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The construction and classification of symmetry-protected topological (SPT) phases in interacting bosonic and
fermionic systems have been intensively studied in the past few years. Very recently, a complete classification
and construction of space-group SPT phases were also proposed for interacting bosonic systems. In this
Rapid Communication, we attempt to generalize this classification and construction scheme systematically into
interacting fermion systems. In particular, we construct and classify point-group SPT phases for two-dimensional
(2D) interacting fermion systems via lower-dimensional block-state decorations. We discover several intriguing
fermionic SPT states that can only be realized in interacting fermion systems (i.e., not in free-fermion or
bosonic SPT systems). Moreover, we also verify the recently conjectured crystalline equivalence principle
for 2D interacting fermion systems. Finally, the potential experimental realization of these different classes of
point-group SPT phases in 2D correlated superconductors is addressed.
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Introduction. In recent years, the concept of quantum en-
tanglement patterns has played an essential role in construct-
ing and classifying topological phases of quantum matter. At a
very basic level, the ground state of a gapped quantum system
can be classified as a long-range or short-range entangled
state. In the presence of global symmetry, even short-range
entangled states can be classified into numerous different
phases, including the symmetry-protected topological (SPT)
phases [1–4], in addition to the conventional symmetry-
breaking phases. The simplest example of an SPT phase is
a topological insulator, which is protected by time-reversal
and charge-conservation symmetry [5,6]. Having a complete
construction and classification of SPT phases is a crucial
step towards understanding these peculiar quantum phases of
matter. A general scheme of classifying bosonic SPT (BSPT)
phases has been well established using group cohomology
theory [3,4] and invertible topological quantum field theory
(TQFT) [7–10]. An alternative strategy of classification was
constructed in Ref. [11] by “gauging” the global symmetry
and investigating the braiding statistics of gauge fluxes. A
complete classification for fermionic SPT (FSPT) phases can
also be obtained by the so-called general group supercoho-
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mology theory [12–14], spin cobordism theory [15,16], or by
gauging the corresponding global symmetry [17–23].

Very recently, crystalline SPT phases have been in-
tensively studied for free-fermion and interacting bosonic
systems [24–37]. These states are not only of conceptual
importance, but also provide great opportunities for experi-
mental realization [38–41]. In particular, an explicit block-
state construction scheme for crystalline SPT phases was
established in Ref. [26]. Furthermore, it has been highlighted
that the classification of space-group SPT phases is closely
related to SPT phases with internal symmetry. In Ref. [28],
a “crystalline equivalence principle” was proposed, i.e., crys-
talline topological phases with symmetry G are in one-to-one
correspondence with topological phases protected by the same
internal symmetry G, but acting in a twisted way, where if an
element of G is a mirror reflection, it should be regarded as a
time-reversal symmetry. Thus, the classification of crystalline
SPT phases for interacting bosonic and free-fermion systems
can be computed systematically. For interacting fermion sys-
tems, the strategy of classification schemes has also been
discussed [28,33–35] and some simple examples have been
studied [36,42], however, a detailed understanding of generic
cases is still lacking.

In this Rapid Communication we systematically study
the construction and classification of two-dimensional (2D)
FSPT phases protected by point-group symmetry via a block-
state decoration scheme. In particular, we discover several
intriguing fermionic point-group SPT phases that cannot be
realized in either free-fermion or in interacting boson systems.
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TABLE I. The classification of interacting 2D FSPT phases with
point-group symmetry for spinless fermions and spin-1/2 fermions.

Spin

Gb Spinless Spin-1/2

C2m−1 Z2m−1 Z2m−1

C2m Zm

{
Z2 × Z4m, m ∈ even
Z8m, m ∈ odd

D2m−1 Z2 Z1

D2m Z2 Z2 × Z2

Table I summarizes the classification results. We also com-
pare these results with the classification of 2D FSPT phases
with the corresponding internal symmetry. We conjecture
a fermionic crystalline equivalence principle, stating that a
mirror reflection symmetry action should be mapped onto a
time-reversal symmetry action, and that spinless (spin-1/2)
fermion systems should be mapped onto spin-1/2 (spinless)
fermion systems. The possibility of experimental realization
is also addressed.

A simple example with a D4 symmetry. It is well known that
there are ten point groups in 2D, classified as cyclic groups
Cn and dihedral groups Dn (n = 1, 2, 3, 4, 6). As the Cn cases
have already been discussed in Ref. [36], here we mainly
focus on the Dn cases. Mathematically, each dihedral group
is a semidirect product of a rotation and a reflection symmetry
group Dn = Cn � ZM

2 . It eventuates that the most interesting
and complicated cases arise for even numbers of n. Below, we
will begin with the most intriguing case for spinless fermion
systems, namely, the case protected by a D4 symmetry (the
simplest non-Abelian point group with even n).

Similar to Ref. [26], we begin with the “extended trivi-
alization” of D4. Suppose a |ψ〉 is an SPT state that cannot
be trivialized by symmetric finite-depth local unitary transfor-
mations, we can still act with an alternative local unitary to
extensively trivialize |ψ〉. First, we trivialize the region U (see
Fig. 1), i.e., restrict Oloc to U as Oloc

U and act it on |ψ〉,
Oloc

U |ψ〉 = |TU 〉 ⊗ |ψŪ 〉, (1)

where the system is in the product state |TU 〉 in region U
and the remainder of the system Ū is in the state |ψŪ 〉. To
trivialize the system symmetrically, we denote that VgOloc

U V −1
g

trivializes gU (g ∈ D4, see Fig. 1). Therefore, we act on |ψ〉
with

Oloc
R =

⊗
g∈D4

VgOloc
U V −1

g , (2)

which results in

|ψ ′〉 = Oloc
R |ψ〉 =

⊗
g∈D4

|TgU 〉 ⊗
4,d⊗

i=1,a

|ψi〉 ⊗ |ψ0D〉. (3)

Now, all nontrivial properties of |ψ〉 are encoded in lower-
dimensional block states |ψi〉 and |ψ0D〉.

Next, we consider the 1D block state |ψi〉. Let us divide 1D
blocks into two categories, i.e., category I (1–4) and category
II (a–d). As these two categories are independent under D4

symmetry, we can discuss the decorations on these categories

FIG. 1. Extended trivialization of 2D FSPT phases with dihedral
group D4. Here, all shadowed regimes are trivialized according to
Eq. (3).

separately. We investigate the decoration on category I (Z f
2

is the fermion parity, R and M are rotation and reflection
generators of D4). Decorations on (1, 3)/(2, 4) : (1, 3)/(2, 4)
are invariant under M/MR2, and the block state should consist
of 1D FSPT phases with Z f

2 × Z2 internal symmetry, and be
compatible with all other space-group symmetries.

The classification of 1D-invertible topological order (ITO)
with Z f

2 × Z2 symmetry for interacting fermion systems is Z2
2

described by the following root phases [14]: (1) the Kitaev
Majorana chain [43,44], and (2) an FSPT state that can be
realized by two Majorana chains [12–14].

We note that all of these can be realized by fixed-point
wave functions and exact-soluble parent Hamiltonians. First,
we investigate the Majorana chain decoration. Considering
four Majorana chains decorated on category I, there are four
Majorana modes (γ1, γ2, γ3, γ4) located at the 0D block, with
the local fermion parity symmetry Pf = −γ1γ2γ3γ4 which
is odd under rotation: RPf R−1 = −γ2γ3γ4γ1 = −Pf . Hence,
these four Majorana modes form a projective representation
of the group C4 × Z f

2 as a subgroup of D4 × Z f
2 . Therefore, a

nondegenerate ground state is forbidden. As a consequence,
Majorana chain decoration on category I is forbidden by
D4 symmetry, and the above argument is also applicable for
category II. Note that if we consider all 1D blocks together
and decorate a Majorana chain on each, Pf commutes with
rotation. Nevertheless, it is simple to verify that Pf anticom-
mutes with reflection, thus Majorana chain decoration remains
forbidden by D4.

Subsequently, we investigate the decoration of 1D FSPT
states on category I. Consider the geometry shown in Fig. 2,
with eight Majorana modes located at the rotation center:
(γ1, γ2, γ3, γ4) and (γ ′

1, γ
′
2, γ

′
3, γ

′
4), with rotation and reflec-

tion symmetry R4 = 1 and M2 = 1,

R : γi �→ γi+1, γ ′
i �→ γ ′

i+1, i = 1, 2, 3, 4, (4)

M : γi �→ −γ6−i, γ ′
i �→ γ ′

6−i, i = 1, 2, 3, 4. (5)
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FIG. 2. 0D block of 2D FSPT with D4 symmetry, corresponding
to 1D FSPT phase decoration. Blue dots represent the Majorana zero
modes on the edge of decorated root phases.

All subscripts take the values with modulo 4, e.g., γ5 ≡ γ1 and
γ ′

5 ≡ γ ′
1. Now we explain why we need to introduce the above

symmetry properties for Majorana modes. Since the rotation
properties are easier to understand, we mainly focus on the
reflection properties below. For the vertical axis, M acts as an
on-site Z2 symmetry, and the two Majorana modes at the edge
of the decorated 1D FSPT state should anticommute with the
fermion parity. Thus, for i = 1, 3, M : γi �→ −γi, γ ′

i �→ γ ′
i .

Similarly, for the horizontal axis, MR2 acts as an on-site
Z2 symmetry, so for j = 2, 4, MR2 : γ j �→ −γ j , γ ′

j �→ γ ′
j .

Together with rotational symmetry Eq. (4), it is easy to verify
that for j = 2, 4, M : γ j �→ −γ6− j , γ ′

j �→ γ ′
6− j .

Finally, we try to gap out these Majorana modes through
interactions in a symmetric way. First, we consider the fol-
lowing interacting Hamiltonian,

HU = U [γ1γ
′
1γ3γ

′
3 + γ2γ

′
2γ4γ

′
4], U > 0. (6)

For the ground state,

γ1γ
′
1γ3γ

′
3 = γ2γ

′
2γ4γ

′
4 = −1. (7)

The ground state is fourfold degenerate from Eq. (6). To lift
this degeneracy, we can further add a term,

HJ = J (γ1γ2γ
′
1γ

′
2 + γ1γ2γ

′
3γ

′
4), J > 0. (8)

Consider the total Hamiltonian H = HU + HJ and take the
limit U → ∞, such that it leads to the constraint Eq. (7).
Within the constraint subspace, Hamiltonian (8) is symmetric
under D4 symmetry. Then, because both terms in HJ commute
with each other and have eigenvalues ±J , HJ has a unique
ground state with eigenvalue −2J . Thus, we can lift the
degeneracy in a D4 symmetric way and this decoration is
compatible with D4 symmetry.

Below, we argue that such a 1D block-state decoration
cannot be trivialized. Considering a 2D system with an
open boundary (see Fig. 3), we further place four additional
Majorana chains (α, β, γ , δ) on the boundary, adding eight
additional more Majorana modes (γ j, γ

′
j ), j = α, β, γ , δ. For

any group of four Majorana modes, e.g., (γ1, γ
′
1, γα, γ ′

δ ), at
one side of the edge with the following reflection symmetry

FIG. 3. Forbidden trivialization of 1D FSPT phase decoration
on category I for spinless fermions. Again, blue dots represent the
Majorana zero modes.

properties,

M : (γ1, γ
′
1, γα, γ ′

δ ) �→ (−γ1, γ
′
1, γ

′
δ , γα ), (9)

this group will be gapped without breaking the reflection
symmetry due to the compatibility of local fermion parity
Pf = −γ1γ

′
1γαγ ′

δ [45]. Nevertheless, it is remains unclear
whether such a “trivialization scheme” is compatible with the
full D4 symmetry. Considering the Majorana chain labeled
by α, the symmetry M′ ≡ MR3 ∈ D4 acts on α as an ef-
fective reflection symmetry. However, because a single open
Majorana chain is incompatible with reflection symmetry
M′2 = 1 (anticommutes with the total fermion parity), this
suggests that the boundary Majorana modes cannot be gapped
out without breaking the full D4 symmetry. As a result, we
conclude that the 1D FSPT state decoration on category I must
describe a nontrivial 2D FSPT state with D4 symmetry. In
particular, the 2D FSPT state that we have constructed here is
an intrinsic interacting FSPT state that cannot be realized by
free-fermion systems [46–49] or interacting bosonic systems.

Similar arguments hold for category II. Thus, the question
naturally arises of whether or not these two cases describe
independent FSPT states. Let us consider the geometry in
Fig. 4, where we place eight different Majorana chains la-
beled by α–θ on the boundary of the system. It is simple
to verify that this assignment respects D4 symmetry. Then,
as aforementioned, each Majorana mode on the boundary
can be symmetrically gapped out without breaking the two
reflection symmetries M and M′. Therefore, this case indeed
corresponds to a trivial bulk because a gapped, short-range
entangled symmetric boundary termination is obtained. That
is, the cases of decorating 1D FSPT phases on category I
and category II are nonindependent and these two types of
decorations give rise to only one nontrivial FSPT state.

Now we consider the 0D block state |ψ0D〉. As D4 acts on
the 0D block as an internal symmetry, the full data of the 0D
block state are [14]

H0(Z4 � Z2,Z2) × H1[Z4 � Z2,U (1)] = Z2 × Z2
2. (10)
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FIG. 4. Trivialization of decorated 1D FSPT state on both cate-
gory I and category II 1D blocks for spinless fermion systems.

We first consider an atomically insulating state with four
complex fermions,

|φ〉0D = c†
1c†

2c†
3c†

4|0〉, (11)

with the following symmetry properties (all subscripts take
the value of modulo 4),

R : c†
i �→ c†

i+1, M : c†
i �→ c†

6−i, i = 1, 2, 3, 4. (12)

Again, all subscripts take values of modulo 4, and the above
symmetry actions on Eq. (11) give rise to

R|ψ〉0D = M|ψ〉0D = −|ψ〉0D. (13)

Thus, the eigenvalue −1 of rotation symmetry and reflection
symmetry indeed corresponds to a topological trivial state. In
Ref. [36], a closed Majorana chain surrounding the 0D block
is introduced to trivialize the 0D block state with odd fermion
parity. This construction can also be applied here and the 0D
block state with odd fermion parity will also be trivialized
(see Supplemental Material [45] for full details). Therefore,
all 0D block states are trivialized and the classification of 2D
FSPT phases protected by dihedral symmetry D4 for spinless
fermions is Z2 (see Table I). This classification coincides
with the classification of the 2D FSPT protected by internal
symmetry Z4 � ZT

2 (where ZT
2 is time-reversal symmetry) for

spin-1/2 fermions (see Table II).
Finally, we discuss systems with spin-1/2 fermions.

Through similar block-state constructions, we obtain a Z2
2

classification: 1D block-state decorations do not contribute
to any nontrivial FSPT phase, because for 1D systems with
spin-1/2 fermions and Z2 symmetry (total symmetry group is
Z f

4 ), there is no nontrivial SPT phase [14]. For the 0D block,
the first Z2 of Eq. (10) is not allowed [14], and Eq. (13) has
no nontrivial eigenvalue under rotation and reflection. [We
note that for spin-1/2 fermions, there would be an extra i
factor in Eq. (12) with R2 = M2 = −1, which cancels the
−1 in Eq. (13).] As a result, there is no trivialization in this
case. Thus, 0D block-state decorations contribute to a Z2

2

TABLE II. The interacting classification of 2D FSPT phases with
internal symmetries, for spinless and spin-1/2 fermions, respectively.
ZT

2 is time-reversal symmetry.

Spin

Gb Spinless Spin-1/2

Z2m−1 Z2m−1 Z2m−1

Z2m

{
Z2 × Z4m, m ∈ even
Z8m, m ∈ odd

Zm

Z2m−1 � ZT
2 Z1 Z2

Z2m � ZT
2 Z2 × Z2 Z2

classification and the overall classification of 2D FSPT phases
with D4 symmetry for spin-1/2 fermions is Z2

2.
Point-group FSPT with general Dn symmetry. Spinless

and spin-1/2 fermion systems with D2 and D6 point-group
symmetry can also be constructed in a similar way and the
classification results are exactly the same as the D4 case.
Moreover, a 2D FSPT state protected by Dn symmetry with
odd n can also be constructed by similar block-state dec-
orations as aforementioned. In fact, the essential contribu-
tions of nontrivial FSPT phases in these cases solely derive
from the reflection subgroup. All results of classification are
summarized in Table I, and the full details of the wave-
function constructions can be found in the Supplemental
Material [45].

Generalized crystalline equivalence principle. To this end,
we would like to examine the generalized crystalline equiv-
alence principle for 2D interacting fermion systems: We
calculate the classification of 2D FSPT phases with internal
symmetry Zn and Zn � ZT

2 using the so-called general group
supercohomology theory [14]. The classification results are
shown in Table II (see Supplemental Material [45] for detailed
calculations). Comparing the results in Tables I and II, we
conjecture that the crystalline equivalence principle can be
generalized into 2D interacting fermion systems. We should
map the mirror reflection symmetry onto an internal time-
reversal symmetry and we should also map spinless (spin-1/2)
fermions onto spin-1/2 (spinless) fermions. The twist on spin-
less and spin-1/2 fermions can be naturally interpreted as the
spin rotation of fermions: A 2π rotation of a fermion around
a specific axis results in a −1 phase factor (see Supplemental
Material [45] for more details).

Conclusion and discussion. In this Rapid Communica-
tion, we systematically constructed and classified the 2D
interacting FSPT phases with point-group symmetry using
explicit block-state constructions (with D4 symmetry as a
concrete example). Our results also verify the generalized
crystalline equivalence principle for 2D interacting fermionic
systems. Experimentally, single-layer iron selenide (FeSe, an
iron-based superconductor with space group P4/nmm in 3D
[50–53]) on a ferromagnetic substrate could be a natural can-
didate for realizing an intrinsic FSPT phase with D4 symmetry
[54]. (We note that the fermions in iron selenide are spin
polarized due to the ferromagnetic proximity, and can thus be
effectively treated as spinless.) According to our block-state
construction, there are several dangling Majorana fermions
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located at the boundary of the system, and these gapless
modes can be detected by experiments in principle. (These
boundary Majorana modes might be related to the recent pro-
posed “corner Majorana modes” in monolayer iron selenides
[55,56].) Moreover, the bulk topological defects observed
by scanning tunneling microscopy (STM) tomography might
provide us another way to detect these SPT states. Finally,
we stress that the method proposed here is also applicable
to space-group symmetry, and that exploration of its higher-
dimensional generalizations would be a very interesting future
direction.
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