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In this work we investigate the decorated domain wall construction in bosonic group-cohomology
symmetry-protected topological (SPT) phases and related quantum anomalies in bosonic topolog-
ical phases. We first show that a general decorated domain wall construction can be described
mathematically as an Atiyah-Hirzebruch spectral sequence, where the terms on the E2 page cor-
respond to decorations by lower-dimensional SPT states at domain wall junctions. For bosonic
group-cohomology SPT phases, the spectral sequence becomes the Lyndon-Hochschild-Serre (LHS)
spectral sequence for ordinary group cohomology. We then discuss the physical interpretations of
the differentials in the spectral sequence, particularly in the context of anomalous SPT phases and
symmetry-enriched gauge theories. As the main technical result, we obtain a full description of
the LHS spectral sequence concretely at the cochain level. The explicit formulae are then applied
to explain Lieb-Schultz-Mattis theorems for SPT phases, and also derive a new LSM theorem for
easy-plane spin model in a π flux lattice. We also revisit the classifications of symmetry-enriched
2D and 3D Abelian gauge theories using our results.
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I. INTRODUCTION

A large class of gapped quantum phases are believed
to be described by topological quantum field theories
(TQFT) at low energy. They are broadly divided into two
categories: short-ranged entangled (SRE) states, which
have unique ground state on any closed (spatial) man-
ifold and all low-lying excitations are local; long-range
entangled (LRE) states, which have topology-dependent
ground state degeneracy on closed manifolds and ex-
hibit topologically nontrivial excitations. The presence of
global symmetry further enriches the landscape and leads
to sharp distinctions between phases protected by the
symmetry. We will often loosely refer to symmetric SRE
phases as symmetry-protected topological (SPT) phases,
and symmetric LRE phases as symmetry-enriched topo-
logical (SET) phases. The classification of interacting
SPT phases has been studied intensively in the past
decade, and by now a consistent picture for SPT phases
protected by internal or spatial symmetries has been
largely achieved, at least in low dimensions relevant to
condensed matter systems1–8. For SET phases, a sys-
tematic mathematical framework was developed for the
(2+1)d case in Ref. [9] based on tensor category, and
more recently Ref. [10] has proposed a general theory in
higher dimensions.

Even though SRE and LRE phases have very differ-
ent physical properties, they are in fact closely related.
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On one hand, gauging a finite unitary symmetry in a
symmetric SRE phase results in a topological gauge the-
ory11. The connection can be utilized in both ways:
SPT phases may be characterized by fusion and braiding
statistics of symmetry fluxes, while universal properties
of the gauge theories can be traced back to the ungauged
SPT phases. Another connection is provided by ’t Hooft
anomaly: on the boundary of an SPT phase, the symme-
try must be implemented in an anomalous way12, and as
a consequence a symmetry-preserving gapped state must
be LRE, i.e. topologically ordered13,14. Therefore ground
states of systems with ’t Hooft anomaly are strongly con-
strained, in particular a symmetric SRE ground state is
forbidden.

Recently, a new boundary phenomenon has been dis-
covered: there exist “anomalous” SPT phases which can
only be realized on the boundary of a topologically triv-
ial state in one dimension higher15, or in an intrinsically
gapless system16. Examples discussed so far all occur
in fermionic systems, so one naturally wonders whether
ASPT phases also exist in bosonic systems, and how they
fit into the general classification scheme.

On the other hand, significant progress has been
made in classifying SPT phases with crystalline symme-
tries8,17–19. In particular, the bulk-boundary correspon-
dence of crystalline SPT phases shed new light on the
celebrated Lieb-Schultz-Mattis theorems20, as manifes-
tation of ’t Hooft anomaly for spatial symmetries17,21–23.
This new perspective has naturally led to various gen-
eralizations of LSM-type constraints. While in most
cases LSM theorems forbid SRE ground state, recent
works24–27 have revealed a new twist in which micro-
scopic constraints allows SRE states, which nevertheless
have to be in a nontrivial SPT phase.

The goal of this work is to provide a unified view of
the three kinds of phenomena: a) anomalies in topologi-
cal gauge theories, b) anomalous SPT phases and c) LSM
theorems for SPT phases. We will see that all of them
can be understood within the same framework, namely a
systematic theory of decorated domain wall (DW) con-
struction of SPT phases28, which are described mathe-
matically using Atiyah-Hirzebruch spectral sequence for
generalized cohomology, as shown in Ref. [6] (see also
Ref. [5]). We will explain the mathematical structure
through explicit constructions and further expound on
the relations with anomalies in this work.

The basic idea is that given a global symmetry group
G, a symmetric state can be obtained from quantum
disordering a symmetry-breaking state, or proliferation
of symmetry domain walls. One can imagine that do-
main walls and their junctions are decorated by lower-
dimensional SRE phases (possibly protected by unbro-
ken symmetries). In order to produce a fully gapped,
symmetric state, it is important that all possible domain
wall configurations can be smoothly deformed from one
to another, so by local Hamiltonian terms that fluctuate
the domain walls one can find a ground state which is
the superposition of all domain wall configurations. The

key observation is that consistency conditions for domain
wall decorations can be organized by Atiyah-Hirzebruch
spectral sequence.

As will be explained below, in a general domain wall
decoration one successively considers domain wall junc-
tions with increasing codimension (codimension-0 is the
whole system, codimension-1 is the domain wall, etc.).
At each step, one needs to make sure that the decora-
tion is consistent, which leads to an obstruction-vanishing
condition. These conditions can be formulated in terms
of differentials in the associated spectral sequence. Com-
puting differentials is generally a difficult task. Recently
Ref. [7] essentially derived explicit expressions for differ-
entials for the spectral sequence that describes fermionic
SPT phases. The main technical achievement of this
work is to provide explicit expressions for cochain-level
differentials in the Lyndon-Hochschild-Serre (LHS) spec-
tral sequence29,30, which correspond to decorating do-
main walls with bosonic group-cohomology SPT phases
protected by another group A, but G is nontrivially ex-
tended by A.

We then provide physical interpretations of the differ-
entials. First of all, for each domain wall decoration in
D dimensions, differentials compute possible inconsisten-
cies, represented by a domain wall decoration in (D+ 1)
dimensions. If the differential is nontrivial, it means that
the decoration can not be realized, unless the system
is actually on the boundary of a (D + 1)-dimensional
bulk. Therefore, such obstructed decorations correspond
to anomalous SPT phases, which need to be excluded
from the classification of SPT phases in D dimensions.

Using the explicit expressions for differentials, we find
that the examples of SPT-LSM theorems for magnetic
translation symmetry in the literature can indeed be un-
derstood as ASPTs, when the spatial symmetry is for-
mally treated as internal. We also study a new example
of LSM theorem, which forbids SRE ground states in
a spin-1/2 model with easy-plane anisotropy and π-flux
background. Using the tools developed in this work we
prove that if the a fully symmetric topologically ordered
ground state exists, then anyons must be permuted by
some discrete symmetries of the system.

Now we consider a fully consistent decoration, which
should describe an actual SPT state. However, when it is
the image of a differential map from another decoration
in one dimension lower, the SPT state is actually triv-
ial topologically. We will argue that the differential im-
plies that a gapped symmetry-preserving boundary has
to be an anomalous SPT phase. We give an example of
a bosonic anomalous SPT phase in one-dimensional spin
chain with a non-on-site Z4 symmetry for illustration.

For another important application, it is well-known
that gauging a normal subgroup of the symmetry group
in an SPT phase turns it into a topological gauge theory,
enriched by the remaining quotient symmetry. In this
gauging procedure, the group extension structure deter-
mines how gauge charges transform under the quotient
symmetry. Different decorations translate into patterns
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of “fractionalization” of the quotient symmetry on gauge
flux excitations. When the differentials are nontrivial
(i.e. the decoration is inconsistent), however, the gaug-
ing is also obstructed. In other words, the corresponding
fractionalization class is not compactible with the pre-
scribed symmetry action on gauge charges. A well-known
special case of the obstructions is the ’t Hooft anomaly,
but there are other kinds of obstructions beyond ’t Hooft
anomaly. Using the LHS spectral sequence, we revisit the
classification of symmetry-enriched Abelian gauge theory
in 2D and showed that the various obstructions can be
understood within the framework established in Ref. [9].
We also consider symmetry-enriched U(1) gauge theory
in 3D, recovering the classification in Ref. [34] and fur-
thermore identifying SPT stacking trivialization missed
in previous works.

II. DOMAIN WALL DECORATION AND
SPECTRAL SEQUENCE

In this section we explain how the decorated domain
wall construction naturally leads to a spectral sequence
description of the SPT classification5,6. A brief intro-
duction to spectral sequence can be found in Appendix
A.

We will consider a finite, unitary symmetry group G.
Here we remark that G always refers to a “bosonic” sym-
metry, in the sense that a local bosonic order parameter
can be defined and therefore the symmetry can be bro-
ken, either spontaneously or explicitly. As briefly ex-
plained in the introduction, an SPT wavefunction can be
written as a superposition of all possible G domain wall
configurations. Typically, this is achieved by Hamilto-
nian terms that fluctuate the domain walls locally. In
order for the superposition to be a SRE state, we pos-
tulate that the following conditions must be true in a
symmetry-breaking state:

1. For any symmetry-breaking pattern (i.e. a configu-
ration of domain walls), the system is fully gapped
and short-range entangled, while preserving any re-
maining global symmetry.

2. Symmetry-breaking states corresponding to differ-
ent domain wall configurations can be smoothly
connected. In other words, two such states can be
transformed into each other by a constant-depth lo-
cal unitary circuit preserving any remaining sym-
metry. This is necessary to ensure that a parent
Hamiltonian can exist.

The two conditions are clearly necessary to obtain a SRE
state after the symmetry is restored by fluctuating do-
main walls. They are implicit in previous constructions
of fixed-point wavefunctions, see for example Ref. 31.
Here our focus will be on general structures, independent
of any particular model construction.

We will now assume that there is an unbroken sym-
metry group A (which could be trivial). Denote
the equivalence classes of SRE phases with symmetry
group A (and possibly with other conditions, such as
fermionic/bosonic) in D dimensions by hD+1(A). In
other words, any SRE state with symmetry A (obey-
ing whatever additional conditions imposed) is associ-
ated to a unique element in hD+1(A). For this section
we do not need more details about hD+1(A), besides that
it is always a discrete Abelian group, with multiplica-
tion given by stacking. For brevity we will at times just
write h• instead of h•(A), since the group A does not
play any role in the following discussions. We will de-
note by Cp[G, h•],Zp[G, h•] the h•-valued p-cochains and
p-cocycles of G, and Hp[G, h•] the cohomology group.

Below we describe the decorated domain wall construc-
tion in D = 2 as an illustration. Our presentation is
schematic and the main purpose is to demonstrate how
the physical data can be naturally organized mathemat-
ically into a spectral sequence (see Appendix.A for brief
introduction). The computational details are discussed
in the next section and also in Appendix B.

To describe the decorated domain wall states, we start
from the “top” level, where there is no domain wall, but
the G symmetry is already broken. There are |G| dif-
ferent ways that the symmetry can be broken, related
to each other by G symmetry transformations. For each
type of domain, the ground state wavefunction belongs to
an SPT phase with the unbroken symmetry A, the equiv-
alence class of which is given by an element ω0,3 ∈ h3 [see
Fig. 1(a)]. It is clear that in order to have a consistent
decorated domain wall wavefunction, ω0,3 must be “in-
variant” under the natural G action on h3 (e.g. when G
has a nontrivial action on A), so that different domains
belong to the same SPT phase. As the actual wavefunc-
tions are generally different in different domains, the dif-
ference between the states before and after the symmetry
action (δ1ω0,3)(g) = g(ω0,3)/ω0,3 should belong to the
trivial class in h3. So we have the first obstruction

O1,3 = δ1ω0,3 ∈ Z1[G, h3], (1)

which is the G-invariant condition for the 2D A-SPT
phases. Here δ1 is the usual coboundary operator acting
on the G elements. This obstruction condition implies
that if O1,3 is nontrivial, the 1D domain wall between
two different domains has protected gapless modes, or
spontaneously breaks A. In contrast, the vanishing of
this obstruction ensures that 1D domain walls can be
fully gapped out without breaking A.

Next we consider 1D domain walls between different
domains, labeled by elements of the symmetry group G.
They can be viewed as (gapped) boundaries between two
SPT states differed from each other by G symmetry ac-
tion [see Fig. 1(a)]. The boundary wavefunction along the
g DW is determined by the two 2D A-SPT states up to a
1D A-SPT phase, and will be denoted by ω1,2(g) [see red
lines in Fig. 1(b)]. In other words, the 1D A-SPT phase
should be thought of as an torsor over different equiva-
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lence classes of the boundary state. Here “equivalence”
is defined by adiabatic local deformation along the 1D
domain wall.

In the next step, we examine the simplest junction of
domain walls, namely a tri-junction of g,h and gh do-
main walls depicted in Fig. 1(b). The tri-junction essen-
tially provides a way to check the consistency of group
actions on the A-SPT states. The two sides of the junc-
tion are basically the same domain configuration, but a
codimension-1 operator is applied to split the gh DW
to g and h DWs. This codimension-1 operator can not
create an nontrivial 1D SPT state, since such a configu-
ration should be smoothly connected to a single domain
wall by local adiabatic deformation. Equivalently, the
choice of the wavefunctions of the 1D domain walls de-
termines whether the junction harbors a 0D zero mode
protected by A or not. Denote this 1D SPT phase by
O2,2(g,h) ∈ h2. Since the wavefuntion of a g domain
wall is ambiguous up to 1D A-SPT ω1,2(g) ∈ h2, O2,2 is
only determined up to

(δ1ω1,2)(g,h) =
ω1,2(g)ω1,2(h)

ω1,2(gh)
. (2)

In other words, O2,2 up to δ1ω1,2 is a function of ω0,3. So
we have the following expression

O2,2 = (δ2ω0,3)(δ1ω1,2) ∈ Z2[G, h2]. (3)

This is the second obstruction in the decorations. Phys-
ically O2,2 = 1 imposes the constraint that the DW tri-
junction can not harbor any non-trivial 0D boundary
states of 1D A-SPT in h2, otherwise the configuration
is not fully gapped.

Here we introduce the notation δ2ω0,3, which formally
represents the contribution to the obstruction on the
codimension-2 defect junction from the decoration on the
codimension-0 defect (i.e. the 2D A-SPT phase). The
actual form of δ2ω0,3 depends on the nature of h• (e.g.
fermionic or bosonic), and will be discussed in Sec. II A.
An important remark follows: ω0,3 is a 3-cocycle in h3

as it is the top-dimension decoration. ω1,2 however is
not necessarily a cocycle in H1[G, h2], since it describes
the physical state on the domain wall. This is generally
true for the other ωp,q’s with p > 0. The only exception
is that when ω0,3 is completely trivial, then δ1ω1,2 = 1
which means that ω1,2 ∈ Z1[G, h2]. On the other hand,
even though ω1,2 itself is only a cochain in C1[G, h2], dif-
ference of two ω1,2’s both satisfying Eq. (3) is a cocycle
in Z1[G, h2]. In other words, Z1[G, h2] (and actually,
H1[G, h2] as B1[G, h2] can be deformed to a trivial deco-
ration) forms a torsor over different solutions of Eq. (3).
Similar comments apply to other ωp,q as well.

Once O2,2 vanishes, we can move to the next level
and consider the two configurations depicted in Fig. 1(c).
They are exactly the same away from the local patch, so
they can at most differ by a 0D SRE state, classified by
h1. To go from one configuration to the other one has
to apply a “F move”, which is a locality-preserving, A-
symmetric unitary operator creating an additional SPT

g

g

!0,3 g(!0,3)

(a)

!0,3 gh(!0,3)

g(!0,3)

gh

g h

!1,2(g) !1,2(h)

!1,2(gh)

(b)

!0,3

ghk

g h k

!1,2(ghk)

!2,1(g,h)

!2,1(gh,k)
!0,3

ghk

g h k

!1,2(ghk)

!2,1(h,k)

!2,1(g,hk)

(c)

F

FIG. 1. Domain wall decorations and obstructions in 2D.
Wavefunction ωi,3−i is decorated on codimension-i domain
walls. (a) The obstruction O1,3 indicates that the boundary
between two G-domains should be gapped. (b) O2,2 means
that the DW tri-junction does not harbor any projective rep-
resentation of A. (c) O3,1 imposes the constraint of A-charge
conservation under the F move. There is a final layer of ob-
struction O4,0 from the pentagon equation of DW fusions that
is not shown in the figure.

state. For now denote this SPT phase by O3,1(g,h,k) ∈
h1. Since the wavefuntion of the tri-junction of g,h do-
main wall is ambiguous up to 0D state ω2,1(g,h) [see
green dots in Fig. 1(c)], O3,1 is only determined up to

(δ1ω2,1)(g,h,k) =
ω2,1(h,k)ω2,1(g,hk)

ω2,1(gh,k)ω2,1(g,h)
. (4)

We can split O3,1 into terms from ω0,3, ω1,2 and ω2,1 as

O3,1 = (δ3ω0,3)(δ2ω1,2)(δ1ω2,1) ∈ Z3[G, h1]. (5)

The physical meaning of this obstruction is that the F
move does not change the 0D SRE state in h1(A). Again
here we will keep the actual form of δ3, δ2, · · · implicit,
except that δ1 is the usual coboundary operator.

Finally, if O3,1 vanishes, then the only known infor-
mation is a phase factor in the F move (since we have
gotten down to 0D quantum states) and the last consis-
tency condition is that the F moves need to satisfy the
pentagon equation. We can check whether the pentagon
equation holds given all the previous decorations, and it
can be violated at most by a phase factor, denoted by
O4,0(g,h,k, l). Again we can express O4,0 as the follow-
ing form

O4,0 = (δ4ω0,3)(δ3ω1,2)(δ2ω2,1) ∈ Z4[G, h0], (6)

originated from different decoration layers. Here h0 is
just U(1). The F move itself can acquire an additional
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phase factor ω3,0. If O4,0 = δ1ω3,0 is a coboundary of G,
then we can absorb the F move by another phase factor
ω3,0 such that the pentagon equation is satisfied.

At this point we have exhausted all consistency condi-
tions for the decorations. Physically, it means that the
two conditions for a consistent decoration laied out in the
beginning of this section are satisfied at all levels, and one
can in principle define a SRE ground-state wavefunction
for the corresponding SPT state using the data ωp,3−p
for p = 0, 1, 2, 3.

Mathematically, the consistency conditions are the
four coupled equations Op,4−p = 1 for p = 1, 2, 3, 4. For
most applications, we do not need the full solutions of
these equations. Instead, one may be interested the par-
ticular obstruction function arising from a certain layer of
decoration, e.g. ω1,2. In that case, one can assume that
the ω0,3 = 1, so ω1,2 is an actual cocycle in H1[G, h2].
For clarify, we will rename it to ν1,2. Then one checks Eq.
(5) to see whether there is a ω2,1 ∈ C2[G, h1] satisfying
the condition. The solvability of Eq. (5) is equivalent to
the vanishing of δ2ν1,2 as a cohomology class inH3[G, h1].
Therefore we define a cocycle-level map, called a differ-
ential :

d2 : H1[G, h2]→ H3[G, h1]. (7)

In this case, d2 is basically the same as δ2, just regarded
as a map between cohomology classes32, but this is not
true for higher differentials.

If d2 of ν1,2 vanishes, one can find at least one solution
ω0

2,1 for Eq. (5). Then one can plug ν1,2 and ω0
2,1 into

Eq. (6) to compute the obstruction function. This way
one may attempt to define another differential using this
procedure:

d3 : H1[G, h2]→ H4[G, h0], (8)

which increases the degree of the cohomology group by
3. However, the d3 map is not well-defined yet: ω0

2,1 is
one particular solution, which is determined up to a co-
cycle ν2,1 in Z2[G, h1]. If we shift ω0

2,1 → ω0
2,1ν2,1, the

obstruction function changes by d2ν2,1. In other words,
d3 is defined only up to d2ν2,1. To resolve this ambiguity,
we can restrict to a subgroup of H2[G, h1] with vanishing
d2. In that case, the d3 map becomes well-defined. Phys-
ically the restriction makes sense, as to discuss d3 we have
to assume that d2ν1,2 vanishes, so naturally the same as-
sumption should be applied to other layers of decorations
as well. More formally, we define Ep,q3 ⊂ Hp[G, hq] as the
kernel of d2, and d3 is only defined on E3. In this sense,
Hp[G, hq] should be called Ep,q2 as they are the kernel of
d1 ≡ δ1. By the same reasoning one can define Ep,qn for
higher n iteratively. The collection of Ep,qn is called the
En page. The differential map dn is only defined on the
En page, and one can further show that its image auto-
matically sits in the En page (of one dimension higher)
as well, so we have

dn : Ep,qn → Ep+n,q−n+1
n . (9)

The collection of all Ep,qn and the differentials that map
between them in fact forms an Atiyah-Hirzebruch spec-
tral sequence.

Heuristically, as the “page number” n increases, more
and more obstructions are required to vanish and one
obtains better and better “approximations” of the actual
SPT states. Eventually, when all obstructions vanish, we
arrive at the “E∞” page, which is the collection of all
physical SPT states. A concrete example of solving the
consistency conditions to compute the differential maps
in (2+1)d when h• is the group cohomology of A = Zn
can be found in Appendix B 7.

Now let us briefly discuss the general structure of a
domain wall decoration construction in D dimensions.

Starting from the top dimension p = 0, we consider
topological junctions of G domain walls of increasing
codimension successively. The fact that the p-junction
should be fully gapped requires that the obstruction func-
tion

Op,D+2−p = δpω0,D+1δp−1ω1,D · · · δ1ωp−1,D+2−p (10)

must vanish. In other words, any gapless modes result-
ing from decorations on q-junctions with q ≤ p− 1 must
cancel out on the p-junction. This procedure formally
continues up to p = D + 2. Note that for p = D + 2,
ωD+1,0 is a phase factor associated with a certain re-
arrangement of topological junctions, generalizing the F
move. The condition follows from checking the (D + 1)-
cocycle condition for these rearranging moves.

We can similarly define d2 as basically the δ2 operator.
To define higher differentials, first one needs to define
the En page as the subgroup of En−1 page whose images
under dn−1 vanish, where Ep,q2 = Hp[G, hq]. dnωp,q is
then defined as the obstruction function On+p,D+2−n−p
arising from ωp,q with all lower-codimension decorations
set to 1. The operation is well-defined on the En page.

So far we have focused on the construction of
obstruction-free domain wall decorations. We have not
yet considered the equally important question of whether
the decorated domain wall state is trivial or not. This
will be addressed in Sec. III A.

Below we discuss two spectral sequences relevant for
the classification of SPT phases.

A. Lyndon-Hochschild-Serre spectral sequence

Suppose that hD+1(A) is the group-cohomology
bosonic SPT phases, i.e.

hD+1(A) = HD+2[A,Z]. (11)

In the following we assume the symmetry group is either
finite, or a compact Lie group. In this case, we have
H∗[A,R] = 0 and thus HD+2[A,Z] = HD+1[A,U(1)].
The same is true for A a free Abelian group. The
Atiyah-Hirzebruch here reduces to the so-called Lyndon-
Hochschild-Serre (LHS) spectral sequence29,30 for group
cohomology.
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More concretely, denote by G̃ the total symmetry
group. Because A is a normal subgroup, G̃ fits in the
short exact sequence:

1→ A→ G̃→ G→ 1. (12)

In general, the group extension can be specified by two
pieces of data: a homomorphism ρ from G to the outer
automorphism group Out(A) which satisfies a certain-
obstruction vanishing condition, and a torsor ν over
H2
ρ[G,Z(A)] where Z(A) is the center of A. When A

is Abelian, there is no distinction between Out(A) and
Aut(A), and the obstruction always vanishes canonically.

The multiplication rule in G̃ is given by

ag × bh = [a · ρ(g)(b) · ν(g,h)]gh, (13)

with a, b ∈ A and g,h ∈ G.
When G̃ = A×G, one has the Künneth formula:

Hd[G,U(1)] =
⊗
p+q=d
p,q≥0

Hp[G,Hq[A,U(1)]]. (14)

This is basically the E2 page of the LHS spectral se-
quence, and all differentials are trivial. In general, how-
ever, explicit expressions for differentials appear to be
unknown in literature except d2, though partial results
have been obtained in previous works12,33,34.

In Appendix B we provide a complete and explicit de-
scription of the LHS spectral sequence forHd[G̃,U(1)] for
d = 1, 2, 3, 4, at the cochain level, and present the conjec-
tured general structure for higher d. We find that a gen-
eral d-cocycle in Zd[G̃,U(1)] can always be constructed

from cochains Fp,d−p ∈ Ep,d−p0 for 0 ≤ p ≤ d at different
positions of the spectral sequence. These cochains satisfy
the following obstruction-vanishing conditions:

E0,d+1
0 : (δ0F0,d) = 1, (15)

E1,d
0 : (δ1F0,d)(δ0F1,d−1) = 1, (16)

E2,d−1
0 : (δ2F0,d)(δ1F1,d−1)(δ0F2,d−2) = 1, (17)

... (18)

Ed,10 : (δdF0,d)(δd−1F1,d−1) · · · (δ0Fd,0) = 1, (19)

Ed+1,0
0 : (δd+1F0,d)(δdF1,d−1) · · · (δ1Fd,0) = 1. (20)

Here δi’s are the cochain-level differentials, whose explicit
expressions can be found in Eq. (B37) of Appendix B 2.
For example, the zeroth and the first differentials δ0 =
dA and δ1 = ±dG are just the usual differentials with
respect to A and G, respectively. Higher differentials
are more complicated, so we refer the interested readers
to Appendix B for details. As an example, the second
differential has the following general form

(δ2Fp,q)(a1, ..., aq−1,g1, ...,gp+2) (21)

=
[
ι(−1)qν(g1,g2)

(
1g1g2Fp,q

)·,...,·,1g3
,...,1gp+2

]a1,...,aq−1

.

Here, the notation 1gF is defined in Eq. (B6). And ι is the
slant product operation, the definition of which can be
found in Eq. (B7). If δ2 lands on the p axis (i.e., q = 1),
the above equation is simplified to

(δ2Fp,1)(g1, ...,gp+2) =
1(

1g1g2Fp,q
)ν(g1,g2),1g3

,...,1gp+2

,

(22)

which is basically Theorem 4 of the original LHS spectral
sequence paper Ref. 30.

These equations can be thought of as the con-
crete mathematical representations of the physical
obstruction-vanishing conditions discussed in Sec. II for
domain wall decorations. With these cochain-level equa-
tions, one can further extract the “cocycle-level” differ-
entials di’s. As a special case, the second cocycle-level
differential d2 is in fact equal to δ2 when viewed as op-
erations on cocycles of the E2 page. For an example of
computations of higher differentials, in Appendix B 7 we
derive all the differentials for A = Zn and d = 3 when
the extension is central.

In Appendix C we provide an algorithm to extract the
cochains at different positions of the LHS spectral se-
quence from a general cocycle, and give explicit expres-
sions in low dimensions.

An easy collorary of our results is that when A is
Abelian and the short exact sequence splits (i.e. G̃ =
A o G), every cochain-level differentials δn with n ≥ 2
vanish and E∞ = E2.

B. Spectral sequence for fermionic SPT phases

Let us give another example of Atiyah-Hirzebruch
spectral sequence in the classification of fermionic SPT
phases3,7,35. The symmetry group of a fermionic system
fits into the following short exact sequence:

1→ Zf2 → G→ Gb → 1 (23)

where Gb is the symmetry group that act on bosonic

operators, and Zf2 is the conservation of the total fermion
parity. A general fermionic SPT state can be constructed
from decorating fermionic invertible topological phases
on Gb domain walls. Therefore we set hD+1 to be the
group of fermionic invertible phases, denoted by hD+1

F .
Up to spatial dimension D = 4, they are given by

D 0 1 2 3 4

hD+1
F Z2 Z2 Z Z1 Z1

Here the 0-dimensional SPT state is just a single fermion.
In 1D the nontrivial phase is the Majorana chain, and in
2D the generating one is a (px + ipy) superconductor.

Then decoration on codimension-p junctions of Gb is

given by Hp[Gb, hD+1−p
F ]. Explicit expressions for differ-

entials up to D = 3 are obtained in Ref. 31 (see Ref. 35
for related results). Interestingly, in this case even when
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the extension is trivial, i.e. G = Gb×Zf2 , the differentials
are still nontrivial31.

III. APPLICATIONS

A. Anomalous SPT phases

As discussed in Sec. II, obstructions for a consistent
domain wall decoration are represented by cohomology
classes in Hp[G, hD+2−p] for codimension-p junctions.
For example, we have seen that the top level decoration,
i.e. ω0, may cause an obstruction represented by a class
d2ω0 ∈ H2[G, hD(A)]. d2ω0 can be understood as bound-
ary states of a (D−1)-dimensional SPT phase decorated
on a codimension-2 junction in a (D + 1)-dimensional
“bulk”. In other words, d2ω0 gives a DW decoration of
the bulk. In Fig. 2 we illustrated two examples, for E2,2

2

and E3,1
2 , where obstructions in DW decoration on the

surface are “compensated” by decorations in the bulk,
so that the boundary can be made non-degenerate. For
example, in Fig. 2(a), the boundary decoration is ob-
structed on the 0D junction, which is neutralized by a
compensating 1D SPT state in the bulk. Similarly, in
Fig. 2(b), the boundary decoration can be viewed as
stacking the two sides of the F move together to elim-
inate open DWs, and the obstruction, a 0D SPT state
characterized by d2ω1, is neutralized by the correspond-
ing bulk decoration. In other words, these “obstructed”
decorations can only be consistently realized as bound-
ary of a higher-dimensional SPT state. Thus they can
be thought of as “anomalous” SPT phases. On the other
hand, the bulk in this case must be a trivial SPT phase,
since its boundary can form a SRE state preserving all
symmetries.

In summary, any nontrivial obstruction class in the
decorated DW construction give rise to an anomalous
SPT phase. Mathematically, these obstructions are com-
puted using the same differential maps of the spectral
sequence.

One may wonder what if one adiabatically deforms
the bulk to a trivial product state, which should al-
ways be possible because the bulk is topologically triv-
ial. Naively once the bulk is completely disentangled,
one is left with the boundary SRE state, contradicting
the claimed anomalous nature. The resolution is that
the disentangling transformation necessarily removes the
boundary SRE state as well. Let us describe the re-
quired transformation for a decorated DW construction
of a 1D SPT state in D = 1, with an obstruction class
given by d2 : E0,2

2 → E2,1
2 . The splitting of gh DW

into g and h DWs produces an additional 0D SPT state
(i.e. a “charge”), which is cancelled by the codimension-2
decoration in the 2D bulk. This bulk-boundary relation
immediately suggests the following disentangling trans-
formation: first fixing a DW configuration in the bulk.
Inside the h domain, we adiabatically “pump” out a 1D
SPT state parametrized by hω0, and bring the 1D SPT

g

hk

h

k

gh

ghk
d2ω1

g
h

gh

d2ω0

(a) (b)
FIG. 2. Illustration of d2 obstructions and anomalous SPT
phase.

close to the DWs. It is easy to see that along each DW
the two 1D SPT states can be annihilated, which also
neutralizes the 0D SPT state at the junction. On a disk,
the pumping can be intuitively thought as “pushing” the
edge SPT states inside, towards the junction. For each
bulk DW configuration, this kind of pumping can be per-
formed to remove the decoration and it should be evident
that the process preserves the residual symmetry. We
believe that the pumping can be realized globally by a
symmetric adiabatic transformation on the whole bulk
wavefunction, even though we do not know how to ex-
plicitly write it down.

This discussion also makes it clear that the differ-
ential maps always have dual interpretations: consider
dn : Ep,qn → Ep+n,q−n+1

n . On one hand, it is the ob-
struction map for the SPT phase described by the DW
decoration in Ep,qn . Non-anomalous decorations must be-
long to the kernel of the differential map. On the other
hand, it is also the trivialization map for SPT phases
described by DW decoration in Ep+n,q−n+1

n (in one di-
mension higher), and the image of the map gives trivial
SPT phase.

An alternative perspective on ASPT is to discard the
bulk altogether and view the “anomaly” as the prop-
erty of a non-on-site symmetry. To be concrete, suppose
we have a D-dimensional bosonic lattice model, with a
global symmetry G̃. Denote the Hilbert space of the lat-
tice model by H. The symmetry group is represented
on the Hilbert space by locality-preserving unitary op-
erators {Ug}g∈G̃, which satisfy UgUg = Ugh. For sim-
plicity, let us assume that Ug is a local unitary circuit
with a constant depth. Generally, it is believed that
one can associate {Ug}g∈G̃ uniquely to an element in

HD+2[G̃,U(1)]? . When this element is nontrivial, the
symmetry has a ’t Hooft anomaly, forbidding the exis-
tence of any G̃-symmetry preserving SRE state in this
Hilbert space.

Now suppose G̃ is an extension of G by A, where A
is the normal subgroup. If the anomaly class of Ug’s is
trivial, then a symmetry-preserving SRE state is possi-
ble. Given the group extension structure, it should be
possible to locate the anomaly class in the E2 page of
LHS spectral sequence, i.e. the “bulk” can have a cer-
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tain domain wall decoration pattern, trivialized by dif-
ferentials. In that case, the D-dimensional system must
realize an ASPT phase, whose differential gives the bulk
domain wall decoration. Below we present a concrete ex-
ample in (1+1)d, where a non-on-site internal symmetry
enforces the system to realize an ASPT phase. Very sim-
ilar phenomena arise for spatial symmetries as SPT-LSM
theorems discussed below in Sec. IV A.

We consider a spin chain with A = Z2 = {1, a} and
G = Z2 = {1, g} in (1+1)d. Suppose that g2 = a,
so G is extended nontrivially by Z2 to Z4. There
are no nontrivial SPT phase in (1+1)d with Z4 sym-
metry, but there is an anomalous one. In terms of
the LHS spectral sequence, the only nontrivial term is
E1,1

2 = H1[G,H1[A,U(1)]] = Z2. Denote the 1-cocycle
by F a,g = ±1 (the other ones are normalized to 1). The
d2 differential gives a 3-cocycle in H3[G,U(1)]:

F g,g,g = F ν(g,g),g = F a,g. (24)

Thus the nontrivial class with F a,g = −1 is d2 ob-
structed.

Let us now turn to the lattice model. Consider a 1D
chain with Ising spins σj on sites and τj+ 1

2
on bonds. The

symmetry group A is generated by Ua =
∏
j τ

x
j+ 1

2

, and

the G symmetry is generated by the following unitary
operator:

Ug =
∏
j

σxj · e
iπ
2

∑
j

1−σzj σ
z
j+1

2 · e
πi
4

∑
j(τ

x
j+1/2−1). (25)

Under periodic boundary condition, it is easy to see that
U2
g = Ua, so we have the desired group extension struc-

ture. Besides the last factor, Ug is essentially the anoma-
lous Z2 symmetry transformation on the boundary of a
2D Z2 SPT phase11.

To realize a SRE state preserving both Ug and Ua, first
we define a subspace by the following constraint:

τxj+ 1
2

= σzjσ
z
j+1. (26)

Physically, this is the Ua charge decoration on Ug
domain wall, corresponding to a nontrivial class in
H1[Z2,H1[Z2,U(1)]]. In this subspace, the symmetry Ug
simplifies to

∏
j σ

x
j . Define the projector to the subspace

as P :

P =
∏
j

1 + τx
j+ 1

2

σzjσ
z
j+1

2
. (27)

We choose the Hamiltonian to be

H = −
∑
j

τzj− 1
2
σxj τ

z
j+ 1

2
P. (28)

The term is invariant under Ua, and under Ug as well in
the projected space. The ground state satisfies

τxj+ 1
2
σzjσ

z
j+1 = τzj− 1

2
σxj τ

z
j+ 1

2
= 1. (29)

We recognize that with periodic boundary condition, the
ground state is the well-known 1D cluster state. It is of-
ten described as a 1D SPT state protected by the Z2×Z2

symmetry group generated by Ua and U ′g =
∏
j σ

x
j . On

an open chain starting with site 1 and ending at site L,
one finds zero mode operators σz1 and σx1 τ

z
3
2

localized at

the site 1, which anticommute with each other and span
a two-dimensional projective representation of Z2 × Z2.
In our case, we define the restricted symmetry transfor-
mations as follows:

Ũa = σz1

L−1∏
j=0

τxj+1/2σ
z
L,

Ũg =

L∏
j=1

σxj · e
iπ
2

∑L−1
j=1

1−σzj σ
z
j+1

2 · e
πi
4

∑L−1
j=1 (τxj+1/2−1).

(30)
Notice that we introduce two additional σz operators
at the ends of the chain in Ũa, since the restriction is
ambiguous up to local operators at the ends. The re-
stricted symmetry operators satisfy all the group rela-

tions:
(
Ũa

)2

= 1,
(
Ũg

)2

= Ũa. With these symmetry

transformations, both σz1 and σx1 τ
z
3/2 are forbidden by Ũg,

and therefore the ground state degeneracy is protected.
Intuitively, the constraint in Eq. (26) must be en-

forced to get rid of the non-on-site part of Ug in a suit-
able subspace, and therefore a non-degenerate ground
state must be an anomalous SPT phase. The constraint
basically binds τ charges to σ domain walls. Without
this particular decoration, the system either breaks the
symmetry or forms a gapless state. For example, one
may let the τ spins to form an Ising paramagnet, i.e.
τxj+1/2 = 1 for every j by adding a large on-site magnetic

field −h
∑
j τ

x
j+1/2. Within this low-energy subspace, the

Ug transformation effectively generates a Z2 group with
’t Hooft anomaly, which is an example of the emergent
anomaly discussed in Ref. [36]. The σ spins can form a
Luttinger liquid preserving the effective Z2 symmetry.

B. Symmetry-enriched gauge theory

In a consistent decorated DW state, one can gauge the
symmetry group A to arrive at a A gauge theory. The
global symmetry becomes G after A is gauged, so the re-
sult is a G-enriched A gauge theory33,37. This is believed
to be the most general construction of a A gauge theory
enriched by G symmetry, as long as the enrichment is
compactible with the gauge structure.

Let us examine the symmetry-enriched phenomena in
more details. In the gauge theory, there are two types of
fundamental excitations: gauge charges, which are point-
like excitations labeled by irreducible representations of
the gauge group, and gauge fluxes, (D − 2)-dimensional
objects labeled by conjugacy classes. The group exten-
sion determines how the gauge charges transform under
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the global symmetry G: the automorphism of G on A
specifies how different types of gauge charges are per-
muted by G (and at the same time determine how dif-
ferent kinds of fluxes are permuted), and the 2-cocycle
indicates that gauge charges transform projectively un-
der G.

On the other hand, each Ep,q2 with p 6= 0, q 6= 0 de-
scribes a particular way that the G symmetry acts on
gauge flux excitations, including changing the topologi-
cal type of the excitations, or symmetry transformation
being “fractionalized” on the excitations. The latter is
most familiar in 2D, and similar phenomena have also
been investigated for loop excitations in 3D topological
gauge theories38–40. Below in Sec. IV C we will carefully
examine the physical interpretations of these terms for
Abelian gauge theories in (2+1)d and U(1) gauge theory
in (3+1)d.

The differentials dn : Ep,D+1−p
n → Ep+n,D+2−p−n

n rep-
resent obstructions in gauging the symmetry group A.
In other words, the gauged theory is “obstructed” (with
the given action on gauge charges). More specifically, a
non-vanishing obstruction typically implies that the sym-
metry action given by Ep,q2 is incompactible with the
underlying fusion and braiding structure of the topo-
logical order, when the group extension fixes how the
symmetry acts on the charge sector. In addition, dn :
ED+2−n,n−1
n → ED+2,0

n leads to ’t Hooft anomaly of the
symmetry-enriched gauge theory. However there are a
whole ladder of obstructions. We study the 2D case for
general Abelian group A, and 3D case for A = U(1) be-
low in Sec. IV C 2, and unpack the physical meaning of
the obstructions.

On the other hand, if certain element in Ep,D+1−p
n is in

the image of the dn differential, according to the discus-
sion in, the domain wall decoration after the symmetry is
ungauged can be trivialized. As a result, the correspond-
ing symmetry action on flux excitations in the gauged
theory is also trivial.

IV. EXAMPLES

In this section we discuss a few examples to illustrate
the applications of LHS spectral sequence.

A. SPT-LSM theorems

In recent years, the celebrated Lieb-Schultz-Mattis
theorem has found many generalizations and refine-
ments21,24,25,41–45. A common theme underlying these
developments is the realization that LSM theorem can be
understood as the manifestation of ’t Hooft anomaly of
a particular class of crystalline SPT phases, the bound-
ary of which hosts a projective representation per unit
cell21–23. Here we will focus on a class of LSM theorems
which allows SRE ground state24,25,44, but nevertheless
must be in a nontrivial SPT phase, thus referred to as

“SPT-LSM” theorems. While these theorems have been
understood in the theoretical framework of crystalline
SPT phases18,19,46, here we will “rederive” some of the
bosonic SPT-LSM theorems using the LHS spectral se-
quence.

More specifically, we will treat the relevant crystalline
symmetry formally as an internal one and identify the
SPT-LSM theorems from a certain E2 page correspond-
ing to certain decoration with projective representations
of the actual internal symmetry. This is motivated by the
crystalline correspondence principle in Ref. [8], which es-
tablishes the equivalence between classification of topo-
logical phases with a crystalline symmetry group G and
that with an internal symmetry group G. Notice that
however it is not clear whether the spectral sequence that
classifies bosonic crystalline SPT phases18,19,46 and the
Atiyah-Hirzebruch spectral sequence studied here for in-
ternal symmetry are completely equivalent (at the level of
spectrums, not just classifications). Therefore the com-
putations performed below should be regarded as being
conjectural, and suggest that the crystalline correspon-
dence principle may actually extend to the whole spectral
sequence.

We will focus on SPT-LSM theorems with “magnetic”
translation symmetry. Let us consider G = ZD, extended
by an Abelian group A:

1→ A→ G̃→ ZD → 1. (31)

G here represents the lattice translation symmetry in
D-spatial dimensions, and A is the internal symmetry
group. When D = 2 and A = U(1), G̃ is the usual
magnetic translation symmetry group. To describe pro-
jective representation of A per unit cell, we need to con-

sider ED,22 = HD[ZD,H2[A,U(1)]]. Roughly speaking,
this is because a unit cell can be formally viewed as a
particular codimension-D junction of translation sym-
metry defects. For example, in 2D the commutator of
primitive translations along the two Bravis basis vectors
geometrically encloses exactly one unit cell. We will fix a

α ∈ ED,22 , which is uniquely determined by the A projec-
tive representation. We look for SPT-LSM theorems in
the strongest form, that is, nontrivial SPT ground states
protected by A alone are enforced when the symmetries
are preserved.

In order to have a SPT-LSM theorem, the “decoration”
should be trivializable. In particular, in order to enforce
a “strong” SPT ground state, we consider the following
differential:

dD : E0,D+1
D → ED,2D . (32)

Suppose there exists a ω0 ∈ E0,D+1
2 such that dDω0 = α.

To obtain an SPT-LSM theorem, it is necessary to check
that dnω0 vanish for 2 ≤ n < D. In addition, it is also
desirable that ν does not have other trivializations, to
get the most stringent constraint possible. If there exists
such a ω0 with all the requirements satisfied, then a SRE
ground state must be a nontrivial A SPT phase described
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by ω0. Note that higher differentials of E0,D+1
D vanish

automatically since Hk[ZD, ∗] = Z1 for k > D.
For D = 2, the above criteria are all trivially satisfied

since d2 is the very first obstruction. Applying the first
term in formula (B89), we have

(d2ω0)(a, b, 1k, 1l) (33)

=

1kl

[
ω0

(
kla, klν(k, l), klb

)]
1kl

[
ω0

(
kla, klb, klν(k, l)

)]
× 1kl

[
ω0

(
klν(k, l), kla, klb

)] ,
where ν ∈ H2[Z2, A] specifies the central extension of
the group. For simplicity, let us consider the special case
where G = Z2 has trivial action on A, and ν(Tx, Ty) =
g ∈ A, and ν(k, l) = 0 otherwise. It represents the
magnetic translation symmetry with TxTyT

−1
x T−1

y = g
(g is a fixed element in A). Then (d2ω0)(a, b, Tx, Ty)

has a simpler expression ω0(a,g,b)
ω0(a,b,g)ω0(g,a,b) . If it is co-

homologous to a nontrivial cocycle α(a, b) in E2,2
2 =

H2[Z2,H2[A,U(1)]] = H2[A,U(1)] representing the pro-
jective representation in the unit cell, then we have an
SPT-LSM theorem. In this way, we rederived and gener-
alized the SPT-LSM theorem in Ref. 25.

Now we consider D = 3, and suppose that
H3[A,U(1)] = Z1. An SPT-LSM theorem is given by
the first differential term of Eq. (B104)

d3 : E0,4
3 → E3,2

3 . (34)

If H3[A,U(1)] vanishes, both differentials d2 : E0,4
2 →

E2,3
2 and d2 : E1,3

2 → E3,2
2 vanish automatically. An

example of 3D SPT-LSM theorem was given in Ref. 26,
with G = Z3 and A = U(1)×ZT

2 , with translations acting
as charge conjugation.

B. 2D topological phases with magnetic translation
symmetry

We now apply the LHS spectral sequence to the prob-
lem of 2D symmetry-enriched topological (SET) phase
with magnetic translation symmetry44,47. As in the pre-
vious section, the system has an internal symmetry group
A and lattice translationG = Z2, but the primitive trans-
lations Tx and Ty satisfy

TxTyT
−1
x T−1

y = a, (35)

where a ∈ A represents an internal symmetry trans-
formation. Apparently, the internal symmetry must all
commute with a, i.e. a is a central element. For sim-
plicity, let us assume that the internal symmetry is an
Abelian group. The total symmetry group G̃ is then a
central extension of Z2 by A [see Eq. (31)]. It is specified
by ν ∈ H2[Z2, A] = A. If a general element of the transla-
tion group is represented as Tmxx T

my
y where mx,my ∈ Z,

then we can choose

ν(Tmxx Tmyy , Tnxx Tnyy ) = amxny . (36)

In the topological phase, anyons can carry fractional-
ized quantum numbers of the global symmetry. Assum-
ing that no anyons are permuted by the symmetry, sym-
metry fractionalization is classified by H2[G̃,A], where
A is the group of Abelian anyons. There are three terms
in the E2 page:

E0,2
2 = H2[A,A],

E1,1
2 = H1[Z2,H1[A,A]] = (H1[A,A])

2
,

E2,0
2 = H2[Z2,A] = A.

(37)

Ref. 21 gave the physical interpretations of the various
terms when a = 1: E0,2

2 is just the fractionalization of

A symmetry itself on anyons. E1,1
2 means anyons carry

“dipole moment” of A, i.e. as one separates a pair of
anyons apart the total A charge changes. The E2,0

2 is
the background anyon charge in each unit cell. For mag-
netic translation the results can be understood similarly.
In particular, E2,0

2 now describes the background charge
in a unit cell of the original lattice (not the magnetic
unit cell). Notice that however now they are subject to
obstruction and trivialization differentials.

The only obstruction differential to be considered is

d2 : E0,2
2 → E2,1

2 . (38)

Suppose ω0 is a 2-cocycle in H2[A,A]. Using Eq. (B69),

we find d2ω0 ∈ E2,1
2 = H2[Z2,H1[A,A]] given by:

(d2ω0)(b,g,h) =
ω0(b, ν(g,h))

ω0(ν(g,h), b)
. (39)

Here b ∈ A. For fixed g,h, (d2ω0)(,g,h) gives a ho-
momorphism from A to A. To check whether d2ω0 is
a nontrivial cocycle in E2,1

2 , we consider the following
invariant:

(d2ω0)(b, Tx, Ty)

(d2ω0)(b, Ty, Tx)
=
ω0(b, a)

ω0(a, b)
. (40)

Therefore ω0 is d2-obstructed if and only if there exists
b ∈ A such that ω0(a, b) 6= ω0(b, a). What this condition
means heuristically is that the group element a must be
central (i.e. commuting with all other elements in A)
even when acting on an individual anyon. For A = U(1)
or a cyclic group, this obstruction always vanishes.

Now let us consider the trivialization differentials. The
only nontrivial one is

d2 : E0,1
2 → E2,0

2 . (41)

Here E0,1
2 = H1[A,A], i.e. a group homomorphism

ϕ from A to A. Under d2, one finds (d2ϕ)(g,h) =
ϕ
(
ν(g,h)

)
. In particular, for G = Z2 we only need to

check the Tx, Ty commutator:

(d2ϕ)(Tx, Ty)

(d2ϕ)(Ty, Tx)
= ϕ(a). (42)
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Namely, we exclude from E2,0
2 = A the elements that can

be written as ϕ(a) for some group homomorphism from
A to A. Such trivializations do not occur for A = U(1)
since H1[U(1),A] is trivial.

Neither the obstruction nor the trivialization affects
E1,1

2 , as the physical effect only involves the translation
along a certain direction. We therefore conclude that for
A = U(1), the E2 page already converges to E∞, and we
obtain a complete classification of symmetry fractional-
ization from Eq. (37).

1. Magnetic LSM theorem

Now we study an example of LSM theorem with mag-
netic translation symmetry. Consider a spin system
with O(2) = U(1)Sz o Z2 symmetry. It is often suf-
ficient to consider the (maximal) finite subgroup Z2

2 =
{1, Z,X,ZX}. Here Z is the π spin rotation for the
U(1)Sz subgroup of O(2), and X is the π rotation around
x axis.We will assume that on the lattice there is a π flux
of U(1)Sz in each unit cell. In other words, the lattice
translations satisfy

TxTyT
−1
x T−1

y = Z. (43)

The 2-cocycle ν ∈ H2[Z2,Z2
2] = Z2

2 characterizing the
central extension takes values ν(Tx, Ty) = Z and 1 for
all other arguments. Each unit cell contains a projective
representation of O(2), i.e. a spin-1/2. The setup is
quite similar to the 2D SPT-LSM theorem discussed in
Sec. IV A, but we will show that this is an actual LSM
system.

One way to prove this result is to apply the filling con-
straint in Ref. [44]. Focusing on the U(1)Sz subgroup,
the system is half-filled with a background π flux. There-
fore, if the ground state is SRE, the Hall conductance
must be an odd integer, which is not allowed for bosonic
systems.

Alternatively, we can use the LHS spectral sequence.
In fact, it is sufficient to consider the Z2 × Z2 subgroup
of O(2). Physically, a would-be SPT phase must have
a Z2 × Z2 projective representation bound to a Z flux.
However, from the classification of Z2 × Z2 SPT phases
in 2D, we know that no such SPT states exist. In fact,
the cocycle ω0 ∈ E03

2 = H3[Z2
2,U(1)] = Z3

2 for 2D Z2×Z2

SPT can be parametrized as

ω0(a, b, c) = eiπ
∑

1≤i≤j≤2 pijaibjcj , (44)

with pij = 0, 1. From Eq. (B89), the differential d2 of

ω0 is (d2ω0)(a, b, 1k, 1l) = ω0(a,ν(k,l),b)
ω0(a,b,ν(k,l))ω0(ν(k,l),a,b) . It

is easy to check that they are all trivial in E2,2
2 =

H2[Z2,H2[Z2
2,U(1)]] = Z2. So the anomaly does not

match, and we have an LSM theorem.
Now let us consider what kind of SET phases can be

realized. We will show that quite surprisingly, in order to
saturate the anomaly, certain symmetry transformations

(among translations and X) must permute anyons. A key
observation is that the spin-1/2 representation of O(2)
can not be lifted to a projective representation of the full
group G̃. If the translation symmetry is not magnetic,
the spin-1/2 representation must be “screened” in the
ground state by a background anyon charge which also
carries the spin-1/2. However, such mechanism does not
generalize to the present case.

We now present a detailed calculation of the anomaly,
assuming no anyons are permuted. For technical rea-
sons, we focus on the A = Z2

2 subgroup of O(2), as the
anomaly remains essentially the same. The classification
for symmetry fractionalizationH2[G̃,A] has already been
computed from the LHS spectral sequence in Sec. IV B.
Here we adopt the results:

• E0,2
2 is characterized by the three invariants

IZ = w(Z,Z), IX = w(X,X), IZX =
w(Z,X)

w(X,Z)
. (45)

Physically, w(Z,Z) determines which anyons carry
fractional Z charge, and similarly for w(X,X). IZX
determines which anyons carry a two-dimensional
projective representations of Z2

2, i.e. the “spin-1/2”
representation. We also notice that for projective
represetations of O(2) we must have IZ = IZX . It
can be proven by considering the two generating
classes: one of them has only nontrivial IX , and
IZ , IZX both trivial. The other generator can be
lifted a projective representation of SO(3), which
satisfies IZ = IZX . According Sec. IV B, IZX
must be trivial in order for the d2 obstruction to
vanish. In other words, no anyons carry the two-
dimensional projective representation of Z2 × Z2.
In conclusion, the non-obstructed class has both
IZ and IZX trivial.

• E1,1
2 is characterized by four invariants,

γZ/X(Tx/y). The invariant γa(g) is defined
as

γa(g) =
w(a,g)

w(g, a)
. (46)

One can show that all of them must be self-dual
Abelian anyons because Z2 = X2 = 1. In addition,
since Z is actually the π rotation of U(1)Sz and

E1,1
2 is actually completely trivial for G = U(1),

γZ(Tx/y) must vanish in order to be lifted to O(2).

• E2,0
2 is given by A, but module all self-dual Abelian

anyons due to a d2 trivialization from E0,1.

The H4 anomaly class, denoted by O below, can be
computed using the formula derived in Refs. 14 and
9. We can use Eqs. (C20), (C21) and (C22) to extract

E0,4
2 , E1,3

2 and E2,2
2 . Since we are interested in those frac-

tionalization classes that can be lifted back to O(2), we
set γZ(Tx/y) = 0. Recall that the obstructio-vanishing
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condition requires IZ = IZX = 0. Let us focus on the
most relevant component, O2,2 in E2,2

2 , can be character-
ized by the following invariant:

I =
O2,2(Z,X, Tx, Ty)O2,2(X,Z, Ty, Tx)

O2,2(Z,X, Ty, Tx)O2,2(X,Z, Tx, Ty)
. (47)

The magnetic LSM anomaly requires I = −1. A te-
dious but straightforward calculation yields I = 1 for
the fractionalization classes in our case. Therefore, it is
impossible to saturate the magnetic LSM anomaly.

If we do not demand that the symmetry can be en-
hanced to O(2), the anomaly can be realized simply by
a Z2 gauge theory. More specifically, denote the electric
and magnetic gauge charges by e and m, respectively.
One can show that the fractionalization class

γZ(Tx) = e, γX(Ty) = m, (48)

correctly produces the LSM anomaly.

C. Symmetry-enriched Abelian gauge theory in 2D
and 3D

1. (2+1)d Abelian gauge theory

Let us apply the LHS spectral sequence to (2+1)d
Dijkgraaf-Witten topological gauge theory with an
Abelian gauge group A and a symmetry group G. It
will be assumed that G is a finite group below, although
the results can be easily adopted to the continuous case.

Topological excitations in a A gauge theory are dyons
(χ̂, a) where a ∈ A labels gauge flux, and gauge charges

labeled by a character χ̂ ∈ Â. Fusion rules and braid-
ing statistics are determined by the cohomology twist
α ∈ H3[A,U(1)]. The resulting topological order is de-
noted by Zα(A) (known as the twisted quantum dou-
ble of A). We will assume that there is no type-III 3-
cocycle48, since in that case the topological order be-
comes non-Abelian. We will discuss how to connect the
results from the LHS spectral sequence to the classifica-
tion framework established in Ref. [9]. For simplicity, we
assume that the extension is central so G does not act on
A. In the language of Ref. [9], G action does not change
the types of gauge charges.

The E2 page has three terms, E0,3
2 , E1,2

2 and E2,1
2 . The

first term E0,3
2 = H3[A,U(1)] is just the cohomology

twist α in the gauge theory. Notice that it is subject
to three obstruction differentials

d2 : E0,3
2 → E2,2

2 ,

d3 : E0,3
3 → E3,1

3 ,

d4 : E0,3
4 → E4,0

4 .

(49)

In fact, similar structures already appeared in 2D SPT-
LSM theorems, where the d2-“obstructed” SPT phase
can only exist when the G symmetry is implemented with

a mixed anomaly with A. In the gauge theory context,
the physical interpretation is that it is inconsistent to
have the G action on gauge charges as specified by the
group extension in the twisted gauge theory. Let us il-
lustrate this by an example of the d3 obstruction, which
first appeared in Ref. 49. Let A = Zn, and the 3-cocycle

α(a, b, c) =
p

n2
a(b+ c− [b+ c]n). (50)

Here p = 0, 1, . . . , n − 1 and a, b, c ∈ Z/nZ. The d2

map on α is trivial for E2,2
2 = 0. The d3 map to

H3[G,H1[A,U(1)]] is (see Appendix B 7 for the deriva-
tion)

(d3α)(a,g,h,k) = −2p

n
a(βnν̃)(g,h,k), (51)

where ν̃ is an integral lift of ν, and βnν̃ = 1
ndν̃ is the

Bockstein homomorphism of ν. If −2pν is trivial as a
cohomology class in H2[G,A], then for the integral lift
there exists a 2-cochain µ in C2[G,Z] and a 1-cochain λ
in C1[G,Z] such that dλ+ nµ = −2pν̃, then

(d3α)(a,g,h,k) = a(βnµ)(g,h,k). (52)

This is actually a coboundary dω ∈ B3[G,H1[A,U(1)]]

if we define ω(a,g,h) = aµ(g,h)
n ∈ Z2[G,H1[A,U(1)]].

The converse is also true, that is if −2pν is non-
trivial in H2[G,A], then d3α is a nontrivial class in
H3[G,H1[A,U(1)]].

We can actually understand what goes wrong more
intuitively: in this twisted Zn gauge theory, the gauge
flux (0, 1) satisfies the following fusion rules: (0, 1)n =
([2p]n, 0). On the other hand, the [2p]n gauge charge car-
ries a projective representation of G characterized by the
2-cocycle 2pν. If 2pν is a nontrivial cohomology class, it
is impossible to take a “n-th” root of the representation,
so the G representation on a unit flux is ill-defined. In
summary, the group extension structure is inconsistent
with the fusion rules.

Finally, when d3 vanishes, d4 : E0,3
4 → E4,0

4 contributes
to the ’t Hooft anomaly. An explicit expression of d4 for
A = Zn is derived in Appendix B 7:

d4α = − p
n
ν̃ ∪1 βnν̃ +

p

n2
ν̃ ∪ ν̃. (53)

Here ν̃ is an integral lift of ν, valued in 0, 1, · · · , n− 1.
Next we have a term E1,2

2 = H1[G,H2[A,U(1)]]. The
physical meaning is the following: consider gapped in-
vertible domain walls in the A gauge theory, obtained
by embedding a 1D A-SPT state before gauging. After
gauging it means that gauge fluxes have additional charge
attached when passing through the domain wall. To see
why this is the case, consider the topological response of a
1D SPT phase labeled by ω ∈ H2[A,U(1)]. When put on
a ring with a flux a ∈ A threaded, the global charge of the
system under b ∈ A changes by îωa (b) = ω(b, a)/ω(a, b)50.
Now if the 1D SPT state is embedded in the 2D gauge
theory, the additional gauge charge must be carried away
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by the gauge flux to ensure charge neutrality. Therefore
we have the transformation:

(χ̂, a)→ (χ̂× îωa , a) (54)

as the particle passes through the wall. In other words,
each element of H2[A,U(1)] corresponds to a nontrivial
permutation in the MTC Zα(A). Notice that these per-
mutations form a subgroup of the topological symmetry
group Aut

(
Zα(A)

)
which preserves the gauge structure

(i.e. the electric charge sector remains invariant). E1,2
2

is then a homomorphism from G to this subgroup, as
expected from the general classification9.

Let us discuss the obstruction differential d2 : E1,2
2 →

E3,1
2 . The E1,2

2 cocycle is a homomorphism ρ : G →
H2[A,U(1)]:

(d2ρ)(a,h,k, l) =
ρl(a, ν(h,k))

ρl(ν(h,k), a))
. (55)

The l symmetry acts on a flux a ∈ A by attaching a
charge îωa . The projective representation of this charge is

characterized by the factor set îρla (ν(h,k)) for h,k ∈ G,
which is exactly Eq. (55). Therefore the d2 represents
an obstruction in assigning consistent fractionalization to
fluxes, due to potential conflict between the permutations
by ρ and the projective represetations carried by gauge
charges. As an example, let us assume G = G1 × G2.
Suppose ν can be completely restricted to G2, and ρg
is nontrivial only when g ∈ G1. If under a transforma-
tion g1 ∈ G1, a certain flux is attached a charge carrying
a nontrivial projective representation under G2, this is
physically impossible as the projective representation of
the flux under G2 (by assumption, it is invariant un-
der G2) should not change under symmetry transforma-
tions. This inconsistency can be detected by the d2 map
through slant product.

The next term, E2,1
2 = H2[G,H1[A,U(1)]] = H2[G, Â]

describes symmetry fractionalization on gauge fluxes.
d2 : E2,1

2 → E4,0
2 contributes to the ’t Hooft anomaly.

There is also the trivialization map d2 : E0,2
2 → E2,1

2 .
More specifically, for ω ∈ H2[A,U(1)],

(d2ω)(a,h,k) =
ω
(
a, ν(h,k)

)
ω
(
ν(h,k), a

) . (56)

As we have discussed for the obstruction map of E1,2
2 , for

an a flux, a charge îωa is attached, which carries a projec-
tive representation exactly given by Eq. (56). Thus the
trivialization map simply indicates whether the projec-
tive representations on fluxes can be removed by relabel-
ing.

Finally, collecting all contributions to E4,0
2 (d2 from

E2,1
2 , d3 from E1,2

3 , and d4 from E0,3
4 ), one obtains a for-

mula for the ’t Hooft anomaly of the symmetry-enriched
gauge theory.

Together, we see that terms on the E2 page describe
how gauge fluxes are permuted under the symmetry

group G, as well the fractionalization on the fluxes. The
obstruction and trivialization maps can be interpreted in
terms of the consistency between the symmetry actions
and the underlying topological order, as well as the ’t
Hooft anomaly.

2. (3+1)d U(1) gauge theory

We now consider the classification of (3+1)d U(1)
gauge theory enriched by G. Recently the formal classi-
fication was established in Ref. [34] (see also Ref. [51]),
and here we will see how the results can be reproduced
using the LHS spectral sequence. Suppose G preserves
the gauge structure (i.e. it does not mix electric and
magnetic charges), then as discussed in we can use the
LHS spectral sequence to compute the classification. As
many details can be found in Ref. [34], here we will be
brief.

The nontrivial terms on the E2 page are E1,3
2 , E3,1

2 and

E4,0
2 . More concretely:

E1,3
2 = H1[G,H3[U(1),U(1)]] = H1[G,Z]

E3,1
2 = H3[G,H1[U(1),U(1)]] = H3[G,Z]

E4,0
2 = H4[G,U(1)].

(57)

Physically, E1,3
2 describes 2D bosonic integer quantum

Hall states decorated on G domain walls. Equivalently,
G implements a T 2 duality transformation on magnetic
charges. Under G magnetic charges may transform pro-
jectively, which is described by E3,1

2 . Finally H4[G,U(1)]
describes stacking a G SPT state.

Now we consider the differentials. Many of them vanish
automatically, and we focus on the possibly nontrivial
ones. First the obstruction maps:

d2 : E3,1
2 → E5,0

2

d3 : E1,3
2 → E4,1

2

d4 : E1,3
2 → E5,0

2

(58)

The differentials d2 and d4 ending in E5,0
2 give the ’t

Hooft anomaly, which was also obtained in Ref. 34. The
d4 : E1,3

4 → E4,1
4 was an obstruction class to G domain

wall decorations (by 2D U(1) SPT phases), and it was
termed “deconfinement obstruction” in Ref. [34]. Ex-
plicit expressions for the differentials in Eq. (58) were
obtained in Ref. [34].

Next we turn to the trivialization differentials:

d2 : E2,1
2 → E4,0

2

d3 : E0,3
3 → E3,1

3

d4 : E0,3
4 → E4,0

4 .

(59)

The explicit expressions for these trivialization differen-
tials are calculated in Appendix. B 7 (for a similar exam-
ple of A = Zn). If G is unitary and has trivial action on
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U(1), the differentials can be simplified:

(d2ω2,1)(g,h,k, l) = −ν(g,h)n(k, l)

(d3ω0,3)(a,h,k, l) = −2ka · (βν)(h,k, l)

(d4ω0,3)(g,h,k, l) = −k[ν(ghk, l) · (βν)(g,h,k)

+ ν(g,hkl) · (βν)(h,k, l)]

+
k

2π
ν(g,h)ν(k, l),

(60)

where ν(g,h) ∈ [0, 2π) is the symmetry extension 2-
cocycle from G to U(1) in H2[G,U(1)]. In the first equa-

tion, the cocycle ω2,1 in E2,1
2 = H2[G,H1[U(1),U(1)]]

is parametrized by a Z-valued 2-cocycle n ∈ H2[G,Z].

In the last two equations, the cocycle ω0,3 at E0,3
2 =

H3[U(1),U(1)] = Z is chosen to be

ω0,3(a, b, c) =
k

2π
a(b+ c− [b+ c]2π), (61)

with a, b, c ∈ [0, 2π) ∼= U(1) and k ∈ Z. And βν is the
Bockstein homomorphism of ν defined as

(βν)(g,h,k) =
ν(h,k)− ν(gh,k) + ν(g,hk)− ν(g,h)

2π
.

(62)

Both d2 and d4 lead to trivialization of SPT stack-
ing52,53. The d2 trivialization was discussed in Ref.
[51]. The d4 trivialization appears to be unknown be-
fore. Since the involved data is a H3[U(1),U(1)] cocycle,
we conjecture that physically it corresponds to a duality
T 2 transformation.

Finally, the d3 map trivializes monopole symmetry
fractionalization. The physical meaning is very clear:
if the projective representation carried by the monopole
is −2kν, then a duality transformation T 2k makes the
monopole completely neutral.
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Appendix A: Spectral sequence: a practical introduction

Here we give a quick and operational definition of the (cohomology) spectral sequence, using the LHS spectral
sequence as an example as it is most relevant for our work.

A spectral sequence consists of a family of Abelian groups Ep,qr where r, p, q are non-negative integer. The collection
of all Ep,qr with the fixed r are called the Er page. Within each page, there exist a set of group homomorphisms,
called differentials, that map elements of one Abelian group Ep,qr to another Abelian group Ep+n,q−n+1

r . We denote
such a homomorphism by dp,qr where the subscript r indicates that it is defined on the Er page, and the superscripts
p, q imply that its preimage is in Ep,qr . Such a homomorphism can be represented by the following map:

dp,qr : Ep,qr → Ep+r,q−r+1
r (A1)

We can sometimes omit the superscript, and just use dr for simplicity when there is no ambiguity. We require that
the differentials should satisfy d2

r = 0 (i.e. d2
r maps into the group identity). In addition, we have the following

isomorphisms

Ep,qr+1 '
ker(dp,qr )

img(dp−n,q−n+1
r )

. (A2)

The family of {Ep,qr } can be constructed iteratively, namely, knowing the Er page (i.e., Ep,qr for all p, q with given
r), one can construct the next parge, i.e., Er+1-page via the isomorphism (A2).

Let us take the LHS spectral sequence as an example. Given a short exact sequence of groups

1→ A→ G̃→ G→ 1, (A3)

the LHS spectral sequence computes the group cohomology of G̃ in terms of the group cohomology of the normal
subgroup A and the quotient group G = G̃/A. We denote the set of i-cochains, i-cocycles, and i-coboundaries of an
group G0 with coefficients in M by Ci[G0,M ], Zi[G0,M ], and Bi[G0,M ] repsectively.

We begin with defining E0-page of the LHS spectral sequence, which is just the group of cochains Cp[G, Cq[A,M ]].

The d0 differential is given by Eq. (B4), which maps a cochain in Ep,q0 = Cp[G, Cq[A,M ]] to a cochain in Ep,q+1
0 =

Cp[G, Cq+1[A,M ]]. See Fig.3(a) for illustration. The kernel of dp,q0 is just Cp[G,Zq[A,M ]], while the image of dp,q−1
0
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is just Cp[G,Bq[A,M ]], hence the E1 page is given by

Ep,q1 =
ker(dp,q0 )

img(dp,q−1
0 )

=
Cp[G,Zq[A,M ]]

Cp[G,Bq[A,M ]]
= Cp[G,Hq[A,M ]]. (A4)

Then we see E1 page is a subgroup of E0 page (modulo additional equivalence relations), that is,

E0 ⊃ E1. (A5)

If we denote the elements of Ep,q0 by wp,q0 , the more precise meaning of (A5) is that the elements of Ep,q1 are equivalence
classes of elements in Ep,q0 that satisfy the condition dp,q0 wp,q0 = 0, or more compactly,

d0w0 = 0, (A6)

with the equivalence relation given by w0 ∼ w0d0c−1, where c−1 ∈ Cp[G, Cq−1[A,M ]].
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FIG. 3. Examples for illustrating how dn differentials map within En page.

Now on the E1 page given by Ep,q1 = Cp[G,Hq[A,M ]], the differential d1 is defined by Eq. (B5). Namely d1

maps a cochain in Cp[G,Hq[A,M ]] to a cochain in Cp+1[G,Hq[A,M ]]. The kernel of dp,q1 is nothing but cocycles

Zp[G,Hq[A,M ]], and the image of dp−1,q
1 is nothing but the coboundaries Bp[G,Hq[A,M ]]. We illustrate d1 in

Fig.3(b). Then we define the E2 page by

Ep,q2 =
ker(dp,q1 )

img(dp−1,q
1 )

=
Zp[G,Hq[A,M ]]

Bp[G,Hq[A,M ]]
= Hp[G,Hq[A,M ]], (A7)

Then we see E2 page is a subset of E1-page (modulo equivalence relations), that is,

E0 ⊃ E1 ⊃ E2. (A8)

More concretely, elements of E2 page are those elements in E0-page that satisfy the following conditions

d0w0 = 0, (A9a)

d1w0 = 0, (A9b)

where the first condition (A9a) ensures that it is in E1 page, and the second (A9b) ensures it is in E2 page.
On the E2 page, we have the d2 differentials

dp,q2 : Ep,q2 → Ep+2,q−1
2 , (A10)

or more explicitly,

dp,q2 : Hp[G,Hq[A,M ]]→ Hp+2[G,Hq−1[A,M ]]. (A11)

The explicit expression of d2 is given by Eq. (B37) (with i = 2). We illustrate how the d2 differential maps within the
E2 page in Fig.3(c).

Following the pattern, the E3 page can be constructed from the E2 page:

Ep,q3 =
ker(dp,q2 )

img(dp−2,q+1
2 )

. (A12)
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Within E3 page, we can also define the d3 differentials, as given by Eq. (B37)(with i = 3). We illustrate some examples
about how the d3 differential maps within E3 page in Fig. 3d. We also see that E3 page is a subset of E2 and hence
of E1 page. Then the inclusion relation Eq. (A8) can be extended to include E3-page, given by

E0 ⊃ E1 ⊃ E2 ⊃ E3. (A13)

More precisely the above relation sequence implies that the elements of E3 page are those elements in E0 page that
satisfy the following conditions

d0w0 = 0, (A14a)

d1w0 = 0, (A14b)

d2w0 = 0. (A14c)

We can continue this operational definition for arbitary Er-page. We have the relation sequence

E0 ⊃ E1 ⊃ E2 ⊃ E3 ⊃ · · · ⊃ Er. (A15)

Starting from E0 page, the elements that belong to Er+1-page must satisfy the following r + 1 conditions

d0w0 = 0

d1w0 = 0

d2w0 = 0

...

drw0 = 0

(A16)

If for a large enough r the condition drw0 = 0 is satisfied over the entire Er, then the elements in Er automatically
become the elements in Er+1 which means that we have Er+1 = Er, and all the higher pages are the same. We
say that the sequence stablizes at Er, or we have reached the E∞ page. For the LHS spectral sequence, the E∞ is
isomorphic to the group cohomology Hn[G̃,M ] as a set. In order to fully recover the group Hn[G̃,M ] one also needs
to understand the group multiplication structure on E∞, which is called the extension problem.

Now we briefly discuss the relation between group cohomology of Hn[G̃,M ] and Ep,q. For a fixed n, a general

cocycle in Hn[G̃,M ] can be constructed from cochains in Ep,n−p0 , and to satisfy the cocycle condition these cochains
must satisfy conditions which schematically take the form of Eq. (A16). However, the actual expressions involve
“cochain-level” differentials instead of differentials mapping between cohomology classes. In the following sections
(B 3–B 6), we will show how a n-cocycle can be decomposed into Ep,n−p0 cochains for n ≤ 4, and work out the cochain-
level differentials explicitly for general n. Together these results provide an explicit description of the LHS spectral
sequence.

Appendix B: LHS spectral sequence for degree-1, 2, 3 and 4

The goal of this section is to obtain the explicit expressions for n-cocycles and (cochain-level) differentials in the
LHS spectral sequence. Although only the cases with degree n = 1, 2, 3, 4 will be discussed in full detail, the method
can be generalized to higher degrees order by order. And based on the computations at degree n ≤ 4, we conjecture
a unified description of the cochain-level differentials using the slant products and diagonal approximations.

For simplicity, we assume that A is Abelian. It is not difficult to generalize all the results to the non-Abelian case.
We will present our results using the cohomology coefficient U(1). To obtain the results for the coefficient of other
Abelian group, we can simplify replace the multiplication in U(1) by the corresponding group multiplication.

In the following part of this appendix, we will first review some useful notations and concepts such as slant product
and diagonal approximation in Sec. B 1. The obstruction conditions, cochain-level differentials δi and cocycle-level
differentials di in the LHS spectral sequence are summarized in Sec. B 2. After that, we will show the details of
calculating the explicit expressions for n-cocycles (n = 1, 2, 3, 4) and differentials on each page of the LHS spectral
sequence. In Sec. B 7, we will show how to solve the obstruction conditions and obtain the differentials in the example
of A = Zn with trivial G action in degree 3.
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1. Notations and conventions

a. Symmetry actions

There are two group actions in our discussions. One is an ingredient in the definition of group G̃, i.e., a map from G
to Aut(A) which specifies an action of G on A. If A is non-Abelian, this map is not necessarily a group homomorphism.
In this appendix, we will always assume that A is Abelian, and the non-Abelian generalization is straightforward.
We will use the notation ga (a ∈ A, g ∈ G) to denote this action. In terms of the group multiplication in G̃, we have
ga = 1g · a · (1g)−1. Another one is the action of G̃ on the cohomology coefficient, which makes the coefficient into

a G̃ module. For our purpose, we mainly use the coefficient U(1) in our paper, although all the formulas and results

below also apply to other coefficient. The most common action in physics is complex conjugation if the element in G̃
is time reversal. We will abuse the notation such as ag(F b,c,d) to indicate this action of ag on F b,c,d ∈ U(1).

From the above two symmetry actions, we can define a natural action of G on Hq[A,U(1)], which appears in the
definition of Ep,q2 = Hp[G,Hq[A,U(1)]]29,30. Following Ref. 30, we use the convention that G acts on Hq[A,U(1)] as

(gω)(a1, a2, ..., aq) := 1g
[
ω
(
ga1,

ga2, ...,
gaq
)]
, (B1)

where ω ∈ Hq[A,U(1)] is a q-cocycle of A. On the right hand side, the g = g−1 action on a in the arguments of ω is

the action of G on A in the definition of G̃. And the 1g action is the G̃ action on the coefficient U(1).
Both of two symmetry actions appears in the usual differentials of the LHS spectral sequence. The simplest δ0 and

δ1 are the differentials with respect to the group A and G respectively:

δ0Fp,q = dAFp,q, (B2)

δ1Fp,q = (dGFp,q)
(−1)q

. (B3)

To be more precise, the differentials dAFp,q ∈ Ep,q+1 and dGFp,q ∈ Ep+1,q are

(dAFp,q)(a1, ..., aq+1,g1, ...,gp) = a1
(
F a2,...,aq+1,1g1

,...,1gp
)
×

q∏
i=1

(
F a1,...,aiai+1,...,aq+1,1g1

,...,1gp
)(−1)i

×
(
F a1,...,aq,1g1 ,...,1gp

)(−1)q+1

, (B4)

(dGFp,q)(a1, ..., aq,g1, ...,gp+1) = 1g1

(
F

g1a1,...,
g1aq,1g2

,...,1gp+1

)
×

p∏
i=1

(
F a1,...,aq,1g1

,...,1gigi+1
,...,1gp+1

)(−1)i

×
(
F a1,...,aq,1g1

,...,1gp
)(−1)p+1

. (B5)

We note that the first terms in both dA and dG have an G̃ action on the U(1) coefficient. And the first q variables ai
(1 ≤ i ≤ q) of the first term in dG are acted g1. This is the G action on A in the definition of G̃.

For convenience, we define the G action on F ∈ Ep,q0 = Cp[G, Cq[A,U(1)]] to be(
1hF
)a1,...,aq,1g1

,...,1gp := 1h

(
F

ha1,...,
haq,1g1 ,...,1gp

)
, (B6)

where all the A part variables a1, ..., aq of F are acted by h = h−1. On the other hand, all the G part variables
1g1 , ..., 1gp of F are fixed without G-action by h.

b. Slant product

Slant product in algebraic topology is a paring between chains and cochains54. As it produces lower degree cochains,
slant product is important in dimension reduction constructions of both bosonic and fermionic SPT phases48,55,56.
The simplest example of slant product is a map sending a 1-chain and an n-cochain to an (n−1)-cochain as alternating
product:

(ιbωn)(a1, ..., an−1) := ωn(a1, ..., an−1, b)× ωn(a1, ..., an−2, b, an−1)−1 × ...× ωn(b, a1, ..., an−1)(−1)n−1

. (B7)
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Given a 2-chain (b1, b2), we can similarly map an n cochain to an (n− 2)-cochain:

[ι(b1,b2)ωn](a1, ..., an−2) :=
∏

0≤i≤j≤n−2

[ωn(a1, ..., ai, b1, ai+1, ..., aj , b2, aj+1, ..., an−2)]
(−1)i+j

(B8)

= ωn(a1, ..., an−2, b1, b2)× ωn(a1, ..., an−3, b1, an−2, b2)−1 × ...× ωn(b1, b2, a1, ..., an−2).

In general, we can define the shuffle product57 for two chains a = (a1, ..., am) and b = (b1, ..., bn). The result

a� b is a sum over the (m+n)!
m!n! (m + n)-chains of interleaving a and b. We use the convention that the first chain

(a1, ..., am, b1, ..., bn) has plus sign, and all other terms have alternating signs according to the parity of the permuta-
tion. Using shuffle product, the slant product is defined as

[ι(b1,...,bn)ωm+n](a1, ..., am) := ωm+n[(a1, ..., am)� (b1, ..., bn)] (B9)

= ωm+n(a1, ..., am, b1, ..., bn)× [ωm+n(a1, ..., am−1, b1, am, b2, ..., bn)]−1

× ...× [ωm+n(b1, ..., bn, a1, ..., am)](−1)mn .

Given an n-chain b, the slant product maps an (m+ n)-cochain ωm+n to an m-cochain ιbωm+n.

c. Diagonal approximation and higher cup product

The diagonal approximation maps one chain to a summation of tensor product of two chains. The zeroth order
diagonal approximation (Alexander-Whitney map) is defined as:

∆0(g1, ..., gn) :=

n∑
p=1

(g1, ..., gp)⊗ [g1...gp(gp+1, ..., gn)] . (B10)

When pairing the above expression with two cochains νm and νn, it produces the cup product

(νm ∪ νn)(g1, ..., gm+n) = νm(g1, ..., gm)× g1...gm [νn(gm+1, ..., gm+n)]. (B11)

The right-hand-side of the cup product has only one term p = m in Eq. (B10), as other terms in the diagonal
approximation do not match the degrees of νm and νn.

The higher order diagonal approximation is a chain homotopy measuring the failure of commutativity of lower order
diagonal approximations58. In this paper, we only use the first order diagonal approximation defined as

∆1(g1, ..., gn) :=

n∑
p=1

p−1∑
i=0

(−1)(p−i)(n−p)(g1, ..., gi, gi+1...gi+n−p+1, gi+n−p+2, ..., gn)⊗ [g1...gi(gi+1, ..., gi+n−p+1)].

(B12)

Similar to the zeroth diagonal approximation and cup product, the first order diagonal approximation is related to
cup-1 product59

(νm ∪1 νn)(g1, ..., gm+n−1)

=

m−1∑
i=0

(−1)(m−i)(n+1)νm(g1, ..., gi, gi+1...gi+n, gi+n+1, ..., gm+n−1)× g1...gi [νn(gi+1, ..., gi+n)]. (B13)

Due to the degrees of νm and νn, only the p = m terms in Eq. (B12) appear in cup-1 product.
For convenience, we list some of the useful cup-1 products:

(ν2 ∪1 ν2)(g,h,k) = ν2(gh,k)× ν2(g,h)− ν2(g,hk)× gν2(h,k), (B14)

(ν3 ∪1 ν2)(g,h,k, l) = −ν3(gh,k, l)× ν2(g,h) + ν3(g,hk, l)× gν2(h,k)− ν3(g,h,kl)× ghν2(k, l), (B15)

(ν4 ∪1 ν2)(g,h,k, l,m) = ν4(gh,k, l,m)× ν2(g,h)− ν4(g,hk, l,m)× gν2(h,k)

+ ν4(g,h,kl,m)× ghν2(k, l)− ν4(g,h,k, lm)× ghkν2(l,m). (B16)
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They are related to the following first order diagonal approximations by replacing × by ⊗:

(ν2 ⊗ ν2)(∆1(g,h,k)) = ν2(gh,k)⊗ ν2(g,h)− ν2(g,hk)⊗ gν2(h,k), (B17)

(ν3 ⊗ ν2)(∆1(g,h,k, l)) = −ν3(gh,k, l)⊗ ν2(g,h) + ν3(g,hk, l)⊗ gν2(h,k)− ν3(g,h,kl)⊗ ghν2(k, l), (B18)

(ν4 ⊗ ν2)(∆1(g,h,k, l,m)) = ν4(gh,k, l,m)⊗ ν2(g,h)− ν4(g,hk, l,m)⊗ gν2(h,k)

+ ν4(g,h,kl,m)⊗ ghν2(k, l)− ν4(g,h,k, lm)⊗ ghkν2(l,m). (B19)

Using Eqs. (B14) - (B16), we can derive the expressions for iterative cup-1 product ((ν2∪1 ν2)∪1 ...)∪1 ν2 with n ν2’s.
It is a summation of n! terms if we expand the iterative cup-1 of ν2. For example, (ν2 ∪1 ν2) ∪1 ν2 has 3! = 6 terms:

((ν2 ∪1 ν2) ∪1 ν2)(g,h,k, l) = −ν2(ghk, l)× ν2(gh,k)× ν2(g,h) + ν2(gh,kl)× ghν2(k, l)× ν2(g,h)

+ ν2(ghk, l)× ν2(g,hk)× gν2(h,k)− ν2(g,hkl)× gν2(hk, l)× gν2(h,k) (B20)

− ν2(gh,kl)× ν2(g,h)× ghν2(k, l) + ν2(g,hkl)× gν2(h,kl)× ghν2(k, l).

Similarly, we can apply the first order diagonal approximations iteratively as (∆1 ⊗ id.⊗...⊗ id.)...(∆1 ⊗ id.)∆1. The
higher cup products and diagonal approximations have the following correspondence:

ν2 ∪1 ν2 ←→ (ν2 ⊗ ν2)(∆1), (B21)

(ν2 ∪1 ν2) ∪1 ν2 ←→ (ν2 ⊗ ν2 ⊗ ν2)[(∆1 ⊗ id.)∆1], (B22)

((ν2 ∪1 ν2) ∪1 ν2) ∪1 ν2 ←→ (ν2 ⊗ ν2 ⊗ ν2 ⊗ ν2)[(∆1 ⊗ id.⊗ id.)(∆1 ⊗ id.)∆1], (B23)

...

We will find later that the three above formulas of iterative cup-1 product or first order diagonal approximation would
appear in the differentials δ3, δ4 and δ5 in the LHS spectral sequence.

2. Summary of obstructions and differentials

We note that the differentials δi we will obtain later are defined for all cochains (not only cocycles). Hence, we

will call them the cochain-level differentials δi : Ep,q0 → Ep+i,q−i+1
0 , in contrast to the cocycle-level differentials

di : Ep,qi → Ep+i,q−i+1
i .

In the following, we will first show the general form of the obstruction conditions. Then we will summarize the
expressions for the cochain-level differentials δi and the cocycle-level differentials di.

a. Solving obstruction conditions

In the later sections of this appendix, we will obtain the obstruction conditions of n-cocycle F for n = 1, 2, 3, 4. In
general, the obstruction conditions of the n-cocycle F can be summarized as

E0,n+1
0 : (δ0F0,n) = 1, (B24)

E1,n
0 : (δ1F0,n)(δ0F1,n−1) = 1, (B25)

E2,n−1
0 : (δ2F0,n)(δ1F1,n−1)(δ0F2,n−2) = 1, (B26)

... (B27)

En,10 : (δnF0,n)(δn−1F1,n−1)...(δ0Fn,0) = 1, (B28)

En+1,0
0 : (δn+1F0,n)(δnF1,n−1)...(δ1Fn,0) = 1. (B29)

Here, F is decomposed into cochains Fi,n−i ∈ Ei,n−i0 for 0 ≤ i ≤ n at different positions of the LHS spectral sequence.
And δi’s are the cochain-level differentials, with the explicit expressions shown in the next subsection. We note that
all the Fi,n−i are cochains and all the obstruction functions are cochain-level equations.

To work out the expression for the n-cocycle F , we have to solve the obstructions one after another. The first
obstruction Eq. (B24), for example, means that F0,n is a cocycle with respect to A due to d0 = dA. After choosing
a solution F0,n of it, we can now try to solve the second obstruction Eq. (B25) for another cochain F1,n−1. If we
obtain a set of cochains {Fi,n−i} satisfying all these obstruction equations, we can use them to construct an explicit
n-cocycle F .
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b. Cochain-level differentials δi

Let us first show some examples of the cochain-level differentials δi, which appear in the obstruction equations. The
differential δ2 in LHS spectral sequence is basically the slant product of ν = ν2, which is the 2-cocycle in H2[G,A]

specifying the short exact sequence of G̃. For example, when acting on F0,1 ∈ E0,1
0 , the result δ2F0,1 ∈ E2,0

0 is [see
Eq. (B59)]

δ2F0,1 = ι[−ν(g,h)]

(
1ghF

)·
=

1

(1ghF )
ν(g,h)

=
1

1gh

[
F ghν(g,h)

] , (B30)

where we used the action of G on F in Eq. (B1) in the last step.

The differential δ3 is roughly the slant product of (ν2 ⊗ ν2)(∆1). For example, δ3F0,2 ∈ E3,0
0 in Eq. (B70) is

δ3F0,2 = ι(ν⊗ν)(−∆1(g,h,k))

(
1ghkF

)·,·
=
(

1ghkF
)(ν⊗ν)[(g,hk)⊗g(h,k)−(gh,k)⊗(g,h)]

=

(
1ghkF

)ν(g,hk),gν(h,k)

(1ghkF )
ν(gh,k),ν(g,h)

=

1ghk

[
F

ghkν(g,hk),hkν(h,k)
]

1ghk

[
F ghkν(gh,k),ghkν(g,h)

] =

g h k

g h k
. (B31)

It has 2! = 2 terms just as ν2 ∪1 ν2 in Eq. (B14). In the last step, we used binary trees to represent F terms. For

example, the tree in the numerator represents
(

1ghkF
)ν(g,hk),gν(h,k)

. It has two vertices from top to bottom. The first
vertex is understood as gν(h,k) with two coming edges labelled by h and k. The second one is ν(g,hk) with coming

edges g and hk. They are put into the variables of
(

1ghkF
)·,·

from right to left.

Similarly, the fourth differential δ4 is roughly the slant product of (ν2⊗ν2⊗ν2)[(∆1⊗id.)∆1] [see also (ν2∪1ν2)∪1ν2

in Eq. (B20)]. For instance, δ4F0,3 ∈ E4,0
0 in Eq. (B91) is

δ4F0,3 = ι(ν⊗ν⊗ν)[(−(∆1⊗id.)∆1)(g,h,k,l)]

(
1ghklF

)·,·,·
=

(
1ghklF

)ν(ghk,l),ν(gh,k),ν(g,h)

(1ghklF )
ν(gh,kl),ghν(k,l),ν(g,h)

(
1ghklF

)ν(g,hkl),gν(hk,l),gν(h,k)

(1ghklF )
ν(ghk,l),ν(g,hk),gν(h,k)

(
1ghklF

)ν(gh,kl),ν(g,h),ghν(k,l)

(1ghklF )
ν(g,hkl),gν(h,kl),ghν(k,l)

(B32)

=

g h k l

g h k l

g h k l

g h k l

g h k l

g h k l
. (B33)

The three fractions correspond to the three terms of ν3 ∪1 ν2 in Eq. (B15). Each fraction can be further expressed
as two terms using ν3 = ν2 ∪1 ν2 from Eq. (B14). In the last step, we again used binary trees to represent 3! = 6 F
terms. The final result is similar to the six F terms appearing in the H4[G,U(1)] obstruction function of 2+1D SET
classifications9,14. It is not a surprise since we can also use LHS spectral sequence to understand symmetry-enriched
gauge theories as discussed in the main text of the paper.

The differential δ5 is more complicated. It is the slant product of (ν2 ⊗ ν2 ⊗ ν2 ⊗ ν2)[(∆1 ⊗ id.⊗ id.)(∆1 ⊗ id.)∆1],
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which has 4! = 24 terms. From Eq. (B106), δ5F0,4 ∈ E5,0
0 is given by

δ5F0,4 = ι(ν⊗ν⊗ν⊗ν)[−((∆1⊗id.⊗ id.)(∆1⊗id.)∆1)(g,h,k,l,m)]F̃
·,·,·,· (B34)

=
F̃ ν(ghkl,m),ν(ghk,l),ν(gh,k),ν(g,h)F̃ ν(gh,klm),ghν(kl,m),ghν(k,l),ν(g,h)F̃ ν(ghk,lm),ν(gh,k),ghkν(l,m),ν(g,h)

F̃ ν(ghk,lm),ghkν(l,m),ν(gh,k),ν(g,h)F̃ ν(ghkl,m),ν(gh,kl),ghν(k,l),ν(g,h)F̃ ν(gh,klm),ghν(k,lm),ghkν(l,m),ν(g,h)

× F̃ ν(ghk,lm),ghkν(l,m),ν(g,hk),gν(h,k)F̃ ν(ghkl,m),ν(g,hkl),gν(hk,l),gν(h,k)F̃ ν(g,hklm),gν(hk,lm),ghkν(l,m),gν(h,k)

F̃ ν(ghkl,m),ν(ghk,l),ν(g,hk),gν(h,k)F̃ ν(g,hklm),gν(hkl,m),gν(hk,l),gν(h,k)F̃ ν(ghk,lm),ν(g,hk),ghkν(l,m),gν(h,k)

× F̃ ν(ghkl,m),ν(gh,kl),ν(g,h),ghν(k,l)F̃ ν(g,hklm),gν(hkl,m),gν(h,kl),ghν(k,l)F̃ ν(gh,klm),ν(g,h),ghν(kl,m),ghν(k,l)

F̃ ν(gh,klm),ghν(kl,m),ν(g,h),ghν(k,l)F̃ ν(ghkl,m),ν(g,hkl),gν(h,kl),ghν(k,l)F̃ ν(g,hklm),gν(h,klm),ghν(kl,m),ghν(k,l)

× F̃ ν(gh,klm),ghν(k,lm),ν(g,h),ghkν(l,m)F̃ ν(ghk,lm),ν(g,hk),gν(h,k),ghkν(l,m)F̃ ν(g,hklm),gν(h,klm),ghν(k,lm),ghkν(l,m)

F̃ ν(ghk,lm),ν(gh,k),ν(g,h),ghkν(l,m)F̃ ν(g,hklm),gν(hk,lm),gν(h,k),ghkν(l,m)F̃ ν(gh,klm),ν(g,h),ghν(k,lm),ghkν(l,m)

=

g h k l m g h k l m g h k l m

g h k l m g h k l m g h k l m

g h k l m g h k l m g h k l m

g h k l m g h k l m g h k l m

g h k l m g h k l m g h k l m

g h k l m g h k l m g h k l m

g h k l m g h k l m g h k l m

g h k l m g h k l m g h k l m
.

where we used the abbreviation F̃ :=
(

1ghklmF
)
. The four fractions of the above equation correspond to the four

terms of ν4 ∪1 ν2 in Eq. (B16). Each fraction itself is then a product of six F terms using ν4 = (ν2 ∪1 ν2) ∪1 ν2.

Form the above expressions for several lower degree differentials, it is natural to expect that δiF0,i−1 ∈ Ei,00 (i ≥ 2)
has the following expression

(δiF0,i−1)(g1, ...,gi) = ι(ν⊗...⊗ν)[−((∆1⊗id.⊗...⊗id.)...(∆1⊗id.)∆1)(g1,...,gi)]

(
1g1...giF

)·,...,·
, (B35)

where there are (i − 1) ν’s and (i − 2) ∆1’s in the subscript of slant product. When (g1, ...,gi) is fixed, the slant

product sends a (i − 1)-cochain F0,i−1 of A to a 0-cochain of A in Ei,0i . This map is usually called transgression in
mathematics, as it maps a A cochain to a G cochain.

The above result can be easily generalized to δiF0,q ∈ Ei,q−i+1
0 for q > i−1: the slant product will send a q-cochain

F0,q to a (q − i+ 1)-cochain of A. So we have

(δiF0,q)(a1, ..., aq−i+1,g1, ...,gi)

=
[
ι(ν⊗...⊗ν)[(−1)q−i((∆1⊗id.⊗...⊗id.)...(∆1⊗id.)∆1)(g1,...,gi)]

(
1g1...giF

)·,...,·]a1,...,aq−i+1

. (B36)

For q < i− 1, the differential δi is trivial as Ei,q−i+1
0 = 0.

We can further generalize the result to δiFp,q ∈ Ep+i,q−i+1
0 for p ≥ 0 and q ≥ i − 1 (note that δiFp,q = 0 if p < 0

or q < i − 1). From the examples calculated in later sections of this appendix, we can summarize the most general

differential δiFp,q ∈ Ep+i,q−i+1
0 as

(δiFp,q)(a1, . . . , aq−i+1,g1, . . . ,gp+i)

=
[
ι(ν⊗...⊗ν)[(−1)q−i((∆1⊗id.⊗...⊗id.)...(∆1⊗id.)∆1)(g1,...,gi)]

(
1g1...giF

)·,...,·,1gi+1
,...,1gp+i

]a1,...,aq−i+1

. (B37)

We have p+ i group elements g1, ...,gp+i of G in the argument of δiFp,q. The first i of them appear in the subscript
of slant product just as the p = 0 result Eq. (B36). The last p of them are put into the last p variables 1gi+1

, ..., 1gp+i
in the argument of Fp,q, which are fixed throughout the slant product.

Let us consider some simple examples for differentials other than transgressions. Here, we list three examples of
δ2F2,2 ∈ E4,1

0 , δ3F0,3 ∈ E3,1
0 and δ3F1,3 ∈ E4,1

0 :

(δ2F2,2)(a,h,k, l,m) =
[
ιν(h,k)

(
1hkF

)·,·,1l,1m
]a

=

(
1hkF

)a,ν(h,k),1l,1m

(1hkF )
ν(h,k),a,1l,1m

, (B38)

(δ3F0,3)(a,h,k, l) =
[
ι(ν⊗ν)[∆1(h,k,l)]

(
1hklF

)·,·,·]a
=

[
ιν(hk,l),ν(h,k)

(
1hklF

)·,·,·]a[
ιν(h,kl),hν(k,l) (1hklF )

·,·,·]a , (B39)

(δ3F1,3)(a,h,k, l,m) =
[
ι(ν⊗ν)(∆1(h,k,l))

(
1hklF

)·,·,·,1m
]a

=

[
ιν(hk,l),ν(h,k)

(
1hklF

)·,·,·,1m
]a

[
ιν(h,kl),hν(k,l) (1hklF )

·,·,·,1m

]a . (B40)
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They are three special cases of Eqs. (B36) and (B37). For δ2F2,2 in Eq. (B38), the slant product of ν(h,k) only

involves the first two variables of
(

1hkF
)·,·,1l,1m

, with the last two variables 1l and 1m fixed. This is true for all δiFp,q
with p > 0.

c. Cocycle-level differentials di

As summarized in Appendix. B 2 a, all the obstruction conditions obtained in this appendix are expressed using
the cochain-level differentials δi. One natural question is how to relate them to the usual cocycle-level differentials
di : Ep,qi → Ep+i,q−i+1

i reviewed in Appendix. A.
The answer is also related to solving the obstruction conditions Eqs. (B24)-(B29) one by one. To compute the

cocycle-level differential diFp,q (p+ q = n), we can set the first p cochains of degree-n to be trivial:

F0,n = F1,n−1 = ... = Fp−1,q+1 = 1. (B41)

With these conditions, the first p obstruction equations in Eqs. (B24)-(B29) become trivial. The nontrivial equations
are

Ep,q+1
0 : (δ0Fp,q) = 1, (B42)

Ep+1,q
0 : (δ1Fp,q)(δ0Fp+1,q−1) = 1, (B43)

Ep+2,q−1
0 : (δ2Fp,q)(δ1Fp+1,q−1)(δ0Fp+2,q−2) = 1, (B44)

... (B45)

Ep+i,q−i+1
0 : (δiFp,q)(δi−1Fp+1,q−1)...(δ0Fp+i,q−i) = 1, (B46)

... (B47)

En,10 : (δn−pFp,q)(δn−p−1Fp+1,q−1)...(δ0Fn,0) = 1, (B48)

En+1,0
0 : (δn−p+1Fp,q)(δn−pFp+1,q−1)...(δ1Fn,0) = 1. (B49)

For a given Fp,q, we have to solve the above obstruction conditions one after another. After obtaining all the cochains
Fp′,n−p′ for p ≤ p′ ≤ p+ i− 1 satisfying the first i equations, the cocycle-level differential diFp,q is defined to be

diFp,q := (δiFp,q)(δi−1Fp+1,q−1)...(δ1Fp+i−1,q−i+1). (B50)

Besides the cochain-level differential δiFp,q for the first term in the obstruction condition Eq. (B46), it contains many
other lower degree cochain-level differentials. All of them may contribute to the cocycle-level differential diFp,q.

In the last section B 7 of this appendix, we show how to obtain the cocycle-level differentials for the example of
A = Zn in degree 3. The explicit example illustrates that the lower degree cochain-level differentials contribute to the
cocycle-level differential.

3. LHS spectral sequence for degree-1

Let us consider the 1-cocycle of G̃ in LHS spectral sequence. Since H[G̃,U(1)] is the 1-dimensional representation

of G̃, we use the following ansatz of 1-cocycle:

F ag = 1g

(
F

ga
)

︸ ︷︷ ︸
E0,1

0

× F 1g︸︷︷︸
E1,0

0

. (B51)

The two terms can be understood as located at E0,1
0 and E1,0

0 in the LHS spectral sequence, respectively. From this
expression and the the definition of group cohomology differential, dF can be calculated directly as

(dF )ag,bh =
ag
(
F bh

)
× F ag

F ag×bh

= ν(g,h)gh

[
(dF )

gha,hb
]
× 1gh

[
(dF )

ghν(g,h),ghahb
]
× 1g

[
(dF )

ga,1h

]
× (dF )

1g,1h

= ν(g,h)
[(

1gh(dF )
)a,gb]× [1gh(dF )

]ν(g,h),agb︸ ︷︷ ︸
E0,2

0

×
[
1g(dF )

]a,1h︸ ︷︷ ︸
E1,1

0

× (dF )
1g,1h︸ ︷︷ ︸

E2,0
0

. (B52)
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The three terms in the above equation correspond to terms in E0,2
0 , E1,1

0 and E2,0
0 , respectively.

0 1 2

0

1

2

F0,1

F1,0

δ0

0 1 2

0

1

2

F0,1

F1,0

δ1
δ0

0 1 2

0

1

2

F0,1

F1,0

δ2

δ1

FIG. 4. LHS spectral sequence for degree-1.

From Eq. (B52), it is easy to see that the cocycle condition (dF )ag,bh = 1 for 1-cochain of G̃ is equivalent to

(dF )ag,bh = 1 (∀ag, bh ∈ G̃) ⇐⇒


(dF )a,b = 1 (∀a, b ∈ A),

(dF )a,1h = 1 (∀a ∈ A, ∀h ∈ G),

(dF )1g,1h = 1 (∀g,h ∈ G).

(B53)

The “⇒” direction is obvious, since all the right-hand-side equations are special cases of the left-hand-side equation.
The “⇐” direction is also true, for (dF )ag,bh can be expressed as the product of some (dF )a,b, (dF )a,1h and (dF )1g,1h

as in Eq. (B52). The equations on the right-hand-side of Eq. (B53) can be understood as conditions at different

locations in the LHS spectral sequence (see the three figures in Fig. 4). We expect that the equation at Ei,2−i0 has

the form that the product of several different differentials landing at Ei,2−i0 is 1:

E0,2
0 : (δ0F0,1) = 1, (B54)

E1,1
0 : (δ1F0,1)(δ0F1,0) = 1, (B55)

E2,0
0 : (δ2F0,1)(δ1F1,0) = 1. (B56)

In fact, we can unpack the right-hand-side of Eq. (B53) by using Eq. (B51) and the definition of differential. The
explicit obstruction functions are

(dF )
a,b

= (dAF
·)a,b =

a
(
F b
)
× F a

F ab︸ ︷︷ ︸
δ0F0,1

= 1, (B57)

(dF )
a,1h =

1

(dGF a)1h
×
(
dAF

1h
)a

=
F a

1h

(
F ha

)
︸ ︷︷ ︸
δ1F0,1

a
(
F 1h

)
F 1h︸ ︷︷ ︸
δ0F1,0

= 1, (B58)

(dF )
1g,1h =

1

ιν(g,h) (1ghF )
· × (dGF

·)1g,1h =
1

1gh

[
F ghν(g,h)

]
︸ ︷︷ ︸

δ2F0,1

1g
(
F 1h

)
× F 1g

F 1gh︸ ︷︷ ︸
δ1F1,0

= 1. (B59)

Therefore, the 1-cochain F ag in Eq. (B51) is a 1-cocycle of G̃ if and only if F a and F 1g satisfy Eqs. (B57)-(B59).
These equations are obstruction functions at cochain levels. We have to solve them one by one to obtain the explicit
1-cocycle of G̃.

4. LHS spectral sequence for degree-2

The ansatz for the 2-cocycle of G̃ is

F ag,bh = ν(g,h)gh

[
F

gha,hb
]
× 1gh

[
F

ghν(g,h),ghahb
]

︸ ︷︷ ︸
E0,2

× 1g

[
F

ga,1h

]
︸ ︷︷ ︸

E1,1

×F 1g,1h︸ ︷︷ ︸
E2,0

. (B60)
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This expression comes from the idea of categorification. We can think of 1-cocycle F in Eq. (B51) as object, and
dF in Eq. (B52) as morphism. To obtain the expression of 2-cocycle Eq. (B60), we simply replace the 2-coboundary
morphism dF in Eq. (B52) by a new 2-cocycle object F . The result is in some sense similar to gauge fixing, as

the 2-cocycle is decomposed into terms located at different positions Ei,2−i0 of the LHS spectral sequence. The new
2-cocycle object F in Eq. (B60) should satisfy new morphism equation in one higher dimension. Using the definition
of group cohomology differential, dF can be calculated directly as

(dF )ag,bh,ck =

{
ν(g,h)ν(gh,k)

[(
1ghk(dF )

)a,gb,ghc
]
× ν(gh,k)

[
ιν(g,h)

(
1ghk(dF )

)·,agb,ghc
]

×ν(g,hk)

{[
ι[gν(h,k)]

(
1ghk(dF )

)·,·,gbghc
]a}
×
[
ι(ν⊗ν)[−∆1(g,h,k)]

(
1ghk(dF )

)·,·,agbghc
]}

︸ ︷︷ ︸
E0,3

0

× ν(g,h)gh

[
(dF )

gha,hb,1k

]
× 1gh

[
(dF )

ghν(g,h),ghahb,1k

]
︸ ︷︷ ︸

E1,2
0

× 1g

[
(dF )

ga,1h,1k

]
︸ ︷︷ ︸

E2,1
0

× (dF )1g,1h,1k︸ ︷︷ ︸
E3,0

0

. (B61)

We note that the four terms in the above equation correspond to terms in E0,3
0 , E1,2

0 , E2,1
0 and E3,0

0 , respectively.
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FIG. 5. LHS spectral sequence for degree-2.

Similar to the discussions for 1-cocycles in the previous subsection, the cocycle condition for F ag,bh as a 2-cocycle
of G̃ is equivalent to

(dF )ag,bh,ck = 1 (∀ag, bh, ck ∈ G̃) ⇐⇒


(dF )a,b,c = 1 (∀a, b, c ∈ A),

(dF )a,b,1k = 1 (∀a, b ∈ A, ∀k ∈ G),

(dF )a,1h,1k = 1 (∀a ∈ A, ∀h,k ∈ G),

(dF )1g,1h,1k = 1 (∀g,h,k ∈ G).

(B62)

This equivalence is a consequence of Eq. (B61), which decompose the general (dF )ag,bh,ck as the product of some
(dF )a,b,c, (dF )a,b,1k , (dF )a,1h,1k and (dF )1g,1h,1k . From the LHS spectral sequence, we expect that the right-hand-side
equations in Eq. (B62) have the form:

E0,3 : (δ0F0,2) = 1, (B63)

E1,2 : (δ1F0,2)(δ0F1,1) = 1, (B64)

E2,1 : (δ2F0,2)(δ1F1,1)(δ0F2,0) = 1, (B65)

E3,0 : (δ3F0,2)(δ2F1,1)(δ1F2,0) = 1. (B66)
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After substituting Eq. (B60) to the right-hand-side of Eq. (B62), we obtain the explicit obstructions as

(dF )a,b,c = (dAF
·,·)a,b,c =

a
(
F b,c

)
× F a,bc

F ab,c × F a,b︸ ︷︷ ︸
δ0F0,2

= 1, (B67)

(dF )a,b,1k =
(
dGF

a,b
)1k × (dAF

·,1k)a,b =

(
1kF

)a,b
F a,b︸ ︷︷ ︸
δ1F0,2

a(F b,1k)× F a,1k

F ab,1k︸ ︷︷ ︸
δ0F1,1

= 1, (B68)

(dF )a,1h,1k =
[
ιν(h,k)

(
1hkF

)·,·]a × [(dGF a,·)1h,1k

]−1

×
(
dAF

1h,1k
)a

=

(
1hkF

)a,ν(h,k)

(1hkF )
ν(h,k),a︸ ︷︷ ︸

δ2F0,2

F a,1hk

1h

(
F ha,1k

)
× F a,1h︸ ︷︷ ︸

δ1F1,1

a
(
F 1h,1k

)
F 1h,1k︸ ︷︷ ︸
δ0F2,0

= 1, (B69)

(dF )1g,1h,1k =
[
ι(ν⊗ν)(−∆1(g,h,k))

(
1ghkF

)·,·]× [ι−ν(g,h)

(
1ghF

)·,1k
]
× (dGF

·,·)1g,1h,1k

=

(
1ghkF

)ν(g,hk),gν(h,k)

(1ghkF )
ν(gh,k),ν(g,h)︸ ︷︷ ︸
δ3F0,2

1

1gh

[
F ghν(g,h),1k

]
︸ ︷︷ ︸

δ2F1,1

1g
(
F 1h,1k

)
× F 1g,1hk

F 1gh,1k × F 1g,1h︸ ︷︷ ︸
δ1F2,0

= 1. (B70)

These four equations have the desired form Eq. (B63)-(B66), and correspond to the four figures in Fig. 5, respectively.

5. LHS spectral sequence for degree-3

Replacing the differential of 2-cocycle dF in Eq. (B61) by 3-cocycle F , we obtain the generic expression for F ag,bh,ck :

F ag,bh,ck =

{
[ν(g,h)ν(gh,k)]ghk

[
F

ghka,hkb,kc
]
× ν(gh,k)ghk

[
F

ghkν(g,h),ghkahkb,kc
]

×
ν(g,hk)ghk

[
F

ghka,hkν(h,k),hkbkc
]

ν(g,hk)ghk

[
F hkν(h,k),ghka,hkbkc

] × 1ghk

[
F

ghkν(g,hk),hkν(h,k),ghkahkbkc
]

1ghk

[
F ghkν(gh,k),ghkν(g,h),ghkahkbkc

]}
︸ ︷︷ ︸

E0,3
0

× ν(g,h)gh

[
F

gha,hb,1k

]
× 1gh

[
F

ghν(g,h),ghahb,1k

]
︸ ︷︷ ︸

E1,2
0

× 1g

[
F

ga,1h,1k

]
︸ ︷︷ ︸

E2,1
0

×F 1g,1h,1k︸ ︷︷ ︸
E3,0

0

. (B71)

Tedious but straightforward calculations show that the differential dF can be decomposed as

(dF )ag,bh,ck,dl = (dF )|E0,4 × (dF )|E1,3
0
× (dF )|E2,2

0
× (dF )|E3,1

0
× (dF )|E4,0

0
, (B72)

where the fives terms at different locations in the LHS spectral sequence are given by

(dF )|E0,4
0

= ν(g,h)ν(gh,k)ν(ghk,l)

[(
1ghkl(dF )

)a,gb,ghc,ghkd
]
× ν(gh,k)ν(ghk,l)

[
ιν(g,h)

(
1ghkl(dF )

)·,agb,ghc,ghkd
]

× ν(g,hk)ν(ghk,l)

[(
ι[gν(h,k)]

(
1ghkl(dF )

)·,·,gbghc,ghkd
)a ]
× ν(g,h)ν(gh,kl)

[(
ι[ghν(k,l)]

(
1ghkl(dF )

)·,·,·,ghcghkd
)a,gb]

× ν(ghk,l)

[
ι(ν⊗ν)(−∆1(g,h,k))

(
1ghkl(dF )

)·,·,agbghc,ghkd
]
× ν(gh,kl)

[(
ι[ghν(k,l)]

(
1ghkl(dF )

)·,·,ghcghkd
)ν(g,h),agb

]

× ν(g,hkl)

[(
ι(ν⊗ν)(−∆1(h,k,l))

(
1ghkl(dF )

)·,·,·,gbghcghkd
)a ]

×
[
ι(ν⊗ν⊗ν)[((∆1⊗id.)∆1)(g,h,k,l)]

(
1ghkl(dF )

)·,·,·,agbghcghkd
]
, (B73)
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(dF )|E1,3
0

= [ν(g,h)ν(gh,k)]ghk

[
(dF )

ghka,hkb,kc,1l

]
× ν(gh,k)ghk

[
(dF )

ghkν(g,h),ghkahkb,kc,1l

]
×

ν(g,hk)ghk

[
(dF )

ghka,hkν(h,k),hkbkc,1l

]
ν(g,hk)ghk

[
(dF )hkν(h,k),ghka,hkbkc,1l

] × 1ghk

[
(dF )

ghkν(g,hk),hkν(h,k),ghkahkbkc,1l

]
1ghk

[
(dF )ghkν(gh,k),ghkν(g,h),ghkahkbkc,1l

] , (B74)

(dF )|E2,2
0

= ν(g,h)gh

[
(dF )

gha,hb,1k,1l

]
× 1gh

[
(dF )

ghν(g,h),ghahb,1k,1l

]
, (B75)

(dF )|E3,1
0

= 1g

[
(dF )

ga,1h,1k,1l

]
, (B76)

(dF )|E4,0
0

= (dF )1g,1h,1k,1l . (B77)

As introduced in Section B 1 c, we used the notation of diagonal approximation ∆1 to simplify the expression Eq. (B73).
The explicit expression for the three terms containing ∆1 in Eq. (B73) are

ν(ghk,l)

[
ι(ν⊗ν)(−∆1(g,h,k))

(
1ghkl(dF )

)·,·,agbghc,ghkd
]

=

ν(ghk,l)

[(
1ghkl(dF )

)ν(g,hk),gν(h,k),agbghc,ghkd
]

ν(ghk,l)
[
(1ghkl(dF ))

ν(gh,k),ν(g,h),agbghc,ghkd
]

=

ν(ghk,l)ghkl

[
(dF )

ghklν(g,hk),hklν(h,k),ghklahklbklc,ld
]

ν(ghk,l)ghkl

[
(dF )ghklν(gh,k),ghklν(g,h),ghklahklbklc,ld

] , (B78)

ν(g,hkl)

[(
ι(ν⊗ν)(−∆1(h,k,l))

(
1ghkl(dF )

)·,·,·,gbghcghkd
)a]

=

ν(g,hkl)

[(
ιν(h,kl),hν(k,l)

(
1ghkl(dF )

)·,·,·,gbghcghkd
)a]

ν(g,hkl)
[(
ιν(hk,l),ν(h,k) (1ghkl(dF ))

·,·,·,gbghcghkd
)a] , (B79)

[
ι(ν⊗ν⊗ν)[((∆1⊗id.)∆1)(g,h,k,l)]

(
1ghkl(dF )

)·,·,·,agbghcghkd
]

=

[
1ghkl(dF )

]ν(gh,kl),ghν(k,l),ν(g,h),agbghcghkd

[1ghkl(dF )]
ν(ghk,l),ν(gh,k),ν(g,h),agbghcghkd

×
[
1ghkl(dF )

]ν(ghk,l),ν(g,hk),ghν(h,k),agbghcghkd

[1ghkl(dF )]
ν(g,hkl),gν(hk,l),gν(h,k),agbghcghkd

×
[
1ghkl(dF )

]ν(g,hkl),gν(h,kl),ghν(k,l),agbghcghkd

[1ghkl(dF )]
ν(gh,kl),ν(g,h),ghν(k,l),agbghcghkd

. (B80)
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FIG. 6. LHS spectral sequence for degree-3.
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Similar to the degree-1 and degree-2 cases, the cocycle condition for F ag,bh,ck has an equivalent form as a consequence
of Eq. (B72):

(dF )ag,bh,ck,dl = 1 (∀ag, bh, ck, dl ∈ G̃) ⇐⇒



(dF )a,b,c,d = 1 (∀a, b, c, d ∈ A),

(dF )a,b,c,1l = 1 (∀a, b, c ∈ A, ∀l ∈ G),

(dF )a,b,1k,1l = 1 (∀a, b ∈ A, ∀k, l ∈ G),

(dF )a,1h,1k,1l = 1 (∀a ∈ A, ∀h,k, l ∈ G),

(dF )1g,1h,1k,1l = 1 (∀g,h,k, l ∈ G).

(B81)

These five right-hand-side equations correspond to the five figures in Fig. 6, respectively. So we expect they have the
form:

E0,4
0 : (δ0F0,3) = 1, (B82)

E1,3
0 : (δ1F0,3)(δ0F1,2) = 1, (B83)

E2,2
0 : (δ2F0,3)(δ1F1,2)(δ0F2,1) = 1, (B84)

E3,1
0 : (δ3F0,3)(δ2F1,2)(δ1F2,1)(δ0F3,0) = 1, (B85)

E4,0
0 : (δ4F0,3)(δ3F1,2)(δ2F2,1)(δ1F3,0) = 1. (B86)

Indeed, we can obtain the following explicit obstruction functions from the right-hand-side of Eq. (B81) by using
Eq. (B71):

(dF )a,b,c,d = (dAF
·,·,·)a,b,c,d =

a
(
F b,c,d

)
× F a,bc,d × F a,b,c

F ab,c,d × F a,b,cd︸ ︷︷ ︸
δ0F0,3

= 1, (B87)

(dF )a,b,c,1l =
1

(dGF a,b,c)
1l
×
(
dAF

·,·,1l
)a,b,c

=
F a,b,c

(1lF )a,b,c︸ ︷︷ ︸
δ1F0,3

a(F b,c,1l)× F a,bc,1l

F ab,c,1l × F a,b,1l︸ ︷︷ ︸
δ0F1,2

= 1, (B88)

(dF )a,b,1k,1l =
[
ι−ν(k,l)

(
1klF

)·,·,·]a,b × (dGF a,b,·)1k,1l ×
(
dAF

·,1k,1l
)a,b

=
(1klF )a,ν(k,l),b

(1klF )a,b,ν(k,l) × (1klF )ν(k,l),a,b︸ ︷︷ ︸
δ2F0,3

×
1k

(
F

ka,kb,1l

)
× F a,b,1k

F a,b,1kl︸ ︷︷ ︸
δ1F1,2

×
a
(
F b,1k,1l

)
× F a,1k,1l

F ab,1k,1l︸ ︷︷ ︸
δ0F2,1

= 1, (B89)

(dF )a,1h,1k,1l =
[
ι(ν⊗ν)[∆1(h,k,l)]

(
1hklF

)·,·,·]a × [ιν(h,k)

(
1hkF

)·,·,1l
]a
×
[
(dGF

a,·,·)1h,1k,1l
]−1 × (dAF

1h,1k,1l)a

=

[
ιν(hk,l),ν(h,k)

(
1hklF

)·,·,·]a[
ιν(h,kl),hν(k,l) (1hklF )

·,·,·]a × [ιν(h,k)

(
1hkF

)·,·,1l
]a
×
[
(dGF

a,·,·)1h,1k,1l
]−1 × (dAF

1h,1k,1l)a

=

(
1hklF

)a,ν(hk,l),ν(h,k) ×
(

1hklF
)ν(hk,l),ν(h,k),a

(1hklF )
ν(hk,l),a,ν(h,k)

×
(

1hklF
)ν(h,kl),a,hν(k,l)

(1hklF )
a,ν(h,kl),hν(k,l) × (1hklF )

ν(h,kl),hν(k,l),a︸ ︷︷ ︸
δ3F0,3

×
(

1hkF
)a,ν(h,k),1l

(1hkF )
ν(h,k),a,1l︸ ︷︷ ︸
δ2F1,2

× F a,1hk,1l × F a,1h,1k

1h

(
F ha,1k,1l

)
× F a,1h,1kl︸ ︷︷ ︸

δ1F2,1

×
a
(
F 1h,1k,1l

)
F 1h,1k,1l︸ ︷︷ ︸
δ0F3,0

= 1, (B90)
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(dF )1g,1h,1k,1l =
[
ι(ν⊗ν⊗ν)[(−(∆1⊗id.)∆1)(g,h,k,l)](

1ghklF )·,·,·
]
×
[
ι(ν⊗ν)(−∆1(g,h,l))F

·,·,1l
]

×
[
ι−ν(g,h)F

·,1k,1l
]
× (dGF

·,·,·)1g,1h,1k,1l

=
(1ghklF )ν(ghk,l),ν(gh,k),ν(g,h)

(1ghklF )ν(gh,kl),ghν(k,l),ν(g,h)

(1ghklF )ν(g,hkl),gν(hk,l),gν(h,k)

(1ghklF )ν(ghk,l),ν(g,hk),gν(h,k)

(1ghklF )ν(gh,kl),ν(g,h),ghν(k,l)

(1ghklF )ν(g,hkl),gν(h,kl),ghν(k,l)︸ ︷︷ ︸
δ4F0,3

× (1ghkF )ν(g,hk),gν(h,k),1l

(1ghkF )ν(gh,k),ν(g,h),1l︸ ︷︷ ︸
δ3F1,2

× 1

(1ghF )ν(g,h),1k,1l︸ ︷︷ ︸
δ2F2,1

×
1g
(
F 1h,1k,1l

)
F 1g,1hk,1lF 1g,1h,1k

F 1gh,1k,1lF 1g,1h,1kl︸ ︷︷ ︸
δ1F3,0

= 1. (B91)

These equations can be solved one by one to obtain a 3-cocycle of G̃ in Eq. (B71).

6. LHS spectral sequence for degree-4

Replacing the differential of 3-cocycle dF in Eq. (B72) by 4-cocycle F , we obtain the generic expression for
F ag,bh,ck,dl :

F =

{
ν(g,h)ν(gh,k)ν(ghk,l)

[(
1ghklF

)a,gb,ghc,ghkd
]
× ν(gh,k)ν(ghk,l)

[
ιν(g,h)

(
1ghklF

)·,agb,ghc,ghkd
]

× ν(g,hk)ν(ghk,l)

[(
ι[gν(h,k)]

(
1ghklF

)·,·,gbghc,ghkd
)a]
× ν(g,h)ν(gh,kl)

[(
ι[ghν(k,l)]

(
1ghklF

)·,·,·,ghcghkd
)a,gb]

× ν(ghk,l)

[
ι(ν⊗ν)(−∆1(g,h,k))

(
1ghklF

)·,·,agbghc,ghkd
]
× ν(gh,kl)

[(
ι[ghν(k,l)]

(
1ghklF

)·,·,·,ghcghkd
)ν(g,h),agb

]

×ν(g,hkl)

[(
ι(ν⊗ν)(−∆1(h,k,l))

(
1ghklF

)·,·,·,gbghcghkd
)a]
×
[
ι(ν⊗ν⊗ν)[((∆1⊗id.)∆1)(g,h,k,l)]

(
1ghklF

)·,·,·,agbghcghkd
]}

︸ ︷︷ ︸
E0,4

0

×
{

[ν(g,h)ν(gh,k)]ghk

[
F

ghka,hkb,kc,1l

]
× ν(gh,k)ghk

[
F

ghkν(g,h),ghkahkb,kc,1l

]
×
ν(g,hk)ghk

[
F

ghka,hkν(h,k),hkbkc,1l

]
ν(g,hk)ghk

[
F hkν(h,k),ghka,hkbkc,1l

] × 1ghk

[
F

ghkν(g,hk),hkν(h,k),ghkahkbkc,1l

]
1ghk

[
F ghkν(gh,k),ghkν(g,h),ghkahkbkc,1l

]}
︸ ︷︷ ︸

E1,3
0

×
{
ν(g,h)gh

[
F

gha,hb,1k,1l

]
× 1gh

[
F

ghν(g,h),ghahb,1k,1l

]}
︸ ︷︷ ︸

E2,2
0

× 1g

[
F

ga,1h,1k,1l

]
︸ ︷︷ ︸

E3,1
0

×F 1g,1h,1k,1l︸ ︷︷ ︸
E4,0

0

. (B92)

Now we can use the above equation to show that the differential of F has the form

(dF )ag,bh,ck,dl,em = (dF )|E0,5
0
× (dF )|E1,4

0
× (dF )|E2,3

0
× (dF )|E3,2

0
× (dF )|E4,1

0
× (dF )|E5,0

0
. (B93)

Since we are interested in systems in 3+1 or lower dimensions, we will stop here without showing the explicit form of
(dF )|Ei,5−i0

, which is only useful to obtain the expression of 5-cocycles.

To derive the obstruction functions, we again use the trick that the cocycle condition for F ag,bh,ck,dl can be
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FIG. 7. LHS spectral sequence for degree-4.

equivalently expressed as:

(dF )ag,bh,ck,dl,em = 1 (∀ag, bh, ck, dl, em ∈ G̃) ⇐⇒



(dF )a,b,c,d,e = 1 (∀a, b, c, d, e ∈ A),

(dF )a,b,c,d,1m = 1 (∀a, b, c, d ∈ A, ∀m ∈ G),

(dF )a,b,c,1l,1m = 1 (∀a, b, c ∈ A, ∀l,m ∈ G),

(dF )a,b,1k,1l,1m = 1 (∀a, b ∈ A, ∀k, l,m ∈ G),

(dF )a,1h,1k,1l,1m = 1 (∀a ∈ A, ∀h,k, l,m ∈ G),

(dF )1g,1h,1k,1l,1m = 1 (∀g,h,k, l,m ∈ G).

(B94)

These six equations correspond to the six figures in Fig. 7, respectively. And they can all expressed as product of
several differentials at different locations:

E0,5
0 : (δ0F0,4) = 1, (B95)

E1,4
0 : (δ1F0,4)(δ0F1,3) = 1, (B96)

E2,3
0 : (δ2F0,4)(δ1F1,3)(δ0F2,2) = 1, (B97)

E3,2
0 : (δ3F0,4)(δ2F1,3)(δ1F2,2)(δ0F3,1) = 1, (B98)

E4,1
0 : (δ4F0,4)(δ3F1,3)(δ2F2,2)(δ1F3,1)(δ0F4,0) = 1, (B99)

E5,0
0 : (δ5F0,4)(δ4F1,3)(δ3F2,2)(δ2F3,1)(δ1F4,0) = 1. (B100)

The explicit obstruction functions on the right-hand-side are:

(dF )a,b,c,d,e =
a
(
F b,c,d,e

)
F a,bc,d,eF a,b,c,de

F ab,c,d,eF a,b,cd,eF a,b,c,d︸ ︷︷ ︸
δ0F0,4

= 1, (B101)

(dF )a,b,c,d,1m =
(
dGF

a,b,c,d
)1m

(
dAF

·,·,·,1m
)a,b,c,d

=

(
1mF

)a,b,c,d
F a,b,c,d︸ ︷︷ ︸
δ1F0,4

a
(
F b,c,d,1m

)
F a,bc,d,1mF a,b,c,1m

F ab,c,d,1mF a,b,cd,1m︸ ︷︷ ︸
δ0F1,3

= 1, (B102)
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(dF )a,b,c,1l,1m =
[
ιν(l,m)

(
1lmF

)·,·,·,·]a,b,c × [(dGF a,b,c,·)1l,1m
]−1

×
(
dAF

·,·,1l,1m
)a,b,c

=

(
1lmF

)a,b,c,ν(l,m) (1lmF
)a,ν(l,m),b,c

(1lmF )
a,b,ν(l,m),c

(1lmF )
ν(l,m),a,b,c︸ ︷︷ ︸

δ2F0,4

F a,b,c,1lm

(1lF )a,b,c,1mF a,b,c,1l︸ ︷︷ ︸
δ1F1,3

a(F b,c,1l,1m)F a,bc,1l,1m

F ab,c,1l,1mF a,b,1l,1m︸ ︷︷ ︸
δ0F2,2

= 1, (B103)

(dF )a,b,1k,1l,1m =
[
ι(ν⊗ν)(−∆1(k,l,m))

(
1klmF

)·,·,·,·]a,b [
ι−ν(k,l)

(
1klF

)·,·,·,1m
]a,b (

dGF
a,b,·,·)1k,1l,1m

(
dAF

·,1k,1l,1m
)a,b

=

[
ιν(k,lm),[kν(l,m)]

(
1klmF

)·,·,·,·]a,b[
ιν(kl,m),ν(k,l) (1klmF )

·,·,·,·]a,b︸ ︷︷ ︸
δ3F0,4

×
(

1klF
)a,ν(k,l),b,1m

(1klF )
a,b,ν(k,l),1m (1klF )

ν(k,l),a,b,1m︸ ︷︷ ︸
δ2F1,3

×
1k

(
F

ka,kb,1l,1m

)
F a,b,1k,1lm

F a,b,1kl,1mF a,b,1k,1l︸ ︷︷ ︸
δ1F2,2

×
a
(
F b,1k,1l,1m

)
F a,1k,1l,1m

F ab,1k,1l,1m︸ ︷︷ ︸
δ0F3,1

= 1, (B104)

(dF )a,1h,1k,1l,1m =
[
ι(ν⊗ν⊗ν)[((∆1⊗id.)∆1)(h,k,l,m)]

(
1hklmF

)·,·,·,·]a × [ι(ν⊗ν)(∆1(h,k,l))

(
1hklF

)·,·,·,1m
]a

×
[
ιν(h,k)

(
1hkF

)·,·,1l,1m
]a
×
[
(dGF

a,·,·,·)
1h,1k,1l,1m

]−1

×
(
dAF

1h,1k,1l,1m
)a

=

{[ιν(hk,lm),hkν(l,m),ν(h,k)

(
1hklmF

)·,·,·,·]a[
ιν(hkl,m),ν(hk,l),ν(h,k) (1hklmF )

·,·,·,·]a ×
[
ιν(hkl,m),ν(h,kl),hν(k,l)

(
1hklmF

)·,·,·,·]a[
ιν(h,klm),hν(kl,m),hν(k,l) (1hklmF )

·,·,·,·]a
×

[
ιν(h,klm),hν(k,lm),hkν(l,m)

(
1hklmF

)·,·,·,·]a[
ιν(hk,lm),ν(h,k),hkν(l,m) (1hklmF )

·,·,·,·]a }
︸ ︷︷ ︸

δ4F0,4

×

[
ιν(hk,l),ν(h,k)

(
1hklF

)·,·,·,1m
]a

[
ιν(h,kl),[hν(k,l)] (1hklF )

·,·,·,1m

]a
︸ ︷︷ ︸

δ3F1,3

×
(

1hkF
)a,ν(h,k),1l,1m

(1hkF )
ν(h,k),a,1l,1m︸ ︷︷ ︸
δ2F2,2

× F a,1hk,1l,1mF a,1h,1k,1lm

1h

(
F ha,1k,1l,1m

)
F a,1h,1kl,1mF a,1h,1k,1l︸ ︷︷ ︸
δ1F3,1

×
a
(
F 1h,1k,1l,1m

)
F 1h,1k,1l,1m︸ ︷︷ ︸

δ0F4,0

= 1, (B105)
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(dF )1g,1h,1k,1l,1m =
[
ι(ν⊗ν⊗ν⊗ν)[−((∆1⊗id.⊗ id.)(∆1⊗id.)∆1)(g,h,k,l,m)]

(
1ghklmF

)·,·,·,·]
×
[
ι(ν⊗ν⊗ν)[−((∆1⊗id.)∆1)(g,h,k,l)]

(
1ghklF

)·,·,·,1m
]
×
[
ι(ν⊗ν)(−∆1(g,h,k))

(
1ghkF

)·,·,1l,1m
]

×
[
ι−ν(g,h)

(
1ghF

)·,1k,1l,1m
]
× (dGF

·,·,·,·)
1g,1h,1k,1l,1m

=
[
ι(ν⊗ν⊗ν⊗ν)[−((∆1⊗id.⊗ id.)(∆1⊗id.)∆1)(g,h,k,l,m)]

(
1ghklmF

)·,·,·,·]︸ ︷︷ ︸
δ5F0,4

×
(

1ghklF
)ν(ghk,l),ν(gh,k),ν(g,h),1m

(1ghklF )
ν(gh,kl),ghν(k,l),ν(g,h),1m

(
1ghklF

)ν(g,hkl),gν(hk,l),gν(h,k),1m

(1ghklF )
ν(ghk,l),ν(g,hk),gν(h,k),1m

(
1ghklF

)ν(gh,kl),ν(g,h),ghν(k,l),1m

(1ghklF )
ν(g,hkl),gν(h,kl),ghν(k,l),1m︸ ︷︷ ︸

δ4F1,3

×
(

1ghkF
)ν(g,hk),gν(h,k),1l,1m

(1ghkF )
ν(gh,k),ν(g,h),1l,1m︸ ︷︷ ︸

δ3F2,2

× 1

(1ghF )
ν(g,h),1k,1l,1m︸ ︷︷ ︸
δ2F3,1

×
1g
(
F 1h,1k,1l,1m

)
F 1g,1hk,1l,1mF 1g,1h,1k,1lm

F 1gh,1k,1l,1mF 1g,1h,1kl,1mF 1g,1h,1k,1l︸ ︷︷ ︸
δ1F4,0

= 1. (B106)

We note that the first term δ5F0,4 of (dF )1g,1h,1k,1l,1m is the product of 24 F symbols given by Eq. (B34).
In principle, we can obtain the expressions for higher degree cocycles in the similar way order by order. We first

decompose the differential of n-cocycle into different terms located at different positions in the LHS spectral sequence.
By replacing (n + 1)-coboundary dF by (n + 1)-cocycle F , we then have the expression of cocycles in one higher
degree. Similarly, the cocycle condition dF = 1 can be also decomposed into several different obstruction equations.
And the differentials in LHS spectral sequence are summarized in Section B 2.

7. Example

In this subsection, we will use results in the previous subsections to determine cocycle-level differentials of the LHS
spectral sequence for A = Zn in degree 3. The procedure is to calculate the cochain-level obstruction conditions in
Eqs. (B82)-(B86) one after another. The explicit expressions for these equations are given in Eqs. (B87)-(B91).

For simplicity, we assume that G has trivial actions on A and the U(1) coefficient. The central extension 2-cocycle
is denoted as ν ∈ H2[G,A]. We will identify the coefficient U(1) with the the group R/Z = [0, 1). So all the
obstruction conditions in the previous calculations should be changed into the corresponding additive notations, and
all the formulas are understood as mod 1 equations.

In degree 3, the relevant cohomology groups on page 2 of the spectral sequence are E0,3
2 = H3[A,R/Z] = Zn,

E1,2
2 = H1[G,H2[A,R/Z]] = 0, E2,1

2 = H2[G,Z], and E3,0
2 = H3[G,R/Z].

We can choose the standard 3-cocycle of Zn at E0,3
2 = H3[Zn,R/Z] to be

F0,3(a, b, c) =
p

n2
a (b+ c− [b+ c]n) , (B107)

for p = 0, 1, . . . , n − 1. It satisfies the obstruction condition δ0F0,3 = dAF0,3 = 0 in Eq. (B87). Since we assumed
the trivial action of G on A and the coefficient, the second obstruction condition Eq. (B88) becomes δ0F1,2 = 0. As

E0,2
2 = 0, we can simply choose

F1,2(a, b, 1k) = 0. (B108)

The next level obstruction is Eq. (B89) which means δ2F0,3 + δ0F2,1 = 0 additively. Since δ0F2,1 is a coboundary

in E2,2
2 , the cocycle-level differential of F0,3 is d2F0,3 := δ2F0,3. Using the explicit expression Eq. (B107), this term

becomes

(d2F0,3)(a, b, 1k, 1l) := (δ2F0,3)(a, b, 1k, 1l) = − p

n2
ν(k, l) (a+ b− [a+ b]n) . (B109)

Therefore, the equation δ0F2,1 = −δ2F0,3 of Eq. (B89) has a general solution for the cochain F2,1 as

F2,1(a, 1h, 1k) =
p

n2
aν(h,k) + f2,1(a, 1h, 1k). (B110)
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Here, f2,1 is some cochain in C2[G,Z1[A,R/Z]] which is a homogeneous solution with δ0f2,1 = 0. The explicit form
of it will be determined by subsequent obstruction conditions.

Now let us turn to the obstruction condition Eq. (B90), which means δ3F0,3 + δ1F2,1 = 0 additively (both δ2F1,2

and δ0F3,0 are zero). Using the explicit expressions of cochains F0,3 and F2,1, we have

(δ3F0,3)(a, 1h, 1k, 1l) = − p
n
a(βnν)(h,k, l), (B111)

(δ1F2,1)(a, 1h, 1k, 1l) = − p
n
a(βnν)(h,k, l)− (dGf2,1)(a, 1h, 1k, 1l), (B112)

where βnν = 1
ndGν̃ is the Bockstein homomorphism of ν and ν̃ is an integral lift of the Zn-valued ν. The cochain-level

differentials δ3F0,3 and (the first term of) δ1F2,1 are combined into a cocycle-level differential of F0,3 as

(d3F0,3)(a, 1h, 1k, 1l) = −2p

n
a(βnν)(h,k, l), (B113)

which doubles the single result of δ3F0,3. Now we can solve the obstruction condition δ3F0,3 + δ1F2,1 = 0, which is
equivalent to d3F0,3 = dGf2,1. Since f2,1 is a cochain in C2[G,Z1[A,R/Z]], d3F0,3 = dGf2,1 should be a coboundary

in B3[G,Z1[A,R/Z]]. −2pν should be a coboundary in H2[G,A], which means −2pν̃ = dGλ̃+ nµ̃.

From the expression Eq. (B113), we assume that µ := −2pν̃/n is a 2-cochain C2[G,Z]. In this way, we can choose

f2,1(a, 1h, 1k) =
aµ(h,k)

n
= −2p

n2
aν(h,k), (B114)

to satisfy the obstruction condition Eq. (B90). Here and later, we choose the integral lift ν̃ to be always valued in
{0, 1, ..., n− 1}, and denote it also by ν abusively.

The last obstruction condition is Eq. (B91), i.e., δ4F0,3 + δ2F2,1 + δ1F3,0 = 0 additively. Using the expressions of
F0,3 and F2,1, we have

(δ4F0,3)(g,h,k, l) = − p
n

(ν ∪1 βnν)(g,h,k, l)

= − p
n
ν(ghk, l)(βnν)(g,h,k)− p

n
ν(g,hkl)(βnν)(h,k, l), (B115)

(δ2F2,1)(g,h,k, l) = −F2,1(ν(g,h), 1k, 1l) =
p

n2
ν(g,h)ν(k, l). (B116)

The condition δ4F0,3 + δ2F2,1 = −dGF3,0 is equivalent to the statement that the cocycle-level differential

d4F0,3 := δ4F0,3 + δ2F2,1 = − p
n
ν ∪1 βnν +

p

n2
ν ∪ ν (B117)

is trivial in H4[G,R/Z]. We note again that ν is understood as an integral lift valued in {0, 1, ..., n− 1}.
We can also derive the cocycle-level differential d2 for F2,1 ∈ E2,1

2 . The procedure is to assume F0,3 = F1,2 = 0,
and try to solve the obstruction conditions. The conditions Eqs. (B89) and (B90) become the cocycle conditions

dAF2,1 = dGF2,1 = 0, indicating F2,1 ∈ E2,1
2 . Since E2,1

2 = H2[G,H1[Zn,R/Z]] = H2[G,Zn], F2,1 can be characterized
by m ∈ H2[G,Zn] as

F2,1(a, 1h, 1k) =
a

n
m(h,k). (B118)

The last obstruction condition Eq. (B91) is δ2F2,1 + δGF3,0 = 0. It means that δ2F2,1 is a coboundary in B4[G,R/Z].

So the cocycle-level differential d2 for F2,1 ∈ E2,1
2 is

(d2F2,1)(g,h,k, l) := (δ2F2,1)(g,h,k, l) = −F2,1(ν(g,h), 1k, 1l) = − 1

n
ν(g,h)m(k, l). (B119)

The A = Zn example above can be generalized to A = U(1) straightforwardly. The cocycle level differentials are
summarized in Eq. (60) of the main text.
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Appendix C: Extracting domain wall decorations by Lyndon’s algorithm

Most of this paper is focus on how to obtain the cocycles of G̃ by domain wall decorations using cocycles of A and
G. In this appendix, we want to answer the inverse problem: How to extract the domain wall decoration data given
a cocycle of G̃? Equivalently, we want to decompose a cocycle of G̃ into different pieces located at different positions
of the LHS spectral sequence. In fact, Lyndon already proposed an algorithm in Ref. 29 to achieve the goal.

In this appendix, we will review Lyndon’s algorithm and list the explicit formulas for degrees ≤ 4. We note that this
appendix will use the symmetry action convention in Ref. 30, which is different from Ref. 29. So we have a different
order of variable ag (A is in front of G) in, for example, Eq. (C4). The explicit formulas in the algorithm are also
a little bit different from those in Ref. 29. But it is merely a gauge convention and would not change the physical
results.

1. Lyndon’s algorithm and decomposition of cocycles

We first introduce the notational abbreviation sh,k (2 ≤ h < k ≤ n+ 1) for the argument set

sh,k =
(

(a1)g1
, ..., (ah−2)gh−2

, 1gh−1
, ah, ..., ak−1, 1gk

, ..., 1gn

)
, (C1)

which is a special case of the generic argument
(

(a1)g1
, (a2)g2

, ..., (an)gn

)
∈ G̃n. We can define an order of all sh,k.

Two arguments are said to be (h, k) < (h′, k′) if k < k′, or h < h′ and k = k′. So the set of sh,k are ordered as
(2, 3) < (2, 4) < (3, 4) < (2, 5) < ... < (n, n+ 1). And in the legal range of h and k (2 ≤ h < k ≤ n+ 1), the first and
the last sh,k are

s2,3 = (1g1 , a2, 1g3 , ..., 1gn) , (C2)

sn,n+1 =
(

(a1)g1
, ..., (ah−2)gn−2

, 1gn−1 , an

)
. (C3)

We note that the order of sh,k defined here is different from the lexicographical order defined in Ref. 29. This difference
comes from the different conventions on the symmetry actions.

Following Ref. 29, an n-cochain ωn ∈ C[G̃,U(1)] is called normal if it can be expressed as the product of its partial
cochains:

ωn

[
(a1)g1

, ..., (an)gn

]
=

n∏
q=0

ωn(a1, ..., aq, 1gq+1 , ..., 1gn), (C4)

where the first q and the last n− q variables in the argument on the right-hand side come from A and G, respectively.
In this way, we decompose a normal n-cochain ωn into different domain wall decoration terms in the LHS spectral
sequence. By Lemma 5.4 of Ref. 29, if a cocycle ωn satisfies

ωn(sh,k) = 1, ∀sh,k, (C5)

it is a normal cocycle satisfying Eq. (C4).
Now the task of extracting domain wall decoration data is reduced to turning an n-cocycle to another n-cocycle

(by adding coboundaries) satisfying Eq. (C5). For this purpose, we introduce the (n− 1)-cochain ph,k:

ph,k

[
(a1)g1

, ..., (an)gn

]
:= ωn

[
(a1)g1

, ..., (ah)gh
, 1gh+1...gk

, a′h+1, ..., a
′
k, 1gk+1

, ..., 1gn−1

]
(C6)

where a′i (h+ 1 ≤ i ≤ k) in the argument is defined as

a′i := gi...gk [aiν(gi,gi+1...gk)]. (C7)

The differential of this (n− 1)-cochain ph,k is very special (see Lemma 5.1 and 5.2 of Ref. 29):{
(dph,k)(sh′,k′) = 1, if (h′, k′) > (h, k),

(dph,k)(sh′,k′) = [ωn(sh′,k′)]
(−1)h+1

, if (h′, k′) = (h, k).
(C8)
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It means that dph,k is trivial if the argument label (h′, k′) is bigger than (h, k), and is (ωn)±1 if the argument label
is exactly (h, k).

With the (n− 1)-cochain ph,k, we can now transform the n-cochain ωn into a normal cochain. It is done using the
following algorithm iteratively. Suppose ωn already satisfies ωn(sh′,k′) = 1 for all (h′, k′) > (h, k), then we can replace

ωn by ωn/(dph,k)(−1)h+1

. In this way, the new ωn would satisfies ωn(sh′,k′) = 1 for all (h′, k′) ≥ (h, k). After using
this algorithm repeatedly, we obtain an n-cocycle ω̃n satisfying ω̃n(sh,k) = 1 for all sh,k. It is automatically a normal
cocycle with the property Eq. (C4). So we have

ωn × (coboundaries) = ω̃n =
∏

p+q=n

ω̃p,qn = ω̃0,n
n × ω̃1,n−1

n × ...× ω̃n,0n . (C9)

We note that this is a cochain level decomposition, meaning that ω̃p,qn ∈ Ep,q0 may be a nontrivial torsor even when
Ep,q2 = 0. The domain wall decoration data ω̃p,qn ∈ Ep,q0 is obtained as

ω̃p,qn (a1, ..., aq,gq+1, ...,gn) := ω̃n(a1, ..., aq, 1gq+1
, ..., 1gn). (C10)

Since the coboundaries dp added to ωn are expressed as ωn itself, the decoration data ω̃p,qn should also be expressed
as a product of ωn’s with different arguments in the end.

In the remaining part of this appendix, we will list the explicit domain wall decoration data in degrees ≤ 4 obtained
using the Lyndon’s algorithm.

2. Domain wall decorations for degree-1

For arbitrary 1-cocycle ω1 ∈ H1[G̃,U(1)], the domain wall decoration data ω̃p,q1 ∈ Ep,q0 = Cp[G, Cq[A,U(1)]] are
simply

ω̃0,1
1 (a) = ω1(a), (C11)

ω̃1,0
1 (g) = ω1(1g). (C12)

3. Domain wall decorations for degree-2

For 2-cocycle ω2 ∈ H2[G̃,U(1)], we can extract ω̃p,q2 ∈ Ep,q0 = Cp[G, Cq[A,U(1)]] as

ω̃0,2
2 (a, b) = ω2(a, b), (C13)

ω̃1,1
2 (a,h) =

[
ι(ha)ω2

]
(1h) =

ω2(a, 1h)

ω2(1h, ha)
, (C14)

ω̃2,0
2 (g,h) =

ω2(1g, 1h)

ω2(1gh, ghν(g,h))
. (C15)
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4. Domain wall decorations for degree-3

For ω3 ∈ H3[G̃,U(1)], we can extract ω̃p,q3 ∈ Ep,q0 = Cp[G, Cq[A,U(1)]] as

ω̃0,3
3 (a, b, c) = ω3(a, b, c), (C16)

ω̃1,2
3 (a, b,k) =

[
ι(1k)ω3

]
(a, b) =

ω3(a, b, 1k) ω3(1k,
ka, kb)

ω3(a, 1k, kb)
, (C17)

ω̃2,1
3 (a,h,k) =

[
ι(hka)ω3

]
(1h, 1k)[

ι(hka)ω3

]
(1hk, hkν(h,k))

=
ω3(1h, 1k,

hka) ω3(a, 1h, 1k)

ω3(1h, ha, 1k)
× ω3(1hk,

hka, hkν(h,k))

ω3(1hk, hkν(h,k), hka) ω3(a, 1hk, hkν(h,k))
, (C18)

ω̃3,0
3 (g,h,k) = ω3(1g, 1h, 1k)× ω3(1gh, 1k,

ghkν(g,h))

ω3(1gh, ghν(g,h), 1k) ω3(1g, 1hk, hkν(h,k))

× ω3(1ghk,
ghkν(g,hk), hkν(h,k))

ω3(1ghk, ghkν(gh,k), ghkν(g,h))
. (C19)

5. Domain wall decorations for degree-4

For ω4 ∈ H4[G̃,U(1)], the domain wall decoration data ω̃p,q4 ∈ Ep,q0 = Cp[G, Cq[A,U(1)]] are much more complicated:

ω̃0,4
4 (a, b, c, d) = ω4(a, b, c, d), (C20)

ω̃1,3
4 (a, b, c, l) =

[
ι(1l)

]
(a, b, c) =

ω4(a, b, c, 1l) ω4(a, 1l,
lb, lc)

ω4(a, b, 1l, lc) ω4(1l, la, lb, lc)
, (C21)

ω̃2,2
4 (a, b,k, l) =

[
ι(kla),(klb)ω4

]
(1k, 1l)[

ι(kla),(klb)ω4

]
(1kl, klν(k, l))

(C22)

=
ω4(1k, 1l,

kla, klb) ω4(a, 1k, 1l,
klb) ω4(1k,

ka, kb, 1l) ω4(a, b, 1k, 1l)

ω4(1k, ka, 1l, klb) ω4(a, 1k, kb, 1l)

× ω4(1kl,
kla, klν(k, l), klb) ω4(a, 1kl,

klb, klν(k, l))

ω4(1kl, klν(k, l), kla, klb) ω4(a, 1kl, klν(k, l), klb) ω4(1kl, kla, klb, klν(k, l)) ω4(a, b, 1kl, klν(k, l))
,

ω̃3,1
4 (a,h,k, l) =

[
ι(hkla)ω4

]
(1h, 1kl,

klν(k, l))×
[
ι(hkla)ω4

]
(1hk,

hkν(h,k), 1l)×
[
ι(hkla)ω4

]
(1hkl,

hklν(hk, l), hklν(h,k))[
ι(hkla)ω4

]
(1h, 1k, 1l)×

[
ι(hkla)ω4

]
(1hk, 1l, ghkν(h,k))×

[
ι(hkla)ω4

]
(1hkl, hklν(h,kl), klν(k, l))

=
ω4(a, 1h, 1k, 1l) ω4(1h, 1k,

hka, 1l)

ω4(1h, ha, 1k, 1l) ω4(1h, 1k, 1l, hkla)
× ω4(1h,

ha, 1kl,
klν(k, l)) ω4(1h, 1kl,

klν(k, l), hkla)

ω4(a, 1h, 1kl, klν(k, l)) ω4(1h, 1kl, hkla, klν(k, l))

× ω4(a, 1hk, 1l,
ghkν(h,k)) ω4(1hk, 1l,

hkla, ghkν(h,k))

ω4(1hk, hka, 1l, ghkν(h,k)) ω4(1hk, 1l, ghkν(h,k), hkla)

× ω4(1hk,
hka, hkν(h,k), 1l) ω4(1hk,

hkν(h,k), 1l,
hkla)

ω4(a, 1hk, hkν(h,k), 1l) ω4(1hk, hkν(h,k), hka, 1l)

× ω4(a, 1hkl,
hklν(h,kl), klν(k, l)) ω4(1hkl,

hklν(h,kl), hkla, klν(k, l))

ω4(1hkl, hkla, hklν(h,kl), klν(k, l)) ω4(1hkl, hklν(h,kl), klν(k, l), hkla)

× ω4(1hkl,
hkla, hklν(hk, l), hklν(h,k)) ω4(1hkl,

hklν(hk, l), hklν(h,k), hkla)

ω4(a, 1hkl, hklν(hk, l), hklν(h,k)) ω4(1hkl, hklν(hk, l), hkla, hklν(h,k))
, (C23)
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ω̃4,0
4 (g,h,k, l) = ω4(1g, 1h, 1k, 1l)×

1

ω4(1g, 1h, 1kl, klν(k, l))
× ω4(1g, 1hk, 1l,

hklν(h,k))

ω4(1g, 1hk, hkν(h,k), 1l)

× ω4(1gh, 1k,
ghkν(g,h), 1l)

ω4(1gh, 1k, 1l, ghklν(g,h)) ω4(1gh, ghν(g,h), 1k, 1l)
× ω4(1g, 1hkl,

hklν(h,kl), klν(k, l))

ω4(1g, 1hkl, hklν(hk, l), hklν(h,k))

× ω4(1gh,
ghν(g,h), 1kl,

klν(k, l)) ω4(1gh, 1kl,
klν(k, l), ghklν(g,h))

ω4(1gh, 1kl, ghklν(g,h), klν(k, l))

× ω4(1ghk, 1l,
ghklν(g,hk), hklν(h,k)) ω4(1ghk,

ghkν(g,hk), hkν(h,k), 1l)

ω4(1ghk, ghkν(g,hk), 1l, hklν(h,k))

× ω4(1ghk,
ghkν(gh,k), 1l,

ghklν(g,h))

ω4(1ghk, 1l, ghklν(gh,k), ghklν(g,h)) ω4(1ghk, ghkν(gh,k), ghkν(g,h), 1l)

× ω4(1ghkl,
ghklν(g,hkl), hklν(hk, l), hklν(h,k))

ω4(1ghkl, ghklν(g,hkl), hklν(h,kl), klν(k, l))
× ω4(1ghkl,

ghklν(gh,kl), ghklν(g,h), klν(k, l))

ω4(1ghkl, ghklν(gh,kl), klν(k, l), ghklν(g,h))

× ω4(1ghkl,
ghklν(ghk, l), ghklν(gh,k), ghklν(g,h))

ω4(1ghkl, ghklν(ghk, l), ghklν(g,hk), hklν(h,k))
. (C24)
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