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Abstract

In its simplest form, convolution neural networks (CNNs) consist of a fully con-
nected layer g composed with a sequence of convolution layers T . Although g is known
to have the universal approximation property, it is not known if CNNs, which has the
form g ◦ T inherits this property, especially when the kernel size in T is small. In
this paper, we show that under suitable conditions, CNNs does inherit the universal
approximation property and its sample complexity can be characterized. In addition,
we discuss concretely how the nonlinearity of T can improve the approximation power.
Finally, we show that when the target function class has a certain compositional form,
convolutional networks are far more advantageous compared with fully connected net-
works, in terms of number of parameters needed to achieve a desired accuracy.

1 Introduction

Over the past decade, convolutional neural networks (CNNs) have played important roles in
many applications, including facial recognition, autonomous driving and disease diagnosis.
Such applications typically involve approximating some oracle f ∗, which can be a classifier
or regressor, by some f chosen from an appropriate model or hypothesis space. In other
words, learning involves minimizing the distance between f ∗ and f over its hypothesis space.

∗The work of authors was partially supported by Singapore MOE Research Grant MOE 2014-T2-1-065
and Tan Chin Tuan Centennial Professorship.
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Unlike plain fully connected neural networks, convolution neural networks are of the form
f = g ◦ T where g ∈ G is a fully connected classification/regression layer and T ∈ T is a
feature extractor typically composed of interfacing convolutions and nonlinear activations.
From the approximation theory viewpoint, one important direction of investigation is the
universal approximation property (UAP), namely whether {g ◦ T : g ∈ G, T ∈ T } can
approximate arbitrary continuous functions on compact domains. The UAP is known to
hold in the case of one-hidden-layer, fully connected neural networks for a large class of
activation functions [10, 1, 20]. However, for the CNN architecture this is less obvious, even
if a fully-connected layer g is present. This is especially so if T consists of convolutions of
small filter sizes or the output dimension of T is small, which leads to a loss of information.
For example, for classification problems if T maps two samples belong to two different
classes into the same feature representation, then it is obvious that no matter what the
approximation power of g is, g ◦ T cannot correctly classify them. Hence, the first goal of
this paper is to show that we can in fact construct CNNs which ensures that when composed
with g, forms a universal approximator for classification problems. The key is showing that
the convolution-based feature attractors can satisfy the so-called separable condition [24],
i.e.

T (xi)− T (xj) > c, ∀xi ∈ Ωi, xj ∈ Ωj, i 6= j. (1)

for some positive constant c. Here, Ωi represents the set of samples belonging to class i.
Recall that due to small filter sizes and possible dimensional reduction, the satisfaction
of this condition for convolution layers is not immediate and the first goal of this paper
is to construct convolution feature extractors that satisfy (1) under appropriate sparsity
assumptions on the input data, which then allows us to show that a class of practical CNN
architectures satisfy the universal approximation property.

Besides the convolutional structure, another important component in CNNs is the non-
linear activation function. Commonly used non-linear functions include sigmoid, tanh, and
(Leaky) ReLU. These activation functions introduce non-linearity into neural networks and
greatly expand their approximation capabilities. In the preceding UAP analysis of CNNs,
the effect of non-linearity was not explicitly studied. In fact, in the literature there generally
lacks concrete analysis of the advantage of non-linearity, besides general statements such
as having a bigger approximation space. In the second part of this paper, we concretely
investigate the effect of nonlinear functions in terms of the approximation power by showing
that a composition function approximator with non-linear structure can locally improve its
approximation, which is not the case for its linear counterpart. More specifically, we establish
that if we perform function approximation by composition sequentially, non-linearity allows
us to make local progress.

The above analyses demonstrate qualitative approximation properties, but they do not
highlight the advantage of CNNs over traditional architectures, such as deep fully connected
neural networks. Moreover, the role of depth is not explicitly considered. Therefore, the
last important component of CNNs we discuss is the hierarchical structure, which underlies
the success of deep learning over shallow neural networks in many complex tasks, e.g. image
classification, natural language processing. In practice, it has been shown that the composi-
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tional structure in CNNs progressively extracts useful information. However, understanding
its theoretical advantage is a largely unsolved problem. Motivated by multi-scale analysis,
here we elucidate the interplay between hierarchical structure and model complexity. More
concretely, we show that if we assume the target oracle f ∗ has a compositional form, then a
significantly less number of parameters is required for CNNs to approximate it as compared
to their fully connected counter-parts. In fact, the reduction is exponential in the number
of composition levels, implying that deep convolutional networks are far more advantageous
than deep fully connected networks for approximating compositional functions.

We close this section by discussing some related work to the current paper. Understanding
how convolutional neural networks work is one of the central open problems in the community
of deep learning. Many researchers have attempted to answer this question from various
perspectives. While no complete solution has been developed so far, each attempt extends our
understanding of the internal mechanism of convolutional neural networks. In the following
context, we mainly review the existing works closely related to this paper.

One of the classical results for neural networks is the universal approximation property
(UAP) of shallow networks [10, 1, 20], i.e. a neural network with one hidden layer can ap-
proximate any continuous function defined on a compact set to arbitrary precision with
enough hidden units. More recently, non-asymptotic analysis of the relationship between
approximation errors and number of neurons in multi-layer neural networks has been devel-
oped [?]. More abstractly, the approximation of functions by composition was investigated
in [?], in which a multi-layer neural networks serve as a means of numerical implementa-
tion. Despite the theoretical guarantee, deep fully connected networks are seldomly used
in practice. More sophisticated structures (e.g. multi-layer convolutional networks) are pre-
ferred, and often yield surprisingly good performance. Therefore, in recent years, many
works have attempted to analyze the approximation properties for the multi-layer networks.
The approximation ability of convolutional networks has been numerically demonstrated by
a series of numerical experiments including randomly corrupting the pixels and labels [39].
In [18, 19, 27], it is shown that the restricted Boltzmann machine and deep belief networks
can approximate any distribution on the set {0, 1}n of binary vectors of length n. Meanwhile,
the width bounded fully connected networks can approximate approximate any continuous
function as the depth goes to infinity [22] and the ResNet with one-neuron hidden unit per
layer can approximate any Lebesgue-integrable functions [21]. However, the above results do
not apply for CNNs. In [8, 7], convolutional arithmetic circuits and convolutional rectified
networks are constructed and analyzed via tensor decomposition. Despite the UAP and
depth efficiency of these networks, it only contains the 1×1 convolution in each hidden layer
which is not consistent with the practical CNNs. [40] constructs a CNN with zero boundary
condition and establishes its UAP and convergence rate for the functions in Sobelev space.
Compared to the existing CNNs, every hidden layer in [40] contains only one convolution
and there is no fully connected layer. Moreover, due to the zero boundary condition, the
dimension in feature space is larger than the dimension of input signal especially when the
depth of the network is deep. Instead of constructing a new architecture, a main goal of this
paper is to understand why the current state-of-the-art CNNs can achieve high classification
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accuracy. As the last layer always contains a fully connected layer which has the UAP, our
efforts have been made to construct a CNN with filter size equal to 3 such that the features
satisfy the separable condition (1). More specifically, checking this condition can be difficult
when the feature dimension is less than the input dimension.

Another line of research for understanding deep neural networks is investigating the
advantage of non-linearity and multi-layer structures, which are two key ingredients con-
tributing to the success of deep learning. An early attempt is initiated by [23] in which
a wavelet transformation based scattering network is constructed, and its translation and
deformation invariance are proved. The above properties are generalized to general con-
volutional filters, Lipschitz non-linear activations and pooling functions in [38]. In [32], a
sparsely-connected depth-4 neural network is constructed to approximate functions defined
on a low dimensional manifold. Convolutional sparse coding based neural networks, which
can been seen as a generalization of data driven tight frame first introduced in [3], has
been recently proposed with stable recovery properties under certain sparsity assumptions
[29]. The distance-preservation property has been shown in [12] for neural networks with
Gaussian random weights. Although these works provide insights into certain compositional
architectures, they do not directly lead to understanding good classification performance
of CNNs. The same is true for a series of works investigating the role of composition in
function approximation [25, 26, 30, 28, 36], in that there lacks concrete results on the ad-
vantage of composition for the CNN architectures that are employed in practice. The goal
of the present work is to address this issue, and develop approximation results that applies
to modern convolution neural network structures.

The rest of this paper is organized as follows. The approximation properties and scaling
analysis of convolutional neural networks are shown in section 2 and section 3, respectively.
Finally, section 4 concludes and the detailed proofs are shown in Appendix.

2 Approximation Analysis of Convolutional Neural Net-

works

In this section, we present our approximation result for CNNs following a statistical learning
framework [37, 31]. This consists of estimating the so-called bias and variance, which will be
made clear subsequently. The bias measures the approximation error, which is the distance
between the oracle classifier and the best approximation in the function space generated
by convolutional networks. The variance measures the sample error which is the distance
between and the classifier obtained by minimizing some empirical loss of examples sampled
from an unknown distribution. The key is to prove that there exist convolutional networks
which are separable, stable feature extractors, in the sense of (1). The sample error analysis
then follows from the classical PAC-learning framework. Before proceeding to the analysis,
we first introduce some assumptions and notations.
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2.1 Notations and definitions

To avoid the cumbersomeness of notations, we only consider one dimensional signals (vectors)
in this paper. Remarks will be provided when the result is dependent on the dimensional of
the input signals. Vectors, matrices and sets are denoted by lower, upper and calligraphic
letters, respectively. Given a vector y ∈ Rn, yj denotes the j-th entry; given a matrix
Y ∈ Rm×n, Yj denotes the j-th column of Y and Yij denotes the i-th element in Yj. The
multi-valued functions are denoted by the bold upper letters.

Definition 1. Consider the following different type of convolution.

1. For u ∈ Rn, v ∈ Rr, the cyclic convolution ∗ : Rn × Rr 7→ Rn is

(u ∗ v)i =
r∑

k=1

ui	kvk,

where 	 is i	 j = i− j mod n;

2. For U ∈ Rn×s, V ∈ Rr×s, the multi-channel convolution ~ : Rn×s × Rr×s 7→ Rn is

U ~ V =
s∑
i=1

Ui ∗ Vi.

3. A 1-layer convolution with m kernels {U i}mi=1 ⊂ Rr×s is a nonlinear map F = (F 1, F 2, . . . , Fm)
where

F i(X) = X ~ U i +Bi, i = 1, 2, . . . ,m,

where Bi is the so-called bias. Given an activation function σ, define Fσ = (F 1
σ , F

2
σ , . . . , F

m
σ )

where F i
σ(x) = σ(X ~ U i +Bi), i = 1, 2, . . . ,m.

2.2 Problem formulation

We now introduce the basic formulation of the classification problem using CNNs. Although
the following analysis can be extended to the multi-classification tasks, we consider the
binary case for the simplicity. Let Ω0 and Ω1 to be the sets containing the signals from two
classes. Throughout this paper, we make the following assumption on Ω0 and Ω1.

Assumption 1. Let Ω = Ω0 ∪ Ω1 where Ω0 and Ω1 are compact subsets in Rn. Moreover,
there is a positive a gap between Ω0 and Ω1. That is, there exists some d0 > 0 such that

d(Ω0,Ω1) = inf{‖x0 − x1‖|x0 ∈ Ω0, x1 ∈ Ω1} = d0 > 0.

By the Assumption 1, there exists an oracle classifier f ∗ : Ω 7→ [0, 1] such that

f ∗(x) = 0, if x ∈ Ω0; and f ∗(x) = 1, if x ∈ Ω1. (2)
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Observe that f ∗ is continuous due to the compactness of Ω0 and Ω1. Given m training
samples {xi, f ∗(xi)}mi=1, the classification task aims to find an approximation scheme to
obtain a classifier that is close to the oracle classifier. Due to the complicated geometry
and the limited information of the domain Ω, it is difficult to find a good approximated
classifier using the traditional interpolation schemes. On the contrary, CNNs construct the
approximation via the composition of feature map T and classifier g. The feature map T
aims to simplify the domain Ω so as to identify Ω0 and Ω1 more easily in the feature space.
For instance, T (Ω0) and T (Ω1) may become easily separated. In fact, the feature map T in
CNNs is constructed in the form of multi-layer convolutions:

T = FL,σ ◦ · · · ◦ F1,σ,

where L is the number of layers and Fi is a 1-layer convolution with si kernels i = 1, . . . , L.
The classifier g in CNNs is a one-layer fully connected network with K hidden units:

g(x) =
K∑
i=1

ciσ(w>i x+ bi),

where ci, bi ∈ R, wi ∈ Rn and σ is a nonlinear function. The parameters ΘT and ΘG of the
feature map T and classifier g are

ΘL
T = ∪Li=1Θi

T = ∪Li=1 ∪
si
j=1 {U ij, Bij},

ΘK
G = ∪Ki=1Θi

G = ∪Ki=1 ∪ij=1 {ci, bi, wi}.

Throughout this paper, we assume the size of filters is 3 which are most used in practice. In
summary, the space HL,K of the L-layer CNNs is

T L = {T = FL,σ ◦ · · · ◦ F1,σ(x; θT )|θT ∈ ΘL
T},

GK = {g(x; θg) =
K∑
i=1

ciσ(w>i x+ bi)|θg ∈ ΘK
G},

HL,K = {h = g ◦ T (x; θT , θG)|T ∈ T L, g ∈ GK}.

(3)

Given m training samples {xi, f ∗(xi)}mi=1, the approximating classifier is obtained via solving
the empirical minimization:

min
θT∈ΘLT ,θg∈ΘKG

1

m

m∑
i=1

(g ◦ T (xi; θT , θg)− f ∗(xi))2.

Define Θ∗ = (Θ∗T ,Θ
∗
G) be the set of minimizers and assume Θ∗ 6= ∅. Let g∗ = g(x; Θ∗G) and

T ∗ = T (x; Θ∗T ) where (Θ∗T ,Θ
∗
G) ∈ Θ∗, the classification accuracy of g∗ ◦ T ∗ is

‖g∗ ◦ T ∗ − f ∗‖ =

{∫
Ω

(f ∗(x)− g∗(T ∗(x)))2dµ

}1/2

, (4)

where µ is a probability measure on Ω.

6



2.3 Overview of the analysis

Direct estimation of (4) is difficult due to the additional complication of sampling errors,
and thus most existing approaches estimate (4) by separating the it from the approximation
error via the triangle inequality,

‖g∗ ◦ T ∗ − f ∗‖ ≤ ‖g ◦ T − f ∗‖+ ‖g ◦ T − g∗ ◦ T ∗‖, ∀h = g ◦ T ∈ HL,K . (5)

The first term in the right hand part of (5) is the bias which characterizes the approximation
power of the space HL,K ; the second term is the variance which characterizes the errors due
to the sampling process and minimization models. In the following context, we analyze the
bias and variance separately.
Bias estimation. The bias estimation ‖g ◦T −f ∗‖ is to show the approximation capability
of the CNNs, i.e. T has deep convolutional architecture, with interlacing convolutional and
point-wise non-linear layers. Our goal is to make rigorous statement that convolutional
network classifier can approximate the oracle classifier f ∗ up to any precision.

In the process, we will require a classical result on the approximation properties of full
connected networks [10, 15], which is stated below.

Theorem 1. Let σ be a non-constant, bounded and monotonically-increasing continuous
function. Then, G = ∪∞K=1GK is dense in C(X ) for any compact subset X with respect to
the L∞-norm where GK is defined in (3) for each K ∈ N.

Although Theorem 1 provides theoretical guarantee of the approximation properties of
fully connected networks, a similar result for the CNNs cannot be derived as a consequence,
due to the presence of feature map T , especially when the range of T (feature space) is low
dimensional. In particular, it is clear that g ◦ T cannot distinguish two points from different
classes when T maps them the same feature.

We now introduce a condition below which eliminates this issue, and from it, the approx-
imation properties of CNNs can be readily established.

Condition 1. The feature map T : Rn 7→ Rp satisfies the properties as follows.

1. T is stable if there exists L > 0 such that

‖T (x)− T (y)‖ ≤ L‖x− y‖, ∀x, y ∈ Ω. (6)

2. T is separable if there exists ` > 0 such that

‖T (x0)− T (x1)‖ ≥ `, ∀x0 ∈ Ω0, x1 ∈ Ω1. (7)

The first property mainly ensures that in-class variations are small and the second prop-
erty ensures that the classifier has enough discriminative power to separate the two classes.
We stress that this condition, if true, will lead to the desired approximation results for CNNs.
However, it is not obvious that this condition (especially (7)) holds, since T often maps Ω
to a lower dimensional space and thus possesses a large “kernel”.
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In the following, we first present the approximation results which follow from Condition 1,
and then show that we can in fact construct CNNs with the usual architecture that satisfies
this condition.

Theorem 2. Let f ∗ be the oracle classifier in (2). Suppose the Assumption 1 holds and there
exists T ∈ T L that satisfies Condition 1 where T L is the L-layer convolutional networks
defined in (3). Then, for any ε > 0, there exist K ∈ N and g ∈ GK such that

‖f ∗ − g ◦ T‖∞ ≤ ε,

where GK is 1-layer fully connected networks defined in (3).

Proof. Let Ω̂i = T (Ωi) for i = 0, 1. By the stableness of T , we know Ω̂0 and Ω̂1 are disjoint
compact subsets. Define f̂ : Rp 7→ [0, 1] such that f̂(x) = i for x ∈ Ω̂i, for i = 0, 1. Then,
f̂ is continuous and f̂ ◦ T = f ∗ for all x ∈ Ω. Moreover, by the Theorem 1, for any ε > 0,
there exist K ∈ N and g ∈ GK where GK is defined in (3) such that

‖g − f̂‖∞ ≤ ε.

Thus, we have ‖g ◦ T − f ∗‖∞ = ‖g ◦ T − f̂ ◦ T‖∞ ≤ ε.

Variance estimation. The variance term ‖g∗ ◦ T ∗ − g ◦ T‖ characterizes the uncertainty
between the numerical and the theoretical classifier. A common assumption is imposed for
the training samples.

Assumption 2. The m samples {xi}mi=1 are identically and independently drawn according
to a probability measure µ on Ω.

Given a classifier f : Ω→ {0, 1}, define the error and empirical error function as

E(f) =

∫
Ω

(f(x)− f ∗(x))2dµ(x), Ez(f) =
1

m

m∑
i=1

(f(xi)− f ∗(xi))2.

The sample error is to estimate the error from the observation of the empirical error which
is based on the concentration inequality [9, 4].

Lemma 1 (Bernstein Inequality). Suppose a random variable ξ on X satisfies Eξ = ν ≥ 0,
and |ξ − ν| ≤ B almost everywhere. Assume that Eξ2 ≤ ηEξ. Then for any δ > 0 and
0 < γ ≤ 1, we have

P
{
ν − 1

m

∑m
i=1 ξ(zi)√

ν + δ
> γ
√
δ

}
≤ exp

{
− γ2mδ

2η + 2
3
B

}
For any space H and δ > 0, define NH(δ) to be the covering number of H, i.e. the

minimal number of the balls with radius δ that covers H. By the Lemma 1, we estimate the
relationship between the error E(f) and the empirical error Ez(f) in the next theorem.
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Theorem 3. Suppose the Assumption 2 holds. If |f | ≤ M for all f ∈ HL,K, then for any
δ > 0 and 0 < γ < 1, we have

P

{
supf∈HL,K

E(f)− Ez(f)√
E(f) + δ

> 4γ
√
δ

}
≤ NHL,K

(
γδ

2M

)
exp

{
−3γ2mδ

8

}
.

The proof is deferred to the appendix A. From (8), it is clear that the probability goes
to 0 as m→ +∞ if the covering number is finite. In general, the covering number increase
exponentially as the dimension of signal increases which is the curse of dimension. Many
efforts have been made to calculate it more precisely with careful analysis [4]. The estimation
of covering number for CNNs with specific architecture is an interesting problem in our future
research.
Classification accuracy. Once both bias and sample error is estimated, the classifica-
tion accuracy of the numerical classifier could be obtained. Given m training samples
{(xi, f ∗(xi))}, recall the numerical classifier h∗ = g∗ ◦ T ∗ is the minimizer of the empiri-
cal error, i.e.

(g∗, T ∗) ∈ arg ming∈GK ,T∈T L Ez(g ◦ T ). (9)

Define the classification accuracy of h∗ is

A(h∗) = 1− µ({x ∈ Ω|g∗ ◦ T ∗(x) 6= f ∗(x)}) (10)

where the second term in (10) measures the incorrectness of the learned classifier h∗. In
summary, we can characterize A(h∗) in the next theorem.

Theorem 4. Suppose the Assumption 1 and 2 hold. Assume the space T L generated by the
CNNs satisfies Condition 1. Then, for any ε > 0, there exist K ∈ N and M > 0 such that

P{A(g∗ ◦ T ∗) ≥ 1− ε} ≥ 1−NHL,K (ε/32M) exp{−3mε/256}, (11)

where m is the number of samples.

Proof. The boundedness of f ∈ HL,K can be achieved by imposing the bounded constraints
on the parameter space. Without loss of generality, we assume HL,K = {g ◦ T |‖θ‖∞ ≤ M̃}
such that |f | ≤M for all f ∈ HL,K .

By the Theorem 2, there exist a convolutional neural network T ∈ T L and g ∈ GK such
that

‖g ◦ T − f ∗‖∞ ≤
√
ε/2 (12)

Using the sample error bound (8) in Theorem 3,

E(h∗) ≤ 4γ
√
δ
√

E(h∗) + δ + Ez(h∗) (13)

holds with probability at least 1−NHL,K (γδ
2

)exp
{
−3γ2mδ

8

}
. The inequality (13) implies

E(h∗) ≤ 4γ
√
δ(E(h∗) + δ) + E2(h∗)/4 + Ez(h∗) = 4γ(E(h∗)/2 + δ) + Ez(h∗)
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By (9), h∗ = g∗ ◦ T ∗ is the minimizer of Ez(g) in HL,K , we have

Ez(h∗) ≤ Ez(g ◦ T ) ≤ ε/4

from (12). Thus, we know

E(g∗ ◦ T ∗) ≤ (1− 2γ)−1(4γδ + ε/4)

holds with probability at least 1−NHL,K ( γδ
2M

)exp
{
−3γ2mδ

8

}
. Choose γ = 1/4 and δ = ε/4,

the inequality (11) holds.

Theorem 4 established that the CNNs can achieve the desired classification with high
probability whenever the number of samples is large enough and the Condition 1 holds.
However, verifying the stable and separable properties of the feature map T generated by
the CNNs is difficult in general. Since the feature map T is continuous, the stable condition
(6) is easily verified as Ω is compact. The most technical part is to find a feature map T
generated by some CNN architecture such that the separable condition (7) holds. In the
next section, we will focus on this part.

2.4 The Separable Property of CNNs

Recall that the feature map T : Rn 7→ Rp is

T = FL,σ ◦ · · · ◦ F1,σ,

where Fi,σ is given in Definition (1) for all i = 1, 2, . . . , L. Throughout this section, we
assume the activation function σ is a ReLU function, i.e. σ(x) = max(x, 0). By considering
the dimension of features, we will discuss the separable property in two cases.

2.4.1 Case I: p ≥ n

In the next lemma, we show that a 1-layer convolution network can represent a wavelet tight
frame transformation.

Lemma 2. For any positive integer J > 1, there exist J kernels {ui}Ji=1 ⊂ RJ such that
the 1-layer convolutional network F : Rn×1 7→ Rn×J , F = (F 1, F 2, . . . , F J) with kernel
(u1, u2, . . . , uJ) induces a tight frame.

Proof. Constructing one example suffices to prove existence. Let U ∈ RJ×J be an orthogonal
matrix with U>U = 1

J
I. Let ui be the i-th row of U . Define F : Rn 7→ RnJ , which is defined

as
F(x) = (u1 ∗ x;u2 ∗ x, . . . , uJ ∗ x).

Then, the columns of F> forms a tight frame, i.e. F>F = I. See [3, 35] for more details.
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The transformation F is isometric, hence separable. In practical convolutional networks,
point-wise nonlinearity is shown to be essential. The next theorem shows that convolu-
tional neural networks can represent separable maps when the network employs a nonlinear
activation function σ.

Theorem 5. . For any positive integer J > 1, there exists a 1-layer convolutional network
Fσ : Rn×1 7→ Rn×2J which is a separable and stable feature extractor.

Proof. Let F be defined in Lemma 2, then we have

‖F(x)− F(y)‖2 = ‖x− y‖2, for x ∈ Ω0, y ∈ Ω1.

Define Fσ : Rn×1 7→ RnJ×2,Fσ(x) = [σ(F(x)), σ(−F(x))], then

‖Fσ(x)− Fσ(y)‖2 = ‖σ(F(x))− σ(F(y))‖2 + ‖σ(−F(x))− σ(−F(y))‖2

≥ 1

2
‖F(x)− F(y)‖2 =

1

2
‖x− y‖2 ≥ 1

2
d.

where the first inequality is from the fact

|σ(a)− σ(b)|2 + |σ(−a)− σ(−b)|2 ≥ 1

2
(a− b)2 for a, b ∈ R. (14)

Thus, Fσ is separable.

The above 1-layer feature map T = Fσ : Rn×1 7→ Rp, p = 2nJ , is sufficient for proving
existence of T via increasing the dimensions. However, we use stable feature extractors that
has fewer output dimensions than the input in many applications. For example, in AlexNet
[17], the convolutional network component has an output dimension of 4096, which is much
smaller than the input image dimension 224× 224.

2.4.2 Case II: p < n

When the dimension of the input signal is so large that it exceeds the available computing
resources, dimension reduction is often used, where T extracts a number of features smaller
than the dimension of the input space. Such processes often lose information. However, in
the case when the input data have some sparsity structures, dimensional reduction can be
achieved without sacrificing separability. In particular, sparsity allows a random projection
to be nearly isometric with high probability on a lower dimensional space [5], thereby enforc-
ing the separability condition. We will show subsequently that this random projection can
be decomposed into small convolutions, consistent with the usual architectures in CNNs.

Since the decomposition results in low dimensional feature, we define valid and full con-
volutions which naturally result in varying dimensions.

(Valid) ∗V : Rn × Rr 7→ Rn−r+1 : (u ∗V v)i = (u ∗ v)r−i+1,

(Full) ∗F : Rn × Rr 7→ Rn+r−1 : u ∗F v = I(u) ∗V v.
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where I(u) = [0, u,0]> ∈ Rn+2r−2 and 0 is a zero vector in Rr−1. A straightforward relation-
ship between valid and full convolution is:

x ∗V (w1 ∗F w2) = (x ∗V w1) ∗V w2(−·),

where w(−·) is the flip of w2. In the following context, we begin with a concrete notation of
sparsity on which the subsequent results are based.

Definition 2. x is said to be s-sparse if the number of non-zero elements of x is less than
or equal to s. Denote Σs be the set of all s-sparse vectors.

From the classical literature [6] in compressed sensing, we have the following result re-
garding to s-sparse vectors.

Theorem 6. For any δs ∈ (0, 1), there exists a linear map A : Rn 7→ Rp that satisfies the
(s, δs)-Restricted Isometry Property (RIP):

(1− δs)‖x‖2 ≤ ‖Ax‖2 ≤ (1 + δs)‖x‖2, ∀x ∈ Σs.

if p ≥ 2Cδ−2
s s ln(en/s) for some constant C > 0 which is independent of δs and s.

Remark 1. Among many, one way to pick A to satisfy the above is Gaussian random
matrices with i.i.d. entries N (0, 1

p
). Then, by Theorem 9.27 in [11], there exists C ≈

80.098 such that A satisfies (s, δs)-RIP with probability at least 1 − 2(en/s)−s when p ≥
2Cδ−2

s s ln(en/s).

The linear map A constructed above is injective when restricted to the set of s-sparse
vectors. Therefore, if the signal itself is sparse, all that remains is to show that A can be
decomposed into a sequence of small convolution (this is done in Theorem 8), leading to our
desired result.

However, in most applications the signals are not sparse in the temporal and spatial
domain. Nevertheless, they often admit a sparse approximation under some transformation,
e.g., natural images often admit sparse approximations in wavelet tight frames, and audio
signals often have sparse approximations using the orthonormal Fouirer transform. We now
make this notion of approximate sparsity precise, which allows for greater applicability of
our results.

Definition 3. (Approximate Sparsity) Given s ∈ N, Ω is s-approximately-sparse with error
β ≥ 0 under a linear transformation W if

‖Hs(Wx)−Wx‖ ≤ β, ∀x ∈ Ω,

where Hs(x) = arg min{‖x− y‖ : ‖y‖0 ≤ s}.

Note that Ω = Σs if β = 0. Since W is to be composed with A, the separability condition
is preserved if W satisfies W>W = I. Moreover, we would like to show that W can be
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represented by convolution filters. The following outlines a possible construction: Let k ∈ N
and n/k = l. Define the downsample operator Pk : Rn 7→ R` to be Pk(x)[j] = x[kj] for
j = 1, . . . , l. Given a kernel w, define ∗k be the convolution of stride k, it is easy to know

w ∗k x = Pk(x ∗ w).

Given J kernels (w1, . . . , wJ), denote the operator W : Rn 7→ Rm with m = lJ to be

W (x) = (x ∗k w1, x ∗k w2, . . . , x ∗k wJ). (15)

The requirement W>W = I can be satisfied using the unitary extension principle. Applying
Theorem 6 for W (x), it has that for any δ2s ∈ (0, 1), there exists A ∈ Rp̃×m such that

(1− δ2s)‖Wx‖2 ≤ ‖AWx‖2 ≤ (1 + δ2s)‖Wx‖2, ∀ Wx ∈ Σ2s, (16)

when p̃ = 4Cδ−2
2s s ln(em/s) for some constant C. Therefore, when the feature dimension is

less than the dimension of input signal, we require in our construction

n > 2p̃ = 8Cδ−2
2s s ln(em/s). (17)

These lead to the following result:

Theorem 7. Suppose Ω is s-approximately-sparse with error β and the tuple (β, δ2s, s, d0)
satisfies (17) and

√
(1 + δ2s)/(1− δ2s) < (d0 − 2β)/2β for some δ2s ∈ (0, 1). Then, there

exists a 2-layer convolutional network T : Rn×1 7→ R1×2p which is separable with 2p < n.

Proof. Let (w1, w2, . . . , wJ) be J kernels and W : Rn 7→ Rm be the associated operator
defined as (15) which satisfies W>W = I. By Theorem 6, there exists A : Rp×m with
p = 4Cδ−2

2s s ln(em/s) such that the inequality (16) holds. Thus, for all x ∈ Ω0 and y ∈ Ω1,
we have

‖Hs(Wx)−Hs(Wy)‖ ≥ ‖Wx−Wy‖ − ‖Wx−Hs(Wx)‖ − ‖Wy −Hs(Wy)‖,
= ‖x− y‖ − ‖Wx−Hs(Wx)‖ − ‖Wy −Hs(Wy)‖ ≥ d0 − 2β.

which implies

‖A(Wx)− A(Wy)‖
=‖A(Hs(Wx))− A(Hs(Wy)) + A(Hsc(Wx))− A(Hsc(Wy))‖
≥
√

1− δ2s‖Hs(Wx)−Hs(Wy)‖ −
√

1 + δ2s(‖Hsc(Wx)‖+ ‖Hsc(Wy))‖)
≥(d0 − 2β)

√
1− δ2s − 2β

√
1 + δ2s > 0,

where Hsc(x) = x−Hs(x).
Let ai be the i-th row of A, and let H : Rm×2 7→ R where ãi = [ai,−ai]. Then

H i(x) = ai ∗V σ(Wx)− ai ∗V σ(−Wx) = 〈ai, σ(Wx)− σ(−Wx)〉 = 〈ai,Wx〉,

13



since σ(x)− σ(−x) = x. Set the feature map T : Rn×1 7→ R1×2p as

T (x) =

[
σ ◦H ◦ σ ◦

[
W
−W

]
(x), σ ◦ −H ◦ σ ◦

[
W
−W

]
(x)

]
.

Thus, T (x) = [σ(AWx), σ(−AWx)]. For all x ∈ Ω0 and y ∈ Ω1, we have

‖T (x)− T (y)‖2
2 = ‖σ(AWx)− σ(AWy))‖2

2 + ‖σ(−AWx))− σ(−AWy))‖2
2

≥ 1

2
‖AWx− AWy‖2

2 > 0,

where the first inequality is from (14). Therefore, T is separable and 2p = 8Cδ−2
2s s ln(em/s) <

n.

Remark 2. Recall that β measures the error incurred by thresholding signals in Ω under the
transform W into s-sparse vectors. Thus the condition in Theorem 7 involving β and δ2s

represents a trade-off between the approximate sparsity condition and dimension reduction
capability. If Ω has better s-sparse approximation, δ2s can be closer to 1 which reduces the
required number of measurements, i.e. p can be smaller. Thus, the separable condition
becomes easier to satisfy when the gap d0 between Ω0 and Ω1 increases.

In the above theorem, the support size of the kernel is the same as the input signal. This
essentially reduces the convolutional network to a fully connected network, and is seldom used
in real world applications. However, we show in the following lemma that can be represented
as composition of multiple 1-layer convolutional neural networks and the support of kernels
is up to 3 which is common in many practical architectures such as VGG-16 [33], ResNet
[14], DenseNet [16], etc. The next lemma shows that each row (equivalently, channel) of A
can be decomposed into convolutions with small filters.

Lemma 3. Let a ∈ Rn, there exist q1 filters {αi}q1i=1 with size 3 and q2 filters {βi}q2i=1 with
size 2 such that

a = α1 ∗F . . . αq1 ∗F β1 ∗F . . . ∗F βq2 ,
where ∗F denotes the convolution with zero extension and ∗F : Rn × Rr 7→ Rn−r+1.

Proof. Let Fx be the Fourier series of the sequence x, i.e.

(Fx)(ξ) =
n−1∑
j=0

xn exp(−ijξ).

Let z = exp(−iξ), then P (z) := (Fa)(z) is a polynomial of z of degree n. By the unique
factorization theorem, P (z) can be factorized as

P (z) =

q1∏
p1=1

(cp1z
2 + bp1z + ap1)

q2∏
p2=1

(b
′

p2
z + a

′

p2
)

=

q1∏
p1=1

(Fαp1)(z)

q2∏
p2=1

(Fβp2)(z)

= F(α1 ∗F . . . αq1 ∗F β1 ∗F . . . ∗F βq2)

14



where αp1 = [ap1 , bp1 , cp1 ] ∈ R3 and βp2 = [a
′
p2
, b
′
p2

] ∈ R2. Taking the inverse Fourier trans-
form, we get the desired result.

Theorem 8. Suppose the condition in Theorem 7 holds. There exists a sequence of 1 layer
convolutional layers {G1

σ,G
2
σ, . . . ,G

k+1
σ }, such that the feature map T = Gk+1

σ ◦Gk
σ · · · ◦G1

σ :
Rn×1 7→ R1×2p is separable.

Proof. Let W be the transformation in Theorem 7 which can be seen as the convolution
layer, H ∈ Rp×m be the valid convolution with kernels from the row of A which are given in
Theorem 7.Therefore, it suffices to prove that there exists convolutions map T such that

T (x) = [σ(H(σ(W (x)), σ(−W (x)))), σ(−H(σ(W (x)), σ(−W (x))))]. (18)

Let G1
σ = [σ(Wx), σ(−Wx)] ∈ Rm×2.

By Lemma 3, each row of A can be decomposed into compositions of up to k short filters
with size 3, inserting delta filters when necessary,

ai = gi1 ∗F gi2 · · · ∗F gik, ∀i = 1, . . . , p.

Without loss of generality, assume that m = 2k + 1. Otherwise, we can add some zeros
entries to the input signal x.
Define U i

1 = gi1 and Ũ i
1 = [gi1,−gi1] ∈ R3×2 for each j = 1, . . . p. Let G2

σ be the 1-layer

convolution with kernels {Ũ i
1}
p
i=1 ∪ {−Ũ i

1}
p
i=1. Then, G2

σ = (G2,1
σ , . . . , G2,2p

σ ) is a map from
Rm×2 to R(m−2)×2p and

G2,i
σ ◦G1

σ = σ((σ(Wx)− σ(−Wx)) ∗V gi1) = σ(Wx ∗V gi1), i = 1, . . . , p,

G2,i
σ ◦G1

σ = σ(−(σ(Wx)− σ(−Wx)) ∗V gi−p1 ) = σ(Wx ∗V −gi−p1 ), i = p+ 1, . . . , 2p.

Define U i
j ∈ R3×p to be the zero matrix except the i-th column equals to the gij(−·) for all

i = 1, . . . , p and j = 2, . . . , k, Ũ i
j = [U i

j ,−U i
j ] ∈ R3×2p and Gj+1

σ be a 1-layer convolution with

kernels {Ũ i
j}
p
i=1 ∪ {−Ũ i

j}
p
i=1. Thus, Gj+1

σ = (Gj+1,1
σ , . . . , Gj+1,2p

σ ) is a map from R(m−2j)×2p to

R(m−2(j+1))×2p and

Gj+1,i
σ ◦Gj

σ ◦ · · · ◦G1
σ = σ(Wx ∗V gi1 ∗V · · · ∗V gij(−·)), i = 1, . . . , p,

Gj+1,i
σ ◦Gj

σ ◦ · · · ◦G1
σ = σ(−Wx ∗ gi−p1 ∗V · · · ∗V gij(−·)), i = p+ 1, . . . , 2p.

Define
T = Gk+1

σ ◦Gk
σ · · · ◦G1

σ : Rn 7→ R1×2p.

Then, we know feature map T has the form (18).

We have established the existence of composed convolutional networks with fixed sup-
port kernel size that is a separable stable feature extractor. In addition, when the nonlinear
activation is ReLU, one can see from the above arguments that there exists composed con-
volutional network Hσ = Gk

σ ◦Gk−1
σ · · · ◦G1

σ such that

Hσ(x) = [σ(Ax+ b), σ(−Ax− b)].
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for some A ∈ Rm×n and b ∈ Rm. The above result implies that from the perspective
of approximation capability, composed convolutional network is at least as strong as fully
connected network because we can actually implement a fully connected network with one
hidden layer by a convolutional neural network.

2.5 The advantage of nonlinearity

The previous section basically constructs a convolutional network with fixed filter size to
represent a linear operator that has the separable property in feature space. However, this
representation does not show the advantage of nonlinear activations in neural networks. We
now investigate the effects of the non-linear activation functions in deep neural networks in
following simple context.

Define a L-layer deep neural networks to be

f(x) = g ◦ σ(WL(. . . σ(W1x+ b1) . . . ) + bL),

We will prove that a nonlinear transformation of the inputs may further decrease the approx-
imation error, whereas a linear transformation will not. The result depends on the following
assumptions.

Assumption 3. The minimum of problem

min
f
E(f) =

∫
Ω

(f ∗(x)− f(x))2dµ (19)

is bigger than 0 and the minimizer is attainable.

Assumption 4. The activation function (applied point-wise) σ satisfies

1. σ ∈ C∞(R)

2. σ is non-degenerate, i.e. for each k ≥ 0 there is a bk ∈ R such that dkσ
dxk

(bk) 6= 0.

Rewrite f(x) as f(x) = g̃(W1x+b1) for some function g̃ and g̃ ∈ G̃. Let f̃ = g̃∗(W ∗
1 x+b∗1)

be the minimizer of (19) and E(f̃) > 0. Define the linear transformation P (x) = x+V (Ux+b)
for V ∈ Rn×q, U ∈ Rq×p, b ∈ Rq. In the next theorem, we first show that the linear
transformation does not decrease the approximation error.

Theorem 9. The following identity holds:

E(f̃) = min
f,U,V,b

∫
Ω

(f ∗(x)− f ◦ P (x;V, U, b))2dµ. (20)

Proof. Since f(x) = f ◦ P (x; 0, U, b) for all x ∈ Ω, we have

E(f̃) ≥ min
f,U,V,b

∫
Ω

(f ∗(x)− f ◦ P (x;V, U, b))2dµ.
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Moreover, and we have

f ◦ P (x;V, U, b) = g̃(W1(x+ V (Ux+ b)) + b1) = g̃(W
′

1x+ b
′

1)

where W
′
1 = W1 + V U and b

′
1 = b1 +W1V b. Then, we can conclude (20) holds.

Define the nonlinear transformation Pσ(x;V, U, b) = x+ V σ(Ux+ b) and set

X = {x ∈ Ω|f̃(x) 6= f ∗(x)} and Xi = {x ∈ Ω|∇if̃(x) 6= 0}, i = 1, 2, . . . , n.

We will show that f ◦ Pσ can decrease the approximation error in the next theorem.

Theorem 10. Suppose the Assumption 3, 4 hold and µ(X ∩ (∪ni=1Xi)) > 0. Then, there
exists some Ṽ , Ũ and b̃ such that E(f̃) > E(f̃ ◦ Pσ(x; Ṽ , Ũ , b̃)).

Proof. We first show that there exist Ũ and b̃ such that

∇VE(f̃ ◦ Pσ(x; 0, Ũ , b̃)) 6= 0. (21)

We prove (21) by contradiction. By the dominated convergence theorem, we have

∇VE(f̃ ◦ Pσ(x; 0, U, b)) = −2

∫
Ω

(f̃(x)− f ∗(x))∇f̃(x)[σ(Ux+ b)]>dµ = 0,∀U, b. (22)

Since µ(X ∩ (∪ni=1Xi)) > 0, there exists some i0 such that µ(X ∩ Xi0) > 0. From (22), we
have ∫

Ω

(f̃(x)− f ∗(x))∇i0 f̃(x)[σ(u>x+ b)]dµ = 0, ∀u ∈ Rn, b ∈ R.

For each k ≥ 0 and multi-index i = (i1, . . . , in) with ij ≥ 0 and
∑

j ij = k,

0 =
∂k

Πj∂u
ij
j

∫
Ω

(f̃(x)− f ∗(x))∇i0 f̃(x)σ(u>x+ b)dµ|u=0,b=bk

By assumption 4, for each k we may pick bk ∈ R such that dkσ(bk)/dx
k 6= 0. The above

equality then implies

0 =

∫
Ω

(f̃(x)− f ∗(x))∇i0 f̃(x)Πj(xj)
ijdµ.

In particular, (f̃ − f ∗)∇i0 f̃ is orthogonal to every monomial, and hence must equal 0 a.e. on
Ω, which contradicts the assumption that µ(X ∩ Xi0) > 0. This proves (21).

Next, Define V̂ (α) = −α∇VE(f̃ ◦ Pσ(x; 0, Ũ , b̃)) for α ∈ (0, 1). By the Taylor’s theorem,
we have

E(f̃ ◦ Pσ(x; V̂ (α), Ũ , b̃)) ≤E(f̃ ◦ Pσ(x; 0, Ũ , b̃))− αC2

+
1

2
α2C2 max

‖V ‖≤C
‖∇2

VE(f̃ ◦ Pσ(x;V, Ũ , b̃))‖2

where C := ‖∇VE(f̃ ◦Pσ(x; 0, Ũ , b̃))‖ > 0. Since E is twice continuously differentiable in V ,
the last term is finite and O(α2), hence for sufficiently small α, we have

E(f̃ ◦ Pσ(x; V̂ (α), Ũ , b̃)) < E(f̃ ◦ Pσ(x; 0, Ũ , b̃)) = E(f̃),

which completes the proof.
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Remark 3. Note that the non-degeneracy condition in assumption 4 was crucial in the proof
above to show that there exists a non-zero derivative of the error E. Linear and higher order
polynomial activations do not satisfy the degeneracy condition, and hence we cannot ensure
improvement using the argument above.

Remark 4. We now discuss the condition µ(X ∩ (∪ni=1Xi)) > 0. First, since E(f̃) > 0,
we must have µ(X ) > 0. In order to have an improvement via gradient descent, in X we
must have some input coordinates that is not linked entirely to “dead” neurons, i.e. we must
be able to affect the output of f̃ by changing our inputs by a small amount. The condition
µ(X ∩ (∪ni=1Xi)) > 0 says precisely this.

3 Scaling Analysis of Convolutional networks

In this section, we consider the advantages of hierarchical structures used in CNNs by scaling
analysis. Assume the oracle function f ∗(x) : Ω = [0, 1]n 7→ [0, 1], i.e. the oracle has bounded
range. Moreover, we assume that the oracle function o belongs to the compositional function
space defined as follows.

Definition 4. The compositional function space Cc(Ω) where n = rp is that for any F ∈
Cc(Rn) the function F has the compositional form: F = H ◦ G, G = (G1, G2, . . . , Gp),
Gi = gi ◦ T i, g : Rr 7→ R, T i : Ω 7→ Rr where T i(x) = (x(i−1)∗r+1, . . . , xi∗r) for all i,
H : Rp 7→ R.

The form defined in 4 is the simplest one with a compositional hierarchical structure.
And many more complex hierarchical functions can be constructed from compositions and
linear combinations of this form. Note that the assumption that all Gis are the same function
can be easily generalized to different functions so long as the dimensions match.

Since the target oracles are usually obtained from the human labels, it is natural to
assume that f ∗ is stable with respect to small perturbations η. Let η = ∇f∗(x)

‖∇f∗(x)‖
√
nε, i.e. the

perturbation is on average O(ε) for each dimension. In practice, the oracle should be stable
to this kind of perturbation. That is,

|f ∗(x+ η)− f ∗(x)| ≤
√
n‖∇f ∗(x)‖ε+O(‖ε‖2)� 1

So we must have ‖∇f ∗(x)‖ = O(1/
√
n). Otherwise, the oracle is not stable and is vulnerable

to the well known adversarial perturbations [34, 13]. Therefore, it is reasonable to make the
following assumption:

Assumption 5. The oracle o belongs to Cc(Ω) and L(H) = O(1/
√
p), L(g) = O(1/

√
r),

where L(H) and L(g) are the Lipschitz constants for H and g, respectively.

The above assumption implies the Lipschitz constant of o is O(1/
√
n).

Definition 5. Let N(ε, n; f) to be the minimum number of hidden units needed to achieve
ε approximation accuracy of f using fully connected networks with one hidden layer.
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Definition 6. The (ε, α, β, n)-class function space H ⊂ C(Rn) such that N(ε, n; f) =
O(nα/εβ) for all f ∈ H.

Regarding the number of total parameters needed to achieve a desired accuracy, we have
the following estimate.

Theorem 11. Suppose Assumption 5 holds. If o belongs to (ε, α, β, n)-class, g belongs to
(ε, α, β, r)-class and H belongs to (ε, α, β, p)-class. Let S1 be the minimal total number of
parameters needed to achieve ε accuracy for the fully connected network. Then,

S1 = O

(
nα+1

εβ

)
.

Moreover, there is a convolutional network Ĝ and a fully connected network Ĥ such that

‖Ĥ ◦ Ĝ− o‖ ≤ ε and S2 = O

(
rα+1

εβ
+
pα+1

εβ

)
,

where S2 is the total number of parameters of Ĥ and Ĝ.

Proof. Up to leading order,

S1 = N(ε, n; o)(n+ 2) = O

(
nα

εβ

)
(n+ 2) = O

(
nα+1

εβ

)
.

Since g belongs to (ε, α, β, r)-class, there exists qg = O(rα/εβ) hidden units such that

‖g − g̃‖ ≤ ε/2DH ,

where g̃ =
∑qg

i=1 a
g
iσ(wg>i x + bgi ) and DH/

√
n is the Lipschitz constant of H and DH is a

constant. Similarly, since H belongs to (ε, α, β, p)-class, there exists qH = O(pα/εβ) hidden
units such that

‖H − Ĥ‖ ≤ ε/2,

where Ĥ =
∑qH

i=1 a
H
i σ(wH>i x+ bHi ).

Define a convolutional network Ĝ : Rd 7→ Rp×1 as follows

Rrm×1 → convr,qg ,r → σ → conv1,1,0 → Rm×1

where convk,c,s represents the convolution layer with kernel size k, number of channels c and
stride s. The set of kernels in the first layer are {wgi }

qg
i=1 and the 1×1 convolution in the last

layer is {agi }
qg
i=1. Then, we know Ĝ(x) = (G1, G2, . . . , Gp) and Gi = ĝ ◦ Ti for all i = 1, . . . , p.
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Therefore,

‖H(G)− Ĥ(Ĝ)‖2 ≤ ‖H(G)−H(Ĝ)‖2 + ‖H(Ĝ)− Ĥ(Ĝ)‖2

=

(∫
Ω

|H(G(x))−H(Ĝ(x))|2dµ(x)

)1/2

+

(∫
Ω

|H(Ĝ(x))− Ĥ(Ĝ(x))|2dµ(x)

)1/2

≤
(∫

Ω

D2
Hp
−1‖G(x)− Ĝ(x)‖2

2dµ(x)

)1/2

+

(∫
Ω

|H(Ĝ(x))−H(Ĝ(x))|2dµ(x)

)1/2

≤

(∫
Ω

D2
Hp
−1

p∑
i=1

ε2

4D2
H

dµ(x)

)1/2

+

(∫
Ω

|H(Ĝ(x))− Ĥ(Ĝ(x))|2dµ(x)

)1/2

≤ 1

2
ε+

(∫
Ω

1

4
ε2dµ(x)

)1/2

= ε,

where the second inequality is due to the Lipschitz continuity of H. Moreover, the number
of parameters in Ĥ ◦ Ĝ is

S2 = N

(
ε

2DH

, r; g

)
r +N

(ε
2
, p;H

)
p = O

(
rα+1

εβ
+
pα+1

εβ

)
,

which completes the proof.

Although the exact approximation rate of a fully connected network with one hidden
layer is difficult, the upper bound of such estimation exists in several cases. For example,
the function class in [2] is approximated with rate N(ε, n; f) = O(C2

f/ε), where Cf =∫
‖ω‖|f̂(ω)|dω depends polynomially or exponentially on d. In [1], some interesting cases

with Cf = O(n) are given, i.e. α = 2, β = 1. From the above theorem, we see the
obvious advantage of composed convolutional network. The bounds constitute as sufficient
conditions.

Moreover, the above argument could be easily generalized to convolutional networks with
multiple hidden layers as shown in next corollary.

Corollary 1. Let F : Ω 7→ R, n = rL, g1, . . . , gL : Rr 7→ R. F = gL ◦GL, Gl : RrL−l+1 7→
Rr,Gl = (Gl,1, Gl,2, . . . , Gl,r), Gl,i : RrL−l+1 7→ R. Gl = gl ◦ Gl−1, l = 1, . . . , L. Assume
n � r,Lip(gl) = O(1/

√
r),∀ l = 1, . . . , L. If F belongs to (ε, α, β, n)-class, g belongs to

(ε, α, β, r)-class, then the total number of parameters S1, of using fully connected network to
approximate F , is

S1 = O

(
nα+1

εβ

)
,

and there exists a convolutional network that achieves ε-accuracy with total number of pa-
rameters

S2 = O

(
rα+1

εβ
(log n)β+1

)
.
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Proof. Similar to the proof of Theorem 11, we only need to approximate each gl : Ω 7→ R to
O( ε

L
), then entire approximation will be in order of O(ε). So

S2 = N
( ε
L
, r
)
r +N

( ε
L
, r
)
r + · · ·N

( ε
L
, r
)
r

= LN
( ε
L
, r
)
r = O

(
rα+1

εβ
Lβ+1

)
,

which completes the proof.

Thus, using the CNN architecture, the number of parameter used only depends on
(log n)β+1, which is much better than O(nα+1) of fully-connected networks. In the usual
case like image recognition where n is large, this means that for hierarchical functions, using
“deep” convolutional networks is exponentially more parameter efficient than fully connected
network. Theorem 11 and Corollary 1 establish that using convolutional networks to approx-
imate compositional functions has huge advantages. Moreover, observe that sampling errors
can also be shown to be improved using a similar analysis. For example, define N(m, ε) to be
the number of samples needed to achieve ε accuracy for a fully connected network with one
hidden layer and S parameters. Assume N(S, ε) = O(m

α

εβ
), then similar scaling arguments

can be used to characterize the sampling error. We see from the above proof that when
comparing network structures, the result is independent of β. This implies that composed
convolutional network also has much better sample error estimates.

4 Conclusion

In this paper, we proved that under suitable conditions, convolution neural networks can
inherit the universal approximation property of its last fully connected layers. Moreover, we
show that nonlinearity in the transformations is important to allow for local improvements
of the approximation via composition. Finally, we proved that when the target function class
has a compositional structure, using convolutional networks requires fewer parameters, less
computation and fewer samples compared with fully connected networks achieving the same
accuracy. When the compositional structure is hierarchical, the reduction in parameters is
exponential in the number of compositional levels.

An interesting future direction is to explore the class of compositional hierarchical func-
tions. Many functions resulted from Markovian physical process are of this form, it would be
interesting to model such processes and develop a generative mechanism for such functions.
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Appendix A Proof of theorem 3

The next Lemma shows the bound of two functions f1, f2 in HL,K under E and Ez.

Lemma 4. For any f1, f2 ∈ H(Ω), the following inequalities hold:

|Ez(f1)− Ez(f2)| ≤ 2M‖f1 − f2‖∞
|E(f1)− E(f2)| ≤ 2M‖f1 − f2‖∞.

(23)

Proof. Since
m∑
i=1

(f1(xi)− o(xi))2 −
m∑
i=1

(f2(xi)− o(xi))2

=
m∑
i=1

(f1(xi)− f2(xi))(f1(xi)− o(xi) + f2(xi)− o(xi))

≤2mM‖f1 − f2‖∞.

Then the first inequality in (23) holds. Similarly, we also have

|E(f1)− E(f2)|

≤
∫

Ω

|(f1(x)− f2(x))(f1(x)− c(x) + f2(x)− c(x))|dµ(x)

≤2M‖f1 − f2‖∞.

This ends the proof.

Let {fj}kj=1, where K = NHL,K (γδ
2

) is a sequence such that HL,K is covered by L∞ balls

in HL,K centered at fj with radius γδ
2

. Define Ωj = {f : ‖f − fj‖ ≤ γδ
2M
}, 1 ≤ j ≤ k. Then

we have HL,K ⊂ ∪kj=1Ωj. For each j, denote ξ = (fj(ζ)− o(ζ))2 as a random variable, where
ζ is a i.i.d random variable drawn from the distribution ρ = µ on Ω. Note that fj ∈ HL,K

and the definition of c, implies that ‖fj‖∞ ≤ 1 and ‖c‖∞ ≤ 1. Thus we have ξ − Eξ ≤ 1.
Furthermore,

Eξ2 = E(fj(ζ)− c(ζ))4 ≤ E(fj(ζ)− c(ζ))2 = Eξ.

Applying Lemma 1 to ξ with B = η = 1, we have

P

{
E(fj)− Ez(fj)√

E(fj) + δ
> γ
√
δ

}
≤ exp

{
−3γ2mδ

8

}
where we used the fact that

Eξ = E(f(ζ)− c(ζ))2 =

∫
Ω

(f(x)− c(x))2dµ(x) = E(f).
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By the definition of covering number, for any function f ∈ HL,K , there exists a function
fj such that ‖f − fj‖ ≤ γδ

2M
. This together with Lemma 4, yields

|Ez(f)− Ez(fj)| ≤ 2M‖f − fj‖∞ ≤ γδ,

|E(f)− E(fj)| ≤ 2M‖f − fj‖∞ ≤ γδ.

Therefore, since E(f) ≥ 0,

|Ez(f)− Ez(fj)|√
E(f) + δ

≤ γ
√
δ,
|E(f)− E(fj)|√

E(f) + δ
≤ γ
√
δ.

By the second inequality, we have

E(fj) + δ = E(fj)− E(f) + E(f) + δ

≤ γ
√
δ
√
E(f) + δ + E(f) + δ

≤
√
δ
√

E(f) + δ + E(f) + δ ≤ 2(E(f) + δ),

which leads to
√

E(fj) + δ ≤ 2
√
E(f) + δ for any fj.

Now, if we assume that E(f)−Ez(f)√
E(f)+δ

> 4γ
√
δ, then we have

E(fj)− Ez(fj)
2
√

E(f) + δ
≥E(f)− Ez(f)

2
√

E(f) + δ
− E(f)− E(fj)

2
√

E(f) + δ
− Ez(fj)− Ez(f)

2
√
E(f) + δ

>2γ
√
δ − γ

√
δ

2
− γ
√
δ

2
= γ
√
δ.

Since we have
√

E(fj) + δ ≤ 2
√

E(f) + δ for any f ∈ Ωj, then if the condition E(f)−Ez(f)√
E(f)+δ

>

4γ
√
δ holds, then the following inequality

E(fj)− Ez(fj)
2
√

E(fj) + δ
≥ E(fj)− Ez(fj)

2
√

E(f) + δ
> γ
√
δ

holds. Hence, for each fixed j, 1 ≤ j ≤ k,

P

{
supf∈Ωj

E(f)− Ez(f)√
E(f) + δ

> 4γ
√
δ

}
≤ P

{
E(fj)− Ez(fj)√

E(fj) + δ
> γ
√
δ

}
.

Since HL,K ⊂ ∪kj=1Ωj, we have

P

{
supf∈H(Ω)

E(f)− Ez(f)√
E(f) + δ

> 4γ
√
δ

}
≤

k∑
j=1

P

{
supf∈Ωj

E(f)− Ez(f)√
E(f) + δ

> 4γ
√
δ

}
,

combined with (24), (25) and k = NHL,K (γδ
2

), yields

P

{
supf∈HL,K

E(f)− Ez(f)√
E(f) + δ

> 4γ
√
δ

}
≤ NHL,K

(
γδ

2M

)
exp

{
−3γ2mδ

8

}
.

This completes the proof.
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Birkhäuser Basel (2013)

[12] Giryes, R., Sapiro, G., Bronstein, A.M.: Deep neural networks with random gaussian
weights: A universal classification strategy? IEEE Trans. Signal Processing 64(13),
3444–3457 (2016)

[13] Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial exam-
ples. arXiv preprint arXiv:1412.6572 (2014)

[14] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
CVPR, pp. 770–778 (2016)

[15] Hornik, K.: Approximation capabilities of multilayer feedforward networks. Neural
networks 4(2), 251–257 (1991)

24



[16] Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convo-
lutional networks. In: CVPR, vol. 1, p. 3 (2017)

[17] Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convo-
lutional neural networks. In: Advances in neural information processing systems, pp.
1097–1105 (2012)

[18] Le Roux, N., Bengio, Y.: Representational power of restricted boltzmann machines and
deep belief networks. Neural computation 20(6), 1631–1649 (2008)

[19] Le Roux, N., Bengio, Y.: Deep belief networks are compact universal approximators.
Neural computation 22(8), 2192–2207 (2010)

[20] Leshno, M., Lin, V.Y., Pinkus, A., Schocken, S.: Multilayer feedforward networks with
a nonpolynomial activation function can approximate any function. Neural networks
6(6), 861–867 (1993)

[21] Lin, H., Jegelka, S.: Resnet with one-neuron hidden layers is a universal approximator.
In: Advances in Neural Information Processing Systems, pp. 6170–6179 (2018)

[22] Lu, Z., Pu, H., Wang, F., Hu, Z., Wang, L.: The expressive power of neural networks:
A view from the width. In: Advances in Neural Information Processing Systems, pp.
6231–6239 (2017)

[23] Mallat, S.: Group invariant scattering. Communications on Pure and Applied Mathe-
matics 65(10), 1331–1398 (2012)

[24] Mallat, S.: Understanding deep convolutional networks. Phil. Trans. R. Soc. A
374(2065), 20150203 (2016)

[25] Mhaskar, H., Liao, Q., Poggio, T.: Learning functions: when is deep better than shallow.
arXiv preprint arXiv:1603.00988 (2016)

[26] Mhaskar, H.N., Poggio, T.: Deep vs. shallow networks: An approximation theory per-
spective. Analysis and Applications 14(06), 829–848 (2016)

[27] Montufar, G., Ay, N.: Refinements of universal approximation results for deep belief
networks and restricted boltzmann machines. Neural Computation 23(5), 1306–1319
(2011)

[28] Montufar, G.F., Pascanu, R., Cho, K., Bengio, Y.: On the number of linear regions
of deep neural networks. In: Advances in neural information processing systems, pp.
2924–2932 (2014)

[29] Papyan, V., Romano, Y., Elad, M.: Convolutional neural networks analyzed via con-
volutional sparse coding. The Journal of Machine Learning Research 18(1), 2887–2938
(2017)

25



[30] Pascanu, R., Montufar, G., Bengio, Y.: On the number of response regions of deep feed
forward networks with piece-wise linear activations. arXiv preprint arXiv:1312.6098
(2013)

[31] Poggio, T., Shelton, C.R.: On the mathematical foundations of learning. American
Mathematical Society 39(1), 1–49 (2002)

[32] Shaham, U., Cloninger, A., Coifman, R.R.: Provable approximation properties for deep
neural networks. Applied and Computational Harmonic Analysis (2016)

[33] Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556 (2014)

[34] Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., Fergus,
R.: Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199 (2013)

[35] Tai, C.: Multiscale adaptive representation of signals: I. the basic framework. Journal
of Machine Learning Research 17(140), 1–38 (2016)

[36] Telgarsky, M.: Benefits of depth in neural networks. arXiv preprint arXiv:1602.04485
(2016)

[37] Vapnik, V.N., Vapnik, V.: Statistical learning theory, vol. 1. Wiley New York (1998)

[38] Wiatowski, T., Bölcskei, H.: A mathematical theory of deep convolutional neural net-
works for feature extraction. IEEE Transactions on Information Theory 64(3), 1845–
1866 (2018)

[39] Zhang, C., Bengio, S., Hardt, M., Recht, B., Vinyals, O.: Understanding deep learning
requires rethinking generalization. arXiv preprint arXiv:1611.03530 (2016)

[40] Zhou, D.X.: Universality of deep convolutional neural networks. arXiv preprint
arXiv:1805.10769 (2018)

26


