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Abstract
Although ordinary differential equations (ODEs)
provide insights for designing network architec-
tures, its relationship with the non-residual convo-
lutional neural networks (CNNs) is still unclear.
In this paper, we present a novel ODE model by
adding a damping term. It can be shown that the
proposed model can recover both a ResNet and
a CNN by adjusting an interpolation coefficient.
Therefore, the damped ODE model provides a
unified framework for the interpretation of resid-
ual and non-residual networks. The Lyapunov
analysis reveals better stability of the proposed
model, and thus yields robustness improvement of
the learned networks. Experiments on a number
of image classification benchmarks show that the
proposed model substantially improves the accu-
racy of ResNet and ResNeXt over the perturbed
inputs from both stochastic noise and adversar-
ial attack methods. Moreover, the loss landscape
analysis demonstrates the improved robustness of
our method along the attack direction.

1. Introduction
Although deep learning has achieved remarkable success
in many machine learning tasks, the theory behind it has
still remained elusive. In recent years, developing new the-
ories for deep learning has attracted increasing research
interests. One important direction is to connect deep neu-
ral networks (DNNs) with differential equations (E, 2017)
which have been largely explored in mathematics. This line
of research mainly contains three perspectives: solving high
dimensional differential equations with the help of DNNs
due to its high expressive power (Han et al., 2018), discov-
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ering a differential equation that identifies the rule of the
observed data based on the standard block of existing DNNs
(Chen et al., 2018), and designing new architectures based
on the numerical schemes of differential equations (Haber
& Ruthotto, 2017; Lu et al., 2018; Zhu et al., 2018; Chang
et al., 2018; Tao et al., 2018; Lu et al., 2019).

While each attempt in the above directions has strengthened
the theoretical understanding of deep learning, there still
remain many open questions. Among them, one impor-
tant question is what is the relationship between differential
equations and non-residual convolutional neural networks.
Most prior studies have focused on associating residual
networks (ResNets) (He et al., 2016) with differential equa-
tions (Lu et al., 2018; Chen et al., 2018), not only because
ResNets are relatively easy to optimize and achieve better
classification accuracy than CNNs, but also because the
skipping connections among layers can be easily induced by
the discretization of difference operators in differential equa-
tions. However, residual neural networks only account for a
small fraction of the entire neural network family and have
their own limitations. For example, Su et al. (2018) indicate
that ResNets are more sensitive to the perturbation of the
inputs and the shallow CNNs. As a result, it is important to
move a further step to investigate the relationship between
differential equations and non-residual convolutional neural
networks.

In this paper, we present a new ordinary differential equation
(ODE) that interpolates non-residual and residual CNNs.
The ODE is controlled by an interpolation parameter λ rang-
ing from 0 to ∞. It is equivalent to a residual network
when λ is 0. On the contrary, the ODE amounts to a non-
residual network when λ approaches to∞. Hence, our work
provides a unified framework for understanding both non-
residual and residual neural networks from the perspective
of ODE. The interpolation is able to improve over both non-
residual and residual networks. Compared with non-residual
networks, our ODE is much easier to optimize, especially
for deep architectures. Compared with residual networks,
we use the Lyapunov analysis to show that the interpolation
results in improved robustness. To achieve the interpolation,
a key difference of our work from existing methods is to dis-
cretize integral operators instead of difference operators to
obtain neural networks. Experiments on image classification
benchmarks show that our approach substantially improves
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the accuracies of ResNet (He et al., 2016) and ResNeXt
(Xie et al., 2017) when inputs are perturbed by both stochas-
tic noise and adversarial attack methods. Furthermore, the
visualization of the loss landscape of our model validates
our Lyaponov analysis.

2. Related Work
Interpreting machine learning from the perspective of dy-
namic systems was firstly advocated by E (2017) and Haber
& Ruthotto (2017). Recently, there have been many ex-
citing works in this direction (Lu et al., 2018; Chen et al.,
2018). We briefly review previous methods closely related
to architecture design and model robustness.

ODE inspired architecture design Inspired by the rela-
tionship between ODE and neural networks, Lu et al. (2018)
use a linear multi-step method to improve the model capac-
ity of ResNet-like networks. Zhu et al. (2018) utilize the
Runge-Kutta method to interpret and improve DenseNets
and CliqueNets. Chang et al. (2018) and Haber & Ruthotto
(2017) leverage the leap-frog method to design novel re-
versible neural networks. Tao et al. (2018) propose to model
non-local neural networks with non-local differential equa-
tions. Lu et al. (2019) design a novel Tranformer-like archi-
tecture with Strang-Marchuk splitting scheme. Chen et al.
(2018) show that blocks of a neural network can be instan-
tiated by arbitrary ODE solvers, in which parameters can
be directly optimized with the adjoint sensitivity method.
Dupont et al. (2019) improve the expressive power of a neu-
ral ODE by mitigating the trajectory intersecting problem.
Compared to the above works, our work provides a new
ODE that unifies the analysis of residual and non-residual
networks which leads to an interpolated architecture. The
experiments validate the advantages of the proposed method
using this framework.

ODE and model robustness A number of previous meth-
ods have also been proposed to improve adversarial robust-
ness from the perspective of ODE. Zhang et al. (2019b)
propose to use a smaller step factor in the Euler method
for ResNet. Reshniak & Webster (2019) utilize an implicit
discretization scheme for ResNet. Hanshu et al. (2019) pro-
pose to train a time-invariant neural ODE regularized by
steady-state loss. Liu et al. (2019) and Wang et al. (2019)
introduce stochastic noise to enhance its robustness inspired
by stochastic differential equations. The aforementioned
works have concentrated on improving numerical discretiza-
tion schemes or introducing stochasticity for ODE modeling
to gain robustness. From the Lyapunov stability perspec-
tive, Chang et al. (2019) propose to use anti-symmetric
weight matrices to parametrize an RNN, which enhances
its long-term dependency. Zhang et al. (2019a) also accel-
erate adversarial training by recasting it as a differential
game from an ODE perspective. In this work, we provide

the Lyaponov analysis of the proposed ODE model which
shows the robustness improvements over ResNets in terms
of local stability.

3. Methodology
In this section, we first introduce the background of the rela-
tionship between ODE and ResNets, and then the proposed
ODE model and its stability analysis is present.

3.1. Background

Considering the ordinary differential equation:

dx(t)

dt
= f(x(t), t), x(0) = x0, (1)

where x : [0, T ] → Rd represents the state of the system.
Given the discretization step ∆t and define tn = n∆t, the
forward Euler method of Eq. (1) becomes

x(tn+1) = x(tn) + ∆tf(x(tn), tn). (2)

Let xn = x(tn), ∆t = 1, it recovers a residual block:

xn+1 = xn + fn(xn), (3)

and fn is the n-th layer operation in ResNets. Thus, the
output of network is equivalent to the evolution of the state
variable at terminal time T , i.e. x(T ) = xN is the output of
last layer in a ResNet if assuming N = T/∆t.

The dynamic formulation of ResNets (see Eq. (1)) was ini-
tially established in (E, 2017). It inspired many interesting
neural network architectures by using different discretiza-
tion methods the first order derivative in Eq. (1) such as
linear multi-step network (Lu et al., 2018) and Runge-Kutta
network (Zhu et al., 2018). From Eq. (1), the skip connec-
tion from the current step xn to the next step estimation
xn+1 always exists no matter which kind of discretization is
applied. Thus, a feedforward CNN without skip connection
can not be directly explained under this framework which
inspired current work. In the next section, we introduce a
damped ODE which bridges the non-residual CNNs and
ResNets.

3.2. The Proposed ODE Model

Based on the ODE formulation , we add a damping term to
the model (1) and leads to the following model:

dx(t)

dt
= −λx(t) + ρ(λ)f(x(t), t), (4)

starting from x(0) = x0. The constant λ ∈ [0,+∞) is the
called interpolation coefficient and ρ : [0,+∞) 7→ [0,+∞)
is the weight function. The following proposition shows
that the model shown in Eq. (4) has a closed form solution.
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Proposition 3.1. For any T > 0, the solution of the ODE
(4) is

x(T ) = e−λT

(
x0 + ρ(λ)

∫ T

0

eλtf(x(t), t)dt

)
. (5)

Proof. Multiplying both sides by eλt, it has

d(eλtx(t))

dt
= eλt

dx(t)

dt
+ λeλtx(t) = ρ(λ)eλtf(x(t), t).

Integrating within [0, T ] yields

eλTx(T )− x(0) = ρ(λ)

∫ T

0

eλtf(x(t), t)dt, (6)

which induces the equality (5).

Following from the proposition 3.1 and the notations in
section 3.1, the iterative formula of xn is

xn+1 = e−λ∆txn + e−λtn+1ρ(λ)

∫ tn+1

tn

eλtf(x(t), t)dt.

(7)
Assuming f(x(t), t) = f(xn, tn) for all t ∈ [tn, tn+1), the
iterative scheme in Eq. (7) reduces to

xn+1 = e−λ∆txn +
1− e−λ∆t

λ
ρ(λ)fn(xn), (8)

where fn(xn) = f(x(tn), tn) is the convolutions in n-th
layer. Now, we are ready to analyze Eq. (8) by choosing an
appropriate weight function ρ(λ). When the weight function
ρ(λ) satisfies

ρ(λ)→ 1, λ→ 0+ and ρ(λ) ∼ λ, λ→ +∞, (9)

the output of n-th layer is

xn+1 =

{
xn + fn(xn), if λ→ 0+,

∆tfn(xn), if λ→ +∞.
(10)

The above equation clearly shows that our model recovers
ResNets when the interpolation parameter λ approaches 0
and the non-residual CNNs when it approaches +∞. There-
fore, the ODE shown in Eq. (4) bridges the residual and
non-residual CNNs and inspires the design of new architec-
tures of neural networks.

3.3. Interpolated Network Design

Based on the unified ODE model shown in Eq. (4), two
types of ρ(λ) are chosen and the corresponding network
architectures are proposed. Considering the case when λ
is small, we choose ρ(λ) = 1 and substitute the damping
factor e−λ∆t by its first order approximation:

e−λ∆t ≈ 1− λ∆t. (11)

Then, from Eq. (8), the output of n-th layer is

xn+1 = (1− λ∆t)xn + ∆tfn(xn). (12)

To guarantee the positiveness of λ, we add the ReLU func-
tion to the interpolation parameter λ and absorb the ∆t into
it. Thus the n-th layer of the network is

xn+1 = (1− ReLU(λn))xn + fn(xn). (13)

Each λn is a trainable parameter for the n-th layer. It is
known that the forward Euler discretization is stable when
λ∆t ∈ (0, 2), i.e. λ ∈ (0, 2/∆t). As ∆t in a continuous-
time dynamic system is small, the stable range of λ can be
viewed as a relaxation of (0,+∞), which coincides with
the boundary condition in Eq. (9).

The second choice of the weight function is ρ(λ) = λ+ 1
which satisfies the assumption in Eq. (9). Using the same
approximation in Eq. 11, the scheme in Eq. (7) reduces to

xn+1 = (1− λ∆t)xn + (1 + λ∆t)fn(xn). (14)

Similar as the first choice, the second interpolated network
is given by

xn+1 =(1− ReLU(λn))xn + (1 + ReLU(λn))fn(xn).
(15)

It is easy to know the interpolated networks shown in Eq.
(13) and (15) recover a non-residual CNN if λn = 1 and
a Residual network if λn = 0. As claimed in (He et al.,
2016; Li et al., 2018), the identity shortcut connection helps
mitigate gradient vanish problem and makes the loss land-
scape more smooth. It is natural that when λ → 0 in Eq.
(13), the optimization process of the interpolated model is
much better than the non-residual CNN case with the same
number of layers.

3.4. Interpolated Network Improves Robustness

Despite the high accuracy of ResNets, it is sensitive to the
small perturbation of inputs due to the existence of adver-
sarial examples. That is, for a fragile neural network, minor
perturbation can accumulate dramatically with respect to
layer propagation, resulting in giant shift of prediction. In
this section, we show the improvment of the proposed inter-
polated networks over ResNets. The added damping term
in our model weakens the amplitude of the solution of the
original ODE. As a result, adding a damping term to the
ODE model damps the error propagation process of ResNet,
which improves model robustness.

In the following context, we show that robustness improve-
ment of our proposed networks by using the stability analy-
sis of the ODE.
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Definition 3.2. Let x∗ be an equilibrium point of the ODE
model (1). Then x∗ is called asymptotically locally stable
if there exists δ > 0 such that limt→+∞ ‖xt − x∗‖ = 0 for
all starting points x0 within ‖x0 − x∗‖ ≤ δ.

Therefore, the perturbation around equilibrium x∗ does not
change the output the network if x∗ is asymptotically locally
stable. The next proposition from (Lyapunov, 1992; Chen,
2001) presents a classical method that checks the stability
of nonlinear system around the equilibrium when f is time
invariant. It is noted that this time invariant assumption may
hold as the learned filters in the deep layers converges.

Proposition 3.3. The equilibrium x∗ of the ODE model

dx

dt
= f(x(t)) (16)

is asymptotically locally stable if and only if Re(ν) < 0
where ν is the eigenvalue of ∂xf(x∗) which is the Jacobi
matrix of f at x∗.

Considering the damped ODE

dx

dt
= −λx(t) + ρ(λ)f(x(t)), (17)

the Jacobi matrix at the equilibrium x∗ is

Jλ(x∗) = ρ(λ)∂xf(x∗)− λ.

Then, the eigenvalues ν̂ of Jλ(x∗) are

ρ(λ)ν − λ (18)

where ν is the eigenvalue of ∂xf(x∗). When ρ(λ) = 1, we
know

Re(ν̂) = Re(ν)− λ < Re(ν).

By choosing positive λ properly, we know the ODE in Eq.
(17) is asymptotically locally stable at x∗. In general, we
know

Re(ν̂) < Re(ν)⇔ ρ(λ) < 1 +
λ

Re(ν)
,

which coincides with our assumption in Eq. (9). The above
analysis shows that the stationary point of our proposed
damped ODE model is more likely to be locally stable, and
thus improve the its robustness when the input has be per-
turbed. In the experiments, our loss landscape visualization
further validates this analysis.

4. Experiments
4.1. Setup

We evaluate our proposed model on CIFAR-10 and CIFAR-
100 benchmarks, training and testing with the originally

given dataset. Following (He et al., 2016), we adopt the
simple data augmentation technique: padding 4 pixels on
each side of the image and sampling a 32 × 32 crop from
it or its horizontal flip. For ResNet experiments, we select
the pre-activated version of ResNet-110 and ResNet-164 as
baseline architectures. For ResNeXt experiments, we select
ResNeXt-29, 8 × 64d as baseline from (Xie et al., 2017).

We apply Eq. (13) to ResNet-110, ResNet-164 and
ResNeXt, and refer to them as In-ResNet-110, In-ResNet-
164, and In-ResNeXt. We also apply Eq. (15) to ResNet-110
and ResNet-164, referring to them as λ-In-ResNet-110, λ-
In-ResNet-164, and λ-In-ResNeXt.

The parameters λn of our interpolation models are ini-
tialized by randomly sampling from U [0.2, 0.25] in (λ-
)In-ResNet-110 and (λ-)In-ResNeXt, and U [0.1, 0.2] in
In-ResNet-164. The initialization of other parameters in
ResNet and ResNeXt follows (He et al., 2016) and (Xie
et al., 2017), respectively.

For all of the experiments, we use SGD optimizer with batch
size = 128. For ResNet and (λ-)In-ResNet experiments,
we train for 160 (300) epochs for the CIFAR-10 (-100)
benchmark; the learning rate starts with 0.1, and is divided
it by 10 at 80 (150) and 120 (225) epochs. We apply weight
decay of 1e-4 and momentum of 0.9. For ResNeXt and
(λ-)In-ResNeXt experiments, the learning rate starts at 0.05,
and is divided it by 10 at 150 and 225 epochs. We apply
weight decay of 5e-4 and momentum of 0.9.

We focus on two types of performances: optimization dif-
ficulty and model robustness. For optimization difficulty,
we test our model on the CIFAR testing dataset. For model
robustness, we evaluate the accuracy of our model over the
perturbed inputs, details of which are given in the next sec-
tion. For each experiment, we conduct 5 runs with different
random seeds and report the averaged result to reduce the
impact of random variations. The standard deviations of
reported results can be found in Appendix D.

4.2. Measuring Robustness

In this section we introduce the two types of perturbation
methods that we use: stochastic noise perturbations and
adversarial attacks. For stochastic noise, we leverage the
stochastic noise groups in CIFAR-10-C and CIFAR-100-C
dataset (Hendrycks & Dietterich, 2019) for testing. The
four groups of stochastic noise are impulse noise, speckle
noise, Gaussian noise, and shot noise. For adversarial at-
tacks, we consider three classical methods: Fast Gradient
Sign Method (FGSM), Iterated Fast Gradient Sign Method
(IFGSM), and Projected Gradient Descent (PGD). For a
given data point (x, y):

• FGSM induces the adversarial example x′ by moving
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Benchmark Model Impulse Speckle Gaussian Shot Avg.

CIFAR-10

ResNet-110 56.38 59.12 43.82 55.47 53.70
In-ResNet-110 66.32 76.81 71.01 76.55 72.67
λ-In-ResNet-110 65.67 76.59 70.72 76.40 72.35
ResNet-164 60.88 61.77 45.66 57.75 56.51
In-ResNet-164 67.95 75.96 68.95 75.31 72.05
λ-In-ResNet-164 65.72 76.27 69.74 75.80 71.88
ResNeXt 55.12 58.21 39.14 52.06 51.13
In-ResNeXt 55.26 59.87 39.75 54.12 52.25
λ-In-ResNeXt 51.27 57.20 37.23 51.25 49.24

CIFAR-100

ResNet-110 25.36 29.69 20.16 27.81 25.76
In-ResNet-110 32.00 38.81 30.00 37.71 34.63
λ-In-ResNet-110 32.15 38.77 30.02 37.82 34.69
ResNet-164 27.55 30.90 20.40 28.97 26.95
In-ResNet-164 33.05 39.50 29.77 38.17 35.12
λ-In-ResNet-164 32.92 38.79 29.08 37.53 34.58
ResNeXt 26.83 28.29 17.09 25.67 24.47
In-ResNeXt 25.85 29.90 18.59 27.72 25.52
λ-In-ResNeXt 25.33 31.18 19.88 28.75 26.29

Table 1. Accuracy over the stochastic noise groups from CIFAR-10-C and CIFAR-100-C datasets, corresponded with perturbed CIFAR-10
and CIFAR-100 images from four types of stochastic noise, respectively. All of the results reported are averaged from 5 runs.

Model CIFAR-10 CIFAR-100
ResNet-110 93.58 72.73
In-ResNet-110 92.28 70.55
λ-In-ResNet-110 92.15 70.39
ResNet-164 94.46 76.06
In-ResNet-164 92.69 72.94
λ-In-ResNet-164 92.55 73.22
ResNeXt 96.35 81.63
In-ResNeXt 96.48 81.64
λ-In-ResNeXt 96.22 81.29

Table 2. Accuracy over CIFAR-10 and CIFAR-100 testing data,
representing optimization difficulty of each model. All of the
results reported are averaged from 5 runs.

with step size of ε at each component of the gradient
descent direction, namely

x′ = x + ε · sign(∇xL(x, y)). (19)

• IFGSM performs FGSM with step size of α, and clips
the perturbed images within [x− ε,x + ε] iteratively,
namely

x(m+1) = Clipx,ε

{
x(m) + α · sign(∇xL(x(m), y))

}
,

(20)
where m = 1, 2, · · · ,M , x(0) = x, and x(M) is the
induced adversarial image. In our experiments, we set
α = 2/255 and iteration times M = 20.

• PGD attack is the same with IFGSM, except that the
x(0) = x + δ with δ ∼ U [−ε, ε].

Figure 1. Learned interpolation coefficients in In-ResNet-110 and
In-ResNet-164 models trained on CIFAR-10 benchmarks.

4.3. Results

Optimization difficulty Table 2 shows the results of In-
ResNet-110 and In-ResNet-164 as well as the baselines over
CIFAR-10 and CIFAR-100 testing set. On one hand, it
can be seen that for (λ-)In-ResNet-110 and (λ-)In-ResNet-
164, there is accuracy drop within 3 percent compared with
the ResNet baselines. This agrees with the fact that the
interpolation model may be harder to optimize than ResNet.
However, the performance of the interpolation models are
still much better than that of the deep non-residual CNN
models.

Robustness against stochastic noise Table 1 shows the ac-
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Benchmark Model FGSM IFGSM PGD
1/255 2/255 4/255 1/255 2/255 4/255 1/255 2/255 4/255

CIFAR-10

ResNet-110 58.59 41.48 29.45 39.45 5.93 0.06 38.91 5.60 0.06
In-ResNet-110 71.97 55.24 38.26 65.70 32.05 5.14 65.66 31.74 5.01
λ-In-ResNet-110 71.06 50.84 30.05 65.93 30.72 3.52 65.81 30.45 3.41
ResNet-164 63.32 44.37 30.21 46.79 8.19 0.09 46.43 7.77 0.07
In-ResNet-164 70.88 51.84 32.81 64.34 27.43 2.27 64.20 26.95 2.15
λ-In-ResNet-164 70.01 50.53 31.77 63.33 26.50 2.01 63.19 26.04 1.91

CIFAR-100

ResNet-110 28.01 18.74 14.12 15.05 2.18 0.28 14.69 2.11 0.26
In-ResNet-110 32.24 18.74 11.84 23.44 4.92 0.55 23.22 4.81 0.53
λ-In-ResNet-110 32.79 18.40 11.24 24.17 5.17 0.53 24.03 5.00 0.51
ResNet-164 35.15 23.58 17.04 21.23 3.45 0.29 20.78 3.31 0.22
In-ResNet-164 37.21 22.30 13.93 28.05 6.59 0.73 27.75 6.34 0.67
λ-In-ResNet-164 37.37 22.50 13.94 28.25 6.64 0.69 28.03 6.46 0.64

Table 3. Accuracy over perturbed CIFAR-10 and CIFAR-100 images from FGSM, IFGSM, and PGD adversarial attacks with different
attack radii. All of the results reported are averaged over 5 runs.

curacies of all models over the perturbed CIFAR-10 and
CIFAR-100 images from four types of stochastic noise.
Our In-ResNet-110 and In-ResNet-164 models achieve sub-
stantial improvement over the ResNet-110 and ResNet-164
baselines. For perturbed CIFAR-10 images, accuracy of
(λ-)In-ResNet-110 and (λ-)In-ResNet-164 are over 15 %
higher than ResNet-110 and ResNet-164 baselines on av-
erage. For perturbed CIFAR-100 images, accuracy of (λ-
)In-ResNet-110 and (λ-)In-ResNet-164 are over 5% higher
than ResNet-110 and ResNet-164 baselines on average. In-
ResNeXt models improves the accuracy of the perturbed
images over ResNeXt as well.

Robustness against adversarial attacks Table 3 shows the
accuracies of all models over the perturbed CIFAR-10 and
CIFAR-100 images from FGSM, IFGSM, and PGD attacks
at different attack radii of 1/255, 2/255, and 4/255. Most
of the robustness results of our (λ-)In-ResNet-110 and (λ-
)In-ResNet-164 models are higher than those of the ResNet-
110 and ResNet-164 models, which is empirically consis-
tent with our Lyapunov analysis. Especially on CIFAR-10
benchmark, our In-ResNet-110 and In-ResNet-164 models
obtain significant robustness improvement against the strong
IFGSM and PGD attacks at the radii of 1/255 and 2/255.

Learned interpolation coefficients To get a better under-
standing of the interpolation model, we plot the interpolation
coefficients {ReLU(λn)} in In-ResNet-110 and In-ResNet-
164 models trained on CIFAR-10 benchmarks. As shown
in Fig 1, most of the interpolation coefficients lie within
the range [0, 1], suggesting an interpolating behaviour. Ac-
cording to Eq. (13), interpolation coefficients lying within
[1, 2] represent negative skip connections, with the absolute
weight scale of less than 1. Very few of the interpolation co-
efficients are larger than 2, which is in line with the stability
range of forward Euler scheme. In general, 79.6%(72.2%)

of λn’s in In-ResNet-110(164) are larger than 0.01, which
accounts for the significance in robustness. More visualiza-
tions of learned interpolation coefficients can be found in
Appendix A.

Loss landscape analysis As is given by the Lyapunov anal-
ysis, the robustness improvement is theoretically provided
in that the damped models enjoy more locally stable points
than the original ones. To further verify this, we visual-
ize the loss landscapes of In-ResNet-110 and ResNet-110
models trained on CIFAR-10 benchmark along the attack
direction. For a instance (x, y), we plot the loss function
L(x, y) of along the FGSM attack direction. We also select
a random orthogonal direction from the FGSM attack one
and plot the model predictions of each grids. The unit of
each axis in the figures is at the scale of 1/255. To better
analyze model robustness, we select the data instance (x, y)
for the CIFAR-10-C dataset, namely (x

′
, y), where x

′
is x

with injected stochastic noise.

Figure 2 illustrates the loss landscapes of the ResNet-110
and In-ResNet-110 models along the FGSM attack direction.
We select two input data instances: for Figure 2-{(a)-(c)},
the input is the 3-th image in the shot noise group of the
CIFAR-10-C dataset, the ground-truth label of which is
ship; for Figure 2-{(d)-(f)}, the input is the 8-th image in
the speckle noise group of the CIFAR-10-C dataset, the
ground-truth label of which is horse. For the first input
example, ResNet-110 and In-ResNet-110 both make the
correct prediction; for the second input example, they both
make the wrong one. It can be seen that the added damping
term have damped the loss landscape along the FGSM attack
direction, resulting in a much weaker amplitude (the first
example), or even turned the amplifying loss landscape
of ResNet-110 into a damping one of In-ResNet-110 (the
second example). Whether ResNet-110 and In-ResNet-110



Interpolation between Residual and Non-Residual Networks

Model Acc. noise FGSM IFGSM PGD
ResNet-110 93.58 53.70 41.48 5.93 5.60
In-ResNet-110 92.28 72.67 55.24 32.05 31.74
In-ResNet-sig-110 93.49 55.04 44.65 6.29 5.94
In-ResNet-gating-110 93.46 54.53 41.25 5.65 5.33
In-ResNet-gating-sig-110 90.68 68.04 46.17 21.89 21.65

Table 4. Accuracy and robustness of In-ResNet-110, In-ResNet-sig-110, In-ResNet-gating-110, and In-ResNet-gating-sig-110 models, as
well as the ResNet-110 baseline on CIFAR-10 benchmarks. “Acc.” denotes the accuracy over CIFAR-10 testing set. “noise” denotes the
average accuracy of the four stochastic noise groups from CIFAR-10-C. “FGSM”, “IFGSM”, and “PGD” represent accuracy under the
corresponding attacks at the attack radius of 2/255. All of the results reported are averaged over 5 runs.

both make the correct prediction or the wrong one, it is clear
that the In-ResNet-110 model enjoys better robustness than
ResNet-110, which agrees with our Lyapunov analysis that
the damping term has introduced more locally stable points.

4.4. Comparison among In-ResNet Variants

While Eq. (13) depicts the In-ResNet structure, in this
section, we propose several variants of In-ResNet and com-
pare their performances. To facilitate the discussion, the
In-ResNet can be written in the general form:

xn+1 = (1− act(d(xn)))xn + ∆tfn(xn), (21)

where d(xn) is the function determining the interpolation
coefficients. act is the activation function. For In-ResNet,
the d(xn) is a learnable scalar parameter λn; act is ReLU
function. We propose several In-ResNet variants:

• d(xn) = λn, act = sigmoid: we replace the acti-
vation function to be sigmoid, which restricts the in-
terpolation coefficients to be within [0, 1], and thus
guarantees that the learned model is an interpolation.
We refer to it as In-ResNet-sig.

• d(xn) = Wdxn + bd, act = ReLU: we let the learn-
able scalar parameters determined by a linear transfor-
mation from input xn, yielding a gating mechanism.
We refer to it as In-ResNet-gating.

• d(xn) = Wdxn + bd, act = sigmoid: based on the
previous variant, we further replace the activation func-
tion to be sigmoid. It is noteworthy that this variant is
the shortcut-only gating mechanism discussed in (He
et al., 2016). We refer to it as In-ResNet-gating-sig.

We use In-ResNet-110 as the basic In-ResNet model and
experiment on CIFAR-10 benchmark to compare their per-
formance. The accuracy and robustness results are reported
averagely from 5 runs, shown in Table 4. We elaborately
tune the initialization intervals and report the model with the
largest sum of the accuracy over both the CIFAR-10 testing
set and the noise groups in the CIFAR-10-C dataset.

It can be seen that In-ResNet-110 leads to the largest ro-
bustness improvements over ResNet-110 baseline, with
a relatively small accuracy drop. The In-ResNet-sig-110
model achieves better accuracy result than In-ResNet-110,
however, its performance on robustness improvements are
marginal. This is because the learned interpolation coeffi-
cients in In-ResNet-sig-110 are close to 0, resulting in nearly
identity skip-connections. Similarly, the performance of In-
ResNet-gating-110 is very close to ResNet-110 baseline
due to the degeneration of its damped skip-connections.
The In-ResNet-gating-sig-110 model also improves over
the ResNet-110 baseline with a large margin in terms of
robustness performance. The improvement, however, is less
significant than our In-ResNet-110 model. The accuracy
of the In-ResNet-gating-sig-110 model also lags behind In-
ResNet-110, which may attribute to the extra optimization
difficulty introduced by the gating mechanism.

4.5. Trade-off between Optimization and Robustness

As is shown in Table 2, while (λ-)In-ResNet enjoys bet-
ter robustness, it suffers from optimization difficulty: an
accuracy degeneration around 2% is caused by our (λ-)In-
ResNet model. In this section, we show that the initializa-
tion of λn is of great importance to the optimization process.
We use In-ResNet-110 model and λ-In-ResNet-110 model
trained on CIFAR-10 benchmark as the basic model, initial-
izing λn by randomly sampling from U [x, y]. For the basic
model, we have that U [x, y] = U [0.2, 0.25]. We try the fol-
lowing initialization schemes as well: U [x, y] = U [0, 0.1],
U [0.1, 0.2], U [0.2, 0.25], U [0.25, 0.3], and U [0.3, 0.4]. The
accuracy and robustness results are reported averagely from
5 runs, shown in Table 5.

From the experimental results, we can see that the perfor-
mance of (λ-)In-ResNet is sensitive to the initialization of
λn. On one hand, as the initialization becomes larger, the
model robustness goes up. This agrees with our Lyapunov
analysis, as the larger initialization of λn’s tends to help
model to converge to the larger final λn’s, yielding larger
damping terms and better robustness. One the other hand,
larger initialization leads to worse accuracy results. Espe-
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(a) Loss landscape. (b) ResNet-110 predictions (c) In-ResNet-110 predictions

(d) Loss landscape. (e) ResNet-110 predictions (f) In-ResNet-110 predictions

Figure 2. The input data instance is the 3-th/8-th image in the shot/speckle noise group of the CIFAR-10-C dataset for (a)-(c)/(d)-(f), the
ground truth label of which is ship/horse. For (a)-(c)/(d)-(f), ResNet-110 and In-ResNet-110 both make the correct / wrong prediction.
(a) and (c) depict the loss landscape of ResNet-110 and In-ResNet-110 along the FGSM attack direction. {(b) and (e)} / {(c) and (f)}
illustrate model predictions of {ResNet-110} / {In-ResNet-110} at each grids determined by the FGSM attack direction and a random
orthogonal direction.

Model Initialization Acc. noise FGSM IFGSM PGD
ResNet - 93.58 53.70 41.48 5.93 5.60

U [0.00, 0.10] 93.51 55.15 46.74 8.39 7.96
U [0.10, 0.20] 93.25 62.88 49.58 16.89 16.46

In-ResNet U [0.20, 0.25] 92.28 72.67 55.24 32.05 31.74
U [0.25, 0.30] 91.63 76.20 55.79 36.53 36.28
U [0.30, 0.40] 90.62 79.35 55.95 41.07 40.84
U [0.00, 0.10] 93.41 54.18 42.28 6.78 6.48
U [0.10, 0.20] 92.86 63.58 46.07 16.99 16.60

λ-In-ResNet U [0.20, 0.25] 92.15 72.35 50.84 30.72 30.45
U [0.25, 0.30] 91.30 75.65 53.29 36.90 36.74
U [0.30, 0.40] 90.17 79.66 55.03 41.06 40.94

Table 5. Accuracy and robustness results of In-ResNet-110 and λ-In-ResNet-110 with different initialization schemes. “Acc.” denotes
the accuracy over CIFAR-10 testing set. “noise” denotes the average accuracy of the four stochastic noise groups from CIFAR-10-C.
“FGSM”, “IFGSM”, and “PGD” represent model accuracy under the corresponding attacks at the radius of 2/255. All of the results
reported are averaged over 5 runs except for U [0.3, 0.4]: they are averaged over 4(2) runs, as 1(3) out of 5 runs for In-ResNet-110
(λ-In-ResNet-110) failed with a final accuracy of 10% on CIFAR-10 test set.
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Model Acc. noise FGSM IFGSM PGD
ResNet-110 93.58 53.70 41.48 5.93 5.60
ResNet-110, ens 95.03 55.70 43.99 6.26 5.93
In-ResNet-110 92.28 72.67 55.24 32.05 31.74
In-ResNet-110, ens 94.03 75.86 58.42 34.44 34.03
λ-In-ResNet-110 92.15 72.35 50.84 30.72 30.45
λ-In-ResNet-110, ens 94.00 75.29 53.66 32.95 32.77
ResNet-164 94.46 56.51 44.37 8.19 7.77
ResNet-164, ens 95.44 58.76 46.54 8.53 8.14
In-ResNet-164 92.69 72.05 51.84 27.43 26.95
In-ResNet-164, ens 94.26 75.26 54.72 28.97 28.51
λ-In-ResNet-164 92.55 71.88 50.53 26.50 26.04
λ-In-ResNet-164, ens 94.20 74.97 53.17 27.74 27.30

Table 6. Comparison between the accuracy and robustness results of the ensemble model over 5 different runs and those of the single
model (scores are averaged). “Acc.” denotes the accuracy over CIFAR-10 testing set. “noise” denotes the average accuracy of the four
stochastic noise groups from CIFAR-10-C. “FGSM”, “IFGSM”, and “PGD” represent model accuracy under the corresponding attacks at
the radius of 2/255.

Figure 3. The accuracy improvements over single models for the
ensemble ResNet-110, In-ResNet-110 and λ-In-ResNet-110 over
CIFAR-10 dataset. Both of the ensemble of our models have
more significant accuracy improvements than the ensemble of the
baseline ResNet-110 model.

cially for U [0.30, 0.40], 1(3) out of 5 runs of In-ResNet-110
(λ-In-ResNet-110) fails the optimization with a final accu-
racy of 10%. This can be interpreted that the damped short-
cuts hamper information propagation and lead to optimiza-
tion difficulty (He et al., 2016). More results on CIFAR-100
benchmark can be found in Appendix B.

4.6. Effect of Model Ensemble

It is known that an ensemble model is more robust than a
single model (Wang et al., 2019). To further improve ac-
curacy and robustness, we perform model ensemble over
the 5 different runs of baseline and our models. Table 6
shows the comparison between ensemble models and single
models for ResNet-110, In-ResNet-110 and λ-ResNet-110

over CIFAR-10 dataset. It can be seen that all of the en-
semble models are more robust and more accurate than the
corresponding single models.

We also plot the accuracy improvements over single mod-
els for the ensemble ResNet-110, In-ResNet-110 and λ-In-
ResNet-110. As shown in 3, both of the ensemble of our
models have more significant accuracy improvements than
the ensemble of the baseline ResNet-110 model. This can
be attributed to the performance difference among different
runs of our model due to optimization difficulty. More re-
sults and visualizations of the effect of ensemble method
can be found in Appendix C.

5. Conclusion
While the relationship between ODEs and non-residual net-
works remains unclear, in this paper, we present a novel
ODE model by adding a damping term. By adjusting the
interpolation coefficient, the proposed model unifies the
interpretation of both residual and non-residual networks.
Lyapunov analysis and experimental results on CIFAR-10
and CIFAR-100 benchmarks reveals better robustness of the
proposed interpolated networks against both stochastic noise
and several adversarial attack methods. Loss landscape anal-
ysis reveals the improved robustness of our method along
the attack direction. Furthermore, experiments show that
the performance of proposed model is sensitive to the ini-
tialization of the interpolation coefficients, demonstrating
trade-off between optimization difficulty and robustness.
The significance of the design of interpolated networks is
shown by comparing several model variants. Future work
includes determining the interpolated coefficients as a black-
box process and leveraging data augmentation techniques
to improve our models.
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A. Visualization of Learned Interpolation Coefficients
Here we provide more visualizations of learned interpolation coefficients in (λ-)In-ResNet-110 and (λ-)In-ResNet-164
trained on CIFAR-10 and CIFAR-100 dataset. Figure 4 illustrates the coefficients in λ-In-ResNet-110 and λ-In-ResNet-164
models trained on CIFAR-10 benchmarks, and Figure 5 for In-ResNet-110 and In-ResNet-164 on CIFAR-100, Figure 6 for
λ-In-ResNet-110 and λ-In-ResNet-164 on CIFAR-100.

Figure 4. Learned interpolation coefficients in λ-In-ResNet-110 and λ-In-ResNet-164 models trained on CIFAR-10 benchmarks.

Figure 5. Learned interpolation coefficients in In-ResNet-110 and In-ResNet-164 models trained on CIFAR-100 benchmarks.
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Figure 6. Learned interpolation coefficients in λ-In-ResNet-110 and λ-In-ResNet-164 models trained on CIFAR-100 benchmarks.

B. Tradeoff between Optimization and Robustness - Results on CIFAR-100

Model Initialization Acc. noise FGSM IFGSM PGD
ResNet - 72.73 25.76 18.74 2.18 2.11

U [0.00, 0.10] 72.53 27.07 19.51 2.68 2.57
U [0.10, 0.20] 71.02 32.24 19.30 4.60 4.38

In-ResNet U [0.20, 0.25] 70.55 34.63 18.74 4.92 4.81
U [0.25, 0.30] 69.30 37.90 18.96 6.97 6.86
U [0.30, 0.40] 68.13 39.26 19.47 8.03 7.97
U [0.00, 0.10] 72.27 27.41 18.94 2.69 2.58
U [0.10, 0.20] 71.29 31.99 18.24 4.11 3.97

λ-In-ResNet U [0.20, 0.25] 70.39 34.69 18.40 5.17 5.00
U [0.25, 0.30] 68.87 37.07 18.37 6.43 6.28
U [0.30, 0.40] 68.31 38.56 18.75 6.62 6.47

Table 7. Accuracy and robustness results of In-ResNet-110 and λ-In-ResNet-110 with different initialization schemes. “Acc.” denotes
the accuracy over CIFAR-100 testing set. “noise” denotes the average accuracy of the four stochastic noise groups from CIFAR-100-C.
“FGSM”, “IFGSM”, and “PGD” represent model accuracy under the corresponding attacks at the radius of 4/255. All of the results
reported are averaged over 5 runs except for U [0.3, 0.4]: they are averaged over 3(2) runs, as 2(3) out of 5 runs for In-ResNet-110
(λ-In-ResNet-110) failed with a final accuracy of 1% on CIFAR-100 test set.

In Table 5, we discussed about accuracy and robustness results of In-ResNet-110 and λ-In-ResNet-110 with different
initialization schemes on CIFAR-10. Here we provide similar analysis of In-ResNet-110 and λ-In-ResNet-110 on CIFAR-
100. Table 7 depicts same phenomenon as original Table 5 does: as the initialization of interpolation coefficients becomes
larger, the model gradually becomes non-residual, accuracy drops and robustness rises.

C. Effect of the Ensemble Method
Table 8 shows the comparison between the accuracy and robustness results of the ensemble model over 5 different runs and
those of the single model with different layers and benchmarks. Figure 7 and Figure 8 illustrates the accuracy improvements
over single models for the ensemble models over different benchmarks. It is shown that the accuracy improvements for the
ensemble of our models are mostly more significant than those for the baseline ResNet models.



Interpolation between Residual and Non-Residual Networks

Benchmark Model Acc. noise FGSM IFGSM PGD
ResNet-110 93.58 53.70 41.48 5.93 5.60
ResNet-110, ens 95.03 55.70 43.99 6.26 5.93
In-ResNet-110 92.28 72.67 55.24 32.05 31.74
In-ResNet-110, ens 94.03 75.86 58.42 34.44 34.03
λ-In-ResNet-110 92.15 72.35 50.84 30.72 30.45

CIFAR-10 λ-In-ResNet-110, ens 94.00 75.29 53.66 32.95 32.77
ResNet-164 94.46 56.51 44.37 8.19 7.77
ResNet-164, ens 95.44 58.76 46.54 8.53 8.14
In-ResNet-164 92.69 72.05 51.84 27.43 26.95
In-ResNet-164, ens 94.26 75.26 54.72 28.97 28.51
λ-In-ResNet-164 92.55 71.88 50.53 26.50 26.04
λ-In-ResNet-164, ens 94.20 74.97 53.17 27.74 27.30
ResNet-110 72.73 25.76 18.74 2.18 2.11
ResNet-110, ens 78.84 30.05 21.43 2.83 2.81
In-ResNet-110 70.55 34.63 18.74 4.92 4.81
In-ResNet-110, ens 76.91 40.69 21.73 6.90 6.37
λ-In-ResNet-110 70.39 34.69 18.40 5.17 5.00

CIFAR-100 λ-In-ResNet-110, ens 76.61 40.14 20.79 6.41 6.35
ResNet-164 76.06 26.95 23.58 3.45 3.31
ResNet-164, ens 80.64 30.28 27.05 4.02 3.94
In-ResNet-164 72.94 35.12 22.30 6.59 6.34
In-ResNet-164, ens 77.78 39.69 24.95 7.34 7.26
λ-In-ResNet-164 73.22 34.58 22.50 6.64 6.46
λ-In-ResNet-164, ens 77.73 38.86 24.82 7.58 7.43

Table 8. Comparison between the accuracy and robustness results of the ensemble model over 5 different runs and those of the single
model (scores are averaged) with different layers and benchmarks. “Acc.” denotes the accuracy over CIFAR-10 testing set. “noise”
denotes the average accuracy of the four stochastic noise groups from CIFAR-C. “FGSM”, “IFGSM”, and “PGD” represent model
accuracy under the corresponding attacks at the radius of 4/255.

Figure 7. The accuracy improvements over single models for the ensemble ResNet-164, In-ResNet-164 and λ-In-ResNet-164 over
CIFAR-10 dataset. Both of the ensemble of our models have more significant accuracy improvements than the ensemble of the baseline
ResNet-164 model.
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(a) (b)

Figure 8. The accuracy improvements over single models for (a) the ensemble ResNet-110, In-ResNet-110 and λ-In-ResNet-110; (b) the
ensemble ResNet-164, In-ResNet-164 and λ-In-ResNet-164 over CIFAR-100 dataset. Both of the ensemble of our models have more
significant accuracy improvements than the ensemble of the corresponding baseline model.

D. Standard Deviation for Reported Results
In Table 1, we reported model accuracy over stochastic noise from CIFAR-10-C and CIFAR-100-C datasets. In Table 2, we
reported model accuracy over unperturbed CIFAR-10 and CIFAR-100 test sets. In Table 3, we reported model accuracy over
perturbed CIFAR-10 and CIFAR-100 images from FGSM, IFGSM, and PGD adversarial attacks with different attack radii.
In Table 5 and Table 7, we discussed about accuracy and robustness results of In-ResNet-110 and λ-In-ResNet-110 with
different initialization schemes on CIFAR-10 and CIFAR-100.

Here we provide all of the standard deviation of the results about the performance of ResNet, In-ResNet and λ-In-ResNet.
For simplicity, we assume that accuracy results over different stochastic noise groups in CIFAR-C are independent from
each other. In general, the standard deviation scores of our models are comparable to those of the baseline ResNet models.

It should be noted that the following standard deviation results should be used together with the original results. While some
method has low standard deviation, its averaged performance can be inferior as well. Also noted that some of the standard
deviation scores of our models are larger than the baseline models. The large standard deviation scores are attributed to
optimization difficulty, and result in more significant difference among different runs of our models. The performance
difference also accounts for the fact that the ensemble method is more beneficial to our models.
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Benchmark Model Impulse Speckle Gaussian Shot Avg.

CIFAR-10

ResNet-110 1.451 2.356 3.003 2.570 2.412
In-ResNet-110 2.576 3.134 4.769 3.485 3.583
λ-In-ResNet-110 2.433 2.927 4.383 3.109 3.293
ResNet-164 1.262 2.058 3.136 2.443 2.325
In-ResNet-164 1.352 3.373 5.570 3.903 3.856
λ-In-ResNet-164 1.804 1.992 3.229 2.356 2.408

CIFAR-100

ResNet-110 1.870 1.076 0.910 1.073 1.288
In-ResNet-110 1.489 2.792 3.250 3.135 2.757
λ-In-ResNet-110 0.651 1.468 1.874 1.589 1.468
ResNet-164 1.376 2.051 1.717 1.817 1.757
In-ResNet-164 0.729 1.849 1.704 1.906 1.619
λ-In-ResNet-164 0.736 1.269 1.682 1.446 1.330

Table 9. Standard deviation of each accuracy results for ResNet, In-ResNet and λ-In-ResNet reported in Table 1. For simplicity, results
under each types of noise are assumed as independent from each other.

Model CIFAR-10 CIFAR-100
ResNet-110 0.396 0.144
In-ResNet-110 0.831 0.402
λ-In-ResNet-110 0.433 0.510
ResNet-164 0.368 0.224
In-ResNet-164 0.635 0.507
λ-In-ResNet-164 0.598 0.279

Table 10. Standard deviation of each accuracy results for ResNet, In-ResNet and λ-In-ResNet reported in Table 2.

Benchmark Model FGSM IFGSM PGD
2/255 4/255 8/255 2/255 4/255 8/255 2/255 4/255 8/255

CIFAR-10

ResNet-110 0.782 0.577 0.894 1.166 0.549 0.030 1.257 0.456 0.021
In-ResNet-110 1.841 1.905 1.349 3.886 6.536 2.667 3.953 6.613 2.737
λ-In-ResNet-110 0.942 1.304 1.215 2.087 3.875 1.330 2.118 3.934 1.330
ResNet-164 1.024 1.128 0.819 2.917 1.770 0.051 2.983 1.696 0.043
In-ResNet-164 1.192 1.450 1.058 2.220 4.284 0.983 2.279 4.296 0.988
λ-In-ResNet-164 1.633 2.066 1.662 3.095 4.731 0.867 3.200 4.779 0.876

CIFAR-100

ResNet-110 0.724 0.436 0.292 0.982 0.270 0.056 0.930 0.274 0.088
In-ResNet-110 1.593 0.840 1.796 2.904 1.124 0.150 2.976 1.157 0.143
λ-In-ResNet-110 0.851 0.515 0.488 1.339 0.645 0.145 1.373 0.610 0.143
ResNet-164 0.671 0.372 0.958 1.479 0.505 0.081 1.523 0.524 0.072
In-ResNet-164 1.196 0.996 0.661 1.946 1.078 0.181 1.976 1.058 0.170
λ-In-ResNet-164 0.871 0.732 0.662 1.105 0.703 0.125 1.127 0.703 0.134

Table 11. Standard deviation of each accuracy results for ResNet, In-ResNet and λ-In-ResNet reported in Table 3.

Model Acc. noise FGSM IFGSM PGD
ResNet-110 0.396 2.412 0.577 0.549 0.456
In-ResNet-110 0.831 3.583 1.905 6.536 6.613
In-ResNet-sig-110 0.157 2.042 1.004 0.775 0.813
In-ResNet-gating-110 0.204 1.322 0.669 0.270 0.223
In-ResNet-gating-sig-110 2.101 7.860 6.346 13.397 13.491

Table 12. Standard deviation of each accuracy results reported in Table 4.
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Model Initialization Acc. noise FGSM IFGSM PGD
ResNet - 0.396 2.412 0.577 0.549 0.456

U [0.00, 0.10] 0.208 2.375 0.336 0.999 0.911
U [0.10, 0.20] 0.224 3.650 1.329 4.742 4.820

In-ResNet U [0.20, 0.25] 0.831 3.583 1.905 6.536 6.613
U [0.25, 0.30] 0.582 2.448 1.259 2.640 2.680
U [0.30, 0.40] 0.328 0.763 0.434 0.931 0.920
U [0.00, 0.10] 0.079 1.815 0.624 1.235 1.183
U [0.10, 0.20] 0.277 3.772 1.282 4.432 4.485

λ-In-ResNet U [0.20, 0.25] 0.433 3.293 1.304 3.875 3.934
U [0.25, 0.30] 0.617 3.091 1.319 3.674 3.734
U [0.30, 0.40] 0.233 0.219 0.544 0.997 1.004

Table 13. Standard deviation of each accuracy results reported in Table 5. Note that for U [0.3, 0.4], the reported S.D. results are calculated
only over 4(2) successful runs.

Model Initialization Acc. noise FGSM IFGSM PGD
ResNet - 0.144 1.288 0.436 0.270 0.274

U [0.00, 0.10] 0.436 1.489 0.349 0.347 0.287
U [0.10, 0.20] 0.640 1.622 0.652 0.914 0.874

In-ResNet U [0.20, 0.25] 0.402 2.757 0.840 1.124 1.157
U [0.25, 0.30] 0.836 2.053 1.174 1.348 1.399
U [0.30, 0.40] 1.342 2.725 1.237 2.025 1.921
U [0.00, 0.10] 0.308 1.565 0.341 0.603 0.579
U [0.10, 0.20] 0.573 2.228 0.422 0.894 0.903

λ-In-ResNet U [0.20, 0.25] 0.510 1.468 0.515 0.645 0.610
U [0.25, 0.30] 0.555 2.082 1.413 1.069 1.056
U [0.30, 0.40] 0.368 1.767 0.382 1.329 1.315

Table 14. Standard deviation of each accuracy results reported in Table 7. Note that for U [0.3, 0.4], the reported S.D. results are calculated
only over 3(2) successful runs.


