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Single-hole wave function in two dimensions: A case study of the doped Mott insulator
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We study a ground-state ansatz for the single-hole-doped t-J model in two dimensions via a variational Monte
Carlo method. Such a single-hole wave function possesses finite angular momenta generated by hidden spin
currents, which give rise to a novel ground-state degeneracy in agreement with recent exact diagonalization
(ED) and density matrix renormalization group (DMRG) results. We further show that the wave function can be
decomposed into a quasiparticle component and an incoherent momentum distribution in excellent agreement
with the DMRG results up to an 8 × 8 lattice. Such a two-component structure indicates the breakdown of
Landau’s one-to-one correspondence principle, and in particular, the quasiparticle spectral weight vanishes by a
power law in the large sample size limit. By contrast, turning off the phase string induced by the hole hopping
in the so-called σ · t-J model, a conventional Bloch-wave wave function with a finite quasiparticle spectral
weight can be recovered, also in agreement with the ED and DMRG results. The present study shows that a
singular effect already takes place in the single-hole-doped Mott insulator, by which the bare hole is turned into
a non-Landau quasiparticle with translational-symmetry breaking. Generalizations to pairing and finite doping
are briefly discussed.
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I. INTRODUCTION

High-temperature superconductivity (HTS) in cuprates [1]
is widely considered to be a strong correlation effect of the
doped Mott insulator [2], where the pairing is not due to the
phonon mechanism as in the original BCS theory [3]. In such
a pure interacting electron system, the nature of the “normal
state” prior to superconducting transition is crucial [2,4,5] in
understanding the HTS mechanism.

In a conventional normal metal (Fermi liquid), each new
particle injected into the system should behave like a Landau
quasiparticle at low energies. By contrast, in a non-Fermi-
like Luttinger liquid (LL) [6], vanishing quasiparticle spectral
weight has been identified in the one-dimensional (1D) doped
Mott insulators, described by the Hubbard [7–9] and t-J
models [10,11]. The generalization of a possible LL state to
two dimensions (2D) in connection with the HTS cuprate has
been conjectured [4] early on, but so far it has not been fully
substantiated by either theory or experiment.

The key issue is how a doped hole propagates in the
2D quantum spin background of a doped Mott insulator as
compared to a Fermi liquid. To this end, the study of a single-
hole case has been of central interest as the simplest case
of a “normal state.” Considerable efforts have been invested
in studying the single hole’s motion in a 2D antiferromagnet
described by the t-J model using both analytical and numer-
ical techniques. Despite a strong distortion induced by the
hole in the spin background, which is generally known as the

spin polaron effect, many early studies have concluded that
the hole would still behave like a coherent quasiparticle with
a finite spectral weight in the long-wavelength, low-energy
regime. Shraiman and Siggia [12,13] proposed a semiclassical
variational wave function and an effective Hamiltonian that
treats the twisted spin configuration as a dipolar distortion.
In the self-consistent Born approximation (SCBA) [14–18]
approaches, spin magnon excitations renormalize the effec-
tive mass of a hole to result in a much reduced bandwidth
as compared to the bare band parameters. The correspond-
ing dispersion has the energy minima at momenta K0 =
(±π/2,±π/2), which agrees with the exact diagonalization
(ED) finite-size calculations [19,20]. Assuming a finite quasi-
particle spectral weight and local minima at K0, later efforts
[21–24] have been further devoted to issues such as detailed
dispersion by including the next-nearest-neighbor hoppings,
t ′ and t ′′, in comparison with angle-resolved photoemission
spectroscopy (ARPES) [25–28].

However, a recent numerical study using ED and density
matrix renormalization group (DMRG) has revealed [29] an
important fact that, accompanying the single hole in the
ground state, hidden spin currents are generically present in
the background, which has been essentially overlooked in
the previous numerical studies [19,20] of the 2D t-J model.
Namely, despite a total momentum at (±π/2,±π/2) under
a periodic boundary condition (PBC), the doped hole itself
may not always carry the full momentum since a part of it
has been carried away by the spin current into the neutral
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spin background [29]. Furthermore, under an open bound-
ary condition (OBC) that maintains the lattice C4 rotational
symmetry, the ground state is characterized by finite angular
momentum Lz = ±1 (mod 4), which is tied to the chiralities
of the background spin currents with a double degeneracy
[29]. These are in sharp contrast to the above-mentioned spin
polaron picture obtained by SCBA, which has suggested that
the hole should be dressed by a rigid spin distortion at low
energies that only renormalizes its effective mass, which still
satisfies the Landau one-to-one correspondence hypothesis
such that the total momentum is fully carried by low-lying
quasiparticle excitations.

Thus, the novel ground-state degeneracy and associated
spin currents found by numerical calculations [29] have
clearly indicated that a single-hole ground state of the t-J
model is not simply described by a conventional quasi-
particle. Here one has to treat the local coupling between
the hole and spin background more carefully as it may
be much more singular than previously believed. This is
critically important in order to meaningfully extrapolate
the single-hole results into a large-scale or a finite-doping
regime, where the local correlation dominated by the sin-
gle hole’s mutual influence with the spin background must
be correctly taken into account as a proper starting point
in order to understand pairing and other long-wavelength
physics.

Therefore, in this work, we shall revisit the single-hole
ground state of the 2D t-J model by studying a new ground-
state ansatz with the variational Monte Carlo (VMC) method.
Such a variational state is the one-hole limit of the ground-
state ansatz previously constructed in the phase string theory
[30,31]. It has been already applied to the one-hole cases in
the 1D [11,32] as well as two-leg ladder [33] systems, with
the VMC results well reproducing various singular features
observed in the DMRG calculations. As opposed to the above-
mentioned spin polaron [12,13,15–18] or “spin bag” picture
[34,35], a hole hopping on an antiferromagnetically corre-
lated spin background will generally create a stringlike spin
mismatch defect, known as the phase string [36–38], which
cannot be completely “self-healed” by the spin superexchange
dynamics. In the SCBA scheme [15–18], the longitudinal Sz

string [39,40] induced by hopping is assumed to be reparable
via the spin-flip process of the Heisenberg term. However,
the hopping of the hole will simultaneously generate the
transverse Sx and Sy strings as well. An exact mathematical
formulation [36–38] has shown that after the Sz string along
the spin z direction is “repaired” through spin flips, the trans-
verse strings, represented by a sequence of signs known as
the phase string, cannot be erased simultaneously and will be
generally left in the hole path, which plays a role like the Berry
phase to result in strong quantum interference once the whole
paths of the hole are summed over in Feynman path integral
fashion. Namely, the doped hole will always create irreparable
spin mismatch “strings” on its path to singularly influence its
motion on a quantum spin background. Indeed, by precisely
turning off such a phase string effect in the t-J model to
result in the so-called σ · t-J model [41], the above-outlined
spin current pattern and novel ground-state degeneracy both
disappear to recover a true quasiparticle description as shown
by ED and DMRG in Ref. [29].

Specifically, in this paper, we study such a single-hole
variational ground state ansatz with VMC, in which the bare
hole is “twisted” by producing a nonlocal phase shift due to
the phase string effect based on the t-J model. It can correctly
describe a one-hole quantum state with the conserved hole
number Nh = 1, spin S = Sz = 1/2, and an angular momen-
tum Lz = ±1 corresponding to a discrete C4 rotation symme-
try under the OBC. Namely, it has a novel double degeneracy
for a given Sz = 1/2, corresponding to two chiralities of
the neutral spin currents, all in agreement with the ED and
DMRG results [29]. Both the momentum distribution nh(k)
and quasiparticle weight Zk are in excellent agreement with
the DMRG results up to an 8 × 8 lattice, showing that the
hole wave function in the ground state can be decomposed
into a quasiparticle component and an incoherent component
with a broad continuous momentum distribution. In particular,
Zk is indeed peaked at four momenta K0 = (±π/2,±π/2).
But the finite-size scaling of ZK0 shows a power-law decay,
indicating the breakdown of the quasiparticle picture in the
thermodynamic limit. The translational symmetry is explicitly
broken in such a variational ground state. However, by turning
off the phase string, all the above novel features disappear
and the variational ground state recovers a simple Bloch-wave
state in the σ · t-J model. Finally, a natural generalization of
the present scheme to pairing and finite doping are briefly
discussed at the end of the paper.

The rest of the paper is organized as follows. In Sec. II,
we introduce the t-J model on a 2D square lattice and outline
the key results. In Sec. III, we present the detailed composite
structure of the single-hole variational ground state, which
possesses the same quantum numbers as those identified in
the previous ED and DMRG calculations. We further iden-
tify the two-component structure of the single-hole state of
the t-J model. Two physical quantities, i.e., the momentum
distribution nh(k) and quasiparticle spectral weight Zk, are
presented. For the σ · t-J model, a conventional Bloch-wave
state is recovered. Finally, our summary and discussion along
with some perspectives are given in Sec. IV.

II. THE MODEL AND KEY RESULTS

A. The t-J model

The model we consider in this work is the standard t-J
model on a two-dimensional isotropic square lattice with the
Hamiltonian Ht−J = P (Ht + HJ )P , in which

Ht = −t
∑
〈i j〉σ

c†
iσ c jσ + H.c., (1)

HJ = J
∑
〈i j〉

(
Si · S j − 1

4
nin j

)
, (2)

where the projective operator P imposes the no-double-
occupancy constraint on each site. Here, ciσ annihilates an
electron at site i with spin σ , and ni = ∑

σ c†
iσ ciσ and Si are

the electron number and spin operator, respectively. We fix
t/J = 3 in making comparison of the present VMC study of
the variational ground state with the ED and DMRG results.
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B. Key results

In this work, we study the following one-hole ground state
ansatz for the 2D t-J model,

|�G〉1h =
∑

i

ϕh(i)c̃i↓|RVB〉, (3)

and show that it can systematically reproduce the numerical
ED and DMRG results [29] via a VMC calculation. Here
|RVB〉 (resonant valence bond) denotes a half-filled spin
background [42], which is the ground state of the Heisenberg
model HJ . The doped hole is created by the annihilation
operator

c̃i↓ = ci↓e−i�̂i , (4)

which removes an electron of spin ↓ (without loss of gener-
ality) from the “vacuum” state |RVB〉, and at the same time,
produces a nonlocal many-body “phase shift” �̂i in the spin
background. The latter is defined by [30,31]

�̂i =
∑

l

θi(l )n↓
l , (5)

in which in general θi(l ) satisfies

θi(l ) = θl (i) ± π, (6)

and in particular, it takes the form θi(l ) = ± Im ln (zi − zl )
in 2D, with zi = xi + iyi as the complex coordinate of site i,
and n↓

l denotes the number operator of the ↓ spin at site l .
Finally, ϕh in Eq. (3) is a variational parameter representing
the wave function of the doped hole, which is to be determined
by minimizing the variational energy in the VMC calculation.

Such a unique ansatz in Eq. (3) can be compared to the
following Bloch-like one-hole state

|�Bloch〉1h ∝
∑

i

eik·ri ci↓|RVB〉. (7)

Besides the momentum k, the state of Eq. (7) carries a total
spin S = 1/2, Sz = 1/2, and a charge +e, which is created by
the bare hole operator ci↓ on a spin-singlet and translationally
invariant spin background. So the new ground state of Eq. (3)
means that the “quasiparticle” creation operator is changed to

ciσ → c̃iσ , (8)

or equivalently the single-hole wave function is changed from
a Bloch-wave to a many-body version by

eik·ri → ϕh(i)e−i�̂i . (9)

Indeed, the new quasiparticle, created by c̃ in Eq. (3), can
propagate more coherently as compared to the bare c in the
antiferromagnetic spin background (cf. Fig. 7). It is noted
that the ansatz state in Eq. (3) is defined in a finite-size
system with an open boundary condition (OBC), in which
the C4 rotational symmetry is retained. Besides the total spin
S = 1/2, Sz = 1/2, and the hole number Nh = 1, it shows a
nontrivial angular momentum Lz = ±1 in agreement with the
ED and DMRG [29], indicating that there is a novel double
ground-state degeneracy for a given Sz. Such a nontrivial
angular momentum Lz = ±1 is shown to be associated with
the neutral spin current pattern and charge current pattern,
respectively, in Figs. 5 and 6. These currents are qualitatively

FIG. 1. (a) Schematic illustration of the single-hole wave func-
tion ansatz [Eq. (3)], in which the mutual entanglement between a
hole and surrounding spins is explicitly characterized by the phase
string operator [Eqs. (4) and (5)]. Such a single-hole ground state
can be labeled by the following quantum numbers: hole number
Nh = 1, spin S = 1/2, Sz = ±1/2, and for a lattice with a discrete C4

rotational symmetry, an angular momentum Lz = ±1 with nontrivial
spin and hole currents, Js and Jh, in agreement with the ED and
DMRG results [29]. (b) The quasiparticle spectral weight of the
ground state (3) shows four sharp peaks at momenta (±π/2,±π/2)
at a finite-size system (N = 16 × 16).

consistent with the ED and DMRG results [29], which can be
directly connected to the phase shift factor e−i�̂i in the ground
state of Eq. (3), as schematically illustrated in Fig. 1(a).

As shown in Fig. 1(b), the ground state of Eq. (3) is further
composed of four Bloch-wave states [Eq. (7)] characterized
by the quasiparticle spectral weight Zk, which is peaked at
four momenta,

K0 =
(
±π

2
,±π

2

)
. (10)

Zk measures the quasiparticle spectral weight, which shows
that the ground state of Eq. (3) automatically includes four
Bloch-wave components at momenta K0. This is consistent
with the ED calculation in which the fourfold degeneracy with
the total momenta K0 has been identified on a torus (PBC)
at a large ratio of t/J in the t-J model [29]. In particular,
the value of Zk calculated with VMC agrees very well with
that computed with DMRG for a lattice size N = 8 × 8 under
OBC as shown in Fig. 2(b) at t/J = 3.

Figure 2(d) further shows the VMC result of Zk at N =
16 × 16. In fact, at larger sample sizes, Zk is shown to vanish
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FIG. 2. Momentum distribution of the hole, nh(k), and the quasiparticle weight Zk, as calculated with VMC in the ground-state ansatz of
Eq. (3): (a) and (b) show excellent agreement with the DMRG on an 8 × 8 lattice; (c) and (d) show a larger size at 16 × 16. The finite-size
scaling results obtained with VMC are presented in Fig. 3.

in a power-law fashion [cf. Fig. 3(b)] as follows:

ZK0 � 0.59
1

L1.31
(11)

at t/J = 3 with L denoting the sample length. In other
words, the ground-state ansatz (3) is a prototypic non-Fermi-
liquid state with vanishing Zk at N ≡ L2 → ∞. Such a
“twisted” quasiparticle is non-Landau-like, in contrast to the
conventional Landau quasiparticle implied in the Bloch-wave
state (7).

Furthermore, the momentum structure of the doped hole
can be also measured by the hole momentum distribution
function defined by

nh(k) ≡ 1 − ne(k) = 1 −
〈∑

σ

c†
kσ ckσ

〉
, (12)

where nh(k) = 0 at half filling and
∑

k nh(k) = 1 for the one-
hole case. The good agreement between the VMC calculation
based on Eq. (3) and the DMRG result at N = 8 × 8 can be
found in Fig. 2(a). Figure 2(c) further shows the VMC result
at N = 16 × 16. A finite-size scaling is presented in Fig. 3(a),
which indicates that besides the peaks at K0 proportional
to ZK0 , nh(k) exhibits a broad continuum, which satisfies

a scaling ∝1/N and thus its total weight contributes to a
finite and predominant part to the sum rule of

∑
k nh(k). By

contrast, the quasiparticle component vanishes as given in
Eq. (11), such that the bare hole truly becomes incoherent
in the thermodynamic limit demonstrated by extrapolation of
finite-size results.

Therefore, the one-hole ground state (3) is composed of
two components, in which the doped hole either behaves like
a Bloch wave at the four Fermi points of K0 with the spectral
weight ZK0 or becomes incoherent with a broad momentum
distribution. In the later component, a partial momentum is
carried away by the neutral spin currents as presented in
Fig. 5. The Landau one-to-one correspondence hypothesis no
longer holds true here in the presence of the second compo-
nent, which violates the adiabaticity by allowing a continuous
momentum transfer between the hole and the surrounding
spin background. In particular, ϕh determined with VMC is
no longer Bloch-wave-like [cf. Fig. 4(b)], which means the
translational symmetry is explicitly broken.

Finally, we find that the Bloch-like ground state in Eq. (7)
will replace Eq. (3) to become the ground state variationally
for the σ · t-J model. All the novel properties, including
the double ground-state degeneracy, the nontrivial Lz with
finite spin/charge currents surrounding the hole/spin, the
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FIG. 3. The scaling analysis of the momentum distribution nh(k)
and the quasiparticle weight ZK0 . (a) The broad background part of
nh(k) scales with the inverse of L2 in the square sample N = L ×
L. (b) The quasiparticle weight ZK0 at the peak momentum K0 =
(± π

2 , ± π

2 ) vanishes in a power-law fashion by L−1.31.

vanishing Zk, and the two-component feature, disappear in
such a ground state. In other words, we find that the Landau
quasiparticle description for the doped hole is recovered in the
model in which the phase string effect is turned off in the hop-
ping term, while the superexchange term remains unchanged.
Thus the present variational approach clearly establishes that
the phase string effect hidden in the 2D t-J model is well en-
coded by the phase string operator in Eq. (5), which gives rise
to the mutual spin/charge currents as the composite structure
associated with the doped hole that is “twisted” according to
Eq. (4) in an antiferromagnetic background |RVB〉.

III. GROUND-STATE ANSATZ AND VARIATIONAL
MONTE CARLO CALCULATION

A. Variational ground state for the one-hole-doped
Mott insulator

The single-hole-doped ground state may be generally con-
structed by removing an electron with, say, ↓ spin, from the
half-filling ground state |RVB〉 as follows:

|�G〉1h =
∑

i

[ϕh(i)�̂i]ci↓|RVB〉, (13)

-3

0

3

0.0 0.5 1.0 1.5 2.0
0.0

0.5
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1.5

2.0(b)

ΨBloch(k)

(3π/2,3π/2)(π/2,π/2) (2π,2π)(π,π)

E t
/J

(0,0)

ΨBloch(k)

(a)

ΨG[ϕh(k)]

k y
/π

kx/π

FIG. 4. (a) The kinetic energies of the Bloch-like states
|�Bloch(k)〉1h [Eq. (7)] and |�̃Bloch(k)〉1h [Eq. (17)] as a function of
momentum vs that of the variational ground state |�G〉1h in Eq. (3)
(dashed line). Note that the hole wave function ϕh(i) determined
variationally in Eq. (3) is not translationally invariant as shown in
(b). (b) The distribution of the absolute value of ϕh(k) as the Fourier
transformation of ϕh(i) in the momentum space.

where the summation is over the lattice site i weighted by a
hole wave function ϕh(i) and a many-body operator �̂i, which
denotes the generic distortion (i.e., spin polaron) of the spin
background in response to the injection of a hole into the half-
filling ground state.

The ground state of the Heisenberg-type Hamiltonian HJ at
half filling is denoted by |RVB〉 above. So far the best varia-
tional wave function is the so-called bosonic resonant valence
bond (RVB) state proposed [42] by Liang, Doucot, and Ander-
son, which is a spin singlet with translational invariance, and
has a very accurate variational energy [E0

G/(2N ) + 1/4J =
−0.3344J] as compared to the precise numerical results. Our
VMC approach will be based on such an |RVB〉 as the starting
point (Appendix A).
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If one neglects the “spin polaron” effect of �̂i in Eq. (13)
by taking �̂i = 1, a Bloch-like state |�Bloch〉1h will be
reproduced with

ϕh(i) ∝ eik·ri , (14)

as given in Eq. (7), which describes a Landau quasiparticle
with the quantum numbers of total spin S = 1/2, Sz = 1/2,
charge +e, and a momentum k corresponding to the transla-
tional operation by a distance l,

T̂l|�Bloch〉1h = e−ik·l|�Bloch〉1h, (15)

by noting T̂l|RVB〉 = |RVB〉, T̂lci↓T̂ †
l = ci+l↓.

Such a Bloch-wave picture, marked by Eq. (14), would
remain unchanged at �̂i �= 1 if one required the translational
symmetry (15) under a many-body operator T̂l involving the
hole and whole spins. (Note that �̂i generally satisfies the
translational symmetry by T̂l�̂ici↓T̂ †

l = �̂i+lci+l↓.) However,
in the present variational scheme, ϕh(i) obtained with VMC
with �̂i �= 1 may not necessarily recover the Bloch-wave so-
lution of Eq. (14). In other words, a spontaneous translational-
symmetry breaking may occur in the single-hole ground state
(13), as shown below.

First, we note that the Bloch-wave state indeed holds true
generally if �̂i represents a local spin distortion rigidly bound
to the hole, solely specified by the hole or a “center-of-mass”
coordinate via the hole wave function ϕh(i). Indeed, the “lon-
gitudinal spin polaron” [15–18] or “spin bag” effect [34,35]
can generally improve the ground-state energy of the Bloch
state (7) without changing its nature as a Landau quasiparticle,
except for a renormalization of the effective mass or even the
location of k in the ground state.

However, in this work, we shall focus on a new type of
“transverse spin polaron” effect in �̂i given by [30,31]

�̂i = e−i�̂i , (16)

where the many-body phase shift operator �̂i is defined in
Eq. (5), which will introduce transverse spin currents around
the hole (see below). The precise form of Eq. (5) originates
from the intrinsic phase string sign structures [36–38] of the
t-J model, representing a long-range mutual entanglement
between the doped hole and the spin background. Physically,
the phase shift in Eq. (16) describes a nonlocal response of
the whole spin degree of freedom to the injection of a hole,
which is nonperturbative in nature. Its explicit expressions in
one-dimensional [11,32] and two-leg ladder [33,43] systems
have been previously studied in earlier works.

The VMC simulation (cf. Appendix B) shows that the
ground-state energy of the ansatz state (3) will be lowered as
compared to that of the Bloch state (7) by 	EG = −1.50J
at N = 16 × 16 (in which the kinetic energy difference is
	Et = −2.71J and the superexchange energy difference is
	EJ = 1.21J). Here, the absolute value of ϕh(k), the Fourier
transformation of ϕh(i) determined by optimizing the ground-
state energy, is shown in Fig. 4(b). Clearly it is not solely
peaked at four K0 in Eq. (10) as would be expected for a linear
superposition of four translationally invariant states with total
momenta K0, which are to be obtained later by calculating the
quasiparticle spectral weight.

In particular, if one assumes a translationally invariant form
with ϕh(i) taking the Bloch-wave form in Eq. (14),

|�̃Bloch(k)〉1h ∝
∑

i

eik·ri c̃i↓|RVB〉, (17)

the resulting kinetic energy is higher by 	Et = 1.94J at N =
16 × 16 (the superexchange energy is the same). Therefore,
in contrast to Eq. (17), the wave function ϕh(i) as determined
variationally in Eq. (3) indeed automatically breaks the trans-
lational symmetry in the true variational ground state.

It is noted that the VMC calculation for an 8 × 8 square
lattice with OBC (t = 3J) gives rise to a kinetic energy
Et = −5.08J and the superexchange energy EJ = −37.21J
(at half filling EJ = −39.4884J), while the DMRG gives
the values of Et = −8.67J and EJ = −37.28J . Here we
emphasize that one may further improve the single hole’s
kinetic energy by incorporating the SCBA-like correction
into the ansatz state (3) without changing the nature of the
composite/fractionalization structure of the one-hole ground
state. But the absolute kinetic energy is not our main con-
cern here. Instead, we shall focus more on the structure and
ground-state properties of the ansatz state (3) in comparison
with the DMRG simulation.

On the other hand, as we shall see later, with the phase
string being switched off in the so-called σ · t-J model by
restoring the trivial sign structure (cf. Sec. III F), the one-hole
wave function will simply reduce to the Bloch-wave form in
Eq. (7) with a lower ground-state energy than that of Eq. (3).
Thus, the phase shift operator of Eq. (5) really originates from
the phase string, which must be “turned off” in Eq. (13) in
the absence of such an effect. Consequently ϕh(i) restores the
Bloch-wave form in Eq. (14).

Although one may further improve the one-hole ground
state energy by incorporating the “longitudinal spin polaron”
effect [12,13,15–18] mentioned above for both t-J and σ · t-J
models, in the present work, our main focus will be on
the qualitatively different properties exhibited between the
ground state of Eq. (3) and the Bloch-wave state in Eq. (7),
and the conventional “longitudinal spin polaron” effect will
be omitted for the sake of simplicity.

B. Hidden spin/charge currents

It can be explicitly seen that the ground-state ansatz |�G〉1h

in Eq. (3) has the hole number Nh = 1 and total spin S =
Sz = 1/2, which are conserved in the t-J Hamiltonian. In the
Heisenberg picture, the corresponding continuity equations
associated with these quantities are given as follows [29]:

dnh
i

dτ
=

∑
j=NN(i)

Jh
i j, (18)

dSz
i

dτ
=

∑
j=NN(i)

(
Js

i j + Jb
i j

)
, (19)

where τ denotes the time, Jh the hole (charge) current, Jb the
backflow spin current associated with the hole hopping, and Js
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FIG. 5. The neutral spin current (Js
i j) pattern surrounding the hole

in one of the degenerate ground states with Lz = 1 in a lattice of
N = 8 × 8 with OBC. (The red vertical and horizontal dashed lines
mark the bonds with vanishing spin currents.) The dashed blue closed
loops and numbers indicate the Wilson loops that count the Berry
phase defined in Eq. (23).

the neutral spin current in the Heisenberg background, which
are respectively defined by

Jh
i j = −it

∑
σ

(c†
iσ c jσ − c†

jσ ciσ ), (20)

Jb
i j = i

t

2

∑
σ

σ (c†
iσ c jσ − c†

jσ ciσ ), (21)

Js
i j = −J

2
i(S+

i S−
j − S−

i S+
j ). (22)

By using VMC, one can variationally determine the single-
hole wave function ϕh(i) of the ansatz state (3). The cor-
responding instant patterns of spin currents around the hole
and the hole currents around an ↑ spin are obtained by
computing the following correlation functions: 〈Ph

l Js
i j〉 and

〈P s
mJh

i j〉, where Ph
l ≡ nh

i0 and P s
l ≡ c†

l↑cl↑ project the hole and
an ↑ spin at site l , as shown in Figs. 5 and 6, respectively. In
Fig. 5, circulating neutral spin currents surrounding the doped
hole are clearly shown, and mutual hole currents circulating a
fixed (↑) spin are presented in Fig. 6. Their chirality depends
on the sign of �̂i in Eq. (5), which is concomitant with a
double degeneracy of the ground state specified by an angular
momentum Lz = ±1, to be discussed later.

These novel spin and charge currents can be directly traced
back to the phase shift operator in Eq. (16), which can be
associated with a nontrivial Berry phase [44]. Generally, the
Berry phase of Eq. (3) can be identified by its phase change
accumulated under an adiabatic change of the wave function
along a closed loop in some parameter space. Here it is speci-
fied by the space-time path of the hole and spin configurations.

If we examine a loop in the parameter space describing
the full braiding between such a spin and the doped hole,
one would find two Berry phases, one corresponding to the
winding of the spin at m around the hole at i0 via a closed

FIG. 6. The charge (hole) current (Jh
i j) pattern surrounding an ↑

spin projected onto a given lattice site in a degenerate ground state
with Lz = 1 in a lattice of N = 8 × 8 with OBC. The dashed red
closed loops and numbers indicate the Wilson loops counting the
Berry phase defined in Eq. (24).

loop c encircling but not crossing i0,

γ h−s
i0 [c] ∝ W [c] ≡

〈∮
c
Ph

i0 Js
i j

〉
, (23)

and the other the winding of the hole around the spin, given
by

γ s−h
m [c] ∝ T [c] ≡

〈∮
c
P s

mJh
i j

〉
. (24)

Both nontrivial γ h−s
i0

[c] and γ s−h
m [c] are thus directly con-

nected with the spin and charge current loops shown in Figs. 5
and 6.

C. Nontrivial quantum number: Angular momentum Lz = ±1

Let us start with a system of the square lattice of a finite
size of 2M × 2M, which possesses a C4 rotational symmetry
under the OBC. A straightforward manipulation based on
the wave function in Eq. (3) can demonstrate (see below)
that under a spatial rotation of π/2, the ground state will be
transformed by

R̂(π/2)|�G〉1h = ±i|�G〉1h, (25)

where R̂(θ ) is the spatial rotational operator of angle θ with
eigenvalue eiLzθ . So the ground state has a nonzero angular
momentum Lz = ±1 and a precise twofold degeneracy under
a given Sz, which are in agreement with the numerical result
[29] for finite-size systems with t/J = 3.

The proof of Eq. (25) is given as followed. Let R̂ ≡ R̂(π/2)
be the operator that rotates the system anticlockwise by 90
degrees. When acting R̂ on the variational wave function (3),
one has

R̂|�G〉1h = R̂
∑

i

ϕh(i)e−i�̂i ci↓|RVB〉

=
∑

i

ϕh(i)
(
R̂e−i�̂i ci↓R̂−1

)
R̂|RVB〉. (26)
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The spin RVB state by construction is rotationally invariant:

R̂|RVB〉 = |RVB〉. (27)

The symmetry transformation of the combination of the phase
string operator and the fermion annihilation operator is

R̂e−i�̂i ci↓R̂−1 = R̂ exp

⎡⎣±i
∑
l �=i

θi(l )nl↓

⎤⎦ci↓R̂−1

= exp

⎡⎣±i
∑
l �=i

θi(l )nR̂l↓

⎤⎦cR̂i↓,

which can be further simplified by using θ
R̂i

(R̂l ) = θi(l ) +
π/2 and

∑
l ( �=i) nl↓ = ∑

l ( �=i)(
nl↓+nl↑

2 − nl↑−nl↓
2 ) = N−1

2 − Sz.
Therefore, the symmetry transformation of the wave function
Eq. (26) becomes

R̂|�G〉1h

=
∑

i

ϕh(i) exp

[
±i

π

2

(
N − 1

2
− Sz

)]
e−i�̂i ci↓|RVB〉

= exp

[
±i

π

2

(
N − 1

2
− Sz

)]
|�G〉1h. (28)

For a bipartite lattice with size N = 2M × 2M and Sz = 1/2,
one finds that Eq. (25) holds true. On the other hand, for
a lattice with an odd number of total sites, for example,
N = 5 × 5, the phase factor in Eq. (28) is ±1. All these are
consistent with ED and DMRG simulations [29].

D. Equal-time single-hole propagation

In the single-hole ground state, one may examine the
single-hole propagator defined by

Ci j = 〈�G|c j↓c†
i↓|�G〉1h. (29)

The result calculated with VMC is presented in Fig. 7. We
can see that the propagator Ci j is substantially suppressed and
decays much faster than in a conventional Bloch-wave state
of Eq. (7) (with the momentum at K0 for the convenience of
comparison) as shown by C0

i j in Fig. 7, which is defined by

C0
i j = 〈�Bloch|c j↓c†

i↓|�Bloch〉1h. (30)

This implies that the ground-state ansatz in Eq. (3) does not
favor a coherent propagator of a bare hole on the quantum spin
background.

We have seen that in the ground-state ansatz (3), the
doped hole is “twisted” into a composite hole described by
c̃i↓ in Eq. (4). Thus, a new hole object characterized by c̃i↓
is expected to propagate more coherently in the following
propagator:

Di j = 〈�G|c̃ j↓c̃†
i↓|�G〉1h

= ϕ∗
h ( j)ϕh(i)

〈(
1
2 − Sz

j

)(
1
2 − Sz

i

)〉
RVB, (31)

whose propagation over the spatial distance calculated with
VMC is indeed much improved and in fact becomes compa-
rable to the coherent Bloch-wave state characterized by C0

i j as
shown in Fig. 7. However, as indicated in Fig. 4(b), the hole

0 5 10 15

0.0

0.5

1.0

1.5

2.0

C0ij

S
in
gl
e-
pa
rti
cl
e
pr
op
ag
at
or

rij

Dij

Cij

FIG. 7. The propagation amplitude of a bare hole, Ci j , is much
reduced as compared to that of the “twisted” hole, Di j , in the ground-
state ansatz (3). The latter is comparable to the hole propagation
C0

i j for a Bloch-wave state defined in Eq. (7) (with momentum K0).
Here the spatial distance ri j = |xi − x j | + |yi − y j |, and Ci j and Di j

are calculated by averaging over all the lattice sites with each given
distance ri j based on the definitions given in Eq. (29) and Eq. (31),
respectively. The lattice size is 20 × 20.

wave function ϕh(i) is no longer a Bloch wave and Di j must
deviate from C0

i j in the long distance as shown below.
Thus, a bare hole created by ci↓ on the half-filling vac-

uum is no longer a stable elementary excitation to form a
conventional Bloch wave. Instead, in the ground state, the
doped hole will break down or fractionalize to become a new
composite object, c̃i↓, which is composed of mutual spin and
charge current patterns previously shown in Figs. 5 and 6,
respectively. The residual bare hole component has a much
reduced propagation amplitude as indicated in Fig. 7. In the
following, we shall further look into the momentum structure
of such a single-hole propagator in order to follow its long-
distance behavior.

E. Momentum distribution nh(k) and quasiparticle spectral
weight Zk

There are two basic physical quantities that can charac-
terize the fate of the bare hole injected into the half-filling
ground state. One is the Landau quasiparticle spectral weight
Zk defined by [45]

Zk ≡ |〈RVB|c†
k↓|�G〉1h|2

= 1
2 |〈�Bloch(k)|�G〉1h|2, (32)

which measures the overlap between the Bloch-wave com-
ponent [cf. Eq. (7)] and the ground-state ansatz (3), with
ck↓ = (1/

√
N )

∑
i eik·ri ci↓. Note that in obtaining the second

line on the right-hand side, 〈c†
kσ ckσ 〉 = 1/2 [i.e., ne(k) = 1] at

half filling is used due to the no-double-occupancy constraint.
The second quantity is the hole momentum distribution

nh(k) defined in Eq. (12), which is the Fourier transformation

205128-8



SINGLE-HOLE WAVE FUNCTION IN TWO DIMENSIONS: … PHYSICAL REVIEW B 99, 205128 (2019)

of the single-hole propagator [cf. Eq. (29)]

nh(k) = −1 + 1

N

∑
i jσ

e−ik·(ri−r j )〈c jσ c†
iσ 〉1h. (33)

Here nh(k) measures the momentum distribution of the hole,
satisfying the sum rule ∑

k

nh(k) = 1 (34)

in the single-hole-doped case. Note that ne(k) = 1 or nh(k) =
0 at half filling for any states including excited ones due to
the no-double-occupancy constraint. So neutral spin excita-
tions (spin currents) cannot be directly detected by such a
momentum distribution. Nevertheless, beyond Zk, nh(k) can
further show the momentum change of the bare hole due to the
momentum transfer in the presence of the neutral spin current.

Figures 2(a) and 2(c) illustrate the hole momentum dis-
tribution nh(k) along the cuts of ky = ±π/2 at finite sizes,
and the corresponding Zk’s are presented in Figs. 2(b) and
2(d). There are in total four peaks located at K0 = (±π

2 ,±π
2 )

as revealed by the calculated Zk (cf. Fig. 1) in the ground-
state ansatz of Eq. (3). In particular, both nh(k) and Zk in
Figs. 2(a) and 2(b) calculated with VMC based on Eq. (3)
are in excellent agreement with the DMRG results at the same
sample size of 8 × 8.

Furthermore, the finite-size scalings of nh(k) and Zk of the
VMC calculation are presented in Figs. 3(a) and 3(b), where
a two-component structure in the ground state |�G〉 in Eq. (3)
is manifested. One is the Bloch-wave component |�Bloch(k)〉
at the momenta K0, which gives rise to four peaks in nh(k)
each with the weight ZK0 . However, the weight ZK0 vanishes
in a power-law fashion [cf. Eq. (11)]. The other is a broad
distribution of the momentum with a weight nh(k) ∝ 1/N ,
which makes a finite contribution to the sum rule in Eq. (34).
This is consistent with the spin and charge currents presented
in the ground state as shown in Figs. 5 and 6, in which the hole
and the background spins share the total momentum such that
the bare hole indeed behaves like an incoherent object with a
broad momentum structure.

F. The σ · t-J model: Bloch-wave-like ground state

Differently from the t-J model, we now consider the so-
called σ · t-J model with a modified hopping term [41,46]

Hσ ·t = −t
∑
〈i j〉σ

σc†
iσ c jσ + H.c., (35)

where a spin-dependent sign σ = ±1 is attached to each
hopping process of electron ciσ . The superexchange term HJ

remains the same as in Eq. (1). It can be shown that the
single-hole-doped σ · t-J model has the same sign structure
as the half-filled Heisenberg model, i.e., the Marshall sign
structure [47]. The doped hole moves in the spin back-
ground without creating additional sign mismatches. There-
fore, a natural variational wave function [33] for the σ · t-J
model is

|�G〉σ ·t-J
1h =

∑
i

ϕh(i)ci↓|RVB〉, (36)

0.0 0.5 1.0 1.5 2.0

0.0

0.1

0.2

0.3

0.4

nh
(k
)

kx/π

nk

0.0

0.1

0.2

0.3

0.4

Zk

Z k

t-J model
ky=π

FIG. 8. Hole momentum distribution nh(k) and quasiparticle
weight Zk for the σ · t-J model. Differently from the t-J model in
Fig. 2, nh(k) only has single peak located at the symmetry point
K0 = (π, π ) with null spin currents.

obtained by setting �̂i = 1 in Eq. (16). It is nothing but the
Bloch-wave state in Eq. (7) obtained in the thermodynamic
limit with the translational symmetry.

By minimizing the total energy with the variational pa-
rameter ϕh in Eq. (36), the momentum distribution nh(k) and
quasiparticle spectral weight Zk are calculated as given in
Fig. 8. Differently from the t-J model, both the momentum
distribution and quasiparticle weight are now sharply peaked
at k = (π, π ) without broadening. The angular momentum Lz

vanishes without a novel ground-state degeneracy, and there
are no more spin and charge currents in the ground state. In
other words, the doped hole simply reduces to a Landau-type
quasiparticle specified by a momentum at a symmetric point
in the ground state. All are in good agreement with the ED
and DMRG numerical results [29].

IV. DISCUSSION

To summarize, we have shown that for a single hole
injected into a quantum spin background |RVB〉, its ground
state is well captured by the ansatz wave function given in
Eq. (3). Specifically, such a ground state possesses a nontrivial
angular momentum Lz = ±1 in 2D, which results in a novel
double degeneracy at a given Sz = ±1/2. Correspondingly,
hidden chiral spin currents around the hole and, vice versa, the
chiral hole currents around the spin Sz = ±1/2 are identified
by the VMC calculation. Such a single-hole state may be
further decomposed into a two-component structure, with a
quasiparticle component characterized by the spectral weight
Zk peaked at four momenta of (±π/2,±π/2), while there
emerges a broad momentum distribution due to the presence
of the neutral spin current which carries away a partial mo-
mentum. These results are in excellent agreement with the
finite-size DMRG calculation.

Here the wave function of a single hole in a doped Mott
insulator is changed from a simple Bloch wave to a composite
one with the bare hole accompanied by a neutral spin backflow
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of many-body nature, i.e.,

ϕh(i) ∝ eik·ri → ϕh(i)e−i�̂i , (37)

such that the creation operator of the quasiparticle is changed
as follows:

ckσ →
∑

i

ϕh(i)c̃iσ . (38)

Namely, the new “twisted” hole is created by c̃iσ = e−i�̂i ciσ ,
in which the phase shift e−i�̂i [cf. Eq. (5)] is solely responsible
for the above novel ground-state properties including the
finite angular momentum, chiral spin/charge currents, and the
double ground-state degeneracy in a 2D system with the C4

rotational symmetry. In particular, the translational symmetry
is explicitly broken in the variational ground state with ϕh(i)
no longer behaving like a Bloch wave. By contrast, e−i�̂i

disappears in the σ · t-J model [cf. the variational ground state
in Eq. (7)] to restore the translational symmetry, in which the
phase string effect is turned off. Clearly, e−i�̂i originates from
the phase string effect of the t-J model.

As has been emphasized in the Introduction, the conven-
tional spin polaron effect in the SCBA scheme leads to a
coherent quasiparticle picture with a finite spectral weight Zk
and a narrow but finite bandwidth for the hole. In a Landau
quasiparticle description, such a rigid polaron effect is ex-
pected to mainly renormalize the effective mass without lead-
ing to the novel properties discussed in the present approach,
and the corresponding ground-state wave function is funda-
mentally distinct without the persistent neutral spin currents.
In general, such a “longitudinal” spin polaron [12,13,15–18]
or “spin bag” effect [34,35] may be further incorporated into
the present wave function via �̂i in Eq. (13), which is however
beyond the scope of this work.

For the present single-hole case, any thermodynamic mea-
surement cannot be directly applied and numerical “exper-
iments” have thus become very useful as employed in the
present work. Nevertheless, the novel experimental implica-
tions of the present work are indeed very important even
though the ground state may be difficult to probe by spectro-
scopic measurements. As pointed out above, the quasiparticle
picture as predicted by the SCBA has been shown to fail
as the doped hole acquires a composite structure. Conse-
quently, it implies that in order to reconcile the well-known
discrepancy between the ARPES experiment and the SCBA
approach [25–28], one should not just try to include the
next-neighbor hoppings to improve the dispersion [21–24].
Rather the line shape of broadness of the “quasiparticle peak”
and its isotropic dispersion observed with ARPES should be
considered together as a reflection of the composite structure
or fractionalization of the injected hole [44]. In particular, the
“waterfall phenomenon” at high energy [44] should be also
understood in the framework of the fractionalization.

We may generalize the present wave function construction
to more hole cases. For example, the ground state for two
holes can be naturally constructed as follows:

|�G〉2h =
∑

i j

gi j c̃i↓c̃ j↑|RVB〉, (39)

which involves the pairing of two twisted holes instead of bare
holes with an amplitude gi j . Indeed, a recent VMC calculation
[43] for two holes in a two-leg t-J ladder has confirmed that
by forming such a bound pair, two holes can significantly
gain kinetic energy by effectively canceling out the frustration
induced by the phase strings. There, the variational wave
function (39) has been shown to give rise to the pair-pair
correlations in excellent agreement with the DMRG result
[48]. For the Nh case, these twisted holes are expected to pair
up in the ground state of the following form:

|�G〉Nh =
⎛⎝∑

i j

gi j c̃i↓c̃ j↑

⎞⎠Nh/2

|RVB〉, (40)

where the no-double-occupancy constraint is automatically
realized in a half-filling vacuum |RVB〉 strictly enforcing
the single occupancy. According to the original RVB theory
[2,49,50], the binding potential between holes originates from
the background RVB spin pairing, but here we emphasize that
the emergent phase string effect in c̃↑ and c̃↓ will lead to an
additional new pairing force [43,48] which is nonlocal and
dominates over the RVB pairing. Such a finite-doping state
has been investigated with a generalized mean-field theory
[30,51] and should be further explored with VMC in the
future.
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APPENDIX A: VARIATIONAL GROUND STATE AT
HALF FILLING

At half filling, the t-J model is reduced to the spin-
1/2 Heisenberg model. Anderson proposed that the ground
state should be a resonating valence bond (RVB) state.
The main assumption is that quantum fluctuations drive the
two-dimensional system into a singlet state known as the
spin liquid. This state can be well stimulated by a Liang-
Doucot-Anderson type bosonic RVB variational wave func-
tion [33,42]:

|RVB〉 =
∑

υ

ωυ |υ〉, (A1)

where

|υ〉 =
∑
{σ }

⎛⎝ ∏
(i, j)∈υ

εσiσ j

⎞⎠c†
1σ1

· · · c†
NσN

|0〉 (A2)

is a singlet pairing valence bond state with dimmer covering
configuration υ. Symbol εσiσ j enables the singlet pairing
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between spins on sites i and j. The amplitude ωυ can be factor-
ized as ωυ = ∏

(i, j)∈υ hi j , where hi j is a non-negative function
depending on sites i and j of different sublattices. Apparently,
such a construction naturally satisfies the Marshall sign rule
[33] due to the A-B sublattice pairings and the ε tensor.

APPENDIX B: VARIATIONAL PROCEDURE

The variational procedure involved in this work is essen-
tially the same as presented in Ref. [33], where a single-hole-
doped two-leg t-J ladder is studied with the VMC method
based on a ground-state ansatz similar to Eq. (3). For the sake
of being self-contained, in the following we outline the main
procedures in the VMC calculation, and one is referred to
Ref. [33] for more technical details.

(1) The bosonic RVB ground state |RVB〉 is optimized
(Appendix A) for the superexchange term HJ at half filling.
Upon doping, the “vacuum state” |RVB〉 is unchanged as the
whole change in the spin degrees of freedom as induced by the
hole has been attributed to the factor �i in Eq. (3) generally
termed the spin polaron effect.

(2) Neglecting the whole spin polaron effect, one has a
Bloch-like wave function |�Bloch(k)〉1h in Eq. (7) with mo-
mentum k = (kx, ky). The corresponding hopping term or the
kinetic energy (Et ≡ 〈Ht 〉) is easily obtained by

Et = 2t x
Bloch cos kx + 2t y

Bloch cos ky

with

t x,y
Bloch ≡ t

N

∑
k,l

〈RVB|c†
k↓

⎛⎝∑
〈i j〉σ

c†
iσ c jσ + H.c.

⎞⎠cl↓|RVB〉

= t

N

∑
〈i j〉

1

4
(1 + 4〈RVB|Si · S j |RVB〉). (B1)

The numerical simulation based on the VMC shows
that t x,y

Bloch < 0, which leads to the minimal energy state
|�Bloch(k)〉1h at momentum k = (0, 0) as presented in
Fig. 4(a).

(3) Based on the general variational ground state ansatz in
Eq. (3), the kinetic energy can be expressed by

Et = −
∑
〈i j〉

(H̃t )i jϕ
∗
h ( j)ϕh(i) + H.c., (B2)

where H̃t is given by

(H̃t )i j ≡ −t
∑

σ

〈RVB|c†
j↓c jσ e−i(�̂ j−�̂i )c†

iσ ci↓|RVB〉, (B3)

which can be calculated [33] directly with the VMC. Simi-
larly, we can obtain the superexchange energy EJ ≡ 〈HJ〉,

EJ =
∑

i

(H̃J )i|ϕh(i)|2, (B4)

with

(H̃J )i = J
∑
〈kl〉

k �= i, l �= i

〈RVB|ei�̂i Sk · Sl e
−i�̂i n↓

i |RVB〉. (B5)

In principle, the ground-state wave function ϕh(i) can be
determined by diagonalizing a single-particle effective Hamil-
tonian Ĥeff ≡ H̃t + H̃J . For a large-size square lattice, the
superexchange matrix element (H̃J )i has essentially the same
value for different hole positions in the bulk due to transla-
tional symmetry. Thus, the term H̃J plays a negligible role
in determining ϕh(i). Instead, the wave function ϕh(i) can be
optimized by directly diagonalizing H̃t to result in Et with a
constant EJ .
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