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Abstract—In recent years, sparse coding has been widely used in many applications ranging from image processing to pattern

recognition. Most existing sparse coding based applications require solving a class of challenging non-smooth and non-convex

optimization problems. Despite the fact that many numerical methods have been developed for solving these problems, it remains an

open problem to find a numerical method which is not only empirically fast, but also has mathematically guaranteed strong

convergence. In this paper, we propose an alternating iteration scheme for solving such problems. A rigorous convergence analysis

shows that the proposed method satisfies the global convergence property: the whole sequence of iterates is convergent and

converges to a critical point. Besides the theoretical soundness, the practical benefit of the proposed method is validated in applications

including image restoration and recognition. Experiments show that the proposed method achieves similar results with less

computation when compared to widely used methods such as K-SVD.

Index Terms—Dictionary learning, sparse coding, non-convex optimization, convergence analysis

Ç

1 INTRODUCTION

SPARSE coding aims to construct succinct representations
of input data, i.e., a linear combination of only a few

atoms of the dictionary learned from the data itself. Sparse
coding techniques have been widely used in applications,
e.g., image processing, audio processing, visual recognition,
clustering and machine learning [1]. Given a set of signals
Y :¼ fy1; y2; . . . ; ypg, sparse coding aims at finding a dictio-
nary D :¼ fd1; d2; . . . ; dmg such that each signal y 2 Y can be
well-approximated by a linear combination of fdjgmj¼1, i.e.,

y ¼ Pm
‘¼1 c‘d‘; and most coefficients c‘s are zero or close to

zero. Sparse coding can be typically formulated as the fol-
lowing optimization problem:

min
D;fcigpi¼1

Xp
i¼1

1

2
kyi �Dcik2 þ �kcik0; (1)

subject to kdik ¼ 1; 1 � i � m. The dictionary dimension m
is usually larger than the signal dimension n.

1.1 Overview of the Problem

The problem (1) is a non-convex problem whose non-convex-
ity comes from two sources: the sparsity-promoting ‘0-norm,
and the bi-linearity between the dictionary D and codes
fcigpi¼1 in the fidelity term. Most sparse coding based applica-
tions adopt an alternating iteration scheme: for k ¼ 1; 2; . . . ;

(a) sparse approximation: update codes fcigpi¼1 via solving
(1) with the dictionary fixed from the previous itera-

tion, i.e.,D :¼ Dk.

(b) dictionary refinement: update the dictionary D via
solving (1) with codes fixed from the previous itera-

tion, i.e., ci :¼ ckþ1
i for i ¼ 1; . . . ; p:

Thus, each iteration requires solving two non-convex
sub-problems a and b.

The sub-problem (a) is an NP-hard problem [2], and thus
only a sub-optimal solution can be found in polynomial
time. Existing algorithms for solving (a) either use greedy
strategies to obtain a local minimizer (e.g., orthogonal
matching pursuit (OMP) [3]), or replace the ‘0-norm by its
convex relaxation, the ‘1-norm, to provide an approximate
solution (e.g., [4], [5], [6], [7]).

The sub-problem (b) is also a non-convex problem due to
the existence of norm equality constraints on atoms fdigmi¼1.
Furthermore, some additional non-convex constraints on D
are used for better performance in various applications, e.g.,
compressed sensing and visual recognition. One such con-
straint is an upper bound on the mutual coherence
mðDÞ ¼ maxi6¼jjhdi; djij of the dictionary, whichmeasures the
correlation of atoms. A model often seen in visual recogni-
tion (see, e.g., [8], [9], [10]) is defined as follows,

min
D;C

kY �DCk2 þ �kCk0 þ
m

2
kD>D� Ik2; (2)

subject to kdik ¼ 1; 1 � i � m. Due to the additional term

kD>D� Ik2, the problem (2) is harder than (1).

1.2 Motivations and Our Contributions

Despite the wide use of sparse coding techniques, the study
of algorithms for solving (1) and its variants with rigorous
convergence analysis has been scant in the literature. The
most popular algorithm for solving the constrained version
of (1) is the K-SVD method [11], which calls OMP for
solving the sparse approximation sub-problem. The OMP
method is a greedy algorithm known for its high computa-
tional cost. For problem (2), existing applications usually
call some generic non-linear optimization solver. Although
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these alternating iteration schemes generally can guarantee
that the objective function value is decreasing, the generated
sequence of iterates may diverge. Indeed, the sequence gen-
erated by K-SVD is not always convergent; see Fig. 1 for the
convergence behavior of the sequence generated by K-SVD
in a typical image denoising problem. Recently, the so-
called Proximal Alternating Method (PAM) [12] and the
Proximal Alternating Linearized Method (PALM) [13] were
proposed to solve a class of non-convex optimization prob-
lems, with strong convergence. However, problems consid-
ered in [12] and [13] are rather general—a direct call of
these two methods is not optimal when being applied to
sparse coding.

There certainly is a need for developing new algorithms
to solve (1) and its variants. The new algorithms should
not only be computationally efficient in practice, but also
have strong convergence guaranteed by theoretical analy-
sis, e.g., the global convergence property: the whole sequence
generated by the method converges to a critical point of
the problem.

This paper proposes fast alternating iteration schemes
satisfying the global convergence property, applicable to
solving the non-convex problems arising from sparse cod-
ing based applications, including (1), (2), and discriminative
extensions of the K-SVD method [14], [15]. Motivated by
recent work on multi-block coordinate descent [16], PAM
[12] and PALM [13], we propose a multi-block hybrid proxi-
mal alternating iteration scheme, which is further combined
with an acceleration technique from the implementation of
the K-SVD method. The proposed dictionary learning meth-
ods have their advantages over existing dictionary learning
algorithms. Unlike most existing sparse coding algorithms,
e.g., K-SVD, the proposed method satisfies the global con-
vergence property and is more computationally efficient
with comparable results. Compared to some recent generic
methods, e.g., PALM [13]), for solving these specific non-
convex problems, the proposed dictionary learning method
decreases the objective function value faster than PALM
and yields better results in certain applications such as
image denoising.

The preliminary version of this work appeared in [17],
whereas this paper introduces several extensions. One is the
extension of the two-block alternating iteration scheme to
the multi-block alternating iteration scheme, which has
wider applicability. Another improvement over the original
is that the new scheme allows choosing either the proximal
method or the linearized proximal method to update each
block, which makes it easier to optimize the implementation
when applied to solving specific problems. Furthermore,
this paper adds more visual recognition experiments.

2 RELATED WORK

In this section, we briefly review the most related sparse
coding methods and optimization techniques.

Based on the choice of sparsity-promoting function,
existing sparse coding methods fall into one of the following
three categories: (a) ‘0-norm based methods, (b) ‘1-norm
based methods, and (c) methods based on some other non-
convex sparsity-promoting function. One prominent exist-
ing algorithm for solving ‘0-norm based problems is the so-
called K-SVD method [11]. The K-SVD method considers
the constrained version of (1) and uses an alternating itera-
tion scheme between D and fcig: with the dictionary fixed,
it uses the OMP method [18] to find sparse coefficients fcig,
and then with sparse coefficients fixed, atoms in the dictio-
nary D are sequentially updated via the SVD. The K-SVD
method is widely used in many sparse coding based appli-
cations with good performance. However, the computa-
tional burden of OMP is not trivial, and thus there exists
plenty of room for improvement. In addition, there is no
convergence analysis for K-SVD.

Anther approach to sparse coding is using the ‘1-norm as
the sparsity-promoting function.Many ‘1-norm based sparse
coding methods have been proposed for various applica-
tions; see e.g., [5], [6], [19], [20]. The variational model con-
sidered in these works can be formulated as follows,

min
D2D;C2C

Xp
i¼1

1

2
kyi �Dcik2 þ �kcik1; (3)

where D; C are predefined feasible sets of the dictionary D
and coefficients C, respectively. It is evident that the sparse
approximation sub-problem now only requires solving a
convex problem. Many efficient numerical methods are
available for ‘1-norm based sparse approximation, e.g., the
homotopy method [21] used in [5] and the fast iterative
shrinkage thresholding algorithm [22] used in [6]. Methods
for dictionary refinement either sequentially updates atoms
(e.g., [5], [6]) or simultaneously updates all atoms using the
projected gradient method [7]. None of the methods men-
tioned above has any convergence analysis. Recently, an
algorithm with convergence analysis was proposed in [23],
based on the multi-block alternating iteration scheme [16].

The ‘1-norm based approach has its drawbacks, e.g., it
results in over-penalization on large elements of a sparse
vector [24], [25]. To correct such biases caused by the
‘1-norm, several non-convex relaxations of ‘0-norm were
proposed for better accuracy in sparse coding, e.g., the
non-convex minimax concave in [26] and the smoothly
clipped absolute deviation in [24]. Proximal algorithms
have been proposed in [27], [28], [29] to solve these prob-
lems containing non-convex relaxations. Again, these met-
hods can only guarantee that sub-problems during each
iteration can be solved using some convergent method.
The question of global convergence of the whole iteration
scheme remains open.

The block coordinate descent (BCD) method was pro-
posed in [30] for solving multi-convex problems, which are
generally non-convex but convex in each block of variables.
It is known that the BCD method may cycle and stagnate
when being applied to solve non-convex problems; see,
e.g., [31]. A multi-block coordinate descent method was

Fig. 1. Convergence behavior: the increments of the coefficient
sequence Ck generated by K-SVD and by the proposed method in image
denoising.
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proposed in [16] which updates each block via either the
original method, the proximal method, or the linearized
proximal method. Its global convergence property was
established for multi-convex problems, which are not
applicable to the cases discussed in this paper. The recently
proposed PAM [32] updates each block using the proximal
method. The sub-sequence convergence property was
established in [32], and the global convergence property
was established in [12] for the case of two-block alternating
iterations. In [13], PALM, which satisfies the global conver-
gence property, was proposed to solve a class of non-con-
vex and non-smooth optimization problems; it updates
each block using the linearized proximal method. PALM is
applicable to problems in sparse coding.

The work presented in this paper is closely related to
these block coordinate descent methods. The proposed
scheme is also a multi-block alternating iteration scheme,
but it is different from these previous methods in several
aspects, owing to it being tailored for sparse coding prob-
lems. It enables block-wise granularity in the choice of
update scheme (i.e., between the proximal method and
the linearized proximal method). Such flexibility is help-
ful to develop efficient numerical methods that are
optimized for the specific problems in practical applica-
tions. In addition, motivated by the practical performance
gain of an acceleration technique used in the K-SVD
method, we developed an accelerated plain dictionary
learning method. The proposed dictionary learning meth-
ods show their advantages over existing ones in various
sparse coding based applications. The global convergence
property is also established for all the algorithms pro-
posed in this paper.

3 NUMERICAL ALGORITHM

3.1 Preliminaries on Non-Convex Analysis

In this section, we introduce some notation and preliminar-
ies which will be used in the remainder of this paper. Vec-
tors and matrices are denoted by lower and uppercase
letters, respectively. Sets are denoted by calligraphic letters.
Given a vector y 2 Rn, yj denotes the jth entry. For a matrix
Y 2 Rm�n, Yj 2 Rn denotes the jth column and Yij denotes
the ith entry of Yj. Given a matrix Y 2 Rm�n, its infinity
norm is defined as kY k1 ¼ maxi;jjYijj, and its ‘0 norm,
denoted by kY k0, is defined as the number of nonzero
entries in Y . The ‘2 norm of vectors and the Frobenius norm
of matrices are uniformly denoted as k � k. Given a positive
constant � > 0, the so-called hard-thresholding operator
T�ðY Þ is defined as

T�ðxÞ ¼
x; if jxj > �;
f0; �g; if jxj ¼ �;
0; otherwise,

8<:
when applied to scalar variables. When applied to matrix Y ,
T�ðY Þ applies T� on each entry of Y . For a set S, its associate
indicator function dS is defined by

dSðY Þ ¼ 0; if Y 2 S;
þ1; if Y =2 S:

�

For a proper and lower semi-continuous (PLS) function,
denoted as f : Rn ! R [ fþ1g, the domain of f is defined
by domf ¼ fx 2 Rn : fðxÞ < þ1g. Next, we define the crit-
ical points of a PLS function.

Definition 3.1 ([13]). Consider a PLS function f .

� The Fr�echet subdifferential of f is defined as

@̂fðxÞ ¼ u : lim inf
y!x;y6¼x

fðyÞ � fðxÞ � hu; y� xi
ky� xk � 0

� �
if x 2 domf , and ; otherwise.

� The limiting subdifferential of f is defined as

@fðxÞ ¼ fu : 9 xk ! x; fðxkÞ ! fðxÞ
and uk 2 @̂fðxkÞ ! ug:

� x is a critical point of f if 0 2 @fðxÞ.
It can be seen that if x is a local minimizer of f , then

0 2 @fðxÞ. If f is convex, then

@fðxÞ ¼ @̂fðxÞ ¼ fujfðyÞ � fðxÞ þ hu; y� xi; 8yg;
i.e., 0 2 @fðxÞ is the first order optimal condition. If ðfcig; DÞ
is a critical point of (1), then it satisfies

ðD>DciÞj ¼ ðD>yiÞj; if ðciÞj 6¼ 0:

Definition 3.2 (Lipschitz Continuity). A function f is a Lip-
schitz continuous function on the set V, if there exists a con-
stant L0 > 0 such that

kfðx1Þ � fðx2Þk � L0kx1 � x2k 8x1; x2 2 V:

L0 is called the Lipschitz constant.

Definition 3.3. A function H is called m-strongly convex if and

only ifHðxÞ � m
2 kxk2 is convex.

IfH ism-strongly convex and differentiable, then

HðxÞ � HðyÞ þ hrfðyÞ; x� yi þm

2
kx� yk2; 8x; y: (4)

In the following, we introduce the so-called proximal oper-
ator ([33]) defined as

Proxf�ðxÞ :¼ argmin
y2Rn

fðyÞ þ �

2
ky� xk2: (5)

For any PLS function and bounded below function F , the
proximal operator defined in (5) is non-empty and compact
for all � 2 ð0;þ1Þ; see, e.g., [13]. For certain functions, the

proximal operator (5) is explicitly defined, e.g., Proxf�ðxÞ ¼
T ffiffiffiffiffiffi

2=�
p ðxÞwhen f ¼ k � k0.

3.2 Problem Formulation

The optimization arising from most existing sparse coding
based approaches can be expressed as follows,

min
D;C;W

QðD;C;W Þ þ �CðCÞ þ mFðDÞ þ tGðWÞ
subject to D 2 D; C 2 C;

(6)
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where D ¼ ½D1; . . . ; Dm� denotes the dictionary, C ¼
½C1; . . . ; Cp� denotes sparse codes, W denotes an optional
variable such as a linear classifier and D; C are feasible sets
for D and C, respectively. The most often used feasible set
D is the normalized dictionary

D ¼ fD 2 Rn�m : kDik ¼ 1; i ¼ 1; . . . ;mg: (7)

In this paper, we also define a feasible set for the code C for
better stability of the model (6):

C ¼ fC 2 Rp�m : kCk1 � Mg; (8)

where M is the upper bound, which can be set arbitrarily
large to make it applicable in any application.

The terms in the objective function of (6) vary among dif-
ferent approaches. The fidelity term QðD;C;WÞ is usually
based on the Frobenius norm. The term Cð�Þ is a sparsity
promoting function such as k � k0. The term FðDÞ is some
regularizer for the dictionary, e.g., a regularizer based on

mutual coherence kD>D� Ik2. The last term is a regularizer

for the optional variable, e.g., GðW Þ ¼ kWk2, used in some
sparse coding based classifiers.

Example 3.4. A list of some instances of (6) that have
appeared in sparse coding based applications.

(a) In the K-SVD method for sparse image modeling
[34],

QðD;CÞ ¼ 1

2
kY �DC>k2;CðCÞ ¼ kCk0; (9)

where Y denotes the collection of image patches
and m ¼ t ¼ 0.

(b) In discriminative K-SVD based recognition [15],

QðD;C;W Þ ¼ 1

2
kY �DC>k2 þ a

2
kL�WC>k2; (10)

where Y denotes the training samples, W denotes
a multi-class linear classifier and L denotes the

class labels of training samples. GðWÞ ¼ kWk2,
CðCÞ ¼ kCk0 or dK0

ðCÞ where K0 denotes the set

of all vectors with k0 non-zero elements.
(c) In label consistent K-SVD based visual recogni-

tion [14], the function Q has the same form as
(10) but with different definitions of W , and
L—the variable W contains both a linear classi-
fier and a linear transform and L contains both
class labels of training samples and label consis-
tency of atoms.

(d) In incoherent dictionary learning for signal proc-
essing and face recognition, besides the same
term Q as (b), we have an additional non-convex
term for lowering mutual coherence:

FðDÞ ¼ kD>D� Ik2: (11)

In this paper, we propose a method for solving a class of
‘0-norm related optimization problems which covers all
examples listed in Example 3.4.

3.3 Multi-Block Proximal Alternating Iterations

We first rewrite most existing sparse coding related optimi-
zation problems in the following manner:

min
x¼ðx0;...;xN Þ

HðxÞ ¼ P ðxÞ þ
XN
i¼0

riðxiÞ; (12)

where xi 2 Rni ; i ¼ 0; 1; . . . ; N . Let

Pk
i ð�Þ :¼ P ðxk

0; � � � ; xk
i�1; �; xk�1

iþ1 ; . . . ; x
k�1
N Þ

be a function with respect to variable xi when xj ¼ xk
j ; j 6¼ i.

Throughout this paper, we make the following assumptions
about the objective functionH.

Assumption 3.5. Let domðHÞ ¼ X0 � X1 � . . .�XN . The

function H ¼ P þPN
i¼1 ri defined in (12) satisfies the follow-

ing conditions:

1) The functionH is a semi-algebraic function.
2) ri; i ¼ 0; 1; . . . ; N are PLS functions.
3) infH > �1, inf P > �1 and inf ri > �1; 8i.
4) P is a C1 function and rP is Lipschitz continuous on

any bounded set.
5) For each block of variables xi, riP is Li-Lipschitz con-

tinuous in Yi where Li is a function of ðx1; . . . ;
xi�1; xiþ1; . . . ; xNÞ, and Yi ¼ fx : kxk � 2Mg if X i

is bounded in a volume with diameter M and Rni

otherwise.

We propose a multi-block hybrid proximal alternating
method for solving the optimization problem (12), which
allows updating each block of variables using either the proxi-
mal method or the linearized proximal method. In other
words, there are two schemes available for updating xk

i :

xkþ1
i 2 Prox

Pk
i
þri

mk
i

ðxk
i Þ ð13aÞ;

Prox
ri
mk
i

ðxk
i �rPk

i ðxk
i Þ=mk

i Þ: ð13bÞ

8<:
During each iteration, each block can be either updated via
the proximal method (13a) or via the linearized proximal
method (13b). Such flexibility facilitates optimizing for per-
formance when applied to specific problems in practice, an
advantage over methods such as PALM, which updates
each block using the linearized proximal method. The pro-
posed algorithm is outlined in Algorithm 1.

Algorithm 1. Multi-Block Hybrid Proximal Alternating
Method for Solving (12)

1: Main Procedure:

1. Initialization: x0
i and m0

i , i=0, . . . ,N.

2. For k ¼ 0; . . . ;K;

(a) For 0 ¼ 1; . . . ; N ,

xkþ1
i 2 Prox

Pk
i
þri

mk
i

ðxki Þ [ Proxri
mk
i

ðxk
i �rPk

i ðxk
i Þ=mk

i Þ
End

(b) Update mkþ1
i .

End

Remark 3.6 (Parameter updating). Let V1 denote the set
of variables using (13a) and let V2 denote the set of

BAO ETAL.: DICTIONARY LEARNING FOR SPARSE CODING: ALGORITHMS AND CONVERGENCE ANALYSIS 1359

Authorized licensed use limited to: Tsinghua University. Downloaded on June 14,2022 at 08:17:13 UTC from IEEE Xplore.  Restrictions apply. 



variables using (13b). Then, mk
i is updated according to

the following criteria:

1) For xi 2 V1, m
k
i 2 ða; bÞwhere a; b > 0.

2) For xi 2 V2, mk
i 2 ða; bÞ and mk

i > Lk
i , where Lk

i

denotes the Lipschitz constant ofrPk
i .

The details of updating mk
i will be discussed when

applying Algorithm 1 to solving specific problems.

Theorem 3.7. [Global Convergence] The sequence fxkg generated
by Algorithm 1 converges to a critical point of (12), if the fol-
lowing two conditions are both satisfied:

1) the objective function H defined in (12) satisfies
Assumption 3.5.

2) the sequence fxkg is bounded.
Proof. see Appendix A. tu

As we will show in the next section, Theorem 3.7 is appli-
cable to all of the cases listed in Example 3.4.

3.4 Applications of Algorithm 1 in Sparse Coding

In this section, based on Algorithm 1, we present two dictio-
nary learning methods for sparse coding based applications.
The main one is the accelerated plain dictionary learning
method which covers case (a) in Example 3.4, as well as the
cases (b) and (c) with very minor modifications. It is not
applicable to case (d) owing to the existence of the term

kD>D� Ik2. The other is the discriminative dictionary learn-
ing method which covers all four cases in Example 3.4,
including the case (d). These two methods differ from each
other in how the blocks of variables are formed and how
they are updated.

3.4.1 Accelerated Plain Dictionary Learning

Recall that the minimization problem for plain dictionary
learning can be expressed as

min
D2Rn�m;C2Rp�m

1

2
kY �DC>k2 þ �kCk0; (14)

subject to kDik2 ¼ 1; i ¼ 1; . . . ;m and kCk1 � M. we split
ðC;DÞ into the following variable blocks:

ðx0; x1; . . . ; xNÞ :¼ ðC;D1; D2; . . . ; DmÞ:
Then, Algorithm 1 can be applied to solve (14), in which

r0ðCÞ ¼ �kCk0 þ dCðCÞ;
riðDiÞ ¼ dDðDiÞ; i ¼ 1; 2 . . . ;m;
P ðC;D1; . . . ; DmÞ ¼ 1

2 kY � ½D1; D2; . . . ; Dm�C>k2;

8<:
where D; C are defined in (7) and (8) respectively.

During each iteration, we propose the following update
strategy: code C is updated via the linearized proximal
method and the dictionary atoms Dis are updated via the
proximal method. In other words,

Ckþ1 2 Prox
r0
mkðCk �rPk

0 ðCkÞ=mkÞ ð15aÞ;
Dkþ1

i 2 Prox
Pk
i
þri

�k
i

ðDk
i Þ; i ¼ 1; 2; . . . ;m: ð15bÞ

8<:

Both sub-problems, (15a) and (15b), have closed-form
solutions. Define

Uk ¼ Ck � 1
mk rPk

0 ðCkÞ;
Ck;i ¼ ðCkþ1

1 ; . . . ; Ckþ1
i�1 ; C

k
iþ1; . . . ; C

k
pÞ;

Dk;i ¼ ðDkþ1
1 ; . . . ; Dkþ1

i�1 ; D
k
iþ1; . . . ; D

k
mÞ;

Rk;i ¼ Y �Dk;iðCk;iÞ>;
pk;i ¼ Rk;iCk

i þ �k
iD

k
i :

8>>>>><>>>>>:
(16)

Then we have

Proposition 3.8. SupposeM is chosen such thatM >
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2�=mk

p
.

Then, both (15a) and (15b) have closed form solutions which
are given by

Ckþ1 ¼ signðUkÞ 	minð T ffiffiffiffiffiffiffiffiffiffi
2�=mk

p ðUkÞ
��� ���;MÞ;

Dkþ1
i ¼ ðkpk;ik2Þ�1pk;i; i ¼ 1; ; 2 . . . ;m;

(
(17)

where 	 denotes Hadamard product, and Uk; pk;i are given by
(16).

Proof. By direct computation, we know minimization prob-
lems (15a) and (15b) are equivalent to

Ckþ1 2 argminC2C
mk
2� kC � Ukk2 þ kCk0;

Dkþ1
i 2 argminkdk2¼1

c0
2 kd� pk;i=c0k2;

(
(18)

where c0 ¼ �k
j þ kCk

j k22. Then, it can be seen that the solu-
tions of two sub-problems are given by (17). tu

Remark 3.9 (Setting of step sizes mk; f�k
i g). There are mþ 1

step sizes that need to be set: mk in (15a) and f�k
i gmi¼1 in

(15b). Let 0 < a < b be two constants; step size mk can

be chosen as mk ¼ maxðrLðDkÞ; aÞ, where r > 1 and

LðDkÞ satisfies

krCP ðC1; DkÞ � rCP ðC2; DkÞk � LðDkÞkC1 � C2k:
The step sizes �k

i are simply chosen as �k
i 2 ða; bÞ. More-

over, we can set LðDkÞ to be the maximum eigenvalue of

the matrix Dk>Dk. It can be seen that LðDkÞ is a bounded
sequence as each column inD is of unit norm.

The iterative scheme (18) can be further improved by
adding an additional acceleration step in each iteration.
Such an acceleration technique was first introduced in the
approximated K-SVD method [35]. In the approximated K-
SVD method, after updating one atom during dictionary
refinement, one immediately updates the associated coeffi-
cients to further decrease the objective function value. Thus,
we can also incorporate such a technique into the iterative
scheme (18) for faster convergence.

Let RI denote the sub-matrix of R whose columns are
indexed in the index set I. Then, we immediately update Ci

via solving the following optimization problem:

bCkþ1
i 2 argmin

kck1�M

1

2
kRk;i �Dkþ1

i c>k2 (19)

subject to c‘ ¼ 0; ‘ 2 Ii, where Ii ¼ f‘ 2 ZN : Ck
‘;i ¼ 0g and

Rk;i is defined in (16). The minimization problem (19) has a
closed form solution given by
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bCkþ1
‘;i ¼ signðg‘Þminðjg‘j;MÞ; (20)

where g ¼ ðRk;i
Ii
Þ>Dkþ1

i if ‘ =2 Ii and 0 otherwise.
A detailed description of the accelerated plain dictionary

method for solving (14) is given in Algorithm 2. Even with
the additional acceleration step (b) (ii), Algorithm 2 remains
global convergent.

Theorem 3.10. The sequence, ðCk;DkÞ, generated by Algorithm 2
is bounded and converges to a critical point of (14).

Proof. see Appendix B. tu
Remark 3.11. Algorithm 2 can also be applied to solving

cases (b)-(c) in Example 3.4 by including the update of
block W . The update strategy is the same as that of the
discriminative dictionary learning method discussed in
the next section. However, Algorithm 2 is not suitable for
solving case (d) in Example 3.4. The existence of the term

kD>D� Ik2 in the objective function of the case (d)
makes the iterative scheme (18) not efficient as the sub-
problems no longer have closed form solutions.

Algorithm 2. Accelerated Plain Dictionary Learning

1: INPUT: Training signals Y ;
2: OUTPUT: Learned dictionaryD;
3: Main Procedure:

1. Initialization: D0, r > 1,K 2 N and b > a > 0.
2. For k ¼ 0; 1; . . . ; K,
(a) update sparse code C:

mk ¼ maxðrkDk>Dkk2; aÞ;
Ckþ1 ¼ signðUkÞ 	minðjT ffiffiffiffiffiffiffiffiffiffi

2�=mk
p ðUkÞj;MÞ; :

(

where Uk is defined by (16).
(b) update dictionaryD: for i ¼ 1; . . . ;m,

(i). UpdateDi via

Dkþ1
i ¼ ðkpk;ik2Þ�1pk;i;

where pk;i is defined in (16) with �k
i 2 ða; bÞ.

(ii). re-update the coefficients Ci

Ckþ1
i :¼ bCkþ1

i ;

where bCkþ1
i is given by (20).

3.4.2 Discriminative Incoherent Dictionary Learning

Discriminative incoherent dictionary learning is based on
the following model:

min
D;C;W

1

2
kY �DC>k2 þ a

2
kL�WC>k2

þm

2
kD>D� Ik2 þ �kCk0 þ

t

2
kWk2;

(21)

where D 2 D; C 2 C and D; C are defined in (7) and (8)
respectively. Clearly, all four cases in Example 3.4 are cov-
ered by this model. We propose forming the blocks of varia-
bles by splitting ðC;D;WÞ into

ðW;C1; C2; . . . ; Cm;D1; D2; . . . ; DmÞ:
Recall that the term kD>D� Ik2 in (21) is equal to

2
P

i6¼jðD>
i DjÞ2 since kDik ¼ 1; 8i ¼ 1; . . . ;m. Then we have

P ð� � �Þ ¼ 1

2
kY �DC>k2 þ a

2
kL�WC>k2 þ m

X
i 6¼j

ðD>
i DjÞ2

and

r0ðWÞ ¼ tkWk2=2;
riðCiÞ ¼ �kCik0 þ dCðCiÞ; i ¼ 1; 2 . . . ;m;
riþmðDiÞ ¼ dDðDiÞ; i ¼ 1; 2 . . . ;m;

8<: (22)

where D; C are defined in (7) and (8) respectively.
Based on Algorithm 1, we propose the following update

strategy: both the linear classifier W and the sparse code C
are updated using the proximal method, and the dictionary
D is updated using the linearized proximal method. In other
words,

Wkþ1 2 Prox
Pk
0
þr0

gk
ðWkÞ;

Ckþ1
i 2 Prox

Pk
i
þri

mk
i

ðCk
i Þ; i ¼ 1; 2; . . . ;m;

Dkþ1
i 2 Prox

riþm

�k
i

ðdki Þ; i ¼ 1; . . . ;m;

8>>>><>>>>: (23)

where dki ¼ Dk
i �rPk

i ðDk
i Þ=�k

i . In (23), all three sub-prob-
lems have closed form solutions. Define

V k ¼ aCk>Ck þ ðt þ gkÞI;
qk;i ¼ Rk;i>Dk

i þ mk
i C

k
i þ Sk;i>Wkþ1

i ;
Dk;i ¼ ðDkþ1

1 ; . . . ; Dkþ1
i�1 ; D

k
i ; . . . ; D

k
mÞ;

8<: (24)

where Rk;i is defined in (16) and

Sk;i ¼ L�
X
j< i

Wkþ1
i Ckþ1>

i �
X
j> i

Wkþ1
i Ck>

i :

Then, we have

Proposition 3.12. Suppose M is chosen such that M >ffiffiffiffiffiffiffiffiffiffiffiffiffi
2�=aki

q
, where aki ¼ kDk

i k2 þ mk
i . Then, all sub-problems in

(23) have closed form solutions given by

Wkþ1 ¼ ðaLCk þ gkWkÞðV kÞ�1;

Ckþ1
i ¼ signðqk;iÞ 	min T ffiffiffiffiffiffiffiffiffi

2�=ak
i

p ðqk;i=aki Þ
���� ����;M� �

;

Dkþ1
i ¼ ðkdk;ik2Þ�1dk;i:

8>><>>: (25)

Proof. By direct computation, the minimization problems in
(23) are equivalent to

minW
a
2 kL�WCk>k2 þ gk

2 kW �Wkk2 þ t
2 kWk2;

minkck1�M
ak
i

2� kc� qk;i=aki k2 þ kck0; 1 � i � m;

minkdk2¼1kd� dk;ik2; 1 � i � m:

8>><>>:
It can be seen that the solutions of the above minimiza-
tion problems are given by (25). tu
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Remark 3.13 (Updating step sizes gk;mk
i ; �

k
i ). There are

2mþ 1 step sizes. Let a > b be two positive constants;

we simply set gk;mk
i 2 ða; bÞ. Step sizes �k

i can be set as

�k
i ¼ maxðrLk

i ; aÞ, where Lk
i is the Lipschitz constant of

rPk
iþm in X ¼ fd 2 Rn : kdk � 2g. Although it is not easy

to compute Lk
i , kCk

i k2 þ 2mkDk;i>Dk;ik is no smaller than

the Lipschitz constant Lk
i .

A detailed description of the discriminative dictionary
learning method for solving (21) is given in Algorithm 3.
The global convergence property of Algorithm 3 can be
shown using similar analysis as that of Algorithm 1.

Algorithm 3. Discriminative Incoherent Dictionary
Learning

1: INPUT: Training signals Y ;
2: OUTPUT: Learned Incoherent DictionaryD;
3: Main Procedure:

1. Initialization:D0; C0, r > 1, and b > a > 0.
2. For k ¼ 0; 1; . . . ;
(a) UpdateW : gk 2 ða; bÞ and

Wkþ1 ¼ ðaLCk þ gkWkÞðV kÞ�1;

where V k is defined in (24).
(b) Update sparse code Ci: for i ¼ 1; ;m,

Ckþ1
i ¼ signðqk;iÞ 	minðjT ffiffiffiffiffiffiffiffiffi

2�=ak
i

p ðqk;i=aki Þj;MÞ;

where qk;i is defined in (24) with mk
i 2 ða; bÞ.

(c) EstimateDi: for i ¼ 1; . . . ;m,

�k
i ¼ maxðrðkCk

i k22 þ 2mkDk;i>Dk;ik2Þ; aÞ;
Dkþ1

i ¼ dk;i=kdk;ik2;
:

(

where dk;i is defined in (24).

Corollary 3.14. The sequence, ðWk;Ck;DkÞ, generated by Algo-
rithm 3 is bounded and converges to a critical point of (21).

Proof. see Appendix C. tu
Remark 3.15. The acceleration step used in Algorithm 2 is

not helpful for further improving the performance of
Algorithm 3, as the coefficients C are sequentially
updated in Algorithm 3, while they are updated in Algo-
rithm 2 as one block.

4 EXPERIMENTS

In this section, the two proposed dictionary learning methods
are evaluated in two applications: image denoising and visual
recognition. Most existing sparse coding based image denois-
ing approaches are based on model (9) of case (a) in Exam-
ple 3.4. The three models in cases (b)-(d) in Example 3.4 have
been used in various visual recognition applications.

4.1 Image Denoising

In image denoising, we follow the same procedure in [11].
Through all the experiments in image denoising, the dimen-
sion of the dictionary is set to be the same as the K-SVD
method [34], i.e., m ¼ 4n, The dictionary is learned from

4� 104 image patches randomly chosen from the input
noisy image. The patch size is 8� 8. The parameter � is set

to 15s2 for the dictionary learning process, where s denotes
noise standard deviation. level, the parameter r is set to

1þ 10�3. All methods used in experiments were set to run
for at most 30 iterations. All experiments were preformed in
the Linux version of MATLAB R2011b (64 bit) running on a
PC workstation with an INTEL CPU (2.4 GHZ) and 48 GB
of RAM. The experiments are done on six test images (see
Fig. 3) with different noise standard deviations.

Four dictionary learning methods were tested in image
denoising: the K-SVD method [35],1 PALM [13], Algo-
rithm 2 and Algorithm 3. Same as the K-SVD method, the
dictionary is initialized using an over-complete DCT dictio-
nary (see [11] for more details). Algorithm 3 was applied to
solving (1) by setting the weight of the incoherence term
and the weight of discriminative term to zero and remov-
ing the corresponding computational steps. The implemen-
tation of PALM is done by splitting ðC;DÞ into the blocks
ðC;D1; D2; . . . ; DmÞ and updating each block using the line-
arized proximal method.

4.1.1 Computational Efficiency

Fig. 2 shows how fast the objective function value is reduced
by each of the three methods. The K-SVD method is not
included as it considers an un-constrained model whose
objective function is different from the other three. It can be
seen that bothAlgorithm 2 andAlgorithm 3 reduce the objec-
tive function value noticeably faster than PALM. The differ-
ence betweenAlgorithm 2 andAlgorithm 3 is ratherminor.

A comparison of running time is shown in Table 1. It can
be seen that Algorithm 2 and PALM are the fastest one,
while the K-SVD method and Algorithm 3 are noticeably
slower. The speed of Algorithm 2 and PALM on running
time agrees with the theoretical computational complexity.
Let K denote the average number of nonzero entries in each
column of C. By direct counting, the total number of the
dominant operations per iteration in Algorithm 2 is

Fig. 2. Objective function value versus iteration number in sparse coding
based image de-noising.

1. http://www.cs.technion.ac.il/
ronrubin/software.html
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TAlg: 2 ¼ pð2nmþ 6Kmþ 4KnÞ þ 6nm2:

When K � n 
 m � p, it is about 2pnm, while it is about

2pnmþ pK2m in the K-SVD method ([35]).
Overall, Algorithm 2 is the best performer as it is notice-

ably faster at reducing the objective function value per itera-
tion while at the same time not requiring significantly more
time per iteration.

4.1.2 Quality of Results

The denoising performance is measured in terms of the
PSNR value. See Table 2 for a comparison of the PSNR
values of the denoised results from five methods: the
DCT-based thresholding method, the K-SVD method [34],
PALM, Algorithm 2 and Algorithm 3. It can be seen that
in terms of the average PSNR value, the K-SVD method,
Algorithm 2 and Algorithm 3 are comparable, and they

are all better than the other two methods. Fig. 4 shows
the dictionaries learned from noisy image by both the K-
SVD method and Algorithm 2, and Fig. 5 gives a visual
illustration of the results from Algorithm 2. Given these
results, it is evident that Algorithm 2 yields results very
close to K-SVD while at the same time requiring signifi-
cantly less computation.

The proposed algorithms only can guarantee finding a
critical point of the relating non-convex problem. Thus,
same as the K-SVD method, they will yield different out-
comes when using different initializations. See Table 3 for
a comparison of the average PSNR value of the denoised
results from the proposed methods using two different
initial dictionaries: DCT and RND. DCT refers to the
aforementioned over-complete DCT dictionary, and RND

TABLE 1
Running Time (Seconds) versus Dimension of Dictonary Atom

atom dimension 6x6 8x8 10x10 12x12 14x14 16x16

K-SVD 39 70 114 164 228 308
PALM 9 16 28 42 60 86
Algorithm 2 10 18 30 45 66 96
Algorithm 3 71 217 465 1,011 1,848 3,094

TABLE 2
PSNR Values of the Denoised Results

Image Boat512 Fingerprint512 Hill512

s 5 10 15 20 25 5 10 15 20 25 5 10 15 20 25

DCT 36.79 33.49 31.34 29.96 28.90 36.34 32.25 29.68 28.29 26.85 36.54 32.93 31.11 30.02 29.00
K-SVD 37.17 33.64 31.73 30.36 29.28 36.59 32.39 30.06 28.47 27.26 36.99 33.34 31.43 30.17 29.19
PALM 37.08 33.48 31.46 30.05 28.95 36.50 32.21 29.84 28.18 26.85 36.98 33.28 31.35 30.07 29.06
Algorithm 3 37.11 33.58 31.63 30.18 29.07 36.58 32.27 29.87 28.24 26.94 36.91 33.36 31.44 30.04 29.11
Algorithm 2 36.97 33.53 31.65 30.31 29.18 36.59 32.35 30.03 28.44 27.17 36.94 33.31 31.29 30.02 29.06

Image Lena512 Man512 Peppers512
s 5 10 15 20 25 5 10 15 20 25 5 10 15 20 25

DCT 38.29 35.25 33.39 32.03 30.96 37.16 33.12 31.01 29.65 28.67 37.06 34.48 33.02 31.89 30.95
K-SVD 38.59 35.47 33.70 32.38 31.32 37.61 33.62 31.45 30.13 29.11 37.77 34.72 32.37 32.26 31.39
PALM 38.46 35.35 33.50 32.15 31.08 37.42 33.45 31.31 29.92 28.86 37.50 34.58 33.02 31.79 30.80
Algorithm 3 38.48 35.37 33.55 32.21 31.16 37.46 33.53 31.45 30.09 29.02 37.57 34.67 33.19 31.99 31.02
Algorithm 2 38.49 35.41 33.57 32.25 31.19 37.46 33.47 31.43 30.02 29.00 37.68 34.64 33.22 32.14 31.18

Fig. 4. The dictionaries learned from the image “Lena512” with noise
level s ¼ 25 using the K-SVD method and algorithm 2.

Fig. 3. Six test images for image denoising.

Fig. 5. Visual illustration of a noisy image and the denoised one by
algorithm 2.
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refers to a random subset of the collection of image
patches. It can be seen that the denoising performance is
influenced by how the dictionary is initialized, but such
influence is not significant.

4.2 Image Recognition

In this section, the proposed methods were tested in sparse
coding based recognition tasks, composed of three methods
in Example 3.4, cases (b-d). Case (b) is the D-KSVD method
[15], case (c) is the LC-KSVD method [14], and case (d) is
the dictionary learning method with structured incoherence
[8]. Both the D-KSVD method and the LC-KSVD method
simultaneously perform dictionary learning and classifier
training using the K-SVD method. The dictionary learning
method with structured incoherence uses some standard
non-linear optimization solver.

Algorithm 2 was applied to solving the dictionary
learning problems in both the D-KSVD method and the
LC-KSVD method, and Algorithm 3 was applied to solv-
ing the optimization problem in case (d). Throughout the
experiments in this sub-section, the model parameters of
each model were set the same [14], independent of the
choice of numerical algorithm. The sparsity level was
also fixed by only keeping coefficients with the k0 largest
magnitudes when thresholding.

4.2.1 Face Recognition

The methods are evaluated on two face datasets: Extended
YaleB dataset [36] and AR face dataset [37].

Extended YaleB Dataset. The dataset [36] contains 2,414
images of 38 human frontal faces, with approximately 64
images (representing different illumination conditions and
facial expressions) for each person and original images were
cropped to 192� 168 pixels. Following [15], we projected
each face image into a 504-dim feature vector using a zero-
mean random Gaussian matrix. The database was randomly

split into two halves: one half containing 32 images per per-
son used for training, and the remaining for validation.

AR Face Dataset. The dataset [37] consists of over 4,000
frontal images from 126 individuals. For each individual, 26
pictures were taken in two separate sessions. Following the
standard evaluation procedure from [14], [15], we used a sub-
set of the database consisting of 2,600 images from 50 male
subjects and 50 female subjects. For each person, 20 images
were randomly chosen for training and the remaining images
were used for test. Each image was cropped to 165� 120 and
then is projected itoto a 540-dim vector.

4.2.2 Object Classification

The Caltech-101 dataset [38] is a data set with 8;677 images
from 101 object categories and 467 images from an additional
background category. Same as [39], for each image, the SIFT
feature based spatial pyramid feature [40] was extracted and
further reduced to 3;000-dim via PCA. Following standard
protocol, we randomly picked f5; 10; 15; 20; 25; 30g samples
per category for training and used the rest for test.

4.2.3 Scene Classification

The experiments were done on the Scene-15 dataset [40],
which contains both outdoor and indoor scenes. The number
of images per category varies from 210 to 410, and the resolu-
tion of each image is about 250� 300. For each image, the
SIFT feature based spatial pyramid feature [40] was extracted
and further reduced to 3;000-dim via PCA. Following the
experimental settings of [14], we randomly selected 100
images per category for training and used the rest for test.

4.2.4 Results and Discussion

The results are listed in Table 4. It can be seen that the per-
formance of Algorithm 2 is at least comparable to that of the
K-SVD method or PALM in all scenarios. Overall, the classi-
fication performance using the sparse coding model in the
case (d) of Example 3.4 is better than the other three models,
and Algorithm 3 can be used for solving the non-convex
problem in case (d) of Example 3.4.

5 SUMMARY AND FUTURE WORK

In this paper, we proposed amulti-block alternating proximal
method with global convergence property for solving a class
of ‘0-norm related optimization problems arising from sparse
coding. The proposed algorithms are not only theoretically

TABLE 3
Average PSNR Value of the Denoised Results

Using Different Initializations

Initialization s ¼ 5 s ¼ 10 s ¼ 15 s ¼ 20 s ¼ 25

Algorithm 2, DCT 37.36 33.79 31.87 30.53 29.46
Algorithm 2, RND 37.17 33.65 31.70 30.31 29.25
Algorithm 3, DCT 37.35 33.80 31.86 30.46 29.38
Algorithm 3, RND 37.16 33.64 31.68 30.33 29.27

TABLE 4
Classification Accuracies (Percent) on Four Datasets

Dataset Training Case (b) Case (c) Case (d)

size K-SVD Algorithm 2 PALM K-SVD Algorithm 2 PALM Algorithm 3

Yale B 1,216 94.10 94.04 94.12 95.00 95.02 95.05 95.12
AR 2,000 88.80 88.48 88.52 93.70 93.58 93.80 93.88

Caltech 5 49.6 49.9 49.8 54.0 54.2 54.2 54.8
10 59.5 59.9 60.1 63.1 63.1 63.2 63.6
15 65.1 65.2 65.0 67.7 67.5 67.6 68.3
20 68.6 68.7 68.5 70.5 70.2 70.2 72.2
25 71.1 70.8 71.0 72.3 72.3 72.1 72.7
30 73.0 73.2 73.2 73.6 73.4 73.5 73.9

Scene 1,500 89.1 88.8 89.2 92.9 92.7 92.9 93.1
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sound for non-convex problems arising from sparse coding
based applications, but were also shown to be computation-
ally efficient in practical sparse coding based applications. In
future, wewill further investigate stochasticmethods for solv-
ing the optimization problems in sparse coding with the aim
of converging to globalminimizers.

APPENDIX A
PROOF OF THEOREM 3.7

At first, we define KL functions and semi-algebraic func-
tions used for the convergence analysis.

Definition A.1 (Kurdyka-ºojasiewicz property [13]). Let

f : Rd ! ð�1;þ1� be a PLS function. The function is said

to have the KL property at �x 2 dom@f :¼ fx 2 Rd : @f 6¼ ;g
if there exist h > 0, a neighborhood X of �x and a concave and
continuous function c : ½0; hÞ ! Rþ which satisfies cð0Þ ¼ 0,

c is C1 on ð0; hÞ and continuous at 0 and c
0 ðsÞ > 0; 8s 2

ð0; hÞ, such that for all

x 2 X \ fx : fð�xÞ < fðxÞ < fð�xÞ þ hg;
the following inequality holds:

c
0 ðfðxÞ � fð�xÞÞdistð0; @fðxÞÞ � 1: (26)

If f satisfy the KL property at each point of dom@f then f is
called a KL function.

Definition A.2. (Semi-algebraic sets and functions [12]) A sub-
set S of Rn is called the semi-algebraic set if there exists a finite
number of real polynomial functions gij; hij such that
S ¼ S

j

T
ifx 2 Rn : gijðxÞ ¼ 0; hijðxÞ < 0g: A function f

is called the semi-algebraic function if its graph fðx; tÞ 2 Rn �
R; t ¼ fðxÞg is a semi-algebraic set.

The main tool for the proof is the following theorem.

Theorem A.3 ([41]). Assume HðzÞ is a PLS function with

infH > �1, the sequence fzkgk2N is a Cauchy sequence and
converges to a critical point of HðzÞ, if the following four con-
ditions hold:

(P1) Sufficiently decreasing: there exists some positive con-
stant r1, such that

HðzkÞ �Hðzkþ1Þ � r1kzkþ1 � zkk2; 8k:
(P2) Relative error: there exists some positive constant

r2 > 0, such that for any wk 2 @HðzkÞ,

kwkþ1kF � r2kzkþ1 � zkk; 8k:
(P3) Continuity: there exists a subsequence fzðkjÞgj2N and �z

such that

zðkjÞ ! �z; Hðzkj Þ ! Hð�zÞ; as j ! þ1:

(P4) KL property: H satisfies the KL property in its effective
domain.

By the theorem above, we only need to check that the
sequence generated by Algorithm 1 satisfies the conditions
(P1)-(P4). Let V1;V2 denote the index sets of the variables

that use proximal update (13a), linearized proximal update
(13b) respectively, and define

Pk
i ð�Þ :¼ P ðxkþ1

0 ; � � � ; xkþ1
i�1 ; �; xk

iþ1; . . . ; x
k
NÞ;ePk

i ð�Þ :¼ Pk
i ðxk

i Þ þ hrPk
i ðxk

i Þ; � � xki i:

(

Condition (P1). Before proceeding, we first present a
lemma about continuous differentiable functions which can
be derived from [13, Lemma 3.1].

Lemma A.4. Let h : Rn ! R be a continuously differentiable
function and rh is Lh-Lipschitz continuous in V ¼ fx :
kxk � Mg. Then, we have

hðuÞ � hðvÞ þ hu� v;rhðvÞi þ Lh

2
ku� vk2F ; 8u; v 2 �V;

where �V ¼ fx : kxk � M=2g.
Proof. For any x; y 2 �V, by the triangular inequality, we

know xþ ay 2 V where 0 � a � 1. Define gðaÞ ¼
hðxþ ayÞ. Then, we have

hðxþ yÞ � hðxÞ ¼ gð1Þ � gð0Þ ¼
Z 1

0

dg

da
ðaÞda

�
Z 1

0

y>rhðxÞdaþ j
Z 1

0

y>ðrhðxþ ayÞ � rhðxÞÞdaj

�y>rhðxÞ þ kyk
Z 1

0

Lhakykda ¼ y>rhðxÞ þ Lhkyk2=2;

which completes the proof. tu

When i 2 V1, the term Pk
i ðxk

i Þ þ riðxki Þ is no less than

Pk
i ðxkþ1

i Þ þ riðxkþ1
i Þ þ mk

i
2 kxkþ1

i � xk
i k2: (27)

When i 2 V2, the term Pk
i ðxk

i Þ þ riðxk
i Þ is no less than

ePk
i ðxk

i Þ þ riðxkþ1
i Þ þ mk

i
2 kxkþ1

i � xk
i k2: (28)

By the Lipschitz continuity ofriP and lemma 6.4,

Pk
i ðxkþ1

i Þ � ePk
i ðxki Þ þ

Lk
i

2
kxkþ1

i � xk
i k2: (29)

The combination of (28) and (29) leads to the fact that

Pk
i ðxk

i Þ þ riðxk
i Þ is no less than

Pk
i ðxkþ1

i Þ þ riðxki Þ þ
mk
i � Lk

i

2
kxkþ1

i � xk
i k2: (30)

Summing up (27) and (30) gives the term

HðxkÞ �Hðxkþ1Þ ¼ Pk
0 ðxk

0Þ � Pk
Nðxkþ1

N Þ
is no less than

X
i2V1

mk
i

2
kxkþ1

i � xk
i k2 þ

X
i2V2

mk
i � Lk

i

2
kxkþ1

i � xk
i k2;

as Pk
iþ1ðxk

iþ1Þ ¼ Pk
i ðxkþ1

i Þ. Let r1 ¼ minfðmk
i � Lk

i Þ=2 : k 2
N; i 2 V2g. Then, r1 > 0 since mk

i > Lk
i which gives mk

i 2
ða; bÞ. Thus, Condition (P1) is satisfied.
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Condition(P2). If i 2 V1, we have

0 2 rPk
i ðxkþ1

i Þ þ mk
i ðxkþ1

i � xk
i Þ þ @riðxkþ1

i Þ: (31)

Define V k
i ¼ �rPk

i ðxkþ1
i Þ � mk

i ðxkþ1
i � xk

i Þ. Then,

vk
i :¼ V k

i þriP ðxkþ1Þ 2 @iHðxkþ1Þ:

If fxkg is bounded, since rP is Lipschitz continuous on any
bounded set, there existsM1 > 0 such that

kwk
i k � M1kxkþ1 � xkk; 8i 2 V1: (32)

Similarly, if i 2 V2, we have

0 2 rPk
i ðxki Þ þ mk

i ðxkþ1
i � xk

i Þ þ @riðxkþ1
i Þ:

Define V k
i ¼ �rPk

i ðxk
i Þ � mk

i ðxkþ1
i � xk

i Þ. Then,

vk
i :¼ V k

i þriP ðxkþ1Þ 2 @iHðxkþ1Þ:

By the boundedness of fxkg and Lipschitz continuity ofrP ,
we know there existsM2 > 0 such that

kwk
i k � M2kxkþ1 � xkk; 8i 2 V2: (33)

Define M ¼ N maxðM1;M2Þ. Then (32) and (33) lead to

kvkk � Mkxkþ1 � xkk; where vk ¼ ðv1; . . . ;vNÞ such that

vi ¼ vk
i when i 2 V1 or i 2 V2. Therefore, Condition (P2) is

satisfied.
Condition (P3). Consider two convergent sub-sequences

xkj ! �x and xkj�1 ! �y of a bounded sequence fxkg. We first
show that �x ¼ �y. Given any positive integer j, from Condi-
tion (P1), we have

Hðx0Þ �Hðxjþ1Þ > r
Xj

k¼0

kxk � xkþ1k2: (34)

Since fHðxjÞg is decreasing and infH > �1, there exist

some �H such that HðxjÞ ! �H as j ! þ1. Let j ! þ1 in
(34), we have

Xþ1

k¼0

kxk � xkþ1k2 < Hðx0Þ � �H < þ1:

which implies lim kxk � xk�1k ¼ 0. Then, we have

lim kxkjþ1 � xkjk ¼ 0 and �x ¼ �y.
Denote �x ¼ ð�x1; . . . ; �xNÞ. For i 2 V1, we have for all

xi 2 X i

P k
i ðxkþ1

i Þ þ riðxkþ1
i Þ þ mk

i

2
kxkþ1

i � xki k2

� Pk
i ðxiÞ þ riðxiÞ þ mk

i

2
kxi � xk

i k2:
(35)

Let k ¼ kj � 1, xi ¼ �xi in (35) and j ! þ1, we have then

lim supj!þ1riðxkji Þ � rið�xiÞ:

For i 2 V2;we have

ePk
i ðxkþ1

i Þ þ riðxkþ1
i Þ þ mk

i

2
kxkþ1

i � xk
i k2

� ePk
i ðxiÞ þ riðxiÞ þ mk

i

2
kxi � xk

i k2:
(36)

Let k ¼ kj � 1, xi ¼ �xi in (36) and j ! þ1, by the Lip-
schitz continuity of rP and Condition (P1), we have

lim supj!þ1riðxkj
i Þ � rið�xiÞ: Together with the fact that ri

is lower semi-continuous, we have limj!þ1 riðxkj
i Þ ¼

rið�xiÞ; 8i ¼ 1; 2 . . . ; N: Therefore, by the continuity of P ,
we conclude that

lim
j!þ1

P ðxkjÞ þ
XN
i¼1

riðxkj
i Þ ¼ P ð�xÞ þ

XN
i¼1

rið�xiÞ:

Condition (P4). The function H in Theorem 3.7 is a semi-
algebraic function [13], which automatically satisfies the so-
calledKLproperty according to the following theorem in [13].

Theorem 6.5. ([13]) Let f is a PLS and semi-algebraic function,
then f satisfies the KL property in domf .

APPENDIX B
PROOF OF THEOREM 3.10

Due to space limitation, we only prove the convergence
of Algorithm 2 for m ¼ 1. The proof can be easily
extended to the case of m > 1 with small modifications.
For m ¼ 1, the objective function in (14) can be rewritten
as Hðc; dÞ ¼ F ðcÞ þQðc; dÞ þGðdÞ; c 2 Rn; d 2 Rp, where
F; Q;G are defined as

F ðcÞ ¼ Pp
i¼1 FiðciÞ ¼

Pp
i¼1 �kcik0 þ dXðciÞ;

GðdÞ ¼ dUðdÞ; Qðc; dÞ ¼ 1
2 kY � dc>k2;

�
(37)

where U ¼ fd : kdk ¼ 1g and X ¼ fc : jcij � Mg. For a vector
c, let cI denote the sub-vector of c contains the entries

indexed in I. Define Qk
d ¼ Qðvk; dÞ. Then, Algorithm 2 can

be re-written as

vk 2 ProxF
2�=mkðck � 1

mk rcQðck; dkÞÞ; ð38aÞ
dkþ1 2 Prox

GþQk
d

�k
ðdkÞ; ð38bÞ

ckþ1 : ckþ1
Ic
k

¼ 0 and ckþ1
Ik

2 argmin~c2X fk
i ð~cÞ; ð38cÞ

8>><>>:
where Ik ¼ fi : vki 6¼ 0g, bY ¼ YIk and fkð~cÞ ¼ 1

2 k bY� dkþ1~c>k2.
It is noted that fk is strongly convex since kdkþ1k ¼ 1. Define

zk ¼ ðck; dkÞ and

ukþ1 ¼ kvk � ckk þ kckþ1 � vkk þ kdkþ1 � dkk:
In the next, we introduce a series of lemmas which are the
main ingredients of the proof.

Lemma B.1. Let fzkg denote the sequence generated by (38a)-
(38c). Then, there exists r > 0 such that

HðzkÞ �Hðzkþ1Þ � ru2
kþ1 (39)

1366 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 38, NO. 7, JULY 2016

Authorized licensed use limited to: Tsinghua University. Downloaded on June 14,2022 at 08:17:13 UTC from IEEE Xplore.  Restrictions apply. 



and X1
k¼1

u2
k < 1; lim

k!þ1
uk ¼ 0: (40)

Proof. By (27) and (30), the updates (38a) and (38b) imply
that there exists r1 > 0 such that

Hðck; dkÞ �Hðvk; dkÞ � r1kckþ
1
2 � ckk2;

Hðvk; dkÞ �Hðvk; dkþ1Þ � r1kdkþ1 � dkk2:
�

(41)

From (38c) and (4), we have

fkðvkIkÞ � fkðckþ1
Ik

Þ � 1

2
kvkIk � ckþ1

Ik
k2 ¼ 1

2
kckþ1 � vkk2

as kdkþ1k2 ¼ 1 and ckþ1
Ic
k

¼ vkIc
k
, which implies

Hðvk; dkþ1Þ �Hðckþ1; dkþ1Þ � 1

2
kckþ1 � vkk2:

Together with (41), we have

HðzkÞ �Hðzkþ1Þ � ru2kþ1 (42)

by the Cauchy-Schwarz inequality, where r ¼
minðr1; 1=2Þ=3. Thus, fHðZkÞg is a decreasing sequence

and HðZÞ � 0. Let �H be the limit of HðzkÞ. Telescoping
the inequality (42) gives

X1
k¼1

u2
k �

1

r
ðHðz0Þ � �HÞ < 1;

which leads to limk!þ1 uk ¼ 0. tu
Lemma B.2. Let fzkg denote the sequence generated by (38a)-

(38c). Then, there exists

wkþ1 :¼ ðwkþ1
c ; wkþ1

d Þ 2 @Hðzkþ1Þ
andM > 0, such that kwkþ1k � Mukþ1:

Proof. By (31), the scheme (38b) implies

�rdQðvk; dkþ1Þ � �kðdkþ1 � dkÞ 2 @Gðdkþ1
i Þ:

Then, we have

vkþ1
d :¼rdQðzkþ1Þ � rdQðvk; dkþ1Þ � �kðdkþ1 � dkÞ

2rdQðzkþ1Þ þ @Gðdkþ1
i Þ ¼ @dHðzkþ1Þ;

and

kvkþ1
d k � Lkckþ1 � vkk þ bkdkþ1 � dkk (43)

by the Lipschitz continuity of rQ. Additionally, we have

�ðrcQðzkÞ þ mkðvk � ckÞÞ 2 @F ðvkÞ from (38a), and

@ciF ðckþ1
i Þ ¼ @ciF ðvkÞ; 8i 2 Ick;

from (38c). So, define

vkþ1
cIc

k

:¼ @cIc
k

Qðzkþ1Þ � @cIc
k

QðzkÞ � mkðvkIc
k
� ckIc

k
ÞÞ;

then, vkþ1
cIc

k

2 @cIc
k

Hðzkþ1Þ. By the Lipschitz continuity of

rH and the boundedness of zk, there exists M1 > 0 such
that

kvkþ1
cIc

k

k � M1ukþ1: (44)

For any i 2 Ik we have

�@cif
kðckþ1

Ik
Þ 2 @ciF ðckþ1Þ;

as 0 2 @kxk0; 8x. Consequently, we have

vkþ1
cIk

:¼ @cIk
Qðzkþ1Þ � @cIk

fkðckþ1
Ik

Þ 2 @cIk
Hðzkþ1Þ:

It is easy to know that vkþ1
cIk

¼ 0: Let

vkþ1 ¼ ðvdþ1
c ;vkþ1

d Þ ¼ ðvkþ1
cIk

;vkþ1
cIc

k

;vkþ1
d Þ:

Then, from (43), (44), we have vkþ1 2 @Hðzkþ1Þ and

kvkþ1k � Mukþ1, whereM ¼ maxðL; b;M1Þ. tu
Lemma B.3. Let fzkg denote the sequence generated by (38a)-

(38c). For any convergent sub-sequence zkj ! �z ¼ ð�c; �dÞ of

fzkg, then �z is a critical point of (14).

Proof. Recall that limj!þ1 ukj ¼ 0. Thus, vkj�1 ! ĉ, zkj�1 ! ẑ
and ĉ ¼ �c; ẑ ¼ �z. From (38a), we have

bQkj�1
c ðvkj�1Þ þ F ðvkj�1Þ � bQkj�1

c ðcÞ þ F ðcÞ; (45)

where

bQk
cðcÞ ¼ hrcQðc; dkÞ; c� cki þ mk

2
kc� ckk2:

Replacing c by �c in (45) and let j ! þ1, we have

lim sup
j!þ1

F ðvkj�1Þ � F ð�cÞ;

by the Lipschitz continuity of rQ, the boundedness of

fzkg and (40). As kckjk0 � kvkj�1k0, we have

lim sup
j!þ1

F ðckjÞ � lim sup
j!þ1

F ðvkj�1Þ � F ð�cÞ:

Together with the fact that F is lower semi-continuous,

we have limj!þ1 F ðckjÞ ¼ F ð�cÞ. Since dk 2 U and Q is

continuous, limj!þ1 HðzkjÞ ¼ Hð�zÞ. From Lemma B.2,

there exists vkj 2 @HðzkjÞ such that vkj ! 0 by (40),
which means �z is a critical point of (14). The proof is
complete. tu
The next lemma [13] presents a uniformized KL property

related to KL functions which will be used to prove the
global convergence of the sequence fzkg.
Lemma B.4 ([13]). Let V be a compact set and let s be a PLS

function. Assume that s is constant on V and satisfies the KL
property at each point of V. Then, there exist � > 0, h > 0

and a concave c : ½0; h� ! Rþ with cð0Þ ¼ 0, c
0 ðsÞ > 0 for

all s 2 ð0; hÞ and c 2 C1, continuous at 0, such that for all �u
in V and all u in the following intersection:

fu : distðu;VÞ � �g \ fu : sð�uÞ < sðuÞ � sð�uÞ þ hg;

one has, c
0 ðsðuÞ � sð�uÞÞdistð0; @sðuÞÞ � 1:
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The global convergence of the sequence fzkg is estab-
lished the following theorem, whose proof is similar to that
of [13, Theorem 1].

Theorem B.5. The sequence fzkg generated by (38a)-(38c) con-
verges to a critical point ofH.

Proof. As shown in Appendix C, HðzÞ is a semi-algebraic

function and thus is a KL function. Let wðz0Þ be the set of
limit points of the sequence fzkg starting from the point

z0. By the boundedness of fzkg, wðz0Þ is a nonempty,

compact set as wðz0Þ ¼ T
q2N

S
k�qfzkg. Furthermore, as

HðzkÞ is decreasing and bounded below, there exists H

such that �H ¼ limk!þ1 HðzkÞ. Then, for any �z 2 wðz0Þ,
there exists a sub-sequence zkj converging to �z as

j ! þ1. First of all, we know HðzkjÞ converges to �H as

HðzkÞ converges to �H. From Lemma B.3, we have
�H ¼ limHðzkjÞ ¼ Hð �ZÞ. It implies that HðzÞ ¼ �H for all

z 2 wðz0Þ.
In the next, we assume HðzkÞ < Hð�zÞ. Otherwise,

assume Hðzk0Þ ¼ �H, from the decreasing property of the

sequence fzkg, we know zk ¼ zk0 for all k > k0. Then,

from Lemma B.4 with V ¼ wðz0Þ, there exists ‘, such that
for k > ‘, we have

c
0 ðHðzkÞ �Hð�zÞÞdistð0; @HðzkÞÞ � 1: (46)

From Lemma B.2, we have

c
0 ðHðzkÞ �Hð�zÞÞ � 1

M
uk; (47)

whereM > 0. Meanwhile, as c is concave, we have

cðHðzkÞ �Hð�zÞÞ � cðHðzkþ1Þ �Hð�zÞÞ
� c

0 ðHðzkÞ �Hð�zÞÞðHðzkÞ �Hðzkþ1ÞÞ: (48)

Define p;q :¼ cðHðzpÞ �Hð�zÞÞ � cðHðzqÞ �Hð�zÞ: From
lemma B.1, (47) and (48), there exists c0 > 0, such that

for k > ‘, k;kþ1 � u2
kþ1=c0uk: Thus,

2ukþ1 � uk þ c0k; kþ 1 (49)

by Cauchy-Schwartz inequality. Summing (49) over i, we
have

2ukþ1 þ
Xk
i¼lþ1

ui � u‘ þ C‘þ1;kþ1;

as~p;q þ~q;r ¼p;r. Then, for any k > ‘,

Xk
i¼‘þ1

ui � u‘ þ CcðHðz‘þ1Þ �Hð�zÞÞ:

Therefore,

X1
k¼1

kzkþ1 � zkk �
X
k¼1

uk < 1;

which implies that fzkg is a convergent sequence. Since

zkj ! �z; j ! þ1, we have zk ! �z. tu

APPENDIX C

PROOF OF COROLLARY 3.14

Let Zk :¼ ðCk;DkÞ to be the sequence generated by Algo-

rithm 3. First of all, Zk is a bounded sequence asDk 2 D and

Ck 2 C. Moreover, it can be seen that all conditions in
Assumption 3.5 are satisfied. It is noted thatH is a semi-alge-
braic function as polynomial functions are semi-algebraic,

since kL�WC>k2 þ kWk2 and kD>D� Ik2, are semi-alge-
braic, which is true as both are polynomials, D; C are semi-
algebraic set and k � k0 is semi-algebraic [13, Example 5.2]).
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