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Non-Abelian three-loop braiding statistics for 3D
fermionic topological phases
Jing-Ren Zhou 1,3, Qing-Rui Wang 1,3, Chenjie Wang 2✉ & Zheng-Cheng Gu 1✉

Fractional statistics is one of the most intriguing features of topological phases in 2D. In

particular, the so-called non-Abelian statistics plays a crucial role towards realizing topolo-

gical quantum computation. Recently, the study of topological phases has been extended to

3D and it has been proposed that loop-like extensive objects can also carry fractional sta-

tistics. In this work, we systematically study the so-called three-loop braiding statistics for 3D

interacting fermion systems. Most surprisingly, we discover new types of non-Abelian three-

loop braiding statistics that can only be realized in fermionic systems (or equivalently bosonic

systems with emergent fermionic particles). On the other hand, due to the correspondence

between gauge theories with fermionic particles and classifying fermionic symmetry-

protected topological (FSPT) phases with unitary symmetries, our study also gives rise to an

alternative way to classify FSPT phases. We further compare the classification results for

FSPT phases with arbitrary Abelian unitary total symmetry Gf and find systematical agree-

ment with previous studies.
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Topological phases of quantum matter are a new kind of
quantum phases beyond Landau’s paradigm. Since the
discovery of fractional quantum Hall effect (FQHE), frac-

tionalized statistics of point-like excitations in topological phases
has been intensively studied in 2D strongly correlated electron
systems. In the past decade, the theoretical prediction and
experimental discovery of topological insulator and topological
superconductor in 3D systems have further extended our
knowledge of topological phases into higher dimensions. As a
unique feature, the excitations of 3D topological phases not only
contain point-like excitations, but also contain loop-like excita-
tions. Therefore, the fundamental braiding process is not only
limited to particle-particle braiding, but is also extended to
particle–loop braiding and loop–loop braiding. It is well known
that due to topological reasons, point-like excitations in 3D can
only be bosons or fermions. In addition, particle-loop braiding
can be understood in terms of Aharonov-Bohm effect and loop-
loop braiding is equivalent to particle-loop braiding(one can
always shrink one of the loops into a point-like excitation). As a
result, for long time people thought there was no interesting
fractional statistics in 3D beyond the Aharonov–Bohm effect.
Surprisingly, a recent breakthrough pointed out that loop-like
excitations can indeed carry interesting fractional statistics via the
so-called three-loop braiding process1–7: braiding a loop α around
another loop β, while both are linked to a third loop γ, as shown
in Fig. 1. Apparently, such kind of braiding process can not be
reduced to the particle-loop braiding due to the linking with a
third loop. So far, it has been believed that the three-loop braiding
process is the most elementary loop braiding process in 3D.

Another natural question would be: whether we can use three-
loop braiding process to characterize and classify all possible
topological phases for interacting fermion systems in 3D? Recent
studies on the classification of topological phases for interacting
bosonic and fermionic systems in 3D suggest a positive answer to
the above question8,9. Basically, it has been conjectured that all
topological phases in 3D can be realized by “gauging” certain
underlying symmetry-protected topological (SPT) phases10,11.
For bosonic systems, the “gauged” SPT states are known as
Dijkgraaf–Witten gauge theory, and it has been shown (at least
for Abelian gauge groups) that three-loop braiding process of
their corresponding flux lines can uniquely characterize and
exhaust all Dijkgraaf–Witten gauge theories4. For fermionic sys-
tems, some particular examples with Abelian three-loop braiding
process are also studied recently12. However, it is still unclear how
to understand general cases. On the other hand, it is well known
that in low dimensions (up to 3D), the group cohomology
theory13–15 gives rise to a complete classification of bosonic
symmetry-protected topological (BSPT) phases for arbitrary finite

unitary symmetry groups. The classification can be generalized to
fermionic symmetry-protected topological (FSPT) phases by
more advanced constructions16–25.

In this work, we attempt to systematically understand the
three-loop braiding statistics for gauged interacting FSPT systems
with general Abelian unitary symmetries. In particular, we dis-
cover new types of non-Abelian three-loop braiding statistics that
can be only realized in the presence of fermionic particles
(accordingly beyond Dijkgraaf–Witten theories). The simplest
symmetry group supporting such kind of non-Abelian three-loop
braiding process is Z2 ´Z8 or Z4 ´Z4. (More precisely, the
corresponding total symmetry groups are Gf ¼ Zf

2 ´Z2 ´Z8 or
Zf

2 ´Z4 ´Z4 if we also include the fermion parity symmetry Zf
2.)

A simple physical picture describing the corresponding non-
Abelian statistics can be viewed as attaching an open Kitaev’s
Majorana chain onto a pair of linked flux lines (Z2 and Z8 unit
flux lines for the former case and two different Z4 unit flux lines
for the latter case).

In 1D, it has been shown that a Majorana chain will carry two
protected Majorana zero modes on its open ends26. In 2D, it is
also well known the vortex(anti-vortex) of a p+ip topological
superconductor can carry a single topological Majorana zero
mode. Thus, it is very natural to ask if flux lines in 3D can also
carry topological Majorana zero mode or not. Surprisingly, we
find that flux lines carrying topological Majorana zero modes
must be linked to each other, as shown in Fig. 2. In contrast, if the
loops are unlinked, they can never carry Majorana zero modes.
This is simply because one can always smoothly shrink the flux
loop into a point like excitation with a single Majorana zero mode
on it, which is not allowed in 3D.

The non-Abelian nature of the new type three-loop braiding
process we discovered can be understood as the two-fold
degeneracy carried by a pair of linked flux lines, and the braid-
ing statistics between two loops that linked with a third loop
should be characterized by a unitary 2 by 2 matrix instead of a
simple U(1) phase factor. An alternative way to understand the
non-Abelian nature of the three-loop braiding statistics is to use
the standard dimension reduction scheme to deform the 3D
lattice model into a 2D lattice model27, i.e., by shrinking the z-
direction to single lattice spacing such that the flux line along the
z-direction can be regarded as a 2D particle which is exactly the
Ising non-Ableian anyon28 with quantum dimension

ffiffiffi
2

p
. Finally,

by explicitly working out all the algebraic constraints of three-
loop braiding process for fermionic systems(or equivalently,
bosonic systems with emergent fermionic particles), we not only
uncover new types of Ising non-Abelian three-loop braiding, but
also derive a complete classification of 3D FSPT phases with
Abelian unitary total symmetry Gf.

Fig. 1 Three-loop braiding process. The three-loop braiding process is
braiding one loop α around another loop β, while both of them are linked to
a third loop γ.

Fig. 2 The Hopf link of two Ising loops. Attaching an open Majorana chain
onto a pair of linked loops realizes the so-called Ising non-Abelian three-
loop braiding process.
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Results
Symmetries in interacting fermion systems. We begin with the
basics of symmetries in fermionic systems. Fermionic systems
have a fundamental symmetry—the conservation of fermion
parity: Pf ¼ ð�1ÞNf , where Nf is the total number of fermions.

The corresponding symmetry group is denoted as Zf
2 ¼ f1; Pf g.

In the presence of other global on-site symmetries, the total
symmetry group Gf is the central extension of the bosonic sym-
metry group Gb by the fermion parity Zf

2, determined by the 2-
cocycle ω2 2 H2ðGb;Z2Þ. In this work, we consider a general
Abelian unitary symmetry group of the following form:

Gf ¼ Zf
N0

´
YK
i¼1

ZNi
ð1Þ

where N0= 2m is an even integer. One can show that any finite
Abelian symmetry group in fermionic systems can be written in
this form, after a proper isomorphic transformation.

The bosonic symmetry group is expressed as

Gb ¼ Gf =Z
f
2 ¼ ZN0=2

´
YK
i¼1

ZNi
ð2Þ

For simplicity, we will mainly consider the case that m and all Ni

are powers of 2, i.e.,

Nμ ¼ 2nμ ; m ¼ 2n0�1 ð3Þ
where n0 ≥ 1. When n0= 1 (i.e., m= 1), the central extension of
Gb is trivial; when n0 ≥ 2, the central extension of Gb is nontrivial.
This simplification does not exclude any interesting FSPT phases
because odd factors of each Nμ can be factored out. Moreover, n2
and n3 are always trivial if all Ni’s are odd integers. Accordingly,
neglecting the odd factors, we only lose some BSPT phases, whose
classification and characterization are well studied14.

Topological excitations and three-Loop braiding in 3D. Next,
we introduce loop braiding statistics in gauged 3D FSPT phase.
To study FSPT phases with symmetry group Gf, we will gauge the
full symmetry. That is, we introduce a gauge field of gauge group
Gf and couple it to the FSPT system through the minimal cou-
pling procedure (see refs. 4,10 for details of the procedure). The
resulting gauged system is guaranteed to be gapped through that
procedure, which is actually topologically ordered. It contains two
types of topological excitations:

(i) Point-like excitations that carry gauge charge. We label
them by a vector q ¼ ðq

0
; :::; qK Þ, where qμ is an integer

defined modulo Nμ. We will use q to denote both the
excitation and its gauge charge. This is legitimate because
gauge charge uniquely determines charge excitations.
Charge excitations are Abelian anyons. Fusing two charge
excitations q1 and q2, we obtain a unique charge excitation
q= q1+ q2.

(ii) Loop-like excitations that carry gauge flux. We call them
vortices, vortex loops or simply loops, and label them by α,
β,… . The gauge flux carried by loop α is denoted by
ϕα ¼ ð2πN0

a
0
; :::; 2πNK

aKÞ, where aμ is an integer defined
modulo Nμ. There exist many loops that carry the same
gauge flux, which differ from each other by attaching
charges. Unlinked loops are Abelian, however, they may
become non-Abelian when they are linked with other loops.
Hence, fusion of vortex loops depend on whether they are
linked or not. Nevertheless, regardless Abelian or non-
Abelian, gauge flux always adds up. General vortex
excitations are not limited to simple loops. For example,

they may be knots or even more complicated structure. In
this work, we only consider simple loops and links of them.
So far, properties of loops are enough to characterize
gauged FSPT systems.

We need to consider three types of braiding statistics between
the loops and charges1:

First, charge-charge exchange statistics. A charge is either a
boson or fermion, depending on the gauge charge it carries. More
explicitly, the exchange statistics of charge q is given by

θq ¼ πq0 ð4Þ
That is, when q0 is odd, it is a fermion. Otherwise, it is a boson.
Mutual statistics between charges are always trivial.

Second, charge-loop braiding statistics, which is the Aharonov-
Bohm phase given by

θq;α ¼ q � ϕα ð5Þ
where “ ⋅ ” is the vector dot product. We single out a special class
of vortex loops, those carrying the fermion parity gauge flux ϕ=
(π, 0,…, 0). We denote these fermion-parity loops as ξf. The
mutual statistics between charges and fermion-parity loops are
simply given by ref. 29:

θq;ξf ¼ q � ϕξf ¼ πq0 ð6Þ
We notice that the self-exchange statistics of a charge q is equal to
Aharonov-Bohm phase θq;ξf , which is required by the very

definition of fermion parity symmetry.
Third, loop-loop braiding statistics. It was shown in ref. 1 that

the fundamental braiding process between loops is the so-called
three-loop braiding statistics (Fig. 1):

Let α, β, γ be three loop-like excitations. A three-loop braiding
is a process that a loop α braids around loop β while both linked
to a base loop γ.

On the other hand, if there is no base loop, the two-loop
braiding process can always be reduced to charge-loop braiding
statistics1:

θαβ ¼ qα � ϕβ þ qβ � ϕα ð7Þ
Here qα is the absolute charge carried by loop α, which can be
obtained by shrinking the loop to a point. Since charge-loop
braiding statistics is universal for all FSPT phases with the same
symmetry group Gf, two-loop braiding is not able to distinguish
different FSPT phases. In the presence of a base loop γ, the notion
of absolute charge is not well defined as shrinking loop α to a
point will inevitably touch the base loop. Accordingly, three-loop
braiding statistics can go beyond Aharonov-Bohm phases, as
already demonstrated in many previous works1,4,12.

While the gauge group Gf is Abelian, three-loop braiding
process is not limited to be Abelian. As mentioned above, linked
loops can be non-Abelian in general, and three-loop process
involves linked loops. Let us consider loops α, β, which are linked
to the base loop γ. The base loop γ carries gauge flux
ϕγ ¼ ð2πN0

; :::; 2πNK
Þ � c, where c is an integer vector. Generally

speaking, the fusion space between α and β, denoted as Vαβ,c, is
multi-dimensional (we use this notation because the fusion and
braiding process only depend on the gauge flux of the base loop).
More explicitly,

Vαβ;c ¼
M
δ

Vδ
αβ;c ð8Þ

where loop δ are the possible fusion channels of α and β. Braiding
between α and β is a unitary transformation in the fusion space,
which in general is not just a phase, but a matrix, leading to non-
Abelian three-loop braiding statistics. Similarly to anyons in 2D,
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one can define fusion multiplicities Nδ
αβ;c, F- and R-matrices to

describe the loop fusion and braiding properties4. We give more
detailed descriptions in Supplementary Note 1 and 2.

Classification of FSPT phases via three-loop braiding statistics.
The main purpose of this work is to obtain a classification of 3D
FSPT phases via three-loop braiding statistics, and to study non-
Abelian three-loop braiding statistics of gauged FSPT phases. We
focus on finite Abelian groups of unitary symmetries, which can
generally be written as Eq. (1).

We start by defining a set of 3D topological invariants {Θμ,σ,
Θμν,σ,Θμνλ,σ} through the three-loop braiding processes (see
“Methods” section for details). Our definitions are very similar to
those for 2D FSPTs given in ref. 29, which actually can be related
by dimension reduction4. Next, we find 14 constraints on {Θμ,σ,
Θμν,σ,Θμνλ,σ}, listed in the “Methods” section. Out of these
constraints, 7 follow directly from 2D constraints29, while the
other 7 are intrinsically 3D. All intrinsically 3D constraints can be
traced back to either the 3D Abelian case12 or 3D non-Abelian
bosonic case4. Unfortunately, we are not able to prove all the
constraints; those we can prove are discussed in Supplementary
Note 3. Finally, by solving the constraints, we obtain a
classification of 3D FSPT phases in Table 1. The classification
group Hstack under the stacking operation has the following
general form:

Hstack ¼ A ´
Y
i

Bi ´
Y
i<j

Cij ´
Y
i<j<k

Dijk ´
Y

i<j<k<l

Eijkl ð9Þ

where i, j, k, l take values in 1, 2, . . . , K, and A, Bi, Cij,Dijk, Eijkl are
finite Abelian groups. This classification is one of the main
results. While it is obtained from a set of partially conjectured
constraints, it agrees with all previously known examples. This
justifies the validity of the classification. We note that the
classification group A is always trivial. However, A is nontrivial
for 2D FSPT phases. A newly involved 3D constraint Eq. (55) (see
“Methods” section for more details) trivializes it in 3D. Below we
discuss more details for the stacking group structure of the
classification results.

According to the stacking group Eq. (9) for classifying 3D
FSPT phases with Abelian total symmetry Gf, we can divide the
corresponding topological invariants into five categories, such
that the topological invariants in each category are independent

of those in other categories, i.e. the constraints only relate
topological invariants inside each category. The five categories
are:

ðAÞΘ0;0;Θ00;0;Θ000;0

ðBÞ ðB1ÞΘ0;i; Θ00;i; Θ000;i

ðB2ÞΘi;0; Θ0i;0; Θii;0; Θ00i;0; Θ0ii;0; Θiii;0

ðB3Þ Θi;i; Θ0i;i; Θii;i; Θ00i;i; Θ0ii;i; Θiii;i

ðCÞ ðC1Þ Θij;0; Θ0ij;0; Θiij;0; Θjji;0

ðC2Þ Θij;i; Θ0ij;i; Θiij;i; Θjji;i

ðC3Þ Θij;j; Θ0ij;j; Θiij;j; Θjji;j

ðC4Þ Θi;j; Θ0i;j; Θii;j; Θ00i;j; Θ0ii;j; Θiii;j

ðC5Þ Θj;i; Θ0j;i; Θjj;i; Θ00j;i; Θ0jj;i; Θjjj;i

ðDÞ ðD1Þ Θij;k; Θ0ij;k; Θiij;k; Θjji;k

ðD2Þ Θjk;i; Θ0jk;i; Θjjk;i; Θkkj;i

ðD3Þ Θki;j; Θ0ki;j; Θkki;j; Θiik;j

ðD4Þ Θijk;0; Θijk;i;; Θijk;j; Θijk;k

ðEÞ Θijk;l; Θjkl;i; Θkli;j; Θlij;k

where A is the classification group protected by the symmetry
group Zf

N0
, Bi is protected by Zf

N0
and ZNi

, Cij is protected by

Zf
N0
;ZNi

;ZNj
, Dijk is protected by Zf

N0
;ZNi

;ZNj
;ZNk

, and Eijkl is

protected by ZNi
;ZNj

;ZNk
;ZNl

.
Mathematically, it is not hard to see that solutions to the

constraints form an Abelian group under addition of topological
invariants modulo 2π. After all, the constraints are simply a set of
homogeneous linear equations. Physically, addition of topological
invariants corresponds to stacking of FSPT states, and thereby
Hstack is named the “stacking group”. To establish the
correspondence, we need to show that the topological invariants
are indeed additive under stacking operation. We remark that
stacking is done on FSPT states before gauging, while the
topological invariants are extracted after gauging. Accordingly,
stacking additivity is not immediately obvious and deserves some
discussion, which we give in Supplementary Note 5. We also note

Table 1 Classification of 3D FSPT phases with finite unitary Abelian symmetry groups.

Stacking Group Cases Classification

A If m is odd Z1
If m is even Z1

Bi If m is odd Z1
If m is even ZgcdfN0=2;2Nig ´ZgcdfN0=2;Nig=2

Cij If m is odd and Ni=Nj= 2 Z2 ´Z2
If m is odd and Ni= 2, Nj= 4 Z4 ´Z2
If m is odd and Ni= 2, Nj ≥ 8 Z8 ´Z2

If m is odd and 4≤ Ni≤ Nj Zgcdf2Ni ;Njg ´Zgcdf2Nj ;Nig ´Z2

If m is even Zgcdf2Ni ;Njg ´Zgcdf2Nj ;Nig ´ZgcdfN0=2;Nijg ´ZN0ij=2

Dijk If m is odd and Ni=Nj= Nk= 2 Z2 ´Z2

If m is odd, Ni= Nj= 2 and Nk ≥ 4 Z4 ´Z2
If m is odd and otherwise ZNijk

´ZNijk
´Z2

If m is even ZNijk
´ZNijk

´ZN0ijk

Eijkl If m is odd ZNijkl

If m is even ZNijkl

For simplicity, we only consider symmetry groups ZNμ
with Nμ being power of 2, and we assume Ni≤Nj≤Nk≤Nl without loss of generality. m= N0/2 and "gcd" means the greatest common divisor. Nij

denotes for the greatest common divisor of Ni and Nj, similarly for N0ij, Nijk, N0ijk and Nijkl.
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that the trivial solution (i.e., all topological invariants are zero) to
the constraints corresponds to the trivial FSPT state.

We believe the the topological invariants are complete for
characterizing FSPT phases with Abelian symmetry group Gf, and
the constraints are complete so that all solutions are physical.
Both completenesses are justified by a comparison with the
general group super-cohomology method in Supplementary
Note 6.

Statistics-type indicators. Our exploration of the classification
scheme also uncovers several new kinds of non-Abelian loop
braiding statistics, in particular the new kind that involves
Majorana zero modes (Fig. 2), which we have briefly mentioned
in the introduction. In fact, the correspondence between the layer
construction in refs. 23,24 and the three-loop braiding statistics
data can be extracted. More explicitly, we pick out several special
topological invariants, named statistics-type indicators, to indi-
cate non-Abelian loop braiding statistics with different origins:

(1) Θ00i,j= π (m is odd) is the indicator of the non-Abelian
statistics in the Majorana-chain layer, which is generated by
the loops carrying unpaired Majorana modes, and a loop
carrying one Majorana mode is characterized by its
quantum dimension

ffiffiffi
2

p
.

(2) Θfi;j ¼ N0i
gcdð2;NiÞΘ0i;j≠0 (i ≠ j) is the indicator of the complex

fermion layer, where “f” stands for the fermion-parity loop
ξf with gauge flux ϕξf ¼ ðπ; 0; :::Þ.

(3) Θfij,k=Θiij,k=mΘ0ij,k ≠ 0 is the indicator of the non-
Abelian statistics in the complex fermion layer, which is
generated by degeneracies in the complex fermion layer and
the relevant loops have integer quantum dimension.

(4) Θijk,l ≠ 0 or {Θfij,k= 0,Θ0ij,k ≠ 0} is the indicator of the non-
Abelian statistics in the BSPT layer, which is generated by
degeneracies in the BSPT layer and the relevant loops have
integer quantum dimension.

Below we will prove the first statistics-type indicator Θ00i,j= π
(m is odd) uniquely indicates the Majorana-chain layer. To
proceed, we need to obtain an explicit expression of the
topological invariant Θμνλ,σ as the following (The definitions we
used below are introduced in Supplementary Note 2).

We assume that three loops ξμ, ξν, ξλ are all linked to a base
loop ξσ. Mathematically, let the total fusion outcome η of the
three loops ξμ, ξν, ξλ be fixed, and the standard basis is to let ξν
firstly fuse with ξμ, then their fusion channel again fuse with ξλ.
We choose the basis of the first local fusion space Vξνξμ;c

to be

diagonalized under the braiding of ξμ around ξν, and the braiding
of ξμ around ξλ is then generally non-diagonalized under this
basis, which is expressed as:

eBη

ξνξμξλ;eσ
¼ Fη

ξνξμξλ;eσ
Bξμξλ;eσ

ðFη
ξνξμξλ;eσ

Þ�1
:

�
δ
ðVδ

ξνξμ;c
� Vη

δξλ;c
Þ ! �

ρ
ðVρ

ξνξμ;c
� Vη

ρξλ;c
Þ ð10Þ

where eBξνξμξλ;eσ
only braids ξμ around ξλ, while it depends on ξν, as

shown in Fig. 3. Bξμξν ;eσ
is redefined in the same basis as eBη

ξνξμξλ;eσ
:

Bξμξν ;eσ
: �

δ
ðVδ

ξνξμ;c
� Vη

δξλ;c
Þ ! �

δ
ðVδ

ξνξμ;c
� Vη

δξλ;c
Þ ð11Þ

which has the same expression as Bξμξν ;eσ
: �

δ
Vδ

ξνξμ;c
! �

δ
Vδ

ξνξμ;c
,

as though the fusion space is extended, the basis in the extended
fusion space should keep diagonalized under the braiding of ξμ
around ξν, as shown in Fig. 4. Then Θμνλ,σ can be expressed

through:

eiΘμνλ;σ I ¼ ðeBη

ξνξμξλ;eσ
Þ�1ðBξμξν ;eσ

Þ�1eBη

ξνξμξλ;eσ
Bξμξν ;eσ

ð12Þ

where I is the identity matrix in the vector space
�
δ
ðVδ

ξνξμ;c
� Vη

δξλ;c
Þ.

Now we are ready to go back to the proof. For simplicity, we
can consider m= 1 only, which is due to Zf

2m is isomorphic to
Zf

2 ´Zm, and Zm can be absorbed into
Q

iZNi
part of Gf. From

constraints Eq. (40) and Eq. (51) in the “Methods” section, Θiii,j

=mΘ0ii,j=m2Θ00i,j. Therefore when m= 1, we have the relation
Θ00i,j=Θiii,j.

Firstly we show that the non-Abelian statistics in Majorana-
chain layer (i.e., the Ising type statistics) must have Θ00i,j= π: Do
a dimension reduction for the gauged Ising type FSPT system
from 3D to 2D by choosing ξj as the base loop, and condense all
the bosonic quasiparticles (as the Ising type statistics is irrelavant
to the bosonic matter). The remaining 2D quasiparticles are
exactly the Ising anyons: a vortex carrying one majorana mode σ,
a fermion ψ and vacuum 1, which satisfies:

eiΘσσσ I ¼ ðeBσ

σσσ
Þ�1ðB

σσ
Þ�1eBσ

σσσ
B

σσ
¼ eiπ

1 0

0 1

� �
ð13Þ

where we have Θσσσ= π. The 3D topological invariants Θiii,j is
exactly equal to the 2D one Θσσσ after dimension reduction and
the condensation of all bosons, i.e. Θ00i,j=Θiii,j=Θσσσ= π.
Secondly, we show that Θ00i,j= π corresponds uniquely to the
Ising type statistics: From constraint Eq. (40) in the “Methods”
section, when m= 1, Θ00i,j can only take values 0 or π; when m is
even, Θ00i,j vanishes. We assume the types of non-Abelian
statistics in our gauged FSPT system contain only: (1) Ising type
in Majorana-chain layer (2) fermionic type in complex fermion
layer (3) bosonic type in BSPT layer. Solving the constraints as
listed in Supplementary Note 4, and examing the generating
phases by mapping to 2D model constructions after dimension
reduction29, we find that to construct the generating phase Θ00i,j

= π, there always exist loops with quantum dimension
ffiffiffi
2

p
, which

is the unique property of Ising anyons in the Majorana-
chain layer.

Fig. 3 The diagrammatic expression of eBη

ξνξμξλ ;eσ
in the standard basis. It is

braiding of ξμ around ξλ in the diagonalized basis of braiding ξμ around ξν,
which is generally non-diagonalized. ρ is the fusion outcome of ξμ and ξν in
the basis that ξν and ξλ are braided. δ is the fusion outcome of ξμ and ξν
such that Bξμξν ;eσ is diagonalized. η is the total fusion outcome of ξμ, ξν, and
ξλ.

Fig. 4 The diagrammatic expression of Bξμξν ;eσ
in the standard basis. It is

braiding of ξμ around ξν in a basis that we choose to be diagonalized. δ is
the fusion outcome of ξμ and ξν such that Bξμξν ;eσ is diagonalized. η is the
total fusion outcome of ξμ, ξν, and ξλ.
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The second statistics-type indicator Θfi;j ¼ N0i
gcdð2;NiÞΘ0i;j≠0 (i ≠ j)

is proposed and proven in ref. 12. Combining the results in ref. 29

and ref. 12, we infer that Θfij,k=Θiij,k=mΘ0ij,k ≠ 0 is the indicator
for the non-Abelian statistics in the complex fermion layer.
Finally Θijk,l ≠ 0 is obviously the indicator for the BSPT layer by
the definition of the topological invariant Θμνλ,σ. However, if we
consider a special example Gf ¼ Zf

4 ´Z2 ´Z2 ´Z2, where Θ0ij,k

= π and Θfij,k= 2Θ0ij,k= 0 should still belong to the non-Abelian
statistics in BSPT layer. Hence we conclude that Θijk,l ≠ 0 and
{Θfij,k= 0,Θ0ij,k ≠ 0} are both the indicators for the non-Abelian
statistics in BSPT layer.

By checking the linear dependence among the topological
invariants, we can also determine relations between the three
layers, i.e., simply stacked or absorbed. We summarize the group
structure of our classification result by layers, i.e., classification
corresponds to BSPT phase, complex fermion layer, and
Majorana chain layer, and whether they are non-trivial group
extension (we call absorbed) or simple direct product (we call
stacking), in Table 2.

Furthermore, invoking the known model construction for 2D
FSPT phases29 and by the fact that quantum dimensions are
invariant under dimension reduction, we can find the quantum
dimensions of loop-like excitations linked to certain base loops.
From the quantum dimensions, we can further show that the
non-Abelian three-loop braiding statistics resulting from the
Majorana chain layer is due to the unpaired Majorana modes
attached to linked loops. Below we will discuss two simplest
examples for such kinds of non-Abelian three-loop braiding
statistics.

Example 1 for Ising non-Abelian three-loop braiding statistics:
Gf ¼ Zf

2 ´Z2 ´Z8. Firstly, we recall the stacking group classifi-
cation of FSPT phases:

Hstack ¼ A ´
Y
i

Bi ´
Y
i<j

Cij ð14Þ

where from Table 1 we know that: A protected by Zf
2 is trivial, B1

and B2 protected by Zf
2 ´Z2 and Zf

2 ´Z8, respectively are trivial,
while C12 protected by Zf

2 ´Z2 ´Z8 is nontrivial. Therefore the
classification of FSPT phases for the symmetry group is Hstack=

C12. Then we explicitly show the calculation of C12: Invoking
the known 2D results and combining with the 3D constraints
NσΘμ,σ= 0, NσΘμν,σ= 0, NσΘμνλ,σ= 0, the generating phases for
the subsets (C1), (C2), (C3), (C4) and (C5) are:

ðΘij;0;Θ0ij;0Þ ¼
2π
Nij

; 0

 !
´ aþ 0;

2π
N0ij

 !
´ b ¼ ðπa; πbÞ ð15Þ

ðΘij;i;Θ0ij;iÞ ¼
2π
Nij

; 0

 !
´ cþ 0;

2π
N0ij

 !
´ d ¼ ðπc; πdÞ ð16Þ

ðΘij;j;Θ0ij;jÞ ¼
2π
Nij

; 0

 !
´ eþ 0;

2π
N0ij

 !
´ f ¼ ðπe; πf Þ ð17Þ

ðΘi;j;Θ0i;j;Θ00i;jÞ ¼
π

2Ni
;� π

N0i
; π

� �
´ g þ 0;

4π
N0i

; 0

� �
¼ π

4
;� π

2
; π

� �
g

ð18Þ

ðΘj;i;Θ0j;i;Θ00j;iÞ ¼
π

Nj
;
2π
N0j

; 0

 !
´Njhþ 0;

4π
N0j

; π

 !
´ i

¼ ðπh; 0; πiÞ
ð19Þ

where a, b, c, d, e, f, g, h, i are all integers. By the constraint Θ0ij,0=
Θ00i,j=−Θ0ij,i=−Θ00j,i=−Θ0ij,j, we have b= d= f= g= i
(mod 2). By the constraint Θij,0+Θoj,i+ 4Θ0i,j= 0, we have a= 0
(mod 2). By the constraint Θij,i=−4Θi,j, we have c=−g (mod 8).
By the constraint Θij,j=−Θj,i, we have e=−h (mod 2).

Combining all the constraints: a= 0 (mod 2), b= d= f= g=
i=−c (mod 8), e=−h (mod 2), i.e. the generating phases are:

ðΘ0ij;0;Θij;i;Θ0ij;i;Θ0ij;j;Θi;j;Θ0i;j;Θ00i;j;Θ00j;iÞ
¼ ðπ; π; π; π; π4 ;� π

2 ; π; πÞ
ð20Þ

ðΘij;j;Θj;iÞ ¼ ðπ; πÞ ð21Þ
while all other topological invariants vanish:

Θ0;0 ¼ 0 ð22Þ

Table 2 Layer group structure of the classification group of 3D FSPT phases with finite unitary Abelian symmetry groups.

Cases BSPT phases B Cases Complex fermion C Kitaev chain K Group structure

Bi If m is even ZgcdfN0=2;Nig ´ZgcdfN0=2;Nig=2 If Ni ≥ N0/2 Z1 Z1 B
If Ni <N0/2 Z2 Z1 CrB

Cij If m is odd, Ni= Nj= 2 Z2 ´Z2 \ Z1 Z1 B
If m is odd, Ni= 2, Nj= 4 Z2 ´Z2 \ Z2 Z1 CrB
If m is odd, Ni= 2, Nj ≥ 8 Z2 ´Z2 \ Z2 Z2 KrCrB
If m is odd, 4≤Ni≤ Nj ZNij

´ZNij
If Ni=Nj Z1 Z2 B ´K
If Ni <Nj Z2 Z2 ðCrBÞ ´K

If m is even ZNij
´ZNij

´ZgcdfN0=2;Nijg ´ZN0ij=2
If Ni=Nj Z1 Z1 B
If Ni <Nj Z2 Z1 CrB

Dijk If m is odd, Ni= Nj=Nk= 2 Z2 ´Z2 \ Z1 Z1 B
If m is odd, Ni= Nj= 2 and
Nk ≥ 4

Z2 ´Z2 \ Z2 Z1 CrB

If m is odd and otherwise ZNijk
´ZNijk

\ Z2 Z1 C ´B
If m is even, N0ijk≠ N0 ZNijk

´ZNijk
´ZN0ijk

\ Z1 Z1 B
If m is even, N0ijk= N0 ZNijk

´ZNijk
´ZN0ijk=2

\ Z2 Z1 CrB
Eijkl ZNijkl

\ Z1 Z1 B

We assume Ni≤Nj ≤Nk≤Nl without loss of generality. The classification groups of BSPT layer, complex layer and Majorana chain layer are denoted as B, C, and K respectively. As the group structure
depends on more detailed cases beyond Table 1, we list the further cases in column 4. We denote the simple direct product as × , and non-trivial group extension as⋉ . The classification groups with non-
Abelian braiding statistics are denoted in bold italic.
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ðΘ0;i;Θi;0;Θ0i;0;Θ00i;0;Θi;i;Θ0i;i;Θ00i;iÞ
¼ ð0; 0; 0; 0; 0; 0; 0Þ ð23Þ

ðΘ0;j;Θj;0;Θ0j;0;Θ00j;0;Θj;j;Θ0j;j;Θ00j;jÞ
¼ ð0; 0; 0; 0; 0; 0; 0Þ ð24Þ

ðΘij;0;Θ0j;iÞ ¼ ð0; 0Þ ð25Þ
Hence in this case the classification is Z8 ´Z2, which is a Z2

complex fermion layer absorbed into a Z2 ´Z2 BSPT layer,
together forming a Z4 ´Z2 classification, and then a Z2
Majorana-chain layer again absorbed into the Z4 ´Z2 above, as
the complex fermion layer indicator is Θfi;j ¼ Θ0i;j ¼ � π

2.
Conveniently we can view the “Z8” part of the classification

being generated by:

Θi;j ¼
π

4
;
π

2
;
3
4
π; π;

5
4
π;

3
2
π;

7
4
π; 0

	 

ð26Þ

where Θi,j= {0, π} correspond to Abelian BSPT phases, Θi;j ¼
fπ2 ; 32 πg are Abelian FSPT phases (contain both BSPT layer and
complex fermion layer), and Θi;j ¼ fπ4 ; 34 π; 54 π; 74 πg are non-
Abelian FSPT phases (contain all BSPT layer, complex fermion
layer and Majorana chain layer). Recall that Θ00i,j= π (m is odd)
is the indicator of the Majorana chain layer. The four non-
Abelian FSPT phases all have (Θ00i,j,Θ00j,i)= (π, π), which means
that loops ξi and ξj each carry one unpaired Majorana mode
simultaneously and both have quantum dimension

ffiffiffi
2

p
, which is

the origin of the non-Abelian statistics in Majorana chain layer.
On the other hand, the “Z2” part of the classification is generated
by:

Θj;i ¼ f0; πg ð27Þ
where Θj,i= π is a non-trivial BSPT phase, and Θj,i= 0 is a trivial
BSPT phase.

We can also understand the 3D braiding statistics by doing a
dimension reduction from 3D to 2D and applying the known
model construction for 2D generating phases29. Firstly we choose
ξj always to be the base loop, and the 2D system after dimension
reduction has symmetry Zf

2 ´Z2, which has only one generating
phase ðΘi;Θ0i;Θ00iÞ ¼ ðπ4 ;� π

2 ; πÞ, i.e. the subset (C4) in category
C. It can be realized by a two-layer model construction: the first
layer a is a charge-2 superconductor with chiral central charge � 1

2
(Ising type), while the second layer b is a charge-2 super-
conductor with chiral central charge 1

2 (Ising type). The 2D vortex
ξ0 is composited by a unit-flux vortex in layer a and a unit-flux
vortex in layer b, which therefore has quantum dimension 2. The
2D vortex ξi is composited only by a unit-flux vortex in layer b,
which therefore has quantum dimension

ffiffiffi
2

p
. As the quantum

dimensions of loops are invariant under dimension reudction, we
conclude that for non-Abelian FSPT phases, with ξj all being base
loops, loop ξ0 has quantum dimension 2 and loop ξi has quantum
dimension

ffiffiffi
2

p
.

Secondly, we choose ξi always to be the base loop, and the 2D
system after dimension reduction has symmetry Zf

2 ´Z8, which
has two generating phases ðΘj;Θ0j;Θ00jÞ ¼ ðπ8 ; π; 0Þ and (Θj,Θ0j,
Θ00j)= (0, 0, π), where the first one is trivialized to a Z2 BSPT in
3D, and both constitute the subset (C5) in category C. Only the
second generating phase corresponds to non-Abelian statistics
and can be realized by a three-layer model construction: the first
layer a is a charge-2 superconductor with chiral central charge � 1

2
(Ising type), the second layer b is a charge-8 superconductor with
chiral central charge 0 (Abelian layer), and the third layer c is a

charge-2 superconductor with chiral central charge 1
2 (Ising type).

The 2D vortex ξ0 is composited by a unit flux in layer a, four
times of unit flux in layer b, and a unit flux in layer c, which
therefore has quantum dimension 2. The 2D vortex ξj is
composited only by a unit flux in layer b and a unit flux in
layer c, which therefore has quantum dimension

ffiffiffi
2

p
.

Thirdly we do not specify the base loop, and let the 2D system
after dimension reduction have the full symmetry Zf

2 ´Z2 ´Z8,
which has two generating phases (Θij,0,Θ0ij,0)= (π, 0) and (Θij,0,
Θ0ij,0)= (0, π) (or (Θij,i,Θ0ij,i)= (π, 0) and (Θij,i,Θ0ij,i)= (0, π),
(Θij,0,Θ0ij,0)= (π, 0) and (Θij,0,Θ0ij,0)= (0, π)), i.e. the subset (C1)
(or (C2), (C3)) in category C. Only the second generating phase
corresponds to non-Abelian statistics and can be realized by a
four-layer model construction: the first layer a is a charge-2
superconductor with chiral central charge � 1

2 (Ising type), the
second layer b is a charge-2 superconductor with chiral central
charge 0 (Abelian layer), the third layer c is a charge-8
superconductor with chiral central charge 0 (Abelian layer),
and the fourth layer d is a charge-2 superconductor with chiral
central charge 1

2 (Ising type). The 2D vortex ξ0 is composited by a
unit flux in layer a, a unit flux in layer b, four times of unit flux in
layer c, and a unit flux in layer d, which therefore has quantum
dimension 2. The vortex ξi is composited by a unit flux in layer b
and a unit flux in layer d, which therefore has quantum
dimension

ffiffiffi
2

p
. Similarly, the vortex ξj is composited by a unit

flux in layer c and a unit flux in layer d, which also has quantum
dimension

ffiffiffi
2

p
. In conclusion, we find that no matter how we do

the dimension reduction, the quantum dimensions of the loops
coincide, i.e. in our three-loop braiding system with full
symmetry Zf

2 ´Z2 ´Z8, for those non-Abelian FSPT phases,
the loop ξ0 has quantum dimension 2, and loops ξi and ξj both
have quantum dimension

ffiffiffi
2

p
, which means that loops ξi and ξj

each carry an unpaired Majorana mode.

Example 2 for Ising non-Abelian three-loop braiding statistics:
Gf ¼ Zf

2 ´Z4 ´Z4. Similarly in the stacking group classification,
A, B1, B2 are all trivial, and we only need to consider Hstack= C12.
Invoking the known 2D results and combining with the 3D
constraints NσΘμ,σ= 0, NσΘμν,σ= 0, NσΘμνλ,σ= 0, the generating
phases for the subsets (C1), (C2), (C3), (C4), and (C5) are:

ðΘij;0;Θ0ij;0Þ ¼
2π
Nij

; 0

 !
´
Nij

2
aþ 0;

2π
N0ij

 !
´
N0ij

2
b

¼ ðπa; πbÞ
ð28Þ

ðΘij;i;Θ0ij;iÞ ¼
2π
Nij

; 0

 !
´ cþ 0;

2π
N0ij

 !
´ d ¼ π

2
c; πd

� �
ð29Þ

ðΘij;j;Θ0ij;jÞ ¼
2π
Nij

; 0

 !
´ eþ 0;

2π
N0ij

 !
´ f ¼ π

2
e; πf

� �
ð30Þ

ðΘi;j;Θ0i;j;Θ00i;jÞ ¼
π

Ni
;
2π
N0i

; 0

� �
´ 2g þ 0;

2π
N0i

; π

� �
´ h

¼ π

2
g; πh; πh

� � ð31Þ

ðΘj;i;Θ0j;i;Θ00j;iÞ ¼
π

Nj
;
2π
N0j

; 0

 !
´ 2l þ 0;

2π
N0j

; π

 !
´m

¼ π

2
l; πm; πm

� � ð32Þ
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By the constraint Θ0ij,0=Θ00i,j=−Θ0ij,i=−Θ00j,i=−Θ0ij,j, we
have b= d= f= h=m (mod 2). By the constraint Θij,0+Θ0j,i+
Θ0i,j= 0, we have a= 0 (mod 2). By the constraint Θij,i=−Θi,j,
we have c=−g (mod 4). By the constraint Θij,j=−Θj,i, we have e
=−l (mod 4).

Combining all the constraints: a= 0 (mod 2), b= d= f= h=
m (mod 2), c=−g (mod 4), e=−l (mod 4), i.e., the generating
phases are:

ðΘ0ij;0;Θ0ij;i;Θ0ij;j;Θ0i;j;Θ00i;j;Θ0j;i;Θ00j;iÞ ¼ ðπ; π; π; π; π; π; πÞ
ð33Þ

ðΘij;i;Θi;jÞ ¼
π

2
;
π

2

� �
ð34Þ

ðΘij;j;Θj;iÞ ¼
π

2
;
π

2

� �
ð35Þ

while all other topological invariants vanish.
Hence in this case the classification is Z4 ´Z4 ´Z2, which is a

Z4 ´Z4 BSPT simply stacking with a Z2 “Majorana chain layer
absorbed in complex fermion layer”, as the complex fermion layer
indicator is Θfi,j=Θ0i,j= π.

The "Z2" part of the classification can be viewed to be
generated by:

ðΘ0i;j;Θ00i;jÞ ¼ ðπ; πÞ or ðΘ0j;i;Θ00j;iÞ ¼ ðπ; πÞ ð36Þ
while all other π valued topological invariants are related by the
anti-symmetric constraint of Θμνλ,σ. We do a dimension
reduction by always choosing ξj as the base loop, and the 2D
system has symmetry Zf

2 ´Z4. We find that (Θ0i,Θ00i)= (π, π) is
exactly the second generating phase for this 2D FSPT system,
which can be realized by a three-layer model construction29: the
first layer a is a charge-2 superconductor with chiral central
charge 3

2 (Ising type), the second layer b is a charge-4
superconductor with chiral central charge −2 (Abelian layer),
and the third layer c is a charge-2 superconductor with chiral
central charge 1

2 (Ising type). The 2D vortex ξ0 is composited by a
unit flux in layer a, two times of unit flux in layer b, and a unit
flux in layer c, which, therefore, has quantum dimension 2. The
vortex ξi is composited by a unit flux in layer b and a unit flux in
layer c, which therefore has quantum dimension

ffiffiffi
2

p
. As the

quantum dimensions of the loops are invariant under dimension
reduction, and the symmetry groups of ξi and ξj are both Z4 so
that it is free to choose which is ZNi

and which is ZNj
, we

conclude that in our gauged 3D FSPT systems, loop ξ0 has
quantum dimension 2 and both loop ξi and ξj have quantum
dimension

ffiffiffi
2

p
.

Then we can again check the quantum dimension of loops by
doing the dimension reduction without specifying the base loop,
and the 2D system has the full symmetry Zf

2 ´Z4 ´Z4. The
second non-Abelian generating phase (Θij,0,Θ0ij,0)= (0, π) (or
(Θij,i,Θ0ij,i), (Θij,j,Θ0ij,j)) can also be realized by a four-layer
construction similarly as in the first example. Then the quantum
dimension of ξ0 will still be found as 2, and the quantum
dimensions of ξi and ξj as both

ffiffiffi
2

p
. Therefore in our construction

the nontrivial non-Abelian FSPT phase in the Z2 classification is
due to the unpaired Majorana modes attached on ξi and ξj.

Discussion
In summary, we obtain the classification of 3D FSPT phases with
arbitrary finite unitary Abelian total symmetry Gf, by gauging the
symmetry and studying the topological invariants {Θμ,σ,Θμν,σ,
Θμνλ,σ} defined through the braiding statistics of loop-like exci-
tations in certain three-loop braiding processes and solving the
corresponding constraints for these topological invariants. We

further compare this result with the classification obtained by the
general group supercohomology theory in ref. 24 and find a sys-
tematical agreement. In particular, we can realize any set of
allowed values of topological invariants corresponding to a dis-
tinguished FSPT phase. Moreover, from several special topolo-
gical invariants, we can further identify different origins of Non-
Abelian three-loop braiding statistics from the corresponding
FSPT constructions, i.e., the Majorana chain layer, and complex
fermion layer and BSPT layer. Specifically, we argue that the non-
Abelian statistics in the Majorana chain layer is due to the
unpaired Majorana modes attached on loops.

For future study, it remains unknown how to apply the
braiding statistics method to SPT phases with antiunitary sym-
metry such as the time reversal symmetry, as we do not know
how to gauge an antiunitary symmetry. It is expected to gen-
eralize the Abelian total symmetry groups Gf to general non-
Abelian symmetry groups and have a complete understanding of
topological invariants for FSPT phases in 3D. Of course, how to
use Non-Abelian three-loop braiding statistics to realize topolo-
gical quantum computation would be another fascinating future
direction. Potential application in fundamental physics was also
discussed in ref. 30, it was conjectured that elementary particles
could be further divided into topological Majorana modes
attached on linked loops and such a scenario naturally explains
the origin of three generations of elementary particles.

Methods
Definitions of topological invariants. In this section, we define the topological
invariants {Θμ,σ,Θμν,σ,Θμνλ,σ} through the three-loop braiding statistics. Then, we
discuss the 14 constraints on the topological invariants.

Generally speaking, the full set of braiding statistics among particles and loops
is very complicated, in particular when the braiding statistics are non-Abelian.
Here, we define a subset of the braiding statistics data, which we call topological
invariants. They are Abelian phase factors associated with certain composite three-
loop braiding processes, and thereby are easier to deal with. Yet, this subset still
contains enough information to distinguish all different FSPT phases, as we will
show later.

We will define three types of topological invariants, denoted by Θμ,σ, Θμν,σ, and
Θμνλ,σ, respectively. The definitions are straightforward generalizations of the 2D
counterparts given in ref. 29. To do that, we introduce a notation. Let ξμ be a loop
that carries the type-μ unit flux, i.e., ϕξμ ¼ 2π

Nμ
eμ , where eμ= (0, . . . , 1, . . . , 0) with

the μ-th entry being 1 and all other entries being 0. Then, we define Θμ,σ, Θμν,σ, and
Θμνλ,σ as follows. These definitions work for all Nμ, not limited to the special values
in Eq. (3).

(i) We define

Θμ;σ ¼ ~Nμθξμ ;eσ ð37Þ
where

~N0 ¼ 2m; if m is even

m; if m is odd

	
~Ni ¼ Ni; if m is even

2Ni; if m is odd

	
The quantity θξμ ;eσ is the topological spin of the loop ξμ, when it is linked to

another loop ξσ. It is defined as28:

eiθξμ ;eσ ¼ 1
dξμ ;eσ

∑
δ
dδ;eσ tr ðR

δ
ξμξμ ;eσ

Þ ð38Þ

where Rδ
ξμξμ ;eσ

is the R-matrix between two ξμ loops in the δ fusion channel, and all

loops are linked to ξσ (see Supplementary Note 2 for details).
(ii) We define Θμν,σ as the phase associated with braiding ξμ around ξν for Nμν

times, when both are linked to the base loop ξσ. Here, Nμν is the least common
multiple of Nμ and Nν. In terms of formulas, we have the following expression

eiΘμν;σ I ¼ ðBξμξν ;eσ
ÞNμν ð39Þ

where Bξμξν ;eσ
denotes the unitary operator associated with braiding ξμ around ξμ

only once, while both are linked to ξσ, and I is the identity operator. The operator
Bξμξν ;eσ

can be expressed in term of R matrices, and F matrices if needed, once we

choose a basis for the fusion spaces.
(iii) We define Θμνλ,σ as follows. Consider three loops ξμ, ξν, ξλ all linked to a

base loop ξσ. Then, Θμνλ,σ is the phase associated with braiding ξμ around ξν first,
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then around ξλ, then around ξν in opposite direction and finally around ξλ in
opposite direction.

For the topological invariants {Θμ,σ,Θμν,σ,Θμνλ,σ} to be well-defined, we need to
show that (1) The corresponding braiding processes indeed lead to Abelian phases
and (2) the Abelian phases only depend on the gauge flux of the loops, i.e.
independent of charge attachments. The proofs are the same as those for the 2D
topological invariants {Θμ,Θμν,Θμνλ}, so we do not repeat them here and instead
refer the readers to ref. 29. (The only addition for 3D is that one needs to carry the
base loop index σ in every step of the proofs). The reason that the proofs are
identical is that the 3D invariants {Θμ,σ,Θμν,σ,Θμνλ,σ} can be related to the 2D
invariants {Θμ,Θμν,Θμνλ} by dimension reduction4.

Constraints of topological invariants. The topological invariants {Θμ,σ,Θμν,σ,
Θμνλ,σ} should satisfy certain constraints. We claim that they satisfy the following
14 constraints, Eqs. (40)–(46) and Eqs. (51)–(57). While we are not able to prove all
the constraints, we believe they are rather complete. At least, the solutions to these
constraints are all realized in the layer construction of FSPT phases (see Supple-
mentary Note 4). We divide 14 constraints into two groups.

Group I: Seven constraints that follow from the 2D counterparts:

Θμμν;σ ¼ Θννμ;σ ¼ mΘ0μν;σ ð40Þ

Θμν;σ ¼ Θνμ;σ ð41Þ

NμνΘμν;σ ¼ F ðNμνÞΘμμν;σ ð42Þ

Ni
2 Θii;σ ¼ N0i

2 Θ0i;σ þ Ni
2 F ðmÞ þmF Ni

2

� �h i
Θ00i;σ

ðNi iseven Þ
ð43Þ

Θii;σ ¼
	
2Θi;σ þ F ðNiÞΘiii;σ ; if Niis even

Θi;σ ; if Ni is odd
ð44Þ

Θ00;σ ¼
	
2Θ0;σ ; if m is even

4Θ0;σ þ Θ000;σ ; if m isodd
ð45Þ

	 m
2 Θ0;σ ¼ 0; if m is even

mΘ0;σ þ m2�1
8 Θ000;σ ¼ 0; if m is odd

ð46Þ

where F ðNÞ ¼ 1
2NðN � 1Þ.

The constraints Eq. (40)–Eq. (46) are exactly the 2D fermionic constraints in
ref. 29 with a base loop inserted. Since the 3D topological invariants {Θμ,σ,Θμν,σ,
Θμνλ,σ} are related to the 2D ones {Θμ,Θμν,Θμνλ} by dimension reduction, the 3D
topological invariants satisfy all the 2D constraints.

We briefly explain the meaning of the above constraints. For constraint Eq.
(40), firstly we notice a fact that N copies of the topological invariant Θμνλ,σ are
equivalent to do the braiding process for N copies the type-μ loop, or type-ν, type-λ
loop, expressed as:

NΘμνλ;σ ¼ Θ½Nξμ �νλ;σ ¼ Θμ½Nξν �λ;σ ¼ Θμν½Nξλ �;σ ð47Þ
where [Nξμ] means N copies the type-μ loop, which can be obtained directly by the
definition of Θμνλ,σ. Then by this fact, the expression mΘ0μν,σ can be rewritten as29:

eimΘ0μν;σ ¼ eiΘ½mξ0 �μν;σ ¼ eiΘf μν;σ ð48Þ
where f is the fermion-parity loop. And constraint Eq. (40) illustrates an
equivalence Θfμν,σ=Θμμν,σ, explicitly proved in the appendix of ref. 29. Moreover,
as the positions of type-μ and type-ν loops are symmetric in Θfμν,σ, the equality can
be extended to Θννμ,σ. The constraint Eq. (41) simply points out that the type-μ and
type-ν loops are symmetric in a three-loop braiding process. The constraints Eq.
(42) and Eq. (43) are obtained by rearranging the order of certain braiding
processes, where the rearrangements give rise to the non-Abelian phase factors
Θμμν,σ and Θ00i,σ. For constraints Eq. (44) and Eq. (45), there are two corollaries
relating the type-μ loop and its anti-loop29:

Θμμ;σ þ Θμμ;σ ¼ F ðNμÞΘμμμ;σ ð49Þ

Θμμ;σ ¼ �2Nμθξμ ;eσ ð50Þ

where μ denotes for the anti-loop ξμ with gauge flux ϕ
ξμ
¼ �ϕξμ . Combining the

two corollaries and inducing the definition of Θμ,σ exactly give constraints Eq. (44)
and Eq. (45). And the constraint Eq. (46) obtained by demanding the chiral central
charge vanishes for FSPT phases.

Group II: Seven constraints that are intrinsically 3D:

Θμνλ;σ ¼ sgnðbpÞΘbp μð ÞbpðνÞbpðλÞ;bpðσÞ ð51Þ

NμνλσΘμνλ;σ ¼ 0 ð52Þ

NσΘμν;σ ¼ 0 ð53Þ

NσΘμ;σ ¼ 0 ð54Þ

Θμ;μ ¼ 0 ð55Þ

Nμνσ

Nμν Θμν;σ þ
Nμνσ

Nνσ Θνσ;μ þ
Nμνσ

Nσμ Θσμ;ν ¼ 0 ð56Þ

NμσeNμ

Θμ;σ þ Θμσ;μ ¼ 0 ðNμσ is evenÞ ð57Þ

where sgnðbpÞ ¼ ð�1ÞNðbpÞ and NðbpÞ is the number of permutations for the four
indices μ, ν, λ, σ.

The constrants Eq. (51)–Eq. (57) are newly involved 3D constraints (Specially
Eq. (52) is a 2D constraint NμνλΘμνλ,σ= 0 combined with a 3D constraint NσΘμνλ,σ

= 0), which can be traced from 3D bosonic non-Abelian case4 and 3D fermionic
Abelian case12. However, we need to prove that these 3D constraints still hold in
3D fermionic non-Abelian case.

Firstly, we argue that the constraints Eqs. (56), (57) proved in Abelian case still
hold in non-Abelian case. The constraint Eq. (56) is called the cyclic relation.
Imagining that we create Nμνσ identical three-loop systems with identical fusion
channel and identical total charge. By anyon charge conservation, after braiding and
fusion, the total charge should still be NμνσQlink, where Qlink is the total charge for a
single three-loop system. Then the next step of the proof is similar to the Abelian
case12, where the difference is that the "vertical" fusions may have multiple fusion
channels (differ only by charges). But we do not need to care about the charges
attached on the resultant loop after fusion, as finally the total charge should still be
NμνσQlink, by which we fall into the same result as the proof in ref. 12. And constraint
Eq. (57) is actually the cyclic relation Eq. (56) divided by half on both sides (mod
2π), which then involves fermionic statistics and hence an intrinsic fermionic
constraint. It can be argued that it holds in non-Abelian case in a similar manner.

Then we can rigorously prove the constraints Eq. (52)–Eq. (54). The
prerequisite to prove them is to assume a 3D “vertical” fusion rule, which naturally
gives the linear properties of the topological invariants, explicitly shown in
Supplementary Note 3.

However, the constraints Eq. (51) and Eq. (55) are left unproven. For constraint
Eq. (51), it is a generalization of the 2D constraint Θμνλ ¼ sgnðbpÞΘbp μð ÞbpðνÞbpðλÞ , where
the 2D version can be easily proved by a Borromean ring configuration4. While here
we generalize the totally anti-symmetric property for the indices of Θμνλ,σ to the base
loop. And the constraint Eq. (55) is simply a conjecture, which means that the
topological invariant Θμ,σ vanishes if the two linked loops fall into the same type.

Data availability
The complete topological invariants for 3D FSPT phases with Abelian total symmetry Gf

can be found in Supplementary Note 4. The corresponding classification results from
general group super cohomology theory can be found in Supplementary Note 5.
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