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Abstract. We introduce a quantum trace map for an ideally triangulated

hyperbolic knot complement S3\K. The map assigns a quantum operator to
each element of Kauffmann Skein module of the 3-manifold. The quantum op-

erator lives in a module generated by products of quantized edge parameters

of the ideal triangulation modulo some equivalence relations determined by
gluing equations. Combining the quantum map with a state-integral model of

SL(2,C) Chern-Simons theory, one can define perturbative invariants of knot

K in the knot complement whose leading part is determined by its complex
hyperbolic length. We then conjecture that the perturbative invariants deter-

mine an asymptotic expansion of the Jones polynomial for a link composed of

K and K. We propose the explicit quantum trace map for figure-eight knot
complement and confirm the length conjecture up to the second order in the

asymptotic expansion both numerically and analytically.
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1. Introduction

Kauffman bracket skein modules (KBSMs) were independently introduced by J.
H. Przytycki [27] and V. G. Turaev [32] based on the Kauffman bracket [21] in
an attempt to generalize knot polynomials in S3 to those in arbitrary 3-manifolds.
The module becomes a non-commutative algebra when the 3-manifold is chosen
to be a thickened surface S × I with marked points on S. For the case, F. Bona-
hon and H. Wong in [2] constructed an injective algebra homomorphsism, called
quantum trace map, from the Skein algebra to the Chechov-Fock algebra of S. The
Chechov-Fock algebra is a quantization of Teichmüller space using Thurston’s shear
coordinates [29, 26] associated to an ideal triangulation of S. In terms of SL(2,C)
Chern-Simons theory, the quantum operators correspond to Wilson loop operators
whose trajectory is confined on the surface S. Classically the Wilson loops can
be represented by a function on the phase space P (S) associated with the surface
S. The phase space is the moduli space of SL(2,C) flat connections on S. Shear
coordinates provides a natural coordinate of the phase space and the loop opera-
tors can be given as a Laurent polynomial of the coordinates. After quantization,
the phase space becomes a Hilbert-space on which the quantized loop operators
naturally act. Via the 2D quantum trace map, one can express the loop operators
in terms of Laurent polynomial of the quantized shear coordinates.

Generalizing the idea of quantum trace map to a general 3-manifold M seems to
be pointless since the KBSM is just a module instead of forming an algebra. Con-
trary to the common belief, we suggest that there is a natural unique 3D quantum
trace map. Wilson loop operators in the Chern-Simons theory can be defined along
arbitrary links on a 3-manifold. Classically, the loop operator can be regarded as
a function on L(M), the moduli space of SL(2,C) flat connections on M . Unlike
P (S), there is no natural symplectic structure on L(M). Instead, the space L(M)
can be regarded as a Lagrangian subvariety of the phase space P (T2) when the
3-manifold has a torus (T2) boundary. For an ideally triangulated 3-manifold M ,
the moduli space can be represented by an algebraic variety determined by gluing
equations [30, 25]. Gluing equations are set of algebraic equations among edge
parameters of ideal tetrahedra in the triangulation. The gluing equations have a
symplectic structure and the quantization of the L(M) has been well-studied [5, 9].
As a result of the quantization, state-integral models [18, 5] are developed which
compute the partition function of SL(2,C) Chern-Simons theory on M . To define
a 3D quantum trace map, one needs to quantize functions on L(M). The functions
are given by a Laurent series of the edge parameters subjected to gluing equations.
To deal with the ‘quantum functions’ on L(M), we introduce a quantum gluing
module in Section 2.2 which are the space of them. Our quantum trace map is
an injective module homomorphism from the KBSM of M to the quantum gluing
module. Once the correct quantum trace map is given, one can generalize the state-
integral models with insertion of the Wilson loop operators along arbitrary knots
or links in M .

One big motivation for studying SL(2,C) Chern-Simons theory on a hyperbolic
knot complement S3\K is its relation to the volume conjecture [19, 20, 24]. The
conjecture relates a large n limit of the colored Jones polynomial Jn(K; q) to the
hyperbolic volume of its knot complement, S3\K. As its strongest version [16],
it is conjectured that the asymptotic limit is fully determined by a perturbative
expansion of the state-integral on M = S3\K. Our 3D quantum trace map can
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be naturally blended with these developments. We propose that the large n limit
of the ratio Jn,ñ=2(K ∪K; q)/Jn(K; q) can be fully captured by the state-integral
model for S3\K with an insertion of quantum trace operator associated with the
knot K. We think of K as a heavy knot with large color n while K as a light knot
with fixed color, ñ = 2. The leading order result is given by a simple function of
the hyperbolic length of the light knot K in the knot complement S3\K, and we
call it a length conjecture for an obvious reason.

2. Quantum trace map

After a brief review on the trace map of 3-manifold, we introduce a quantum
version of the map which we call quantum trace map.

2.1. Kauffman Skein modules. We begin by recalling the definitions of Kauff-
man Skein modules from [28, 4]. Let K be a hyperbolic knot in S3 and M be the
knot complement: M = S3\K. We restrict our discussion to hyperbolic knot com-
plements. Some of the statements below should be modified when M is a general
3-manifold.

We denote the Kauffman bracket Skein module on M by Sq[M ] and its ‘even’
submodule by Seven

q [M ]. The two modules are defined as

Sq[M ] :=
C[q±1/4]-module with basis {YK}(K: framed link in M)

〈YK+
− q−1/4YK0

− q1/4YK∞ , YK
⊔
© + (q1/2 + q−1/2)YK〉

,

Seven
q [M ] :=

C[q±1/4]-module with basis {YK}(K: framed ‘even’ link in M)

〈YK+ − q−1/4YK0 − q1/4YK∞ , YK
⊔
© + (q1/2 + q−1/2)YK〉

.

(1)

The basis includes YK=∅, where ∅ is the empty link. Here, K+,K0 and K∞, are
three framed links which are identical except in a small 3-ball, as depicted in Figure
1. K

⊔
© is the union of K with an unlinked, 0-framed unknot in the trivial

homotopy class. The YK in Sq[M ] is invariant under Reidemeister moves II, III

K K0 K∞

Figure 1. Kauffman triple

and modified Reidemeister move I on K but not under Reidemeister move I. This

Y
Y

Y−q3/4 −q−3/4=

=

Figure 2. YK under Reidemeister move I on K.
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is why the YK is labelled by framed link K. We call a link K =
⋃](K)
I=1 KI consisting

of ](K) knots an ‘even’ link if

](K)∏
I=1

sgn(KI) = +1 ,

and an ‘odd’ link otherwise. Here sgn(KI) ∈ {+1,−1} is defined as

sgn(KI) :=

{
+1, if [KI ] = 1 as an element of H1(M,Z2) = Z2 = {+1,−1} ,

−1, otherwise.

(2)

For later use, we consider a submodule Seven
q [M ] whose basis YK are labelled by

even links K on M . Note that the Kauffman bracket Skein relation is well-defined
in Seven

q , i.e. all three links in Kauffman triple share the same evenness/oddness
and K

⊔
© is even if K is even.

2.1.1. Skein algebra and trace map. In the special case q1/2 = 1, the Skein module
gives rise to the Skein algebra, V [M ] := Sq[M ]|q1/2=1.

YY
Figure 3. Kauffman bracket Skein relation at q1/2 = 1.

At q1/2 = 1, the Skein relation equates the over-crossing and the under-crossing,
as in Figure 3, so that the Skein algebra is a indeed a commutative C-algebra
equipped with the multiplication,

YK1
YK2

= YK2
YK1

:= YK1∪K2
.(3)

The C-algebra is generated by elements in π1(M) modulo some relations:

V [M ] =
C[Yγ : γ ∈ π1(M)]

〈Yγ1Yγ2 − Yγ2Yγ1 , Yγ1Yγ2 + Yγ1γ2 + Yγ1γ
−1
2

, Ye + 2〉
,

V even[M ] = {x ∈ V [M ] : x is even} .
(4)

Here e ∈ π1(M) is the identity element. The above relations imply that Yγ = Yγ−1

and Yγ depends only on the conjugacy class of γ in π1(M). General element x ∈
V even[M ] is given as∑

I

CI

nI∏
i=1

YγIi with γIi ∈ π1(M), CI ∈ C and

nI∏
i=1

sgn[γIi ] = 1 for all I.

The relations in the denominator come from the relations in the Skein module
Sq[M ] in eqn.(1) at q1/4 = −1. We choose q1/4 = −1 instead of q1/4 = 1 for a

later convenience. There is an algebra isomorphism between Sq[M ] at q1/4 = 1 and

Sq[M ] at q1/4 = −1.
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One interesting aspect of the Skein algebra is its relation to the coordinate ring
of SL(2,C) character variety X[M ], which is defined as

X[M ] := Hom
[
π1(M)→ SL(2,C)

]
/ ∼

where ρ1 ∼ ρ2 if Tr(ρ1(γ)) = Tr(ρ2(γ)) for all γ ∈ π1(M).
(5)

For our purposes, we consider the Z2-quotient of the variety, X[M ]/Z2, where the
Z2 is the action of H1(M,Z2) = Hom(π1M → Z2 = {±1}) = {1, η}:

X[M ]/Z2 = {ρ ∈ X[M ]}/ ∼
where ρ1 ∼ ρ2 if ρ1(γ) = η(γ)ρ2(γ) for all γ ∈ π1(M) .

(6)

One can naturally define an algebra homomorphism Φtr called trace map from
the Skein algebra V [M ] to the coordinate ring C[X(M)] (or from V even[M ] to
C[X(M)/Z2]), the algebra of functions on X(M), as follows

Φtr : V (M) (or V even(M))→ C[X(M)] (or C[X(M)/Z2]) , where

[Φtr(Yγ)](ρ) = −Tr(ρ(γ)) .
(7)

To see that the map is an algebra homomorphism, one needs to use the following
property of SL(2,C) matrices

Tr(A)Tr(B) = Tr(AB) + Tr(AB−1) , Tr(I) = 2 ,(8)

where I is the 2 × 2 identity matrix. The trace map is well-defined as a homo-
morphism from V even(M) to C[X(M)/Z2] since

∏n
I=1 η(γI) = 1 for

∏n
I=1 YγI ∈

V even(M). This section can be summarized by the diagram in Figure 4.

Seven
q [M ]

q1/2=1

��
Φtr : V even[M ] // C[X(M)/Z2]

Figure 4. Relations among Seven
q [M ] (even Kauffman bracket

Skein module), V even[M ] (even Skein algebra) and C[X(M)/Z2]
(coordinate ring of character variety). The relations suggest that
Seven
q [M ] can be considered as a quantization of C[X(M)/Z2].

For later use, we define the canonical component X0[M ] ⊂ X[M ] for a hyperbolic
knot complement M = S3\K as

X0[M ] := a connected component of X[M ] which contain ρhyp ,

ρhyp := an SL(2,C)-representation

corresponding to the complete hyperbolic structure .

(9)

In the same way, one can define X0(M)/Z2.
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2.2. Quantum gluing module. Following [5, 12], we define the quantum gluing

module Ĉq[T ] associated to an ideal triangulation T of M as

Ĉq[T ] =

(
C[q±1/4][ẑi, ẑ

′′
i , ẑ
−1
i , ẑ′′−1

i ])
/
〈ẑiẑ′′j − q−δij ẑ′′j ẑi〉

)
equivalence relations ∼

where Ô ∼ eĈI · Ô and Ô ∼ Ô · (ẑ−1
i + ẑ′′i ) .

(10)

Here i runs from 1 to |T |, the number of tetrahedra in the ideal triangulation. The

precise definition of the exponentiated internal edge operators eĈI can be found in
(130) in appendix A. Before taking the quotient by the equivalence relations, it is
a non-commutative algebra. After the quotient, it becomes just a C[q±1/4]-module
since the non-commutative multiplication is not compatible with the equivalence
relation and thus can not be well-defined in Ĉq[T ].

At q1/2 = 1, Ĉq[T ] becomes the algebra of functions on the gluing equation
variety χ[T ]

Ĉq[T ]|q1/2=1 ' C[χ[T ]] ,

χ[T ] := {zi, z′′i : z−1
i + z′′i − 1 = 0, eCI = 1}|T |i=1 .

(11)

For each element (zi, z
′′
i ) ∈ χ[T ], there is an associated representation [30]

ρT(z,z′′) ∈ Hom[π1(S3\K)→ PSL(2,C)](12)

We choose an ideal triangulation T which is a ρhyp-regular:

T is called ρhyp-regular if ∃(z, z′′)hyp ∈ χ[T ] such that ρT(z,z′′)hyp
= ρhyp .(13)

ρhyp is an SL(2,C)-representation in (9) but also can be regarded as an PSL(2,C) =
SL(2,C)/Z2-representation. Let us denote by χ0[T ] the connected component of
χ[T ] which contains (z, z′′)hyp. In general, the gluing equation variety χ[T ] depends
on the choice of ρhyp-regular triangulation T while the χ0[T ] does not [31]. The
component can be identified with

χ0[T ] ' X0(M)/Z2 .(14)

Another nice reason for restricting to the component χ0[T ] is that any PSL(2,C) =
SL(2,C)/Z2 representation ρT(z,z′′) with (z, z′′) ∈ χ0[T ] can be lifted to a SL(2,C)

representation. Thus, one can define the classical trace map Φtr : V even[M ] →
C[χ0[T ]] as follows

[Φ(Yγ)](z, z′′) = −Tr(ρT(z,z′′)(γ)) .(15)

The trace map is identical to the map in (7) under the identification χ0(T ) '
X0[M ]/Z2. The lifting from PSL(2,C)-representation to SL(2,C)-representation
is not unique and the two different upliftings, ρ and ρ̃, are related by the action of
H1(S3\K,Z2) = Hom[π1(S3\K)→ Z2] = {1, η}, i.e.

ρ̃(γ) = η(γ)ρ(γ) ,(16)

For even Yγ ∈ V even[M ], the trace map is well-defined, i.e. independent of the
choice of liftings, since η(γ) = 1.
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trTq : Seven
q [M ]

q1/4=−1

��

// Ĉq[T ]

q1/4=−1

��
Φtr : V even[M ] // C[X0[M ]/Z2] ' C[χ0[T ]]

Figure 5. Quantum trace map.

2.3. Quantum trace map and Length conjecture. The quantum trace map
for 2D surfaces with SL(2) was introduced in [2], and was generalized to groups of
higher rank in [11]. Here we introduce a 3D version of the quantum trace map.

Conjecture 2.1 (main conjecture). There exists a unique injective module homo-

morphism trTq : Seven
q [M ]→ Ĉq[T ] which satisfies the following properties:

I. At q1/4 = −1, the quantum trace map is identical to the trace map Φtr

(trTq )
∣∣
q1/4=−1

= Φtr as a map V even(M)→ C[X0(M)/Z2] .(17)

The relation between trTq and Φtr is summarized in Figure 5.

II. (All-order length conjecture) For an even link K =
⋃](K)
I=1 KI ⊂M = S3\K,

Jn,ñI=2(K ∪K; q)

Jn(K; q)

∣∣∣∣
q1/4=− exp( πi2k )

n=k; k→∞−−−−−−−−−−−→
∞∑
s=0

Z(hyp)
s (ÔK ;M)

(
2πi

k

)s
.

or equivalently,

log
Jn,ñI=2(K ∪K; q)

Jn(K; q)

∣∣∣∣
q1/4=− exp( πi2k )

n=k; k→∞−−−−−−−−−−−→
∞∑
s=0

W(hyp)
s (ÔK ;M)

(
2πi

k

)s
.

(18)

Here J denotes a variation of the colored Jones polynomial for framed links. While
the conventional colored Jones polynomial is an invariant of oriented links, our J
is an invariant of unoriented framed links. See Appendix B for the definition. In
the above, I = 1, . . . , ](K) and ñI denotes the ‘color’ of the I-th component.

The perturbative invariant W(hyp)
s (ÔK ;M) is determined by the quantum trace

operator

ÔK := trTq (YK) .(19)

More generally, for an element Y =
∑
a CaYKa ∈ Seven

q [M ],

ÔY := trTq (Y ) =
∑
a

CaÔKa .(20)

The operator ÔK is a Ĉq[T ]-valued invariant of unoriented framed links.

By incorporating the Ô with the state-integral model [5], the perturbative invari-

ants {W(hyp)
s (ÔK ;M),Z(hyp)

s (ÔK ;M)}∞s=0 can be obtained from the perturbative
expansion of the state-integral model. The explicit form of the state-integral model
and its perturbative expansion using Feynman diagram will be given in section 3.
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Two perturbative expansions are related to each other by exponential or loga-
rithm, i.e.

exp

( ∞∑
s=0

W(hyp)
s ~s

)
=

∞∑
s=0

Z(hyp)
s ~s as a formal power series in ~.(21)

The leading “classical” coefficient Zhyp
s=0(ÔK ;M) is simply given by

Z(hyp)
s=0 (Ô;M) :=

(
Ô|q1/4→−1

) ∣∣∣∣
(zi,z′′i )=(z′i,z

′′
i )hyp

.(22)

Here Ô|q1/4→−1 is regarded as an element in C[χ0(T )]. The classical value is

Zhyp
s=0(ÔK ;M) = Tr ([Φtr(YγK )](ρhyp)) ,

or equivalently, W(hyp)
s=0 (ÔK ;M) = log ([Φtr(YγK )](ρhyp)) .

(23)

Here YγK =
∏n
I=1 YγI is an element of the Skein algebra obtained from YK at

q−1/4 = −1 and ρhyp ∈ Hom[π1(M) → SL(2,C)] is an SL(2,C) flat connection
corresponding to the complete hyperbolic structure on M . The classical part is
related to the complex length of the geodesic (hence the name “length conjecture”)
by

[Φtr(YγK )](ρhyp) :=

](K)∏
I=1

(−Tr(ρhyp(γI))) =

](K)∏
I=1

(−e 1
2 `C(γI) − e− 1

2 `C(γI)) .(24)

`C(γI) denotes the complexified length of a geodesic in the same homotopy class as
γI of KI

To prove the length conjecture in (18) and (23), we only need to prove them for
basis {YKa} of Seven

q [M ]. It is obvious for (18) since for YK =
∑
a Ca(q1/4)YKa ,

Jn,ñI=2(K ∪K; q) =
∑
a

Ca(q1/4)Jn,ñI=2(K ∪Ka; q) ,(25)

and the perturbative invariants Z(hyp)
s (ÔYK ) satisfy

∞∑
s=0

Z(hyp)
s (ÔK ;M)~s =

∑
a

Ca(q1/4 = −e ~
4 )

(∑
s

Z(hyp)
s (ÔKa ;M)~s

)
.(26)

The relation in (23) is valid for arbitrary ÔK if it holds for every basis since

Φtr(YγK )(ρ) =
∑
a

Ca(q1/4 = −1)Φtr(YγK )(ρ) ,

for arbitrary ρ ∈ Hom [π1M → SL(2,C)] ,

(27)

which follows from the fact that the quantum trace map trTq is a module homomor-

phism and it becomes the classical trace map Φtr in (7) at q1/4 = −1.

III. For an even link K and a meridian knot©m, a knot linking the heavy knot K,

ÔKt©2
m

= Ô©2
m
· ÔK , where Ô©2

m
:= 2 + eM̂ + e−M̂ .(28)

See (131) for the definition of e±M̂ and Figure 8 for the knot ©m. The operator

Ô©2
m

always commutes with eĈI and thus the left multiplication is well-defined in
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Ĉq[T ]. In section 3, we will see that

∞∑
s=0

Z(hyp)
s (ÔKt©2

m
)~s = 4

∞∑
s=0

Z(hyp)
s (ÔK)~s(29)

for an arbitrary knot K in M = S3\K. It is compatible with the all-order length
conjecture (18) since

Jn,ñI=2(K ∪ (K t©2
m)) = (qn/2 + q−n/2)2 × Jn,ñI=2(K ∪K) ,

and (qn/2 + q−n/2)2|q=exp(2πi/k),n=k = 4 .
(30)

Here we use the property of our Jones polynomial depicted in Figure 8 .

3. Perturbative knot invariants

We recall and extend state-integral models from [5, 9, 12] to define the pertur-

bative knot invariants {Z(hyp)
s (ÔK ;M)}∞s=0.

3.1. State-integral model with quantum trace map. The state-integral model
is based on an ideal triangulation T of M = S3\K and can be written as in the
following form using Dirac brackets (k := |T |)

Z~[M + Ô;Xm]

= 〈Xm, C1, . . . , Ck−1; ΠM,C |Ô(q
1
4 = −e ~

4 )|∆⊗k〉
∣∣
C1=...=Ck−1=0

,

=

∫ k∏
i=1

dZi√
2π~
〈Xm, C1, . . . , Ck−1; ΠM,C |Z1, . . . , Zk; ΠZ〉〈Z1, . . . , Zk; ΠZ |Ô|∆⊗k〉 .

(31)

The state-integral is a function on a meridian variable Xm. Here |X1, . . . , Xk; ΠX〉
denotes the position basis of (H(∂∆))

⊗k
, the Hilbert-space associated with the k-

tetrahedra [5], with respect to a polarization choice ΠX = (X1, . . . , Xk, P1, . . . , Pk)T :

〈X1, . . . , Xk; ΠX |eX̂i |ψ〉 = eXi〈X1, . . . , Xk; ΠX |ψ〉 and

〈X1, . . . , Xk; ΠX |eP̂i |ψ〉 = 〈X1, . . . , Xk; ΠX |ψ〉|Xi→Xi+~, ∀|ψ〉 ∈ (H(∂∆))
⊗k

.

(32)

Here two polarizations ΠM,C and ΠZ are

ΠM,C =



M
C1

. . .
Ck−1

1
2L
Γ1

. . .
Γk−1


, ΠZ =



Z1

Z2

. . .
Zk
Z ′′1
Z ′′2
. . .
Z ′′k


(33)

and they are related to each other by a linear canonical transformation

ΠM,C = g ·ΠZ − (iπ +
~
2

)

(
~ν
~νp

)
, where g ∈ Sp(2k,Z) and ~ν, ~νp ∈ Zk .(34)
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Γ’s are chosen such that the linear transformation becomes a canonical transforma-
tion. The choice is not unique but the final state-integral does not depend on it.
The two position bases are related to each other by following unitary transformation

〈Xm, C1, . . . , Ck−1; ΠM,C |Z1, . . . , Zk; ΠZ〉

=
1√

detB
exp

(
1

2~
Q( ~X, ~Z)

) ∣∣∣∣~Z=(Z1,...,Zk)

~X=(Xm,C1,··· ,Ck−1)

with

Q( ~X, ~Z) = ~ZB−1A~Z + ~XDB−1 ~X + (2πi+ ~)~fB−1 ~X + (iπ +
~
2

)2 ~fB−1~ν

− ~ZB−1((2iπ + ~)~ν + 2 ~X) .

(35)

Here A,B,C and D are the four (k × k) block matrices of g:

g =

(
A B
C D

)
.(36)

The vectors (~f, ~f ′′) = (fi, f
′′
i )ki=1 are known as combinatorial flattening, and chosen

to satisfy the following relation(
A B
C D

)
·

(
~f
~f ′′

)
=

(
~ν
~νp

)
.(37)

|∆⊗k〉 ∈ (H(∂∆))
⊗k

is the wave-function for k-tetrahedra satisfying the following
difference equations

(eẐ
′′
i + e−Ẑi − 1)|∆⊗k〉 = 0 , i = 1, . . . k.(38)

In the polarization ΠZ , the wave-function is given by a product of quantum dilog-
arithms (see Appendix C for our convention for the quantum dilogarithm)

〈Z1, . . . , Zk; ΠZ |∆⊗k〉 =

k∏
i=1

ψ~(Zi) .(39)

Gathering all the expressions above, one has

Z~[M + Ô;Xm]

=
1√

detB

∑
α

Cα(q
1
4 )
∣∣
q

1
4 =−e

~
4

∫ k∏
i=1

dZi√
2π~

exp

(
1

2~
Q( ~X, ~Z)

) ∣∣∣∣~Z=(Z1,...,Zk)

~X=(Xm,··· ,Ck−1)

× 〈Z1, . . . , Zk; ΠZ |
∏
i

ẑ
a

(α)
i
i (ẑ′′i )b

(α)
i |∆⊗k〉 ,

=
1√

detB

∑
α

Cα(q
1
4 )
∣∣
q

1
4 =−e

~
4

∫ k∏
i=1

dZi√
2π~

exp

(
1

2~
Q( ~X, ~Z)

) ∣∣∣∣~Z=(Z1,...,Zk)

~X=(Xm,··· ,Ck−1)

×
k∏
i=1

ψ~(Zi + b
(α)
i ~) exp

(
a

(α)
i Zi

)
,

(40)

when Ô =
∑
α Cα(q

1
4 )
∏
i ẑ
a

(α)
i
i (ẑ′′i )b

(α)
i ∈ Ĉq[T ]. From the expression in (31), it is

not difficult to see that the Z~[M + Ô;Xm] with Ô ∈ Ĉq[T ] is well-defined (recall
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the definition of Ĉq[T ] in (10)), i.e.

Z~[M + Ô] = Z~[M + eĈI · Ô] = Z~[M + Ô · (ẑ−1
i + ẑ′′i )](41)

It is also straightforward to see that

Z~[M + F (eM̂) · Ô] = F (eXm)Z~[M + Ô] ,(42)

for arbitrary Laurent polynomial F (z) and Ô ∈ Ĉq[T ].

3.2. Perturbative invariants. We are ready to define and explain the pertur-

bative invariants {Z(hyp)
s (Ô;M)}∞s=0. By expanding the state-integral in the limit

~ → 0 around the saddle point ~Z(hyp) associated to complete hyperbolic structure
of M , one have

Z~[M + Ô;Xm = 0]
~→0−−−−−−→ exp

( ∞∑
n=0

S(hyp)
n (Ô;M)~n−1

)
.(43)

In the expansion, one can use the asymptotic expansion of the quantum dilogarithm

function in (155). Then, we define the perturbative invariants {Z(hyp)
s ,W(hyp)

s }∞s=0

as

exp
(∑∞

n=0 S
(hyp)
n (Ô;M)~n−1

)
exp

(∑∞
n=0 S

(hyp)
n (M)~n−1

) =

∞∑
s=0

Z(hyp)
s (Ô;M)~s

= exp

( ∞∑
s=0

W(hyp)
s (Ô;M)~s

)
.

(44)

Here S
(hyp)
n (M) := S

(hyp)
n (ÔK=∅;M) is the perturbative invariant of state-integral

model without any insertion of loop operator. From the definition, one can see that
the relation in (29) simply follows from (42) with F (x) = 2+x+ 1

x and Xm = 0. In

the classical limit ~→ 0, saddle points {~Z = ~Z(α)} of the state-integral at Xm = 0
satsify following equations

k∏
j=1

z
Aij
j (1− z−1

j )Bij
∣∣
zi=exp(Z

(α)
i )

= (−1)νi .(45)

For ρhyp-regular ideal triangulation T , the saddle point ~Z(hyp) is uniquely charac-

terized by following conditions (z
(hyp)
i := exp(Z

(hyp)
i ))

Im[z
(hyp)
i ] < 0 for all i = 1, . . . , k .(46)

Example 3.1. As an example, consider the case with M = S3\41. Its simplest
ideal triangulation consists of two tetrahedra, say ∆Y and ∆Z , with edge parame-
ters

(y, y′, y′′) = (eY , eY
′
, eY

′′
) and (z, z′, z′′) = (eZ , eZ

′
, eZ

′′
).

Using the gluing data given in Appendix A, we have
M
C1
1
2L
Γ1

 =


0 −1 1 0
1 1 −1 −1
0 1 0 −1
0 0 1 0

 ·

Y
Z
Y ′′

Z ′′

 .(47)
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The corresponding state-integral model is [5, 9]

Z~(S3\41;Xm) = 〈Xm, C1 = 0|∆⊗2〉 ,

=

∫
dY dZ

2π~
exp

(
1

2~
(X2

m − 2XmY + 2XmZ − 2Y Z)

)
ψ~(Y )ψ~(Z) .

(48)

The saddle points of the integral are the solutions of the following equations:

∂Y,Z

(
Li2(e−Y ) + Li2(e−Z) +

1

2
X2

m +XmZ −XmY − Y Z
)

= 0 ,

=⇒ −Z + log(1− e−Y ) = Xm , −Y + log(1− e−Z) = −Xm .

(49)

The saddle point equations coincide with the (logarithmic) gluing equations of the
ideal triangulation. At Xm = 0, there are two saddle points,

(α) = (hyp) : Y = Z =
iπ

3
,

(α) = (hyp) : Y = Z = − iπ
3
.

(50)

We now extend the state-integral model for S3\41 to include a quantum trace

map ÔKb , where Kb is the geodesic knot in the homotopy class b ∈ π1(S3\41), see
Figure 6. The classical trace map is

Φtr(YKb) = −(y−1 + z−1 − y−1z−1) ∈ C[χ[T ]] .(51)

The expression is obatined using the holonomy matrices in (140) and the gluing
equation varieity χ[T ] is given in (139). After quantization, we assume that the
quantum loop operator is given as

ÔKb = trq(YKb) = −C1ŷ
−1 − C2ẑ

−1 + C3ŷ
−1ẑ−1 ∈ Ĉq[T ](52)

where {Cα=1,2,3} are Laurent polynomials in q1/4 which all become 1 in the limit

q1/4 → −1. Later in section 4, we will propose that C1 = C2 = C3 = q1/2 = e
~
2

and check it against the all-order length conjecture. Under the quantization, the
state-integral is

Z~

[
S3\41 + ÔKb ;Xm = 0

]
=

∫
dY dZ

2π~
exp

(
−Y Z

~

)
ψ~(Y )ψ~(Z)× e~/2

(
−e−Y − e−Z + e−Y−Z

)
.

(53)

For K2
b (2-cabling of Kb), the classical trace map is

Φtr(YK2
b
) = (Φtr(YKb))

2
= (y−1 + z−1 − y−1z−1)2 ∈ C[χ0[T ]] .(54)

After quantization, as will be proposed in section 4, the quantum loop operator is

ÔK2
b

= q(ŷ−1 + ẑ−1 − ŷ−1ẑ−1)2 + 1− q2 ∈ Ĉq[T ] .(55)

The state-integral with the loop operator is

Z~

[
S3\41 + ÔK2

b
;Xm = 0

]
=

∫
dY dZ

2π~
exp

(
−Y Z

~

)
ψ~(Y )ψ~(Z)×

(
e~
(
e−Y + e−Z − e−Y−Z

)2
+ 1− e2~

)
.

(56)
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3.3. Feynman perturbation theory for the invariants. In this section we will
give an expression for the invariants {Whyp

s (ÔK ;M)}∞s=0 using Feynman diagrams

following [9].The quantum loop operator Ô can be generally given in the following
form

Ô =
∑
α

Cα(q1/4)Ôα =
∑
α

Cα(q1/4)
∏
i

ẑ
a

(α)
i
i (ẑ′′i )b

(α)
i .(57)

Giving an explicit formula for each of the terms Whyp
s (ÔK ;M) is quite involved.

We will instead give an implicit expression in terms of the perturbative expansion
of each term Z~(M + Ôα;Xm) in the expression

Z~(M + Ô;Xm) =
∑
α

Cα(q
1
4 )Z~(M + Ôα;Xm)

∣∣
q

1
4 =−e

~
4
,(58)

which we denote them as S
(c)
n;α:

Z~(M + Ôα;Xm)

=
1√

detB

∫ k∏
i=1

dZi√
2π~

exp

(
1

2~
Q(Z,Xm)

)
ea

(α)·Z
k∏
i=1

ψ~(Zi + b
(α)
i ~)

around a saddle point Z(c) in ~→ 0−−−−−−−−−−−−−−−−−−−−−−−−→ exp

( ∞∑
n=0

~n−1S(c)
n;α

)
.(59)

The expansion can be obtained by considering the expansion Zi = Z
(c)
i + Yi. So,

the integral expression becomes

Z~(M + Ôα;Xm) =
eΓ(0)

√
detB

∫ k∏
i=1

dYi√
2π~

e
1
2~YiH

ijYj

k∏
i=1

e
∑∞
s=1 Γ

(s)
i Y si /s!,(60)

where we defined

Hij := (B−1A)ij + (zjz
′′
j )−1δij ,(61)

the ‘vacuum energy’:

Γ(0) = F (Xm, Z
(c)) +

k∑
i=1

∞∑
n=1

Bn(1 + b
(α)
i )~n−1

n!
Li2−n

(
e−Z

(c)
i

)
,(62)

where Bn(1 + b
(α)
i ) denotes the Bernoulli polynomials evaluated at 1 + b

(α)
i and

F (Xm, Z
(c)) :=

1

2~
Q(Z(c), XA) + a · Z(c) +

1

~
∑
i

Li2(e−Z
(c)
i ),

the linear vertex

Γ
(1)
i = a

(α)
i +

1

2
−
∞∑
n=1

Bn(1 + b
(α)
i )~n−1

n!
Li1−n

(
e−Z

(c)
i

)
,(63)

and higher valence vertices (k ≥ 2):

Γ
(k)
i = (−1)k

∞∑
n=0

Bn(1 + b
(α)
i )~n−1

n!
Li2−n−k

(
e−Z

(c)
i

)
.(64)
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Then, the coefficients S
(c)
n;α can be computed as sums over Feynman diagrams corre-

sponding to non-directed graphs, without open edges, which we denote as GΓ. The
situation is completely analogous to [9], with a slight modification on the valence
of the vertices. We associate a weight to each GΓ:

W (GΓ) :=
1

|Aut(GΓ)|
∑

labels

∏
v∈vertices

Γ
(kv)
lv

∏
e∈edges

Πe(65)

here lv is the set of labels corresponding to the legs of the vertex v in the graph and
kv its valence. Given a graph GΓ we denote L the number of loops, Va the number
of vertices of valence a. We define

Gn := {GΓ : L+ V1 + V2 ≤ n}(66)

then, the S
(c)
n;α coefficients are given by

S
(c)
0;α = coeff[Γ(0), ~−1],(67)

the 1-loop term:

eS
(c)
1,α =

ecoeff[Γ(0),~0]

√
detB

ik√
detH

,(68)

and for n ≥ 2:

Sαn,k = coeff

{
Γ(0) +

∑
GΓ∈Gn

W (GΓ), ~n−1

}
n ≥ 2.(69)

Now we can use these results to compute the invariants {Whyp
s (Ô;M)}∞s=0. First

denote

Z~(M + Ô;Xm)

Z~(M ;Xm)
=

1

Z~(M ;Xm)

∑
α

Cα(q
1
4 )Z~(M + Ôα;Xm)

around a saddle point Z(c) in ~→ 0−−−−−−−−−−−−−−−−−−−−−−−−→
∑
α

Cα(q
1
4 = −e ~

4 ) exp

( ∞∑
n=1

~n−1S̃(c)
n,α

)
(70)

where

S̃(c)
n,α := S(c)

n,α − S(c)
n (M) n ≥ 1(71)

and we have used the fact that

S
(c)
0 (M) = S

(c)
0,α for all α.(72)

Therefore, the expression of S̃
(c)
n,α, n ≥ 1 in terms of Feynman diagrams reduce

exactly to the same computation than S
(c)
n (M), presented in [9] with two modifi-

cations in the vertices:

(1) The vertices of valence 0 and 1 becomes

Γ(0) = a(α) · Z(c) +

k∑
i=1

∞∑
n=1

(Bn(1 + b
(α)
i )−Bn)~n−1

n!
Li2−n

(
e−Z

(c)
i

)
,

Γ
(1)
i = a

(α)
i −

∞∑
n=1

(Bn(1 + b
(α)
i )−Bn)~n−1

n!
Li1−n

(
e−Z

(c)
i

)
,(73)
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(2) The coefficient Bn = Bn(1) is replaced by Bn(1− b(α)
i )−Bn in the vertex

Γ
(s)
i , s ≥ 2

The coefficients Cα are Laurent polynomials in q1/4, so they can be expanded in
power series in ~:

Cα(q
1
4 = −e ~

4 ) =
∑
s≥0

~sfs,α .(74)

Therefore, the series expression in (70) can be written as a formal power series in
~ whose O(~0) term is given by

Z~(M + Ô;Xm)

Z~(M ;Xm)
=
∑
c

W (c)
γ +O(~)(75)

where W
(c)
K :=

∑
α f0,αe

S̃
(c)
1,α is the classical expectation value of the light knot K

at the saddle point (c). Therefore, for a fixed saddle point (c) we can write (75) as

ln
(
W

(c)
K

)
+ ln

(
1 + P (c)(~)

)
,(76)

where P (c)(~) is a power series in ~, without a constant term. Hence, the Taylor

series of the logarithm defines the invariants {W(hyp)
s (ÔK ;M)}∞s=0. They become

very involved as s grows larger and we find it not very illuminating to include a
general formula here. Instead we we will present explicit expressions for s = 0, 1.

For s = 0, we get the classical expectation value, as remarked above

W class
K := exp

(
W(hyp)

0 (Ô;M)
)

=
∑
α

f0,αe
S̃

(hyp)
1,α

=
∑
α

Cα(q1/4 = −1)
∏
i

(z′′i )b
(α)
i z

a
(α)
i
i ,

(77)

where z′′i = (1−e−Zi) and zi = eZi are evaluated at the saddle point Z(hyp) in (46).

Hence the value of exp
(
W(hyp)

0 (Ô;M)
)

coincides with the classical expectation

value of Ô, as expected.
For s = 1, we get

W(hyp)
1 (Ô;M) =

∑
α(f1,α + f0,αS̃

(hyp)
2,α )eS̃

(hyp)
1,α

W class
K

,(78)

where the explicit expressions for S̃
(hyp)
1,α , S̃

(hyp)
2,α can be obtained with the help of

the Feynman diagram expansion as described above. In the next section we will
provide explicit exampled for links in the figure-eight knot-complement.

4. Example : figure-eight knot-complement

We explicitly define the quantum trace map for M = S3\41 and prove (or
numerically check) some parts of conjecture in (2.1).

The Skein module for M = S\41 is studied in [3]:

Sq(S3\41) = C[q±1/4]-module with basis {YKn
b t©m

m
}m≥0,0≤n≤2

⇒

Seven
q (S3\41) = C[q±1/4]-module with basis {YKn

b t©2m
m
}m≥0,0≤n≤2

(79)
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Where ©m is the meridian knot, i.e. the knot in the red color, and Kb is the knot
in green color depicted in Figure 6. Kb is an even knot while ©m is an odd knot.
Kn denotes the n-cabling of a knot K.

 a

  b

  c

Figure 6. Three generators of fundamental group, given in (133),
of the figure-eight knot complement.

4.1. Explicit quantum trace map. The quantum gluing module Ĉq[T ] for an
ideal triangulation T in Appendix A is

Ĉq[T ] =
C[q±1/4][ŷ±1, ẑ±1, (ŷ′′)±1, (ẑ′′)±1]

/
〈ẑẑ′′ − q−1ẑ′′ẑ, ŷŷ′′ − q−1ŷ′′ŷ〉

equivalence relations ∼
,

where Ô ∼ q−1ŷẑ(ŷ′′ẑ′′)−1Ô , Ô ∼ Ô · (ŷ−1 + ŷ′′) and Ô ∼ Ô · (ẑ−1 + ẑ′′) .

(80)

We propose following quantum trace map trTq : Seven
q [M ]→ Ĉq[T ]

trTq (Y©2m
m

) = (ŷ′′/ẑ + ẑ/ŷ′′ + 2)
m
,

trTq (YKbt©2m
m

) = −q1/2 (ŷ′′/ẑ + ẑ/ŷ′′ + 2)
m (

ŷ−1 + ẑ−1 − ŷ−1ẑ−1
)
,

trTq (YK2
bt©2m

m
) = (ŷ′′/ẑ + ẑ/ŷ′′ + 2)

m (
q(ŷ−1 + ẑ−1 − ŷ−1ẑ−1)2 − q2 + 1

)
.

(81)

Assuming the conjecture III in (2.1) and using the fact eM̂ = ŷ′′/ẑ, the only non-
trivial parts of the proposal are trTq (YKb) and trTq (YK2

b
). We support the proposal

by checking the all-order length conjecture.

The perturbative invariant W(hyp)
s (ÔK ;S3\41) defined in (44) for K = Kb and

K = K2
b can be computed by expanding the state-integral models in (53) and (56)

around the saddle point in (50). Up to s = 2, one has

2∑
s=0

W(hyp)
s (ÔKb ;S

3\41)~s =
7iπ + 3 log 3

6
+
i
√

3 + 6

18
~ +

i

18
√

3
~2 ,

2∑
s=0

W(hyp)
s (ÔK2

b
;S3\41)~s =

iπ + 3 log 3

3
+
i
√

3 + 2

3
~ +

i
√

3 + 6

27
~2 .

(82)

The leading part is related to the complex length of γb as follows

W(hyp)
0 (ÔKb ;S

3\41) = log
(
−
(
e`C(γb)/2 + e−`C(γb)/2

))
=

7iπ + 3 log 3

6
' 0.549306 + 3.66519i .

W(hyp)
0 (ÔK2

b
;S3\41) = 2W0(ÔKb ;S

3\41) (mod 2πi)

' 1.09861 + 1.0472i .

(83)
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4.2. Test of the length conjecture - analytic proof up to 1-loop. For the
figure-8 knot complement, one of the proofs of the classical volume conjecture [23]
is based on the Habiro-Lê formula [17, 22] for the Jones polynomial:

Jn(q) :=
Jn(K = 41; q)

Jn(©; q)

=

n−1∑
k=0

k∏
j=1

(
q(n−j)/2 − q−(n−j)/2

)(
q(n+j)/2 − q−(n+j)/2

)
=

n−1∑
k=0

wn,k(q) .

(84)

At q = e2πi/n, the function wn,k(q) simplifies quite a bit:

wn,k(q = e2πi/n) =

k∏
j=1

4 sin2

(
jπ

n

)
.(85)

In the remainder of this section, wn,k will mean this this product depending on n

and k. Since wn,k is positive definite, it makes sense to regard J∗n := Jn(q = e2πi/n)
as a sort of partition function, and use it to define a probability distribution:

pn,k :=
wn,k
J∗n

, pn,k ≥ 0 ,

n∑
k=0

pn,k = 1 .(86)

(The two boundary cases, k = 0 and k = n, have zero probability.)
We provide an analytic proof of the length conjecture for the figure 8-knot com-

plement in the presence of the Kb or K2
b . In this context, the length conjecture is

a prediction on the large n limit of the series,

AKbn = log

(
J∗n,2
J∗n

)
, A

K2
b

n = log

(
1 +

J∗n,3
J∗n

)
.(87)

Our proof relies on simple formulas for Jn,2(q) and Jn,3(q):

Jn,2(q) :=
(−1)× Jn,ñ=2(K = 41 ∪Kb; q)

Jn(©; q)

= q1/2Jn(q) + q−1/2
n−1∑
k=0

q−kwn,k(q) ,

(88)

Jn,3(q) :=
Jn,ñ=3(K = 41 ∪Kb; q)

Jn(©; q)

= (1 + q)

n−1∑
k=0

q−kwn,k(q) + q−1
n−1∑
k=0

q−2kwn,k(q) .

(89)

For Jn,2, we include a sign factor to compensate the sign factor appearing in (148).
After the compensation, it becomes identical to the conventional Jones polynomial.
These formulas are conjectural. We have verified that they agree with computations
based on braid diagrams and R-matrices up to n = 20. It would be interesting to
derive these formulas from first principles, for example, using recursion relations [15]
which proved extremely useful for Jones polynomials for single-component knots.
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With the probability interpretation of (86), the series An are rephrased as

AKbn = log
(
q1/2 + q−1/2En,1

)
, En,a =

∑
k

q−akpn,k ,

A
K2
b

n = log
(
1 + (1 + q)En,1 + q−1En,2

)
.

(90)

We recognize En,a as the expectation value of the function q−ak with respect to the
probability distribution pn,k.

As explained in e.g. [23], wn,k for fixed n reaches its maximum value at k/n =
5/6. As n increases, the ratio of the maximum value to generic values becomes
exponentially large. So, as in a typical problem in statistical mechanics, we can
approximate the probability distribution as Gaussian.

At the classical (s = 0) level of the conjecture, the only information we need is
the position of the peak of the Gaussian:

En,1 ≈ q−k|(k/n=5/6) = e−5πi/3 , En,2 ≈ q−2k|(k/n=5/6) = e−4πi/3 .(91)

It gives the leading contribution to An, which agrees with the prediction of the
state integral model:

lim
n→∞

AK=b
n = log(1 + e−5πi/3) =

1

6
(3 log 3 + πi) .

lim
n→∞

AK=b2

n = log(1 + 2e−5πi/3 + e−4πi/3) =
1

3
(3 log 3 + πi) .

(92)

To proceed to the 1-loop (s = 1) level, we need to improve upon the Gaussian
approximation. To prepare for a continuum limit, we define

x :=
k

n
, 0 ≤ x ≤ 1 .(93)

A key step is to apply the Euler-Maclaurin formula, including the leading correction
term, to approximate wn,k by a continuous function,

wn,k
wn,n/2

≈ w̃n(x) := exp

(
2n

∫ x

1/2

log[2 sin(πy)]dy + log

[
sin(πx)

sin(π/2)

])
.(94)

Then, the quantity En,a can be approximated by the ratio of two integrals,

En,a ≈
(∫ 1

0

w̃n(x)dx

)−1 ∫ 1

0

e−2πiaxw̃n(x)dx .(95)

To evaluate these integrals up to the (1/n) order, we change the variable

x =
5

6
+

1√
n
t ,(96)

and expand the exponents to relevant orders,

w̃n(x) ≈ exp

(
−
√

3πt2 − 3
√

3πt+ 4π2t3

3
√
n

)
,

e−2πiax ≈ e−5πia/6 exp

(
−2πia√

n
t

)
.

(97)
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Treating the (1/
√
n) terms in the exponents perturbatively, we find

AKbn =
1

6
(3 log 3 + πi) +

6 + i
√

3

18

(
2πi

n

)
+O

(
1

n

)2

,

A
K2
b

n =
1

3
(3 log 3 + πi) +

2 + i
√

3

3

(
2πi

n

)
+O

(
1

n

)2

,

(98)

in perfect agreement with (82) to the one-loop order (s = 1) up to an additive
factor of iπ in AKbn which is due to the (−1) in our definition of (88).

4.3. Test of the length conjecture - numerical check. For a numerical check
below, we define two sequences from the truncated invariants,

BKn :=


∑2
s=0Ws(ÔK ;S3\41)~s

∣∣∣∣
q=exp( 2πi

n )

− iπ, K = Kb∑2
s=0Ws(ÔK ;S3\41)~s

∣∣∣∣
q=exp( 2πi

n )

, K = K2
b .

(99)

On the Jones-polynomial side, we introduce two sequences,

AKbn := log
(−1)× Jn,ñ=2(41 ∪Kb; q)

Jn(41; q)

∣∣∣∣
q=exp( 2πi

n )

,

A
K2
b

n := log
Jn,ñ=2(41 ∪K2

b ; q)

Jn(41; q)

∣∣∣∣
q=exp( 2πi

n )

= log
Jn,ñ=3(41 ∪Kb; q) + Jn(41; q)

Jn(41; q)

∣∣∣∣
q=exp( 2πi

n )

.

(100)

The numerical values of AKn up to n = 30 are given in Table 1.
The numerical data for An is plotted against the continuous graph of Bn in

Figure 7. The two plots appear to converge as n increases. To estimate the error
more precisely, we define the two-loop error coefficients as

CKn = n3|AKn −BKn | , Kb or K2
b .(101)

Their numerical values are also given in Table 1. After some fluctuations for small
n, say n ≤ 15, they begin to converge slowly to a fixed O(1) constant. This
tendency suggests that the error |An−Bn| is approximately O(1/n)3. So, as far as
the numerical experiment is concerned, we have confirmed that the all order length
conjecture holds up to two-loop order (s = 2).

5. 3D index with quantum trace map

We discuss the 3D index with quantum trace map, which we call IM+Ô(m, e; q)

and IMP/Q+Ô(q), extending the previous works [7, 14, 13].

The 3D index for a single tetrahedron is

I∆(m, e) :=

∞∑
n=[e]

(−1)nq
1
2n(n+1)−(n+ 1

2 e)

(q)n(q)n+e
,

where [e] :=
1

2
(|e| − e) and (q)n := (1− q)(1− q2) . . . (1− qn) .

(102)
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n AKbn CKbn A
K2
b

n C
K2
b

n

2 0.4700 + 1.5708i 3.10
3 0.4345 + 1.1336i 2.74 −0.6844 + 0.9147i 35.4
4 0.4321 + 0.9545i 2.34 −0.4575 + 1.2120i 46.8
5 0.4403 + 0.8650i 3.67 −0.1391 + 1.4199i 49.7
6 0.4515 + 0.8126i 5.42 0.1251 + 1.4814i 49.8
7 0.4627 + 0.7774i 6.71 0.3133 + 1.4831i 48.6
8 0.4725 + 0.7512i 7.38 0.4469 + 1.4640i 46.5
9 0.4808 + 0.7304i 7.56 0.5444 + 1.4387i 44.1

10 0.4877 + 0.7131i 7.41 0.6176 + 1.4126i 41.5
11 0.4935 + 0.6983i 7.06 0.6742 + 1.3878i 39.0
12 0.4983 + 0.6856i 6.63 0.7190 + 1.3651i 36.8
13 0.5023 + 0.6744i 6.19 0.7552 + 1.3446i 34.9
14 0.5058 + 0.6647i 5.78 0.7851 + 1.3261i 33.2
15 0.5087 + 0.6560i 5.42 0.8102 + 1.3096i 31.8
16 0.5113 + 0.6483i 5.11 0.8316 + 1.2947i 30.6
17 0.5136 + 0.6414i 4.85 0.8499 + 1.2813i 29.7
18 0.5156 + 0.6353i 4.63 0.8659 + 1.2693i 28.9
19 0.5174 + 0.6297i 4.46 0.8800 + 1.2583i 28.2
20 0.5190 + 0.6246i 4.31 0.8924 + 1.2484i 27.7
21 0.5205 + 0.6200i 4.19 0.9035 + 1.2393i 27.2
22 0.5218 + 0.6158i 4.09 0.9135 + 1.2310i 26.8
23 0.5230 + 0.6119i 4.01 0.9225 + 1.2233i 26.4
24 0.5241 + 0.6084i 3.94 0.9306 + 1.2163i 26.1
25 0.5251 + 0.6051i 3.88 0.9381 + 1.2098i 25.9
26 0.5260 + 0.6021i 3.83 0.9449 + 1.2038i 25.6
27 0.5269 + 0.5992i 3.78 0.9511 + 1.1982i 25.4
28 0.5277 + 0.5966i 3.74 0.9569 + 1.1929i 25.2
29 0.5284 + 0.5942i 3.71 0.9622 + 1.1881i 25.1
30 0.5291 + 0.5919i 3.67 0.9672 + 1.1835i 24.9
∞ 1

2 log 3 + πi
6 log 3 + πi

3
≈ 0.5493 + 0.5236i O(1) ≈ 1.0986 + 1.0472i O(1)

Table 1. Numerical test of the length conjecture for the 41 knot
with Kb and K2

b .

The 3D index for M = S3\K with an insertion on quantum loop operator

Ô =
∑
α

Cα(q1/4)

k∏
i=1

ẑ
a

(α)
i
i (ẑ′′i )b

(α)
i ∈ Ĉq[T ](103)
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Figure 7. Numerical test of the length conjecture for Kb (above)
and K2

b (below). The lower/upper data on the same plot represent
the real/imaginary parts, respectively. The dots are the numerical
data from AKn , the curves are from the continuous function BKn .

is given as

IM+Ô(m, e; q)

=
∑
α

Cα

∑
{m}

(−q−1/2)〈ν,γ〉
k∏
i=1

I∆(mi + b
(α)
i , ei − a(α)

i )q[a,b;m,e]
(α)
i

∣∣∣∣∣
γ=g−1·γ̃

 ,

with {m} = {mc1 , . . . ,mck−1
} ,

γ := (m1, . . . ,mk, e1, . . . , ek)T , γ̃ = (m,mc1 , . . . ,mck−1
, e, 0, . . . , 0)T ,

〈ν, γ〉 :=

k∑
i=1

((νp)imi − νiei) , [a, b;m, e]
(α)
i =

1

2

(
a

(α)
i mi + b

(α)
i ei − b(α)

i a
(α)
i

)
.

(104)
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Here g ∈ Sp(2k,Z) and (~ν, ~νp) ∈ Zk are determined by gluing equations of an ideal
triangulation T of M as given in (34). Under the Dehn filling, M → MP/Q, with
a slope P/Q, the 3D index becomes [13]

IMP/Q+Ô

=
∑

(m,e)∈Z2

1

2
(−1)Rm+2Se

(
δP

2 m+Qe,0(q
Rm+2Se

2 + q−
Rm+2Se

2 )

− δP
2 m+Qe,−1 − δP2 m+Qe,1

)
IM+Ô(m, e) ,

(105)

Here two integers (R,S) are chosen to satisfy(
R S
P Q

)
∈ SL(2,Z) .(106)

For given (P,Q), two integers (R,S) satisfying the SL(2,Z) relation is not unique
but the choice of them does not affect the 3D index.

Conjecture 5.1. The quantum trace map trTq in the conjecture 2.1 satisfies the
following properties

For any even link K ⊂M,

IM+ÔK
(m, e; q) = IM+Ô(−m,−e; q) and

IMP/Q+ÔK
(m, e; q) = 0 , if MP/Q is a Lens space .

(107)

Not all Ô ∈ Ĉq[T ] satisfy the above constraints and it will provide a guideline for
determining the quantum trace map.

Example 5.2. As an example, consider the case when M = S3\41. The 3D index
IM (m, e; q) is

IM=S3\41
(m, e; q)

=
∑
ec∈Z
I∆(ec − e, ec)I∆(ec −m, ec − e−m) .(108)

With an insertion of Ô = ŷαẑβ(ŷ′′)γ(ẑ′′)δ ∈ Ĉq[T ], the index becomes

IS3\41+Ô(m, e; q) =
∑
ec∈Z

q
α(ec−e)+β(ec−m)+γec+δ(ec−e−m)−αγ−βδ

2

× I∆(ec − e+ γ, ec − α)I∆(ec −m+ δ, ec − e−m− β) .

(109)

Using the above expression, one can check that all Ô ∈ trTq (Seven
q [S3\41]) in (81)

satisfy the conditions in the conjecture. For Ô = C1ŷ
−1ẑ′′+C2ẑ

−1ŷ′′+C3ŷ
−1ẑ−1 ∈

Ĉq[T ], as an example, the 3D index becomes

IS3\41+Ô(m, e)

=
∑
ec∈Z

[
C1I∆(ec − e, ec + 1)I∆(ec −m+ 1, ec − e−m)q−

m
2

+ C2I∆(ec − e+ 1, ec)I∆(ec −m, ec − e−m+ 1)q
m
2

+ C3I∆(ec − e, ec + 1)I∆(ec −m, ec − e−m+ 1)q
m−2ec+e

2

]
,

(110)
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which implies (to avoid clutter, we suppress the subscript in IS3\41+Ô)

I(0, 0) = C3 + (−2C1 − 2C2 + C3)q − 2(C1 + C2 + C3)q2

+ (2C1 + 2C2 − 5C3)q3 + . . . ,

I(1, 0) = (C3 − C1)q1/2 − (C1 + C2 + C3)q3/2 + (2C1 − C2 − 3C3)q5/2 + . . . ,

I(−1, 0) = (C3 − C2)q1/2 − (C1 + C2 + C3)q3/2 + (2C2 − C1 − 3C3)q5/2 + . . . ,

I(1, 1) = (C3 − C1)− C3q + (C1 − 2C2 − 2C3)q2 + (4C1 − 3C3)q3 + . . . ,

I(−1,−1) = (C3 − C2)− C3q + (C2 − 2C1 − 2C3)q2 + (4C2 − 3C3)q3 + . . . .

For the index to be invariant under the Weyl Z2 symmetry, (m, e)↔ (−m,−e), in

the conjecture, the quantum loop operator Ô = C1ŷ
−1ẑ′′ + C2ẑ

−1ŷ′′ + C3ŷ
−1ẑ−1

should satisfy

C1 = C2 .(111)

So we expect that only the Ô with C1 = C2 can appear as image of the quantum
trace map. For example, from (81),

trTq (Kb) = (ŷ−1 + ẑ−1 − ŷ−1ẑ−1)

∼ (ŷ−1(ẑ′′ + ẑ−1) + ẑ−1(1− ŷ−1))

∼ (ŷ−1(ẑ′′ + ẑ−1) + ẑ−1ŷ′′) = Ô|C1=C2=C3=−1

(112)

satisfies the condition.

6. Quantum trace map in complex Chern-Simons theory

In this section, we give a brief review on general aspect of SL(2,C) Chern-Simons
theory and its relation the volume conjecture. Refer to [16, 8, 34] for details. By
interpreting the quantum trace operator as holomorphic Wilson loop in the complex
Chern-Simons theory, we give a physical derivation of the length conjecture.

The action of SL(2,C)(k,σ) Chern-Simons theory is given as follows

S(k,σ)[A,A;M ] =
k + σ

8π

∫
tr

(
A ∧ dA+

2

3
A3

)
+
k − σ

8π

∫
tr

(
A ∧ dA+

2

3
A3
)
.

The k ∈ Z should be quantized for gauge invariance while σ can be either real
(σ ∈ R) or purely imaginary (σ ∈ iR). The state-integral and the 3D index for
a knot complement M = S3\K compute the partition function Z of the complex
Chern-Simons theory with k = 1 and k = 0 respectively [7, 6]:

Z~=2πib2(M ;Xm) = Z

[
SL(2,C)k,σ CS theory on M with k = 1, σ =

1− b2

1 + b2

]
=

∫
[DA][DA]

(gauge)

∣∣∣∣
b.c

exp
(
iS(k,σ)[A,A;M ]

) ∣∣
k=1,σ= 1−b2

1+b2

,

Ifugacity
M (m,u; q) = Z

[
SL(2,C)k,σ CS theory on M with k = 0, σ =

4πi

log q

]
=

∫
[DA][DA]

(gauge)

∣∣∣∣
b.c

exp
(
iS(k,σ)[A,A;M ]

) ∣∣
k=0,σ= 4πi

log q

.

(113)
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Here Ifugacity
M (m,u; q) is the 3D index in fugacity basis

Ifugacity
M (m,u; q) =

∑
e∈Z
IM (m, e; q)ue .(114)

The boundary conditions are

P exp

(∮
Om

A
)

=

(
eX/2 ∗

0 e−X/2

)
, P exp

(∮
Om

A
)

=

(
eX̃/2 ∗

0 e−X̃/2

)
where

(eX , eX̃) =

{
(eXm , e

Xm
b2 ) for Z~=2πib2(M ;Xm)

(q
m
2 u, q

m
2 u−1) for Ifugacity

M (m,u; q)

(115)

The partition functions can be written in the following factorization form [1]

Z~=2πib2(M ;Xm) =
1

2

∑
ρ

BρM (q; eX)BρM (q̃; eX̃) with (q, q̃) = (e2πib2 , e
2πi
b2 ) ,

Ifugacity(m,u; q) =
1

2

∑
ρ

BρM (q;X)BρM (q̃; X̃) with (q, q̃) = (q, q−1) .

(116)

(eX , eX̃) here are identical to that of (115). BρM (q; eX) is so-called holomorphic
block labelled by an (adj)-irreducible SL(2,C) flat connection Aρ satisfying the
boundary condition in (115).1 It can be defined as following path-integral

BρM (q; eX) =

∫
Γρ

[DA]e−
1
2~

∫
M

tr(A∧dA+ 2
3A

3) with q = e~ .(117)

Here Γρ denotes the Lefschetz thimble in the functional space of A associated with
the flat connection Aρ [34].

The Z~(M,Xm) and BM (q = e~; eX) have the same asymptotic expansion in
the limit ~→ 0:

BραM (q = e~; eX)
~→0−−−−−−→ exp

( ∞∑
n=0

S(α)
n (M)~n−1

)∣∣∣∣
Xm=X

(118)

where the S
(α)
n is the perturbative expansion of the state-integral around the saddle

point ~Z(α) as defined in (43). For each irreducible flat connection ρα, there is an

associated saddle point ~Z(α) in the state-integral model. More precisely, the map
is generically in 2-to-1 since two flat connections ρα and ρα̃ related to each other

by the action of H1(M,Z2) = Z2 correspond to the same saddle point ~Z(α). In the

asymptotic limit ~ → 0, the BρM (q̃; eX̃) becomes trivially 1 since q̃ = e−
4π2

~ goes

to 0 in the limit and B(ρ)(q) becomes an infinite power series in q1/2 starting with
1 +O(q1/2) as q → 0.

The quantum trace map ÔK for a knot K ⊂ M corresponds to the following
holomorphic Wilson loop in the CS theory

WK(A) = (−1)× Tr

(
P exp

(∮
K

A
))

,(119)

1A SL(2,C) flat connection ρ ∈ Hom[πM → SL(2,C)] can be alternatively described by a
SL(2,C) gauge connection Aρ with vanishing curvature, i.e. dAρ + Aρ ∧ Aρ = 0.
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and the Z~(M + ÔK) and IM+ÔK
are given by following path-integrals

Z~(M + ÔK ;Xm) = (−1)×
∫

[DA][DA]

(gauge)
eiS(k,σ)[A,A;M ]WK(A)

∣∣
k=1,σ= 1−b2

1+b2

,

Ifugacity

M+ÔK
(m,u; q) = (−1)×

∫
[DA][DA]

(gauge)
eiS(k,σ)[A,A;M ]WK(A)

∣∣
k=0,σ= 4πi

log q

.

(120)

With the insertion of loop operator, we expect that factorization should be modified
as follows

Z~(M + Ô;Xm) =
1

2

∑
ρ

Bρ
M+Ô

(q; eX)BρM (q̃; eX̃) ,

Ifugacity(m,u; q) =
1

2

∑
ρ

Bρ
M+Ô

(q; eX)BρM (q̃; eX̃) .

(121)

Here we define

Bρ
M+ÔK

(q;X) = (−1)×
∫

Γρ
[DA]e

i
2~

∫
M

tr(A∧dA+ 2
3A

3)WK(A) .(122)

In the same argument used in (118), the Z~(M+ÔK , Xm) and BM+ÔK
(q = e~; eX)

is expected to share the same asymptotic expansion in the limit ~→ 0:

Bρα
M+ÔK

(q = e~; eX)
~→0−−−−−−→ exp

( ∞∑
n=0

S(α)
n (ÔK ;M)~n−1

)∣∣∣∣
Xm=X

.(123)

where the S
(α)
n is the perturbative expansion of the state-integral around the saddle

point ~Z(α) as defined in (43).
Volume conjecture for a hyperbolic knot K relates an asymptotic expansion of

Jones polynomial to an asymptotic expansion of the B
(hyp)
S3\K(q,X) as follows(

asymptotic expansion of
Jn
(
K; q = exp( 2πi

k )
)

Jn
(
©; q = exp( 2πi

k )
) in the limit k = n→∞

)
'
(

asymptotic expansion of B
ρ(hyp)

S3\K (q = e~, X = 0) in the limit ~→ 0

)
,

with an identification ~ =
2πi

k
.

(124)

Here © denote the unknot in S3 and ' means the same asymptotic expansion
modulo an overall factor of the form C

k3/2 . The equivalence of two asymptotic ex-
pansions can be understood by comparing the path-integral of the Jones polynomial
in (150) and the BρM in (117) modulo some subtleties. The most subtle part is that
how the path-integral of SU(2) gauge field a can be related to the path-integral of
SL(2,C) = SU(2)C gauge field A along the Γ(hyp) in the asymptotic limit. To un-

derstand it, let us consider a finite dimensional integral
∫
R dxe

ik( 1
3x

3+x) in the limit
k →∞ as an analogy. Although it is integration over real axis, it gets contribution
from the saddle point at x = −i in the asymptotic limit. So, the appearance of
complex flat connection in the asymptotic expansion of SU(2) Chern-Simons the-
ory is not so strange. But unlike in the finite-dimensional analogy, the contribution
from the flat connection ρ(hyp) is exponentially growing in the asymptotic limit.
This issue has been addressed in [34] and we will not address the subtle issue here.
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Our length conjecture can be understood in a similar way. For that, we consider
the Jones polynomial Jn,ñ=2(K∪K; q). We consider the case when the K is a knot,
i.e. ](K) = 1, for simplicity. The Jones polynomial can be represented by following
path-integral

Jn,ñ=2

(
K ∪K; q = exp(

2πi

k
)

)

= (−1)×

∫ [da]
(gauge)

∣∣∣∣
b.c. in (149)

exp
(
i(k−2)

4π

∫
S3\K Tr(a ∧ da− 2

3a
3)
)
WK(a)∫ [da]

(gauge) exp
(
i(k−2)

4π

∫
S3 Tr(a ∧ da− 2

3a
3)
) .

(125)

Then, from comparison with the path-integral in (122), one naturally expects that

(
asymptotic expansion of

Jn,ñ=2

(
K ∪K; q = exp( 2πi

k )
)

Jn
(
©; q = exp( 2πi

k )
) in the limit k = n→∞

)
'
(

asymptotic expansion of B
ρ(hyp)

S3\K+ÔK
(q = e~, X = 0) in the limit ~→ 0

)
,

with an identification ~ =
2πi

k
.

(126)

Combining (124), (126) with (118), (123), one derives the length conjecture in (18)

where the Z(hyp)
s (ÔK ;M) is given in (44).

Proposed properties of IM+Ô(m, e; q) or IMP/Q+Ô in (107) simply follows from

the path-integral expression (113) or the factorization (116). The invariance of the
3D index under (m, e) ↔ (−m,−e) comes from the Weyl Z2 invariance, Xm ↔
−Xm, in the path-integral. For MP/Q = (Lens space), there is no irreducible flat
connection ρ on MP/Q and thus we expect the index vanishes from the factorization.
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Appendix A. Gluing equations of an ideal triangulation

From an ideal triangulation T of a knot complement M = S3\K, we have

following gluing equations for the logarithmic edge parameters, (eZ , eZ
′
, eZ

′′
) =

(z, z′′, z′′), of tetrahedra (refer to, e.g., [9] for details)

CI=1,...,|T | =

|T |∑
i=1

FIiZi +GIiZ
′
i +HIiZ

′′
i − (2πi+ ~) (internal edges) ,

M =

|T |∑
i=1

UiZi + ViZ
′
i +WiZ

′′
i (meridian) ,

L =

|T |∑
i=1

PiZi +QiZ
′
i +RiZ

′′
i (longitude) .

(127)

Here FIi, GIi, HIi ∈ {0, 1, 2} while Ui, Vi,Wi, Pi, Qi, Ri ∈ Z. The logarithmic edge
parameters (Zi, Z

′
i, Z
′′
i ) satisfy following linear relation

Zi + Z ′i + Z ′′i = iπ +
~
2
.(128)

Then, the gluing equation variety χ[T ] is given by

χ[T ] =
{

(zi, z
′′
i )
|T |
i=1 : z−1

i + z′′i − 1 = 0,

eCI :=

|T |∏
i=1

(−1)GIizFIi−GIii (z′′i )HIi−GIi = 1
}
.

(129)

We define eĈI , eM̂ and e−M̂ ∈ C[q±1/4][ẑ±1
i , ẑ′′±1

i ]/〈ẑiẑ′′j − q−δij ẑ′′j ẑi〉 as

eĈI := q−1

|T |∏
i=1

(−q 1
2 )GIiq

1
2 (FIi−GIi)(HIi−GIi)ẑFIi−GIii (ẑ′′i )HIi−GIi ,(130)

eM̂ :=

|T |∏
i=1

(−q 1
2 )Qiq

1
2 (Pi−Qi)(Ri−Qi)ẑPi−Qii (ẑ′′i )Ri−Qi ,

e−M̂ :=

|T |∏
i=1

(−q− 1
2 )Qiq

1
2 (Pi−Qi)(Ri−Qi)ẑQi−Pii (ẑ′′i )Qi−Ri .

(131)

They all mutually commute due to a symplectic structures in gluing equations [25]

[eĈI , eĈJ ] = [e±M̂, eĈI ] = 0 .(132)

As a concrete example, we collect some information on the figure-8 knot com-
plement. The fundamental group of the knot-complement is (see Figure 6)

π1(S3\41) = 〈a, b, c : ac−1ba−1c = bc−1b−1a = 1〉 .(133)

It contains the peripheral subgroup Z×Z to be identified as the fundamental group
of the boundary torus,

π1(∂(S3\41)) = π1(T2) = Z× Z = 〈m, l〉 ⊂ π1(S3\41) .(134)
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We choose (m, l) canonically to be the meridian and longitude. Then the embedding
i : π1(∂(S3\41))→ π1(S3\41) is given by

i(m) = a, i(l) = ac−1bca−1b−1 .(135)

The simplest ideal triangulation T of the knot complement consists of two tetrahe-
dra. The edge variables,

(y, y′, y′′) = (eY , eY
′
, eY

′′
) , (z, z′, z′′) = (eZ , eZ

′
, eZ

′′
) ,(136)

are subject to the usual conditions,

y +
1

y′
= 1 , y′ +

1

y′′
= 1 , y′′ +

1

y
= 1 , yy′y′′ = −1,(137)

and similar ones for (z, z′, z′′). The two internal edges require that

C1 = Y ′ + 2Y + Z ′ + 2Z − 2πi = 0 ,

C2 = Y ′ + 2Y ′′ + Z ′ + 2Z ′′ − 2πi = 0 ,
(138)

which implies yz = y′′z′′. In summary, the gluing equation variety χ[T ] is

χ[T ] = {(y, z, y′′, z′′) : y−1 + y′′ − 1 = 0, z−1 + z′′ − 1 = 0, yz = y′′z′′} .(139)

For each (y, z, y′′, z′′) ∈ χ[T ], one can assign a PSL(2,C)-representation ρ as follows

ρ(a) =

[
1√
y′′z

(
y′′ 0
−y−1 z

)]
,

ρ(b) =

[
1√
y′z′

(
z′ −z′
y′z′ y′(1− z′)

)]
,

ρ(c) =

[
1√
yz′′

(
y − z−1 1− y
−z−1 1

)]
.

(140)

Here we regard PSL(2,C) = SL(2,C)/Z2 and [. . .] is the equivalence class under
the Z2 = {±1}. These are consistent with the two relations in (133) and the
boundary holonomies deduced from the triangulation,

ρ(m) = ρ(a) =

[(
eM/2 0
∗ e−M/2

)]
, M = Y ′′ − Z ,

ρ(l) = ρ(ac−1bca−1b−1) =

[(
eL 0
∗ e−L

)]
, L = Z − Z ′′ .

(141)

Appendix B. Colored Jones polynomial for framed link

Let K = ∪](K)
I=1 KI be a framed link inside 3-sphere S3. Here we provide the

definitions of colored Jones polynomial J~n(K; q) using the Kauffman bracket Skein
module Sq[S3]. The subscript ~n = (n1, . . . , n](K)) with ni ∈ Z≥1 represents colors
of each components of the link.

When ni = 2 for all i = 1, . . . , ](K), the invariant is called just Jones polynomial
and will be simply denoted by J without subscript. The polynomial J(K; q) is
defined as follows

J(K; q) :=
YK
Y∅
∈ Z[q1/4, q−1/4] .(142)

Here YK is considered to be an element of Sq[S3]. The definition makes sense since
the Skein module Sq[S3] is one-dimensional module spanned by Y∅. The invariant
is slightly different from the conventional Jones polynomial, Joriented(K; q), which
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is an invariant for oriented (unframed) link. The two invariants are related to each
other in the following way

Joriented(K; q) := (−1)](K)(−q3/4)w(K)J(K; q)(143)

The sign factor is introduced in order for Joriented(K =©n; q) to be (q1/2+q−1/2)n.
Here w(K) is the writhe of the framed link

w(K) :=
∑

p:crossings in K

ε(p) , ε(p) :=

{
+1, p is a positive crossing

−1, p is a negative crossing
(144)

The writhe is an oriented framed link invariant. Since the factor (−q3/4)w(K)

exactly cancels the (−q3/4)±1 factor in YK under the 1st Reidemeister move, see
Figure 2, the Joriented is an oriented unframed invariant.

To generalize the definition to general colors ~n, we introduce the symmetric
k-product of a framed knot K

Sym⊗k=0K = ∅ , Sym⊗k=1K = K , Sym⊗k=2K = K2 − ∅; ,

Recursively, Sym⊗kK := (Sym⊗k−1K)K − (Sym⊗k−2K) .
(145)

Here Kn denote the n-cabling of a framed knot K, a framed link obtained by
displacing n parallel copies of K along the normal direction of framing. Then, we

define the framed colored Jones polynomial for a link K =
⋃](K)
I=1 KI as follows

J~n(K; q) := J(

](K)⋃
I=1

Sym⊗(nI−1)KI ; q) =
Y⋃](K)

I=1 Sym⊗(nI−1)KI

Y∅
.(146)

The framed colored Jones polynomial have following path-integral representation
(k > 2) [33]

J~n

(
K; q = q = e2πi/k

)
=

](K)∏
I=1

(−1)nI−1

∫ [da]
(gauge) exp

(
i(k−2)

4π

∫
S3 CS(a)

)∏](K)
I=1 trRn

(
P exp(

∮
KI
a)
)

∫ [da]
(gauge) exp

(
i(k−2)

4π

∫
S3 CS(a)

) ,

where CS(a) = Tr

(
a ∧ da− 2

3
a3

)
.

(147)

Here
∫ [da]

(gauge) means integral over gauge-equivalence classes of SU(2) connections

on S3. P exp(
∮
K
a) denotes the SU(2) holonomy matrix of SU(2) connection a

along the closed knot K. Rn = Sym⊗(n−1)2 ∈ Hom[SU(2) → SU(n)] is the n-
dimensional irreducible representation of SU(2) and we define

trR(g) = Tr(R(g)) .

Since trR(g) = tr(g−1), the path-integral does not depend on the orientation choice
of KI . To regularize infinity coming from self-interaction of knots, on the other
hand, one need to introduce framing and the quantum Wilson loop expectation
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value depends on the choice. In the above, we include following overall sign factor

](K)∏
I=1

(−1)nI−1(148)

which reflects that JK
⊔
© = −(q1/2 + q−1/2)JK while an additional Wilson loop

along the disjoint unknot© in R = 2 contribute a muliplicative factor (q1/2+q−1/2)
to the path-integral of Chern-Simons theory [33].

Wilson loop operator, trR(P exp(
∮
K
a)), along a knot K ⊂ S3 with color R =

Sym⊗(n−1)2 in the SU(2) Chern-Simons theory can be alternatively described by
monodromy defect in the knot complement S3\K defined by following boundary
condition

boundary condition : P exp

(∮
©m

a

)
=

(
e
πin
k 0

0 e−
πin
k

)
.(149)

Using the alternative definition of the Wilson loop operator, the Jones polynomial
Jn(K; q) can be given as

Jn

(
K; q = e2πi/k

)
= (−1)n−1

∫ [da]
(gauge)

∣∣∣∣
b.c. in (149)

exp
(
i(k−2)

4π

∫
S3\K CS(a)

)
∫ [da]

(gauge) exp
(
i(k−2)

4π

∫
S3 CS(a)

) .

(150)

Using the physical definition of the Jones polynomial, now let us explain a non-
trivial property of the knot invariant summarized in Figure 8. In the Chern-Simons

Y Y=−(qn
2 + q− n

2 )

Sym⊗(n−1) Sym⊗(n−1)

Figure 8. The effect of adding the meridian knot. A relation
between Y(Sym⊗(n−1)K)∪©m

and Y(Sym⊗(n−1)K) holds, where ©m is
a unknot linking the heavy knot K.

path-integral, the addition of the meridian knot ©m on the top of the knot K
corresponds to including following term in the integrand of (150),

(−1)× trR=2

(
P exp(

∮
©m

a)

)
.(151)

Note that the value of the above Wilson loop is always

−
(
e
πin
k + e−

πin
k

)
= −

(
q
n
2 + q−

n
2

)
for arbitrary gauge field a satisfying the boundary condition in (149). It explains
the property of the knot invariant depicted in Figure 8.



QUANTUM TRACE IN 3-MANIFOLD AND VOLUME CONJECTURE 31

Appendix C. Quantum dilogarithm function

The quantum dilogarithm function (Q.D.L) ψ~(Z) is defined by [10]

ψ~(Z) :=


∏∞
r=1

1−qre−Z

1−q̃−r+1e−Z̃
if |q| < 1 ,∏∞

r=1
1−q̃re−Z̃

1−q−r+1e−Z
if |q| > 1 ,

(152)

with

q := e~ , q̃ := e−
4π2

~ , Z̃ :=
2πiZ

~
.(153)

The function satisfies the following difference equations:

ψ~(Z + ~) = (1− e−Z)ψ~(Z) , ψ~(Z + 2πi) = (1− e−Z̃)ψ~(Z) .(154)

In the asymptotic limit ~→ 0,

logψ~(Z)
~→0−−−→

∞∑
n=0

Bn~n−1

n!
Li2−n(e−Z) .(155)

Here Bn is the n-th Bernoulli number with B1 = 1/2. The Q.D.L satisfies the
following identity∫

dZ√
2π~

e−
ZU
~ ψ~(Z) = eiδe

U2−(2πi+~)U
2~ +

iπ(b2+b−2)
12 ψ~(U)(156)

with a constant overall phase factor eiδ.
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