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A sensor pixel integrates optical intensity across its extent, and we explore the role that this integration plays in
phase space tomography. The literature is inconsistent in its treatment of this integration—some approaches
model this integration explicitly, some approaches are ambiguous about whether this integration is taken into
account, and still some approaches assume pixel values to be point samples of the optical intensity. We show that
making a point-sample assumption results in apodization of and thus systematic error in the recovered ambiguity
function, leading to underestimating the overall degree of coherence. We explore the severity of this effect using a
Gaussian Schell-model source and discuss when this effect, as opposed to noise, is the dominant source of error in
the retrieved state of coherence. © 2017 Optical Society of America

OCIS codes: (030.1640) Coherence; (100.3190) Inverse problems; (100.5070) Phase retrieval.
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1. INTRODUCTION

Phase space tomography (PST) is a classic approach for solving
the optical coherence retrieval problem, i.e., estimating the
state of coherence of an optical field using only measurements
of intensity [1–7]. The approach is grounded in the idea that
the Fourier transform of intensity profiles captured under vary-
ing levels of defocus form slices of the ambiguity function, a
phase space representation that quantifies an optical field’s state
of coherence [8,9].

More specifically, the state of coherence of a quasimono-
chromatic (i.e., the wavelength range is much smaller than
the mean wavelength λ) optical beam can be characterized
by the mutual intensity J�x1; y1; x2; y2� on some reference
plane normal to the direction of propagation:

J�x1; y1; x2; y2� � hU �x1; y1�U ��x2; y2�i;

where h·i denotes the ensemble average, U �x; y� is the scalar
field on this plane and � denotes complex conjugation. The
ambiguity function is related to the mutual intensity via a
Fourier transform along the two mean position variables x
and y:

A�f x ; f y ; ξ; η� �
ZZ

J̆�x; y; ξ; η� exp�−2jπ�xf x � yf y��dxdy;

where J̆ is the mutual intensity written in mean and difference
coordinates:

J̆�x; y; ξ; η� � J�x � ξ∕2; y � η∕2; x − ξ∕2; y − η∕2�:
Different slices through the origin correspond to the Fourier
transform of the transverse intensity profile captured with vary-
ing amounts of defocus, astigmatism, and magnification:ZZ

Im�u∕μm ; v∕νm� exp�−j2π�αu� βv��dudv

� A�α cos θm ; β cos ϕm ; α sin θm ; β sin ϕm�; (1)

where parameters μm > 0, νm > 0, − π
2 ≤ θm, and ϕm ≤ π

2 de-
scribe the amount of magnification and (possibly astigmatic)
defocus in the imaging system for the mth recorded intensity
profile, Im. By capturing a sufficient number of slices, the am-
biguity function, and therefore the mutual intensity, can be re-
constructed. These profiles are usually captured via an image
sensor, and an estimate for the state of coherence is computed
from these images by solving an inverse problem.
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An accurate solution to this inverse problem requires an ac-
curate model of how measurements are formed, and one com-
ponent of this model is the mathematical relationship between
the spatial intensity profile and the measured pixel values on the
sensor. While one approach in the literature models the pixel
value as a noisy measurement of the intensity integrated across
the extent of the pixel [3], several papers appear to ignore the
pixel extent and model the measured values as point samples of
the true intensity instead [4–6]. Earlier approaches using the
inverse Radon transform do not give an explicit expression
for continuous intensity profiles in terms of the discrete pixel
measurements [1,2]; accounting for the pixel extent in the
reconstruction would have required a nontrivial deconvolu-
tion step.

While assuming pixel values to be point samples of the
intensity would likely result in spatial blurring in standard im-
aging applications, the same assumption applied to phase space
tomography can incidentally also lead to underestimating the
degree of coherence, undermining the accuracy of the results.
In this paper, we explain the mechanism behind this apparent
loss of coherence and derive an expression for computing the
magnitude of its effect in phase space tomography. As this ex-
pression is dependent on both the source and the measurement
procedure, we focus on the demonstrative example of a
Gaussian Schell-model source to discuss situations where this
loss may be significant based on relative pixel size and noise
characteristics.

2. BLUR AND COHERENCE

Let us first discuss why spatial blurring would lead to an
underestimation of coherence. To do so, we consider a simple
intuitive example: the classic two-slit experiment. For quasi-
monochromatic light of uniform intensity traversing two slits,
the far-field intensity will be a sinusoidal pattern of the follow-
ing form:

I�x� � I 0 � I 1 cos�2πf x � ϕ� ≥ 0;

where the spatial frequency is given by f � D∕�2λz� with D
being the slit separation, λ being the average wavelength, and z
being the propagation distance. The average phase difference
between the two slits is given by ϕ, and their degree of coher-
ence is given by the contrast, 0 ≤ I1∕I 0 ≤ 1. A contrast of 1
indicates fully coherent light, and a contrast of 0 indicates fully
incoherent light. Now suppose we captured this intensity pro-
file with image sensor pixels of widthW . Integration across the
extent of the pixel prevents the (noiseless) intensity from ever
reaching I 0 � I 1 or I 0 − I 1; it would be as if we were point
sampling the intensity of a different sinusoidal pattern with
a modified contrast given byeI 1 � I 1 sin�πf W �∕�πf W �:
Hence, if we simply interpreted these pixel values as point
samples rather than integrated measurements of the intensity
profile, we will underestimate the contrast and hence under-
estimate the degree of coherence. Even with pixel spacing equal
to the Nyquist interval, we lose roughly 36% of the contrast if
we use full fill-factor pixels. In practice, it is difficult to make
the pixel size arbitrarily small to negate this effect—decreasing

the fill factor would result in loss of light and an increase in
noise, whereas increasing the pixel density would exacerbate
the already large storage costs needed to solve the coherence
retrieval inverse problem. Thus, it would be useful to quantify
the effect of pixel integration on measurements of coherence
conducted via the well-known phase space tomography
approach.

3. EFFECT OF PIXEL INTEGRATION IN PST

In phase space tomography, intensity profiles are usually cap-
tured with image sensors, and thus application of Eq. (1) im-
plies some reconstruction process to form the continuous
intensity profile Im�u; v� from the discrete samples that image
sensors provide. The simplest and fastest approach is to assume
that the pixel values correspond to point samples of the con-
tinuous intensity profile. However, since the pixel integrates
intensity across its extent, this assumption implies that
measurements are instead point samples of a blurred intensity
profile eIm�u; v�:

eIm�u; v� �
ZZ

Im�ι; ζ�Pm�u − ι; v − ζ�dιdζ;

where the pixel kernel Pm�u; v� specifies the sensitivity of the
pixel as a function of position. For example, the pixel kernel for
an ideal Δ × Δ square pixel would be rect�u∕Δ�rect�v∕Δ�
scaled by a constant. Without loss of generality, let us assume
that

RR
Pm�u∕μm; v∕νm�dudv � 1, where μm and νm are

per-slice magnification factors defined earlier.
Thus, by ignoring the pixel kernel and making a point sam-

ple assumption, we effectively assume the pixel values to be
measurements of an alternate ambiguity function eA:ZZ eIm�u∕μm ; v∕νm� exp�−j2π�αu� βv��dudv

� eA�α cos θm ; β cos ϕm ; α sin θm ; β sin ϕm�;
which is related to the true ambiguity function via an
apodization function Π:eA�f x ; f y ; ξ; η� � A�f x ; f y ; ξ; η�Π�f x ; f y ; ξ; η�:

The pixel kernel(s) are folded into this apodization function,
implying the following properties for Π:

1. any slice through the origin is the Fourier transform of a
nonnegative-valued function, i.e., for all − π

2 ≤ θ;ϕ ≤ π
2:

Π�α cos θ; β cos ϕ; α sin θ; β sin ϕ�

�
ZZ

p�u; v; θ;ϕ� exp�−j2π�αu� βv��dudv;

where p�u; v; θ;ϕ� ≥ 0,
RR

p�u; v; θ;ϕ�dudv � 1 for all θ, ϕ;
2. p�u; v; θm;ϕm� � Pm�u∕μm; v∕νm� for all measurement

indices m.
Hence, Π has greatest magnitude at the origin:

jΠ�f x ; f y ; ξ; η�j ≤ jΠ�0; 0; 0; 0�j � 1; (2)

due to the nonnegativity of p�u; v; θ;ϕ� as well as normaliza-
tion, with equality only at the origin. Thus, the apodization
function Π causes the magnitude of the alternate ambiguity
function eA to have a lower magnitude compared to the true
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ambiguity function A as we move away from the origin. In
other words, convolution with the nonnegative-valued pixel
kernel blurs the images we capture, which is evident in the re-
duction in magnitude of high frequency components of images
taken at various amounts of defocus. For ideal pixels, the mag-
nitude of Π falls off roughly proportional to 1∕jαβj �
��f 2

x � ξ2��f 2
y � η2��−1∕2 due to the denominator of the sinc

function for each slice.

Spatial blur induced by pixel integration is of course well
known in the standard imaging literature. In phase space
tomography, however, this pixel integration additionally re-
duces the apparent coherence of the optical field, as we will
now show using the expression derived above for the alternate
ambiguity function. To see this, let us first define the overall
degree of coherence for an optical field as [10]

M �
RR RR jJ�x1; y1; x2 ; y2�j2dx1dy1dx2dy2hRR

J�x; y; x; y�dxdy
i
2

:

This nonnegative quantity corresponds to the concept of purity
in quantum mechanics and reaches a maximum value of 1
when the field is fully spatially coherent. For partially coherent
fields, 1∕M is roughly the number of prominent coherent
modes [11] in the source. Since the mutual intensity and am-
biguity function form a Fourier transform pair, we can writeM
in terms of the ambiguity function as well:

M �
RR RR jA�f x ; f y ; ξ; η�j2df xdf ydξdη

A2�0; 0; 0; 0� : (3)

The action of the apodization function thus yields a new fM:

fM �
RR RR jΠ�f x ; f y ; ξ; η�A�f x ; f y ; ξ; η�j2df xdf ydξdη

Π2�0; 0; 0; 0�A2�0; 0; 0; 0� :

(4)

It is evident from Eq. (2) that fM < M, except for equality
when the ambiguity function is a delta function, i.e., an infi-
nitely wide fully spatially incoherent field. Thus, if we do not
consider spatial blur introduced by integration across each
pixel, we will think we have a set of measurements correspond-
ing to an alternate apodized ambiguity function eA (or a blurred
Wigner distribution) that is less coherent.

Of course, this apodization results in systematic error in the
recovered mutual intensity, Wigner distribution, and ambiguity
functions; the relative magnitude of this error is given by

E �
�RR RR jEJ�x1; x2 ; y1; y2�j2dx1dy1dx2dy2RR RR jJ�x1; y1; x2 ; y2�j2dx1dy1dx2dy2

�
1∕2

�
�RR RR jEA�f x ; f y ; ξ; η�j2df xdf ydξdηRR RR jA�f x ; f y ; ξ; η�j2df xdf ydξdη

�1∕2
� �gM∕M − 2RefMcross∕Mg � 1�1∕2; (5)

where

EJ�x1; y1; x2 ; y2� � eJ�x1; y1; x2 ; y2� − J�x1; y1; x2 ; y2�
EA�f x ; f y ; ξ; η� � eA�f x ; f y ; ξ; η� − �f x ; f y ; ξ; η�

Mcross �
ZZ ZZ

jA�f x ; f y ; ξ; η�j2Π�f x ; f y ; ξ; η�

× df xdf ydξdη:

The magnitude of the apparent loss in coherence and system-
atic error depends on both the measurement procedure (which
determines Π) and the coherence of the source being measured
(described by A), so we will consider the demonstrative exam-
ple of a one-dimensional Gaussian Schell-model source to ex-
plore this effect further.

4. 1D GAUSSIAN SCHELL-MODEL SOURCE

As an example, we study the one-dimensional Gaussian
Schell-model source because it is a well-studied representative
of partially coherent fields; its extent in both space and fre-
quency is cleanly described by two parameters, and its intensity
profile is always a Gaussian. Its mutual intensity, Wigner dis-
tribution, and ambiguity function are all Gaussian functions as
well. Furthermore, since the Gaussian achieves the uncertainty
principle’s minimum bound on the product of the variance
of position and frequency, we expect that an analysis of the
Gaussian Schell-model source should yield a conservative
estimate for the effect of apodization on the ambiguity func-
tion, as apodization is more pronounced when farther away
from the origin. A summary of functions, variables and coor-
dinates to be used in the derivation is given in Table 1.

The (normalized) mutual intensity of the one-dimensional
Gaussian Schell-model source in mean and difference coordi-
nates is given by

J̆�x; ξ� � 1ffiffiffiffiffiffiffiffiffiffi
2πσ2I

p exp�−x2∕�2σ2I �� exp
�
−ξ2

�
1

8σ2I
� 1

2σ2μ

��
;

with parameters σI and σμ defined as they are in [12]. Hence,
the ambiguity function for such a source is

A�f x ; ξ� � exp�−2π2σ2I f 2
x� exp

�
−ξ2

�
1

8σ2I
� 1

2σ2μ

��
:

Table 1. Summary of Functions, Variables, and
Coordinates Used in the Theoretical Derivation

J�x1; x2� Mutual intensity function
J̆�x; ξ� Mutual intensity function written in mean (x)

and difference (ξ) coordinates
A�f x ; ξ� Ambiguity function (x↔f x is a Fourier pair)
M Overall degree of coherence
Π�f x ; ξ� Apodization functioneA�f x ; ξ� Apodized ambiguity function due to ignoring

integration across pixel extentfM Overall degree of coherence after apodizationef x ; eξ Rescaled ambiguity function coordinateseΠ� ef x ; eξ� Apodization function in rescaled coordinates
ρ, θ Polar form of rescaled coordinates
γ Helper variable for integration
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The overall degree of coherence can be computed via Eq. (3):

M �
ZZ

exp�−4π2σ2I f 2
x� exp

�
−ξ2

�
1

4σ2I
� 1

σ2μ

��
df xdξ

� 1

2σI
ffiffiffi
π

p 2σIσμ
ffiffiffi
π

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4σ2I � σ2μ

q � σμffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4σ2I � σ2μ

q :

This leads to a simpler expression for the ambiguity function:

A�f x ; ξ� � exp�−2π2σ2I f 2
x� exp�−ξ2∕�8σ2IM2�� ;

where one can view M as a parameter that simply adjusts the
extent of the ambiguity function along ξ.

A. Theoretical Derivation for Noiseless Measurements

We consider an ideal phase space tomography procedure
wherein the judicious, if not altogether practical, use of lenses
allows us to measure each slice of the ambiguity function with a
magnification factor of our choosing. While many practical
measurement protocols have been proposed in the literature
[2,5–7,13,14], we study our simpler model in order to glean
an intuitive understanding free from distractions. More specifi-
cally, we will use the same full fill-factor imaging sensor for each
image we capture, and we will adjust the magnification so that
the Gaussian profile of the Schell-model source occupies the
same extent on the imaging sensor for every angle in phase
space. This results in the ratio of the pixel size to the
Gaussian profile’s width (i.e., standard deviation) being a
constant, which we will define as φ. With this choice of
magnification, the expression in Eq. (4) for the reduced overall
degree of coherence fM can be simplified to

fM � M
ZZ

exp�−π� ef 2
x � eξ 2�� eΠ2� ef x ; eξ�d ef xd

eξ
via new coordinates ef x ��2σI

ffiffiffi
π

p �f x and eξ� ξ∕�2σIM
ffiffiffi
π

p �.
With this new coordinate system, the ambiguity function is
rotationally symmetric, and thus the function eΠ must also
be rotationally symmetric through our choice of magnification.
We can thus write the ratio of the apparent overall degree of
coherence to the true overall degree of coherence in terms of an
integral in polar coordinates:

fM∕M �
Z

2π

0

Z
∞

0

exp�−πρ2� sin
2
� ffiffiffi

π
p

φρ∕2
�

πφ2ρ2∕4
ρdρdθ; (6)

with polar coordinates defined by ef x � ρ cos θ andeξ � ρ sin θ. By substituting sin2� ffiffiffi
π

p
φρ∕2�∕ρ � R ffiffi

π
p

φ∕2
0

sin�2γρ�dγ, we can further simplify Eq. (6) to

fM∕M � 4

φ2

Z ffiffi
π

p
φ∕2

0

exp�−γ2∕π�erfi�γ∕ ffiffiffi
π

p �
dγ

� 2F 2

	
1; 1;

3

2
; 2; −φ2∕4




�
X∞
n�0

�−1�n�φ�2nΓ
	
3
2



4n�n� 1�Γ

	
n� 3

2


 ;

where erfi is the imaginary error function, 2F 2 is a generalized
hypergeometric function, and Γ is Euler’s gamma function.

In practical situations, φ will be small, so it would be useful
to expand the series for the first few coefficients:

fM∕M � 1 −
φ2

12
� φ4

180
−

φ6

3360
� O�φ8�:

For small pixels where φ ≤ 1, the quadratic term dominates the
apparent fractional loss in overall degree of coherence. Thus,
halving the pixel size results in quartering the apparent frac-
tional loss. For pixels of size φ � 1, treating the noiseless pixel
values as point measurements of the intensity results in recon-
structing an overall degree of coherence that is approximately
92.2% of the true overall degree of coherence or 7.8% loss. For
φ � 1

2, this increases to 98.0% or 2.0% loss. A graph of fM∕M
as a function of φ is shown in Fig. 1. We can use a similar
derivation to compute the systematic relative error:

E �
�
1� fM∕M −

4
ffiffiffi
π

p
φ

exp�−φ2∕16�erfi�φ∕4�
�
1∕2

;

which is plotted in Fig. 2. For φ � 1, the systematic relative
error is E � 5.68%, and for φ � 1

2, the systematic relative error
is E � 1.46%.

One way to interpret these results is to consider how much
error one is willing to tolerate (or must tolerate due to noise) in
the reconstructed overall degree of coherence (or likewise, the
amount of error in the reconstructed mutual intensity) and use
these equations and graphs to determine what is the largest
pixel size that would be reasonable. For sources that are not
Gaussian Schell-model sources, a good approximation would
be to consider the second moment of the average power spectral
density measured in each image and compute φ using the σI
for a Gaussian Schell-model source with the same second
moment.

B. Simulation Results for Noisy Measurements

In practice, noise as well as positivity constraints during
reconstruction will also affect the quality of the reconstructed
partially coherent field. Deriving a closed-form solution that
also accounts for these aspects is difficult, so we instead opt
for a numerical approach. We simulate a specific Gaussian
Schell-model source being measured with two different sensor

Fig. 1. Effect of pixel size on the reconstructed overall degree of
coherence if pixel values were interpreted as point samples of the in-
tensity. The horizontal axis gives the ratio (φ) of the pixel size to the
standard deviation of the Gaussian intensity profile, and the vertical
axis gives the ratio of the reconstructed overall degree of coherence
(fM) to the true overall degree of coherence (M) assuming noiseless
measurements.
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configurations subject to varying amounts and types of noise;
the mutual intensity is then reconstructed from these measure-
ments to determine the resulting overall degree of coherence as
well as relative reconstruction error. We chose a source with the
following parameters:

λ � 632.8 nm; σI � 8 μm; and σμ � 16 μm:

For numerical computation, we discretized the mutual inten-
sity into a 101 × 101 matrix using a spatial sinc basis with a
sampling interval equal to 2 μm. We found that this discreti-
zation was sufficient to describe the mutual intensity up to
machine precision.

We chose two sensor configurations—101 pixels spaced
4 μm apart and 51 pixels spaced 8 μm apart, corresponding
to φ � 1

2
and φ � 1, respectively. The distance between the

first pixel and the last pixel is thus constant in both configu-
rations, making pixel pitch the main difference between the two
configurations. Intensity measurements covered 100 different
slices of the ambiguity function, spaced evenly in θ as per
the coordinate system used in Eq. (6). The magnification
per slice was adjusted so that the Gaussian intensity profile fall-
ing on the sensor was always the same width as the width at
θ � 0. In practice, this would be implemented using a lens
system, but here we assume a perfect imaging system for sim-
plicity and to isolate sources of error for better understanding of
the results.

The noiseless pixel values were computed using closed-form
integration of the Gaussian function across the extents of the
pixels. We simulated eight different levels of primarily two dif-
ferent types of noise: Gaussian and Poisson. For Gaussian
noise, we added to each noiseless pixel value a Gaussian random
value with standard deviation equal to σrelImax, where Imax is
the highest noiseless pixel value, and σrel took on values expo-
nentially evenly spaced between 10−4.5 and 10−1; this corre-
sponded to capturing noisy images with peak signal-to-noise
ratios (PSNRs) evenly spaced between 20 dB and 90 dB.
We follow the standard imaging processing literature (see,
e.g., [15]) by defining PSNR as 20 log10�Imax∕σerror�, where
σerror is the standard deviation of the error in intensity, which
is proportional to pixel value. For Poisson noise, we considered
total photon counts exponentially evenly spaced between 103

and 1010. Each noisy pixel measurement was generated by

drawing from a Poisson distribution with the rate parameter
proportional to the intensity. The rate parameters were scaled
such that their sum was equal to the total photon count.

For each sensor configuration, noise type, and noise level,
we created 20 data sets of noisy measured pixel values. With
each data set, we first ran a nonnegative-constrained coherence
retrieval algorithm [16] using a “point sample” forward oper-
ator that assumed the pixel values to be point samples of the
intensity. Then, to determine the effect of pixel integration, we
used the same algorithm but with a different “pixel-integrated”
forward operator that took into account integration across the
pixel (numerically simulated as taking the intensity at 256
evenly spaced positions covering the extent of the pixel).
The details of the two forward operators as well as algo-
rithm-specific parameters are given in Appendix A.

A contour plot of the magnitude of the theoretical (ground
truth) mutual intensity function near the origin is given in
Fig. 3. For one instance (i.e., data set) of Gaussian noise at
PSNR � 50 dB, we give contour plots for the reconstructed
mutual intensity functions with the two different forward op-
erators in Fig. 4 for the φ � 1

2 case. Similar plots are shown for
one instance of the φ � 1 case in Fig. 5. For Gaussian noise, a
plot of the reconstructed overall degree of coherence as a func-
tion of noise level and forward operator is given in Fig. 6 for
both values of φ. A similar plot of relative error is given in
Fig. 7. Corresponding plots for Poisson noise are given in
Figs. 8 and 9, with plots for a mixture of noise types given
in Appendix B.

These plots first validate our theoretical results for the noise-
less case, as the apparent loss in coherence and reconstruction

Fig. 2. Systematic relative error introduced to the reconstructed
mutual intensity if pixel values were interpreted as point samples of
the intensity. The horizontal axis gives the ratio (φ) of the pixel size
to the standard deviation of the Gaussian intensity profile, and the
vertical axis gives the relative error (E) defined in Eq. (5).

Fig. 3. Contour plot of the magnitude of the theoretical ground
truth mutual intensity function near the origin.

Fig. 4. Contour plots for the reconstructed mutual intensity func-
tion given measurement PSNR � 50 dB for both pixel-integrated
(left) and point sample (right) forward operators when φ � 1

2.
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error for the point-intensity forward operator converge toward
the values predicted in the previous section as noise levels
approach zero (i.e., as the measurement PSNR and photon
counts increase). This convergence makes it apparent that

the dominating factor for the drop in apparent coherence at
lower noise levels is due to pixel integration.

As measurement PSNR decreases, however, noise becomes
the dominant factor in both apparent coherence loss and
reconstruction error. For φ � 1

2, noise becomes the dominant
factor below a measurement PSNR of 60 dB, whereas the
threshold is 50 dB for φ � 1. This is quite apparent in
Fig. 5, where the pixel-integrated reconstruction maintains
its width but is quite noisy compared to the point sample
reconstruction, which is skinnier but smoother. The same
can be seen in the Poisson noise results, where the threshold
appears to be between 105 and 106 photons for the φ � 1

2 case
and between 104 and 105 photons for the φ � 1 case. In fact,
at noise levels beyond these thresholds, using a forward oper-
ator that takes into account pixel integration actually performs
slightly worse in terms of relative error, even though the recov-
ered overall degree of coherence is closer to the ground truth.
This is especially apparent in the Gaussian noise case. We
hypothesize that this is due to the pixel-integrated forward op-
erator being more ill-posed since we are effectively performing a
phase space deconvolution when reconstructing the mutual
intensity.

These results suggest that for accurate estimation of the
overall degree of coherence as well as accurate reconstruction
of the mutual intensity, the reconstruction algorithm should
ideally take integration across a pixel into account. However,
in situations of high noise, the noise itself will be the primary

Fig. 6. Box plots of the reconstructed overall degree of coherence
Mrecon as a function of the measurement PSNR for Gaussian noise.
The top and bottom whiskers give the maximum and minimum, and
the box gives the first and third quartiles in addition to the median,
with the mean plotted using circular markers. Dotted horizontal
lines give theoretical values computed in the previous section.
“Pixel-integrated” results use narrow filled boxes with navy dashed
lines connecting the means, and “point sample” results use wide out-
lined boxes with tan/dotted lines connecting the means.

Fig. 7. Box plots of the reconstruction (relative) error Erecon as a
function of the measurement PSNR for Gaussian noise. The dotted
horizontal lines give the systematic relative error computed in the
previous section.

Fig. 8. Box plots of the reconstructed overall degree of coherence
Mrecon as a function of the total photon count for Poisson noise.

Fig. 5. Contour plots for the reconstructed mutual intensity func-
tion given measurement PSNR � 50 dB for both pixel-integrated
(left) and point sample (right) forward operators when φ � 1.

Fig. 9. Box plots of the reconstruction (relative) error Erecon as a
function of the total photon count for Poisson noise.
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limiting factor and thus a simpler reconstruction scheme based
on the point-sampled intensity assumption may be sufficient.
For more accurate reconstruction, even in the presence of high
noise levels, we may be able to achieve better results by the
judicious use of a regularizer with a forward operator that in-
cludes integration across a pixel’s extent. Further study into the
choice of regularizer is a promising route for future work.

APPENDIX A: NUMERICAL RECONSTRUCTION
PROCESS

We perform numerical reconstruction of the mutual intensity
from noisy intensity measurements via the following positive
semidefinite least squares problem:

minimize
X

1

2
kA�X � − bk22 subject to X ⪰ 0;

where X is an intermediate representation of the mutual intensity,
while A and b are the weighted forward operator and weighted
noisy measurements, respectively. The mth element of b is equal
to bm � ym∕σm, where ym is themth measurement, and σm is the
noise standard deviation of the mth measurement.

1. Mutual Intensity Representation

The mutual intensity matrix J is related to X via

J � PXPH;

where P is a basis preconditioner whose derivation we will
discuss later. For the Gaussian Schell-model source described
in Section 4, J is a 101 × 101 matrix given by

J �

0
BBB@

J−50;−50 J−50;−49 	 	 	 J−50;50
J−49;−50 J−49;−49 	 	 	 J−49;50

..

. ..
. . .

. ..
.

J50;−50 J50;−49 	 	 	 J50;50

1
CCCA:

The entries of the mutual intensity matrix give the
coefficients for a discretization of the mutual intensity function
via a sinc basis:

J�x1; x2� �
X
k;l

Jk;l sinc��x1 − kΔs�∕Δs �sinc��x2 − lΔs�∕Δs �;

where sinc x � sin�πx�∕�πx�. The ground truth mutual
intensity matrix, computed via numerical integration in
MATLAB, is given by

J truek;l � 2σIM
ffiffiffiffiffi
2π

p ZZ
rect�Δsf 1�

× rect�Δsf 2�sk;l �f 1; f 2�df 1df 2;
where

sk;l �f 1; f 2� � exp�−j2πΔs�f 1k � f 2l��
× expf−2π2σ2I ��f 1 � y2�2 �M2�f 1 − f 2�2�g:

2. Forward Operator

The mth output element of the operator A is given by

A�m��X � � tr�K mPKPH�∕σm; (A1)

where K m is a matrix that describes how one obtains the mth
noiseless intensity measurement from the mutual intensity

matrix J . The forward operator that assumes the pixel values
to be point samples is given by

K �1�
m � Δxk�xm ; θm�kH �xm ; θm�;

whereas a forward operator that takes into account pixel
integration is given by

K �p�
m �

Z
xm�Δx∕2

xm−Δx∕2
k�ξ; θm�kH�ξ; θm�dξ

≈
X256
p�1

eΔxk�xm � peΔx − γ; θm�kH�xm � peΔx − γ; θm�;

where γ � 257

2
eΔx ; eΔx � Δx∕256:

For both operators, θm is the rotation angle in ambiguity func-
tion space:

θm ∈ f−π∕2; π∕100 − π∕2;…; π∕2 − π∕100g;
where xm gives the pixel centers for both operators, and Δx
gives the pixel spacing (and width for the integrated case).
For pixel size corresponding to φ � 1

2, we set

xm∕Δx ∈ f−50; −49;…; 50g; with Δx � 4 μm;

whereas for the φ � 1 case, we have

xm∕Δx ∈ f−25; −24;…; 25g; with Δx � 8 μm:

The vector-valued coherent forward operator function k�x; θ�
is derived via the transmission function [17] or the amplitude
spread function [18]:

k�x; θ� � � k−50�x; θ� k−49�x; θ� 	 	 	 k50�x; θ� �⊤;
where

kl �x; θ� � k�fresnel�l

h
x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� tan2 θ

p
; σξ tan θ∕�σf x

λ�
i
;

and for the special case of θ � 
π∕2,

kl �x;
π∕2� � exp��j2πΔs l xσf x
∕σξ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δsσf x

∕σξ
q

:

k�fresnel�l �r; z� is the coherent field as a function of r that the l th
sinc basis function induces at a propagation distance of z, ar-
rived via the Fresnel diffraction integral:

k�fresnel�l �r; z�

� exp�αl rz �
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
jλz∕Δs

p ferf �− ffiffiffiffiffiffiffi
αl rz

p � βz � − erf �−
ffiffiffiffiffiffiffi
αl rz

p
− βz �g;

where αl rz � jπ�r − lΔs�2∕�λz�, βz �
ffiffiffiffiffiffi
jπλz

p
2Δs

, and
ffiffi
j

p �
�1� j�∕ ffiffiffi

2
p

.
In practice, the K ms would be expensive to store in their

exact form, so we store a rank-12 approximation instead, i.e.,

K m ≈ eK m
eK H
m ; with eK �1�

m ∈ C101×1; and

eK �p�
m ∈ C101×12;

since we found empirically for this forward operator that all of
the K ms had insignficant eigenvalues after the 12th one.

Research Article Vol. 34, No. 11 / November 2017 / Journal of the Optical Society of America A 2031



3. Basis Preconditioning

We found that without preconditioning (i.e., P � I ) conver-
gence was slow. This was due to the fact that a large spread in
the σms, especially in the Poisson noise case, caused A to be
severely ill-conditioned. In the worst case, we found that certain
combinations of basis functions in the mutual intensity con-
verged much more slowly than other combinations. An ad
hoc remedy we adopted was the following. We first write

A �
� eK 1

eK 2 	 	 	 eKM

�
� U AΣAV H

A ;

and then we set P � U AΣ−1
A UH

A . This induces a new nonnor-
malized basis such thatX

m

PK mPH � I :

This preconditioning effectively enforces a conservation of en-
ergy rule on the weighted forward operator—an increase in the
trace of X results in the exact same increase in the sum of the
entries of A�X �. We found that using such a preconditioner
sped up our reconstruction process by many orders of magni-
tude in some extreme cases. A deeper look into the design of
this preconditioner may be a good topic for future study.

4. Numerical Algorithm

We solved Eq. (A1) using the algorithm given in [16], running
the algorithm for at most 1000 iterations with each set of noisy
data and standard options. The algorithms took several minutes
per set of measurements for the point-sampled forward oper-
ator and up to 1 h for the pixel-integrated forward operator on
two cores of a Xeon E7-4850 2 GHz processor running
MATLAB.

APPENDIX B: MIXTURE OF POISSON AND
GAUSSIAN NOISE

We also considered a scenario where Gaussian noise was added
to Poisson noise, as this would be a more realistic scenario. The
noisy measurements at the nth noise level were generated by
adding Gaussian noise at the nth measurement PSNR to a
noisy Poisson measurement corresponding to the nth photon
count. However, the results shown in Figs. 10 and 11 look very

similar to something halfway between the results for Gaussian
and Poisson noise alone.
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