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The classification and construction of symmetry-protected topological (SPT) phases in interacting boson
and fermion systems have become a fascinating theoretical direction in recent years. It has been shown that
(generalized) group cohomology theory or cobordism theory gives rise to a complete classification of SPT
phases in interacting boson or spin systems. The construction and classification of SPT phases in
interacting fermion systems are much more complicated, especially in three dimensions. In this work, we
revisit this problem based on an equivalence class of fermionic symmetric local unitary transformations. We
construct very general fixed-point SPT wave functions for interacting fermion systems. We naturally
reproduce the partial classifications given by special group supercohomology theory, and we show that
with an additional B̃H2ðGb;Z2Þ structure [the so-called obstruction-free subgroup of H2ðGb;Z2Þ], a
complete classification of SPT phases for three-dimensional interacting fermion systems with a total

symmetry group Gf ¼ Gb × Zf
2 can be obtained for unitary symmetry group Gb. We also discuss the

procedure for deriving a general group supercohomology theory in arbitrary dimensions.
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I. INTRODUCTION

In recent years, a new type of topological order—
symmetry-protected topological (SPT) order [1–3]—has
been proposed and intensively studied in interacting boson
and fermion systems. Two-dimensional and three-dimen-
sional topological insulators (TIs) [4,5] are the simplest
examples of SPT phases, which are protected by time-
reversal and charge-conservation symmetries. Although TIs
were initially proposed and experimentally realized in
essentially noninteracting electron systems, very recent
studies have established their existence and stability even
in the presence of strong interactions, by identifying non-
perturbative quantum anomalies on various manifolds [6].
The first attempt to systematically understand SPT phases in
interacting systems was proposed in Ref. [1], in which the
author pointed out that thewell-known spin-1Haldane chain
[7] was actually an SPT phase. Later, a systematic classi-
fication of SPT phases for interacting bosonic systems in
arbitrary dimensions with arbitrary global symmetry was

achieved using generalized group cohomology theory
[2,3,8] or cobordism theory [9]. This systematic classifica-
tion essentially classifies the quantum anomalies associated
with the corresponding global symmetries in interacting
bosonic systems. In terms of the physical picture, it has been
further pointed out that by gauging the global symmetry G,
different SPT phases can be characterized by different types
of braiding statistics ofG-flux or flux lines in 2D or 3D [10–
17]. Anomalous surface topological order has also been
proposed as another very powerful way to identify and
characterize different 3D SPT phases in interacting boson
and fermion systems [18–27].
From the quantum information perspective, intrinsic

topological phases are gapped quantum states that can
be defined and classified by an equivalence class of finite
depth local unitary transformations [28], which leads to the
novel concept of long-range entanglement. However, in
contrast to those intrinsic topological phases, all SPT
phases can be adiabatically connected to a trivial disordered
phase or to an atomic insulator without symmetry protec-
tion. Therefore, SPT phases contain only short-range
entanglement, and can be constructed by applying local
unitary transformations on a trivial product state. In
particular, Refs. [2,3] introduced a systematic way of
constructing fixed-point ground-state wave functions for
bosonic SPT phases on arbitrary triangulations in arbitrary
dimensions. Such a construction is fairly complete for
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bosonic SPT phases protected by unitary symmetry groups
(up to 3D). So far, the only known example beyond this
construction is the so-called efmf SPT state [18], which is
protected by time-reversal symmetry in 3D. Later, it was
shown that such an exotic bosonic SPT state could be
realized by the Walker-Wang model [29,30].
The classification and systematic understanding of SPT

phases in interacting fermion systems are much more
complicated. One obvious way to achieve fruitful results
is to study the reduction of the free-fermion classifications
[31,32] under the effect of interactions [33–39]. However,
this approach misses those fermionic SPT (FSPT) phases
that cannot be realized in free-fermion systems [12,40].
A slightly general way to understand FSPT in interacting
fermion systems is to stack some additional bosonic SPT
states onto a free-fermion SPT state [26]. An arguably fairly
complete classification of TIs in interacting electron sys-
tems [41] can be constructed in such a way. However, there
is no natural reason to believe that all FSPT phases in
interacting systems can be realized by the abovementioned
stacking constructions, and counterexamples can be con-
structed explicitly. Moreover, it has been shown that certain
bosonic SPT phases become “trivial” (adiabatically con-
nected to a product state) [26,42] when embedded into
interacting fermion systems. Apparently, the stacking
construction cannot explain all of these subtle issues.
Therefore, a systematic understanding and the construction
of interacting FSPT phases are very desirable.
The first attempt to classify interacting FSPT phases in

general dimensions was proposed in Ref. [42], in which a
class of FSPT phases was constructed systematically by
generalizing the usual group cohomology theory into the
so-called special group supercohomology theory. However,
it turns out that such a construction cannot give rise to all
FSPT phases except in one dimension, where the obtained
classification of FSPT phases perfectly agrees with pre-
vious results [43,44]). On the other hand, quantum anoma-
lies characterized by spin cobordism [45] or invertible spin
topological quantum field theory (TQFT) [46–48] suggest a
rich diversity of FSPT phases, although it is not clear how
to construct these FSPT states in an explicit and system-
atic way.
Alternatively, the idea of gauging fermion parity

[37,49–52] provides another way to understand FSPT. In
2D, a fairly complete classification of FSPT can be
obtained in this way, which also agrees with the anomaly
classification given by spin cobordism and invertible
spin TQFT [45,46,48,53,54]. It has been shown that the
mathematical objects that classify 2D FSPT phases
with a total symmetry Gf ¼ Gb × Zf

2 (where Gb is the

bosonic global symmetry and Zf
2 is the fermion parity

conservation symmetry) can be summarized as three
group cohomologies of the symmetry group Gb [48,50]:
H1ðGb;Z2Þ, BH2ðGb;Z2Þ, and H3(Gb;UTð1Þ).
H1ðGb;Z2Þ, which corresponds one to one to the Z2

subgroups of Gb, classifies FSPT phases with
Majorana edge modes. BH2ðGb;Z2Þ, the obstruction-free
subgroup of H2ðGb;Z2Þ, is formed by elements n2 ∈
H2ðGb;Z2Þ that satisfy Sq2ðn2Þ ¼ 0 in H4(Gb;UTð1Þ),
where Sq2 is the Steenrod square, Sq2∶HdðGb;Z2Þ →
Hdþ2ðGb;Z2Þ ⊂ Hdþ2½Gb;UTð1Þ�. H3(Gb;UTð1Þ) is the
well-known classification of bosonic SPT phases.
Physically, the H1ðGb;Z2Þ layer can be constructed by
decorating a Majorana chain [55], which is a one-dimen-
sional invertible fermionic TQFT, onto the domain walls of
symmetry group Gb. The BH2ðGb;Z2Þ layer can be
constructed by decorating complex fermions, which are
zero-dimensional invertible TQFT, onto the intersection
points of Gb-symmetry domain walls. Nevertheless, the
decoration scheme can suffer from obstructions, and only
subgroup BH2ðGb;Z2Þ classifies valid and inequivalent 2D
FSPT phases. Some interesting examples of SPT phases
have been studied in 3D based on a Walker-Wang model
construction [56], e.g., DIII-class topological superconduc-
tors [24,57–59]. Unfortunately, it is impossible to construct
all FSPT phases using the Walker-Wang model. It is even
unclear how to reproduce all of the special group super-
cohomology constructions in this way. Very recently, some
new interacting FSPT phases beyond special group super-
cohomology were formally proposed by using spin TQFT
[60]. However, a general principle and lattice model
realization are still lacking.

A. Classify FSPT phases via equivalence classes of
fermionic symmetric local unitary transformations

In this paper, we propose a general physical principle to
construct all FSPT phases in 3D with the total symmetry
group Gf ¼ Gb × Zf

2 . A previous work showed that in the
presence of global symmetry, symmetry-enriched topologi-
cal (SET) phases can be defined and classified by equiv-
alence classes of symmetric local unitary transformations
[61,62]. In particular, SPT phases can be realized as a
special class of SET phases whose bulk excitations are
trivial and can be adiabatically connected to a product state
in the absence of global symmetry.
In Ref. [63], it was shown that fermionic local unitary

(FLU) transformations can be used to define and classify
intrinsic topological phases for interacting fermion sys-
tems. The Fock space structure and fermion parity con-
servation symmetry of fermion systems can be naturally
encoded into FLU transformations. Let us first briefly
review the definition of FLU transformation. Similar to the
local bosonic systems, the finite-time evolution generated
by a local fermion Hamiltonian defines an equivalence
relation between gapped states in interacting fermion
systems:

jψð1Þi ∼ jψð0Þi iffjψð1Þi ¼ T ½e−i
R

1

0
dλH̃fðλÞ�jψð0Þi; ð1Þ
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where T is the path-ordering operator and H̃fðλÞ is a local
fermionic Hamiltonian defined in Fock space. We call

T ½e−i
R

1

0
dλH̃fðλÞ� an FLU evolution. It is well known that the

finite-time FLU evolution is closely related to fermionic
quantum circuits with finite depth, which is defined
through piecewise FLU operators. A piecewise FLU
operator has the form Upwl ¼

Q
i e

−iHfðiÞ ≡Q
i UðiÞ, where

HfðiÞ is a fermionic Hermitian operator and UðiÞ is the
corresponding fermionic unitary operator defined in Fock
space that preserves fermion parity (e.g., contains even
number of fermion creation and annihilation operators) and
acts on a region labeled by i. Note that regions labeled by
different i’s are not overlapping. We further require that the
size of each region is less than some finite number l. The
unitary operator Upwl defined in this way is called a
piecewise fermionic local unitary operator with range l.
A fermion quantum circuit with depth M is given by the
product of M piecewise fermionic local unitary operators:

UM
circ ¼ Uð1Þ

pwlU
ð2Þ
pwl…UðMÞ

pwl . It is believed that any FLU
evolution can be simulated with a constant depth fermionic
quantum circuit and vice versa. Therefore, the equivalence
relation between gapped states in interacting fermion
systems can be rewritten in terms of constant depth
fermionic quantum circuits:

jψð1Þi ∼ jψð0Þi iffjψð1Þi ¼ UM
circjψð0Þi: ð2Þ

Thus, we can use the term FLU transformation to refer to
both FLU evolution and constant depth fermionic quantum
circuit. From the definition of the FSPT state, it is easy to
see that (in the absence of global symmetry)

jFSPTi ¼ UM
circjTriviali: ð3Þ

Namely, an FSPT state can be connected to a trivial state
(e.g., a product state) vial FLU transformation (in the
absence of global symmetry). Now let us consider the
entanglement density matrix ρA of an FSPT state in region
A. ρA may act on a subspace of the Hilbert space in region
A, and the subspace is called the support space ṼA of region
A. Clearly, Eq. (3) implies that the support space of any
FSPT in region A must be one dimensional. This is simply
because a trivial state (e.g., a product state) has a one-
dimensional support space, and any FSPT state will
become a product state via a proper local basis change
(induced by an FLU transformation).
In the presence of global symmetry, we can further

introduce the notion of fermionic symmetric local unitary
(FSLU) transformations to define and classify fermionic SET
(FSET) phases in interacting fermion systems. By FSLU
transformation, we mean the corresponding piecewise FLU
operator is invariant under symmetryGb. More precisely, we
have Upwl ¼

Q
i e

−iHfðgi0;gi1;gi2;…Þ ≡Q
i Uðgi0; gi; gi2;…Þ

and Uðggi0; ggi2; ggi3;…Þ ¼ Uðgi0; gi1; gi2;…Þ for any

g ∈ Gb. (We note that here we choose the group element
basis gi0; gi1; gi2;… to represent a fermionic symmetric
unitary operator acting on a region labeled by i.) Again,
FSPT phases are a special class of FSET phases that have
trivial bulk excitation and can be adiabatically connected to a
product state in the absence of global symmetry. Thus, we
only need to enforce the FSLU transformations to be one
dimensional (when acting on the support space ρA for any
region A) to classify all FSPT states.

B. Summary of main results

It turns out that the novel concept of FSLU trans-
formation allows us to construct very general fixed-point
FSPT states of 2D and 3D FSPT phases. All of these fixed-
point wave functions admit exactly solvable parent
Hamiltonians consisting of commuting projectors on an
arbitrary triangulation with an arbitrary branching struc-
ture. We begin with the 2D case, in which the discrete spin
structure can be implemented by Kasteleyn orientations
[64–66], allowing us to decorate Majorana chains onto Gb-
symmetry domain walls [67,68]. We then show how to
implement the discrete spin structure on a triangulation of a
3D orientable spin manifold, which is a nontrivial gener-
alization of 2D Kasteleyn orientation. The discrete spin
structure allows us to decorate the Majorana chains onto the
intersection lines of Gb-symmetry domain walls in a self-
consistent and topologically invariant way. The fundamen-
tal mathematical data describing such a decoration scheme
belong to H2ðGb;Z2Þ, subjected to an obstruction on
H4ðGb;Z2Þ. The obstruction can be understood through
the following physical picture. As Kasteleyn orientation is
not always possible for a large loop (the 3D discrete spin
structure can be used to construct local Kasteleyn orienta-
tions of small loops), complex fermion decoration on
the intersection points of Gb-symmetry domain walls is
typically required, and this is only possible when the
H4ðGb;Z2Þ obstruction vanishes. Furthermore, another
obstruction on H5(Gb;UTð1Þ) is generated by wave
function renormalization to finally determine whether the
entire decoration scheme of Majorana chains is valid for a
fixed-point wave function in 3D.
The precise mathematical objects that classify

3D FSPT phases with a total symmetry Gf ¼ Gb × Zf
2

can also be summarized as three group cohomologies of the
symmetry group Gb: B̃H2ðGb;Z2Þ, BH3ðGb;Z2Þ, and
H4

rigid(Gb;UTð1Þ). B̃H2ðGb;Z2Þ, the obstruction-free sub-
group of H2ðGb;Z2Þ, is formed by elements ñ2 ∈
H2ðGb;Z2Þ that simultaneously satisfy Sq2ðñ2Þ ¼ 0

in H4ðGb;Z2Þ and Oðñ2Þ ¼ 0 in H5(Gb;UTð1Þ),
where O is some unknown cohomology operation
(to the best of our knowledge) that maps ñ2 satisfying
Sq2ðñ2Þ¼0 in H2ðGb;Z2Þ into an element in
H5ðGb;Z8Þ ⊂ H5½Gb;UTð1Þ�. The explicit expression of
O is very complicated, and it is computed in a physical way
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in Sec. IV B. BH3ðGb;Z2Þ, the obstruction-free subgroup
of H3ðGb;Z2Þ, is formed by elements n3 ∈ H3ðGb;Z2Þ
that satisfy Sq2ðn3Þ ¼ 0 in H4(Gb;UTð1Þ). We note that
BH3ðGb;Z2Þ andH4

rigid(Gb;UTð1Þ)≡H4ðGb;Z2Þ/Γ were
derived in the special group supercohomology classifica-
tion. Recall that H4(Gb;UTð1Þ) is the well-known classi-
fication of bosonic SPT phases and Γ is a normal subgroup
of H4(Gb;UTð1Þ) generated by Sq2ðn2Þ, where n2 ∈
H2ðGb;Z2Þ and Sq2ðn2Þ are viewed as elements of
H4½Gb;UTð1Þ�. Physically, Γ describes those trivialized
bosonic SPT phases when embedded into interacting
fermion systems.
Together with several previous works [42,50], we con-

jecture that up to spacial dimension dsp ¼ 3, FSPT with

symmetry Gf ¼ Gb × Zf
2 can be classified by the general

group supercohomology class H
dspþ1

f ½Gf;UTð1Þ� defined
by the exact sequences summarized in Table I. We note that
for spacial dimension dsp > 1, general group supercoho-
mology theory is defined by two short exact sequences. The
first short exact sequence can be understood as decoration

of complex fermions onto the intersection points of the Gb-
symmetry domain walls, which was first derived by special
group supercohomology theory. The second exact sequence
can be understood as decoration of Kitaev’s Majorana
chains onto the intersection lines of Gb-symmetry domain
walls, and our construction gives rise to a general scheme to
compute B̃Hdsp−1ðGb;Z2Þ [the obstruction-free subgroup
of Hdsp−1ðGb;Z2Þ] in arbitrary dimensions. As an appli-
cation, we also illustrate the classification results of FSPT
phases for some simple symmetry group Gb in all physical
dimensions in Table II.
Finally, regarding the completeness of general group

supercohomology classification for 3D FSPT phases, we
present some physical arguments. Although the decoration
of complex fermions on the intersection points of Gb-
symmetry domain walls and the decoration of Majorana
chains on Gb-symmetry domain walls give rise to a
complete classification of 2D FSPT phases, this does not
necessarily imply that this is also true in 3D. In fact, it has
been pointed out [8] that the decoration of invertible TQFT
on the Gb-symmetry domain walls may also give rise to
new SPT states. For bosonic SPT states, decoration of the
so-called E8 state on the Gb-symmetry domain walls
indeed produces the efmf SPT state beyond group
cohomology classification. It has also been pointed out
that H1ðGb;ZÞ classifies these additional bosonic SPT
states. As H1ðGb;ZÞ is trivial for the unitary symmetry
group Gb and H1ðZT

2 ;ZÞ ¼ Z2 for the antiunitary time-
reversal symmetry, we understand why the efmf state is
the only nontrivial root state of bosonic SPT states beyond
group cohomology classification with time-reversal sym-
metry. For interacting fermion systems, in principle, we can
decorate a pþ ip state (the root state of 2D fermionic
invertible TQFT) onto the Gb-symmetry domain walls.
However, as H1ðGb;ZÞ is trivial for the unitary symmetry
group Gb, there are no new FSPT states with unitary
symmetry group Gb. For time-reversal symmetry, it is
possible to generate new FSPT states in this way, and we
discuss this possibility in our future work.

TABLE I. Classifying FSPT phases up to spacial dimension
dsp ¼ 3 with a total symmetry Gf ¼ Gb × Zf

2 using a general
group supercohomology class computed from short exact
sequences. Note that Hdspþ1½Gf;UTð1Þ� is the so-called special
group supercohomology proposed in Ref. [42], and that in lower

dimensions with dsp ¼ 0, 1, we have H
dspþ1

f ½Gf;UTð1Þ�≡
Hdspþ1½Gf;UTð1Þ�.
dsp Short exact sequence

0 0 → H1½Gb;UTð1Þ� → H1
f½Gf;UTð1Þ� → Z2 → 0

1 0→H2½Gb;UTð1Þ�→H2
f½Gf;UTð1Þ�→H1ðGb;Z2Þ→0

2 0→H3½Gb;UTð1Þ�→H3½Gf;UTð1Þ�→BH2ðGb;Z2Þ→0

0→H3½Gf;UTð1Þ�→H3
f½Gf;UTð1Þ�→H1ðGb;Z2Þ→0

3 0→H4
rigid½Gb;UTð1Þ�→H4½Gf;UTð1Þ�→BH3ðGb;Z2Þ→0

0→H4½Gf;UTð1Þ�→H4
f½Gf;UTð1Þ�→B̃H2ðGb;Z2Þ→0

TABLE II. Classification of FSPT phases with a total symmetry Gf ¼ Gb × Zf
2 in dsp spatial dimensions

constructed using general group supercohomoloy for some simple symmetries (represented by the bosonic
symmetry groups Gb). Here, Z1 means that our construction only gives rise to the trivial phase. Zn means that the
constructed nontrivial SPT phases plus the trivial phase are labeled by the elements in Zn.

Gbndsp 0 1 2 3

Z2 Z2
2

Z2 Z8 Z1

Z2kþ1 Z4kþ2 Z1 Z2kþ1 Z1

Z2k Z2k × Z2 Z2
nZ4k × Z2; k even
Z8k; k odd

Z1

Z2 × Z2 ðZ2Þ3 ðZ2Þ3 ðZ8Þ2 × Z4 ðZ2Þ2
Z2 × Z4 Z4 × ðZ2Þ2 ðZ2Þ3 ðZ8Þ2 × ðZ2Þ3 Z4 × Z2

Z4 × Z4 ðZ4Þ2 × Z2 ðZ2Þ2 × Z4 ðZ8Þ2 × Z4 × ðZ2Þ3 ðZ4Þ2 × Z2

Z2 × Z8 Z8 × ðZ2Þ2 ðZ2Þ3 Z16 × Z8 × ðZ2Þ3 Z8 × Z2
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C. Organization of the paper

The remainder of this paper is organized as follows. We
begin with the definition of Hilbert space and the basic
structure of fixed-point wave functions for FSPT states with
total symmetryGf ¼ Gb × Zf

2 in 1D, 2D, and 3D in Sec. II.
In Sec. III A, we give a brief review of discrete spin
structures and Kasteleyn orientations in 2D. In Sec. III B,
we derive the fixed-point conditions for FSLU transforma-
tions under wave function renormalization and rederive the
classifications of 2D FSPT phases. In Sec. IVA, we discuss
how to generalize the discrete spin structure and local
Kasteleyn orientation in 3D. In Sec. IV B, we use the
concept of equivalence class of FSLU transformations and
wave function renormalization to obtain the construction
and classification of 3D FSPT phases. Finally, we offer
conclusions and discussions for possible future directions
in Sec. V.
Readers less interested in the detailed mathematical

construction of (local) Kasteleyn orientations are invited
to skip some part of Secs. III A and IVA and read directly
Secs. III B and IV B of constructing FSPT states. The only
prerequisites are some terminology conventions and the
conclusion that we can construct (local) Kasteleyn orien-
tations systematically and rigorously on the resolved dual
lattice of arbitrary triangulations of spin manifolds in
arbitrary dimensions.

II. FIXED-POINT WAVE FUNCTIONS
OF FSPT PHASES

A. Constructing fixed-point wave function
and classification for FSPT phases in 1D

As a warm-up, let us begin with fixed-point wave
function in 1D and use FSLU transformation to rederive
the well-known classification result of 1D FSPT phases.
The building block of bosonic and fermionic degrees of
freedom in the 1D FSPT model is shown in Fig. 1. Similar
to the bosonic SPT phase, every (locally ordered) vertex i
of the 1D lattice has bosonic degrees of freedom labeled by
a group element gi ∈ Gb. (Recall that the FSPT phases have
a total symmetry Gf ¼ Gb × Zf

2.) A spinless complex
fermion cðijÞ is at the center of each link hiji (see the blue
ball in Fig. 1), and the fermion occupation number
n1ðgi; gjÞ is either 0 or 1. Let j0i be the ground state of
no fermions on any of the links; then, a generating set of the
Fock space is given by

Q
ðijÞ∈lc

†
ðijÞj0i, where l ⊂ L is a

subset of all links L, including the empty set. Thus, the full
local Hilbert space for our 1D model on a fixed lattice T
(triangulation of 1D spacial manifold) is

L1D
T ¼ ⨁

l⊂L

�Y
ðijÞ∈l

c†ðijÞj0i ⊗
Y

v∈VðT Þ
CjGbj

�
: ð4Þ

Here, jGbj is the order of the bosonic symmetry group
Gb. As a vector space, the fermionic Hilbert space on the
links is the same as the tensor product ⨂LðT ÞC2; however,
the Fock space structure means that a local Hamiltonian for
a fermion system is nonlocal when regarded as one for a
boson system. We note that the structure of total bosonic
and fermionic Hilbert space on arbitrary triangulations is
the same as the 1D case of Ref. [42], although the latter is
considering the spacetime picture.
Our 1D fixed-point state is a superposition of those basis

states with all possible triangulations T :

ð5Þ

In the following, we derive the rules of wave function
renormalization generated by FSLU transformations for the
above wave function. We obtain the conditions for a fixed-
point wave function and show how to construct all FSPT
states with total symmetry Gf ¼ Gb × Zf

2 in 1D.

1. Fermionic symmetric local unitary transformation

To obtain a fixed-point wave function for Eq. (5), we
need to understand the changes of the wave function under
renormalization. In 1D, renormalization can be understood
as removing some bosonic or fermionic degrees of freedom
by reducing the number of vertices. The basic renormal-
ization process is known as (2-1) Pachner move of
triangulation of 1D manifold. Since we have a bosonic
degree of freedom at each vertex and a fermionic degree of
freedom at each link, the (2-1) move effectively reduces the
Hilbert space of one bosonic mode and one fer-
mionic mode.
To be more precise, the (2-1) move is an FSLU trans-

formation between the fermionic Fock spaces on two
different triangulations:

ð6Þ

where the F operator is defined as

Fðg0; g1; g2Þ ¼
1

jGbj1/2
ν2ðg0; g1; g2Þc†n1ðg1;g2Þð12Þ

× c†n1ðg0;g1Þð01Þ cn1ðg0;g2Þð02Þ : ð7Þ

FIG. 1. Bosonic and fermionic degrees of freedom for 1D fixed-
point FSPT states on a link. The black dots are bosonic degrees of
freedom labeled by gi ∈ G on sites. The blue ball represents the
complex fermion cðijÞ at the center of the link hiji. The arrow
represents the local order of two sites.
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We note that the jGbj is the order of the group Gb, and we
introduce the normalization factor 1/jGbj1/2 in the above
expression due to the change of vertex number. Here,
ν2ðg0; g1; g2Þ is a UTð1Þ-valued function with variables
gi ∈ Gb and c†ðijÞ is the creation operator for c fermions at

link hiji. n1ðgi; gjÞ ∈ f0; 1g is a Z2-valued function
indicating whether there is a c fermion at link hiji or
not. Since we are constructing a symmetric state, both ν2
and n1 should be symmetric under the action of Gb [we
note that ν2ðgg0; gg1; gg2Þ ¼ ν�2ðg0; g1; g2Þ if g is antiuni-
tary]. So they areUTð1Þ-valued 2-cochain andZ2-valued 1-
cochain, respectively. Because the renormalization process
(2-1) move should preserve the fermion parity, we have

dn1ðg0; g1; g2Þ ¼ n1ðg1; g2Þ þ n1ðg0; g2Þ þ n1ðg0; g1Þ ¼ 0
(mod2). Therefore, n1 is in fact a Z2-valued 1-cocycle.

2. Consistent equations and equivalence classes

Since we are constructing a fixed-point wave function,
Eq. (5) should be invariant under renormalization. For
instance, we can use two different sequences of F moves
Eq. (6) to connect a fixed initial state and a fixed final state.
Different approaches should give rise to the same wave
function. These constraints give us the consistent equations
for ν2.
The simplest example is the following two paths between

two fixed states:

ð8Þ

ð9Þ

The constraint is that the product of F moves for the above
two processes equals to each other:

Fðg0;g1;g3ÞFðg1;g2;g3Þ¼Fðg0;g2;g3ÞFðg0;g1;g2Þ: ð10Þ

Substituting the expression of F move Eq. (7) into this
equation and using the fact dn1 ¼ 0 (mod2), we find that
the above equation for fermionic operators is equivalent to
a purely bosonic one without any fermion sign:

dν2ðg0; g1; g2; g3Þ ¼
ν2ðg1; g2; g3Þν2ðg0; g1; g3Þ
ν2ðg0; g2; g3Þν2ðg0; g1; g2Þ

¼ 1: ð11Þ

That means ν2 should be a UTð1Þ-valued 2-cocycle,
provided that the wave function Eq. (5) is a fix-point wave
function. These ν2 data are the same as the construction of
bosonic SPT states.
Using an FSLU transformation, we can redefine the basis

state jfglgi as

jfglgi0 ¼ Uμ1;m0
jfglgi

¼
Y
hiji

μ1ðgi; gjÞ
Y
hii

½fm0ðgiÞ
iA fm0ðgiÞ

iB �

×
Y
hiji

½f†m0ðgjÞ
jA f†m0ðgiÞ

iB �jfglgi; ð12Þ

where we first create two complex fermions fjA and fiB
near the two ends of the link hiji (i < j), and then
annihilate the two fermions fiA and fiB near the vertex i
when gluing the two links sharing vertex i. To preserve the
fermion parity and be symmetric, m0 should be a 0-cocycle
(with Z2 coefficient): m0ðggiÞ ¼ m0ðgiÞ and dm0ðgi; gjÞ ¼
m0ðgjÞ þm0ðgiÞ ¼ 0. μ1ðgi; gjÞ is a phase factor associated
with link hiji. In this new basis, the fermionic F move is
F0 ¼ Uμ1;m0

FU†
μ1;m0

. After eliminating all f fermions (all
the fermion signs are canceled), one finds that the phase
factor in Eq. (7) becomes

ν02ðg0; g1; g2Þ ¼ ν2ðg0; g1; g2Þ
μ1ðg1; g2Þμ1ðg0; g1Þ

μ1ðg0; g2Þ
: ð13Þ

Since our gapped phases are defined by FSLU trans-
formations, ν02 and ν2 belong to the same phase. In general,
the elements ν2 in the same group cohomology class in
H2(Gb;UTð1Þ) correspond to the same 1D FSPT phase.
This is consistent with the general result obtained from the
path-integral formalism in Ref. [42] that νdþ1 can be gauge
transformed to

ν0dþ1 ¼ νdþ1dμdð−1ÞSq2ðmd−1Þ; ð14Þ

for Sq2ðm0Þ is trivial in the 1D FSPT case.
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In summary, 1D FSPT is characterized by n1 ∈
H1ðGb;Z2Þ and ν2 ∈ H2(Gb;UTð1Þ). This is consistent
with the previous result [42].

B. Constructing fixed-point wave function
for FSPT phases in 2D and 3D

The fixed-point wave functions for FSPT phases in 2D
and 3D are much more complicated. We describe all the
details and explain the corresponding physical mean-
ings below.
Similar to the wave function renormalization scheme for

2D bosonic SET phases, we consider the quantum state
defined on an arbitrary triangulation for 2D and 3D FSPT
phases. The triangulation admits a branching structure that
can be labeled by a set of local arrows on all links (edges)
with no oriented loop for any triangle. Mathematically, the
branching structure can be regarded as a discrete version of
a spinc structure and can be consistently defined on
arbitrary triangulations of 2D and 3D orientable manifolds.
We begin with the construction of a fixed-point wave

function in 2D; then, the generalization to 3D becomes
straightforward. As any 2D FSPT state can be naturally
mapped to a 2D bosonic SET state by gauging the
fermion parity symmetry, our construction for fixed-point
wave functions is greatly inspired by such connections. In
particular, an FSPT state with total symmetry Gf ¼ Gb ×

Zf
2 can be mapped to a Gb symmetry-enriched toric code

model. As a simple example, fixed-point wave functions
and commuting projector parent Hamiltonians on an
arbitrary trivalent graph (due to triangulation) with Gb ¼
Z2 were constructed in Ref. [61]. It has also been shown
that all of these SET states can be obtained by gauging
fermion parity from FSPT states with total symmetry
Gf ¼ Z2 × Zf

2 .
The building block of bosonic and fermionic degrees of

freedom in our 2D FSPT model is shown in Fig. 2. Exactly
as in the bosonic SET phase, every vertex i of the space
triangulation has bosonic degrees of freedom labeled by a

group element gi ∈ Gb. (Recall that the FSPT phases have a
total symmetry Gf ¼ Gb × Zf

2.) A spinless complex fer-
mion c is at the center of each triangle or face (see the blue
ball in Fig. 2), and the fermion occupation number is either
0 or 1. Let j0i be the ground state of no fermions on any of
the triangles; then, a generating set of the Fock space is
given by

Q
ðijkÞ∈fc

†
ðijkÞj0i, where f ⊂ F is a subset of all

triangles F, including the empty set. In addition, each link
has two Majorana fermions on its two sides, an arrange-
ment that is equivalent to spinless complex fermion a.
Similar to the c fermion on each triangle, let j0̃i be the
ground state of no fermions on any of the links; then, a
generating set of the Fock space is given by

Q
ðijÞ∈la

†
ðijÞj0̃i,

where l ⊂ L is a subset of all links L, including the empty
set. Thus, the full local Hilbert space for our 2D model on a
fixed triangulation T is

L2D
T ¼⨁

f⊂F
⨁
l⊂L

� Y
ðijkÞ∈f

c†ðijkÞj0i⊗
Y
ðijÞ∈l

a†ðijÞj0̃i⊗
Y

v∈VðT Þ
CjGbj

�
:

ð15Þ

Here, jGbj is the order of the bosonic symmetry group Gb.
As a vector space, the fermionic Hilbert space on the
triangles and links is the same as the tensor product
⨂FðT ÞC2 ⊗ ⨂LðT ÞC2; however, the Fock space structure
means that a local Hamiltonian for a fermion system is
nonlocal when regarded as one for a boson system. We note
that the structure of total fermionic Hilbert space on
arbitrary triangulations is slightly more general than that
given in Ref. [63]; this allows us to construct very general
FSET states in 2D. However, the construction of general
FSET states is beyond the scope of this paper.
As mentioned above, for FSPT states, the support space

of FSLU transformations must be one dimensional such
that it can adiabatically connect to a product state in the
absence of global symmetry. Therefore, the fermionic states
of c and a fermions on the triangles and edges are
completely fixed by the configuration of group elements
fgig on the vertices. In particular, the equivalence classes of
complex fermion occupation number of c fermions are
uniquely determined by the elements in BH2ðGb;Z2Þ [the
obstruction-free subgroup of H2ðGb;Z2Þ], which was first
proposed by the special group supercohomology construc-
tion of FSPT phases. Essentially, the complex fermion c
can be regarded as a decoration on the intersection points of
Gb-symmetry domain walls. References [50,67,68] pointed
out that a Majorana chain can be decorated onto the Gb-
symmetry domain walls to generate a complete set of FSPT
states in 2D. This layer of decoration is uniquely deter-
mined by the elements in H1ðGb;Z2Þ. The Majorana
fermions must be paired (see the gray ellipse in Fig. 2)
to form Kitaev’s Majorana chains on the Gb symmetry
domain walls (see the green strip in Fig. 2). This requires a

FIG. 2. Fermionic degrees of freedom in a triangle. The red dots
represent Majorana fermions at the two sides of each link. The
blue ball represents the complex fermion of the special group
supercohomology model at the center of the triangle. The green
strip is the decorated Kitaev’s Majorana chain onto the dual
lattice P.
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discrete spin structure—the Kasteleyn orientations on the
dual trivalent lattice (with proper resolution for the lattice
sites, as seen in Fig. 2)—such that the total fermion parity
of the a fermion is always even on any closed loop. We
review all of the details in Sec. III A. An example of
triangulation of the torus and decoration of Kitaev’s
Majorana chains is given in Fig. 4. The full details are
discussed in Sec. III B.
Thus, our 2D fixed-point state is a superposition of those

basis states with all possible triangulations T :

ð16Þ

In Sec. III B, we derive the rules of wave function
renormalization generated by FSLU transformations. We
also obtain the conditions for fixed-point wave functions
and show how to construct all FSPT states with total
symmetry Gf ¼ Gb × Zf

2 on arbitrary triangulations in 2D.
In the following, we generalize all of the above con-

structions to 3D. The building block of bosonic and
fermionic degrees of freedom is shown in Fig. 3. Again,
every vertex i of the 3D space triangulation has a bosonic
degree of freedom labeled by a group element gi ∈ Gb.
However, the spinless complex fermion c introduced by
special group supercohomology theory now resides on each
tetrahedron (see the blue ball in Fig. 3). In addition, each
triangle of the space tetrahedron has twoMajorana fermions
on its two sides, which is again equivalent to a spinless
complex fermion a. Similar to the 2D case, let j0i and j0̃i be
the ground states of no fermions on any tetrahedron and
triangle; then, a generating set of the Fock space is given byQ

ðijklÞ∈tc
†
ðijklÞj0i ⊗

Q
ðijkÞ∈fa

†
ðijkÞj0̃i, where t ⊂ T is a sub-

set of all tetrahedra T, including the empty set, and f ⊂ F is

a subset of all trianglesF, including the empty set. Thus, the
full local Hilbert space of our 3D model on a fixed
triangulation T is

L3D
T ¼⨁

t⊂T
⨁
f⊂F

� Y
ðijklÞ∈t

c†ðijklÞj0i⊗
Y

ðijkÞ∈f
a†ðijkÞj0̃i

⊗
Y

v∈VðT Þ
CjGbj

�
: ð17Þ

Similar to the 2D case, the fermionic states of c and a
fermions on the tetrahedra and triangles are also completely
fixed by the configuration of group elements fgig on the
vertices. The equivalence classes of complex fermion
occupation number of the c fermion are uniquely deter-
mined by the elements in BH3ðGb;Z2Þ [the obstruction-
free subgroup of H3ðGb;Z2Þ], which was also first pro-
posed by the special group supercohomology construction
of FSPT states. It is not a surprise that in 3D the complex
fermion c can also be regarded as a decoration (subjected to
obstructions) onto the intersection points of Gb-symmetry
domain walls. The most interesting new feature here is that
a Majorana chain can also be decorated onto the inter-
section lines of Gb-symmetry domain walls, and such a
construction generates a new set of FSPT states in 3D. As
expected, this layer of decoration also requires a discrete
spin structure on the dual trivalent lattice (with a proper
resolution for the lattice sites as well, as seen in Fig. 3), and
the Majorana fermions must also be paired to form Kitaev’s
Majorana chains (see the green line in Fig. 3). However,
such decorations are subjected to a fundamental obstruction
on H4ðGb;Z2Þ due to fermion parity conservation. We
discuss all of the details in Sec. IVA. Furthermore, the
fixed-point condition of wave function renormalization
gives rise to a secondary obstruction on H5(Gb;UTð1Þ),
which is explored in full in Sec. IV B.
Finally, our 3D fixed-point state is a superposition of

those basis states with all possible triangulations T :

ð18Þ

In Sec. IV B, we derive the rules of wave function
renormalization generated by FSLU transformations. We
also obtain the conditions for fixed-point wave function and
show how to construct all FSPT states with total symmetry
Gf ¼ Gb × Zf

2 on arbitrary triangulations in 3D.

FIG. 3. Fermionic degrees of freedom in a tetrahedron. The red
dots represent Majorana fermions on the two sides of each
triangle. The blue ball represents the complex fermion of the
(special) group supercohomology model at the center of the
tetrahedron. The green line is the decorated Kitaev’s Majorana
chain on the dual lattice P.
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III. CONSTRUCTIONS AND CLASSIFICATIONS
FOR FSPT STATES IN 2D

Reference [67] pointed out that discrete spin structures
and Kasteleyn orientation played an essential role in
constructing FSPT phases decorated with Kitaev’s
Majorana chains on Gb-symmetry domain walls. In this
section, we give a brief review of the essential idea and
generalize the construction to arbitrary triangulations in 2D
(see Fig. 4). In particular, we use Poincaré dual to show
how to implement discrete spin structures and Kasteleyn
orientation for an arbitrary triangulation with a branching
structure in 2D. Essentially, the Poincaré dual enables us to
define discrete spin structures in arbitrary dimensions and
gives rise to the notion of local Kasteleyn orientation,
which serves as the key step toward decorating Kitaev’s
Majorana chains onto the intersection lines of Gb-
symmetry domain walls in 3D.
In the following, we start by defining spin structures in

terms of the second Stiefel-Whitney class. Then, we clarify
the relation between the discrete spin structures and the
Kasteleyn orientation in 2D. Finally, we make use of the
novel concept of equivalence classes of FSLU transforma-
tions (with a one-dimensional support space) to obtain
the full classification of FSPT states with total symmetry
Gf ¼ Gb × Zf

2 in 2D.

A. Discrete spin structure and Kasteleyn orientations

In this section, we construct the zeroth Stiefel-Whitney
homology class on arbitrary 2D triangulation lattice and
relate it to the Kasteleyn orientations on the resolved dual
lattice. The general procedures of constructing Kasteleyn
orientations are summarized as follows.
(1) Given a (black) triangulation lattice T with branching

structure for a 2D spin manifold,
(2) Construct the (red) resolved dual lattice P̃ and (red)

link orientations using convention Fig. 6. At this stage,
some of the vertices in T are non-Kasteleyn oriented.
(3) Find the expression of w0 in Eq. (20) as a formal

summation of singular vertices of T [i.e., non-Kasteleyn-
oriented vertices in step (2)].
(4) Connect singular vertices in T by (blue) lines S

(i.e., ∂S ¼ w0).
(5) Using convention Fig. 7(b), reverse the orientations

of (red) links dual to (blue) links belonging to S.
(6) Now all the vertices in T are Kasteleyn oriented.
After all the above steps, the resolved dual lattice P̃ now

has Kasteleyn orientations. In this way, any decorations of
Kitaev’s Majorana chains will have the same fermion
parity. We use them to construct generic FSPT states in
Sec. III B.

1. Discrete Stiefel-Whitney homology class w0

It is well known that an oriented manifold M (with
dimension n) admits spin structures if and only if its second
Stiefel-Whitney class ½w2� ∈ H2ðM;Z2Þ vanishes. In the
construction of the lattice models upon triangulation of M,
we find it more convenient to use the (n − 2)th Stiefel-
Whitney homology class ½wn−2�, which is the Poincaré dual
of ½w2�.
In this section, we consider only the 2D case. For a

spatial manifold M (n ¼ 2) with triangulation T , the
Stiefel-Whitney homology class ½w0� has a representative
that is the summation of all vertices v with some (mod2)
coefficients as follows [69,70]:

w0 ¼
X
v∈T

N fσjv ⊆ σ is regulargv: ð19Þ

Here, v ⊆ σ means that v is a subsimplex of simplex
σ:v ⊆ σ is called regular if v and σ have one of the three
relative positions shown in Fig. 5. N fσjv⊆σ is regularg ·v
denotes the formal product of the (mod2) number of regular
pairs v ⊆ σ and the vertex v. We call vertex v singular if
N fσjv ⊆ σ is regularg is odd. In this language, w0 in
Eq. (19) is the formal summation of all singular vertices. w0

is a vector (0th singular chain) in the vector space (of 0th
singular chains) spanned by the formal bases of all vertices
with Z2 coefficients.
On the other hand, it is known that all oriented 2D

surfaces admit spin structures. Thus, the second Stiefel-
Whitney class ½w2� or the zeroth Stiefel-Whitney homology

FIG. 4. Example of triangulation T of torus and Kitaev chain
decoration. All vertices h1i, h2i, h3i, and h4i (blue dots) are
singular vertices; i.e., w0 ¼ h1i þ h2i þ h3i þ h4i. We choose
link h13i and h24i (blue lines) to be singular lines; i.e.,
w0 ¼ ∂ðh13i þ h24iÞ. The direction of the red links dual to
h13i and h24i are changed. Vertices i ¼ 1, 2, 3, and 4 of T are
labeled by group elements gi ∈ G. Majorana fermions (red dots)
reside on the vertices of the resolved dual lattice P̃ (solid and
dashed red links). The solid red links and gray ellipses indicate
that the two Majorana fermions at their two ends are paired with
respect to the link direction. The green strip is theZ2 domain wall
of the “spin” configuration fgig and is decorated by a Kitaev’s
Majorana chain (Majorana fermions along the domain wall are
paired differently from the “vacuum”).
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class ½w0� of any oriented surface is (co)homologically
trivial. As a result, the collection of singular vertices w0 in
Eq. (19) can be viewed as a boundary ∂S for some lines S
(we call them singular lines). The singular lines S are
colored blue in the following Figs. 7(b) and 8.
For a fixed collection of singular vertices (a fixed

representative w0 for ½w0�), different inequivalent choices
of singular lines S correspond to different spin structures
that are isomorphic to H1ðM;Z2Þ noncanonically. This can
be seen as follows. We first choose arbitrary fixed S0 such
that w0 ¼ ∂S0. Then for any other choice S with also
w0 ¼ ∂S, we can add S0 and S formally. The summation
S0 þ S is a collection of closed loops on the manifold
(recall that lines in S0 and S have the same end points). We
can ask whether S0 þ S is in the trivial class of H1ðM;Z2Þ
or not. If it is, we say S0 and S are equivalent. In this way,
with the fixed S0, we have a one-to-one correspondence
between equivalence classes of singular lines S and
H1ðM;Z2Þ. In other words, the set of equivalence classes
of singular lines S is an affineH1ðM;Z2Þ space. This is also
one of the most important properties of spin structures of a
manifold. As a result, we have a one-to-one correspondence
between 22g equivalence classes of singular lines S and 22g

spin structures of the manifold with genus g.

2. Kasteleyn orientations and gauge transformations

To decorate Kitaev chains onto domain walls of a 2D
spin model, it is useful to determine the Kasteleyn
orientation [64] for the edges of the lattice [67,68]. In this
section, we relate the existence of discrete spin structures
(the vanishing of ½w0�) of a triangulation T to the existence
of Kasteleyn orientation of the resolved dual lattice. Then,
in the next section, we use FSLU transformations [28,63] to
classify FSPT states and define exactly solvable models on
arbitrary triangulations in 2D.
Our setup begins with a fixed triangulation T of the

surface M. The first step is to construct a polyhedral
decomposition P of M that is a trivalent graph dual to T .
We add a spinless fermionic degree of freedom to every link
of T and split it into two Majorana fermions on the two
sides of this link for convenience. Equivalently, we can
resolve the triangulation T by adding a new vertex to each
triangle center and obtain a new triangulation T̃ . The
Majorana fermions reside on the vertices of the resolved
dual lattice P̃, which is a trivalent graph dual to T̃ (see
Figs. 4 and 6 for this construction on a torus).

The second step is adding directions to links in T and P̃.
We order all of the vertices in T and use the convention that
all links are from vertices of smaller number to vertices of
larger number. This is a branching structure of T such that
there is no cycle for any triangle. The dual-link direction
in P is obtained from T using the convention shown in
Fig. 7(a). The directions of the new links in P̃ are also
obtained from triangulation T by using the conventions
in Fig. 6.
The essential point of the aforementioned link orienta-

tion conventions can be explained as follows. When
traveling along the smallest red loop in P̃ around vertex
v ∈ T counterclockwise, we encounter even numbers of
red links (due to the resolvation) with the direction along or
opposite to our direction (for example, the red loop inside
the green strip around vertex 4 in Fig. 4). Using the
conventions in Fig. 6, the red link direction is opposite
the counterclockwise direction if and only if (1) the red link
is dual to a black link in T such that v is the initial point of
this black link [this corresponds to the case in Fig. 5(b)] or
(2) the red link is resolved to a new link inside a triangle in
T such that v is the first point of this triangle, i.e., the 0
point of triangle h012i [this is the case in Fig. 5(c)]. If the

FIG. 5. Regular pair v ⊆ σi (i ¼ 0, 1, 2) for vertex v.

FIG. 6. Triangulation T (black line), resolved triangulation T̃
(black and gray line), and resolved dual lattice P̃ (dashed red
line). The resolved triangulation T̃ was obtained from the original
T by adding a new vertex to the center of each triangle. The links
of P have orientations induced from the link orientations of T
according to the conventions shown in Fig. 7(a). Red dots on the
vertices of P̃ represent Majorana fermions that split from the
complex fermions on each link of T (see the discussion in
Sec. III B).

FIG. 7. Conventions for the orientation of links in P̃ (dotted red
line) from branching structure of triangulation T (solid black
line). Nonsingular (singular) black (blue) links l ∉ S (l ∈ S)
induce orientation conventions for the dual link in P̃. We
introduce a spinless fermion on each (black or blue) link in T
and split it into two Majorana fermions on the two sides of this
link or vertices of P̃ (red dots).
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total number of red links with opposite directions is odd,
the vertex v is considered Kasteleyn oriented. As the
smallest loop in P̃ around v has an even number of red
links, it does not matter whether we use counterclockwise
or clockwise conventions. Under the above construction,
we relate the zeroth Stiefel-Whitney homology class w0 in
Eq. (19) and the orientation of links in P̃, i.e., w0 is the
summation of all non-Kasteleyn-oriented vertices:

w0 ¼
X
v∈T

ð1þN fσ1jv ⊆ σ1 is regularg

þN fσ2jv ⊆ σ2 is regulargÞv
¼

X
v∈T

vðv is non-Kasteleyn orientedÞ: ð20Þ

As the zeroth Stiefel-Whitney homology class ½w0� for
any oriented surface is trivial, we have w0 ¼ ∂S for some
singular line S. If we further reverse the direction of the
links in P̃, thus crossing the singular lines S as shown in
Fig. 7(b), then all of the vertices in T are Kasteleyn
oriented, as this operation changes only the Kasteleyn
property of the singular vertices in w0 while preserving this
property for all other vertices, including those in the
interval of S. After completing the procedure above, we
relate the vanishing of the zeroth Stiefel-Whitney homol-
ogy class ½w0� to the property of Kasteleyn orientation of
the smallest loop around each vertex.
Note that the construction of link direction in P̃ depends

on the choice of the singular line S. On the one hand, the
local shape of S is not important as long as ∂S is fixed. In
fact, if we change the shape of S locally, the change in link
direction in P̃ can be obtained by several “gauge trans-
formations” of Kasteleyn orientation, which relate two
different but equivalent Kasteleyn orientations (simulta-
neously changing the directions of links sharing a common
vertex in P̃) [65]. An example of the basic shape changes of
singular lines on T and gauge transformation of Kasteleyn
orientation on P̃ is shown in Fig. 8. Note that the Majorana

degrees of freedom on the vertices of P̃ are mapped from
one lattice to another according to the link direction under
the gauge transformation of Kasteleyn orientation (n to n0
in Fig. 8). In this way, the vacuum state without fermions
(without Kitaev chain) on the left lattice is mapped to the
vacuum state on the right lattice without changing the
fermion parity.
On the other hand, the homology class of S matters.

Different choices of topological classes of S (fixed
w0 ¼ ∂S) correspond to different spin structures on M.
Our constructions make sure that, for arbitrary choices of S,
the local Kasteleyn properties along the smallest loop
around every vertex are satisfied. However, the global
Kasteleyn property along nontrivial cycles of M can be
either preserved or broken. They correspond to 22g different
spin structures on closed oriented surface M with genus g
[65,66]. Different choices of S induce different global
Kasteleyn properties and thus correspond to different spin
structures.

3. Kasteleyn orientations under retriangulations

In the above, we focus only on a fixed triangulation T of
M and relate its discrete Stiefel-Whitney homology class
½w0� to the Kasteleyn orientations and spin structures. To
use FSLU transformations to classify FSPT phases, we
must understand the relation of Kasteleyn orientations for
different triangulations. In fact, we only have to determine
the changes of Kasteleyn orientations under Pachner
moves, which are basic moves of retriangulation [71].
Ordinary Pachner moves for a two-dimensional manifold

consist of a (2-2) move and a (1-3) move. With branching
structures, there are three types of (2-2) move and four
types of (1-3) move in total. (We do not consider the mirror
images of these moves; otherwise, the number of moves
would double.) Only two types of (2-2) move and two types
of (1-3) move have branching structures that can be induced
by global ordering [42]. Examples of these moves are
shown in Figs. 9 and 10.
Other types of (2-2) and (1-3) moves are shown in

Supplemental Material [72]. For Pachner moves that are not
induced by global ordering, the representative w0 of Stiefel-
Whitney class ½w0� in Eq. (19) may be changed. For
Pachner moves that are induced by a global ordering,
the representative w0 of Stiefel-Whitney class ½w0� is

FIG. 8. Shape changing of singular lines S of T and “gauge
transformation” of Kasteleyn orientations of P̃. We perform
gauge transformations on the three red vertices inside a black
triangle, which effectively change the shape of S and the
directions of the three outreaching red links. The Majorana
fermions are mapped from n to n0 ðn ¼ 1; 2;…; 6Þ with respect
to the directions of red links dual to black links under this FSLU. FIG. 9. Standard (2-2) move.
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unchanged. This makes the 2D case much easier than the
3D case.

B. FSLU transformations and consistent conditions
for fixed-point states

In the above section, we discuss discrete spin structures
and Kasteleyn orientation construction on arbitrary 2D
triangulation lattices. We can now decorate Kitaev’s
Majorana chains using these rules and systematically
classify 2D FSPT states by using FSLU transformations.

1. Decoration of Kitaev’s Majorana chains

As discussed in Sec. II, our model has two types of
fermionic degrees of freedom. The first type is the complex
fermion cðijkÞ, which resides at the center of triangle hijki
of space manifold triangulation T . We use n2ðgi;gj;gkÞ¼0,
1 to denote the number of c fermions at triangle hijki. In
fact, the parity conservation constraint for c fermions under
retriangulation is dn2 ¼ 0 (mod2). Therefore, n2 is an
element of H2ðGb;Z2Þ.
The second type of (complex) fermion, aðijÞ, resides on

the link hiji of T . To describe Kitaev’s Majorana chain
more conveniently, we separate fermion aðijÞ to two
Majorana fermions:

γijA ¼ aðijÞ þ a†ðijÞ; ð21Þ

γijB ¼ 1

i
ðaðijÞ − a†ðijÞÞ: ð22Þ

The Majorana fermions γijA and γijB reside on the two sides
of link hiji. They also reside on the two ends of the link in
P̃ dual to link hiji. Our convention is that the dual link has
direction from vertex hijAi to vertex hijBi. The fermion
parity operator of a fermions or γ fermions at link hiji
is Pγ

f ¼ −iγijAγijB.
Now we decorate Kitaev’s Majorana chains onto the dual

lattice. We use a Z2-valued 1-cochain ñ1ðgi; gjÞ to indicate
whether there is a domain wall between vertices i and j.
ñ1 ∈ H1ðGb;Z2Þ is a cocycle because we are constructing
SPT states without deconfined Majorana fermions (the
Kitaev chains should form closed loops). Depending on the
configurations of fgig and the choices of ñ1, the domain
wall configuration in a particular lattice is different. We pair
the Majorana fermions depending on the domain wall
configuration as follows. If there is no domain wall on link
hiji, then the Majorana fermions γijA and γijB on the two
sides of this link are paired (vacuum pair) with respect to
the direction of the dual red link (we use a solid blue line
and gray ellipse to indicate this pairing). If there is a domain
wall on link hiji, then the Majorana fermion of this link is
paired with another Majorana fermion belonging to another
link with a domain wall within the same triangle.
After fermion decoration, the (2-2) move becomes a

fermionic unitary transformation between the fermionic
Fock spaces on two different triangulation lattices T and
T 0. An example of this F move (the standard F move) is
presented as follows (there are Z2 domain walls on links
h01i, h02i, h03i, and no domain wall on the other links):

ð23Þ

where the F operator is defined as

Fðg0;g1;g2;g3Þ¼ν3ðg0;g1;g2;g3Þc†n2ðg0;g1;g2Þð012Þ c†n2ðg0;g2;g3Þð023Þ

×cn2ðg0;g1;g3Þð013Þ cn2ðg1;g2;g3Þð123Þ X½ñ1ðgi;gjÞ�: ð24Þ

Here, ν3ðg0; g1; g2; g3Þ is a UTð1Þ-valued 3-cochain and
c†ð012Þ is the creation operator for c fermions at triangle

h012i. X½ñ1ðgi; gjÞ� is a projection operator changing the
Majorana fermion configurations. In the above example,
the X operator has an explicit form as follows:

X½ñ1� ¼ 21/2ðP01B;02AP02B;03AÞP13A;13B; ð25Þ

where Pa;b ¼ ð1 − iγaγbÞ/2 is the projection operator for
Majorana pairs ha; bi (the direction is from vertex a to

FIG. 10. One of the (1-3) moves.
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vertex b). The first two projection operators in the above
equation project the state to the Majorana dimer configu-
ration in the left-hand figure. Note that the Majorana
fermions, which do not appear explicitly on one lattice,
are considered to be in vacuum pairs. For example, the two
Majorana fermions γ13A and γ13B appear only in the right-
hand figure. They are considered to be paired from γ13A to
γ13B in the left-hand figure. Therefore, we have a third
projection operator in Eq. (25) to put the two Majorana
fermions γ13A and γ13B into a vacuum state (a†ð13Það13Þ ¼ 0)

in the left-hand figure. All other Majorana fermions that are
not shown in Eq. (25) are unchanged under the aforemen-
tioned F move.
In order to make X a unitary operator acting on the

Hilbert space of Majorana fermions, we introduce a
normalization factor in the front of X. By directly calculat-
ing the norm of the final state after the action of the X
operator, we can obtain a general expression of the
normalization factor, Y

loop i in ðP̃;P̃0Þ
2ðLi−1Þ/2; ð26Þ

with 2Li being the length of the ith loop in the transition
graph of dimer configurations in P̃ and P̃0. For
example, the transition graph of the two states in
Eq. (23) has only one loop with length bigger than two:
01B-02A-02B-03A-01B. So the factor is 2ð4/2−1Þ/2 ¼ 21/2,
according to Eq. (26).
As we are constructing FSPT states, the fermionic local

unitary transformation F should be Gb symmetric in the
sense that

Fðg0; g1; g2; g3Þ ¼ Fðgg0; gg1; gg2; gg3Þ; ð27Þ
for all g ∈ Gb if Gb is a unitary symmetry group. That is
why ν3ðg0; g1; g2; g3Þ, n2ðg0; g1; g2Þ, and ñ1ðg0; g1Þ are all
cochains that are invariant under unitary g action. [We note
that ν3ðgg0; gg1; gg2; gg3Þ ¼ ν�3ðg0; g1; g2; g3Þ for antiuni-
tary g action.]
In general, there are eight kinds of domain wall con-

figuration in the above F move. One can show that for all
configurations, the fermion parities of Majorana fermions

are the same in the initial and final wave functions (this
comes from the Kasteleyn orientation property of retrian-
gulations; see Sec. III A and Supplemental Material [72]).
Therefore, the fermion parities of c fermions and γ fermions
should also be conserved separately, and both n2 and ñ1 are
cocycles.
Similar to the 1D case, we can use FSLU to redefine the

basis state jfglgi as
jfglgi0 ¼ Uμ2;m1

jfglgi
¼

Y
hijki

μ2ðgi; gj; gkÞshijki
Y
hiji

½fm1ðgi;gjÞ
ijA f

m1ðgi;gjÞ
ijB �

×
Y
hijki

½f†m1ðgj;gkÞ
jkA f

†m1ðgi;gjÞ
ijA f†m1ðgi;gkÞ

ikB �jfglgi; ð28Þ

where we first create three complex fermions fjkA, fijA, and
fikB near the three links of the triangle hijki (i < j < k),
and then annihilate the two fermions fijA and fijB on
the two sides of link hiji when gluing the two triangles
sharing link hiji. To preserve the fermion parity and
be symmetric, m1 should be a 1-cocycle (with Z2 coef-
ficient): m1ðggi; ggjÞ ¼ m1ðgi; gjÞ and dm1ðgi; gj; gkÞ ¼ 0.
μ2ðgi; gj; gkÞ is a phase factor associated with triangle hijki,
and shijki ¼ �1 denotes the orientation of the triangle.
After eliminating all f fermions in the new F move
operator F0 ¼ Uμ2;m1

FU†
μ2;m1

(all fermion signs are can-
celed again), one finds that the phase factor in Eq. (24)
becomes

ν03ðg0; g1; g2; g3Þ

¼ ν3ðg0; g1; g2; g3Þ
μ2ðg1; g2; g3Þμ2ðg0; g1; g3Þ
μ2ðg0; g2; g3Þμ2ðg0; g1; g2Þ

; ð29Þ

so the elements ν3 in the same group cohomology class in
H3ðGb;UTð1ÞÞ correspond to the same 2D FSPT phase.
This is also consistent with the general result in Eq. (14)
[42], since Sq2ðm1Þ is also trivial in the 2D FSPT case.
Apart from the (2-2) move, there is another (2-0) move

that can change the total number of vertices for triangu-
lations. An example of domain wall configurations for the
(2-0) move is

ð30Þ
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where cð012Þ and c̄ð012Þ are the annihilation operators of the
c fermions at the center of two triangles with opposite
orientations in the left-hand figure (cð012Þ and c̄ð012Þ are at
the centers of the upper and lower triangles in the left-hand
figure, respectively). The Hilbert dimension of the bosonic
degrees of freedom on the vertices of a fixed triangulation is
jGbjNv , where jGbj is the order of the group Gb and Nv is
the number of vertices. Therefore, we add a normalization
factor jGbj−1/2 in the front of the (2-0) move operator, for
the vertex number is reduced by one from the left state to
the right state. X½ñ1� is also the projection operator from the
state of Majorana dimer pairs in the right-hand figure to
the state of the left-hand figure. Note that there are six
Majorana fermions (γ02A, γ02B, γ01A0 , γ01B0 , γ12A0 , and γ12B0 )
that do not appear explicitly in the right-hand figure.
Similar to the case of the (2-2) move, these fermions
should also be considered to be in vacuum pairs in the
right figure state, such that −iγ02Aγ02B ¼ −iγ01B0γ01A ¼
−iγ12B0γ12A0 ¼ 1 when acting on the right figure state.
This choice is possible because the dimer loop
01A-01B0-01A0-01B-01A is Kasteleyn oriented. Therefore,
one can also use the convention that the two Majorana
fermions on the two sides of a link are paired up by
regarding the projection operators −iγ01Aγ01B0 , −iγ01A0γ01B,
−iγ12Aγ12B0 , and −iγ12A0γ12B as 1 when acting on the
vacuum state of the left-hand figure. The X operator then
projects the state to the Majorana dimer configuration state
in the left-hand figure. The fermion parities of the left and
right states are always the same. An explicit expression of
X for this particular (2-0) move is

X½ñ1� ¼ 2P01B0;02AP02B;01A0P12A;12B0P12A0;12B: ð31Þ

Using the (2-0) moves, we can deduce all (3-1) moves and
other (2-2) moves from the standard (2-2) F move in
Eq. (23). The normalization factor is obtained from
Eq. (26). There are two loops in the transition graph of
the Majorana dimer states with length bigger than two:
01B0-02A-02B-01A0-01B0 and 12A-12B0-12A0-12B-12A.
So the normalization factor is 2ð4/2−1Þ/2 × 2ð4/2−1Þ/2 ¼ 2.

2. Fermionic pentagon equations

In the above, we discuss the FSLU moves. The most
important one is the standard Fmove in Eq. (23). Similar to
the bosonic pentagon equation for the bosonic F move, we
have a fermionic pentagon equation as a consistent equa-
tion for FSLU transformations (see Fig. 11). This fermionic
pentagon equation involves only the standard F move.
Using the unitary conditions, one can also derive other
pentagon equations, and they essentially give the same
constraint for ν3.
We now calculate the constraint for ν3 from the pentagon

equation inFig. 11.As thec fermions andMajorana fermions
are decoupled in the F move [the c fermion part and the
Majorana fermion part ofX in Eq. (24) commute], only the c
fermion twists the cocycle condition for ν3. The X operators
are merely projection operators that do not introduce any
nontrivial phases in two different paths of pentagon equation.
The final result of the equation for ν3 is the same as (special)
group supercohomology theory [42,63]; i.e.,

FIG. 11. Fermionic pentagon equation.
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ðdν3Þðg0; g1; g2; g3; g4Þ ¼ ð−1ÞSq2ðn2Þðg0;g1;g2;g3;g4Þ
¼ ð−1Þn2ðg0;g1;g2Þn2ðg2;g3;g4Þ: ð32Þ

Now, we see that only BH2ðGb;Z2Þ, the obstruction-free
subgroup of H2ðGb;Z2Þ formed by elements n2 ∈
H2ðGb;Z2Þ that satisfy Sq2ðn2Þ ¼ 0 in H4(Gb;UTð1Þ),
can give rise to solutions for ν3, and inequivalent solutions
of ν3 are still given by H3ðGb;UTð1ÞÞ according to the
gauge transformations of ν3. Thus, the mathematical
objects that classify 2D FSPT phases with a total symmetry
Gf ¼ Gb × Zf

2 can be summarized as three group coho-
mologies of the symmetry group Gb [48,50]: H1ðGb;Z2Þ,
BH2ðGb;Z2Þ, and H3ðGb;UTð1ÞÞ. Finally, by using the
method proposed in Ref. [63], one can derive the commut-
ing projector parent Hamiltonian of all of these FSPT states
on arbitrary 2D triangulations with a branching structure.

IV. CONSTRUCTIONS AND CLASSIFICATIONS
FOR FSPT STATES IN 3D

In this section, we construct and classify the 3D FSPT
states parallel to the discussions of 2D FSPT states.
Compared with the 2D case, the most nontrivial part of
3D phases is the fermion parity mixing of the c fermions
and Majorana fermions. In Sec. IVA, we find that there are
in general no Kasteleyn orientations on a 3D lattice. The
existence of a spin structure only implies local Kasteleyn
orientations. If we decorate Kitaev’s Majorana chains onto
a 3D lattice, the shape-changing process of the Majorana
chain may also change the fermion parity of the corre-
sponding Majorana chain. In this case, we should use the c
fermion to compensate the fermion parity changes. As a
result of this fermion parity mixing, the cocycle equation
for ν4 is much more complicated than special group
supercohomology theory.

A. Discrete spin structure in 3D
and local Kasteleyn orientations

In this section, we discuss the first Stiefel-Whitney
homology class on a discrete lattice and relate it to the
local Kasteleyn orientations on the dual lattice. The overall
constructions are parallel to the 2D case. The difference is
that Kasteleyn orientations are only satisfied for the
smallest loops in 3D, not for the general large loops.
The fermion parity of a Kitaev chain decorated onto a
fluctuating loop is therefore not conserved.

1. Discrete Stiefel-Whitney homology class w1

Similar to the oriented 2D manifolds, all oriented 3D
manifolds admit spin structures. The second Stiefel-
Whitney cohomology class ½w2� is always trivial. We can
consider the first discrete Stiefel-Whitney homology class
for a triangulation T with a branching structure of 3D
spatial manifold M [69]:

w1 ¼
X
l∈T

N fσjl ⊆ σ is regulargl: ð33Þ

w1 is the summation of all links in T with some Z2

coefficients. Again, l ⊆ σ means that link l is a subsimplex
of simplex σ:l ⊆ σ is called regular if l and σ have
one of the three relative positions shown in Fig. 12. If
N fσjl ⊆ σ is regularg is odd, we call the link l singular.
Thus, w1 in Eq. (33) is the formal summation of all singular
lines. w1 is a vector (1st singular chain) in the vector space
(of 1th singular chains) spanned by formal bases of all links
with Z2 coefficients.
As the second Stiefel-Whitney cohomology class ½w2� of

any oriented 3D manifold is trivial, we can find some
surface S such that w1 ¼ ∂S. For a fixed collection of
singular links (a fixed representative w1 for ½w1�), different
inequivalent choices of S correspond to different spin
structures (see the discussions at the end of Sec. III A 1).

2. Local Kasteleyn orientations and gauge
transformations

In 3D, we also want to decorate Kitaev chains onto the
intersection lines of Gb-symmetry domain walls. A natural
question inherited from 2D is whether there are Kasteleyn
properties for all even-link loops in 3D. This question is
related to the fermion parity of the Kitaev chain. The
answer is that the existence of discrete spin structures (the
vanishing of ½w1�) is related to the existence of local
Kasteleyn orientations of the resolved dual lattice. In other
words, Kasteleyn properties are satisfied for the smallest
loops but generally broken for large loops in 3D.
We now consider the construction that is similar to the

2D case. For a fixed triangulation T of 3D manifoldM, the
first step is to construct a polyhedral decomposition P of
M, which is a 4-valent graph dual to T . We now add a
spinless fermionic degree of freedom to every face (tri-
angle) of T and split it into two Majorana fermions on the
two sides of this face for convenience. Equivalently, we
resolve the triangulation T by adding a new vertex to each
tetrahedron center and obtain a new resolved triangulation
T̃ . The Majorana fermions reside on the vertices of the
resolved dual lattice P̃, which is a 4-valent graph dual to T̃
(see Fig. 13).
The second step is again adding directions to links in T

and P̃. The directions of the links in T are given by the

FIG. 12. Regular pairs l ⊆ σi (i ¼ 1, 2, 3) for link l.

TOWARDS A COMPLETE CLASSIFICATION OF … PHYS. REV. X 8, 011055 (2018)

011055-15



branching structure. The dual link direction inP is obtained
from T using the convention shown in Fig. 14(a). The
directions of the new links in P̃ are obtained from the
triangulation T by using the conventions in Fig. 13.
The above link direction construction has the following

properties. Consider a fixed link l ∈ T . When going along
the smallest red loop in P̃ around this link l along the right-
hand rule direction, we encounter an even number of red
links with directions along or opposite to our direction.
Using the conventions in Fig. 13, the red link direction is
opposite to our direction if and only if (1) the red link is
dual to a black triangle in T such that the initial and final
vertices of l are the first and last vertices of this black
triangle [this corresponds to the case in Fig. 12(b)] and
(2) the red link is a resolved new link inside a tetrahedron in
T such that the initial and final vertices of l are the first and
the last vertices of this tetrahedron [this is the case in
Fig. 12(c)]. If the total number of red links with opposite
directions is odd, we call the link l Kasteleyn oriented.
Under this construction, we relate the first Stiefel-Whitney
homology class w1 in Eq. (33) to the orientations of links in

P̃; i.e., w1 is the summation of all non-Kasteleyn-oriented
links.

w1 ¼
X
l∈T

ð1þN fσ2jl ⊆ σ2 is regularg

þN fσ3jl ⊆ σ3 is regulargÞ · l
¼

X
l∈T

lðl is non-Kasteleyn orientedÞ: ð34Þ

As discussed above, the first Stiefel-Whitney homology
class ½w1� for any oriented 3D manifold is trivial. Therefore,
we have some singular surface S such that w1 ¼ ∂S. Now,
if we reverse the direction of the links in P̃ crossing the
singular surface S, as shown in Fig. 14(b), then all of
the links in T are Kasteleyn oriented. After following the
procedures above, we relate the vanishing of the zeroth
Stiefel-Whitney homology class ½w0� to the property of
local Kasteleyn orientation of the smallest loops around all
of the links in T . Here, “local”means that only the smallest
loops in P̃ around links in T are Kasteleyn oriented. Larger
loops with an even number of links do not have Kasteleyn
properties in general.
The above construction of link directions in P̃ depends

on the choice of singular surface S. The shape of S can also
be changed with fixed ∂S. If we change the shape of S
locally, the changes of link directions in P̃ can be obtained
by several “gauge transformations” of Kasteleyn orienta-
tions. We define this by simultaneously changing the
directions of links sharing a common vertex in P̃, similar
to the 2D case [65]. Different Kasteleyn orientations related
by these gauge transformations are said to be equivalent.
An example of shape changes of singular surfaces on T and
gauge transformation of Kasteleyn orientations on P̃ are
shown in Fig. 15. The Majorana degrees of freedom on the
vertices of P̃ are also mapped from one lattice to another

FIG. 14. Conventions for orientations of links in P̃ (red line)
from branching structure of triangulation T (black line). Non-
singular (singular) black (blue) triangle f ∉ Sðf ∈ SÞ induces
orientation for the dual link in P̃. We introduce a spinless fermion
on each (black or blue) triangle in T and split it into two
Majorana fermions on two sides of this triangle or vertices of P̃
(red dots).

FIG. 13. Triangulation T (solid black line), resolved triangula-
tion T̃ (solid and dashed black lines), and resolved dual lattice P̃
(red line). The resolved triangulation T̃ is obtained from the
originalT by adding a new vertex to the center of each tetrahedron.
The links ofP have orientations induced from the link orientations
of T according to the conventions shown in Fig. 14(a). Red dots on
the vertices of P̃ representMajorana fermions, which are split from
complex fermions on each face of T .

FIG. 15. Shape changing of singular surfaces S of T and gauge
transformation of Kasteleyn orientations of P̃. We perform gauge
transformations on the four red vertices inside a black tetrahe-
dron, which effectively changes the shape of S and the directions
of the four outreaching red links. The Majorana fermions are
mapped with respect to the directions of red links dual to black
triangles under this FSLU transformation.

QING-RUI WANG and ZHENG-CHENG GU PHYS. REV. X 8, 011055 (2018)

011055-16



according to the link directions (similar to the 2D case in
Fig. 8). This ensures that the vacuum state (without Kitaev
chain) on one lattice is mapped to the vacuum state on
another lattice, without fermion parity changing (no fer-
mion on either lattice).
With fixed w0 ¼ ∂S, the choices of S are not unique.

Different choices of topological classes of S correspond to
different spin structures on M. The global Kasteleyn
properties along nontrivial cycles of M can also be
either preserved or broken depending on the choices of
S. Our construction generalizes the relation of Kasteleyn
orientations and discrete spin structures from 2D [65]
to 3D.

3. Local Kasteleyn orientations
under retriangulations

To perform FSLU transformations, we now consider that
the Kasteleyn orientation changes under retriangulation of

M. Pachner moves for the 3D manifold consist of a (2-3)
move and a (1-4) move [71]. When introducing branching
structures, there are 10 types of (2-3) move and 5 types of
(1-4) move (again, we do not consider the mirror images of
these moves, otherwise the number would double) [42].
Eight types of (2-3) move and three types of (1-4) move
have branching structures that can be induced by global
ordering [42,73]. The standard (2-3) move is given
in Fig. 16, which does not involve singular surfaces.
Two examples of moves involving singular surfaces [the
representative w1 of Stiefel-Whitney class ½w1� in Eq. (33)
is changed] are presented in Figs. 17 and 18. Other types of
(2-3) and (1-4) moves are shown in Supplemental
Material [72].
Until now, the construction in 3D has been very similar

to the 2D case. However, there is a very crucial difference.
Although both the lattices before and after the Pachner
move have local Kasteleyn properties, the Kasteleyn
orientation for larger loops may be broken. Consider,

FIG. 16. Standard (2-3) move.

FIG. 17. A (2-3) move that involves singular surfaces.
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for example, the case in Fig. 17. If we consider that the
large loop consists of links h012i, h123i, and h124i (and
the newly resolved links between them) on the left lattice
P̃ and links h012i and h124i (and the newly resolved links
between them) on the right lattice P̃0, the Kasteleyn
properties are the same (all five links on P̃ and three
links on P̃0 have an up direction). On the other hand, if we
consider that the large loop consists of links h012i, h123i,
and h234i on the left lattice P̃ and links h012i, h024i, and
h234i on the right lattice P̃0, the Kasteleyn properties are
changed (all five links on P̃ have an up direction, but only
two of five links on P̃0 have an up direction). In the next
section, we systematically analyze the Kasteleyn proper-
ties of loops under Pachner moves. After decorating
Majorana fermions, we see that the Majorana fermion
parity changes, which is crucial in constructing legitimate
FSPT states.

B. FSLU transformations and consistent conditions
for fixed-point states

With the above setup of discrete spin structures and
Kasteleyn orientation construction on a 3D lattice, we can
now use the FSLU transformation to classify 3D FSPT
states systematically.

1. Fermion parity conservation and the obstruction
of Kitaev’s Majorana chain decoration

Similar to the 2D case, our 3D model has two types of
fermionic degrees of freedom. The first type is the complex
fermion cðijklÞ, which resides at the center of tetrahedron
hijkli of triangulation T of the space manifold. In the
special group supercohomology wave function, the c
fermion parity Pc

f is unchanged under (2-3) and (1-4)
moves. If we use n3ðgi; gj; gk; glÞ ¼ 0, 1 to denote the
number of c fermions at tetrahedron hijkli, then the parity

conserved condition becomes dn3 ¼ 0 (mod2). Therefore,
n3 is an element of H3ðGb;Z2Þ. This is not true if we
introduce the second type of fermion.
The second type of fermion, complex fermion aðijkÞ,

resides on triangle hijki of T . Similar to the 2D case, we
also separate fermion aðijkÞ into two Majorana fermions:

γijkA ¼ aðijkÞ þ a†ðijkÞ; ð35Þ

γijkB ¼ 1

i
ðaðijkÞ − a†ðijkÞÞ: ð36Þ

The Majorana fermions γijkA and γijkB reside on the two
sides of triangle hijki, or dually, on two ends of the link in
P̃ dual to triangle hijki. Our convention is that the dual link
(we also use hijki to denote the dual link) has direction
from vertex hijkAi to hijkBi. As such, the fermion parity
operator of a fermion or γ fermion at triangle hijki is
Pγ
f ¼ −iγijkAγijkB.
Now we decorate Kitaev’s Majorana chains onto the

loops in dual lattice P. We introduce a Z2 cochain
ñ2ðgi; gj; gkÞ ¼ 0, 1 to specify the decoration configuration
of Kitaev’s Majorana chain. If there is a Kitaev chain that
goes though link hijki in P [see the green links in Fig. 3
and figures in Eq. (40)], then we set ñ2ðgi; gj; gkÞ ¼ 1. On
the other hand, ñ2ðgi; gj; gkÞ ¼ 0 means there is no Kitaev
chain. The Kitaev chain decorations can be translated to
dimer configurations of Majorana pairs in the resolved dual
lattice P̃. ñ2ðgi; gj; gkÞ ¼ 0 indicates vacuum pairing; i.e.,
the two Majorana fermions at triangle hijki are paired up
from hijkAi to hijkBi. If ñ2ðgi; gj; gkÞ ¼ 1, then γijkA and
γijkB are paired up with other nearby Majorana fermions
separately, similar to the construction of Kitaev’s Majorana
chain [see figures of Eq. (41), where gray ellipses indicate
paired Majorana fermions].

FIG. 18. A (1-4) move.
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As we are constructing a SPT state without intrinsic
anyonic excitations, the decorated Kitaev chain should
form a closed loop without ends. Therefore, similar to the
2D case, we have the equation dñ2 ¼ 0 (mod2), which
means that the cochain ñ2 is an element ofH2ðGb;Z2Þ. It is
possible that all four faces of a tetrahedron h0123i in T are
decorated with Kitaev chains; i.e., dñ2ðg0; g1; g2; g3Þ ¼ 4.
There are ambiguities in pairing four Majorana fermions
inside the tetrahedron. For the total three possible pairings,
we use the convention that the Majorana fermion 0̄ is paired
to 2̄ and 1̄ is paired to 3̄ (see Fig. 19). One can also choose
other conventions which essentially produce the same
results [74].
Now we turn to the Pachner moves for different

triangulations. We find that the Majorana fermion parity
is changed under a (2-3) move if and only if

Sq2ðñ2Þðg0; g1; g2; g3; g4Þ ¼ ñ2ðg0; g1; g2Þñ2ðg2; g3; g4Þ
¼ 1: ð37Þ

We use the notation Sq2ðñ2Þ ¼ ñ22 ¼ ñ2 ⌣ ñ2 later. This
can be obtained by directly checking the property of
Kasteleyn orientation for the loops in the transition graph
of two Majorana dimer states for 64 kinds of string
configurations of each (2-3) move (see Supplemental
Material for details [72]). To compensate for the
Majorana fermion parity changes, the fermion parity of
the fermions at the center of tetrahedron should also be
changed, leading to the (mod2) equation

dn3 ¼ ñ2 ⌣ ñ2; ð38Þ

or more explicitly,

n3ðg1; g2; g3; g4Þ þ n3ðg0; g2; g3; g4Þ þ n3ðg0; g1; g3; g4Þ
þ n3ðg0; g1; g2; g4Þ þ n3ðg0; g1; g2; g3Þ

¼ ñ2ðg0; g1; g2Þñ2ðg2; g3; g4Þ: ð39Þ

The above equation shows that the cocycle equation of n3 is
twisted by ñ22, which is different from dn3 ¼ 0 in the special
group supercohomology model [42]. The above equation
for n3 has solutions if and only if Sq2ðñ2Þ is the trivial
element in H4ðGb;Z2Þ.

2. Fermionic symmetric local unitary
transformations

After fermion decoration, the standard (2-3) move
Fig. 16 becomes a fermionic unitary transformation
between the fermionic Fock spaces on two different
triangulation lattices T (left) and T 0 (right). An example
of this standard F move, which changes the fermion parity
of Majorana fermions, is [on lattice T , P in Eq. (40) and on
P̃ in Eq. (41)]

ð40Þ

FIG. 19. Resolvation of four strings of Kitaev’s Majorana
chains meeting at one tetrahedron. If four strings meet at one
tetrahedron, we should pair the Majorana fermions 0̄ to 2̄ and 1̄ to
3̄, respectively (gray ellipses). The green lines on P̃ indicate that
these lines are decorated by Kitaev chains.
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ð41Þ

where the F operator is given by

Fðg0; g1; g2; g3; g4Þ ¼ ν4ðg0; g1; g2; g3; g4Þc†n3ð0124Þð0124Þ c†n3ð0234Þð0234Þ

× cn3ð0123Þð0123Þ cn3ð0134Þð0134Þ cn3ð1234Þð1234Þ
× X½ñ2ðgi; gj; gkÞ�: ð42Þ

Here, c†n3ð0124Þð0124Þ is the abbreviation of c†n3ðg0;g1;g2;g4Þð0124Þ , which

is the creation operator for c fermions at tetrahedron
h0124i. The X½ñ2� operator in the above F move from
the resolved dual lattice P̃ to P̃0 has the following general
expression:

X½ñ2ðgi; gj; gkÞ� ¼ PP̃ · γ
ñ2
2
ðg0;g1;g2;g3;g4Þ

012A ;

PP̃ ¼
� Y

loop i in ðP̃;P̃0Þ
2ðLi−1Þ/2

�

×

� Y
Majorana pairs ha;biinP̃

Pa;b

�

×

� Y
link hijki∉P̃

PijkA;ijkB

�
; ð43Þ

where 2Li is the length of the ith loop in the transition
graph of dimer configurations in P̃ and P̃0, and Pa;b ¼
ð1 − iγaγbÞ/2 is the projection operator for Majorana pairs
ha; bi (from vertex a to vertex b). The projection operators
in the second parentheses project the state in the right-hand
figure to the Majorana dimer configuration states in the left-
hand figure. The projection operators in the third paren-
theses are the vacuum projection operators for those
Majorana fermions that do not appear in the left-hand
figure explicitly [this is similar to the projection P02A;02B in
Eq. (25) of the 2D case]. An explicit expression of X for the
Majorana pair configuration in Eqs. (40) and (41) is

X½ñ2� ¼ 2ðP024B;234BP012A;024AÞ
× ðP013A;013BP123A;123BP134A;134BÞγ012A: ð44Þ

Note that the normalization factor in the front of a generalX
operator is the same as Eq. (26). For the F move in

Eqs. (40) and (41), there is only one loop in the Majorana
dimer transition graph with length bigger than two:
012A-024A-024B-234B-123A-123B-012A. So the nor-
malization factor is 2ð6/2−1Þ/2 ¼ 2, as shown in Eq. (44).
When the F move changes the Majorana fermion parity,

the last term of the X operator is the Majorana fermion
operator γ012A ¼ að012Þ þ a†ð012Þ. The X operator is now an

operator with an odd number of a fermion creation or
annihilation operators, which changes the fermion parity of
the state. We check that, for all possible Kitaev’s Majorana
chain configurations, the loop-breaking Kasteleyn orienta-
tion in the transition graph of the twoMajorana dimer states
always contains vertex 012A. Therefore, the X operator
with γ012A should indeed project the state to the desired
Majorana configuration state (not 0). In fact, γ234B is also an
allowed choice. We calculate the consistent equation of ν4
for both choices later.
The fermionic local unitary transformation F should also

be Gb symmetric.

Fðg0; g1; g2; g3; g4Þ ¼ Fðgg0; gg1; gg2; gg3; gg4Þ; ð45Þ

for all g ∈ Gb if Gb is a unitary symmetry group. So,
ν4ðg0; g1; g2; g3; g4Þ, n3ðg0; g1; g2; g3Þ, and ñ2ðg0; g1; g2Þ are
all cochains that are invariant under unitary g action. [We
note that ν4ðgg0; gg1; gg2; gg3; gg4Þ ¼ ν�4ðg0; g1; g2; g3; g4Þ
for antiunitary g action.]
Similar to the 1D and 2D cases, we can use FSLU to

redefine the basis state jfgngi as

jfgngi0¼Uμ3;m2
jfgngi

¼
Y
hijkli

μ3ðgi;gj;gk;glÞshijkli
Y
hijki

½fm2ðgi;gj;gkÞ
ijkB f

m2ðgi;gj;gkÞ
ijkA �

·
Y
hijkli

½f†m2ðgj;gk;glÞ
jklA f

†m2ðgi;gj;glÞ
ijlA f†m2ðgi;gk;glÞ

iklB f
†m2ðgi;gj;gkÞ
ijkB �

× jfgngi; ð46Þ

where we first create four complex fermions fjklA, fijlA,
fiklB, and fijkB near the four triangles of the tetrahedron
hijkli (i < j < k < l), and then annihilate the two fermions
fijkA and fijkB on the two sides of triangle hijki when
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gluing the two tetrahedra sharing triangle hijki. To preserve
the fermion parity and be symmetric, m2 should be
a 2-cocycle (with Z2 coefficient): m2ðggi; ggj; ggkÞ ¼
m2ðgi; gj; gkÞ and dm2ðgi; gj; gk; glÞ ¼ 0. μ3ðgi; gj; gk; glÞ
is a phase factor associated with tetrahedron hijkli, and

shijkli ¼ �1 denotes the orientation of the tetrahedron.
After tedious calculation of eliminating all f fermions in
the new F move operator F0 ¼ Uμ3;m2

FU†
μ3;m2

, one finds
that the phase factor in Eq. (42) becomes

ν04ðg0; g1; g2; g3; g4Þ ¼ ν4ðg0; g1; g2; g3; g4Þ
μ3ðg1; g2; g3; g4Þμ3ðg0; g1; g3; g4Þμ3ðg0; g1; g2; g3Þ

μ3ðg0; g2; g3; g4Þμ3ðg0; g1; g2; g4Þ
ð−1ÞSq2ðm2Þðg0;g1;g2;g3;g4Þ; ð47Þ

where Sq2ðm2Þðg0; g1; g2; g3; g4Þ ¼ ðm2 ⌣m2Þðg0; g1; g2; g3; g4Þ ¼ m2ðg0; g1; g2Þm2ðg2; g3; g4Þ is the Steenrod square of
m2. If ν4 and ν04 can be related by the above equation, then they correspond to the same 3D FSPT phase. This is also
consistent with the general result in Eq. (14) [42].
In addition to the standard (2-3) move, there are (2-0) moves as FSLU that can change the vertex number. One example of

the Majorana fermion configuration for a (2-0) move is

ð48Þ

ð49Þ

The notations and conventions of vacuum pairs are similar
to those in the 2D case in the discussion following Eq. (30).
cð0123Þ and c̄ð0123Þ fermions are at the centers of the lower
and upper tetrahedra, respectively. An explicit expression
for the X operator is

X½ñ2� ¼ 23/2P023B;012B0P012A0;023AP013A0;013BP123A0;123B

× P013A;013B0P123A;123B0 : ð50Þ

Note that the normalization factor in the front of the X
operator is ð2ð4/2−1Þ/2Þ3 ¼ 23/2, according to Eq. (26).
This is because there are three loops in the Majorana dimer
transition graph with length bigger than two:

012B0-023B-023A-012A0-012B0, 013B-013A0-013B0-
013A-013B, and 123B-123A0-123B0-123A-123B. Using
two kinds of (2-0) moves (the other one is shown in
Supplemental Material [72]) and the standard (2-3) move,
we can deduce all (1-4) moves and other (2-3) moves from
the standard F move in Eqs. (40) and (41) (see Supple-
mental Material for all details [72]).

3. Fermionic hexagon equations

The consistent equation for the moves defined in the
above section is the fermionic hexagon equation (see
Fig. 20), which is a higher dimensional version of the
fermionic pentagon equation for ð2þ 1ÞD fermionic
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topological phases [63]. Reordering the fermionic operators
in the fermionic hexagon equation will twist the bosonic
cocycle equation for ν4:

ðdν4Þðg0; g1; g2; g3; g4; g5Þ ¼ Oðg0; g1; g2; g3; g4; g5Þ: ð51Þ

The phase twist or obstruction on the left-hand side has
three terms,

O ¼ OcOcγOγ; ð52Þ

resulting from three different fermion phase factors: (1) Oc
from reordering c fermions, (2) Ocγ from reordering c
fermions and γ Majorana fermions, and (3) Oγ from
reordering γ Majorana fermions. The final result of the
phase twist is

Oð012345Þ ¼ ð−1Þðn3⌣1n3Þð012345Þþðn3⌣2dn3Þð012345Þþdn3ð02345Þdn3ð01245Þdn3ð01234Þ

× idn3ð01235Þdn3ð02345Þþdn3ð01345Þdn3ð12345Þ × ð−iÞdn3ð02345Þdn3ð01245Þþdn3ð02345Þdn3ð01234Þ: ð53Þ

Here, (012345) is the abbreviation of ðg0; g1; g2; g3; g4; g5Þ. Note that the obstruction depends only on n3 and dn3 (or ñ22
through the fermion parity equation dn3 ¼ ñ22). In the following, we derive the above obstruction equation in detail.
The first part Oc contains the special group supercohomology results [42], which are obtained by reordering c fermion

operators:

Ocð012345Þ ¼ ð−1Þ½Sq2ðn3Þþdn3⌣2n3�ð012345Þ ¼ ð−1Þ½n3⌣1n3þdn3⌣2n3�ð012345Þ

¼ ð−1Þn3ð0345Þn3ð0123Þþn3ð0145Þn3ð1234Þþn3ð0125Þn3ð2345Þ

× ð−1Þdn3ð01234Þn3ð0145Þþdn3ð02345Þn3ð0125Þþdn3ð01234Þn3ð1245Þþdn3ð01345Þn3ð1235Þþdn3ð01234Þn3ð2345Þþdn3ð01245Þn3ð2345Þ:

ð54Þ

FIG. 20. Fermionic fusion hexagon equation. All of the F moves are of the standard (2-3) move [see Eqs. (40) and (41)]. Colored
numbers i and j in the subscript of F indicate that the link hiji with the same color is added after this F move. All six F moves do not
introduce new singular lines and surfaces. There is a global direction from left to right such that the vertex with the smaller number has
the earlier order.
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Here,⌣i is Steenrod’s ith cup product [75]. Apart from the
term Sq2ðn3Þ, there is an additional term dn3⌣2n3 because
of dn3 ¼ ñ22 ≠ 0.
The second part Ocγ comes from reordering c fermions

and γ Majorana fermions (we always put c fermions
in front of γ fermions). For example, the composition of

F01345 and F01235 gives a sign ð−1Þdn3ð01345Þdn3ð01235Þ.
In total, the upper path of three F moves gives the
power dn3ð01345Þdn3ð01235Þþdn3ð12345Þdn3ð01345Þþ
dn3ð12345Þdn3ð01235Þ, whereas the lower path
gives dn3ð01245Þdn3ð01234Þ þ dn3ð02345Þdn3ð01234Þþ
dn3ð02345Þdn3ð01245Þ. The final result is then

Ocγð012345Þ
¼ ð−1Þðdn3⌣3dn3Þðg0;g1;g2;g3;g4;g5Þ

¼ ð−1Þdn3ð01245Þdn3ð01234Þþdn3ð01235Þdn3ð01345Þþdn3ð02345Þdn3ð01234Þþdn3ð02345Þdn3ð01245Þþdn3ð01235Þdn3ð12345Þþdn3ð01345Þdn3ð12345Þ:

ð55Þ

After adding coboundary ð−1Þdðn3⌣3dn3Þ ¼
ð−1Þdn3⌣3dn3þn3⌣2dn3þdn3⌣2n3 to the combination of the
phase factor Oc and Ocγ , we obtain a simpler expression:

OcOcγ ¼ ð−1Þn3⌣1n3þn3⌣2dn3 : ð56Þ

Note that adding the coboundary changes theUð1Þ-cochain
ν4 → ð−1Þn3⌣3dn3ν4.
We now turn to the subtlest part Oγ coming from a

decorated Majorana chain. In addition to �1, Oγ can take
values in �i (see Supplemental Material for the physical
origin of this purely imaginary phase factor [72]). If all six
F moves do not change the Majorana fermion parity, then
Xγ operators in F moves are merely projections with an
even number of γ Majorana operators. The c fermions and
Majorana fermions are decoupled, and bothOcγ andOγ are
trivial. The obstruction O is the same as the special
group supercohomology result. Therefore, we need to
check only the case in which some of the six F moves
in Fig. 20 change the Majorana fermion parity; i.e., some

of ñ22ð01234Þ, ñ22ð01245Þ, ñ22ð02345Þ, ñ22ð01345Þ,
ñ22ð01235Þ, and ñ22ð12345Þ are equal to one. We denote

the six X operators in F moves as X01235 ¼ P1γ
ñ2
2
ð01235Þ

012A ,

X01345 ¼ P2γ
ñ2
2
ð01345Þ

013A , X12345 ¼ P3γ
ñ2
2
ð12345Þ

123A , X02345 ¼
P1γ

ñ2
2
ð02345Þ

023A , X01245 ¼ P4γ
ñ2
2
ð01245Þ

012A , and X01234 ¼
P5γ

ñ2
2
ð01234Þ

012A . Here, Pi means the projection operator onto
the Majorana chain configuration of the ith figure in the
hexagon equation. Oγ is defined as the Majorana chain
phase difference of the upper and lower paths in the
hexagon equation

X02345X01245X01234jfinali
¼ Oγð012345ÞX01235X01345X12345jfinali; ð57Þ

where jfinali is the state of the Majorana chain configu-
ration in the rightmost figure of the hexagon equation
Fig. 21. We can calculate Oγ from the expression

Oγð012345Þ ¼ hfinaljX†
12345X

†
01345X

†
01235X02345X01245X01234jfinali

¼ hfinaljγñ22ð12345Þ123A P3γ
ñ2
2
ð01345Þ

013A P2γ
ñ2
2
ð01235Þ

012A P1P1γ
ñ2
2
ð02345Þ

023A P4γ
ñ2
2
ð01245Þ

012A P5γ
ñ2
2
ð01234Þ

012A jfinali: ð58Þ

The above equation suggests that Oγ depends only on the
values of ñ22ð01235Þ, ñ22ð01345Þ, ñ22ð12345Þ, ñ22ð02345Þ,
ñ22ð01245Þ, and ñ22ð01234Þ, i.e., the Majorana parity
changes of the six F moves.
Consider, for example, the case in which only F01345 and

F12345 change the Majorana fermion parity [(0,1,1,0,0,0)]
in the eighth row of Table III. See Fig. 22 for an example of

ñ2ðgi; gj; gkÞ satisfying this condition. We can expand
projection operators Pi to Majorana fermion operators.
For simplicity, we can consider the term with only con-
tributions −iγ013Aγ013B and −iγ123Aγ123B from P1. We can
also add −iγ013Bγ123B, which equals 1 when acting on
jfinali in front of this state. The result is then

Oγð012345Þjð0;1;1;0;0;0Þ ¼ hfinaljγ123AP3γ013AP2P1P4P5P6jfinali
¼ hfinaljγ123Aγ013Að−iγ013Aγ013BÞð−iγ123Aγ123BÞð−iγ013Bγ123BÞjfinali
¼ i: ð59Þ
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FIG. 22. One example of Kitaev’s Majorana chain decoration configuration of fermionic fusion hexagon equation. Green lines indicate
that these dual links are decorated by Kitaev’s Majorana chains. Among the six F moves for this configuration, only F01345 and F12345

(red color in the figure) change the Majorana fermion parity. Therefore, this choice of ñ2ðgi; gj; gkÞ belongs to the (0,1,1,0,0,0) row in
Table III and has obstruction Oγ ¼ i.

FIG. 21. Fermionic fusion hexagon equation on dual lattice P.
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We assume that there are only two Kitaev strings meeting at
tetrahedron h0123i. [This is always true for all possible
choices of ñ2ðgi; gj; gkÞ that belong to the eighth row of
Table III.] Similarly, one can calculate other choices of ñ2,
and at last obtain the results listed in Table III. The final
results can be summarized to the expression

Oγð012345Þ ¼ iñ
2
2
ð01235Þñ2

2
ð02345Þþñ2

2
ð01345Þñ2

2
ð12345Þ

× ð−iÞñ22ð02345Þñ22ð01245Þþñ2
2
ð02345Þñ2

2
ð01234Þ

× ð−1Þñ22ð02345Þñ22ð01245Þñ22ð01234Þ: ð60Þ

Combining thisOγ result withOcOcγ in Eq. (56), we obtain
the obstruction claimed in Eq. (53).
As discussed above, we can also use the convention

X01234 ¼ PPγ
ñ2
2
ð01234Þ

234B in the definition of a standard F
move. The results using different conventions may differ
from each other by some coboundaries. The obstruction
from Majorana fermions in the convention γ234B is

Oγð012345Þ ¼ iñ
2
2
ð01235Þñ2

2
ð02345Þþñ2

2
ð01245Þñ2

2
ð01234Þ

× ð−iÞñ22ð01235Þñ22ð01345Þþñ2
2
ð01235Þñ2

2
ð12345Þ

× ð−1Þñ22ð01235Þñ22ð01345Þñ22ð12345Þ: ð61Þ

By checking all possible choices of ñ2 numerically, we find
that the above expression of Oγ equals exactly to

Oγð012345Þ ¼ ð−iÞ½ñ2⌣ðñ2⌣1ñ2Þ�ð012345Þð−1Þñ22ð01235Þñ22ð02345Þ:
ð62Þ

This can be obtained from the Pontrjagin dual of the four-
dimensional spin bordism [76].
We note that although O takes values in Z4, the

additivity property actually requires O to be a cohomology
map on Z8; see Supplemental Material for details [72].
Thus, to find a solution for ν4, we must define an
obstruction-free subgroup of H2ðGb;Z2Þ, which is formed

TABLE III. Calculations of Oγ from all possible Kitaev chain configurations in the hexagon equation. The first column has entries
[ñ22ð01235Þ; ñ22ð01345Þ; ñ22ð12345Þ; ñ22ð02345Þ; ñ22ð01245Þ; ñ22ð01234Þ], indicating whether the six F moves in the hexagon equation
change the Majorana fermion parity. The second column shows the γ operators appearing in Eq. (58). The third and fourth columns are
lines of Majorana dimer pairs [∅ means there are no ñ2ðgi; gj; gkÞ that have two or four strings at tetrahedron h0123i]. The last two
columns are the values of Oγ for ñ2ðgi; gj; gkÞ belonging to this row [the last column but one uses the convention γ012A in Eq. (43), and
the last column uses the convention γ234B]. Nontrivial results are labeled in red or blue. The results in this table can be summarized to the
expression shown in Eq. (60) for convention γ012A and in Eq. (61) for convention γ234B.

Fermion parity changes γ operators in Eq. (58) Line (2 strings at h0123i) Line (4 strings at h0123i) Oγ j012A Oγ j234B
(0,0,0,0,0,0) � � � � � � � � � 1 1
(1,1,0,0,0,0) γ012A, γ013A 012A-013B-013A ∅ 1 −i
(1,0,1,0,0,0) γ012A, γ123A 012A-123B-123A ∅ 1 −i
(1,0,0,1,0,0) γ012A, γ023A 012A-023A ∅ i i
(1,0,0,0,1,0) γ2012A ¼ 1 � � � � � � 1 1
(1,0,0,0,0,1) γ2012A ¼ 1 � � � � � � 1 1
(0,1,1,0,0,0) γ013A, γ123A 013A-013B-123B-123A ∅ i 1
(0,1,0,1,0,0) γ013A, γ023A 013A-013B-023A ∅ 1 1
(0,1,0,0,1,0) γ013A, γ012A 013A-013B-012A ∅ 1 1
(0,1,0,0,0,1) γ013A, γ012A 013A-013B-012A ∅ 1 1
(0,0,1,1,0,0) γ123A, γ023A 123A-123B-023A ∅ 1 1
(0,0,1,0,1,0) γ123A, γ012A 123A-123B-012A ∅ 1 1
(0,0,1,0,0,1) γ123A, γ012A 123A − 123B − 012A ∅ 1 1
(0,0,0,1,1,0) γ023A, γ012A 023A-012A ∅ −i 1
(0,0,0,1,0,1) γ023A, γ012A 023A-012A ∅ −i 1
(0,0,0,0,1,1) γ2012A ¼ 1 � � � � � � 1 i
(1,1,0,0,1,1) γ013A, γ3012A 012A-013B-013A, 012A ∅ 1 1
(1,0,1,0,1,1) γ123A, γ3012A 012A-123B-123A, 012A ∅ 1 1
(1,0,0,1,1,1) γ023A, γ3012A 012A-023A, 012A ∅ i −1
(1,1,1,1,0,0) γ012A, γ013A, γ123A, γ023A ∅ n

123A-123B-013B-013A
023A-012A

−1 i

(0,1,1,1,1,0) γ013A, γ123A, γ023A, γ012A ∅ n
123A-123B-013B-013A
023A-012A

1 1

(0,1,1,1,0,1) γ013A, γ123A, γ023A, γ012A ∅ n
123A-123B-013B-013
A023A-012A

1 1

(1,1,1,1,1,1) γ013A, γ123A, γ023A, γ3012A ∅ n
123A-123B-013B-013A
023A-012A

−1 −1
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by elements ñ2 ∈ H2ðGb;Z2Þ that simultaneously satisfy
Sq2ðñ2Þ ¼ 0 in H4ðGb;Z2Þ and Oðñ2Þ ¼ 0 in
H5(Gb;UTð1Þ), where O is some unknown cohomology
operation (to the best of our knowledge) that maps ñ2
satisfying Sq2ðñ2Þ ¼ 0 in H2ðGb;Z2Þ into an element in
H5ðGb;Z8Þ ⊂ H5½Gb;UTð1Þ�. We note that n3 is com-
pletely determined by ñ2 and that any solution of dn3 ¼ ñ22
can be used in the above definition. Together with the
special group supercohomolgy results, we conclude that the
precise mathematical objects that classify 3D FSPT phases
with a total symmetry Gf ¼ Gb × Zf

2 can also be summa-
rized as three group cohomologies of the symmetry group
Gb, B̃H2ðGb;Z2Þ, BH3ðGb;Z2Þ, and H4

rigid(Gb;UTð1Þ).
Commuting projector parent Hamiltonians for all of these
FSPT states can also be constructed on arbitrary 3D
triangulations with a branching structure.
Finally, let us provide some physical arguments to support

our classification scheme for 3D FSPT phases with a total
symmetry Gf ¼ Gb × Zf

2 when Gb is a unitary symmetry
group. (a) From the concept of equivalence classes of FSLU
transformations, if two fixed-point wave functions corre-
sponded to thesamephase, therewouldbea finitedepthFSLU
circuit connecting the two. Thus, it is obvious that the fixed-
point wave functions have the same algebraic data, e.g.,
cocycle solutions (up to coboundary transformation) from the
above three group cohomologies of the symmetry group Gb,
since these algebraic data depend only on “long distance”
physics which cannot be changed by a finite depth FSLU
circuit. In fact, a finite depthFSLUcircuit can atmostgenerate
some coboundary transformations, e.g., the transformation
defined in Eq. (47). (b) Our constructions are consistent with
the spin-cobordism classifications for 3D FSPT phases.
(c) Similar to the bosonic 3D SPT states, if we turn on
backgroundgauge fieldGb andcouple it to the3DFSPTstates
constructed here, the corresponding Gb flux lines will carry
new types of three-loop braiding statistics. Some examples
from theBH3ðGb;Z2Þ layer are studied in a recentwork [77].
We believe that nontrivial solutions from the layer
B̃H2ðGb;Z2Þ will give rise to non-Abelian three-loop braid-
ingstatistics, and full detailswill be studied inour futurework.

V. DISCUSSION AND CONCLUSIONS

We construct fixed-point wave functions for FSPT phases
in two and three dimensions based on the novel concept of
FSLU transformations.All of these FSPT states admit parent
Hamiltonians consisting of commuting projectors on arbi-
trary triangulations with a branching structure. We believe
that our construction will give rise to a complete classifica-
tion for FSPT states with total symmetry Gf ¼ Gb × Zf

2

when Gb is a unitary symmetry group. Mathematically, our
constructions naturally define a general group supercoho-
mology theory that generalizes the so-called special group
supercohomology theory proposed in Ref. [42].

In particular, one can start with a spin manifold in an
arbitrary spacial dimension dsp and define the corresponding
discrete spin structure via the Poincaré dual. Then, one can
decorate Kitaev’s Majorana chain onto the intersection lines
of the Gb symmetry domain walls if the first obstruction
vanishes for elements ñdsp−1 ∈ Hdsp−1ðGb;Z2Þ. That is,

Sq2ðñdspþ1Þ ¼ 0 inHdspþ1ðGb;Z2Þ, and the obstruction-free
elements ñdsp−1 ∈ Hdsp−1ðGb;Z2Þ will give rise to all
inequivalent patterns of Majorana chain decoration.
Finally, by applying the wave function renormalization
on arbitrary triangulations, one may derive twisted cocycle
equations where the twisted factors define some unknown
cohomologoy mapO that maps elements inHdsp−1ðGb;Z2Þ
satisfying Sq2ðñdsp−1Þ ¼ 0 in Hdspþ1ðGb;Z2Þ into elements

in Hdspþ2ðGb;Z8Þ ⊂ Hdspþ2½Gb;UTð1Þ�, and the second
obstruction-free condition requires Oðñdsp−1Þ ¼ 0 in

Hdspþ2(Gb;UTð1Þ). Elements ñdsp−1 ∈ Hdsp−1ðGb;Z2Þ sat-
isfying both the first and second obstruction-free conditions
may define a subgroup B̃Hdsp−1ðGb;Z2Þ ∈ Hdsp−1ðGb;Z2Þ,
which allows us to write down another short exact

sequence 0 → Hdspþ1½Gf;UTð1Þ� → H
dspþ1

f ½Gf;UTð1Þ� →
B̃Hdsp−1ðGb;Z2Þ → 0 to define a general group supercoho-
mology theory. We note that here Hdspþ1½Gf;UTð1Þ� is the
special group supercohomology class defined by Ref. [42].
In the future, it would be of great importance to under-

stand the physical properties of 3D FSPT phases classified
by general group supercohomology theory, e.g., under-
standing the braiding statistics of Gb-flux lines. Of course,
constructing time-reversal symmetry-protected topological
states with both T2 ¼ 1 and T2 ¼ Pf (where Pf is the total
fermion parity) is another interesting direction. It should
also be interesting to investigate the phase transition theory
among FSPT phases in arbitrary dimensions.
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Note added.—Recently, we noticed a relevant work [78]
considering similar problems. However, our expression for
Oγ is slightly different from Ref. [78].
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