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The classification and construction of symmetry protected topological (SPT) phases have been
intensively studied in interacting systems recently. To our surprise, in interacting fermion systems, there
exists a new class of the so-called anomalous SPT (ASPT) states which are only well defined on the
boundary of a trivial fermionic bulk system. We first demonstrate the essential idea by considering an
anomalous topological superconductor with time-reversal symmetry T2 ¼ 1 in 2D. The physical reason for
this is that the fermion parity might be changed locally by certain symmetry action, but it is conserved if we
introduce a bulk. Then we discuss the layer structure and systematical construction of ASPT states in

interacting fermion systems in 2D with a total symmetry Gf ¼ Gb × Zf
2. Finally, potential experimental

realizations of ASPT states are also addressed.
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Introduction.—The bulk-boundary correspondence is
an essential concept in the study of topological phases.
In recent years, the short-range-entangled symmetry pro-
tected topological (SPT) phases [1], e.g., topological
insulators [2–6], topological superconductors [5–8], topo-
logical crystalline insulators [9], and bosonic SPT (BSPT)
phases [10–12], have been studied intensively. A hallmark
of these SPT states is the existence of gapless boundary
states [13] that cannot be gapped out without breaking the
relevant symmetries (spontaneously or explicitly). The
nonexistence of a symmetric gapped boundary (without
topological orders) can be regarded as a consequence of a
boundary anomaly: the symmetry action on the boundary is
anomalous and cannot be realized locally (on site) by any
lattice model in the same dimension. Such an anomaly is in
a one-to-one correspondence with the classification of bulk
SPT states [14–23]. For example, in bosonic SPT states,
both the boundary anomalies and bulk SPT states are
classified by (generalized) group-cohomology theory
[10,11,24,25].
Very recently, the concept of equivalent class of finite

depth fermionic symmetric local unitary (FSLU) trans-
formation allows us to classify and construct very general
fermionic SPT (FSPT) states. In particular, it has been
shown that the FSPT states have a layered structure
[26–33]: they can be constructed by decorating (subject
to certain obstructions) 2D (pþ ip) topological super-
conductors to 2D symmetry domain walls, 1D Majorana
chains to 1D symmetry domain walls or intersection lines
of domain walls, and complex-fermion modes to 0D
symmetry domain walls or intersection points of domain
walls, in addition to the bosonic SPT layer.

These layers not only present a way to organize the
mathematical structure describing FSPT classifications but
also distinguish physically different types of FSPT states.
A signature phenomenon in this layered structure is the
existence of the so-called anomalous SPT (ASPT) states
that can only live on the boundary of a trivial bulk FSPT
state. Anomalous surface states have been widely studied in
the correspondence between 3D bulk SPT states and 2D
long-range-entangled surface symmetry-enriched topo-
logical (SET) states with anomalous symmetry fraction-
alization [34–36]. However, here both the bulk and the
boundary are short-range-entangled states.
The existence of ASPT is a direct consequence of the

layered structure of FSPT. In fact, if we simply treat the
bulk FSPT classification as one additive group, the bulk
should be regarded as a trivial state because its boundary
can be realized as a symmetric gapped state (without
topological order). Correspondingly, naively it seems that
the boundary state is not anomalous as well. Nevertheless,
the combination becomes nontrivial once we take into
account the layered structure in FSPT classification. The
anomalous boundary FSPT states are always built on a
lower layer than its bulk. For example, the ASPT states
studied below are built by decorating 1D Majorana chains
[37] to symmetry domain walls, where its 3D bulk does not
contain any Majorana-chain decoration.
In this Letter, we mainly consider ASPT, which is related

to fermion-parity symmetry violation of the FSLU trans-
formation on the boundary. In the following, we will
show how to construct this class of ASPT states system-
atically in 2D interacting fermion systems with a total
symmetry Gf ¼ ZT

2 × Zf
2.
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A simple example of 2D T2 ¼ 1 ASPT state.—It is
well known that there is a nontrivial 2D topological
superconductor of class DIII with symmetry T2 ¼ −1
(Gf ¼ ZTf

4 ). In strongly interacting systems, this state
can also be constructed in the Majorana-chain decoration
picture as the ground state of a commuting projector
Hamiltonian [38]. However, if one wants to construct a
similar state for T2 ¼ 1 (Gf ¼ ZT

2 × Zf
2), there are some

inconsistencies between the Kasteleyn orientation [39]
(fermion parity) and the symmetry action [38]. Never-
theless, we will show that the T2 ¼ 1 case with the
Majorana-chain decoration, although not well defined in
pure 2D, can actually be constructed on the boundary of a
3D bulk as an ASPT state. The essential difference is that,
although the fermion parity of the 2D symmetric state is not
conserved under the FSLU transformation, the total fer-
mion parity is conserved if we introduce additional degrees
of freedom in the 3D bulk. As there is a gapped, symmetric
boundary state without topological order, we conclude that
the bulk 3D T2 ¼ 1 “FSPT” state constructed using the
special group supercohomology [26] will be trivialized.
Thus there is no nontrivial FSPT for this symmetry class.
Below, we will discuss the scheme of constructing a

fixed-point 2D ASPT state with a total symmetry Gf ¼
ZT

2 × Zf
2 on arbitrary triangulation, and we will show how

to introduce the 3D bulk fermion degrees of freedom to
cancel the anomaly [40]. We first try to construct a
symmetric fixed-point state in pure 2D. Let us consider
the Majorana-chain decoration following the procedure of
Ref. [31]. In addition to the Ising spin jσii (σi ¼ �1 or
↑=↓) on each vertex i of a given triangulation T , each link
hiji has two Majorana fermions (γijA and γijB) on its two
sides, an arrangement that is equivalent to spinless complex
fermion aij, where we can split the complex fermion as
aij ¼ ðγijA þ iγijBÞ=2. (See the red dots in Fig. 1 for these
degrees of freedom.) We further require aij to be invariant
under the time-reversal symmetry (we note that i → −i
under the T action), so the Majorana fermions transform as

T∶
�
γijA → γijA;

γijB → −γijB:

And the bosonic spins transform as Ising variables under
ZT

2 action T∶ σi → −σi.
Given a 2D spacial manifold with arbitrary triangulation

T associated with a branching structure (a branching
structure is an assignment of link arrows such that the
three arrows never form a closed loop for an arbitrary
triangle of the lattice [41]), one can construct the dual
trivalent lattice denoted byP. In order to decorate Majorana
chains, we resolve each vertex of P by a small triangle. The
new resolved lattice is called P̃ (see the red color lattice in
Fig. 1). We also add arrows to the links of P̃ (see the red
arrows in Fig. 1) such that there is always an odd number of
clockwise arrows for each small loop around a vertex. The
red arrows, which are called Kasteleyn orientations, are
discussed in more detail in the Supplemental Material [42].
For convenience, we define the domain wall function,

n1ðσiσjÞ ≔
1

2
ð1 − σiσjÞ ¼

�
0; if σi ¼ σj;

1; if σi ≠ σj;
ð1Þ

which indicates whether or not there is an Ising domain
wall between vertices i and j. It is in fact the nontrivial 1-
cocycle in H1ðZ2;Z2Þ ¼ Z2. In the construction of the
Majorana-chain decoration [31,38,43,44], we put nontrivial
Majorana chains along the domain walls of the Ising spins
(see the green belt in Fig. 1). To be more specific, we put
Majorana fermions on vertices of P̃ (the red dots in Fig. 1)
into three different types of pairings, according to the Ising
spin configuration fσig:
If n1ðσiσjÞ ¼ 0, the two Majorana fermions on the two

sides of link hiji (see link h02i in Fig. 1, for example) are in
the trivial vacuum pairing−iγijAγijB ¼ 1. This is equivalent

to a†ijaij ¼ 0 in terms of complex fermions.
For triangle h012i with σ0 ¼ þ1 and a domain wall

going through, the Majorana fermions along the domain
wall are paired up nontrivially. For example, we have
−iγ12Aγ01A ¼ 1 inside the triangle in the left panel of Fig. 1.
The pairing direction is specified by the Kasteleyn ori-
entation (red arrow) of the pairing link.
For triangle h012i with σ0 ¼ −1, a time-reversal sym-

metry action on case (ii) above would give us the pairing
−iγ12Aγ01A ¼ −1, which means that the Kasteleyn orienta-
tion is reversed (see the blue arrow in the right panel of
Fig. 1). From the transformation rules of A=B type
Majorana fermions and i → −i, we conclude that the
pairing direction is reversed if the Majorana pairing is of
AA or BB type and remains the same if the pairing is of
AB type.
We note that the first two pairing rules are the same as in

Ref. [31]. And the third rule is designed to make the

FIG. 1. Majorana-chain decorations. The Ising spins σi ¼ �1
or ↑=↓ are on the vertices of the (black) triangulation lattice.
Majorana fermions (red dots) are on the vertices of (red) lattice P̃.
They are paired up (gray ellipse) nontrivially along the domain
wall (green belt). Time-reversal symmetry would flip the Ising
spin and change the pairing directions (blue arrows) of the AA or
BB type Majorana fermions.
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Majorana-chain decoration time-reversal symmetric. Thus
the 2D symmetric fixed-point state can be constructed as a
superposition (subject to the proper algebraic conditions
discussed below) of those basis states with all possible
triangulations T and spin configurations fσig:

ð2Þ

Here the spins are on the vertices of the triangulation lattice
and green lines indicate the Majorana chains on the Ising
domain walls using the rules above.
It is known that, for a lattice with Kasteleyn orientations,

the decorated Majorana chains on the Ising domain wall
(using the first two rules above) always have even fermion
parity [31,43,44]. However, rule (iii) violates the Kasteleyn
orientations of the lattice. As noted above, the orientation is
changed if and only if σ0 ¼ −1 and the Majorana pairing
is of AA or BB type. Therefore, the right-hand side of
Fig. 1 with σ0 ¼ σ2 ¼ −1 and σ1 ¼ þ1 [such that
n1ðσ0σ1Þ ¼ n1ðσ1σ2Þ ¼ 1)] is the only Ising spin configu-
ration in which the Majorana pairing direction (blue arrow)
is reversed. Compared to the Kasteleyn orientated deco-
rations, the fermion parity of triangle h012i is changed by
rule (iii) as

Pγ
fðh012iÞ ¼ ð−1Þs1ðσ0Þn1ðσ0σ1Þn1ðσ1σ2Þ; ð3Þ

where we define another function s1ðσÞ ≔ n1ðσÞ related to
antiunitary symmetry [45].
Now we can discuss the first type of algebraic condition

arising from fermion-parity conservation for the fixed-point
wave function (2). For the whole 2D system, the fermion-
parity change (compared to the vacuum state without
Majorana-chain decorations) is the product of Eq. (3) for
all triangles. We can first consider the smallest 2D lattice
with four triangles (triangulation of a two-sphere) on the
boundary of a 3D solid tetrahedron (see Fig. 2). For the spin
configuration ðσ0; σ1; σ2; σ3Þ ¼ ðþ1;−1;þ1;−1Þ, there is
a Majorana chain along the Ising domain wall (see the
green line in Fig. 2). According to rule (iii) and Eq. (3),
only the pairing direction inside triangle h123i is reversed,
resulting in a Majorana chain with odd fermion parity.
Therefore, the desired wave function

jΨi2D ¼
X
fσig

ψðfσigÞjfσigi ⊗ jγðn1Þi2Dðnot well definedÞ

is not legitimate for a pure 2D system, as the basis states
jfσigi ⊗ jγðn1Þi2D have different fermion parities.
To evade this problem, we can add a 3D bulk and

decorate a complex fermion ðc†0123Þn3ðσ0σ1;σ1σ2;σ2σ3Þ at the

center of the tetrahedron (the blue ball in Fig. 2). We can
choose n3 such that the resulting 3D wave function,

jΨi3D ¼
X
fσig

ψðfσigÞjfσigi ⊗ jγðn1Þi2D ⊗ jcðn3Þi3D;

isZT
2 symmetric and has even total fermion parity. From the

product of Eq. (3) for the four triangles, one can show that
the total Majorana fermion parity for a given Ising spin
configuration is

Pγ
fðh0123iÞ ¼ ð−1Þs1ðσ0σ1Þn1ðσ1σ2Þn1ðσ2σ3Þ: ð4Þ

Thus we require the complex-fermion number to be

n3 ¼ s1n1n1 ð5Þ

such that the total fermion parity Pf ¼ Pγ
fP

c
f is fixed. This

equation relates the complex-fermion decoration in the 3D
bulk and the Majorana-chain decoration on the 2D boun-
dary. One can further show that this n3 is the nontrivial
3-cocycle in H3ðZT

2 ;Z2Þ ¼ Z2. So the 3D bulk is in fact
the special group-supercohomology state with symmetry
T2 ¼ 1 [26].
Despite the fact that the above state is defined on one

tetrahedron, we can add more and more vertices in the 3D
bulk or on the 2D boundary by Pachner moves [46], and we
finally obtain a larger fine lattice. The only things that we
need to check are that each Pachner move is symmetric and
that the fermion parity is even. There are two types of
Pachner moves. The first type is the well-defined genuine
3D Pachner move (without touching the boundary) for the
3D bulk state in the special group-supercohomology theory
[26]. The second type is the 2D boundary Pachner moves
with the standard one:

FIG. 2. 2D ASPT on the smallest lattice—boundary of a
3D solid tetrahedron. There is a complex-fermion mode
ðc†0123Þn3ðσ0σ1;σ1σ2;σ2σ3Þ (blue ball) at the center of the tetrahedron.
One Majorana chain (green line) is decorated on the 2D surface.
One can add more and more vertices in the bulk or on the
boundary from this smallest lattice to obtain a larger fine lattice
using Pachner (the fundamental retriangulation) moves.
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ð6Þ

The total Majorana fermion-parity change under the F2D
move is

ΔPγ
fðF2DÞ ¼ ð−1Þs1ðσ0σ1Þn1ðσ1σ2Þn1ðσ2σ3Þ; ð7Þ

which is obtained as in Eq. (4). Suppose the four vertices on
the boundary are connected to the bulk vertex labeled by
σ�; then the 3D bulk complex-fermion-parity change under
this F2D move is

ΔPc
fðF2DÞ ¼ ð−1Þn3ð�012Þþn3ð�023Þþn3ð�013Þþn3ð�123Þ

¼ ð−1Þn3ð0123Þ; ð8Þ

where we have used dn3 ¼ 0 (mod 2), and abbreviated
n3ðσ0σ1; σ1σ2; σ2σ3Þ as n3ð0123Þ, and so on. Since
ΔPγ

fðF2DÞ ¼ ΔPc
fðF2DÞ by Eq. (5), we see that the 2D

boundary F move does not change the total fermion parity
Pf ¼ Pγ

fP
c
f either. We can also consider the ð2−0Þ=ð0−2Þ

moves changing the number of vertices, and it is easy to
verify that both Pγ

f and Pc
f are conserved. Similar to the

FSLU approach to FSPT states, the fixed-point condition
for the (2-2) move will give rise to a second type of
algebraic condition—a pentagon equation—that allows us
to compute the amplitude ψðfσigÞ. It turns out that we can
choose a simple solution with ψðfσigÞ ¼ ð1= ffiffiffi

2
p ÞNv , where

Nv is the total number of vertices for a given triangulation
T . For realistic systems with a fixed lattice geometry, it
would be straightforward to project the above fixed-point
wave function onto that particular lattice, e.g., a triangular
lattice.
Thus we have constructed an ASPT state with T2 ¼ 1 on

the 2D boundary of a 3D trivial FSPT system with an
arbitrary triangulation lattice consistently (to be both
symmetric and total fermion-parity fixed). One may won-
der whether the bulk complex-fermion degrees of freedom
can be moved to the 2D boundary such that this state is
defined purely in 2D. For example, for the system with only
one complex-fermion mode (blue ball) in the bulk in Fig. 2,
we can move the complex fermion to the boundary.
However, since the complex-fermion mode is used to
compensate for the fermion-parity changes for all of the
boundary triangles, the entanglement between them would

introduce nonlocal interactions of the 2D system. So the 3D
bulk is an intrinsic feature of this ASPT state.
Physical properties of the ASPT state after gauging

fermion parity.—In fact, after gauging the fermion parity,
the above ASPT state becomes a Z2 topologically ordered
state, and all of the above physics can be understood as a
so-called H3 anomaly, which was discussed in the context
of classifying 2D SET states [47]. The Z2 topological order
has four types of anyons: the trivial anyon 1 representing
bosonic excitations in the ungauged model, the fermionic
anyon f representing fermionic excitations in the ungauged
model, and two bosonic anyons e and m, representing two
types of Zf

2 vortices. The two types of vortices have
opposite fermion parities, indicated by the fusion rule
m ¼ e × f. Since the ASPT state has ZT

2 symmetry in
addition to fermion-parity symmetry, the resulting state has
a ZT

2 -symmetry-enriched Z2 topological order. Corres-
pondingly, n1 ∈ H1ðZT

2 ;Z2Þ becomes a piece of data
describing how ZT

2 permutes the anyons [28,43]. In
particular, the nontrivial Majorana-chain decoration
n1ðTÞ ¼ 1 is translated into the nontrivial symmetry action
in which T exchanges e and m anyons. In other words, the
time-reversal symmetry flips the fermion parity of the Zf

2

vortex. On the other hand, the group structure Gf ¼
ZT

2 × Zf
2 translates into the requirement that the f anyon

carries a trivial symmetry fractionalization T2 ¼ þ1.
It is well known that this symmetry action is not

compatible with the requirement that f carries T2 ¼ þ1
[34,36], and this incompatibility can be understood as the
result of an obstruction in H3ðZT

2 ;Z2Þ. To see this, we
recall that a symmetry-fractionalization pattern is repre-
sented by a 2-cocycle n2 ∈ H2ðZT

2 ;AÞ [34], where the
coefficientsA are the fusion group of the four anyons in the
Z2 topological order. Here the choice of n2 representing f
carrying T2 ¼ þ1 is n2ðT; TÞ ¼ e or m [34]. However,
neither choice satisfies the cocycle equation because they
both have the same nontrivial “coboundary” d̃n2, indicated
by the following:

d̃n2ðT; T; TÞ≡ ρT(n2ðT; TÞ) − n2ðT; TÞ ¼ f; ð9Þ

where ρT satisfying ρTðeÞ ¼ m and ρTðmÞ ¼ e denotes the
nontrivial time-reversal action on the anyons. This violation
of the cocycle equation indicates that this 2D SET state has
anH3 obstruction given by n3 ¼ d̃n2, and it can be realized
on the surface of a 3D SET bulk only with the correspond-
ing symmetry fractionalization given by n3 [47]. It is
straightforward to check that the cocycle n3 ¼ d̃n2 com-
puted in Eq. (9) is exactly the same as the n3 value
computed previously using Eq. (5). Therefore, the required
3D SET bulk is the same as the result of gauging the
fermion parity in the 3D SPT bulk, which is a 3D Z2

topological order with pointlike Z2 charges f carrying
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fermionic statistics. The n3 data, describing the complex-
fermion decoration in the SPT model, become the H3

symmetry-fractionalization data in the SET model [48].
Therefore, the bulk-boundary correspondence between the
surface and bulk SETs after gauging Zf

2 provides an
alternative way to understand the correspondence between
the surface ASPT and the bulk trivial FSPT state.
Classification of ASPT states in 2D with a total

symmetry Gf ¼ Gb × Zf
2 .—The above construction for

the ASPT state can be generalized to an arbitrary Gf ¼
Gb × Zf

2 straightforwardly, and the relation between the 2D
boundary ASPT with Majorana decoration [characterized
by n1 ∈ H1ðGb;Z2Þ, which actually describes all possible
Z2 subgroups of Gb], and the 3D bulk FSPTwith complex-
fermion decoration [characterized by n3 ∈ H3ðGb;Z2Þ]
still turns out to be n3 ¼ s1n1n1 ≡ s1⌣n1⌣n1. Here we
introduce the so-called cup product ðs1⌣n1⌣n1Þða;b;cÞ≡
s1ðaÞn1ðbÞn1ðcÞ to manifest that s1ðaÞn1ðbÞn1ðcÞ is
actually a cohomology operation from H1ðGb;Z2Þ to
H3ðGb;Z2Þ. Here s1 ∈ H1ðGb;Z2Þ indicates whether g
is a unitary or antiunitary group element.
In addition to the ASPT phases constructed from the

Majorana-chain decoration, the next layer of ASPT is
known as the complex-fermion decoration, which leads to
trivialization of some BSPT when embedded in interacting
fermion systems [26]. The trivialized cocycles νdþ1 form a
group Γdþ1 ¼ fð−1ÞSq2ðnd−1Þ ∈ Hdþ1(Gb;Uð1Þ)jnd−1 ∈
Hd−1ðGb;Z2Þg. Only the cocycles in the quotient group
Hdþ1(Gb;Uð1Þ)=Γdþ1 correspond to different FSPT
phases. From the perspective of ASPT states, we can use
a FSLU to transform the state constructed by cocycles in
Γdþ1 to a product state. On a space manifold with boundary,
there is an ASPT state of one lower dimension on the
boundary. The simplest example in 2D is again theGb ¼ ZT

2

case sinceH2ðGb;Z2Þ ¼ Z2 andΓ4 is a nontrivial cocycle in
H4(ZT

2 ; Uð1Þ). After gauging fermion parity, the corre-
sponding anomalous SET state is the well-known eTmT
state, which could not be realized as a 2D SET either [15].
Conclusion and discussion.—In this Letter, we system-

atically construct ASPT phases for 2D interacting fermion
systemswith total symmetryGf ¼ Gb × Zf

2. Experimentally,
3D superconductivities with coplanar spin order can realize
the T2 ¼ 1 symmetry. The surface of the 3He B phase could
also be a potential venue for finding such an ASPT state.
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