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In the past decade, tremendous efforts have been made towards understanding fermionic sym-
metry protected topological (FSPT) phases in interacting systems. Nevertheless, for systems with
continuum symmetry, e.g., electronic insulators, it is still unclear how to construct an exactly solv-
able model with a finite dimensional Hilbert space in general. In this paper, we give a lattice model
construction and classification for 2D interacting electronic insulators. Based on the physical picture
of U(1)f -charge decorations, we illustrate the key idea by considering the well known 2D interacting
topological insulator. Then we generalize our construction to an arbitrary 2D interacting electronic
insulator with symmetry Gf = U(1)f oρ1,ω2 G, where U(1)f is the charge conservation symmetry
and ρ1, ω2 are additional data which fully characterize the group structure of Gf . Finally we study
more examples, including the full interacting classification of 2D crystalline topological insulators.

Introduction.— In recent years, remarkable progress
has been made in the theoretical understanding of
gapped phases in quantum many-body systems, in
particular for fermionic symmetry-protected topological
(FSPT) phases [1–21] , which include topological band
insulators as the most familiar example [22, 23]. Ex-
actly solvable lattice Hamiltonians, whose ground states
are fixed-point wavefunctions, have played a vital role
in these development, which often serve as proof-of-
principle models for the existence of interacting topolog-
ical phases and facilitate extraction of universal physical
properties to characterize the topological order. They
can often be turned into exact tensor network states, of-
fering a convenient starting point for the study of more
realistic systems. However, known constructions of SPT
phases typically feature local Hilbert space isomorphic
to the protecting symmetry group, which becomes prob-
lematic if the symmetry is continuous. To date, no sys-
tematic exactly-solvable constructions are available for
generic electronic insulators, except for a couple of iso-
lated examples. In this paper, we generalize the deco-
rated domain wall construction of interacting FSPT with
finite total symmetry groupGf into interacting electronic
insulators involving U(1)f charge conservation symme-
try. As a simple application, we will derive the full inter-
acting classification of 2D crystalline topological insula-
tors [24, 25]. Our method can also be applied to systems
with other continuum symmetry such as SU(2) spin ro-
tational symmetry.

2D interacting topological insulator from U(1)f -charge
decorations.— We begin with a concrete example of 2D
FSPT state protected by Gf = (U(1)foZT4 )/Z2. It is the
well known topological insulator with U(1)f charge con-
servation and time reversal symmetries, where fermions
transform as Kramers doublets under time reversal.

Let us consider a triangular lattice shown in Fig. 1. On
each vertex i, there is a bosonic Ising spin σi =↑/↓= ±1.
At the center of each triangle 〈ijk〉, there is a spin-1/2
fermionic degrees of freedom cσijk (σ = ↑ / ↓). While the
bosonic spin σi does not carry U(1)f charge, the U(1)f
charge of the fermion cσijk is chosen to be +1 (−1) if 〈ijk〉
is an up-pointing triangle 4 (a down-pointing triangle
5). On the other hand, the time reversal symmetry flips
the bosonic spin σi between ↑ and ↓, and transforms the
spin-1/2 fermion as c↑ijk → c↓ijk and c↓ijk → −c

↑
ijk.

The fixed-point wavefunction is obtained by decorating
fermionic U(1)f charges to the symmetry domain walls of
{σi} [26]. To be more specific, let us consider the domain
wall configurations of a single triangle 〈ijk〉. There are
in total 23 = 8 different spin (black arrow) configurations
or 4 domain wall (green line) configurations, for example,
in an up-pointing triangle:
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If the configuration satisfies σi = −σj = σk (see the two
rightmost figures above), a fermion cσiijk with spin σi and
U(1)f charge +1 (−1) will be decorated at the center
when the triangle 〈ijk〉 is up-pointing (down-pointing).
An explicit example of the decorations can be found in
Fig. 1. The fixed-point wavefunction is a superposition
of all possible bosonic spin configurations decorated with
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FIG. 1: Fermionic U(1)f charge decoration. Fermions
with U(1)f charge +1 and −1 (blue dots) are decorated
at the minimum and maximum points of the domain walls
(green lines), respectively. The spin of the fermion (blue
arrow) depends on the bosonic spin (black arrow) at the
left vertex σi of the corresponding triangle. The terms
P4, P5 and As of the Hamiltonian are associated with
triangles illustrated by blue, yellow and red colors, re-
spectively.

fermionic U(1)f charges using the rules above:

|Ψ〉 =
∑

all conf.
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(2)
By solving the consistency conditions (symmetry condi-
tion and twisted super-cocycle equation), we will show
later that the coefficient Ψ(c) for each configuration c
is always ±1 depending on the order of the decorated
fermions.

The above U(1)f -charge decoration is compatible with

the symmetry Gf = U(1)f oρ1,ω2 ZT2 . For each domain
wall loop, the numbers of minimum and maximum points
are the same. Therefore, the total U(1)f charge of the
decorated configuration is always zero. On the other
hand, the time reversal symmetry flips all the bosonic
and fermionic spins in the configuration. By choosing the
coefficient Ψ(c) appropriately, one can make the ground
state |Ψ〉 time reversal invariant.
Commuting-projector Hamiltonian and edge state.—

As a fixed-point wavefunction, the U(1)f -charge deco-
rated state Eq. (2) is the ground state of an exactly-
solvable commuting-projector Hamiltonian with finite-
dimensional local Hilbert spaces (see Fig. 1):

H = −
∑
4
P4−

∑
5
P5−

∑
site s

1 +As
2

∏
4
P4
∏
5
P5. (3)

The triangle terms P4 and P5 are projections enforcing
the decoration rules such as Eq. (1) for each triangle. The
operator As in the last term flips the bosonic spin at site
s, and changes the fermionic U(1)f charge decorations ac-
cordingly for the six surrounding triangles. We present

more details of the Hamiltonian in the Supplemental Ma-
terial. In the literature, there are other constructions for
the interacting topological insulator. Compared to the
method of decorating multiple Majorana chains [24, 25],
the state Eq. (2) we constructed is much simpler and can
be systematically generalized to other symmetry group
Gf , which we will describe later.

The state Eq. (2) is the interacting counterpart of the
free-fermion topological insulator with charge conserva-
tion and time-reversal symmetries. They share the same
nontrivial gapped, symmetry-breaking edge state. In
fact, we can consider a position-dependent Zeeman field
on the boundary, such that there are two edge spin do-
main walls, whose local profile are related to each other
via time-reversal symmetry. Due to the U(1)f charge
conservation of the domain wall loop, these two edge do-
main wall should have total U(1)f charge ±1. If the edge
is particle-hole symmetric, each domain wall will have
half U(1)f charge (see Supplemental Material for formal
derivation).
Symmetries of interacting electronic insulators.— Be-

fore generalizing the above constructions to other sys-
tems, we first need to introduce some notations and def-
initions about the symmetry group Gf . For insulators,
there is a U(1)f charge conservation symmetry. The el-

ement of this group is Uθ = eiθQ, where Q is the U(1)f
charge operator. As the fermion parity operator is the
order-2 element Uπ in this group, we will denote the
charge conservation symmetry by U(1)f with a subscript
f . The action of Uθ on a bosonic/fermionic annihilation

operator with U(1)f charge q is Uθc
σ,q
j U†θ = e−iqθcσ,qj ,

where j is the lattice site and σ is the combination of
other indices such as orbital and spin, etc. As U(1)f
charge symmetry is always a normal subgroup of the to-
tal symmetry Gf for electronic insulators, we have the
following short exact sequence:

1→ U(1)f → Gf → G→ 1, (4)

where G := Gf/U(1)f is the quotient group. In this
paper, we assume that G is a finite group.

Conversely, given U(1)f and G, we can recover the
group Gf = U(1)f oρ1,ω2 G by using two ingredients ρ1

and ω2. The 1-cocycle ρ1 ∈ H1(G,Z2) is a homomor-
phism from G to Aut(U(1)f ) = Z2. It implements the

charge conjugation action of G on Uθ = eiθQ ∈ U(1)f as

g × Uθ × g−1 = (Uθ)
(−1)ρ1(g)

= U(−1)ρ1(g)θ. (5)

The second ingredient ω2 is related to the extension of
G. As a set, Gf is the same as U(1)f × G, so the el-
ements of Gf can be parametrized as (Uθ, g). But the
multiplication in Gf reads

(1, g)× (1, h) =
(
U2πω2(g,h), gh

)
∈ Gf , (6)

where ω2(g, h) ∈ R/Z ' U(1)f is a phase associated with
g, h ∈ G. The associativity condition of Gf implies that
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ω2 is a 2-cocycle in H2
ρ1(G,U(1)f ) [27], where the sub-

script ρ1 indicates the G-action on the coefficient U(1)f .
The two cocycles ρ1 and ω2 fully characterize the group

structure of Gf = U(1)f oρ1,ω2
G, but the action of the

group G or Gf on the wavefunctions is still not full de-
termined yet. When there is an anti-unitary symmetry
in G, we should also introduce a third ingredient s1 to
specify its action on the wavefunctions with i→ −i:

s1(g) =

{
0, if g is unitary,

1, if g is anti-unitary.
(7)

Apparently, s1 is also a 1-cocycle in H1(G,Z2).
In general, the 1-cocycles s1 and ρ1 are not the same.

Combining Eqs. (5) and (7), the G action on the charge
operator Q in Uθ = eiθQ ∈ U(1)f should be

g ×Q× g−1 = (−1)ρ1(g)+s1(g)Q. (8)

So the U(1)f charges change sign under the g action if
and only if ρ1(g) and s1(g) are different.
Generalization to symmetry Gf = U(1)f oρ1,ω2

G.—
Now we want to generalize the construction of U(1)f
charge decoration to arbitrary 2D interacting electronic
insulators protected by Gf = U(1)f oρ1,ω2

G. The de-
grees of freedom (d.o.f.) of our lattice model is as fol-
lows. We first triangulate the 2D spacial manifold with a
branching structure. On each vertex i, we put a |G|-level
spin Hilbert space spanned by |gi〉 (gi ∈ G). At the cen-
ter of each triangle 〈ijk〉, we put a Hilbert space spanned
by bosons/fermions cσ,qijk (σ ∈ G, q ∈ Z, |q| < Λ). Here
q is the U(1)f charge of the boson/fermion, and Λ is a
finite positive integer depending on G [28]. We choose
the d.o.f. cσ,qijk to be a fermion (boson) if q is odd (even)
[29]. So the (anti-)commutation relation reads

cσ,qijk(cσ
′,q′

i′j′k′)
† − (−1)qq

′
(cσ
′,q′

i′j′k′)
†cσ,qijk = δijk,i′j′k′δσσ′δqq′ .

(9)
Under the symmetries Uθ ∈ U(1)f and g ∈ G, these d.o.f.
transform as:

Uθ|gi〉 = |gi〉, U(g)|gi〉 = |ggi〉, Uθcσ,qijkU
†
θ = e−iqθcσ,qijk,

U(g)cσ,qijkU(g)†

= e−2πiω2(g,σ)(−1)ρ1(g)+s1(g)qc
gσ,(−1)ρ1(g)+s1(g)q
ijk . (10)

In this way, both the bosonic and fermionic d.o.f. support
linear representations of the total symmetry group Gf
(see Supplemental Material for a proof).

To obtain a 2D Gf -FSPT state, we can decorate U(1)f
charges to the domain wall junctions of G. After prolifer-
ating G domain walls, we will obtain a symmetric gapped
FSPT state protected by symmetry Gf . Schematically,
the wavefunction would have the form

|Ψ〉 =
∑

all conf.

Ψ



∣∣∣∣∣

〉
,

where the blue dots are the decorated U(1)f charges sim-
ilar to Eq. (2). Now we try to decorate the U(1)f charges

cσ,qijk to the domain wall junctions (triangle centers) of G.
The decoration is specified by an integral charge function
n2(gi, gj , gk) ∈ Z. For a triangle 〈ijk〉 with orientation
rijk = ±1 and vertex spin labels e, g−1

0 g1, g
−1
0 g2 ∈ G, we

decorate the U(1)f charge c
e,rijkn2(e,g−1

0 g1,g
−1
0 g2)

ijk at the

center. All other charges cσ,qijk of this triangle with σ 6= e

or q 6= rijkn2(e, g−1
0 g1, g

−1
0 g2) remain empty or in the

vacuum state. From this standard triangle decoration,
we can obtain the decoration for arbitrary triangle under
the action of U(g0):

e

g−1
0 g1

g−1
0 g2

c
e,rijkn2(e,g

−1
0 g1,g

−1
0 g2)

012

U(g0)−−−→

g0

g1

g2

c
g0,rijkn2(g0,g1,g2)
012 .

(11)
To be consistent with the symmetry transformation
Eq. (10), the function n2 should satisfy:

n2(g0, g1, g2) = (−1)ρ1(g0)+s1(g0)n2(e, g−1
0 g1, g

−1
0 g2).

(12)
So n2 is a 2-cochain in C2

ρ1+s1(G,Z) with a G-action on
the integral charges indicated by the subscript ρ1 + s1.
This nontrivial action can be traced back to Eq. (8).

U(1)f -symmetric fermionic F moves.— To make the
wavefunction Eq. (11) well-defined, we have to check sev-
eral consistency conditions. The easiest way is to con-
sider wavefunctions on different triangulations of the spa-
cial manifold. They are related to each other by ele-
mentary local changes called Pachner moves (F moves).
Since we want the wavefunction to be Gf -symmetric, the
F moves should respect the symmetry. So we have the
following commuting square:

g−1
0 g3

g−1
0 g1 g−1

0 g2

e
c
e,n2(e,0̄2,0̄3)
023

c
e,n2(e,0̄1,0̄2)
012

g3

g1 g2

g0

c
g0,n2(023)
023

c
g0,n2(012)
012

g0 g3

g2g1

c
g0,n2(013)
013

c
g1,n2(123)
123

e g−1
0 g3

g−1
0 g2g−1

0 g1

c
e,n2(e,0̄1,0̄3)
013

c
g−1
0 g1,n2(0̄1,0̄2,0̄3)

123
F (e, 0̄1, 0̄2, 0̄3)

F (g0, g1, g2, g3)

U(g0) U(g0) .

(13)

Given the standard F move with the first vertex labelled



4

by e ∈ G, we can use the above commuting diagram to derive the non-standard one with generic g0 ∈ G. They
have the following explicit expressions:

F (e, 0̄1, 0̄2, 0̄3) := ν3(e, 0̄1, 0̄2, 0̄3)
(
c
e,n2(e,0̄1,0̄2)
012

)†(
c
e,n2(e,0̄2,0̄3)
023

)†
c
e,n2(e,0̄1,0̄3)
013 c

g−1
0 g1,n2(0̄1,0̄2,0̄3)

123 , (14)

F (g0, g1, g2, g3) = U(g0)F (e, g−1
0 g1, g

−1
0 g2, g

−1
0 g3)U(g0)−1

:= ν3(g0, g1, g2, g3)
(
c
g0,n2(012)
012

)†(
c
g0,n2(023)
023

)†
c
g0,n2(013)
013 c

g1,n2(123)
123 , (15)

where we use abbreviations īj for g−1
i gj and n2(ijk) for

n2(gi, gj , gk). We also set rijk = 1 for all the trian-
gles shown above. From the U(g0)-action on the com-
plex numbers and bosonic/fermionic U(1)f charges in

Eq. (10), the F move coefficient ν3 ∈ C3
s1(G,U(1)) has

the symmetry condition

ν3(g0, g1, g2, g3) =
[
ν3(e, g−1

0 g1, g
−1
0 g2, g

−1
0 g3)

]1−2s1(g0)

× e−2πiω2(g0,g
−1
0 g1)n2(g1,g2,g3), (16)

Here we use the normalization condition ω2(g0, e) = 0.
Besides the G symmetry, the F should also preserve

the U(1)f charges. By counting the U(1)f charges on
the two sides of the F move Eq. (14), we have the integer
equation:

(dρ1+s1n2)(g1, g2, g3) (17)

= (−1)ρ1(g1)+s1(g1)n2(g2, g3)− n2(g1g2, g3)

+ n2(g1, g2g3)− n2(g1, g2) = 0,

where we define the inhomogeneous cochain n2(g1, g2) :=
n2(e, g1, g1g2) to be the homogeneous one with the first
argument being e ∈ G. One can also show that adding
coboundaries to n2 can be gauged away by symmetric
local unitaries. Therefore, n2 is in fact a 2-cocycle in
H2
ρ1+s1(G,Z). Here, we use the subscript ρ1 + s1 to indi-

cate the possibly nontrivial G-action on the U(1)f charge
appearing in the first term of the second line of Eq. (17).
This action originates from Eqs. (8) and (12).

Twisted super-cocycle equation.— Given two triangula-
tions of the spacial manifold, there are possibly many dif-
ferent sequences of F moves connecting them. Since the
initial and the final states are fixed, we should have the
same result from different sequences. The smallest loop
among these sequences is the twisted version of super-
cocycle equation [4].

Let us choose the label of the first vertex to be e ∈ G.
In this way, the standard super-cocycle equation reads

F (e, 0̄1, 0̄2, 0̄3) · F (e, 0̄1, 0̄3, 0̄4) · F (0̄1, 0̄2, 0̄3, 0̄4)

= F (e, 0̄2, 0̄3, 0̄4) · F (e, 0̄1, 0̄2, 0̄4). (18)

The non-standard ones are automatically satisfied by
simply a symmetry action U(g0). Using the symmetry

condition F (0̄1, 0̄2, 0̄3, 0̄4) = U(0̄1)F (e, 1̄2, 1̄3, 1̄4)U(0̄1)†

from Eq. (15), we can convert the above equation to a for-
mula that only involves the standard F moves Eq. (14).
After eliminating all the cσ,qijk operators, the final result is
a twisted cocycle equation for the ν3 as

ds1ν3 = e2πi(ω2^n2+ 1
2n2^n2). (19)

Here, the differential ds1 of the inhomogeneous cochain
ν3(g1, g2, g3) := ν3(e, g1, g1g2, g1g2g3) is defined as

(ds1ν3)(g1, g2, g3, g4) (20)

=
ν3(g2, g3, g4)1−2s1(g1)ν3(g1, g2g3, g4)ν3(g1, g2, g3)

ν3(g1g2, g3, g4)ν3(g1, g2, g3g4)
,

and the first cup product on the right-hand side of
Eq. (19) reads

(ω2 ^ n2)(g1, g2, g3, g4)

= ω2(g1, g2)(−1)ρ1(g1g2)+s1(g1g2)n2(g3, g4). (21)

It has a simpler expression (ω2 ^ n2)(e, g1, g2, g3, g4) =
ω2(e, g1, g2)n2(g2, g3, g4) in the homogeneous notation,
where the G-action sign (−1)ρ1+s1 is absorbed in
n2(g2, g3, g4). The second cup product (−1)n2^n2 has
a similar expression and comes from the reordering of
the cσ,qijk operators when they are fermions.

Using the solutions (n2, ν3) of the obstruction equa-
tions Eqs. (17) and (19), we can construct a Gf -
symmetric wavefunction Eq. (11) by decorating U(1)f
charges. It can be shown that the decoration data
(n2, ν3) of the same cohomology class would give us
equivalent wavefunctions related by fermionic symmet-
ric local unitary transformations. Moreover, as discussed
in the Supplemental Material, ν3 and ν3e

2πiω2^n1 with
n1 ∈ H1

ρ1+s1(G,Z) are also equivalent. Therefore, the
final classification data of interacting electronic insula-
tors are n2 and ν3, which are elements in H2

ρ1+s1(G,Z)
and C3

s1(G,U(1))/B3
s1(G,U(1))/Γ3, where Γ3 is the triv-

ialization subgroup due to the 1D anomalous SPT states
[30].

More Examples.— Let us consider some simple exam-
ples of Gf -FSPT with charge conservation symmetry.
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(1) Gf = U(1)f×Z2. In this case, we have G = Z2 and
ρ1 = s1 = ω2 = 0. It can be shown easily that the non-
trivial fermion decoration n2 ∈ H2(Z2,Z) is obstruction-

free. After gauging G and considering only the Zf2 sub-
group of U(1)f , the state is identical to the fermionic
toric code [31]. With a nontrivial BSPT protected by G
only, the full classification of Gf -FSPT is Z4. In fact,
the root state of this Z4 is the ν = 2 state of the Z8

classification of Gf = Zf2 × Z2 FSPT [5].

(2) Gf = U(1)foZT2 . Now ρ1 = s1 is nontrivial and ω2

is trivial. One can show that the U(1)f -charge decoration
n2 is obstructed. There is also no BSPT state. So there
is only a trivial Gf -FSPT state.

(3)By applying the fermionic crystalline equiva-
lence [32–37] where a mirror reflection symmetry action
should be mapped onto a time-reversal symmetry action,
and that spinless (spin-1/2) fermionic systems should be
mapped into spin-1/2 (spinless) fermionic systems, we
can also derive the complete interacting classification of
2D crystalline topological insulators. In Supplementary
Material, we list the classification results for all 17 wall
paper groups.

Discussion and conclusion.— In this paper, we con-
struct and classify interacting electronic insulators in
two spacial dimensions with arbitrary symmetry group
Gf = U(1)f oρ1,ω2

G. The construction is obtained by
decorating U(1)f charges to the G symmetry domain wall
junctions. This decoration is specified by a 2-cocycle
n2 ∈ H2

ρ1+s1(G,Z). The second piece of classification
data ν3 ∈ C3

s1(G,U(1))/B3
s1(G,U(1))/Γ3 is the wave-

function coefficient satisfying the super-cocycle equation
(19). As an explicit example, we construct the fixed-point
wavefunction and commuting-projector Hamiltonian of
topological insulator with charge conservation and time-
reversal symmetries. By applying the crystalline equiv-
alence principle, we also derive the complete interact-
ing classification of 2D crystalline topological insulators.
Apparently, our classification data can also classify inter-
acting electronic insulators with both internal and space
group symmetry.

Finally, we stress that our constructions and classifi-
cation scheme can be easily generalized to other continu-
ous groups by decorating the corresponding continuous-
symmetry-protected states to discrete-symmetry domain
walls. It can be also generalized from two dimensions to
higher dimensions, though the corresponding obstruction
functions could become more complicated.
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Supplemental Material

A. Ground-state wavefunction for 2D interacting TI

In this section of the Supplemental Material, we will derive some consistency conditions for the coefficient Ψ(c)
of the ground state Eq. (2) of the 2D interacting topological insulator protected by U(1)f charge and time reversal
symmetries.

Using the notion of fermionic symmetric local unitary moves, we can relate the coefficient of one configuration
to that of another. There are several basic local moves. Using a sequence of basic local moves, we can obtain the
coefficient Ψ(c) for each configuration c from the vacuum configuration.

B.1. Basic local moves

Instead of directly deriving the coefficient Ψ(c) for each configuration, we first try to understand the relation between
Ψ(c) and Ψ(c′) for two different configurations c and c′. In general, we can use a sequence of basic moves to deform
the configuration c to c′. Each basic move only changes a local patch of the configuration. If the coefficient changes of
the basic moves are known, we can use them to obtain Ψ(c) of arbitrary configuration c from the special configuration
c0 with no domain walls and fermions.

(1) Domain wall shape changing. If we only deform the domain wall shape without changing the numbers of
minimum and maximum points, there is no creation or annihilation of fermions. So the coefficient of the fixed-point
wavefunction remains the same:

Ψ

  = Ψ

  . (22)

(2) Creation and annihilation of local domain wall loop. If a domain wall loop is created in a configuration, there
should be two fermions decorated at the minimum and maximum point of the loop. So the wavefunction coefficient
will be changed as

Ψ

(
1

2

)
= c†1↑c

†
2↑Ψ

( )
. (23)

Here, the labels 1 and 2 of the left configuration indicate the creation order of the fermions. The up arrow at the
bottom-left corner is the spin of the bosonic spins outside the domain wall loops. And the right configuration is the
one with only up bosonic spins and no domain walls in this local patch.

Under the time reversal symmetry action, bosonic and fermionc spins are flipped with plus or minus signs (c↓ijk →
−c↑ijk). So the symmetry partner of Eq. (23) is

Ψ

(
1

2

)
= c†1↓c

†
2↓Ψ

( )
. (24)

(3) F move. One of the most famous and nontrivial local moves is the F move that may change the connecting
topology of the domain walls. Here is the F move with up spins at the bottom-left corner:

Ψ

 1
2

g h k
 = ν3(g,h,k)(c†1↑)

n2(g,h)(c†2↑)
n2(gh,k)(c4↑)

n2(g,hk)(c3σ3
)n2(h,k)Ψ

 3
4

g h k
 . (25)

For the four fermions ciσi (i = 1, 2, 3, 4), the spin σi are determined by the decoration rules given in the main text.
In particular, σ3 =↑ (σ3 =↓) if the domain wall g = e (g = T ) is trivial (nontrivial). And n2(g,h) = 0, 1 indicates
whether the fermion is decorated or not, depending on the domain wall configurations g and h. The factor ν3(g,h,k)
is a complex number that plays the same rule as the F symbol in the bosonic system.
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Under the time reversal symmetry action, the F move Eq. (25) becomes

Ψ

 1
2

g h k
 = ν∗3 (g,h,k)(−1)δg,Tn2(h,k)(c†1↓)

n2(g,h)(c†2↓)
n2(gh,k)(c4↓)

n2(g,hk)(c3,−σ3)n2(h,k)Ψ

 3
4

g h k
 ,

(26)

where all the bosonic and fermionic spins are flipped. In particular, the spin at the bottom-left corner is now pointing
down. If and only if σ3 =↓ and n2(h,k) = 1, i.e., the position 3 is decorated by a spin-down fermion, then the
symmetry action will result in an additional minus sign from c3↓ → −c3↑. This is the origin of the sign (−1)δg,Tn2(h,k)

after the complex conjugation of ν3. This is exactly the symmetry phase factor e2πiω2^n2 in Eq. (16) of the main
text.

As the most nontrivial special case of the F move, the one with g = h = k = T will reconnect the domain walls.
Depending on the spin at the bottom-left corner, there are two of them as symmetry partner:

Ψ

 1
2

 = c†1↑c3↓Ψ

 3
4

 , (27)

Ψ

 1
2

 = −c†1↓c3↑Ψ

 3
4

 . (28)

Since there is only one down spin, there is a minus sign difference between these two equations. It is exactly the sign
(−1)δg,Tn2(h,k) in Eq. (26). The above two F moves can be summarized as

Ψ

 1
2

σ

σ

 = σc†1σc3σ̄Ψ

 3
4

σ

σ̄

 , (29)

where the bottom-left corner spin is σ =↑ / ↓= +/−, and σ̄ = −σ is the inverse of σ.

(4) Domain wall bending. Using the above several basic moves, we can derive another useful local move that create
or annihilate a pair of minimum and maximum points of a domain wall. For instance, we can show that

Ψ

 2
1

 = c†2↑c3↓Ψ

 1

3

 = c†2↑c3↓c
†
1↓c
†
3↓Ψ


 = c†1↓c

†
2↑Ψ


 . (30)

The first and second steps come from the F move Eq. (25) and the move Eq. (24). Under the time reversal symmetry
action, the above equation becomes

Ψ

 2
1

 = −c†1↑c
†
2↓Ψ


 , (31)

with an additional minus sign from the symmetry action on the spin-down fermion. There is another bending direction.
We can similarly derive these two moves as

Ψ

 2
1

 = c†1↑c
†
2↓Ψ


 , (32)

Ψ

 2
1

 = −c†1↑c
†
2↓Ψ


 . (33)
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B.2. General wavefunction

The ground-state wavefunction Eq. (2) is a superposition of all possible bosonic spin configurations with fermionic
U(1)f charge decorations. Using the basic local moves discussed above, we can derive the coefficient Ψ(c) for any given
configuration c, from the no-domain-wall configuration c0. Since the basic moves satisfy the consistency conditions
such as super-cocycle equation, the final result is independent of the paths we choose from the configuration c to c0.

As an example, let us consider the following configuration with N decorated fermions (N is always even). We can
use Eq. (30) iteratively to cancel pairs of minimum and maximum points of the domain wall.

Ψ


1

2

3

4

5

6

7

N

 = c†3↓c
†
2↑Ψ


1

4

5

6

7

N

 = (c†3↓c
†
2↑)(c

†
5↓c
†
4↑)Ψ


1

6

7

N



= ... = (c†3↓c
†
2↑)(c

†
5↓c
†
4↑)...(c

†
N−1↓c

†
N−2↑)Ψ

 1

N


= (c†3↓c

†
2↑)(c

†
5↓c
†
4↑)...(c

†
N−1↓c

†
N−2↑)(c

†
1↑c
†
N↑)Ψ

( )
= (−1)N/2−1c†1↑c

†
2↑c
†
3↓...c

†
N↑Ψ

( )

(34)

And the last domain wall loop can be annihilated using Eq. (23). In this way, we relate the coefficient of the original
configuration to that of the no-domain-wall configuration (which can be simplify set to 1 before normalization). It
seems that there is no compact expression for the coefficient of arbitrary domain wall configuration. But the coefficient
is only ±1 apart from a sequence of fermion creation operators.

B. Commuting-projector Hamiltonian for 2D interacting TI

Similar to any fixed-point wavefunction of topological phases, we can construct an exactly-solvable lattice Hamilto-
nian for the ground-state wavefunction Eq. (2) of the 2D interacting topological insulator protected by U(1)f charge
and time reversal symmetries. Here we will present the details of this Hamiltonian.

As shown in Eq. (3) of the main text, the commuting-projector parent Hamiltonian reads

H = −
∑
4
P4 −

∑
5
P5 −

∑
site s

1 +As
2

∏
4
P4
∏
5
P5. (35)

The two triangle terms P4 and P5 enforce the fermionic U(1)f charge decoration rules for each triangle of the
triangular lattice. The only four spin configurations with U(1)f charge decorations are

i

j

k

+

i

j

k

+

i

j

k

−
i

j

k

− . (36)

For convenience, we choose a branching structure (orientations of all links) of the triangle lattice shown in Fig. 1.
And the three vertices of each triangle 〈ijk〉 are chosen such that the link orientations are i → j, j → k and i → k.
In this notation, a spin-σi fermion is decorated at the center of the triangle 〈ijk〉 if and only if σi = −σj = σk. The
triangle projectors P4/5 has the following expression

P4/5 =

{
nσiijk(1− n−σiijk ), σi = −σj = σk

(1− nσiijk)(1− n−σiijk ), others

= nσiijk(1− n−σiijk )

∣∣∣∣σi − σj2

∣∣∣∣ ∣∣∣∣σj − σk2

∣∣∣∣+ (1− n↑ijk)(1− n↓ijk)

(
1−

∣∣∣∣σi − σj2

∣∣∣∣ ∣∣∣∣σj − σk2

∣∣∣∣) , (37)
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configurations σ1, ..., σ6 As configurations σ1, ..., σ6 As

0 1

23

4

5 6

← 0 1

23

4

5 6

++++++ cσ3†302c
σ5†
506X0 0 1

23

4

5 6

← 0 1

23

4

5 6

−+−+−+ cσ0†021c
σ0†
061X0c

σ4
430c

σ4
450

0 1

23

4

5 6

← 0 1

23

4

5 6

−−+++− X0 0 1

23

4

5 6

← 0 1

23

4

5 6

−++−++ Z4c
σ3†
302c

σ4†
430c

σ4†
450c

σ5†
506c

σ0†
021c

σ0†
061X0

0 1

23

4

5 6

← 0 1

23

4

5 6

−−+−−− cσ4†430X0c
σ5
506 0 1

23

4

5 6

← 0 1

23

4

5 6

−+++−+ cσ3†302c
σ0†
021c

σ0†
061X0c

σ4
450

0 1

23

4

5 6

← 0 1

23

4

5 6

−+−−−− cσ0†012X0c
σ5
506 0 1

23

4

5 6

← 0 1

23

4

5 6

+++−+− cσ3†302c
σ4†
430c

σ4†
450X0c

σ0
061

0 1

23

4

5 6

← 0 1

23

4

5 6

−−−−+− cσ4†450X0c
σ3
302 0 1

23

4

5 6

← 0 1

23

4

5 6

−+−+++ cσ0†061c
σ5†
506c

σ0†
021X0c

σ4
430

0 1

23

4

5 6

← 0 1

23

4

5 6

−−−−−+ cσ0†061X0c
σ3
302 0 1

23

4

5 6

← 0 1

23

4

5 6

+−+−++ cσ4†450c
σ5†
506c

σ4†
430X0c

σ0
021

0 1

23

4

5 6

← 0 1

23

4

5 6

++−−++ Z4c
σ4†
450c

σ5†
506X0 0 1

23

4

5 6

← 0 1

23

4

5 6

−++−−+ cσ3†302c
σ4†
430c

σ0†
021c

σ0†
061X0

0 1

23

4

5 6

← 0 1

23

4

5 6

−−++++ Z4c
σ0†
061c

σ5†
506X0 0 1

23

4

5 6

← 0 1

23

4

5 6

−++−+− cσ3†302c
σ4†
430c

σ0†
021c

σ4†
450X0

0 1

23

4

5 6

← 0 1

23

4

5 6

+++−−+ Z4c
σ3†
302c

σ4†
430X0 0 1

23

4

5 6

← 0 1

23

4

5 6

−+−−++ cσ4†450c
σ5†
506c

σ0†
021c

σ0†
061X0

0 1

23

4

5 6

← 0 1

23

4

5 6

−++++− Z4c
σ3†
302c

σ0†
021X0 0 1

23

4

5 6

← 0 1

23

4

5 6

−−+−++ cσ4†450c
σ5†
506c

σ4†
430c

σ0†
061X0

0 1

23

4

5 6

← 0 1

23

4

5 6

+++−++ cσ3†302c
σ4†
430c

σ4†
450c

σ5†
506X0 0 1

23

4

5 6

← 0 1

23

4

5 6

−+−−−+ Z4c
σ0†
021c

σ0†
061X0

0 1

23

4

5 6

← 0 1

23

4

5 6

−+++++ cσ3†302c
σ0†
021c

σ0†
061c

σ5†
506X0 0 1

23

4

5 6

← 0 1

23

4

5 6

−−+−+− Z4c
σ4†
430c

σ4†
450X0

0 1

23

4

5 6

← 0 1

23

4

5 6

−++−−− Z4c
σ3†
302c

σ4†
430c

σ0†
021X0c

σ5
506 0 1

23

4

5 6

← 0 1

23

4

5 6

−−++−+ Z4c
σ0†
061X0c

σ4
450

0 1

23

4

5 6

← 0 1

23

4

5 6

−−−−++ Z4c
σ4†
450c

σ5†
506c

σ0†
061X0c

σ3
302 0 1

23

4

5 6

← 0 1

23

4

5 6

−+−++− Z4c
σ0†
021X0c

σ4
430

0 1

23

4

5 6

← 0 1

23

4

5 6

+++−−− cσ3†302c
σ4†
430X0c

σ5
506c

σ0
061 0 1

23

4

5 6

← 0 1

23

4

5 6

−+−−+− Z4c
σ0†
021c

σ4†
450X0

0 1

23

4

5 6

← 0 1

23

4

5 6

−+++−− cσ3†302c
σ0†
021X0c

σ5
506c

σ4
450 0 1

23

4

5 6

← 0 1

23

4

5 6

−−+−−+ Z4c
σ4†
430c

σ0†
061X0

TABLE I: Summary of the spin flipping term As.
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where nσijk := (cσijk)†cσijk is the fermion number operator for the fermion of the triangle 〈ijk〉 with spin σ.

The last term (1 + As)/2 of the Hamiltonian is a projector that only acts nontrivially within the subspace with
P4 = P5 = 1 for all triangles (see Table I for explicit expressions for As). In this subspace, the operator As flips
the spin at site s and changes the fermionic U(1)f charge decorations accordingly. Since the six bosonic spins nearing
site s affect the domain wall configurations and charge decorations, the operator As also depends on these spins.
For a given domain wall configuration (and the corresponding legitimate charge decoration), we can write down the
explicit expression of As. For example, when acting on the domain wall configuration without any fermionic charge
decoration, As is simply the Pauli operator X0 of the spin at site s which is numbered 0 in the figure:

0 1

23

4

5 6

As←−−− 0 1

23

4

5 6

, (38)

As = X0. (39)

It corresponds to the local move of changing domain wall shape in Eq. (22). So there is no fermion creation or
annihilation procedure. When we consider a configuration without any domain wall near the site s, the operator As
will create one with two fermionic U(1)f charges just as Eq. (23):

0 1

23

4

5 6

−

+

As←−−− 0 1

23

4

5 6

, (40)

As = (cσ3
302)†(cσ5

506)†X0. (41)

Similarly, the F moves Eqs. (27) and (28) can be put on the triangular lattice as

0 1

23

4

5 6

+ As←−−− 0 1

23

4

5 6

+
, (42)

As = Z5(cσ4
430)†X0c

σ0
021, (43)

where Z5 is the Pauli-Z operator acting on the spin at the bottom-left corner site 5. The domain wall bending moves
Eqs. (30) and (31) correspond to the following lattice

0 1

23

4

5 6

+

−

As←−−− 0 1

23

4

5 6

, (44)

As = Z5(cσ3
302)†(cσ4

430)†X0. (45)
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0 1

23

4

5 6

+

−

+
−−

+

As←−−− 0 1

23

4

5 6

, (46)

As = −Z4(cσ4
430)†(cσ3

302)†(cσ0
021)†(cσ4

450)†(cσ5
506)†(cσ0

061)†X0. (47)

The full expressions for As acting on all different spin configurations {σ1, σ2, ..., σ6} surrounding the vertex s are
summarized in Table I. In this table, we assume that As is acting on the right spin configuration {σ0 = +, σ1, ..., σ6},
resulting in the left final spin configuration {σ0 = −, σ1, ..., σ6}. The Hermitian conjugate of these operators will
transform s0 = − to s0 = + with σi (1 ≤ i ≤ 6) fixed. In total, there are 26 = 64 spin configurations {σi} (1 ≤ i ≤ 6).
They correspond to 32 domain wall configuration pairs listed in Table I.

C. Nontrivial symmetry-breaking edge state of 2D interacting TI

In the main text of the paper, we claim that the constructed FSPT with symmetry Gf = U(1)f oρ1,ω2
ZT2 =

(U(1)f o ZT4 )/Z2 is the interacting analog of the 2D time-reversal-invariant TI in the free-fermion system. This can
be shown if we can construct the same helical gapless edge states as the free-fermion TI [24]. On the other hand, the
2D TI is also known to have nontrivial gapped, symmetry-breaking edge states if we break the U(1) or ZT2 symmetry
by proximity effect on its boundary [25]. In this section, we will show that the edge time-reversal-symmetry domain
wall of the constructed model will trap a half U(1)f charge. Therefore, the interacting state we constructed indeed
shares the same nontrivial edge property as the free-fermion TI.

−

+

−

+

FIG. 2: Boundary spin domain wall. We add a position-dependent boundary Zeeman field to polarize the boundary
spins (red arrows), such that there is an edge domain wall.

Let us add a Zeeman field to the boundary of the constructed model, such that the left and right edge spins are
pointing up and down, respectively (see Fig. 2). Although the bulk spins are fluctuating, the red spins on the boundary
are fixed. And there is an spin domain wall crossing the boundary. Just as in the bosonic model [39], the U(1)f
charge inside a fixed triangle is nonzero in the vacuum state. So what we need to calculate is the relative charge of
the domain-wall configuration and the non-domain-wall configuration on the boundary. For the edge state without
domain wall, the wavefunction of an edge triangle looks like

|Ψ〉↑↑ ∼

∣∣∣∣∣
〉

+

∣∣∣∣∣ +

〉
, (48)

where the two red edge spins are fixed to up direction. The average U(1)f charge inside this triangle is then

〈Q〉↑↑ = 1/2. (49)
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On the other hand, if there is an edge domain wall, the wavefunction near the edge triangle is basically

|Ψ〉↑↓ ∼

∣∣∣∣∣
〉

+

∣∣∣∣∣
〉

(50)

And the average U(1) charge is

〈Q〉↑↓ = 0. (51)

Therefore, the relative charge of the edge domain wall is

∆Q = 〈Q〉↑↓ − 〈Q〉↑↑ = −1/2. (52)

This is exactly the half charge we expected on the boundary domain wall of the 2D TI with time reversal symmetry.

D. From projective representation of G to linear representation of Gf

In this section, we will show that the symmetry transformation rules in Eq. (10) of the main text, i.e.,

Uθ|gi〉 = |gi〉, (53)

U(g)|gi〉 = |ggi〉, (54)

Uθc
σ,q
ijkU

†
θ = e−iqθcσ,qijk, (55)

U(g)cσ,qijkU(g)† = e−2πiω2(g,σ)(−1)ρ1(g)+s1(g)qc
gσ,(−1)ρ1(g)+s1(g)q
ijk , (56)

are linear representations of Gf on these bosonic/fermionic degrees of freedom. The statement is true for arbitrary
Gf , namely arbitrary ρ1, s1 ∈ H1(G,Z2) and ω2 ∈ H2

ρ1(G,U(1)f ) satisfying the cocycle conditions

(dρ1)(g, h) = ρ1(h)− ρ1(gh) + ρ1(g) = 0 (mod 2), (57)

(ds1)(g, h) = s1(h)− s1(gh) + s(g) = 0 (mod 2), (58)

(dρ1ω2)(g, h, k) = (−1)ρ1(g)ω2(h, k)− ω2(gh, k) + ω2(g, hk)− ω2(g, h) = 0 (mod 1). (59)

From Eq. (53), the bosonic spins with basis |gi〉 do not carry any nontrivial charge of U(1)f . So the linear
transformation of G in Eq. (54) also gives a |G|-dimensional linear representation of Gf on the bosonic spins.

The boson/fermion cσ,qijk has U(1)f charge q from Eq. (55). Combing it with the complicated transformation rule

Eq. (56) under G, we can obtain the transformation of cσ,qijk under arbitrary e2πiθQg ∈ Gf as

U(e2πiθQg)cσ,qijkU(e2πiθQg)† = e2πiθQU(g)cσ,qijkU(g)†e−2πiθQ

= e2πiθQe−2πiω2(g,σ)(−1)ρ1(g)+s1(g)qc
gσ,(−1)ρ1(g)+s1(g)q
ijk e−2πiθQ

= e−2πi[ω2(g,σ)+θ](−1)ρ1(g)+s1(g)qc
gσ,(−1)ρ1(g)+s1(g)q
ijk . (60)

Now we apply the action of another element e2πiφQh ∈ Gf . The successive symmetry actions on cσ,qijk read

U(e2πiφQh)U(e2πiθQg)cσ,qijkU(e2πiθQg)†U(e2πiφQh)†

= U(e2πiφQh)e−2πi[ω2(g,σ)+θ](−1)ρ1(g)+s1(g)qc
gσ,(−1)ρ1(g)+s1(g)q
ijk U(e2πiφQh)†

= e2πiφQe−2πi[ω2(g,σ)+θ](−1)ρ1(g)+s1(g)+s1(h)qU(h)c
gσ,(−1)ρ1(g)+s1(g)q
ijk U(h)†e−2πiφQ

= e2πiφQe−2πi[ω2(g,σ)+θ](−1)ρ1(g)+s1(hg)qe−2πiω2(h,gσ)(−1)ρ1(hg)+s1(hg)qc
hgσ,(−1)ρ1(hg)+s1(hg)q
ijk e−2πiφQ

= e−2πi[ω2(g,σ)+θ](−1)ρ1(g)+s1(hg)qe−2πiω2(h,gσ)(−1)ρ1(hg)+s1(hg)qe2πiφQc
hgσ,(−1)ρ1(hg)+s1(hg)q
ijk e−2πiφQ

= e−2πi[ω2(g,σ)+θ](−1)ρ1(g)+s1(hg)qe−2πiω2(h,gσ)(−1)ρ1(hg)+s1(hg)qe−2πiφ(−1)ρ1(hg)+s1(hg)qc
hgσ,(−1)ρ1(hg)+s1(hg)q
ijk , (61)
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where we used the cocycle conditions of ρ1 and s1. On the other hand, if the cσ,qijk’s support a linear representation of

Gf , the successive actions of e2πiφQh and e2πiθQg should be the same as the action of

e2πiφQh× e2πiθQg = e2πiφQ+2πiθ(−1)ρ1(h)Q+2πiω2(h,g)Qhg. (62)

We can calculate directly that

U(e2πiφQh× e2πiθQg)cσ,qijkU(e2πiφQh× e2πiθQg)†

= U(e2πiφQ+2πiθ(−1)ρ1(h)Q+2πiω2(h,g)Qhg)cσ,qijkU(e2πiφQ+2πiθ(−1)ρ1(h)Q+2πiω2(h,g)Qhg)†

= e2πi[φ+θ(−1)ρ1(h)+ω2(h,g)]QU(hg)cσ,qijkU(hg)†e−2πi[φ+θ(−1)ρ1(h)+ω2(h,g)]Q

= e2πi[φ+θ(−1)ρ1(h)+ω2(h,g)]Qe−2πiω2(hg,σ)(−1)ρ1(hg)+s1(hg)qc
hgσ,(−1)ρ1(hg)+s1(hg)q
ijk e−2πi[φ+θ(−1)ρ1(h)+ω2(h,g)]Q

= e−2πi[φ+θ(−1)ρ1(h)+ω2(h,g)](−1)ρ1(hg)+s1(hg)qe−2πiω2(hg,σ)(−1)ρ1(hg)+s1(hg)qc
hgσ,(−1)ρ1(hg)+s1(hg)q
ijk . (63)

Using the cocycle condition (dρ1ω2)(h, g, σ) = 0 from Eq. (59), one can easily check that the results of Eqs. (61) and
(63) are exactly the same. Therefore, we have

U(e2πiφQh× e2πiθQg) = U(e2πiφQh)U(e2πiθQg) (64)

when acting on the d.o.f. cσ,qijk for arbitrary e2πiφQh, e2πiθQg ∈ Gf .
In summary, the bosonic spin |gi〉 supports a |G|-dimensional linear representation of Gf . Since the G-action only

changes the spin σ ∈ G and the sign of the charge q of cσ,qijk, the collection of cσ,±qijk for all σ ∈ G supports a 2|G|-
dimensional linear representation of Gf . If ρ1 = s1, the charge q of cσ,qijk is unchanged under the G-action. So we
have a |G|-dimensional linear representation of Gf for each charge q. The examples of this simpler case include the
interacting topological insulator protected by Gf = (U(1)f o ZT4 )/Z2 discussed in details in the main text. This is
the reason why we can fix the +1 (−1) charges for the up-pointing (down-pointing) triangles of the triangular lattice
in the construction.

E. Boundary anomalous SPT states to trivialize the bulk

It is possible that the wavefunction we constructed from decoration can be connected to a trivial product state
using fermionic symmetric local unitary transformations. If it happens, there is a 1D anomalous SPT states [30] on
the boundary of this 2D wavefunction. The trivialization subgroups of the decoration data (n2, ν3) are given by the
obstruction functions for 1D fermionic invertible states protected by Gf = U(1)f oρ1,ω2 G [21].

The complex fermion decoration data n2 could be trivialized by a 1D FSPT protected only by U(1)f . However,
there is no nontrivial 1D fermionic invertible states with U(1)f symmetry. Therefore, any nontrivial decoration

n2 ∈ H2
ρ1+s1(G,Z) will be a nontrivial state. This is different from the superconductor case where 1D Kitaev chain

with anomalous Gb-action can be used to trivialize 2D n2 decoration [21].
There is another possible trivialization when we embed a BSPT into a fermionic system [4]. The BSPT ν3 ∈

H3
s1(G,U(1)) may be trivialized by 1D ASPT state with fermionic U(1)f charge decorations. Similar to 2D, the

decoration of this layer in 1D is specified by n1 ∈ H1
ρ1+s1(G,Z). If ρ1 = s1, the group H1

ρ1+s1(G,Z) is always trivial
as we assume G to be finite. If ρ1 6= s1, on the other hand, the decoration group H1

ρ1+s1(G,Z) is Z2. Using the same
techniques to obtain the twisted super-cocycle equation in the main text, we can derive the consistency condition for
1D FSPT as

ds1ν2 = e2πiω2^n1 , (65)

where ν2 ∈ C2
s1(G,U(1))/B2

s1(G,U(1)) is the wavefunction coefficient. So the trivialization subgroup for ν3 in 2D is

Γ3 = {e2πiω2^n1 |n1 ∈ H1
ρ1+s1(G,Z)} ⊂ H3

s1(G,U(1)), (66)

which is trivial if ρ1 = s1 and at most Z2 otherwise.
In summary, the 2D Gf -FSPT with decoration data (n2, ν3) [satisfying Eqs. (17) and (19)] is a nontrivial FSPT,

if and only if n2 ∈ H2
ρ1+s1(G,Z) is a nontrivial cocycle, or ν3 ∈ C3

s1(G,U(1))/B3
s1(G,U(1))/Γ3 is nontrivial. The

trivialization subgroup Γ3 in Eq. (66) is associated with 1D anomalous SPT with U(1)f charge decorations.



15

F. Relation to Gu-Wen supercohomology FSPT state

The construction of fermionic insulators is closely related to the Gu-Wen group supercohomology SPT models,
where similar decorations of complex fermions on domain walls are considered, but the F move is only required to
conserve the total fermion parity. Mathematically, the Gu-Wen supercohomology SPT construction relies again on
two pieces of data, ω2 ∈ H2(G,Z2) for the extension of the symmetry group by G, and n2 ∈ H2(G,Z2) for the complex
fermion decoration. A natural question is which of the group supercohomology SPT phases can actually be realized in
insulators. For simplicity, let us consider the case where ω2 is trivial, so the total symmetry group is Zf2 ×G. In this
case, we have the following general result: the group supercohomology SPT phase labeled by n2 is compactible with
U(1)f symmetry if and only if n2 is trivialized when it is canonically lifted to a cocycle in H2(G,U(1)f ). Physically, n2

gives the projective reprenstation carried by a fermion parity flux. When the system has U(1)f symmetry, a fermion
parity flux can be created by adiabatically inserting π flux. However, if the projective representation on the π flux
requires a multi-dimensional representation space, the flux insertion can not be adiabatic, which is impossible. We
present a more formal proof by showing that the gauged FSPT phase suffers from a ’t Hooft anomaly between U(1)f
and G in this case.

From the universal coefficient theorem, we have

H2(G,Z2) =
(
H2(G,Z)⊗ Z2

)
⊕ Tor[H3(G,Z),Z2]. (67)

The second term precisely gives those that can be canonically lifted to a 2-cocycle in H2(G,U(1)f ). The first term
corresponds to those n2 which can be lifted to a Z-coefficient cocycle, and therefore our construction applies.

One should be careful in comparing the classifications with or without U(1)f , even though naively the former is a
subgroup of the latter (which is actually true for unitary G and trivial ω2). The reason is that the coboundaries are

very different. For example, 2D TI becomes trivialized if U(1)f is broken down to Zf2 .

G. Stacking group structure

Since SPT states are short-range entangled, the stacking of two SPT states protected by the same symmetry would
result in a new SPT state. There is also an inverse state for every SPT, such that the staking of them can be
connected to a trivial product state. In this section, we will derive the stacking Abelian group structure of FSPT
states constructed in the main text of the paper.

For every solution (n2, ν3) of the obstruction equations, we can construct a valid Gf -FSPT state using domain wall
decorations. Now let us consider two states constructed from (n2, ν3) and (n′2, ν

′
3). Under stacking, the U(1)f charges

n2 and n′2 ∈ H2
ρ1+s1(G,Z) would be combined in a triangle, resulting in a total charge

N2 = n2 + n′2. (68)

This is the U(1)f charge decoration data for the stacked system.
The subtle part is the phase factor of the wavefunction. To obtain the coefficient of the stacked wavefunction, we

have to consider the Ftot move of the combined system:

g−1
0 g3

g−1
0 g2

e

g−1
0 g1 g−1

0 g2

e

e g−1
0 g3

g−1
0 g2

e

g−1
0 g2g−1

0 g1

Ftot(e, 0̄1, 0̄2, 0̄3)
. (69)

We use blue and red balls to indicate the decorated U(1)f charges for the upper and lower layers. The bosons/fermions

in the two layers are denoted as cσ,qijk and c′σ,qijk , respectively. Since the stacked system is the tensor product of the two
layers, the total F move is the tensor product of the F moves for the two layers

Ftot = F ⊗ F ′, (70)
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where the individual F and F ′ are defined as

F (e, 0̄1, 0̄2, 0̄3) = ν3(e, 0̄1, 0̄2, 0̄3)
(
c
e,n2(012)
012

)†(
c
e,n2(023)
023

)†(
c
e,n2(013)
013

)(
c
g−1
0 g1,n2(123)

123

)
, (71)

F ′(e, 0̄1, 0̄2, 0̄3) = ν′3(e, 0̄1, 0̄2, 0̄3)
(
c′
e,n′2(012)
012

)†(
c′
e,n′2(023)
023

)†(
c′
e,n′2(013)
013

)(
c′
g−1
0 g1,n

′
2(123)

123

)
. (72)

If we consider the combined system as a single layer, the Ftot symbol should be written as an operator acting on
the four triangles sequentially. Using the triangle order convention similar to Eq. (71), Ftot should have the form

Ftot(e, 0̄1, 0̄2, 0̄3) = V3(e, 0̄1, 0̄2, 0̄3)×
[(
c
e,n2(012)
012

)†(
c
′e,n′2(012)
012

)†] [(
c
e,n2(023)
023

)†(
c
′e,n′2(023)
023

)†]
×
[
c
′e,n′2(013)
013 c

e,n2(013)
013

] [
c
′g−1

0 g1,n
′
2(123)

123 c
g−1
0 g1,n2(123)

123

]
. (73)

Here, we use the convention that the fermions in triangle 〈ijk〉 are created by (cσ,qijk)†(c′σijk)† for the two layers. Similarly,

the annihilation operators c′σ,qijk c
σ,q
ijk are ordered as the complex conjugate.

To deform Eq. (70) to Eq. (73), we have to reorder the fermion creation and annihilation operators. Using the
condition dn2 = dn′2 = 0, it is easy to show that wavefunction of the combined system is

V3 = ν3ν
′
3(−1)n2^1n

′
2 , (74)

where fermion signs appear as the cup-1 product defined by

(n2 ^1 n
′
2)(0123) = n2(023)n′2(012) + n2(013)n′2(123), (mod 2). (75)

We have obtained the stacking results of both the U(1)f charge Eq. (68) and the phase factor Eq. (74). The new
data (N2,V3) satisfies the new obstruction functions. In particular, one can show easily that

dV3 = e2πi(ω2^N2+ 1
2N2^N2), (76)

using the obstruction functions for ν3 and ν′3. Therefore, the stacking operation of (n2, ν3) and (n′2, ν
′
3) is

(n2, ν3) + (n′2, ν
′
3) = (N2,V3) :=

(
n2 + n′2, ν3ν

′
3(−1)n2^1n

′
2

)
. (77)

It can be also checked directly that the stacking operation satisfies all axioms of Abelian groups as expected.

H. Examples of Wallpaper-Group Symmetries

As examples of applying the results in the main text, we compute the classification of 2D interacting insulators
protected by the wallpaper group symmetries. Technically speaking, we are computing the classification of topological
states protected by an onsite symmetry group, which has the same group structure as one of the 17 wallpaper groups.
However, according to the crystalline-equivalence principle, the classification results also applies to topological states
protected by the actual wallpaper groups, with spatial actions. Considering the fact that the symmetry group Gf is an
extension of the wallpaper group G over U(1)f , it is important to notice that this correspondence between onsite and

crystalline symmetry groups comes with a twist on the 2-cocycle ω2 characterizing this extension: Let ω
1/2
2 denote

the 2-cocycle representing the extension for physical spin- 1
2 electrons transforming under wallpaper groups, onsite

symmetries with ω2 = 0 (ω2 = ω
1/2
2 ) correspond to crystalline symmetries with ω2 = ω

1/2
2 (ω2 = 0), respectively. In

other words, spinless (spin-1
2 ) electrons with onsite symmetries correspond to spin- 1

2 (spinless) electrons, respectively.
The results are computed using the algorithm in Ref. [35].
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TABLE II: Classification of 2D interacting-electron SPTs protected by 2D wallpaper groups, where fermions are
spinless (spin-1/2 if the symmetry group is treated as spatial symmetries.) The answer is listed in terms of the U(1)f
charge (C) and bosonic (B) layers. We notice that, when ω2 = 0, there is no trivialization Γ3, so the column B is
given by H3(G,U(1)).

SG C B
p1 Z 0
p2 3Z2 ⊕ Z 4Z2

p1m1 Z2 ⊕ Z 2Z2

p1g1 Z 0
c1m1 Z Z2

p2mm Z 8Z2

p2mg 2Z2 ⊕ Z 3Z2

p2gg Z2 ⊕ Z 2Z2

c2mm Z2 ⊕ Z 5Z2

p4 Z2 ⊕ Z4 ⊕ Z Z2 ⊕ 2Z4

p4mm Z2 ⊕ Z 6Z2

p4gm Z2 ⊕ Z 2Z2 ⊕ Z4

p3 2Z3 ⊕ Z 3Z3

p3m1 2Z3 ⊕ Z Z2

p31m Z3 ⊕ Z Z6

p6 Z6 ⊕ Z 2Z6

p6mm Z3 ⊕ Z 4Z2

TABLE III: Classification of 2D interacting-electron SPTs protected by 2D wallpaper groups, where fermions are
spin-1/2 (spinless if the symmetry group is treated as spatial symmetries.) The answer is listed in terms of the U(1)f
charge (C) and bosonic (B) layers. In the column labeled by B, we write A→ B, indicating that A = H3(G,U(1)) is
reduced to B by trivialization Γ3.

SG C B
p1 Z 0→ 0
p2 3Z2 ⊕ Z 4Z2 → 4Z2

p1m1 Z2 ⊕ Z 2Z2 → 2Z2

p1g1 Z 0→ 0
c1m1 Z Z2 → Z2

p2mm 3Z2 ⊕ Z 8Z2 → 7Z2

p2mg 2Z2 ⊕ Z 3Z2 → 3Z2

p2gg Z2 ⊕ Z 2Z2 → 2Z2

c2mm 2Z2 ⊕ Z 5Z2 → 4Z2

p4 Z2 ⊕ Z4 ⊕ Z Z2 ⊕ 2Z4 → Z2 ⊕ 2Z4

p4mm Z2 ⊕ Z4 ⊕ Z 6Z2 → 5Z2

p4gm Z4 ⊕ Z 2Z2 ⊕ Z4 → Z2 ⊕ Z4

p3 2Z3 ⊕ Z 3Z3 → 3Z3

p3m1 2Z3 ⊕ Z Z2 → Z2

p31m Z3 ⊕ Z Z6 → Z6

p6 Z6 ⊕ Z 2Z6 → 2Z6

p6mm Z6 ⊕ Z 4Z2 → 3Z2
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