We will be interested in a basic application of this formula, corresponding to taking

φ = e(TM) the G-equivariant Euler class of the tangent bundle to M .

χ(M) =

∫
M

e(TM) =
∑
F

∫
F

i∗e(TM)

e(NF/M )
=
∑
F

1 = (# of fixed points) . (6.5)

When M has a finite number of fixed point under G = Tm, its Euler characteristic is just

the number of isolated fixed points.

6.2 Fixed points from foliations

We now return to the study of moduli space of A-branes. Since ML admits a Lagrangian

fibration by tori T b1(L), it carries a natural G = T b1(L) action rotating the fibers. The fixed

locus of the G action correspond to points in the base ML where the whole fiber degenerates

28The careful reader will notice here a technical subtlety: This operation involves using Poincaré duality

on F , then pushing forward a dual homology cycle, then using again Poincaré duality on M . As we will be

interested, occasionally, in cases where M is noncompact, one must take case of restricting to compactly

supported de Rham cohomology in order for Poincaré duality to be applicable.

– 35 –



to a point, this means points in ML corresponding to a (possibly singular) Lagrangian L

such that all holonomies of the Abelian local system are either trivial or ill-defined.29 This

locus must be a collection of points in ML, since the torus fibration is Lagrangian: the

shrinking of each fiber places a local constraint on the base coordinates, and the overall

number of constraints is equal to the dimension of the base. We denote the fixed locus

by DL ⊂ML. By the G-equivariant localization formula for the Euler characteristic (6.5)

with G = T b1(L) we deduce that χ(ML) = |DL|. Using this into our definition of the BPS

invariants (3.8), we arrive at

Ω(L) = (−1)dimML |DL| . (6.6)

The BPS invariant Ω(L) coincides, up to a sign, with the number of G-fixed points.

If L admits an S2-fibration as described in section 4.2, the moduli space ML can

be studied by means of foliations, as explained in Section 4.5. In this model, a special

Lagrangian L ∈ ML may map to a leaf of some foliation φij,n, or more generally to a set

of leaf segments of different foliations, connected by junctions. In either case the generic

leaf is a smooth Lagrangian, but in the whole family of leaves we also usually find certain

degenerate leaves. The question we wish to address is how to find degenerate leaves.

More precisely we would like to identify leaves corresponding to points in DL, which are

maximally degenerate. In the following we assume that, for a generic choice of complex

moduli of Σ, only trivalent junctions appear in a system of leaves that represents a single

Lagrangian.

There are two types of mechanisms that produce a degenerate leaf from a smooth one.

i) The first phenomenon occurs when a family of smooth leaves is parameterized by a

modulus r ≥ 0 such that at r = 0 a local piece of the leaf labeled by φij,0 runs into

a branch point where yi = yj . See Figure 17. There is typically a cycle in H1(L,Z)

corresponding to a lift of the generic leaf of φij,0 to a point in S2
ij,0, see the blue

line in the figure. The modulus r is a local coordinate on ML corresponding to the

‘height’ of a smooth leaf, measured transversely to the foliation. r = 0 corresponds to

degeneration into a critical (or possibly bi-critical) leaf, where the holonomy around

the blue cycle becomes ill-defined.

ii) The second type of degeneration may occur whenever a segment connected by two

junctions collapses, and the pair of junctions becomes coincident. See Figure 18. If L

has a non-contractible cycle that goes through one of the junctions, then that cycle

will pinch when the segment shrinks because the two junctions must annihilate. For

example, the figure shows a blue cycle running above the external segments of types

ij and jk. In L, this loop lifts, above each x, to a point (y(x), u(x)) in the two-spheres

S2
ij,m and S2

jk,n respectively. The lifted paths are joined above the junction, by a path

in the triangle in the log y plane also shown. When the segment shrinks, the triangle

collapses and the holonomy around the blue cycle becomes ill-defined.

29As examples illustrated, a one-cycle in the torus T b1(L) pinches whenever the corresponding abelian

holonomy parameterizing S1 ⊆ T b1(L) ceases to make sense. For a Lagrangian in DL the whole fiber T b1(L)

collapses to a point, corresponding indeed to a fixed point of the G-action.
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Figure 17: The first type of degeneration of a smooth leaf. Red leaves correspond to

points in ML. At r = 0 the two-sphere S2
ij,0 degenerates over the ij branch point, pinching

the S1 ⊆ T b1(L) parameterizing the holonomy around the blue cycle on L.

Figure 18: The second type of degeneration of a smooth leaf. When the ik segment is

non-zero, it supports a junction shown on the right frame as a triangle in the log y plane.

There is a cycle in H1(L,Z) shown in blue that runs through the junction, from a point on

S2
ij,m to a point on S2

jk,m. When the ik segment shrinks, the junction disappears, and the

holonomy supported on the blue cycle becomes ill-defined.

We have now explained how to detect degenerate leaves. What counts for the com-

putation of Ω(L) are the maximally degenerate leaves. These are Lagrangians with b1(L)

pinching cycles, and they can be found in foliations by looking for leaves (or systems of
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leaves) that feature b1(L) degeneration phenomena of the types from Figures 17 and 18.

Next we illustrate some examples of maximally degenerate leaves, and the corresponding

computations of the Euler characteristic.

A remark on degenerations. Naively, a third possibile type of degeneration would

seem to arise when a segment suspended between a branch point and a junction collapses.

This however would not cause a topological change in the Lagrangian, for the following

reason. As a local model suppose the shrinking segment is of type ik, and the other two

segments attached at the junction are of types ij and jk. Since the ik segment ends on a

branch point, it cannot support a non-contractible cycle in L. Any such cycles, if present

at all, must run above the ij and jk segments (as in the local model of Figure 18). As

the ik segment shrinks, the ij segment hits the ik branch point, and when it goes across

it finds a branch cut, which turns the ij segment into one of type jk. This then continues

as the jk segment that was also attached to the junction. This transition is simply the

inverse of the creation of a ‘string junction’ for M2 branes, by Hanany-Witten effect [96],

also related to the notion of equivalence for spectral networks discussed in [4, Section 10.6].

6.3 Some computations of enumerative invariants

Examples of type i. The first nontrivial case is unbounded family of compact leaves

studied in section 5.2. Here M' C presented as an S1 fibration over ML ' R≥0. The S1

action rotatesML around the origin, corresponding to the fixed point p ≡ DL. This point

is precisely the bi-critical leaf attached to the branch point, the degeneration that occurs

is of the first type mentioned above. See Figure 19. By counting fixed points we recover

the result from (5.3)

Ω(L) = (−1)1 · |DL| = −1 . (6.7)

A variant of this is the bounded family of compact leaves studied in section 5.3. Here

M' P1 presented as an S1 fibration over ML ' [0, 1]. The S1 action rotates ML leaving

the north and south poles fixed, corresponding to boundaries of the interval ∂[0, 1] =

{0, 1} ≡ DL. The two fixed points are the two bi-critical leaves attached to the branch

points. Again the degeneration that occurs is of the first type mentioned above. See Figure

20. Again, by counting fixed points we reproduce (5.5)

Ω(L) = (−1)1 · |DL| = −2 . (6.8)

Examples of type ii. The second type of degeneration occurs in the family of foliations

with junctions considered in section 5.5. Here ML is a two-simplex ∆2, and ML ' P2

is a T 2 fibration over it. The set of fixed points DL corresponds to the three vertices

of ∆2, see Figure 13. A segment connecting two junctions shrinks whenever one of the

hi = 0. This corresponds to one of the codimension-one boundaries of ML in Figure 13.

If only a single edge shrinks, only one cycle shrinks. But b1(L) = 2 and a true fixed

point requires that both cycles shrink at the same time. So we demand that hi = hj = 0

for (i, j) ∈ {(1, 2), (2, 3), (1, 3)}. These three configurations are shown in Figure 21, and
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Figure 19: The fixed point leaf from the family of Figure 10.

Figure 20: The two fixed point leaves from the family of Figure 11.

correspond indeed to the vertices of ∆2. By counting fixed points we recover the result

from (5.8)

Ω(L) = (−1)2 · |DL| = 3 . (6.9)

The generalization to k-herds is straightforward: there are k internal segments, and

fixed points correspond to the k possibilities where one has full length while all others

shrink. These are indeed vertices of ML ' ∆k−1, corresponding to fixed points of the toric

action on ML. Again by counting fixed points we reproduce (5.9)

Ω(L) = (−1)k−1 · |DL| = (−1)k−1k . (6.10)

The case of SYZ fibers. As discussed in sections 5.6-5.7, only certain codimension-one

strata of the moduli space MSY Z of special Lagrangian SYZ fibers can be described by

leaves of foliations. This seems to pose an obstruction to computing χ(MSY Z), since we

are not able to see the full moduli space. But in fact, thanks to localization this obstacle

can sometimes be sidestepped altogether, by shifting the focus to the fixed points of the

G = T 3 action on MSY Z .

Fixed points must correspond to codimension-three strata of ML. If all fixed points

belong to the (boundary of the) codimension-one stratum parameterized by foliations,

localization allows to compute the BPS invariant for the family of special Lagrangian SYZ

fibers, by studying degenerate leaves. This was verified in a few cases in [6, 7] for moduli

spaces of SYZ fibers in mirrors of toric Calabi-Yau threefolds.30 For example, in the case

30More generally, it is unclear if fixed points of the T 3 action onMSY Z are always captured by foliations.
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Figure 21: The three fixed point leaves from the family of Figure 13.

of the Hori-Vafa mirror of C3, there is a unique degenerate leaf in the codimension-one

stratum studied in Figure 16. This is the bi-critical leaf shown in Figure 22. By counting

this unique fixed point we recover the correct result

Ω(LSY Z) = (−1)3 · |DSY Z | = −1 . (6.11)

Figure 22: The unique fixed point leaf from the family of Figure 16.

7 Relation to Spectral and Exponential Networks

In section 3 we have introduced our definition of enumerative invariants for stable A-branes,

via the Witten index of worldvolume quantum mechanics of D3 branes wrapping special
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Lagrangians. Later, in sections 4-5 we have applied this definition to the case of special

Lagrangians parameterized by leaves of foliations of certain abelian differentials. Then in

section 6 we argued that localization effectively allows us to restrict attention to certain

singular leaves of foliations. In this section we connect the study of singular leaves to the

subject of spectral and exponential networks.

We will argue that the enumerative invariants defined above coincide, in a way that will

be made precise below, with the BPS indices computed by non-abelianization for networks.

This has two important consequences.

1. First, it implies that the enumerative invariants that we study in this work ex-

hibit jumps over the moduli space of complex structures, which are governed by

the Kontsevich-Soibelman wall-crossing formula [14]. This follows from the fact that

BPS indices computed by networks obey the ‘K-wall formula’ (see [4] for spectral

networks and [6] for exponential networks). The compliance with wall-crossing can

be taken as evidence that our definition of BPS invariants is a viable candidate for

the generalized Donaldson-Thomas invariants considered in [13, 14]. In fact, earlier

computations based on exponential networks [5–7, 9, 97] have been checked to match

with computations of Donaldson-Thomas for B-branes on the mirror Calabi-Yau’s.

2. Another reason why the connection with networks is important, is that the latter

offer a systematic way of computing the BPS index, and therefore our enumerative

invariants for A-branes. On the one hand, we hope that the definition of Ω(L)

introduced in this work may help demistify some of the aura of the BPS indices defined

via nonabelianization, which involves a fair deal of definitions and unconventional

computations. On the other hand, the framework of nonabelianization serves as a

powerful tool for explicit and systematic computations for the enumerative invariants

we consider here.

7.1 BPS index formula from networks

To pave the way for comparing our BPS invariants with the BPS indices computed by

networks, we begin with an executive summary of the latter. Here we focus entirely on the

formula that defines the BPS index Ω(γ), the discussion will not be self-contained. More

details can be found in [4, 6] and in reviews included in [98–100].

7.1.1 Spectral networks

The definition of networks involves two main pieces of data: the geometric data of trajec-

tories on a Riemann surface C, and the combinatorial data of open paths on a covering

surface Σ→ C that is associated to each trajectory. We will describe these structures for

spectral networks first. Given a Riemann surface C, also known as ‘UV curve’ [3, 101],

consider a ramified covering Σ→ C as a curve in T ∗C defined by an algebraic equation for

the Liouville one-form λ

λN +

N∑
k=2

φkλ
N−k = 0 . (7.1)
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Here φk are meromorphic k-differentials on C, with poles of prescribed degrees at punctures.

The curve given here applies to theories of class S of type AN−1. Extensions to ADE curves

and beyond can be found in [102, 103]. After choosing a trivialization for the covering,

consisting of a system branch cuts and a global assignment of labels λi to the sheets

i = 1, . . . , N , one may define foliations φij by

ι∂t(λj − λi) ∈ eiϑR+ . (7.2)

Here ∂t is the tangent vector to a leaf parameterized by t ∈ R. This equation corresponds

to (4.21) in the case λi = log yi d log x and n = 0, with ζ = eiϑ. The geometric data of

networks consists of specific leaves of foliations φij for all pairs i 6= j. First of all there

are the primary critical leaves, namely those leaves of φij that start from a branch point

where λi = λj on one side, and flow into a puncture on the other side. Second, there are

descendant critical leaves: when two critical leaves (either primary or descendant) of types

ij and jk intersect, one takes the leaf of φik passing through the intersection point. See

figure 23 for a sketch of a generic spectral network.

Figure 23: A spectral network made of primary critical leaves of types ij and jk, inter-

secting to give a descendant critical leaf of type ik. Each trajectory carries combinatorial

data of open paths on the covering surface Σ, shown in blue and running on the respective

sheets (e.g. λi and λj) labeling the trajectory (e.g. ij) . Paths on primary trajectories

concatenate at intersections to give birth to the paths carried by descendants.

The combinatorial data of networks is the assignment to each trajectory of certain open

paths on the covering Σ. A critical leaf of type ij may carry open paths that begin at sheet

i and end on sheet j at generic points above the trajectory, see Figure 23. We only keep

track of relative homology classes of open paths, denoted a ∈ Γij(z) ≡ Hrel
1 (Σ, λi(z), λj(z))

for paths beginning/ending at λi(z)/λj(z) for some z ∈ C on the trajectory. Open paths
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are counted by certain integers µ(a) ∈ Z, which end up being µ(a) = ±1 for the open path

obtained by ‘lifting’ the trajectory to Σ and µ(a) = 0 for all other classes.31 The sign is

determined by additional framing data, see [4] for a discussion.

The charge of a BPS state is represented by a homology cycle γ ∈ H1(Σ,Z).32 Geo-

metrically the cycle γ encodes the data of a Lagrangian cycle L ∈ H3(X,Z) in a Calabi-Yau

threefold described by the hypersurface λN +
∑N

k=2 φkλ
N−k = uv in T ∗C × C2. Details

of this map have been discussed e.g. in [2, 3, 5, 6]. One way to think about this map is

to consider an S2-fibered special Lagrangian as in section 4. Then L projects to a path

on C∗, which is here replaced by C. Above each z ∈ C there is a segment in T ∗zC run-

ning between λi(z) and λj(z), and a circle uv = const. fibered above the segment, which

shrinks at endpoints. This gives an S2 above z, and varying the basepoint gives the whole

calibrated L. Consider the endpoints λi(z) and λj(z) at each z on the segment: varying z

the endpoints trace arcs on Σ, which eventually must reconnect together at branch points,

or to other arcs above junctions. The overall system of arcs is a closed path on Σ, whose

homology class is γ. We thus have a map

L ∈ H3(X,Z) ←→ γ ∈ H1(Σ,Z) (7.3)

between three-cycles on an appropriate Calabi-Yau and one-cycles on an associated Rie-

mann surface, as first observed in [2].

Now we come to the computation of the BPS index Ω(γ) for a given charge γ, and a

given choice of complex moduli for Σ. Let ϑ = arg
∮
γ λ be the phase of the period along a

primitive cycle γ of the Liouville form pulled back to Σ. Consider the network at phase ϑ.

If all trajectories are non-degenerate then Ω(γ) = 0. On the other hand if some trajectories

of opposite types (e.g. ij and ji) overlap, then there may be stable BPS states with charges

proportional to γ. One considers only the degenerate trajectories of types ij that overlap

with those of opposite types ji. We call this a system of two-way streets. A two-way street

p of type ij/ji may be attached to branch points of the same type, or to junctions where

ij/ji trajectories intersect with trakectories of types ik/ki and kj/jk for some k 6= i, j.

Some examples are shown in figure 24.

Each two-way street of type ij/ji is made of underlying oriented trajectories of types

ij and ji (possibly multiple ones for each type). Recall that these carry combinatorial data

of open paths. One builds a generating function of closed paths by considering all possible

concatenations of oriented open paths on the underlying trajectories

Q(p) = 1 +
∑
a∈Γij

∑
b∈Γji

µ(a)µ(b)Xa◦b = 1 +
∑
n≥1

cnγXnγ (7.4)

Here a◦b denotes concatenation of a with b at both endpoints, and Xγ are formal variables

associated with homology cycles, valued in a ring with multiplication rule XγXγ′ = Xγ+γ′ .

31If the trajectory is a descendant critical leaf, one considers not only its lift, but also the lifts of parent

trajectories, all the way to primary ones. The lifts are glued at intersections to give a continuous open path

obtained by successive concatenations.
32More precisely charges are valued in a certain quotient of a sublattice of H1(Σ,Z) [3, 102, 103].
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Figure 24: Some examples of two-way streets, and the underlying resolution by critical

leaves of foliations. Shown in blue are the closed cycles on Σ obtained from concatenation

of open path combinatorial data.

It is argued in [4] that the series Q(p) must factorize as

Q(p) =
∏
n≥1

(1±Xnγ)αnγ(p) (7.5)

for suitable choice of signs, with integer exponents αnγ(p) ∈ Z. Using these exponents, one

may define a closed cycle on Σ by taking the lift π−1 : C → Σ of formal linear combinations

of two-way streets

Λnγ =
∑
p

αnγ(p) · π−1(p) . (7.6)

This is argued to give a closed path, whose homology class is an integer multiple of nγ

Ω(nγ) =
[Λnγ ]

nγ
. (7.7)

This is the BPS index for charge nγ, and a fixed geometry of Σ. The set of BPS indices

for all possible charges γ determines the BPS spectrum of a theory. Varying the complex

moduli, as encoded by the k-differentials {φk}k, may induce a change in the spectrum of

BPS states. It follows from the K-wall formula of [4] that BPS indices must change in a

controlled way, described by the wall-crossing formula of Kontsevich and Soibelman [14].

7.1.2 Exponential networks

We briefly comment on how the above definitions evolve in the context of exponential

networks, following [6]. The first difference is in the geometric data: instead of a Riemann

surface described by a collection of differentials (7.1), one now considers an algebraic curve

in C∗ × C∗ described by a polynomial F (x, y) = 0. Given this curve, the exponential

network consists of a set of trajectories on C∗ with coordinate x. Again the trajectories
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are described by a differential equation, and consist of critical leaves of a foliation. In this

case the differential equation for the critical leaves is precisely (4.21), with n ∈ Z keeping

track of logarithmic branching of log yi
dx
x in the y-plane, for a choice of trivialization.

Once again we define primary and descendant critical leaves: the former are sourced at

branch points where yi(x) = yj(0) and have n = 0, where as the descendants are sourced

at intersections. Exponential networks feature more types of intersections than spectral

networks, in particular when trajectories of types (ij,m) and (ji, n) with m + n 6= 0

intersect, there are infinitely many new trajectories generated [6]. The combinatorial data

associated to each trajectory is also more involved: now one considers open paths not on

Σ but on a logarithmic covering Σ̃, branching over Σ around punctures where y runs to

0 or to ∞.33 As a result each trajectory carries infinite towers of open paths counted by

µ(aN ) ∈ Z where N ∈ Z denotes a path running from sheet log yi(x) + 2πiN to sheet

log yj(x) + 2πi(N + n) for a critical leaf of the foliation φij,n. The integers µ(aN ) are ±1

for the natural lift of the critical leaf (as in the case of spectral networks) irrespective of

N , and zero otherwise.

Coming to BPS states, once again one tunes the phase of the foliation to a specific

phase, corresponding to a period of λ = log y d log x around a cycle γ ∈ H1(Σ̃,Z). We focus

on two-way streets, and again consider all possible concatenations of open paths carried

by underlying oriented trajectories

QN (p) = 1 +
∑

aN∈Γij

∑
bN∈Γji

µ(aN )µ(bN )XaN◦bN (7.8)

It can be shown that the function QN (p) ≡ Q(p) does not depend on the choice of loga-

rithmic branch N ∈ Z. Again Q(p) factorizes as in (7.5) and one defines closed paths Λγ
on Σ̃ by (7.6). The BPS index is computed by (7.7).

An interesting feature of exponential networks is that every cycle on Σ admits an

infinite sequence of lifts γN to Σ̃. The cycle γ ∈ H1(Σ,Z) may be again mapped to a

Lagrangian cycle in X via (7.3). The lift to γN with N ∈ Z is then mapped to the choice

of a graded lift for L, discussed in section 4.2.

7.2 Networks count fixed points

Recall the map (7.3) relating Lagrangian cycles in X to one-cycles on Σ.34 We would like

to argue that the BPS index Ω(γ) computed by networks for a one-cycle γ coincides with

the BPS invariant defined in (3.8) for the associated three-cycle L

Ω(γ) = Ω(L) . (7.9)

This will be the main statement we wish to prove in this section. We will not be able to

provide a complete proof covering all possible cases. For certain settings, such as spectral

33The branch cuts of Σ̃ → Σ are the preimages of the log y branch cut on the y-plane C∗, see [6] for an

extensive discussion.
34In the case of exponential networks, one may consider cycles on Σ̃. This corresponds to including the

data of a graded lift for L.
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networks of type A1, we will be able to come ‘close’ to a complete proof. But more generally

we will provide an argument that supports (7.9) holding for primitive cycles.

Localization relates Ω(L) = (−1)dimMLχ(ML) to a simple count of fixed points (6.6),

up to an overall sign. Each fixed point of the torus action on ML corresponds to a

maximally degenerate leaf (or a system of leaves, in case there are junctions involved). As

argued in section 6.2, all fixed points can be captured by studying the moduli space ML of

special Lagrangian cycles underlying A-branes. The fixed point locus DL ⊆ML is a finite

collection of maximally degenerate special Lagrangians, represented by degenerate leaves

(or system of leaves). Here we would like to argue that if γ, L are primitive cycles in the

respective homology lattices, then there is a one-to-one correspondence between the fixed

point locus DL and a certain decomposition of the cycle Λγ defined via networks in (7.6).

Indeed, comparing (7.7) with (6.6) through (7.9) leads to the following claim

[Λγ ]

γ
= (−1)dimML |DL| . (7.10)

Recall that Λγ is the lift of a formal sum of two-way streets p ⊂ C. Each p is taken

with multiplicity αγ(p) ∈ Z, defined by combinatorial data of networks (7.5). Thus π(Λγ)

is a system of arcs on C, each of which corresponds to a critical leaf of some foliation φij,n.

According to (7.7) the overall lift of this system of arcs is in class Ω(γ) · γ. In particular,

this suggests that one may view Λγ as |Ω(γ)| distinct cycles, each of them in class ±γ (the

sign being determined by that of Ω(γ)). Let κa be a degenerate leaf (or system of leaves)

corresponding to a point in a ∈ DL, note that π−1(κa) = γ by construction, via the map

(7.3). Our goal will be to show that

Λγ = (−1)dimML
∑
a∈DL

π−1(κa) . (7.11)

This equation implies (7.10), which is recovered by passing to homology and dividing each

side by γ. By extension it also implies (7.9). On the other hand, acting on each side of

(7.11) by the projection map π : Σ→ C gives an equality between formal sums of critical

leaves of foliations on the left hand side, and degenerate leaves on the right hand side. We

will proceed to show that (7.11) holds in examples of increasing complexity.

7.2.1 A1 spectral networks

In the case of A1 theories of class S, the spectral curve Σ is described by λ2 +φ2(z) in T ∗C

where z ∈ C is a local coordinate on the underlying Riemann surface. It is known that

there are only two types of two-way streets that can appear, corresponding to saddles of

quadratic differentials [3, 25, 104].35 The first type is a saddle with endpoints on distinct

branch points, as in figure 25. In this case Q(p) = 1 +Xγ and therefore αγ(p) = 1. Since

[π−1(p)] = γ, the contribution of this saddle to Ω(γ) is +1. The second type is a saddle

with both endpoints attached to the same branch point, also shown in figure. In this case

Q(p) = (1−Xγ)−1, therefore αγ(p) = −1.

35We are assuming a generic choice of φ2. For a non-generic choice the rings may break up into multiple

concatenations of saddles, see e.g. [99, 105–107] for discussions of these cases.
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Figure 25: Two-way streets of A1 spectral networks, with values of αγ(p) indicated.

Let us compare this with degenerate leaves of foliations. If a foliation of type φij,0 has

a bi-critical leaf, this has trivial moduli space ML = {pt}. Therefore its contribution to

Ω(L) = χ(ML) = 1, matching the contribution of the first type of saddle for A1 networks.

Next we consider compact circular leaves that come in families. Recall from section 6.2

that when we consider a family of compact leaves there are two types of degenerations. In

the case of A1 networks there are no junctions, therefore only type (i) degenerations are

possible. This corresponds to the circular leaf hitting a branch point, compare Figures 10

and 19. The moduli space for these leaves is one-dimensional dimRML = dimCML = 1,

parameterizing the ‘height’ of the generic compact leaf away from the branch ploint. Then

ML may be either homeomorphic to the half-line or to an interval, corresponding to having

one or two fixed points. Each of the fixed points corresponds, in fact, to a critical leaf of

the foliation – namely to the two-way streets of a spectral network. The contribution of

each fixed point to Ω(L) is (−1)dimCML = −1, precisely matching the contribution of the

circular two-way streets to Ω(γ).

Thus for A1 networks we are able to argue that two-way streets always correspond to

the boundaries of ML

π(Λγ) ←→ ∂ML . (7.12)

The moduli space of special Lagrangians in this case is either a point, the half-line, or an

interval. In each of these cases we have argued that ∂ML corresponds to fixed points

∂ML ←→ DL . (7.13)

To establish the validity of (7.11) we first invoke the correspondence between special La-

grangian fixed points in DL and degenerate leaves of foliations discussed in section 6.2, and

then act by the lift map π−1 : C → Σ on both the left-hand side of (7.12) and the right-hand

side of (7.13). To match signs we observe that (−1)dimML agrees with sgn Ω(γ) = sgnαγ(p)

for each case taken individually, see Figure 25.

As explained earlier, establishing (7.11) implies (7.10), which is equivalent to the de-

sired statement (7.9).

7.2.2 Higher rank spectral networks

Moving on to spectral networks of higher-rank class S[Ar] theories, the novelty is that

sytems of two-way streets p making up π(Λγ) may now include junctions. This implies
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that there are infinitely many possible types of ‘generalized saddles’, unlike in the A1 case

where we had only two. Nevertheless we would still like to argue that, in general, the

overall collection of generalized saddles defining π(Λγ) captures all fixed points inML. In

other words the system of two-way streets π(Λγ) can again be viewed as a collection of

|Ω(γ)| degenerate leaves of foliations, each of which corresponds to a maximally degenerate

special Lagrangian L ∈ DL.

Consider a generic system of compact leaves, corresponding to a generic point in ML.

Suppose the generic leaf involves only junctions but no branch points, as sketched in figure

26. What we would like to check is that any fixed point of the torus action, corresponding

to maximally degenerate points DL ⊂ML, must attach to a branch point. If this were not

the case, there would be contributions to χ(ML) that cannot be seen by networks, because

all two-way streets are generalized critical leaves, which must be anchored to branch points.

Recall from section 6.2 that there are two types of degeneration: what we would like to rule

out is that DL cointains fixed points obtained only through degenerations of type (ii). We

argue this by reductio ad absurdum. Take a generic L ∈ ML, and tune moduli to achieve

a sequence ot type (ii) reductions, eventually reaching L′ ∈ DL. Since L is not anchored

to a branch point, and since we only invoked moves of type (ii), neither is L′ attached

to any branch point. In order for L′ to be topologically nontrivial, the underlying system

of (degenerate) compact leaves must wrap around a noncontractible cycle in C. But then

b1(L) > 0 and by McLean’s theorem [1] it follows that L′ must still have some nontrivial

modulus, therefore L′ /∈ DL. Thus every degenerate Lagrangian in DL must correspond

to degenerate leaves attached to at least one branch point. This in turn means that the

degenerate leaves correspond to two-way streets of a spectral network, and therefore should

be captured by π(Λγ). The argument we gave can be clearly sharpened further, but this

would require introducing systematic definitions and considerably more work. We leave

this as a sketch of proof, and proceed with the next part of the argument.

Figure 26: A system of compact leaves (in red) connected only by junctions must wrap

at least one nontrivial cycles on C. As a consequence b1(L) > 0 must count at least one

generator (in blue).

We have argued that any torus fixed point, or degenerate Lagrangian in DL, must be

captured by the collection of 2-way streets π(Λγ). Next one needs to ensure that π(Λγ) gets
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contributions only from torus fixed points, and not from other points in ML. A generic

Lagrangian in ML, if anchored to branch points, must involve junctions that can ‘slide’,

as in the degeneration of type (ii). We say that a junction is critical if all three leaves

attaching to it are critical leaves, in the generalized sense (either primary critical leaves, or

descendant critical leaves). Critical junctions cannot slide, because critical leaves are rigid:

they are solutions of a first-order differential equation with fixed boundary conditions.

Since π(Λγ) is made of critical leaves, it only contains critical junctions, which therefore

cannot slide. This shows that π(Λγ) only contains contributions from special Lagrangians

in DL and not from the complement in ML.

Finally we argue that integer multiplicities αγ(p) attached to two-way streets p of π(Λγ)

produce the correct signed counts of fixed points. This follows by taking an expansion in

Xγ of (7.4) and its factorization (7.5)

Q(p) = 1 +
∑

a,b | a◦b=γ

µ(a)µ(b)Xa◦b +O(X2γ)

= 1± αγ(p)Xγ +O(X2γ)

(7.14)

which shows how αγ(p) counts all possible concatenations of open paths a, b in class γ = a◦b.
Recall that a, b are nothing but lifts of the underlying oriented critical leaves that make

up the two-way street p (up to a sign). Also recall that a, b may run only above p is this

attached to a branch point, or they may arise as concatenations of lifted critical leaves, if

there are junctions. This means that ±αγ(p) counts how many times p appears in a system

of compact critical leaves whose lift to Σ is a closed cycle in class γ. As we argued above, a

system of critical leaves of this type must correspond to a fixed point Lagrangian L ∈ DL,

therefore ±αγ(p) counts how many times the leaf-segment corresponding to p appears in

the overall count of degenerate Lagrangians in DL.

To summarize we have argued (admittedly, to a lesser degree of rigour compareed to

the A1 case) that all torus fixed points in ML correspond to (systems of) compact leaves

given by two-way streets of π(Λγ), and that π(Λγ) only gets contributions from fixed points

DL ⊂ML. We illustrate these statements with the example of k-herds

Example. To illustrate these points we consider the example of the 3-herd shown in

Figure 27. A full analysis of the combinatorial data on two-way streets of k-herds can be

found in [84]. Here we focus on k = 3, the generalization to generic k is straightforward.

The integers αγ(p) are encoded by equations (3.2)-(3.3) in [84]. We report them in Figure

27, also see [108, Appendix B.2]. The top part of the figure shows π(Λγ), with each 2-

way street p of the network labeled by the corresponding integer αγ(p). The bottom part

shows the decomposition of π(Λγ) into three pieces, corresponding to systems of leaves

that represent degenerate Lagrangians κa ∈ DL for a = 1, 2, 3. Since the dimension of the

moduli spaces is even, it is straightforward to check that this data obeys (7.10).

Comment 2 As we already stressed, we only argue the equality (7.9) for primitive cycles

(respectively primitive γ ∈ H1(Σ,Z) and primitive L ∈ H3(X,Z)). To see the kind of

subtleties arising with non-primitive cycles we may again consider the example of the 3-

herd. In this case it is known from direct computation with spectral networks that Ω(nγ)
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Figure 27: The two-way streets in π(Λγ) for the 3-herd, with respective multiplicities

αγ(p) computed by spectral networks. π(Λγ) corresponds exactly to the sum of the three

fixed points in DL identified earlier in Figure 21.

is nontrivial not only for n = 1 but also for higher values of n > 1. Indeed Ω(nγ) =

3,−6, 18,−84, 465, . . . , see [84, Table 1]. One may ask whether Ω(nγ) for n > 1 is again,

up to a sign, the Euler characteristic of a certain moduli space of A-branes, namely

Ω(nγ)
?
= (−1)dimMnLχ(MnL) . (7.15)

To address this naive guess, one should first understand the moduli space MnL, and this

requires some care. For instance consider the case n = 2, and let us ask what would the

generic special Lagrangian in class [2L] look like. It seems unlikely that this could be just

two copies of the underlying once-around Lagrangian L lying on top of each other. In fact,

recall the unbounded family of circular compact leaves of figure 25: in that case we know

from spectral networks that Ω(nγ) = −δn,1, therefore taking a Lagrangian wrapping twice

the generic compact leaf should result in an empty moduli space. Instead it seems likely that

one should take two copies of L, perhaps at different points in ML, and glue them together

to obtain a new special Lagrangian in class [2L] with a larger number of moduli. The

expected number of moduli can be deduced by comparing with the appropriate BPS quiver,

recall comment 1. As observed in [84, eq. (8.8)] the dimension dimRM2L = dimCM2L is

expected to be (k − 2)n2 + 1 for a k-herd. This means we expect a 5-dimensional moduli

space for the generic calibrated cycle in class [2L]. Indeed the Poincaré polynomial for the

state of charge 2γ corresponds to a character χ5/2(y) of SU(2) of spin 5/2 [84, Appendix

A.2]. By McLean’s theorem this suggests that we should glue two copies of L in such a

way that b1(2L) = 5. In fact it is not too hard to find a way to do that. Something more

interesting happens for n = 3: in this case the naive dimension of the quiver moduli space

is 10, however we know that the Poincaré polynomial of the true moduli space, as predicted

by wall-crossing or spectral networks ‘with spin’ [108], should be Ω(3γ, y) = χ3(y) + χ5(y)
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the sum of a spin-3 and a spin-5 character. This raises the possibility that the naive guess

(7.15) needs to be corrected: instead of the Euler characteristic of a single moduli space,

there may be weighted contributions from different types of moduli spaces when the charge

vector is non-primitive. A similar phenomenon indeed plays a role in the definition of

Donaldson-Thomas invariants for B-branes [24]. Clearly the question of whether, or how,

(7.15) should be adapted to the non-primitive case is very interesting, we leave it to future

work at the moment.

7.2.3 Exponential networks

The more general case of exponential networks is covered by similar arguments as higher-

rank spectral networks. We mention two technical novelties here. The first one is the

introduction of a nontrivial logarithmic index n (not necessarily zero) for the types of

foliations φij,n involved. The second novelty is the presence of new types of junctions,

involving leaves of φij,m and φji,n with m+ n 6= 0.36

Modulo these minor differences, one may repeat all steps adopted for higher-rank

spectral networks to argue once again that Λγ must all torus fixed points, and only those.

This statement is understood in the sense that two-way streets p of Λγ correspond to

generalized critical leaves of foliations, which correspond in turn to the degenerate compact

Lagrangians in DL ⊂ ML. The integer multiplicities αγ(p) attached to two-way streets p

of π(Λγ) are then expected to encode the correct signed counts of fixed points.
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