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Abstract. The dynamic formulation of optimal transport has attracted growing interests in
scientific computing and machine learning, and its computation requires to solve a PDE-constrained
optimization problem. The classical Eulerian discretization based approaches suffer from the curse
of dimensionality, which arises from the approximation of high-dimensional velocity field. In this
work, we propose a deep learning based method to solve the dynamic optimal transport in high
dimensional space. Our method contains three main ingredients: a carefully designed representation
of the velocity field, the discretization of the PDE constraint along the characteristics, and the
computation of high dimensional integral by Monte Carlo method in each time step. Specifically, in
the representation of the velocity field, we apply the classical nodal basis function in time and the
deep neural networks in space domain with the H1-norm regularization. This technique promotes
the regularity of the velocity field in both time and space such that the discretization along the
characteristic remains to be stable during the training process. Extensive numerical examples have
been conducted to test the proposed method. Compared to other solvers of optimal transport, our
method could give more accurate results in high dimensional cases and has very good scalability
with respect to dimension. Finally, we extend our method to more complicated cases such as crowd
motion problem.
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1. Introduction. Optimal transport (OT) [43, 52] is an exciting research topic
that connects many subjects in mathematics including differential geometry, partial
differential equations, optimization, probability theory. Since OT naturally presents a
tool to study probability distributions, it has been applied to many tasks in machine
learning [51], such as transfer learning [10, 40], generative models [5, 42, 28], image
processing [35] and natural language processing [26]. Despite its numerical success,
computing high-dimensional OT remains a challenge. Many traditional mesh-based
discretization methods [36, 54, 30] suffer from the curse of dimensionality. The compu-
tation bottleneck limits the applications of OT for various high-dimensional problems,
which motivates this work.

The OT problem is originated from Monge [33] that studies good transportation
with minimal cost. Mathematically, let X and Y be two complete and seperable
metric spaces, µ ∈ P(X ) and ν ∈ P(Y) are two probability measures, the Monge
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problem is to find a transportation map T : X → Y such that it minimizes

inf
T

{∫
X
c(x, T (x))dµ(x) : T]µ = ν

}
,(1.1)

where c : X ×Y → R is the cost function and T] is the push forward operator induced
by T , i.e. ν(B) = µ(T−1(B)) for all measurable set B ⊂ Y. Directly solving (1.1) is a
challenging problem as the (1.1) is highly nonconvex and the minimum does not exist
in general.

One special choice of the cost function is the quadratic case, i.e. c(x, y) = ‖x−y‖2.
The seminal work [8] proves that the optimal map T is the gradient of a convex
function that satisfies the Monge-Ampère equation. The Monge-Ampère equation is
a fully nonlinear PDE and its numerical solver is highly non-trival. Many numerical
methods have been developed based on this approach [7, 38, 29]. However, these
method dicretize the computational domain by regular grids which is unaffordable
for high dimensional problem. In [22], the variational principle of the OT problem
is established by linking OT with power diagram in computational geometry. The
resulted variational problem can be solved by convex optimization algorithm with
applications to image generation [28, 3, 4].

Instead of finding a transport map, Kantorovich formulation [24] relaxes the
Monge problem (1.1) by introducing a joint distribution γ ∈ Π (µ, ν). The coupling
set Π (µ, ν) is defined as

Π (µ, ν) = {γ ∈ P(X × Y) : (πx)#γ = µ, (πy)#γ = ν} ,

where πx and πy are the two projections of X ×Y onto X and Y, respectively. In this
case, the Kantorovich formulation is to find γ by solving

inf
γ

{∫
X×Y

c(x, y)dγ(x, y) : γ ∈ Π (µ, ν)

}
.(1.2)

It is noted that when µ, ν are absolutely continuous with respect to the Lebesgue
measure, the Kantorovitch problem (1.2) has an unique solution [52, 53] of the form
π = (Id×T )#µ, where Id stands for the identity map, and T is the unique minimizer
of (1.1).

When µ and ν are discrete distributions, the Kantorovitch problem (1.2) can be
formulated as a standard linear program (LP) that can be solved by classical algo-
rithms, e.g. simplex method. These methods have relatively high computational cost
and do not fully exploited the structure in the Kantorovich formulation (1.2). The
Sinkhorn method [11] introduced the entropy regularization into (1.2), that can be
efficiently solved by the Sinkhorn algorithm [47]. Sinkhorn method significantly ac-
celerates the computation of OT especially with GPU implementation. As dimension
grows, the number of grid points in Sinkhorn method need to increase exponentially
to achieve satisfactory accuracy which leads to high computational cost and memory
requirement. For continuous cases, Genevay et al. [18] first proposed a stochastic
gradient descent to optimize the regularized OT problem by expressing the dual vari-
ables in reproducing kernel Hilbert spaces (RKHS). Seguy et al. [45] proposed to use
deep neural networks to parameterize the dual variables for computing an OT plan
and then estimate an optimal map as a neural network learned by approximating
the barycentric projection of the obtained OT plan. In addition, they theoretically
prove the convergence of regularized OT plan In recent papers, Makkuva et al. [32]
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proposed a minimax optimization to learn the optimal Kantorovich potential. The
key idea is to restrict the search over all convex functions with introducing a regular-
ization constraint and approximate the optimal potential by an input convex neural
networks (ICNN) [2].

The dynamic OT, an alternative formulation of OT, is first proposed in [6] that is
to solve a PDE-constrained optimal control problem. Since the dynamic OT provides
a close relationship with fluid mechanics, it has been extended to many applications
including unnormalized OT [17], mean field games [27]. Borrowing the theory from
continuum mechanics, there are many possibilities for developing OT problems under
task-specific constraints, which makes the numerical solver for dynamic OT more
attractive. In [6], it applies an Eulerian discretization and solve the constrained
minimization problem with the augmented Lagrangian method. The staggered grid
discretization is used in [36] that proposed a proximal splitting scheme. Based on [36],
a primal-dual formulation of dynamic OT [23] is proposed under the Helmohotz-
Hodge decomposition, which enforces the divergence-free constraints during iterations.
Recently, Yu et al. [54]proposed an accelerated proximal gradient algorithm using
multilevel and multigrid strategies to solve dynamic mean field planning problems,
which can be viewed as a generalization of OT. Above methods can obtain good result
in low-dimension cases, but cannot be readily extended to high dimensions.

In recent years, deep learning [44, 21] have demonstrated remarkable success
on a variety of computational problems ranging from image classification [25, 49],
speech recognition [1, 12] and natural language processing [9, 20], to numerical ap-
proximations of partial differential equations (PDEs) [14, 15, 48, 39]. Such numerical
results suggest that deep neural networks have powerful approximation ability for
high-dimensional functions (see [46, 31, 13] for the approximation theory). Based on
the link between continuous normalizing flows and dynamic OT, the TrajectoryNet
was proposed in [50] and applied for learning cellular dynamics. The network in [50]
consists of three fully connected layers with leaky ReLU activations, and the loss
function is carefully designed by imposing multiple biological priors. The regularized
neural ordinary differential equation (RNODE) is proposed in [16] by penalizing the
Frobenius norm of the Jacobian of the velocity field, which improves the training sta-
bility. The Frobenius norm and the divergence of the velocity field is calculated by
Monte Carlo trace estimator. Very recently, Ruthotto et al. [41] proposed a machine
learning based method for solving high-dimensional mean field game and mean field
control problems (known as MFGnet). In their work, a neural network is proposed
to represent the Kantorovich potential whose gradient is the velocity field and the
Hamilton-Jacobi-Bellman (HJB) equation is employed as a regularization. Numeri-
cally, it needs to compute the second derivative of the potential model and the number
of training samples and the running time per iteration have noticeable growth as the
dimension increases.

In this work, we propose a new deep learning approach for solving the high-
dimensional dynamic OT. We adopt the Lagrangian discretization to solve the con-
tinuity equation and use Monte Carlo sampling to approximate the integrals in high
dimensions rather than mesh-based discretization. Moreover we carefully designed a
neural network for parametrizing the velocity field. Our approach only needs to calcu-
late the first derivative of the neural network with respect to the input. In summary,
the contributions of this paper are as follow.

• We present a novel approach to parameterize the velocity field by combining
neural network in space and linear finite element basis in time. Based on the
priori information that the characteristics of the optimal solution are straight,

3



we introduce the Frobenius norm of the Jacobian of the velocity field as the
regularization to improve generalization.

• Our proposed framework is easy to implement and can be extended to more
complicated problem, such as crowd motion. The proposed algorithm has
much lower computational cost while the accuracy is comparable with state-
of-the-art methods, Sinkhorn and MFGnet, especially for high-dimensional
cases.

The rest of our paper is organized as follows. In Section 2, we introduce the
dynamic OT problem, the proposed model parameterized by a neural network, and
the back propagation method for solving the dynamic OT problems. Experimental
results and some details about implementation are summarized in Section 3. Finally,
we conclude this work in Section 4.

2. The Proposed Framework to Solve Dynamic OT.

2.1. Preliminaries on Dynamic OT. In this paper, we mainly consider the
dynamic OT problem introduced by Benamou and Brenier [6]. The basic problem
can be formulated as follows: Given two probability densities ρ0 and ρ1, we want to
find the density ρ : Rd × [0, 1] → R and the velocity field v : Rd × [0, 1] → Rd that
transport the mass of ρ0 to the mass of ρ1 at minimal transport cost E(ρ,v), i.e.,

min
(ρ,v)∈C(ρ0,ρ1)

E(ρ,v) :=

∫ 1

0

∫
Ω

|v(x, t)|2ρ(x, t)dxdt(2.1)

and any pair of (ρ,v) ∈ C (ρ0, ρ1) satisfies continuity equation with initial and terminal
densities of ρ being ρ0, ρ1 provided as:

C(ρ0, ρ1) := {(ρ,v) : ∂tρ+∇ · (ρv) = 0, ρ(·, 0) = ρ0, ρ(·, 1) = ρ1}.(2.2)

Note that in the whole paper, ∇ and ∇· denote the gradient and the divergence w.r.t.
the space variable x, respectively. In addition, the relationship of the optimal map T
and the optimal solution (ρ,v) is that:

ρ(·, t) = (Tt)#ρ0 with Tt(x) = (1− t)x+ tT (x),(2.3)

vt =

(
d

dt
Tt

)
◦ T−1

t = (T − id) ◦ T−1
t .(2.4)

Note that E(ρ,v) denotes the generalized kinetic energy and the optimal E(ρ,v)
gives the square of the L2 Wasserstein distance. This fluid mechanics formulation
provides a natural time interpolation which is very useful in many applications.

2.2. Relaxation of Dynamic OT. First, we relax the constraint on the ter-
minal density into an implicit condition by introducing a Kullback–Leibler (KL) di-
vergence penalty term:

P(ρ) := λ

∫
Ω

ρ(x, 1) log
ρ(x, 1)

ρ1(x)
dx.

Note that P(ρ) is the KL divergence between ρ(·, 1) and ρ1 up to a sufficiently large
positive constant λ, which is the penalty parameter.

From (2.3) we know that the characteristic of the optimal solution Tt is a straight
line connecting the source point x and the target point T (x). However, the inte-
grated kinetic energy E(ρ,v) forces the dynamics to travel in straight lines only on
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the training data. In order to improve generalization during training and enhance the
smoothness of the velocity field, we introduce the Frobenius norm of the Jacobian of
the velocity field as the regularization R(v), i.e.,

R(v) := α

∫ 1

0

∫
Ω

|∇v(x, t)|2Fdxdt,

where | ∗ |F denotes Frobenius norm and α is a positive regularization parameter.
By relaxing the terminal density as an implicit condition penalized by KL di-

vergence term P(ρ) and introducing the regularization term R(v), we can get the
following optimal control formulation:

min
(v,ρ)∈C(ρ0)

F(ρ,v) = E(ρ,v) + P(ρ) +R(v),(2.5)

where C(ρ0) := {(ρ,v) : ∂tρ+∇ · (ρv) = 0, ρ(·, 0) = ρ0}.
2.3. Lagrangian Discretization. In order to solve the high-dimensional OT

problems, we naturally adopt the Lagrangian discretization method instead of the
traditional mesh-based method. Because the Lagrangian discretization is a sampling
method that can reduce memory usage by overcoming the spatial discretization into
grids. Firstly, the continuity equation in C(ρ0) can be solved along the characteristics:

d

dt
z(x, t) = v(z(x, t), t), z(x, 0) = x,(2.6)

d

dt
ρ(z(x, t), t) = −ρ(z(x, t), t)∇ · v(z(x, t), t), ρ(z(x, 0), 0) = ρ0(x).(2.7)

Note that the equation (2.7) is equivalent to

d

dt
ln ρ(z(x, t), t) = −∇ · v(z(x, t), t), ln ρ(z(x, 0), 0) = ln ρ0(x).(2.8)

In fact, when the dimension is very high, since ρ0 is a positive number very close to
0, there will be a numerical overflow problem when solving equation (2.7), so what
we actually solve is equation (2.8).

Together with the Lagrangian method (2.6) and (2.7), this leads to an optimiza-
tion problem with respect to the velocity field v, which we will model with a neural
network. In addition, we use the Monte Carlo method for integration and suppose
x1, x2, ..., xr are samples drawn from ρ0. Along the characteristics, the density satisfies

ρ(z(x, t), t) det(∇z(x, t)) = ρ0(x)(2.9)

for all t ∈ [0, 1]. Thus,

E(ρ,v) =

∫ 1

0

∫
Ω

|v(x, t)|2ρ(x, t)dxdt

=

∫ 1

0

∫
Ω

|v(z(x, t), t)|2ρ(z(x, t), t) det(∇z(x, t))dxdt

=

∫ 1

0

∫
Ω

|v(z(x, t), t)|2ρ0(x)dxdt

=

∫ 1

0

Ex∼ρ0
[
|v(z(x, t), t)|2

]
dt

≈
∫ 1

0

r∑
i=1

1

r
|v(z(xi, t), t)|2dt.
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Similarly, we can get

P(ρ) = λ

∫
Ω

ρ(x, 1) log
ρ(x, 1)

ρ1(x)
dx

= λ

∫
Ω

log
ρ(z(x, 1))

ρ1(z(x, 1))
ρ(z(x, 1), 1) det(∇z(x, 1))dx

= λ

∫
Ω

log
ρ(z(x, 1))

ρ1(z(x, 1))
ρ0(x)dx

= λEx∼ρ0
[

log
ρ(z(x, 1)

ρ1(z(x, 1)

]
≈ λ

r∑
i=1

1

r
log

ρ(z(xi, 1), 1)

ρ1(z(xi, 1))
.

Suppose that y1, y2, .., ys are samples drawn from a uniform distribution whose density
is P0(y) = P0, which is a constant on the support set of the uniform distribution.

R(v) = α

∫ 1

0

∫
Ω

|∇v(x, t)|2Fdxdt

= α

∫ 1

0

Ey∼P0

[ |∇v(y, t)|2F
P0(y)

]
dt

≈ α

sP0

∫ 1

0

s∑
j=1

|∇v(yj , t)|2Fdt.

Accordingly, we get the following semi-discretization version of OT problem:

min
v
F(v, ρ) := E(v, ρ) + P(ρ) +R(v),(2.10)

where E(v, ρ),P(ρ) and R(v) are the discretization versions of E(v, ρ),P(ρ) and R(v)
in the space direction respectively, i.e.,

E(v, ρ) :=

∫ 1

0

r∑
i=1

1

r
|v(z(xi, t), t)|2dt,(2.11)

P(ρ) := λ

r∑
i=1

1

r
log

ρ(z(xi, 1), 1)

ρ1(z(xi, 1))
,(2.12)

R(v) :=
α

sP0

∫ 1

0

s∑
j=1

|∇v(yj , t)|2Fdt,(2.13)

where ρ(z(xi, t), t) can be obtained from the solution of (2.8) along the characteristics
z(xi, t). Then, (2.6) and (2.8) can be reformulated as the following constraints:

d

dt
z(xi, t) = v(z(xi, t), t), z(xi, 0) = xi, xi ∼ ρ0(xi),(2.14)

d

dt
ln ρ(z(xi, t), t) = −∇ · v(z(xi, t), t), ln ρ(z(xi, 0), 0) = ln ρ0(xi).(2.15)

2.3.1. Importance Sampling. When the distribution ρ0 is complex and diffi-
cult to sample, or when we want to use the information of the whole region, we can
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sample from another distribution µ0, such as uniform distribution. At this time, we
need to solve one more ODE

d

dt
lnµ(z(xi, t), t) = −∇ · v(z(xi, t), t), lnµ(z(xi, 0), 0) = lnµ0(xi).

Accordingly, the objective functions are modified to

E(v, ρ) =

∫ 1

0

r∑
i=1

wi(t)|v(z(xi, t), t)|2dt,

P(ρ) = λ

r∑
i=1

wi(1) log
ρ(z(xi, 1), 1)

ρ1(z(xi, 1))
,

where

wi(t) =
ρ(z(xi, t), t)

µ(z(xi, t), t)r
.

2.4. Gradient Calculation. In this paper, we parameterize the velocity field
v by using a neural network v(x, t; θ), where θ denotes the trainable parameters.
The structure of the neural network will be discussed in the next section. Then, the
original optimization problem for the velocity field v (2.10) can be changed into a
deep learning problem. Next, in order to calculate the gradient of the loss function
with respect to θ, we have adopted two different methods: the back propagation
method and the adjoint state method, which correspond to the discrete-then-optimize
and optimize-then-discrete [19, 34], respectively. Gholami et al. [19] and Onken
et al. [34] give a thorough discussion of the difference between the discretize-then-
optimize and optimize-then-discretize approaches and suggest that the discretize-then-
optimize approach is preferable due to the guaranteed accuracy of gradients. In
Section 2.4.2 and 3.1, we introduce the adjoint state method and compare it with
the back propagation method in numerical experiments for the Gaussian problem.
Our experiments show that the back propagation method can achieve superior results
to the adjoint state method at reduced computational costs, which aligns with the
results achieved in [19] and [34].

2.4.1. Back Propagation. In the discrete-then-optimize method, back prop-
agation is realized by using automatic differentiation, which traverses the computa-
tional graph backward in time and is used commonly in machine learning frameworks.
Actually, the discretization of the forward propagation completely determines this
process.

Since (2.10) is the semi-discretization objective function, we can simplify it as

F(θ) =

∫ 1

0

f(t; θ)dt+ λ

r∑
i=1

wi(1) log
ρ(z(xi, 1), 1)

ρ1(z(xi, 1))
,(2.16)

where

f(t; θ) =

r∑
i=1

wi(t)|v(z(xi, t), t; θ)|2 +
α

sP0

s∑
j=1

|∇v(yj , t; θ)|2F .

We use the composite Simpson formula to discrete the semi-discretization objective
function (2.16).∫ 1

0

f(t)dt =

N−1∑
n=0

∫ tn+1

tn

f(t)dt ≈ h

6

N−1∑
n=0

[f(tn) + 4f(tn +
h

2
) + f(tn+1)],
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where h = 1
N , tn = nh, n = 0, . . . , N .

Next, we perform the fourth-order explicit Runge-Kutta scheme (RK4) to solve
ODE constrains (2.14) and (2.15). Then, we can further adopt the Simpson formula
to calculate the loss function F(θ) from (2.16). Finally, the automatic differentiation
technique can be used to compute the gradients with respect to the network parame-

ters ∂F
∂θ , which will be used to update θ. The computational flow chart for calculating

the gradients using the back propagation method is shown in Figure 2.1. Then, the
parameters θ in the neural network can be optimized by some popular optimizor, such
as SGD, Adam, BFGS and so on.

Fig. 2.1. The illustration of the back propagation algorithm.

2.4.2. Adjoint State Method. The discrete-then-optimizer method is com-
mon in neural networks and the back propagation is easy to implement, especially
when automatic differentiation can be used. However, the back propagation can
be memory inefficient because of the potentially huge computation graph. In or-

der to efficiently calculate the gradient ∂F
∂θ , the optimizer-then-discrete approach, i.e.

the adjoint state method has also been introduced in this section. In the adjoint
state method, the gradients are computed by numerically solving the adjoint equa-
tion. In all of the experiment in this section, we sample xi drawn from ρ0, thus
ωi(t) = 1

r , ∀t ∈ [0, 1], i = 1, · · · , r. We can show the gradient calculation in the
following proposition.

Proposition 2.1. If µ0 = ρ0, the gradient of F(θ) is calculated by the formula

∂F(θ)

∂θ
=

1

r

r∑
i=1

∫ 1

0

[(2v(zi(t), t; θ)− Ui(t))Tvθ(zi(t), t; θ)− λ∇ · vθ(zi(t), t; θ)]dt

+
α

sP0

s∑
j=1

∫ 1

0

2 〈∇vθ(yj , t; θ),∇v(yj , t)〉dt.(2.17)

Here we denote z(xi, t) by zi(t) for simplification. Moreover, 〈·, ·〉 is defined as

〈A,B〉 =
∑
i,j

Ai,jBi,j

and A,B are two matrices with the same size. Ui(t) is the solution of the adjoint
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equation


dUi(t)

dt
+∇Tv(zi(t), t)Ui(t) = [2(∇v)Tv − λ∇(∇ · v)](zi(t), t; θ),

U(1) = λ
∇ρ1(zi(1))

ρ1(zi(1))
.

(2.18)

The detailed proof of the above proposition is shown in Supplementary Materials.
For the adjoint state method, the computation of the gradients follows three steps: for-
ward pass, backward pass and gradient calculation, which are different from the back
propagation method. Firstly, the forward pass is realized by using the fourth-order
explicit Runge-Kutta scheme only to solve (2.14) to get the activation throughout
time z(t). Then, the terminal value condition of the adjoint ODE, UtN = U(t = 1),
can be further computed by plugging in the values for ztN = z(t = 1). During the
backward pass, we need to solve the adjoint ODE (2.18) to compute U(t) by using
all activations z(t) and still adopting the fourth-order explicit Runge-Kutta scheme.

Finally, the gradient with respect to the network parameters ∂F
∂θ can be computed

by using z(t) and U(t) from (2.17). The computational flow chart for calculating the
gradients using the adjoint state method is shown in Figure 2.2. It is worth to mention
that in order to reduce the memory storage for storing intermediate activations z(t),
only the activation of the last state z(1) need to be saved in the forward pass, while
the intermediate states z(t) will be recomputed by solving the forward ODE (2.14)
backward in time during the backward pass.

Fig. 2.2. The illustration of the adjoint state method.

2.5. Neural Network Architecture. In order to solve high-dimensional OT
problem, we parameterize the velocity field by a neural network, which can naturally
lead to a mesh-free scheme by combining Lagrangian method and Monte Carlo inte-
gration. We now introduce our neural network parameterization of the velocity field.
In the following, we denote our model as

v(x, t; θ) =

M∑
i=0

vi(x; θ)φi(t),
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where (x, t) ∈ Rd+1 is the input feature, θ is the network parameters and φi(t) is
chosen as the nodal basis function in the time direction, i.e.,

φi(t) =


0, t ≤ ti−1,
t−ti−1

ti−ti−1
= M(t− ti−1), ti−1 < t ≤ ti,

ti+1−t
ti+1−ti = M(ti+1 − t), ti < t ≤ ti+1,

0, t > ti+1,

and M +1 denotes the number of the basis function. When M is fixed, we can choose
N (the number of time steps in forward pass) as kM , such as k = 2, so that the
forward ODEs (2.6) and (2.8) can be solved accurately. Besides, vi(x; θ) is the sum

of some two-layer neural networks designed as vi(x; θ) =
∑L
l=1[W

(l)
2i σ(W

(l)
1i x+ b

(l)
1i ) +

b
(l)
2i ], W

(l)
1i ∈ RH×d, W (l)

2i ∈ Rd×H , b
(l)
1i ∈ RH , b

(l)
2i ∈ Rd, the network parameters

θ = {W (l)
1i ,W

(l)
2i , b

(l)
1i , b

(l)
2i }, L is the width of the network and σ(x) = tanh(x) is the

activation function. The advantage of the design of our neural network architecture
is to reduce the oscillations in the time direction because we use the piecewise linear
function to be the basis function.

Next, to demonstrate the effective of the above network design, we compare it
experimentally with a more natural network structure:

v∗(x, t; θ) =

L∑
l=1

[W
(l)
2 (t)σ(W

(l)
1 (t)x+ b

(l)
1 (t)) + b

(l)
2 (t)]

since W
(l)
1 (t) ∈ RH×d,W (l)

2 (t) ∈ Rd×H , b(l)1 (t) ∈ RH and b
(l)
2 (t) ∈ Rd are time depen-

dent and parameterized directly by the nodal basis functions, i.e.

W (l)
e (t) =

M∑
i=0

W
(l)
ei φi(t), b(l)e (t) =

M∑
i=0

b
(l)
ei φi(t) for e = 1, 2.

We have found that these two velocity fields v(x, t; θ) and v∗(x, t; θ) have different
network structures, however, the same number of parameters, i.e., L(M + 1)(2dH +
H + d). Therefore, in order to compare these two neural networks’ architecture fairly
and intuitively, we give an example in the 1-dimensional case (d = 1) for Gaussian
problem. The initial density ρ0 is a Gaussian with means 0 and variance 0.3, while
the target density ρ1 is a Gaussian with means −4 and variance 1.0. The parameters
of the network structure are chosen as L = 2,M = 5 and H = 10 for both velocity
fields. We train our networks using 1000 iterations of Adam with a learning rate of
0.01. We visualize the trained velocity field v(x, t; θ) and v∗(x, t; θ) at x = −2, 0, 4
respectively in Figure 2.3. It can be observed that, on the one hand, the velocity
field v(x, t; θ) is piecewise linear with respect to time, while v∗(x, t; θ) is nonlinear
with respect to time, on the other hand, the oscillation of velocity field v in the
time direction is obviously smaller than that of the velocity field v∗, both in terms
of frequency and amplitude. The frequency of v is exactly 5, which is actually equal
to M and clearly smaller than the frequency of the velocity field v∗. In addition,
the maximum oscillation amplitude of v is about 4.5, while the maximum oscillation
amplitude of v∗ is about 11. Since we need to solve ODEs in the time direction, it is
difficult to control the numerical accuracy if the velocity field oscillates too much, so
the velocity field v is more beneficial to the control accuracy.

10



v

v∗

Fig. 2.3. The comparison of network structures v and v∗.

2.6. Crowd Motion. Our method can also be easily applied to the crowd mo-
tion problem [41]. In contrast to the OT problem, the crowd motion problem not
only needs to move the initial density ρ0 approximately to the target density ρ1, but
also expects to avoid some obstacles in the dynamic movement. The obstacles can be
expressed by introducing an added term to the loss function, i.e. the preference term:

Q(ρ) = λP

∫ 1

0

∫
Rd

Q(x)ρ(x, t)dxdt,(2.19)

where λP is the penalty parameter, and Q : Rd → R models the spatial preferences
of agents, i.e. the larger Q(x) is, the closer the position of x is to the obstacles. We
can get the following formulation:

min
(v,ρ)∈C(ρ0,ρ1)

Fcm(v, ρ) := E(v, ρ) +Q(ρ),

where E(v, ρ) and C(ρ0, ρ1) are what we defined in Section 2.1:

E(ρ,v) =

∫ 1

0

∫
Ω

|v(x, t)|2ρ(x, t)dxdt,

C(ρ0, ρ1) = {(ρ,v) : ∂tρ+∇ · (ρv) = 0, ρ(·, 0) = ρ0, ρ(·, 1) = ρ1}.

The method to solve the crowd motion problem is almost the same as the OT prob-
lem. Firstly, as in Section 2.2, we relax the terminal density as an implicit condition
penalized by using KL divergence term P to get the following problem:

min
(v,ρ)∈C(ρ0)

E(v, ρ) +Q(ρ) + P(ρ),(2.20)

where

P(ρ) = λ

∫
Ω

ρ(x, 1) log
ρ(x, 1)

ρ1(x)
dx,

C(ρ0) = {(ρ,v) : ∂tρ+∇ · (ρv) = 0, ρ(·, 0) = ρ0}.
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Then we adopt the Lagrangian discretization method presented in Section 2.2 to get
the semi-discrete formulation of (2.20):

min
v
E(v, ρ) + P(ρ) +Q(ρ)(2.21)

s.t.

d

dt
z(xi, t) = v(z(xi, t), t), z(xi, 0) = xi, xi ∼ ρ0(xi),(2.22)

d

dt
ln ρ(z(xi, t), t) = −∇ · v(z(xi, t), t), ln ρ(z(xi, 0), 0) = ln ρ0(xi),(2.23)

where E ,P are defined in (2.11),(2.12) respectively,

E(v, ρ) :=

∫ 1

0

r∑
i=1

1

r
|v(z(xi, t), t)|2dt,

P(ρ) := λ

r∑
i=1

1

r
log

ρ(z(xi, 1), 1)

ρ1(z(xi, 1))
,

and Q is the semi-discrete version of Q:

Q(ρ) :=

∫ 1

0

r∑
i=1

1

r
Q(z(xi, t))dt.

The velocity field v is parameterized by neural network v(x, t; θ) discussed in Section
2.5. We discrete (2.21) by the composite Simpson formula and we use the fourth-order
explicit Runge-Kutta scheme to solve ODE constrains (2.22) and (2.23). So that back
propagation can be naturally used to calculate the gradient of objective function with
respect to network parameters in crowd motion problems.

3. Numerical Experiments. In this section, we first compare the performance
of the adjoint state method with the back propagation method for Gaussian examples
(i.e. the initial and target densities are both Gaussian) . Next, we demonstrate the
performance of the proposed model and its OT results through some numerical ex-
periments. We compare it with several representative and related numerical methods:
the Sinkhorn method [11] and MFGnet [41]. We test the effectiveness of our proposed
method in high dimensions on some synthetic test problems, including the Gaussian
examples and crowd motion examples to perform quantitative and qualitative com-
parisons, respectively. All the experiments of our proposed method are implemented
in PyTorch on a NVIDIA Tesla V100 GPU with 32GB memory.

3.1. Compare the Adjoint State Method with the Back Propagation.
We consider three typical Gaussian examples with different means and covariance
matrices shown in list below. Here ρG(·,m,Σ) is the probability density function of
a d-variate Gaussian with mean m ∈ Rd and covariance matrix Σ ∈ Rd×d. Since the
initial density ρ0 and the target density ρ1 are both Gaussian functions, the ground
truth of the transport costs for the OT problem can be exactly known [37].

• Test 1: ρ0(x) = ρG(x,0, I), ρ1(x) = ρG(x,−4 · e1, I)
• Test 2: ρ0(x) = ρG(x,0, 0.3 · I), ρ1(x) = ρG(x,−4 · e1, I)
• Test 3: ρ0(x) = ρG(x,−4 · e1 − 4 · e2, I), ρ1(x) = ρG(x, 4 · e1 + 4 · e2, I)
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In this section, we compare the adjoint state method with the back propagation
method for Gaussian examples. For both methods, the fourth-order explicit Runge-
Kutta scheme with a fixed step size is used to solve ODEs and the Simpson formula
is adopted for integration in time direction. Besides, for fair comparison, the adjoint
state method and the back propagation method use the same structure of the neu-
ral network, the same number of time steps and the same learning rate for all the
experiments.

(a) ρ0(x0) (b) BP (c) Adjoint (d) ρ1(x1)

Fig. 3.1. BP v.s. adjoint state method.

In Figure 3.1, we show the experiments results of the back propagation method
(b) and the adjoint state method (c) in dimension 2. It can be observed that the push
forward of ρ0 are very similar to the target density ρ1 for both compared approaches,
however, the characteristics are not straight enough for the adjoint state method,
especially for Test 2.

Table 3.1
The comparison of BP and ajoint state method in dimension 2.

Transport costs Test 1 Test 2 Test 3
BP 15.8792 16.3305 127.7931

Adjoint 15.8792 18.1147 128.8924
Ground truth 16.0000 16.4091 128.0000

For better comparison, the average values of transport cost obtained with these
two methods are also compared in Table 3.1. We can clearly observe that the transport
cost estimated by the back propagation is more closer to the ground truth than the
results of the adjoint state method. The back propagation method shows better
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performance than the adjoint state method both quantitatively and qualitatively.
Therefore, in the later experiments, we all use the back propagation method.

3.2. Gaussian Examples. In Table 3.2, the average transport costs over five
seeds have been calculated and recorded for each method. We can clearly see that
the proposed method and MFGnet can lead to better quantitative results than the
Sinkhorn method, especially when the dimension is very high.

Table 3.2
Transport costs of these three instances for different methods in d = 2, 10, 50.

Transport costs Test 1 Test 2 Test 3
d = 2

Sinkhorn 16.1087 16.4795 127.3440
MFGnet 15.7212 16.3645 127.9155

Ours(BP) 15.8792 16.3305 127.7931
Ground truth 16.0000 16.4091 128.0000

d = 10
Sinkhorn 18.5652 19.4240 130.5551
MFGnet 15.6780 18.0464 127.9691

Ours(BP) 16.0131 17.9837 128.1140
Ground truth 16.0000 18.0455 128.0000

d = 50
Sinkhorn 62.1359 51.4754 174.1247
MFGnet - - -

Ours(BP) 16.1800 26.0273 128.2735
Ground truth 16.0000 26.2270 128.0000

Fig. 3.2. The computational time of each iteration in different dimensions. For MFGnet, the
number of training samples are: 2304, 6400, 8464, 10816, 13456 and 16384 at d = 2, 10, 20, 30,
40 and 50, respectively. For the proposed method, 1024 is chosen for all dimensional cases.

Note that, for using the Sinkhorn method, firstly, we should discrete the Gaussian
distribution by Monte Carlo sampling (see Supplementary Materials for additional
experiments of Sinkhorn). Besides, for MFGnet, as the dimension increases, the
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number of training samples are chosen as 2304, 6400 and 16384 for the 2, 10 and 50
dimensional cases, respectively, as recommended in the literature [41]. Indeed, the
running time at dimension 50 is more than 20 hours for each experiment and the
BFGS method used in [41] sometimes fails in the line search, therefore the results are
marked with the symbol “-” in Table 3.2. In addition, we can observe from Figure 3.2
that the computational time of MFGnet will greatly increase and the slope of growth
is about 1.6034. For the proposed method, the number of training samples is set as
1024 for all dimensions, and the computational efficiency is only slightly influenced by
the increase in dimension (see Figure 3.2). The growth slope of the proposed method
is only 0.0244, which is much lower than MFGnet. These experiments demonstrate
that the proposed method is faster and more efficient than MFGnet and Sinkhorn
methods for high-dimensional dynamic OT problems.

(a) ρ0(x0) (b) d = 2 (c) d = 10 (d) d = 50 (e) ρ1(x1)

Fig. 3.3. The density evolution of Gaussian examples.

Next, for better illustration, we also show the density evolution of the proposed
method moving from the initial distribution to the target one in Figure 3.3. The first
column (a) and the last (e) column of Figure 3.3 show the initial density ρ0 and the
target density ρ1, respectively. The other columns ((b)-(d)) correspond to the results
of the push forward of the initial density ρ0 in dimension d = 2, 10 and 50, respectively.
We can clearly see that the target density estimated by our trained network shown
in (b)-(d) are very similar to the target density ρ1, both in the means and covariance
matrices, for all these high-dimensional instances. Note that for d > 2, we just show
slices along the first two coordinate directions. Besides, the red lines represent the
characteristics (i.e. the learned trajectories) starting from randomly sampled points
according to the initial density ρ0. It can be observed that the characteristics are
almost straight lines, which conforms the density movement is reasonable and the
training is successful.
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3.3. Crowd Motion Examples. In this section, we mainly consider the crowd
motion problem which is a generalization of the optimal transport problem. In par-
ticular, when λP = 0 in (2.19), the crowd motion problem will degenerate into an OT
problem.

In list below, we list two representative tests with different choices of initial density
ρ0, target density ρ1 and preference function Q(x) is Gaussian or Gaussian mixture,
corresponding to one obstacle (Test 4) and two obstacles (Test 5) respectively. Note
that for d > 2, we just use the first two components of x to evaluate the preference
function Q(x).

• Test4: ρ0(x) = ρG(x,−3 · e1, 0.3 · I), ρ1(x) = ρG(x, 3 · e1, 0.3 · I),
Q(x) = ρG(x,0, diag(0.5, 1))

• Test5: ρ0(x) = ρG(x,−4 · e1, 0.3 · I), ρ1(x) = ρG(x, 4 · e1, 0.3 · I),
Q(x) = 1

2ρG(x,−2 · e2, diag(0.1, 1)) + 1
2ρG(x, 2 · e2, diag(0.1, 1))

We set the main parameters as λ = 10, λP = 500 and α = 0 and we focus on
the case d = 2 (left two columns) and d = 5 (right two columns) in Figure 3.4. The
last row shows the obstacles in the center of the domain and the red lines present the
learned characteristics. The remaining rows in Figure 3.4 show the density evolution
at intermediate time t = 1

5 ,
1
2 ,

4
5 , 1 from the initial density ρ0 to the target density

ρ1. We can clearly observe that the push forward of ρ0 (i.e. ρ̃1(x̃1)) is similar to the
target density ρ1 and the characteristics are curved, not straight, to avoid the regions
where these obstacles are located.

Our second crowd motion experiment simulates some maze examples in Figure 3.5
and obstacles are represented by an indicator function where the regions are regular
rectangles. We show the crowd motion results of two-dimensional case with different
obstacles. In order to avoid obstacles successfully, firstly, we adopt the same method
as Gaussian function to blur rectangular obstacles properly shown in the last row of
Figure 3.5. Different colors indicate the strength of the obstruction in different parts
of the obstacles, that is, the darker the color, the smaller the obstruction. The density
evolution and characteristics show that the mass can circumvent the obstacles very
well, which demonstrates the success of our algorithm in the crowd motion problem.

4. Conclusion. Motivated by the fact that the traditional mesh-based discretiza-
tion method usually leads to the curse of dimensionality, we propose a novel neural
network based method for solving dynamic OT problems effectively in very high-
dimensional spaces. In order to calculate the gradient accurately, we have adopted
two different method: the back propagation method and the adjoint state method.
The numerical experiments demonstrate that the proposed back propagation method
performs well compared to the MFGnet and the Sinkhorn method. Our proposed
method is easy to implement and high precision in experiments. Generally speaking,
for different dimension, our proposed method takes about 1.5s to perform one itera-
tion with our unoptimized PyTorch codes and GPU implementation. In the future,
we will further study how to extend this method to the unnormalized OT problems,
which means initial and target densities with different total mass.
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Fig. 3.4. Illustration of the crowd motion problem at d = 2 (left two columns) and d = 5 (right
two columns).
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Fig. 3.5. Illustration of the crowd motion problem at d = 2 for maze examples.
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