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Self-Distillation: Towards Efficient and Compact
Neural Networks
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Abstract—Remarkable achievements have been obtained by deep neural networks in the last several years. However, the
breakthrough in neural networks accuracy is always accompanied by explosive growth of computation and parameters, which leads to
a severe limitation of model deployment. In this paper, we propose a novel knowledge distillation technique named self-distillation to
address this problem. Self-distillation attaches several attention modules and shallow classifiers at different depths of neural networks
and distills knowledge from the deepest classifier to the shallower classifiers. Different from the conventional knowledge distillation
methods where the knowledge of the teacher model is transferred to another student model, self-distillation can be considered as
knowledge transfer in the same model - from the deeper layers to the shallow layers. Moreover, the additional classifiers in
self-distillation allow the neural network to work in a dynamic manner, which leads to a much higher acceleration. Experiments
demonstrate that self-distillation has consistent and significant effectiveness on various neural networks and datasets. On average,
3.49% and 2.32% accuracy boost are observed on CIFAR100 and ImageNet. Besides, experiments show that self-distillation can be
combined with other model compression methods, including knowledge distillation, pruning and lightweight model design.

Index Terms—Knowledge Distillation, Model Acceleration, Model Compression, Dynamic Neural Networks, Multi-Exit Neural

Networks, Attention, Image Classification

1 INTRODUCTION

Eep convolutional neural networks have shown
D promising results in many applications such as image
classification [1], [2], [3], [4], object detection [5], [6], [7],
[8] and segmentation [9], [10], [11]. However, to achieve a
good performance, modern convolutional neural networks
always require a tremendous amount of computation and
storage, which has severely limited their deployments on
resource-limited devices and real-time applications.

In recent years, this problem has been extensively ex-
plored and numerous model compression and acceleration
methods have been proposed to address this issue. Typical
approaches include pruning [12], [13], [14], [15], [16], quan-
tization [17], [18], [19], [20], light-weight neural network
design [21], [22], [23], [24], [25], low rank factorization [26],
[27] and knowledge distillation [28], [29], [30], [31]. Among
them, knowledge distillation is one of the most effective
approaches, which firstly trains an over-parametrized neu-
ral network as a teacher and then trains a small student
network to mimic the output of the teacher network. Since
the student model has inherited the knowledge of teachers,
it can replace the over-parameterized teacher model to
achieve model compression and fast inference. However,
the conventional knowledge distillation has been suffering
from two problems - the choice of teacher models and the
efficiency of knowledge transferring. Recently, researchers
find that the choice of teacher models has a great impact
on the accuracy of student models and the teacher with the
highest accuracy is not the best teacher for distillation [32],
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[33], [34]. As a result, substantial experiments are needed
to search for the most proper teacher model for distillation,
which can be very time-consuming. The second problem
of knowledge distillation is that the student models can
not always achieve as high accuracy as teacher models do,
which may lead to an unacceptable accuracy degradation in
the inference period. In other words, it’s still hard to get an
accurate, efficient and compact student model at the same
time.

To address these problems, a novel knowledge distilla-
tion method named self-distillation is proposed in this pa-
per. Self-distillation firstly attaches several attention-based
shallow classifiers after the intermediate layers of neural
networks at different depths. Then, in the training period,
the deeper classifiers are regarded as the teacher models and
they are utilized to guide the training of student models by a
KL divergence loss on the outputs and L2 loss on the feature
maps. In the inference period, all of the additional shallow
classifiers can be dropped so they don’t bring additional
parameters and computation.

Self-distillation reduces the training overhead compared
with conventional knowledge distillation. Since both teacher
models and student models in the proposed self-distillation
are the classifiers in the same neural networks, substantial
experiments for searching the teacher model in conventional
knowledge distillation can be avoided. Moreover, conven-
tional knowledge distillation is a two-stage training method
where we have to train a teacher first and then use the
teacher to train the student. In contrast, self-distillation is
a one-stage training method where the teacher model and
student models can be trained together. The one-stage prop-
erty of self-distillation further reduces training overhead.

Self-distillation achieves higher accuracy, acceleration
and compression compared with conventional knowledge

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2021.3067100, IEEE

Transactions on Pattern Analysis and Machine Intelligence

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

64x56x56
128x28x28

3x224x224 Module

Conv Layers

Attention

128x28x28
512x14x14

256x14x14 .
Conv Layers 512x14x14 Pooling &FC Layer

Attention ]
Module !

~~

—>»—Forward Compuation

----»--- Distillation Path (Teacher to Student) O Prediction Result

Fig. 1. The architecture of ResNet18 trained by self-distillation. (i) The whole neural networks can be divided into three sections: backbone, attention
modules and shallow classifiers. (ii) The backbone section is just identical to the original model. (iii) Additional attention modules are attached after
the intermediate features of the backbone. (iv) Features refined by attention modules will be fed into the shallow classifiers, which consists of a
bottleneck layer and a fully connected layer. (v) All the attention modules and shallow classifiers are dropped in the inference period, indicating that
there is no additional parameters and computation penalty in self-distillation.

distillation. Different from the conventional knowledge dis-
tillation which focuses on knowledge transfer among dif-
ferent models, the proposed self-distillation tries to transfer
the knowledge within one model. Experiments show that
self-distillation outperforms other knowledge distillation
methods by a large margin. Moreover, we also find that
the self-distillation and conventional knowledge distillation
methods can be utilized together to achieve better results.

Self-distillation allows neural networks to perform dy-
namic inference according to the input image, which leads to
higher acceleration. In the multi-classifier neural networks
trained by self-distillation, the deep classifiers can produce
more accurate classification results while the shallow clas-
sifiers can give quick classification results with slightly
lower accuracy. Based on these observations, we further
present a dynamic inference mechanism which allows the
shallow classifiers to give prediction to easy images and
deep classifiers to predict images which are more difficult
to be classified. For example, more than 95% images in
CIFAR100 dataset can be classified by the shallowest clas-
sifier of ResNetl8 with 3% higher accuracy and 3 times
acceleration than the baseline model.

Abundant experiments show that the proposed self-
distillation achieves a significant and consistent accuracy
boost in various datasets and neural networks, including the
lightweight models such as MobileNetV2 and ShuffleNetV2.
Moreover, we also prove that self-distillation can be utilized
to improve the results of neural networks pruning.

To sum up, the main contribution of this paper can be
summarized as follows.

A novel distillation method named self-distillation is
proposed to achieve accurate, efficient and compact
neural networks with much less training overhead
than the conventional knowledge distillation meth-
ods. Moreover, we prove that self-distillation and
other distillation methods can be utilized together to
achieve higher accuracy.

Based on self-distillation, we proposed a threshold-
controlled dynamic inference mechanism which al-
lows easy images to be classified by shallow classi-
fiers and hard images by deeper classifiers. Experi-
ments show that dynamic inference provides higher
acceleration with no accuracy loss.

We evaluate self-distillation in various datasets and
neural networks and compare it with other state-
of-the-art knowledge distillation methods. Sufficient
experiments have been conducted to study how dif-
ferent factors influence self-distillation and how self-
distillation influences different model compression
methods.

The rest of this paper is organized as follows. Section
two introduces related work of self-distillation. Section three
demonstrates the formulation and details of self-distillation.
Section four shows experiment results in different convo-
lutional networks and datasets. Section five explains the
reason why self-distillation works. Finally, a conclusion is
brought forth in section six.

2 RELATED WORK
2.1

As one of the most utilized techniques in deep learning,
knowledge distillation has attracted more and more at-
tention to its methodology, application and rationale. The
idea that employing larger models to guide the training of
smaller models was first proposed by Bucilua et al. for the
compression of ensemble models [28]. Hinton et al. then ex-
tended this idea to neural networks and proposed “distilla-
tion” concept firstly [29]. Then, fruitful distillation methods
have been proposed to transfer the knowledge of teacher
models to student models based on feature maps [35], atten-
tion [36], the flow of solution procedure [37], graph [38] and
GAN-based methods [39], [40], [41]. Recently, Park et al. and

Knowledge Distillation
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Fig. 2. Four kinds of distillation path in self-distillation. Each distillation
path indicates a scheme on how to choose the teacher and student
classifiers. A—B indicates classifier A is the teacher of classifier B.

Tung et al. have proposed a relation-based method, which
has built a connection between teachers and students on not
only the individual sample but also the relation between
samples in a training batch [42], [43]. How to choose the
best teacher model for a student model is an unsolved
problem in knowledge distillation. Substantial researches
demonstrate that the gap of accuracy between teacher and
student model can harm the efficiency of knowledge dis-
tillation [32], [33]. To address this problem, Mirzadeh et al.
propose the TAKD method, which employs several teacher
assistant models as the bridges of distillation [32]. Jin et
al. present the RCO distillation to employ various teacher
models with different accuracy rates for a single student
model [44]. During the training period, the choice of teacher
models will be changed according to the accuracy of student
models. Moreover, Jang et al. propose L2T, which exploits a
meta neural network to learn the best layers and weights for
knowledge transferring [45]. Reinforcement learning based
technique is also presented to search for the best teacher
model for knowledge distillation [46].

Besides neural network compression and acceleration,
knowledge distillation has also been available in other cir-
cumstances. BAN [47] improves model accuracy by sequen-
tially training several student models. Bagherinezhad et al.
exploit knowledge distillation to refine the quality of labels,
achieving significant accuracy gain in classification [48].
Wang et al. and Liu et al. apply knowledge distillation
on objection detection, segmentation, depth prediction and
other vision tasks [39], [49]. Gupta et al. propose the cross
modal knowledge distillation, which guides neural net-
works training on unlabelled depth prediction and optical
flow images with a teacher trained on labelled RGB images
[50]. Ge et al. regard neural networks trained on high res-
olution images as the teachers of neural networks trained
on low resolution, achieving both accurate and rapid face
recognition [51]. Moreover, knowledge distillation is also
utilized in the neural network architecture searching [34],
semi-supervised learning [52] and distributed neural net-
work training [34]. The success of knowledge distillation
also promotes the theoretical study on its rationale. David
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Fig. 3. The architecture of attention modules and shallow classifiers.
(i) The attention module consists of a convolution layer for downsampling
and a bilinear interpolation layer for upsampling. The attention mask
learned by these two layers is utilized to enhance the original features
by a dot product operation. (ii) The shallow classifier is composed of
several pairs of depthwise and pointwise layers which are designed to
downsample the feature with few parameters and computation. N in the
figure is decided by the depth of the shallow classifiers.

et al. unify the knowledge distillation with privileged in-
formation [53], [54]. Tian has proven that the student node
in distillation specializes to teacher nodes in the lowest
layer under mild conditions and over-parameterization is
a necessary condition for specialization [55].

2.2 Other Model Compression Techniques
2.2.1 Neural Network Pruning

Neural networks pruning is one of the most effective tech-
niques in model compression which aims at deleting the
unnecessary weights of over-parameterized models. Le-
Cun et al. and Hassibi et al. prune the weights of neural
networks based on the Hessian of the loss function [56],
[57]. Han et al. propose the deep compression pipeline,
which prunes the low magnitude weights in convolution
neural networks [12]. Zhang ef al. apply ADMM [14] to
achieve both structure and irregular pruning. Louizos et
al. train neural networks with the Ly loss to improve
the sparsity of weights [58]. Meta pruning is proposed to
prune the channels of neural networks by a meta model
automatically [59]. Liu et al. point out that neural network
pruning may be a possible way searching for the optimal
neural network architectures [15]. Frankle et al. propose
the lottery ticket hypothesis, which reveals that the dense,
randomly-initialized and feed-forward networks containing
sub-networks can reach test accuracy that is comparable to
the original network in a similar number of iterations [60].

2.2.2 Neural Network Quantization

Neural network quantization targets to quantize the weights
and activation in neural networks to achieve model com-
pression and acceleration by low bits. Matthieu et al. pro-
pose the binary connected neural networks which quantize
the weights by 1 bit [17]. XNOR-Net computes the con-
volution operation by XNOR and bit counting, which fur-
ther improves the efficiency and accuracy of binary neural
networks [18]. Li et al. propose the ternary weights neural
networks, which constrains the weights to 0, +1 and -1 [61]
Zhou et al propose the INQ method, targeting to convert
convolutional neural networks into a low-precision model
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whose weights are constrained to be the powers of two [62].
Leng et al. formulate the weights quantization as a dis-
cretely constrained optimization problem and solve it with
ADMM [14]. Markus et al. quantize neural networks without
touching the training data through weight equalization and
bias correction [63].

2.2.3 Lightweight Model Design

Recently, more and more attention has been paid to de-
sign models that are not only accurate but also compact
and efficient. SqueezeNet [25] compresses the convolutional
neural networks with a novel “fire” module, which reduces
and expands the number of channels with 1x1 convolution
layers. Depthwise and pointwise convolutional layers, in-
verted residuals and linear bottleneck layers are proposed
in MobileNetV1 [21] and MobileNetV2 [22] respectively to
achieve model compression and acceleration while main-
taining its accuracy. Ma et al. propose ShuffleNet which
replaces convolutional layers with group convolution and
improves its accuracy by channels shuffling. Qin ef al.
present the ThunderNet which can achieve real-time object
detection on edge devices. Chen et al. study this problem
from the perspective of frequency and propose the Octave
convolution, which can be utilized as a direct replacement
of conventional convolutions. Recently, AutoML methods
have also been applied to obtain lightweight models such
as MobileNetV3 [64], AMC [65] and so on.

2.3 Adaptive Computation

Adaptive computation, which is based on the principle
that neural networks should classify the images correctly
at the least cost of computation and energy, is a rising
star in the study of neural network acceleration [66], [67].
Since the recognition difficulty of images in the real world
has an overlarge difference, adaptive computation methods
can earn substantial acceleration on the images which are
simple to be classified. SkipNet [68] targets to skip the
unnecessary layers in deep convolutional neural networks
dynamically. A hybrid reinforcement learning method is
utilized to train gating units which decide whether a layer
should be skipped or not. BlockDrop [69] learns a policy
to select the minimal number of blocks which are needed
to correctly classify the given image by Markov decision
process. MSDNet [70] employs DenseNet [71] with several
intermediate classifiers to achieve anytime prediction and
budged computation. Slimmable neural networks [72], [73]
propose the switchable batch normalization, which permits
models running with different channels. D’NN employs a
specific controlling layer which is trained by Q-learning to
decide the routing path of neural networks computation.
The previous study on adaptive computation mainly
focuses on how to decide which layer or block should be
skipped for specific sample. To solve this problem, complex
reinforcement learning control units are introduced, which
has brought much complexity in both training and inference
period. In contrast, most of attention has been paid on how
to improve the accuracy of neural networks, instead of the
controlling units. With the proposed self-distillation, most
of the shallow classifiers are able to achieve a much higher
accuracy than the baseline models. So even with the simple

4

threshold-based dynamic inference method, we still achieve
significant acceleration with no accuracy loss.

3 METHODOLOGY

Flgure 1 shows the details of the proposed self-distillation
on a ResNet18 model. Compared with the original model,
self-distillation does not change the architecture of backbone
layers yet adds several early-exit branches after the inter-
mediate layers of neural networks. Each early-exit branch
is composed of an attention module and a shallow clas-
sifier. In the training period, all the classifiers are trained
by the proposed self-distillation, which regards the deeper
classifiers as teacher models and the shallower classifiers as
student models. In the inference period, all the additional
attention modules and shallow classifiers are dropped so
there are no additional parameters or computation penalty
for the deployed model. The left part of this section gives a
detailed introduction to these contents.

3.1 Formulation

Let ¢ : RY +— RM be a given backbone classifier such as
ResNets, VGG or MobileNets, we introduce several shallow
classifiers by using the intermediate information in the back-
bone classifier F'. More specifically, assume F' = go f where
g is the final classier and f is feature extractor operator and
f=fxofk_10---0 f; where K denotes the number of
stages in f. At each feature extraction stage ¢, we attach a
classifier g; for early prediction. Thus, we have K classifiers
in total which has the form:

c1(w) = g1 0 fi(z),

e2(z) = g2 0 fo 0 fi(a), (1)

cx(r) =gx o [k o fxk-10---0 fi(x).

Define h; = f; o fi_1 0---0 f1, we have ¢; = g; o h; for all
i=1,...,K and cx = cif gk is chosen as gx = g. Here,
we call g1,...,9x—1 as shallow classifiers, and gx as the
final classifier. Each shallow classifier contains two compo-
nents: feature alignment layer and softmax layer. The feature
alignment layer is to guarantee that the feature dimension
in the shallow layer is equal to the feature dimension of
last layer, and the softmax layer is to smooth the label
distribution with temperature 7'. In other words, for each
1=1,2,...,K — 1, g; is represented as g; = gt o F; where
F; is the feature alignment layer and qr is defined as

or(z) = exp(z/T) .
2 exp(z/T)
The detailed architecture of F; is given in Section 3.3.
Given n training samples X = {(z;,y;)}}_; where
z; € RY is the input image and y; € R is the corre-
sponding label. Define ¢] = c;(z;) to be the predicted label
of sample z; by the i-th classifier and F} = F; o h;(z;) be
the feature vector of the j-th sample given by i-th classifier,
we construct the distillation loss of j-th sample:

2

. 1 XK . o
Ly = 52 > ((1 — i) Leg(c],y;) + aiLkL(c], C‘ﬁe,i)) ,
=1
3)
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where Lcg is the cross entropy loss, Lki, is the Kullback-
Leibler (KL) divergence, o; € [0,1],Vi = 1,..., K are the
imitation parameters and ¢}, ; is the reference label of the

j-th sample for i-th classifer. Besides, motivated by the hint
loss in FitNet [35], we add a penalty for the shallow features:

K
) 1 S
L'g)en = ? Z )‘iLQ(Fij’FrJe,i)? “4)
i=1
where L is the squared fa-norm loss, A; > 0,7 =1,..., K

are trade-off parameters and F,, ; is reference feature of j-th
sample for i-th classifier. It is noted that the final classifier
gk is only trained by the Lcg loss, ie. ag = Ag = 0. In
summary, the total loss of the self-distillation is

1 .
L= - Y Lhige + AL - (5)
j=1

Since there are several classifiers in the self-distillation
framework, there are multiple choices of the reference labels
¢re and the reference features Fi..

1) Deepest Teacher Distillation. The deepest classifier
is used as the reference labels and the reference
features for all shallow classifiers, i.e. ¢;c; = cx and
Fre,i :FKOhK forall: = 1,2,...,K—1.

2) Ensemble Teacher Distillation. An ensemble of la-
bels and features produced by all classifiers are used
as the reference labels and the reference features,
ie. crei = S({e;}) and Fre; = S({F; o h;}) for all
1=1,2,..., K—1,where S denotes some ensemble
operation.

3) Transitive Teacher Distillation. This distillation
chooses the reference label and the reference feature
transitively, i.e. ¢rc; = ¢;41 and Fie; = Fip1 0 hip
foralli =1,2,..., K — 1. This distillation approach
is similar to the distillation by teacher assistant [74].

4) Dense Teacher Distillation. The dense distilla-
tion connects all the label and feature information
among all classifiers, i.e. ¢y = {ck|k # i} and
Frei = {Frohylk #i} foralli =1,2,..., K — 1.
Thus, the KL loss in (3) is

K
Lxu(cl,de )= Y Lru(d,dl). (6)

k=i+1

In this paper, we choose the deepest teacher distillation
throughout all experiments and the comparison study of
four distillation methods is presented in Table 7.

Remark 1. Compared with the conventional distillation
methods where the teacher and student are two or
several individual neural networks, the proposed self-
distillation method simultaneously trains all classifiers
¢i,t =1,2,..., K, and enables us to perform knowledge
distillation within one neural network.

3.2 Shallow Classifiers

As mentioned earlier, each shallow classifier g; is the com-
position of the softmax layer g7 and the feature alignment
layer F;. Since the shallow classifiers only use the intermedi-
ate information of the backbone network at different depths,

5

the feature alignment layer F; firstly extracts the useful
intermediate features by the attention module, followed by
an alignment net. The alignment net is to adjust the feature
size so that the squared ¢s;-norm loss between shallow
features and reference feature can be used for improving
the accuracy of shallow classifiers.

The proposed attention module is proposed in Fig-
ure 3(a) which is composed of a depthwise-pointwise layer
and bilinear interpolation. The features from the shallow
convolution layers are fed into the attention module to
obtain the attention mask. Then, a dot product is performed
between the attention mask and the input features.

The architecture of align nets is shown in Figure 3(b).
The depthwise and pointwise convolution layers proposed
in MobileNet are utilized to replace the vanilla convolution
layers to reduce the training overhead. Each depthwise-
pointwise convolutional layer performs two times down-
sample on feature maps. The number of depthwise-
pointwise convolutional layers for the shallow classifiers is
setas NV;. Taking K = 4 as an example, N; =4—14,7=1,2,3
for the three shallow classifiers.

3.3 Dynamic Inference

It is generally acknowledged that the prediction of neural
networks with a higher confidence (softmax value) is more
likely to be right. In this paper, we exploit this observation
to determine whether a classifier gives a right or wrong
prediction. As described in Algorithm 1, we set different
thresholds for shallow classifiers. If the maximal output of
softmax in the shallow classifier is larger than the corre-
sponding threshold, its results will be adopted as the final
prediction so much computation can be reduced. Otherwise,
the neural networks will employ a deeper classifier to
predict. If there is no shallow classifier which can provide
confident prediction, the ensemble of all the classifiers is
regarded as the final result. Since all the classifiers in self-
distillation share the same backbone layers, there is not
much extra computation introduced in the dynamic infer-
ence. Moreover, experiments show that most of images can
be classified by the shallowest classifier correctly, which
reduces the computation cost significantly.

Moreover, the threshold-based dynamic inference pro-
vides more flexibility in the real-world application. It per-
mits models to dynamically adjust its trade-offs between
response time and accuracy on the fly by adjusting the
thresholds of shallow classifiers.

Algorithm 1 Scalable Inference

Input: Images x, Thresholds {o;}"V, Classifiers {c; }
Output: Prediction Result ¢

1: forifrom 1to N do

2: ¥i = ci(x)

3: if max(y) > o; then

4: return g;

5: return ensemble(y, ..., yn)

Since the value of thresholds determines which classifier
is utilized as the final prediction, it has a direct influence on
the accuracy and acceleration results of dynamic inference.
A lower threshold for shallow classifiers results in the fact
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Fig. 4. Experiment results of self-distillation on CIFAR100. MAC indicates the multiply—accumulate operation of neural networks.

Algorithm 2 Threshold Searching

Input: Images x, Classifiers {c;}, Max Generations g
Output: Optimal Thresholds X = {o; }V

: Randomly Initialize G as the set of genes

: forifrom 1 to g do

Get fitness of G according to Equation 7.

Sample genes with high fitness from G as G

G := crossover and mutate G

: ¥ := decode G from binary codes to numbers
return X

NS AN

that most samples will be predicted by shallow classifiers,
indicating more rapid response yet lower accuracy. Simi-
larly, a higher threshold leads to a phenomenon that most
samples will be determined by deeper classifiers, indicating
precise prediction yet longer response time. In the proposed
self-distillation, we have applied genetic algorithm to find
the best thresholds as shown in Algorithm 2. The value of
thresholds in different shallow classifiers are encoded into
binary codes as the genes. The accuracy and acceleration
results are utilized to measure the fitness of the threshold.

fitness = acceleration ratio + B - (accuracy — baseline)
@)
where 3 is a hyper-parameter to balance the impact of these
two elements. Adjustment of 3 leads to trade-offs between
accuracy and acceleration.

3.4 Rationality of Self Distillation

In this subsection, we interpret our model from the per-
spective of the generalized distillation [75], which unifies
knowledge distillation and privileged information. In gen-
eralized distillation, each training sample x; associates with
additional information z; provided by “intelligent teach-
ers”. In the context of traditional distillation framework, the
additional information is given by a teacher network.

Given a function g € G, define |G|¢ to be an appropriate
function capacity measure, e.g. VC-dimension and R(g) to
be the generalization error. Let f € F be the target function,
the generalized distillation framework [75] assumes the
student network f; € F; learn the oracle classifier at a slow
rate and the teacher network f; € F; learns it at fast rate,
ie.

R(f,) = R(f) < O(IFsle/VN) + &, ®
R(ft) — R(f) < O(|Fs|lc/N) + e, 9)
where €, and ¢; denote the approximation error of the
function class Fs; and F; to f, respectively. Furthermore,

it assumes that the student learns from the the teacher at a
medium rate, i.e.

R(fs) - R(ft) < O(|fs|C/Na) + €1,

where « € (1/2,1] and ¢ is the approximation error of the
function class F; to f;. Combining (9) with (10), we arrive
at an estimation error of the student network given by

|Fsle + | File
Nu

(10)

R(f,) ~ R(f) <O ( ) fate. 1)

Therefore, we have to analyze the if the inequality

0 (]:sc + | File |Fsle
N« VN

holds. Consider K = 2 in the proposed self-distillation
framework, i.e. there are one shallow classifier ¢; and a final
classifier co. When the capacity of classifier c¢; is much larger
than ¢;, we can treat ¢; = f, and ¢y = f;, which implies the
(12). This is also the main assumption in classical knowledge
distillation [29]. When the capacity of the shallow classifier
c1 is large enough to approximate the target function, we
can treat f; = co and f; = c¢;. In this case, ¢ = 0 and
€+ & €5 but |Fs|c > |Fi|c, which also implies (12).Thus,
the features provided by the shallow classifier are the so-
called privileged information. In this sense, instead of the

)JquretSO( )+es (12)
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Fig. 5. Experiment results of self-distillation on ImageNet. MAC indicates
the multiply—accumulate operation of neural networks.

teacher-student structure, the proposed self-distillation net-
work is more likely to be the “student-student” which may
accelerate the knowledge communications.

4 EXPERIMENT
4.1 Experiment Settings

On the image classification task, the proposed self-
distillation is evaluated in two benchmark datasets: CI-
FAR100 [76] and ImageNet (ILSVRC2012) [77] and seven
kinds of neural networks: ResNet [3], WideResNet [78],
ResNeXt [4], SENet [79], ResNeSt [80] MobileNetV2 [22] and
ShuffleNet [24]. On the point cloud classification task, we
conduct experiments on ModelNet10 and ModelNet40 [81]
on residual graph convolutional neural networks [82].

SGD with learning rate decay and momentum is utilized
to optimize the neural networks. On CIFAR100 dataset,
neural networks are trained by 300 epochs, with learning
rate divided by 10 at the 90-th, 180-th and 270-th epoch.
Batchsize is 128 and the initial learning rate is 0.1. On Im-
ageNet dataset and ModelNet, neural networks are trained
by 100 epochs, with learning rate divided by 10 at the 30-
th, 60-th, and 90-th epoch. Batchsize is 256 and the initial
learning rate is 0.1. AutoAugment [83] is utilized across all
the experiments on RGB images.

Since the images in CIFAR100 dataset are much smaller
than images in ImageNet, the architecture of neural net-
works on CIFAR100 is slightly modified by removing the
first pooling layer and reducing the stride and kernel size of
convolutional layers. The reported ImageNet (ILSVRC2012)
accuracy is evaluated on the validation set. All the experi-
ments are conducted by PyTorch1.3.0 on GPU devices. The
recommended value for o, \ is 0.6 and 4 x 10~ 2. Moreover,
in the last 5 epoches of the training period, both o and X are
set to 0 to facilitate model convergence.

4.2 Results on CIFAR100

Table 1 shows the experiment results of self-distillation in
CIFAR100 dataset. It is observed that (i) On average, the pro-
posed self-distillation leads to 3.47% accuracy boost. (ii) In
5 of 14 neural networks, the shallowest classifier, which has
much fewer parameters and computation, achieves higher
accuracy than their baseline models. (iii) In all the neural
networks, the second shallowest classifier achieves higher
accuracy than their baseline models. (iv) There is 3.38%
and 4.84% accuracy improvements on MobileNetV2 and
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Fig. 6. Comparison experiments with two kinds of pruning methods in
WideResNet40-2 on CIFAR10 and CIFAR100.

ShuffleNetV2, indicating that the proposed self-distillation
also works on lightweight neural networks.

Figure 4 shows the comparison on computation, param-
eters and accuracy of four ResNet models on CIFAR100.
The blue dots indicate the three shallow classifiers and the
deepest classifier in neural networks and the orange dot
indicates the baseline model. It is observed that significant
accuracy improvements and acceleration can be achieved si-
multaneously by replacing the baseline model with shallow
classifiers.

4.3 Results on ImageNet

Table 2 shows the experiment results on ImageNet and
Figure 5 shows the parameters, computation and accuracy
of ResNet models. It is observed that (i) On average, 2.84%
accuracy boost can be observed in neural networks trained
by self-distillation on ImageNet, ranging from 2.47% on
ResNet18 as the minimum to 4.24% on ResNet50 as the
maximum. (ii) More benefits can be found in neural net-
works with more layers. (iii) Significant acceleration and
compression can be achieved by replacing the deep resnet
with shallow resnet trained by self-distillation.

4.4 Results on Point Cloud Classification

Table 4 shows the experiment results on two point cloud
datasets - ModelNetl0 and ModelNet40. It is observed
that (i) On ModelNetl0, there is 0.98% and 1.36% aver-
age accuracy improvements on the 3,4 classifier and the
ensemble classifier, respectively. (ii) On ModelNet40, there
is 0.53% and 1.01% average accuracy improvements on the
3,4 classifier and the ensemble classifier, respectively. These
results demonstrate the effectiveness of self-distillation on
point cloud data and graph convolution neural networks.

4.5 Comparison with the Other Distillation Methods

The comparison between the proposed self-distillation and
the other three kinds of knowledge distillation methods on
CIFAR100 is shown in Table 3. It is observed that (i) Self-
distillation achieves the highest accuracy compared with the
other knowledge distillation methods. On average, 1.61%
accuracy boost can be found in the comparison between
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TABLE 1
Experiment results of accuracy (%) on CIFAR100. “Baseine” in the table indicates a model trained without knowledge distillation. “Ensemble”
indicates the prediction ensemble of “Ensemble” indicates the prediction ensemble of all the classifiers.
Models Baseline  Classifierl  Classifier2  Classifierd Classifierd Ensemble
ResNet18 79.01 76.31 79.32 81.24 81.76 82.64
ResNet50 80.88 82.60 83.55 84.42 83.66 85.42
ResNet101 82.37 81.64 82.73 84.12 84.03 85.48
ResNet152 82.92 81.25 82.94 84.37 84.52 85.41
WRN50-2 81.26 82.85 84.02 84.91 84.33 85.78
WRN101-2 82.37 82.56 83.79 84.87 84.33 86.03
SENet18 79.53 75.60 79.81 81.77 81.84 83.10
SENet50 81.01 81.80 82.93 83.91 83.51 85.21
SENet101 82.75 82.20 82.69 83.17 82.97 84.82
ResNeXt50-4 82.65 82.03 83.50 83.78 83.42 85.12
ResNeXt101-8 82.96 82.84 83.70 84.70 84.31 85.81
ResNeSt50 83.12 83.09 84.01 84.98 85.19 86.40
MobileNetV2 65.49 62.93 66.03 67.95 67.17 68.87
ShuffleNetV2 71.61 73.20 73.87 75.66 / 76.45
TABLE 2
Experiment results of accuracy (%) on ImageNet. “Baseine” in the table indicates a model trained without knowledge distillation. “Ensemble”
indicates the prediction ensemble of all the classifiers.
Models Baseline Classifierl  Classifier2 Classifier3  Classifier4 Ensemble
ResNet18 69.21 55.03 60.94 64.70 70.51 70.63
ResNet50 76.30 71.72 74.58 77.45 77.89 78.28
ResNet101 77.03 71.75 74.39 79.47 79.70 78.87
ResNet152 77.62 71.50 75.36 80.22 80.32 80.56
ResNeXt50-4 77.29 71.95 75.76 79.02 79.96 80.32
WideResNet50 77.46 72.37 75.99 79.22 79.87 80.17
TABLE 3
Comparison with other knowledge distillation methods on CIFAR100. 79 1 ® BlockDrop
The numbers are reported by the accuracy of the deepest classifier. :Z(T:T
78 1 L
oy @ Self Distillation
Teacher Model ResNet50 ResNetl01  ResNet101 5 77
Student Model ResNet18  ResNet18 ResNe50 g //.
76 - °
Teacher Accuracy 80.88 82.37 82.37 n
Student Accuracy  79.01 79.01 80.88 & 751
KD [29] 80.49 80.31 82.09 74 ]
FitNet [35] 80.67 80.54 82.14 — . . . r r r r
AT [36] 80.43 80.39 81.92 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5
DML [84] 80.52 80.57 82.37 10
RKD [42] 80.69 80.67 82.29 FLOPs x 10
SPKD [43] 80.57 80.45 82.16
Feat [85] 80.91 80.80 82.40 Fig. 7. Comparison between self-distillation with the other dynamic
Ours 81.76 81.76 85.42 inference methods on ImageNet with ResNet101.
KD + Ours 82.23 82.17 85.92
AT + Ours 82.34 82.21 85.65
DML + Ours 82.09 82.14 8591 standard training methods and the proposed self-distillation

self-distillation and the second best knowledge distillation
method (Feat). (ii) Self-distillation and the other knowledge
distillation methods can be utilized together to attain more
improvements on accuracy. On average, 3.80%, 3.76%, 3.74%
accuracy boost can be achieved by combine KD, AT and
DML with self-distillation.

4.6 Neural Network Pruning with Self Distillation

The proposed self-distillation is orthogonal to other neural
network compression methods such as pruning. Figure 6
shows the pruning results on WideResNet40 trained by

on two kinds of pruning methods and two datasets. It is
observed that (i) In all kinds of situations, the accuracy im-
provements from self-distillation can be kept after pruning.
(i) With the same parameters, the self distilled models have
higher accuracy. With the same accuracy, the self distilled
models have fewer parameters.

4.7 Results of Dynamic Inference

Experiment results of the proposed threshold-controlled
dynamic inference method are shown in Table 5 and Table 6.
It is observed that the proposed dynamic inference leads
to benefits on both model accuracy and acceleration. With
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TABLE 4
Experiments results of accuracy (%) in point cloud classification. “Baseine” in the table indicates a model trained without knowledge distillation.
“Ensemble” indicates the prediction ensemble of all the classifiers.

Dataset Models Baseline  Classifierl  Classifier2  Classifier3  Ensemble
ResGCNS8 92.73 89.75 91.42 93.83 94.27
ModelNetl0  ResGCN12 93.50 89.51 92.77 94.18 94.42
ResGCN16 92.40 89.19 93.09 93.57 94.01
ResGCNS 90.76 85.39 87.81 91.51 91.85
ModelNetd0  ResGCN12 90.32 84.28 89.82 91.09 91.72
ResGCN16 91.33 87.14 88.04 91.41 91.87
TABLE 5

Experiments results of dynamic inference on CIFAR100 with different thresholds. Accuracy and acceleration in this table indicate the accuracy
increment and acceleration ratio compared with baseline models.

ResNet18 ResNet50 ResNet101 ResNet152
Accuracy  Acceleration  Accuracy  Acceleration  Accuracy  Acceleration  Accuracy  Acceleration
+3.10 1.4X +4.04 1.8X +2.48 +4.0X +1.69 4.8X
+3.06 1.6X +4.01 2.0X +2.47 +4.2X +1.78 5.4X
+3.06 1.8X +4.10 2.2X +2.37 +4.4X +1.71 5.8X
+2.98 2.0X +4.10 24X +2.31 +4.6X +1.82 6.2X
+2.87 2.2X +3.92 2.6X +2.05 +4.8X +1.50 6.6X
+2.82 2.4X +3.45 2.8X +2.07 +5.0X +1.16 74X
+2.17 2.6X +2.68 3.0X +1.93 +5.2X +0.37 7.8X

TABLE 6
Experiments results of dynamic inference on ImageNet with different thresholds. Accuracy and acceleration in this table indicate the the accuracy
increment and acceleration ratio compared with baseline models.

ResNet18 ResNet50 ResNet101 ResNet152
Accuracy  Acceleration  Accuracy  Acceleration  Accuracy  Acceleration = Accuracy  Acceleration

+1.40 1.10X +0.13 1.74X +2.32 1.92X +2.63 217X
+1.26 1.15X +0.87 1.66X +2.17 2.01X +2.26 2.59X
+0.88 1.20X +1.28 1.60X +1.71 2.15X +2.03 2.71X
+0.04 1.25X +1.36 1.56X +1.42 2.21X +1.74 2.82X

/ / +1.54 1.42X +0.98 2.30X +0.24 3.17X
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Fig. 8. The relation between the threshold and the number of images
classified by this classifier on CIFAR100 with ResNet18. Note that there
are 10K images in the testing set totally.

different thresholds, the trade-offs between them can be
adjusted flexibly.

Figure 7 gives a comparison between the self-distillation
and three related dynamic inference methods including

ducted on ImageNet with ResNet101 models. It is observed
that the dynamic inference in the proposed self-distillation
has outperformed other related methods by a large margin.

The thresholds of shallow classifiers have a great impact
on the classification results. With a lower threshold, most
images can be predicted by shallow classifiers, indicating
more rapid responses yet lower accuracy. With a higher
threshold, most images can be determined by deeper classi-
fiers, indicating precise prediction yet longer response time.
The relation among thresholds, classification accuracy, and
the number of images classified are shown in Figure 8. The X
axis is the threshold of the shallowest classifier on ResNet18.
The left Y axis indicates its classification accuracy while the
right Y axis indicates how many images are classified by the
shallowest classifier. It is observed that (i) The higher the
threshold is, the more classification accuracy is achieved,
and the fewer images can be classified. (ii) Even with a
very high threshold (0.99), there are more than 30% images
can be classified. (iii) Even with a very low threshold (0.5),
the shallowest classifier can achieve higher classification
accuracy than the baseline model (79.01%).
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4.8

One of the problems in self-distillation is how many shallow
classifiers should be added in self-distillation and how does
the number of shallow classifiers influence the accuracy of
self-distillation. Figure 9 shows the experiment results on
four kinds of neural networks on CIFAR100. The X axis
indicates the number of shallow classifiers in self-distillation
and Y axis indicates the accuracy of the deepest classifier.
It is observed that (i) In all the situations, self-distillation
outperforms the baseline models (x=0) by a large margin.
(ii) In all neural networks, self-distillation with four and five
classifiers achieves best accuracy.

Influence from the Number of Shallow Classifiers

4.9 Adding Shallow Classifiers to Every Layer

It is generally acknowledged that convolutional neural net-
works gradually learn the representation of inputs layer
by layer. However, self-distillation influences the learning
procedure of hidden representation by directly using labels
to guide the training of the hidden layers. The above exper-
iments show that when there are a few shallow classifiers,
the influence of self-distillation is positive. In this section,
we study if self-distillation harms the performance of con-
volutional neural networks in the extreme situation - adding
shallow classifiers after every residual block or every layer.

Taking ResNel8 as an example. A ResNet18 model has
8 residual blocks and each residual block consists of 2
convolutional layers. We add shallow classifiers after each
residual block and each convolutional layer, respectively.
Experiments show that:(i) When the shallow classifiers are
attached after each residual block, self distilled ResNetl8
achieves 81.04% accuracy in the deepest classifier, which is
still 2.03% higher than the baseline, but 0.72% lower than
self-distillation with three shallow classifiers. (ii)) When the
shallow classifiers are attached after each layer, self distilled
ResNet18 achieves 77.54% accuracy in the deepest classifier,
which is 1.47% lower than the baseline. This observation
indicates that too many shallow classifiers may harm the
performance of self-distillation, and even leads to negative
impact. Besides, this conclusion also conforms to our obser-
vation in Section 4.8 - more shallow classifiers do not always
lead to higher performance.

4.10

In this section, we study how the positions of shallow
classifiers influence the performance of self-distillation. The
following four kinds of schemes are considered.

Influence from the Position of Shallow Classifiers

1) Uniform Scheme. The shallow classifiers are at-
tached into different depths of a neural network uni-
formly. For example, on ResNet50 with 16 residual
blocks, three shallow classifiers are attached at the
441, 8tn, 124y, residual blocks.

2) Downsample Scheme. The shallow classifiers are
attached into the layer before downsampling con-
volutional layers in a neural network. For example,
on ResNe50 with 16 residual blocks, three shallow
classifiers are attached at the 3,.4, 7;1,, 1345, residual
blocks.

3) Shallow Layers Scheme. The shallow classifiers are
attached at the shallow layers in a neural network.
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Fig. 9. Experiments on the relation between the accuracy of the deepest
classifier and the number of classifiers.

For example, on ResNet50 with 16 residual blocks,
three shallow classifiers are attached at the 1, 2,,4,
3,-q4 residual blocks.

4) Deep Layers Scheme. The shallow classifiers are
attached at the deep layers in a neural network. For
example, on ResNet50 with 16 residual blocks, three
shallow classifiers are attached at the 13;,, 14,1, 1545,
residual blocks.

Experiment results of the four kinds of schemes on CI-
FAR100 with ResNet18 and ResNet50 have been given in
Table 9. Since the shallow classifiers in different schemes are
attached at different depths, we only compare the accuracy
of the deepest classifier. It is observed that (1) On average,
the uniform scheme achieves the highest accuracy boost
(2.79%) while the shallow layer scheme leads to the lowest
accuracy increment (2.26%). (2) Even in the worst situation,
self-distillation still outperforms all the other knowledge
distillation methods in Table 3. This observation indicates
that self-distillation is not sensitive to the position of shallow
classifiers.

4.11 Influence from Different Distillation Path

The experiment results of these four kinds of distillation
schemes are shown in Table 7. It is observed that (i) All
of the four distillation paths have achieved significant ac-
curacy boost than the baselines, especially on the shallow
classifiers. (ii) There is no obvious difference among the four
kinds of distillation schemes, indicating that the proposed
self-distillation is not sensitive to the choice of teacher and
student models.

4.12 Influence from Different Attention Modules

As shown in Figure 3, the proposed attention module
is composed of a depthwise-pointwise layer and bilinear
interpolation. The features from the shallow convolution
layers are fed into the attention module to obtain the at-
tention mask. Then, a dot product is performed between
the attention mask and the inputted features. Table 9 shows
the comparison between the proposed self-distillation with
other three kinds of attention modules, it is observed that
the proposed attention outperforms other methods by a
large margin, especially on the shallow classifiers.
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TABLE 7
Experiments of different distillation path in self-distillation.

Distillation Path Classifierl  Classifier2  Classifierd Classifier4 Ensemble
No Distillation 75.85 78.73 81.27 81.26 82.65
Best Teacher Distillation 76.22 79.81 81.93 81.29 82.32
Densely Connected Distillation 77.52 79.98 81.32 81.37 82.42
Transitive Distillation 76.31 79.32 81.24 81.76 82.64
Ensemble Teacher Distillation 76.50 78.90 82.01 81.86 83.33
TABLE 8
Accuracy of different attention modules in ResNet18 on CIFAR100.
Attention Method  Classifierl  Classifier2  Classifier3  Classifier4 Ensemble
No Attention 74.83 78.08 81.04 81.44 82.20
BAM [87] 75.24 78.82 81.07 81.49 82.24
CBAM [88] 74.95 78.91 81.13 81.59 82.17
SENet [79] 75.14 78.76 81.31 81.47 82.46
Our approach 76.31 79.32 81.24 81.76 82.64
TABLE 9 ResNet18 ranges from 82.52% to 82.95%. In the worst situa-

Experiment results of self-distillation with shallow classifiers in different
position schemes on CIFAR100.

Scheme ResNet18  ResNet50

Baseline 79.01 80.88

Uniform Scheme 81.76 83.71

Downsample Layer Scheme 81.76 83.66

Shallow Layer Scheme 81.14 83.27

Deep Layer Scheme 81.47 83.67
TABLE 10

Ablation study on the loss function with ResNet18 on CIFAR100.

Loss Baseline Self Distillation
Lkr X v X v
Lo X X v v
Accuracy 79.01 81.58  80.37 81.76

413 Ablation Study

Compared with the standard training method, two distil-
lation loss Lk and Lo are introduced in the proposed
self-distillation. As shown in Table 10, an ablation study is
conducted to demonstrate their effectiveness. It is observed
that (i) Self-distillation with only one of the two losses still
outperforms the baseline model by a large margin. (ii) Self-
distillation achieves the highest accuracy when the two loss
functions are utilized together.

4.14 Hyper-parameters Sensitivity Study

The proposed self-distillation introduces two additional
hyper-parameters a and A to control the ratio of different
losses. A sensitivity study on CIFAR100 with ResNet18 has
been given in Figure 10. It is observed that (i) When « ranges
from 0.1 to 0.8, the accuracy of self distilled ResNet18 ranges
from 82.48% to 82.80%. In the worst situation (a = 0.8), self-
distillation still leads to a 3.47% accuracy boost. (ii) When
A ranges from 0.01 to 0.08, the accuracy of self distilled

tion (A = 0.02), self-distillation still leads to 3.51% accuracy
boost. These observations indicate that self-distillation is not
sensitive to the choice of hyper-parameters.
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Fig. 10. Hyper-parameters sensitivity study of « and A on CIFAR100
with ResNet18.
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Fig. 11. An intuitive explanation of the difference between the flat and
the sharp minimum [89]. yO indicates the loss of two minima in the
training set. y1 and y2 indicates the loss of the flat minimum and the
sharp minimum in the testing set.

5.1

It is universally acknowledged that although shallow neural
networks (e.g. AlexNet) can also achieve almost zero loss

Flat Minimum
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on the training set, their performance on test set or in prac-
tical applications is far behind over-parameterized neural
networks (e.g. ResNet). Keskar et al. proposed explanations
that over-parameters models may converge easier to the flat
minima, while shallow neural networks are more likely to
be caught in the sharp minima, which is sensitive to the
bias of data [89]. Figure 11 gives an intuitive explanation
of the difference between flat and sharp minima. The X
axis represents the parameters of models in one dimension.
The Y axis is the value of loss function. The two curves
denote the loss curves on the training set and test set.
Both two minima (x1 for flat minima and x2 for sharp
minima) can achieve extremely small loss on the training
set (y0). Unfortunately, the training set and the test set are
not independently and identically distributed. While in the
test, x1 and x2 are still utilized to find the minima y1 and y2
in the testing curve, which causes severe bias in the sharp
minimum curve (y2 - y0 is much larger than y1 - y0).
Inspired by the work of Zhang et al. [84], we conduct
the following experiments to show that the proposed self-
distillation framework can converge to a flat minimum. Two
18-layer ResNets have been trained on CIFAR100 dataset
firstly, one with self-distillation and the other one not. Then
Gaussian noise is added to the parameters of the two models
and then their entropy loss and predicted accuracy on the
training set are obtained and plotted in Figure 12. As can
be seen in Figure 12(a), the training set accuracy in the
model trained with self-distillation maintains at a very high
level with noise level, presented as standard deviation of
the Gaussian noises, keeping increasing, while the train-
ing accuracy in the model without self-distillation drops
severely, as shown in Figure 12(a). Same observations and
conclusions can be obtained in Figure 12(b) with training
loss as the metric. Based on the above observations, we
conclude that the models trained with self-distillation are
flatter. According to the conclusion sourced from Figure 11,
the model trained with self-distillation is more robust to
perturbation of parameters. Note that the 4/4 classifier is
used in self-distillation ResNet for a fair comparison. To sum
up, the model trained without self-distillation is much more
sensitive to the Gaussian noise. These experiment results
support our view that self-distillation helps models find flat
minima, permitting better generalization performance.

~—— With Self Distillation

——
4| —— Without Self Distillation /

60

Training Accuracy
Training Loss

~—— With Self Distillation “
~ Without Self Distillation ~—

0 - - - - . -
0003 0.004 0.005 0006 0.007 0008 0.009
Standard deviation of the noise

(b) Training Loss

0.003 0004 0005 0.006 0007 0.008 0.009
Standard deviation of the noise

(a) Training Accuracy

Fig. 12. Comparison of training accuracy and loss with increasing Gaus-
sian noise: models trained with self-distillation are more tolerant to noise
- flat minima.

5.2 Visualization of Attention Map

In the proposed self-distillation, attention modules are in-
troduced to obtain classifier-specific features, leading to
a significant performance gain on shallow classifiers. We

12

Attention Module

Attention Module

Shallow Classifier Shallow Classifier

Backbone
(a) ImageNet (224x224)

Backbone
(b) CIFAR (32x32)

Fig. 13. The computation ratio of different layers in self-distillation on two
datasets in the training period of ResNet50. Backbone in the figure indi-
cates the original layers in neural networks while the shallow classifiers
and attention modules are additional layers from self-distillation in the
training period.

TABLE 11
Measurement of sort separability and accuracy (%) for each classifier
on WideResNet28-12.

Classifier SSE*  SSB*™*  SSE/SSB Accuracy
Classifierl /4  20.85 1.08 19.21 76.21
Classifier2/4  8.69 1.15 7.54 80.86
Classifier3/4  11.42 1.87 6.08 81.58
Classifier4/4 1174  2.05 5.73 81.59

* SSE: Sum of squares due to error.
** SSB: Sum of squares between groups.

further visualize the spatial attention maps as depicted in
Figure 14. The heat maps indicate learned attention maps
where the value of each pixel is computed as the mean value
of pixels in the same position of all channels.

As is depicted in Figure 14, all the classifiers pay their
attention to the same spatial position while ignoring the
backgrounds, which indicates that all of the attention mod-
ules have learned to find the most informative pixels. The
attention maps in shallow classifier 1 seem to concentrate
on the details of shark’s and cat’s features such as their
outlines. In contrast, the attention maps in shallow classifier
3 focus more on the texture features, which indicates deep
classifiers that have a larger receptive filed are more likely
to predict based on global and low frequency information
while shallow classifiers incline to be dominated by local
and high frequency information.

5.3 Model Interpretation by Integrated Gradients

As shown in Figure 17, the output of shallow classifiers is
interpreted by the integrated gradients method [90]. The
bright pixels in the figure indicate the pixels have a large
impact on the prediction result of the image. It is observed
that the shallow classifiers and the deepest classifier has
similar interpretation results - the pixels containing objects
have a high value while the pixels of background have a
low value.

5.4 Visualization of Feature Map in Different Classifiers

More discriminating features are extracted with deeper clas-
sifiers in self-distillation. Since there are multiple classifiers
existing in self-distillation, features of each classifier can be
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Fig. 14. Visualization of attention maps in shallow classifiers on ImageNet.
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Fig. 15. The visualization of average absolute value of gradients in the training period of ResNet18 models on CIFAR100. The blocks in the figure

indicate the convolutional layers.

(a) Classifierl (b) Classifier2

(c) Classifier3 (d) Classifier4

Fig. 16. PCA (principal component analysis) visualization of feature distribution in four classifiers.

computed and analyzed to demonstrate their discriminat-
ing principles. As depicted in Figure 16, experiments on
WideResNet trained on CIFAR100 are conducted to compare
features of different classifiers.

Figure 16 visualizes the distances of features in different
classifiers. To begin with, it is obvious that the deeper the
classifier is, the more concentrated clusters are observed. In
addition, the changes of the distances in shallow classifiers,
as shown in Figure 16(a,b), are more severe than that in deep
classifiers, as demonstrated in Figure 16(c,d).

Table 11 further summarizes the sort separability for
each classifier. SSE stands for the sum of squares due to er-
ror, and SSB is short for the sum of squares between groups.
The smaller the SSE is, the denser the clusters are. Also,
the clusters become more discriminating with SSB growing.
Here we use SSE/SSB to evaluate the distinct capability of
the models. The smaller it is, the more clear the classifier is.
It can be seen in Table 11 that the SSE/SSB decreases as the
classifier goes deeper. In summary, the more discriminating
feature maps in the classifier, the higher accuracy the model
achieves.

5.5 Vanishing Gradients Problems

Self-distillation can prevent models from vanishing gradient
problem. It is generally acknowledged that deep neural
networks are hard to train due to the problem of vanishing
gradients. In self-distillation, the supervision on the neural

networks is injected into different depths. DSN [91] has
proved that the multi-exit neural networks can alleviate the
vanishing gradients problem mathematically. In this paper,
we conduct the following experiments to support this view.
Two 18-layer ResNets are trained, one of them is equipped
with self-distillation and the other is not. We compute the
mean magnitude of gradients in each convolutional layer
as shown in Figure 15. It is observed that the magnitude of
gradients of the model with self-distillation (Figure 15(a)) is
larger than the one without self-distillation (Figure 15(b)),
especially in the first and second ResBlocks.

5.6 Analysis of Training Overhead

Compared with the traditional two-state knowledge distil-
lation methods where a teacher model and a student model
should be trained successively, the proposed self-distillation
is a one-stage knowledge distillation method where the
teacher and student models are trained together. The addi-
tional training overhead of self-distillation is caused by the
additional layers - the attention modules and the shallow
classifiers. Figure 13 shows the computation ratio of atten-
tion modules, the shallow classifiers and the backbone in
the training period. It is observed that on both ImageNet
and CIFAR, the additional layers only takes ; of the total
computation, indicating self-distillation doesn’t bring much
training overhead compared with the traditional training
methods.
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Shallow Classifier2

Shallow Classifier]

Original Image Shallow Classifier3  The Deepest Classifier

Fig. 17. The interpretation map of classifiers by the intergrated gradi-
ents [90]. The brightness of each pixel indicates its influence on the
prediction results of the classifier.

6 CONCLUSION

In this paper, we have proposed a novel distillation method
named self-distillation, which leads to benefits on model
accuracy, model acceleration and model compression si-
multaneously. In the training period, the original neural
network is modified to a multi-exit neural network by in-
troducing additional shallow classifiers at different depths.
Knowledge distillation is performed on these classifiers to
transfer the knowledge from the deep layers to the shal-
low layers. Based on the multi-exit neural network in self-
distillation, the threshold-controlled dynamic inference can
be utilized to achieve higher acceleration. Moreover, we
have proved that self-distillation can be utilized with other
model compression and acceleration methods such as neural
network pruning, lightweight models, and even the other
knowledge distillation methods.

There are mainly two insights provided in the proposed
self-distillation. Firstly, the knowledge transferring inside
one neural network is very promising. Different from con-
ventional knowledge distillation which transfers knowledge
among different models, the proposed self-distillation has
proved that the knowledge transfer inside one model can be
utilized to improve the performance of neural networks.

Secondly, the success of dynamic inference in this paper
shows that the bottleneck of dynamic inference is how to
train a high performance early-exit in the neural network,
instead of how to control different exiting paths. Previous
works on dynamic inference have paid most of attention
on how to train a complex controlling unit to decide the
computation path of neural networks while ignoring how
to improve the performance of early-exit path. In this paper,
since self-distillation has significantly improved the accu-
racy of shallow classifiers, even with the simple threshold
method, self-distillation can outperform other dynamic in-
ference methods by a large margin.
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