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Abstract. The multiple-input multiple-output (MIMO) detection problem, a fundamental prob-
lem in modern digital communications, is to detect a vector of transmitted symbols from the noisy
outputs of a fading MIMO channel. The maximum likelihood detector can be formulated as a com-
plex least-squares problem with discrete variables, which is NP-hard in general. Various semidefinite
relaxation (SDR) methods have been proposed in the literature to solve the problem due to their
polynomial-time worst-case complexity and good detection error rate performance. In this paper, we
consider two popular classes of SDR-based detectors and study the conditions under which the SDRs
are tight and the relationship between different SDR models. For the enhanced complex and real
SDRs proposed recently by Lu et al., we refine their analysis and derive the necessary and sufficient
condition for the complex SDR to be tight, as well as a necessary condition for the real SDR to be
tight. In contrast, we also show that another SDR proposed by Mobasher et al. is not tight with
high probability under mild conditions. Moreover, we establish a general theorem that shows the
equivalence between two subsets of positive semidefinite matrices in different dimensions by exploit-
ing a special “separable” structure in the constraints. Our theorem recovers two existing equivalence
results of SDRs defined in different settings and has the potential to find other applications due to
its generality.
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1. Introduction. Multiple-input multiple-output (MIMO) detection is a funda-
mental problem in modern digital communications [33, 36]. The MIMO channel can
be modeled as

(1.1) r = Hx∗ + v,

where r ∈ Cm is the vector of received signals, H ∈ Cm×n is a complex channel
matrix, x∗ is the vector of transmitted symbols, and v is the vector of additive
Gaussian noises. Moreover, each entry of x∗ is drawn from a discrete symbol set S
determined by the modulation scheme.

The MIMO detection problem is to recover the transmitted symbol vector x∗

from the noisy channel output r, with the information of the symbol set S and the
channel matrix H. Under the assumption that each entry of x∗ is drawn uniformly
and independently from the symbol set S, it is known that the maximum likelihood
detector can achieve the optimal detection error rate performance. Mathematically,
it can be formulated as a discrete least-squares problem:

(1.2)
min
x∈Cn

‖Hx− r‖22

s.t. xi ∈ S, i = 1, 2, . . . , n,
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where xi denotes the i-th entry of the vector x and ‖ · ‖2 denotes the Euclidean
norm. In this paper, unless otherwise specified, we will focus on the M -ary phase
shift keying (M -PSK) modulation, whose symbol set is given by

(1.3) SM :=
{
z ∈ C : |z| = 1, arg(z) ∈ {2jπ/M, j = 0, 1, . . . ,M − 1}

}
,

where |z| and arg(z) denote the modulus and argument of a complex number, respec-
tively. As in most practical digital communication systems, throughout the paper we
require M = 2b where b ≥ 1 is an integer1.

Many detection algorithms have been proposed to solve problem (1.2) either ex-
actly or approximately. However, for general H and r, problem (1.2) has been proved
to be NP-hard [32]. Hence, no polynomial-time algorithms can find the exact solution
(unless P = NP). Sphere decoding [4], a classical combinatorial algorithm based on
the branch-and-bound paradigm, offers an efficient way to solve problem (1.2) exactly
when the problem size is small, but its expected complexity is still exponential [11].
On the other hand, some suboptimal algorithms such as linear detectors [23, 6] and
decision-feedback detectors [35, 5] enjoy low complexity but at the expense of sub-
stantial performance loss: see [36] for an excellent review.

Over the past two decades, semidefinite relaxation (SDR) has gained increasing
attention in non-convex optimization [7, 18, 34]. It is a celebrated technique to tackle
quadratic optimization problems arising from various signal processing and wireless
communication applications, such as beamforming design [24, 15], sensor network
localization [3, 2, 27], and angular synchronization [25, 1, 37]. Such SDR-based ap-
proaches can usually offer superior performance in both theory and practice while
maintaining polynomial-time worst-case complexity.

For MIMO detection problem (1.2), the first SDR detector [30, 20] was designed
for the real MIMO channel and the binary symbol set S = {+1,−1}. Notably, it
is proved that this detector can achieve the maximal possible diversity order [12],
meaning that it achieves an asymptotically optimal detection error rate when the
signal-to-noise ratio (SNR) is high. It was later extended to the more general setting
with a complex channel and an M -PSK symbol set in [28, 19], which we refer to
as the conventional SDR or (CSDR). However, this conventional approach fails to
fully utilize the structure in the symbol set S. To overcome this issue, researchers
have developed various improved SDRs and we consider the two most popular classes
below. The first class proposed in [22] is based on an equivalent zero-one integer
programming formulation of problem (1.2). Four SDR models were introduced and
two of them will be discussed in details later (see (ESDR1-T) and (ESDR2-T) further
ahead). The second class proposed in [17] further enhances (CSDR) by adding valid
cuts, resulting in a complex SDR and a real SDR (see (ESDR-X) and (ESDR-Y)
later on).

In this paper, we focus on two key problems in SDR-based MIMO detection: the
tightness of SDRs and the relationship between different SDR models. Firstly, note
that SDR detectors are suboptimal algorithms as they replace the original discrete
optimization problem (1.2) with tractable semidefinite programs (SDPs). Hence, after
solving an SDP, we need some rounding procedure to make final symbol decisions.
However, under some favorable conditions on H and v, an SDR can be tight, i.e.,
it has an optimal rank-one solution corresponding to the true vector of transmitted
symbols. Such tightness conditions are of great interest since they give theoretical
guarantees on the optimality of SDR detectors. While it has been well studied for the

1Our results in section 3 also hold for the more general case where M is a multiple of four.
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simple case [9, 10, 14, 26] where H ∈ Rm×n, v ∈ Rm, and S = {+1,−1}, for the more
general case where H ∈ Cm×n, v ∈ Cm, and S = SM (M ≥ 4), tightness conditions
for SDR detectors have remained unknown until very recently. The authors in [17]
showed that (CSDR) is not tight with probability one under some mild conditions.
On the other hand, their proposed enhanced SDRs are tight2 if the following condition
is satisfied:

(1.4) λmin(H†H) sin
( π
M

)
> ‖H†v‖∞,

where λmin(·) denotes the smallest eigenvalue of a matrix, (·)† denotes the conjugate
transpose, and ‖ · ‖∞ denotes the L∞-norm. To the best of our knowledge, this is
the best condition that guarantees a certain SDR to be tight for problem (1.2) in the
M -PSK settings.

Secondly, researchers have noticed some rather unexpected equivalence between
different SDR models independently developed in the literature. The earliest one
of such results is reported in [21], where three different SDRs for the high-order
quadrature amplitude modulation (QAM) symbol sets are proved to be equivalent.
Very recently, the authors in [16] showed that the enhanced real SDR proposed in [17]
is equivalent to one SDR model in [22]. It is worth noting that while these two papers
are of the same nature, the proof techniques are quite different and it is unclear how
to generalize their results at present.

In this paper, we make contributions to both problems. For the tightness of SDRs,
we sharpen the analysis in [17] to give the necessary and sufficient condition for the
complex enhanced SDR to be tight, and a necessary condition for the real enhanced
SDR to be tight. Specifically, for the case where M ≥ 4, we show that the enhanced
complex SDR (ESDR-X) is tight if and only if
(1.5)

H†H + Diag
(
Re(Diag(x∗)−1H†v)

)
− cot

( π
M

)
Diag(|Im(Diag(x∗)−1H†v)|

)
� 0,

while the enhanced real SDR (ESDR-Y) is tight only if
(1.6)

H†H + Diag
(
Re(Diag(x∗)−1H†v)

)
− cot

(
2π

M

)
Diag(|Im(Diag(x∗)−1H†v)|

)
� 0,

where A � 0 means that the matrix A is positive semidefinite (PSD), Diag(x) denotes
a diagonal matrix whose diagonals are the vector x, and Re(·), Im(·), and |·| denote the
entrywise real part, imaginary part, and absolute value of a number/vector/matrix,
respectively. Moreover, we prove that one of the SDR models proposed in [22] is
generally not tight: under some mild assumptions, its probability of being tight decays
exponentially with respect to the number of transmitted symbols n.

For the relationship between different SDR models, we propose a general theorem
showing the equivalence between two subsets of PSD cones. Specifically, we prove
the correspondence between a subset of a high-dimensional PSD cone with a special
“separable” structure and the one in a lower dimension. Our theorem covers both
equivalence results in [21] and [16] as special cases, and has the potential to find other
applications due to its generality.

The paper is organized as follows. We introduce the existing SDRs for (1.2) in
section 2 and analyze their tightness in section 3. In section 4, we propose a general

2The definition of tightness in [17] is slightly different from ours since they also require the
optimal solution of the SDR to be unique.
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theorem that establishes the equivalence between two subsets of PSD cones in different
dimensions, and discuss how our theorem implies previous results. Section 5 provides
some numerical results to validate our analysis. Finally, section 6 concludes the paper.

We summarize some standard notations used in this paper. We use xi to denote
the i-th entry of a vector x and Xi,j to denote the (i, j)-th entry of a matrix X. We
use | · |, ‖ · ‖2, and ‖ · ‖∞ to denote the entrywise absolute value, the Euclidean norm,
and the L∞ norm of a vector, respectively. For a given number/vector/matrix, we use
(·)† to denote the conjugate transpose, (·)T to denote the transpose, and Re(·)/Im(·)
to denote the entrywise real/imaginary part. We use Diag(x) to denote the diagonal
matrix whose diagonals are the vector x, and diag(X) to denote the vector whose
entries are the diagonals of the matrix X. Given an m × n matrix A and the index
sets α ⊂ {1, 2, . . . ,m} and β ⊂ {1, 2, . . . , n}, we use A[α, β] to denote the submatrix
with entires in the rows of A indexed by α and the columns indexed by β. Moreover,
we denote the principal submatrix A[α, α] by A[α] in short. For two matrices A and
B of appropriate size, 〈A,B〉 := Re(Tr(A†B)) denotes the inner product, A ⊗ B
denotes the Kronecker product, and A � B means A − B is PSD. For a set A in a
vector space, we use conv(A) to denote its convex hull. For a random variable X and
measurable sets B and C, Prob(X ∈ B) denotes the probability of the event {X ∈ B},
Prob(X ∈ B | C) denotes the conditional probability given C, and E[X] denotes the
expectation of X. Finally, the symbols i, 1n, In, and Sn+ represent the imaginary unit,
the n× 1 all-one vector, the n× n identity matrix, and the n-dimensional PSD cone,
respectively.

2. Review of semidefinite relaxations. In this paper, we focus on theM -PSK
setting with the symbol set SM given in (1.3). To simplify the notations, we let s ∈ CM
be the vector of all symbols, where

sj = eiθj and θj =
(j − 1)2π

M
, j = 1, 2, . . . ,M,

and further we let sR = Re(s) and sI = Im(s).
The objective in (1.2) can be written as

‖Hx− r‖22 = x†Qx+ 2Re(c†x) + r†r = 〈Q,xx†〉+ 2Re(c†x) + r†r,

where we define

(2.1) Q = H†H and c = −H†r.

By introducing X = xx† and discarding the constant r†r, we can reformulate (1.2)
as

(2.2)

min
x,X

〈Q,X〉+ 2Re(c†x)

s.t. Xi,i = 1, i = 1, 2, . . . , n,

xi ∈ SM , i = 1, 2, . . . , n,

X = xx†,

where the constraint Xi,i = 1 comes from Xi,i = |xi|2 = 1. The conventional SDR
(CSDR) in [28, 19] simply drops the discrete symbol constraints xi ∈ SM and relaxes
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the rank-one constraint to X � xx†, resulting in the following relaxation:

(CSDR)

min
x,X

〈Q,X〉+ 2Re(c†x)

s.t. Xi,i = 1, i = 1, 2, . . . , n,

X � xx†,

where x ∈ Cn and X ∈ Cn×n. Since X � xx† is equivalent to[
1 x†

x X

]
� 0,

the above (CSDR) is an SDP on the complex domain. Moreover, for the simple case
where H ∈ Rm×n, v ∈ Rm, and M = 2, a real SDR similar to (CSDR) has the form:

(2.3)

min
x,X

〈Q,X〉+ 2cTx

s.t. Xi,i = 1, i = 1, 2, . . . , n,

X � xxT,

where x ∈ Rn, X ∈ Rn×n, and we redefine Q = HTH and c = −HTr (cf. (2.1)). The
problem (2.3) has also been extensively studied in the literature [30, 20, 9, 10, 14, 26].
It is proved in [9, 10] that (2.3) is tight if and only if

(2.4) HTH + [Diag(x∗)]−1Diag(HTv) � 0,

while (CSDR) is not tight for M ≥ 4 with probability one under some mild condi-
tions [17].

Recently, a class of enhanced SDRs was proposed in [17]. Instead of simply
dropping the constraints xi ∈ SM as in (CSDR), the authors replaced the discrete
symbol set SM by its convex hull to get a continuous relaxation:

(ESDR-X)

min
t,x,X

〈Q,X〉+ 2Re(c†x)

s.t. Xi,i = 1, i = 1, 2, . . . , n,

xi =

M∑
j=1

ti,jsj ,

M∑
j=1

ti,j = 1, i = 1, 2, . . . , n,

ti,j ≥ 0, j = 1, 2, . . . ,M, i = 1, 2, . . . , n,

X � xx†,

where x ∈ Cn, X ∈ Cn×n, and t ∈ RMn is the concatenation of M -dimensional vectors
t1, t2, . . . , tn with ti = [ti,1, ti,2, . . . , ti,M ]T. The authors in [17] further proved that
(ESDR-X) is tight if condition (1.4) holds. We term the above SDP as “ESDR-X”,
where “E” stands for “enhanced” and “X” refers to the matrix variable. The same
naming convention is adopted for all the SDRs below.

We can also formulate (2.2) in the real domain and then use the same technique
to get a real counterpart of (ESDR-X). Let

(2.5) y =

[
Re(x)
Im(x)

]
, Q̂ =

[
Re(Q) −Im(Q)
Im(Q) Re(Q)

]
, and ĉ =

[
Re(c)
Im(c)

]
,
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then the real enhanced SDR (ESDR-Y) is given by

(ESDR-Y)

min
t,y,Y

〈Q̂,Y〉+ 2ĉTy

s.t. Y(i) =

M∑
j=1

ti,jKj ,

M∑
j=1

ti,j = 1, i = 1, 2, . . . , n,

ti,j ≥ 0, j = 1, 2, . . . ,M, i = 1, 2, . . . , n,

Y � yyT,

where t ∈ RMn, y ∈ R2n, Y ∈ R2n×2n, and we define

Y(i) :=

 1 yi yn+i

yi Yi,i Yi,n+i

yn+i Yn+i,i Yn+i,n+i

 , i = 1, 2, . . . , n.

In (ESDR-Y), these 3 × 3 matrices are constrained in a convex hull whose extreme
points are

(2.6) Kj =

 1
sR,j
sI,j

 1
sR,j
sI,j

T

, j = 1, 2, . . . ,M,

where sR,j = Re(sj) and sI,j = Im(sj). It has been shown that (ESDR-Y) is tighter
than (ESDR-X) [17, Theorem 4.1], and hence (ESDR-Y) is tight whenever (ESDR-X)
is tight.

Now we turn to another class of SDRs developed from a different perspective
in [22], which is applicable to a general symbol set. The idea is to introduce binary
variables to express xi ∈ SM by

(2.7) xi = tTi s, i = 1, 2, . . . , n,

where ti = [ti,1, ti,2, . . . , ti,M ]T,
∑M
j=1 ti,j = 1, and ti,j ∈ {0, 1}. The above con-

straints (2.7) can be rewritten in a compact form as x = St, where S = In ⊗ sT and
we concatenate all vectors ti to get t = [tT1 , . . . , t

T
n]T ∈ RMn. Similarly, we can also

formulate (2.7) in the real domain as y = Ŝt, where

(2.8) y =

[
Re(x)
Im(x)

]
and Ŝ =

[
Re(S)
Im(S)

]
=

[
In ⊗ sTR
In ⊗ sTI

]
.

By introducing T = ttT ∈ RMn×Mn, the problem (1.2) is equivalent to

(2.9)

min
t,T

〈Q̄,T〉+ 2c̄Tt

s.t.

M∑
j=1

ti,j = 1, i = 1, 2, . . . , n,

ti,j ∈ {0, 1}, j = 1, 2, . . . ,M, i = 1, 2, . . . , n,

T = ttT,

where

(2.10) Q̄ = ŜTQ̂Ŝ and c̄ = ŜTĉ.
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To derive an SDR for (2.9), we first allow ti,j to take any value between 0 and 1. For
the rank-one constraint T = ttT, the authors in [22] proposed four ways of relaxation
and we will introduce two of them in the following3. We first partition T as an n× n
block matrix

T =


T1,1 T1,2 . . . T1,n

T2,1 T2,2 . . . T2,n

...
...

. . .
...

Tn,1 Tn,2 . . . Tn,n

 ,
where Ti,j ∈ RM×M for i = 1, 2, . . . , n and j = 1, 2, . . . , n. In the first model, we
relax T = ttT to T � ttT and impose constraints on the diagonal elements:

(ESDR1-T)

min
t,T

〈Q̄,T〉+ 2c̄Tt

s.t. ti,j ≥ 0,

M∑
j=1

ti,j = 1, j = 1, 2, . . . ,M, i = 1, 2, . . . , n,

diag(Ti,i) = ti, i = 1, 2, . . . , n,

T � ttT,

where t ∈ RMn and T ∈ RMn×Mn. The second model further requires Ti,i to be a
diagonal matrix, leading to the following SDR:

(ESDR2-T)

min
t,T

〈Q̄,T〉+ 2c̄Tt

s.t. ti,j ≥ 0,

M∑
j=1

ti,j = 1, j = 1, 2, . . . ,M, i = 1, 2, . . . , n,

Ti,i = Diag(ti), i = 1, 2, . . . , n,

T � ttT.

Since (ESDR2-T) puts more constraints on the variables t and T, (ESDR2-T) is
tighter than (ESDR1-T). Notably, it is shown in [16] that (ESDR2-T) is equivalent
to (ESDR-Y), and hence (1.4) is also a sufficient condition for (ESDR2-T) to be tight.

Table 1 summarizes all SDR models discussed in this paper, where we highlight
our contributions on the tightness of different SDRs in bold.

3. Tightness of semidefinite relaxations.

3.1. Tightness of (ESDR-X). Let X∗ = x∗(x∗)†, and the key idea of showing
the tightness of (ESDR-X) is to certify (x∗,X∗) as the optimal solution by considering
the Karush-Kuhn-Tucker (KKT) conditions of (ESDR-X). Our derivation is based
on [17, Theorem 4.2] and we provide a simplified version for completeness.

Theorem 3.1 ([17, Theorem 4.2]). Suppose that M ≥ 4. Then (x∗,X∗) is the
optimal solution of (ESDR-X) if and only if there exist

λi ∈ R, µi,−1 ≥ 0, and µi,1 ≥ 0, i = 1, 2, . . . , n,

3Our formulations are slightly different from the original ones in [22] since they used the equality
constraints to eliminate one variable for each ti before relaxing the PSD constraint. However, in
numerical tests we found that this variation only causes a negligible difference in the optimal solutions
of the SDRs.
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Table 1
Summary of SDR models in this paper.

SDR model Origin Domain
Dimension of

PSD cone
Comments

CSDR Ma et al. [19] C n+ 1 tight with probability 0 [17]

ESDR-X
CSDP2 in Lu

et al. [17]
C n+ 1 tight if and only if (1.5) holds

ESDR-Y
ERSDP in Lu

et al. [17]
R 2n+ 1 tight only if (1.6) holds

ESDR1-T
Model II in
Mobasher et

al. [22]
R Mn+ 1 tight with probability no

greater than (2/M)n

ESDR2-T
Model III in
Mobasher et

al. [22]
R Mn+ 1 equivalent to ESDR-Y [16]

such that H and v in (1.1) satisfy

(x∗i )
−1(H†v)i = λi +

µi,−1

2
e−i

π
M +

µi,1
2
ei

π
M , i = 1, 2, . . . , n,

and Q + Diag(λ) � 0.

The authors in [17] further derived the sufficient condition (1.4), under which the
conditions in Theorem 3.1 are met by choosing λi = −λmin(Q) for i = 1, 2, . . . , n.
To strengthen their analysis, we view the conditions in Theorem 3.1 as a semidefinite
feasibility problem. To be specific, if we define

(3.1) zi = (x∗i )
−1(H†v)i, i = 1, 2, . . . , n,

and

C(λ) =
{
z ∈ C : ∃ µ−1, µ1 ≥ 0 s.t. z = λ+

µ−1

2
e−i

π
M +

µ1

2
ei

π
M

}
,

then Theorem 3.1 states that (ESDR-X) is tight if and only if the following problem
is feasible:

(3.2)

find λ ∈ Rn

s.t. Q + Diag(λ) � 0,

zi ∈ C(λi), i = 1, 2, . . . , n.

Each constraint zi ∈ C(λi) turns out to be a simple inequality on λi. To see this, we
plot C(λi) as the shaded area in Figure 1. It is clear from the figure that

zi ∈ C(λi) ⇔ |Im(zi)| ≤
(
− λi + Re(zi)

)
tan

( π
M

)
,

which leads to

zi ∈ C(λi) ⇔ λi ≤ Re(zi)− |Im(zi)| cot
( π
M

)
.

This, together with (3.2), gives the necessary and sufficient condition for (ESDR-X)
to be tight and we formally state it in Theorem 3.2.
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Re

Im

Fig. 1. Illustration of C(λi) in the complex plane.

Theorem 3.2. Suppose that M ≥ 4. Then (ESDR-X) is tight if and only if

(3.3) Q + Diag
(
Re(z)

)
− cot

( π
M

)
Diag(|Im(z)|

)
� 0,

where z = [z1, z2, . . . , zn]T ∈ Cn.

Note that (3.3) is exactly the same as (1.5) if we recall the definitions of Q in
(2.1) and zi in (3.1). Furthermore, if we set M = 2 and H, v to be real in (1.5),
it becomes the same as the previous result (2.4). Hence, our result extends (2.4) to
the more general case where M ≥ 4 and H, v are complex. Finally, the sufficient
condition (1.4) in [17] can be derived from our result. Since

Re(zi)− |Im(zi)| cot
( π
M

)
=

1

sin
(
π
M

) (Re(zi) sin
( π
M

)
− |Im(zi)| cos

( π
M

))
≥ − 1

sin
(
π
M

) |zi| ≥ − 1

sin
(
π
M

)‖H†v‖∞,
we have

Diag
(
Re(z)

)
− cot

( π
M

)
Diag(|Im(z)|

)
� − 1

sin
(
π
M

)‖H†v‖∞In.

Combining this with Q � λmin(Q)In, we can see that (1.4) is a stronger condition on
H and v than (1.5).

3.2. Tightness of (ESDR-Y). Similar to Theorem 3.1, we have the following
characterization for (ESDR-Y) to be tight. Since the proof technique is essentially
the same as that in [17], we put the proof in a separate technical report [13].

Theorem 3.3. Suppose that M ≥ 4. Let the transmitted symbol vector x∗ be

x∗i = sui , ui ∈ {1, 2, . . . ,M}, i = 1, 2, . . . , n,

and define

v̂ =

[
Re(v)
Im(v)

]
∈ R2n, Ĥ =

[
Re(H) −Im(H)
Im(H) Re(H)

]
∈ R2n×2n,(3.4)

y∗ =

[
Re(x∗)
Im(x∗)

]
∈ R2n, Y∗ = y∗(y∗)T ∈ R2n×2n.
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Then (y∗,Y∗) is the optimal solution of (ESDR-Y) if and only if there exist λ ∈ R2n,
µ ∈ Rn, and g ∈ R2n that satisfy

ĤTv̂ = g + (Λ + M)y∗,(3.5)

〈Γi,Kui〉 ≥ 〈Γi,Kj〉, j = 1, 2, . . . ,M, i = 1, 2, . . . , n,(3.6)

and

Q̂ + Λ + M � 0,

where Kj is defined in (2.6), Q̂ is defined in (2.5), and

(3.7) Λ = Diag(λ), M =

[
0 Diag(µ)

Diag(µ) 0

]
, Γi =

 0 gi gn+i

gi λi µi
gn+i µi λn+i

 .
Furthermore, (3.5) and (3.6) in Theorem 3.3 can be simplified to the following

inequalities on (λ,µ) (see Appendix A):

(3.8)

sin2

(
θui +

∆θj
2

)
λi + cos2

(
θui +

∆θj
2

)
λn+i − sin (2θui + ∆θj)µj

≤ Re(zi)− cot

(
∆θj

2

)
Im(zi), j ∈ {1, 2, . . . ,M}\{ui}, i = 1, 2, . . . , n.

Here ∆θj = θj − θui , θui is the phase of the i-th transmitted symbol x∗i , and zi is
defined in (3.1). Similar to (3.2), we formulate the conditions in Theorem 3.3 as a
semidefinite feasibility problem as follows:

(3.9)

find λ ∈ R2n and µ ∈ Rn

s.t. Q̂ + Λ + M � 0,

(3.8) is satisfied,

where Λ and M are defined in (3.7). However, unlike problem (3.2) where every
inequality only involves one dual variable, problem (3.9) has inequalities with three
variables coupled together and it is unclear how to choose the “optimal” λ and µ. In
the following, we give a simple necessary condition for (ESDR-Y) being tight based
on (3.9).

Theorem 3.4. Suppose that M ≥ 4. If (ESDR-Y) is tight, then

(3.10) Q + Diag
(
Re(z)

)
− cot

(
2π

M

)
Diag(|Im(z)|

)
� 0,

where Q = H†H and z is defined in (3.1).

Before proving Theorem 3.4, we first introduce the following lemma.

Lemma 3.5. Suppose that V is a PSD matrix in R2n and is partitioned as

V =

[
A B
BT C

]
,

where A = AT, C = CT, and A,B,C ∈ Rn×n. Then

U =
1

2
(A + C) +

i

2
(BT −B)

is a PSD matrix in Cn.
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Proof. We observe that

U =
1

2

[
In iIn

] [A B
BT C

] [
In
−iIn

]
.

The result follows immediately.

Proof of Theorem 3.4. If (ESDR-Y) is tight, we can find λ ∈ R2n and µ ∈ Rn
that satisfy the constraints in (3.9). By Lemma 3.5, the constraint Q̂ + Λ + M � 0
implies

(3.11) Q + Diag(λ̄) � 0,

where λ̄ ∈ Rn is given by

λ̄i =
1

2
(λi + λn+i), i = 1, 2, . . . , n.

Fix i ∈ {1, 2, . . . , n} and let ẑi and ẑn+i denote Re(zi) and Im(zi), respectively. If
ẑn+i ≥ 0, we set ∆θj = 2π

M in (3.8) to get

sin2
(
θui +

π

M

)
λi + cos2

(
θui +

π

M

)
λn+i − sin

(
2θui +

2π

M

)
µj ≤ ẑi − cot

( π
M

)
|ẑn+i|.

Since M ≥ 4, we can also set ∆θj = 2π
M + π to get

cos2
(
θui +

π

M

)
λi + sin2

(
θui +

π

M

)
λn+i + sin

(
2θui +

2π

M

)
µj ≤ ẑi + tan

( π
M

)
|ẑn+i|.

Adding the above two inequalities and dividing both sides by two, we have

(3.12) λ̄i =
1

2
(λi + λn+i) ≤ ẑi − cot

(
2π

M

)
|ẑn+i|.

If ẑn+i < 0, we can also arrive at (3.12) by setting ∆θj to be − 2π
M and − 2π

M + π,
respectively. Finally, Theorem 3.4 follows from (3.11) and (3.12).

Note that (3.10) is the same as (1.6) if we recall the definitions of Q in (2.1) and
zi in (3.1). Moreover, since (ESDR-Y) is tighter than (ESDR-X), (ESDR-Y) will
also be tight if (1.5) holds. Therefore, we have both a necessary condition (1.6) and
a sufficient condition (1.5) for (ESDR-Y) to be tight.

3.3. Tightness of (ESDR1-T). In the same spirit, we first give a necessary
and sufficient condition for (ESDR1-T) to be tight. Since the technique is essentially
the same as that used in Theorem 3.3, we omit the proof details due to the space
limitation.

Theorem 3.6. Suppose that M ≥ 4. Let the transmitted symbol vector x∗ be

x∗i = sui , ui ∈ {1, 2, . . . ,M}, i = 1, 2, . . . , n,

and define

t∗i,ui = 1, t∗i,j = 0, j 6= ui, i = 1, 2, . . . , n,

T∗ = t∗(t∗)T.
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Then (t∗,T∗) is the optimal solution of (ESDR1-T) if and only if there exist α ∈ Rn
and γ ∈ RMn such that

(3.13) Diag(1− 2t∗)γ = −2ŜTĤTv̂ +α⊗ 1M ,

and

(3.14) Q̄ + Diag(γ) � 0.

where Ŝ is defined in (2.8), Ĥ, v̂ are defined in (3.4), and Q̄ is defined in (2.10).

Now we provide a corollary that will serve as our basis for further derivation.

Corollary 3.7. If (ESDR1-T) is tight, then there exist

α ∈ Rn and γ1,γ2, . . . ,γn ∈ RM

that satisfy

(3.15) γi,j =

{
−2Re[s†j(H

†v)i] + αi, if j 6= ui,

2Re[s†j(H
†v)i]− αi, if j = ui,

j = 1, 2, . . . ,M, i = 1, 2, . . . , n,

and

wTDiag(γi)w ≥ 0, i = 1, 2, . . . , n,

for any w ∈ RM such that wTsR = wTsI = 0.

Proof. By Theorem 3.6, if (ESDR1-T) is tight, we can find α ∈ Rn and γ ∈ RMn

that satisfy (3.13) and (3.14). Let γ be partitioned as γ = [γT
1 ,γ

T
2 , . . . ,γ

T
n ]T where

γj ∈ RM is the j-th block of γ. It is straightforward to verify that (3.13) is equivalent
to (3.15).

Moreover, for any i ∈ {1, 2, . . . , n} and any w ∈ RM that satisfies wTsR =
wTsI = 0, we set w̄ = [w̄T

1 , w̄
T
2 , . . . , w̄

T
n ]T ∈ RMn to be

w̄j =

{
0, if j 6= i,

w, if j = i.

It is simple to check that Ŝw̄ = 0. Therefore, recalling that Q̄ = ŜTQ̂Ŝ, by (3.14) we
have

w̄T(Q̄ + Diag(γ))w̄ = w̄TDiag(γ)w̄ = wTDiag(γi)w ≥ 0.

The proof is complete.

In practice, the symbol set S, such as the one in (1.3) considered in this paper, is
symmetric with respect to the origin. Therefore, we can find u′i ∈ {1, 2, . . . ,M} that
satisfies su′i = −sui . Now let w ∈ RM be

wj =

{
0, if j /∈ {ui, u′i},
1, if j ∈ {ui, u′i},

j = 1, 2, . . . ,M.

We have wTsR = sR,ui + sR,u′i = 0 and wTsI = sI,ui + sI,u′i = 0. Hence, when
(ESDR1-T) is tight, Corollary 3.7 implies that

wTDiag(γi)w = γui + γu′i = 4Re[s†ui(H
†v)i] = 4Re[(x∗i )

†(H†v)i] ≥ 0.
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This immediately leads to the following upper bound on the tightness probability of
(ESDR1-T).

Corollary 3.8. Suppose that the symbol set S is symmetric with respect to the
origin and 0 /∈ S. We further assume that

(a) The entries of x∗ are drawn from S uniformly and independently;
(b) x∗, H, and v are mutually independent; and
(c) the distribution of H and v are continuous.

Then we have

Prob
(
(ESDR1-T) is tight

)
≤
(

1

2

)n
.

Proof. Let zi = (x∗i )
†(H†v)i, i = 1, 2, . . . , n. Since H and v are independent

continuous random variables, the event

n⋃
i=1

⋃
s∈S
{Re(s†(H†v)i) = 0}

happens with probability zero. Hence, because of the symmetry of S, with prob-
ability one exactly half of the symbols s ∈ S satisfy Re(s†(H†v)i) > 0 for each
i ∈ {1, 2, . . . , n} when H and v are given. By the assumption that x∗i is uniformly
distributed over S, we obtain

Prob
(
Re(zi) ≥ 0 |H,v

)
=

1

2
almost surely.

Moreover, {zi}ni=1 are mutually independent conditioned on H and v. This leads to

Prob
(
Re(zi) ≥ 0, i = 1, 2, . . . , n

)
= E

H,v

[
Prob

(
Re(zi) ≥ 0, i = 1, 2, . . . , n |H,v

)]
= E

H,v

[ n∏
i=1

Prob
(
Re(zi) ≥ 0 |H,v

)]
=

(
1

2

)n
.

Finally, Corollary 3.8 follows from the fact that the tightness of (ESDR1-T) implies
Re(zi) ≥ 0, i = 1, 2, . . . , n.

It is worth noting that all the assumptions in Corollary 3.8 are mild: they are
satisfied if we use the M -PSK or QAM modulation scheme and the entries of H and
v follow the complex Gaussian distribution.

Intuitively, we will expect that (ESDR1-T) is less likely to recover the transmitted
symbols with an increasing symbol set size M . In the following, we present a more
refined upper bound on the tightness probability specific to the M -PSK setting and
the proof can be found in [13].

Theorem 3.9. Suppose that M -PSK is used with M ≥ 4 and the same assump-
tions in Corollary 3.8 hold. Then we have

Prob
(
(ESDR1-T) is tight

)
≤
(

2

M

)n
.
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From Corollary 3.8 and Theorem 3.9, we can see that the tightness probability
of (ESDR1-T) is bounded away from one regardless of the noise level, and it tends
to zero exponentially fast when the number of transmitted symbols n increases. This
is in sharp contrast to (ESDR-X) and (ESDR-Y), whose tightness probabilities will
approach one if the noise level is sufficiently small and the number of received signals
m is sufficiently large compared to n [17, Theorem 4.5].

4. Equivalence between different SDRs. In this section, we focus on the
relationship between different SDR models of (1.2).Related to the SDRs discussed so
far, a recent paper [16] proved that (ESDR2-T) is equivalent to (ESDR-Y) for the
MIMO detection problem with a general symbol set. An earlier paper [21] compared
three different SDRs in the QAM setting and showed their equivalence. Compared
with those in section 2, the SDRs considered in [21] differ greatly in their motivations
and structures, and the two equivalence results are proved using different techniques.
In this section, we provide a more general equivalence theorem from which both results
follow as special cases. This not only reveals the underlying connection between these
two works, but also may potentially lead to new equivalence between SDRs.

4.1. Review of previous results. In [16], the authors established the following
correspondence between a pair of feasible points of (ESDR2-T) and (ESDR-Y):

(4.1) Y = ŜTŜT and y = Ŝt,

where Ŝ ∈ R2n×Mn is defined in (2.8). In [21], the authors considered the feasible set
of a virtually-antipodal SDR (VA-SDR):

(VA-SDR)

[
1 bT

b B

]
∈ Sqn+1

+

s.t. Bi,i = 1, i = 1, 2, . . . , qn,

and that of a bounded-constrained SDR (BC-SDR):

(BC-SDR)

[
1 xT

x X

]
∈ Sn+1

+

s.t. 1 ≤ Xi,i ≤ (2q − 1)2, i = 1, 2, . . . , n,

where q ≥ 1 is an integer. We refer interested readers to [21] and references therein
for their derivations. The authors proved the equivalence between (VA-SDR) and
(BC-SDR) by showing the following correspondence:

(4.2) X = WBWT and x = Wb,

where

W =
[
In 2In 4In . . . 2q−1In

]
∈ Rn×qn.

Note that both equivalence results in (4.1) and (4.2) fall into the following form:{[
1 yT

y Y

]
∈ F1

}
=

{[
1 yT

y Y

]
=

[
1 0
0 P

] [
1 tT

t T

] [
1 0
0 PT

]
:

[
1 tT

t T

]
∈ F2

}
,

where F1 is a subset of Sk+1
+ , F2 is a subset of Sd+1

+ , and we call P ∈ Rk×d as

the transformation matrix. Moreover, both the transformation matrices Ŝ in (4.1)
and W in (4.2) have a special “separable” property that we now define for ease of
presentation.
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Definition 4.1. A matrix P ∈ Rk×d is called separable if there exist a partition
of rows α1, α2, . . . , αl and a partition of columns β1, β2, . . . , βl such that

P[αi, βj ] = 0, ∀ i 6= j.

In other words, a matrix is separable if, after possibly rearranging rows and columns,
it has a block diagonal structure. In particular, for the transformation matrix Ŝ in
(4.1), the corresponding row and column partitions are given by

(4.3) αi = {i, n+ i}, βi = {(i− 1)M + 1, (i− 1)M + 2, . . . , iM}, i = 1, 2, . . . , n;

for the transformation matrix W in (4.2), they are given by

(4.4) αi = {i}, βi = {i, i+ n, i+ 2n, . . . , i+ (q − 1)n}, i = 1, 2, . . . , n.

4.2. A general equivalence theorem. Now we are ready to present our main
equivalence result.

Theorem 4.2. Suppose that the matrix P ∈ Rk×d is separable with row partition
α1, α2, . . . , αl and column partition β1, β2, . . . , βl.Moreover, define

ki := |αi|, di := |βi|, and Pi := P[αi, βi] ∈ Rki×di , i = 1, 2, . . . , l,

where we use | · | to denote the cardinality of a set. Then given arbitrary constraint
sets Ai ⊂ Rdi×di for i = 1, 2, . . . , l, the following set

(4.5)

[
1 yT

y Y

]
∈ Sk+1

+

s.t. Y = PTPT, y = Pt,[
1 tT

t T

]
∈ Sd+1

+ ,[
1 t[βi]

T

t[βi] T[βi]

]
∈ Ai, i = 1, 2, . . . , l,

where the variables are y ∈ Rk, Y ∈ Rk×k, t ∈ Rd, and T ∈ Rd×d, is the same as

(4.6)

[
1 yT

y Y

]
∈ Sk+1

+

s.t. Y[αi] = PiT
(i)PT

i , y[αi] = Pit
(i),[

1 (t(i))T

t(i) T(i)

]
∈ Sdi+1

+ ,[
1 (t(i))T

t(i) T(i)

]
∈ Ai, i = 1, 2, . . . , l,

where the variables are y ∈ Rk, Y ∈ Rk×k, t(i) ∈ Rdi , and T(i) ∈ Rdi×di with
i = 1, 2, . . . , l.

The following lemma will be useful in our proof.

Lemma 4.3 ([8, Theorem 7.3.11]). Let A ∈ Rp×n and B ∈ Rq×n where p ≤ q.
Then ATA = BTB if and only if there exists a matrix U ∈ Rq×p with UTU = Ip
such that B = UA.
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Proof of Theorem 4.2. Without loss of generality, we assume the transformation
matrix P ∈ Rk×d is in the form

P =


P1

P2

. . .

Pl

 ,
where Pi ∈ Rki×di ,

∑l
i=1 ki = k, and

∑l
i=1 di = d.

For one direction, suppose that (y,Y, t,T) satisfies the constraints in (4.5). Then
it is straightforward to see that (y,Y) also satisfies the constraints in (4.6) together
with

t(i) = t[βi], T(i) = T[βi], i = 1, 2, . . . , l.

The other direction of the proof is more involved. Given (y,Y) and the variables
{t(i),T(i)}li=1 in (4.6), our goal is to construct (t,T) satisfying the conditions in (4.5).
To simplify the notations, we define

(4.7) Ỹ :=

[
1 yT

y Y

]
, T̃(i) :=

[
1 (t(i))T

t(i) T(i)

]
, and P̃i :=

[
1 0
0 Pi

]
.

Let r = max{k, d}. Since Ỹ ∈ Sk+1
+ , it can be factorized as

(4.8) Ỹ = ṼTṼ,

where Ṽ ∈ R(r+1)×(k+1). The above factorization can be done because r ≥ k. Further,
we partition Ṽ as

Ṽ =
[
v V1 V2 . . . Vl

]
,

where v ∈ Rr+1 and Vi ∈ R(r+1)×ki contains the columns of Ṽ indexed by αi for
i = 1, 2, . . . , l. Moreover, we have vTv = Ỹ1,1 = 1. Similarly, T̃(i) can be factorized
as

(4.9) T̃(i) = (Z̃(i))TZ̃(i), i = 1, 2, . . . , l,

where Z̃(i) ∈ R(di+1)×(di+1) and is partitioned as

(4.10) Z̃(i) =
[
z(i) Z(i)

]
.

Combining (4.9) with the equality constraints in (4.6), we get[
1 y[αi]

T

y[αi] Y[αi]

]
= P̃iT̃

(i)P̃T
i =

(
Z̃(i)P̃T

i

)T(
Z̃(i)P̃T

i

)
, i = 1, 2, . . . , l,

where Z̃(i)P̃T
i ∈ R(di+1)×(ki+1). On the other hand, the factorization in (4.8) implies[

1 y[αi]
T

y[αi] Y[αi]

]
=
[
v Vi

]T [
v Vi

]
,

where [v Vi] ∈ R(r+1)×(ki+1). By Lemma 4.3, we can find Ui ∈ R(r+1)×(di+1) with
UT
i Ui = Idi+1 such that

(4.11)
[
v Vi

]
= UiZ̃

(i)P̃T
i .
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Substituting (4.7) and (4.10) into (4.11), we get

(4.12) v = Uiz
(i) and Vi = UiZ

(i)PT
i .

Finally, we define

R =
[
v U1Z

(1) U2Z
(2) . . . UlZ

(l)
]
∈ R(r+1)×(d+1),

whose columns indexed by βi are given by UiZ
(i), and construct (t,T) by

(4.13)

[
1 tT

t T

]
= RTR.

Next we verify that (t,T) in (4.13) indeed satisfies all the constraints in (4.5). The
positive semidefiniteness is evident by our construction. For the equality constraints,
by using (4.12) we have

R

[
1 0
0 PT

]
=
[
v U1Z

(1)PT
1 U1Z

(2)PT
2 . . . UlZ

(l)PT
l

]
=
[
v V1 V2 . . . Vl

]
= Ṽ.

Hence, we get [
1 0
0 P

] [
1 tT

t T

] [
1 0
0 PT

]
=

[
1 0
0 P

]
RTR

[
1 0
0 PT

]
= ṼTṼ

=

[
1 yT

y Y

]
,

which is equivalent to Y = PTPT and y = Pt. Lastly, note that[
1 t[βi]

T

t[βi] T[βi]

]
=
[
v UiZ

(i)
]T [

v UiZ
(i)
]

(4.14)

=
[
Uiz

(i) UiZ
(i)
]T [

Uiz
(i) UiZ

(i)
]

(4.15)

= (Z̃(i))TUT
i UiZ̃

(i)

= (Z̃(i))TZ̃(i)(4.16)

= T̃(i) =

[
1 (t(i))T

t(i) T(i)

]
,

where we used (4.13) in (4.14), v = Uiz
(i) (cf. (4.12)) in (4.15), and UT

i Ui = Idi+1

in (4.16). Hence, the remaining constraints in (4.5) are also satisfied because of the
conditions on T̃(i) in (4.6).

The proof of Theorem 4.2 is complete.

Two remarks are in order. Firstly, the variables in (4.5) are in a high-dimensional
PSD cone Sd+1

+ , while those in (4.6) are in the Cartesian product of smaller PSD

cones Sk+1
+ × Sd1+1

+ × Sd2+1
+ × · · · × Sdl+1

+ . When k, d1, d2, . . . , dl are much smaller
than d, using (4.6) instead of (4.5) can achieve dimension reduction without any ad-
ditional cost. This can bring substantially higher computational efficiency for solving
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the corresponding SDP in practice (see section 5). Secondly, Theorem 4.2 is very
general and thus could be applicable to a potentially wide range of problems. It is
worth highlighting that we require no assumptions on the sets Ai that constrain the
submatrices, as well as the row and column partitions of the separable matrix P. This
enables us to accommodate both the equivalence results (4.1) and (4.2), as we will
show next.

4.2.1. Equivalence between (ESDR2-T) and (ESDR-Y). As we noted be-

fore, the transformation matrix Ŝ in (4.1) is separable with the row and column par-
titions given in (4.3) and we have

Ŝ[αi, βi] =

[
sTR
sTI

]
∈ R2×M , i = 1, 2, . . . , n.

Moreover, we can see that the feasible set of (ESDR2-T) is in the form of (4.5) with
the set Ai given by

Ai =

{[
1 tT

t Diag(t)

]
: t ∈ RM ,

M∑
j=1

tj = 1, tj ≥ 0, j = 1, 2, . . . ,M

}

=

{ M∑
j=1

tjEj :

M∑
j=1

tj = 1, tj ≥ 0, j = 1, 2, . . . ,M

}
= conv{E1,E2, . . . ,EM},

where

Ej =

[
1
ej

] [
1
ej

]T
, j = 1, 2, . . . ,M,

and ej ∈ RM is the j-th unit vector. Applying Theorem 4.2 to (ESDR2-T) gives the
following equivalent formulation:

(4.17)

[
1 yT

y Y

]
∈ S2n+1

+

s.t.

 1 yi yn+i

yi Yi,i Yi,n+i

yn+i Yn+i,i Yn+i,n+i

 =

1 0
0 sTR
0 sTI

[ 1 (t(i))T

t(i) T(i)

] [
1 0 0
0 sR sI

]
,

[
1 (t(i))T

t(i) T(i)

]
∈ SM+1

+ ,[
1 (t(i))T

t(i) T(i)

]
∈ conv{E1,E2, . . . ,EM}, i = 1, 2, . . . , n.

Since each matrix Ej is PSD, their convex hull is a subset of SM+1
+ and hence the

PSD constraints in (4.17) are redundant. Furthermore, note that1 0
0 sTR
0 sTI

Ej

[
1 0 0
0 sR sI

]
=

1 0
0 sTR
0 sTI

[ 1
ej

] [
1
ej

]T [
1 0 0
0 sR sI

]

=

 1
sR,j
sI,j

 [1 sR,j sI,j
]
,
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which is exactly the matrix Kj defined in (2.6). Therefore, we can conclude that (4.17)
is the same as (ESDR-Y), and hence (ESDR2-T) and (ESDR-Y) are equivalent.

4.2.2. Equivalence between (VA-SDR) and (BC-SDR). Similarly, we ob-
serve that the transformation matrix W in (4.2) is separable with row and column
partitions given in (4.4), and let

(4.18) wT := W[αi, βi] =
[
1 2 4 . . . 2q−1

]
.

The feasible set in (VA-SDR) conforms to (4.5) with the set Ai given by

Ai =

{[
1 bT

b B

]
: b ∈ Rq, B ∈ Rq×q, diag(B) = 1q

}
.

Hence, by applying Theorem 4.2 to (VA-SDR), we get the following equivalent for-
mulation:

(4.19)

[
1 xT

x X

]
∈ Sn+1

+

s.t. Xi,i = wTB(i)w, xi = wTb(i),[
1 (b(i))T

b(i) B(i)

]
∈ Sq+1

+ ,

diag(B(i)) = 1q, i = 1, 2, . . . , n.

Next we argue that all the constraints xi = wTb(i) are redundant, i.e., the set in
(4.19) is equivalent to
(4.20){[

1 xT

x X

]
∈ Sn+1

+ : Xi,i = wTB(i)w, B(i) ∈ Sq+, diag(B(i)) = 1q, i = 1, 2, . . . , n

}
.

To show this, we need to prove that, for any x,X,B(1), . . . ,B(n) satisfying the con-
straints in (4.20), there must exist b(i) ∈ Rq such that

(4.21) xi = wTb(i) and

[
1 (b(i))T

b(i) B(i)

]
� 0, i = 1, 2, . . . , n.

Fix i ∈ {1, 2, . . . , n}. Note that the PSD constraints in (4.20) implies

(4.22)

[
1 xi
xi Xi,i

]
� 0⇔ x2

i ≤ Xi,i.

When Xi,i = 0, we must have xi = 0 and we can achieve (4.21) by simply letting
b(i) = 0. Otherwise, we have Xi,i > 0 and hence we can let

(4.23) b(i) =
xi
Xi,i

B(i)w.

Since Xi,i = wTB(i)w, we can see that wTb(i) = (wTB(i)w)xi/Xi,i = xi.
To verify the PSD constraint in (4.21), it suffices to show that B(i) � b(i)(b(i))T.

Note that[
Xi,i wTB(i)

B(i)w B(i)

]
=

[
wTB(i)w wTB(i)

B(i)w B(i)

]
=

[
wT

Iq

]
B(i)

[
w Iq

]
� 0,
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which implies the Schur complement is also PSD, i.e.,

B(i) − 1

Xi,i
B(i)wwTB(i) � 0.

This, together with (4.22) and (4.23), shows

b(i)(b(i))T =
x2
i

X2
i,i

B(i)wwTB(i) � Xi,i

X2
i,i

B(i)wwTB(i) � B(i).

Hence both conditions in (4.21) are satisfied.
Finally, to show that (4.20) is the same as (BC-SDR), we need the following

lemma.

Lemma 4.4. Let w ∈ Rq be the vector defined in (4.18). It holds that

(4.24)
{
x : ∃ B ∈ Sq+ s.t. x = wTBw, diag(B) = 1q

}
= {1 ≤ x ≤ (2q − 1)2}.

Proof. See Appendix B.

Putting all pieces together, we have proved that (VA-SDR) is equivalent to (BC-
SDR) by showing the correspondence (4.2).

5. Numerical results. In this section, we present some numerical results. Fol-
lowing standard assumptions in the wireless communication literature (see, e.g., [31,
Chapter 7]), we assume that all entries of the channel matrix H are independent and
identically distributed (i.i.d.) following a complex circular Gaussian distribution with
zero mean and unit variance, and all entries of the additive noise v are i.i.d. following
a complex circular Gaussian distribution with zero mean and variance σ2. Further,
we choose the transmitted symbols x∗1, x

∗
2, . . . , x

∗
n from the symbol set SM in (1.3)

independently and uniformly. We define the SNR as the received SNR per symbol:

SNR :=
E[‖Hx∗‖22]

nE[‖v‖22]
=

mn

n ·mσ2
=

1

σ2
.

We first consider a MIMO system where (m,n) = (16, 10) and M = 8. To
evaluate the empirical probabilities of SDRs not being tight, we compute the optimal
solutions of (ESDR-X), (ESDR-Y), and (ESDR1-T) by the general-purpose SDP
solver SeDuMi [29] with the desired accuracy set to 10−6. The SDR is decided to be
tight if the output x̂ returned by the SDP solver4 satisfies ‖x̂ − x∗‖∞ ≤ 10−4. We
also evaluate the empirical probabilities of conditions (1.4)–(1.6) not being satisfied.
We run the simulations at 8 SNR values in total ranging from 3 dB to 24 dB. For
each SNR value, 10,000 random instances are generated and the averaged results are
plotted in Figure 2.

We can see from Figure 2 that our results (1.5) and (1.6) provide better character-
izations than the previous tightness condition (1.4) in [16]. The empirical probability
of (ESDR-X) not being tight matches perfectly with our analysis given by the neces-
sary and sufficient condition (1.5). The probability of (1.6) not being satisfied is also
a good approximation to the probability of (ESDR-Y) not being tight, underestimat-
ing the latter roughly by a factor of 9. Moreover, the numerical results also validate

4The output x̂ is directly given by the optimal solution in (ESDR-X), while it is obtained from the
relation (2.5) between x and y in (ESDR-Y) and the relation (2.7) between x and t in (ESDR1-T).
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Fig. 2. Error probabilities versus the SNR in a 16× 10 MIMO system with 8-PSK.

our analysis that (ESDR1-T) is not tight with high probability. In fact, (ESDR1-T)
fails to recover the vector of transmitted symbols in all 80,000 instances.

Next, we compare the optimal values as well as the CPU time of solving (ESDR-
Y) and (ESDR2-T). Table 2 shows the relative difference between the optimal values
of (ESDR-Y) (denoted as optESDR-Y) and (ESDR2-T) (denoted as optESDR2-T) aver-
aged over 300 simulations, which is defined as |optESDR-Y−optESDR2-T|/|optESDR2-T|.
We can see from Table 2 that the difference is consistently in the order 1e−7 in various
settings, which verifies the equivalence between (ESDR-Y) and (ESDR2-T). In Fig-
ure 3, we plot the average CPU time consumed by solving (ESDR-Y) and (ESDR2-T)
in an 8-PSK system with increasing problem size n. For fair comparison, both SDRs
are implemented and solved by SeDuMi and we repeat the simulations for 300 times.
With the same error performance, we can see that (ESDR-Y) indeed solves the MIMO
detection problem (1.2) more efficiently and saves roughly 90% of the computational
time in our experiment.

Table 2
Average relative difference between (ESDR-Y) and (ESDR2-T) in optimal objective values.

SNR
Relative diff. in optimal objective values.

(m,n) = (4, 4) (m,n) = (6, 4) (m,n) = (10, 10) (m,n) = (15, 10)
5dB 4.62e−7 5.10e−7 6.26e−7 7.73e−7
10dB 5.67e−7 4.06e−7 6.50e−7 7.16e−7
15dB 5.94e−7 3.83e−7 7.80e−7 5.58e−7

6. Conclusions. In this paper, we studied the tightness and equivalence of var-
ious existing SDR models for the MIMO detection problem (1.2). For the two SDRs
(ESDR-X) and (ESDR-Y) proposed in [17], we improved their sufficient tightness
condition and showed that the former is tight if and only if (1.5) holds while the
latter is tight only if (1.6) holds. On the other hand, for the SDR (ESDR1-T) pro-
posed in [22], we proved that its tightness probability decays to zero exponentially
fast with an increasing problem size under some mild assumptions. Together with
known results, our analysis provides a more complete understanding of the tightness
conditions for existing SDRs. Moreover, we proposed a general theorem that unifies
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Fig. 3. Average CPU time of solving (ESDR-Y) and (ESDR2-T) when M = 8.

previous results on the equivalence of SDRs [21, 16]. For a subset of PSD matrices
with a special “separable” structure, we showed its equivalence to another subset of
PSD matrices in a potentially much smaller dimension. Our numerical results demon-
strated that we could significantly improve the computational efficiency by using such
equivalence.

Due to its generality, we believe that our equivalence theorem can be applied to
SDPs in other domains beyond MIMO detection and we would like to put this as
a future work. Additionally, we noticed that the SDRs for problem (1.2) combined
with some simple rounding procedure can detect the transmitted symbols successfully
even when the optimal solution has rank more than one. Similar observations have
also been made in [12]. It would be interesting to extend our analysis to take the
postprocessing procedure into account.

Appendix A. Simplification of (3.5) and (3.6). Fix i ∈ {1, 2, . . . , n}. From
(3.5), we have

(ĤTv̂)i = gi + λiy
∗
i + µiy

∗
n+i and (ĤTv̂)n+i = gn+i + µiy

∗
i + λn+iy

∗
n+i,

which can be written in a matrix form:

(A.1)

[
(ĤTv̂)i

(ĤTv̂)n+i

]
=

[
gi
gn+i

]
+

[
λi µi
µi λn+i

] [
y∗i
y∗n+i

]
.

Recall the definitions of Γi in (3.7) and Kj in (2.6). Then

(A.2) 〈Γi,Kj〉 = 2

[
cos(θj)
sin(θj)

]T [
gi
gn+i

]
+

[
cos(θj)
sin(θj)

]T [
λi µi
µi λn+i

] [
cos(θj)
sin(θj)

]
.

Using (A.1), we have

(A.3)

[
cos(θj)
sin(θj)

]T [
gi
gn+i

]
=

[
cos(θj)
sin(θj)

]T [
(ĤTv̂)i

(ĤTv̂)n+i

]
−
[
cos(θj)
sin(θj)

]T [
λi µi
µi λn+i

] [
y∗i
y∗n+i

]
=

[
cos(∆θj)
sin(∆θj)

]T [
ẑi
ẑn+i

]
−
[
cos(θj)
sin(θj)

]T [
λi µi
µi λn+i

] [
y∗i
y∗n+i

]
,
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where ∆θj = θj − θui , ẑi = Re(zi), and ẑn+i = Im(zi) (cf. (3.1)). Combining (A.2)
with (A.3), we get

〈Γi,Kj〉 = 2

[
cos(∆θj)
sin(∆θj)

]T [
ẑi
ẑn+i

]
− 2

[
cos(θj)
sin(θj)

]T [
λi µi
µi λn+i

] [
y∗i
y∗n+i

]
+[

cos(θj)
sin(θj)

]T [
λi µi
µi λn+i

] [
cos(θj)
sin(θj)

]
.

In particular, when j = ui, the above becomes

〈Γi,Kui〉 = 2

[
1
0

]T [
ẑi
ẑn+i

]
−
[
y∗i
y∗n+i

]T [
λi µi
µi λn+i

] [
y∗i
y∗n+i

]
.

Hence, when j 6= ui, (3.6) is equivalent to

2

[
1− cos(∆θj)
− sin(∆θj)

]T [
ẑi
ẑn+i

]
≥
[
y∗i − cos(θj)
y∗n+i − sin(θj)

]T [
λi µi
µi λn+i

] [
y∗i − cos(θj)
y∗n+i − sin(θj)

]

⇔

[
1

− cot
(

∆θj
2

)]T [ ẑi
ẑn+i

]
≥

[
sin(θui +

∆θj
2 )

− cos(θui +
∆θj

2 )

]T [
λi µi
µi λn+i

][
sin(θui +

∆θj
2 )

− cos(θui +
∆θj

2 )

]
,

which is exactly the same as (3.8).

Appendix B. Proof of Lemma 4.4. To simplify the notations, we use A and
B to denote the left-hand side and the right-hand side in (4.24), respectively.

We first prove that A ⊃ B. Let C =
{
B ∈ Sq+ : diag(B) = 1q

}
, and we can

view A as the image of the convex set C under the affine mapping B 7→ 〈B,wwT〉.
Therefore, the set A is also convex. Moreover, note that both the rank-one matrices
1q1

T
q and [−1q−1

1
][−1q−1

1
]T belong to C. Direct computations show that

wT1q1
T
qw =

( q∑
i=1

2i−1

)2

= (2q − 1)2,

wT

[
−1q−1

1

] [
−1q−1

1

]T
w =

(
2q−1 −

q−1∑
i=1

2i−1

)2

= 1,

and hence both 1 and (2q − 1)2 belong to A. Finally, the convexity of A implies
B ⊂ A.

Now we prove the other direction, i.e., A ⊂ B. This is equivalent to showing

1 ≤ wTBw ≤ (2q − 1)2, ∀ B ∈ C.

For the upper bound, we first note that B ∈ Sq+ implies

(B.1) |Bi,j | ≤
√
Bi,iBj,j = 1, i 6= j, 1 ≤ i, j ≤ q.

Since every entry of the matrix wwT is positive, we have

wTBw = 〈B,wwT〉 ≤ 〈11T,wwT〉 = (2q − 1)2

for any B ∈ C, and hence the upper bound holds.
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For the lower bound, it clearly holds when q = 1. When q > 1, for any matrix
B ∈ C we partition it as

B =

[
B′ b′

(b′)T 1

]
,

where B′ ∈ R(q−1)×(q−1) and b′ ∈ Rq−1. Note that we have |b′i| ≤ 1 for 1 ≤
i ≤ q − 1 (cf. (B.1)), and B ∈ Sq+ implies B′ � b′(b′)T. Further, we let w′ =[
1 2 4 . . . 2q−2

]T ∈ Rq−1 such that w = [(w′)T 2q−1]T (cf. (4.18)). We have

wTBw = (w′)TBw′ + 2q(w′)Tb′ + (2q−1)2

≥ (w′)Tb′(b′)Tw′ + 2q(w′)Tb′ + (2q−1)2

=
(
(w′)Tb′ + 2q−1

)2
.

Since

(w′)Tb′ =

q−1∑
i=1

2i−1b′i ≥ −
q−1∑
i=1

2i−1 = −2q−1 + 1,

we immediately get wTBw ≥ (−2q−1 + 1 + 2q−1)2 = 1, and hence the lower bound
also holds.

The proof is now complete.
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