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The antiferromagnetic Heisenberg spin chain of odd spin S is in the Haldane phase with several defining
physical properties, such as thermodynamical ground-state degeneracy, symmetry-protected edge states, and
nonzero string order parameter. If nonzero hole concentration δ and hole hopping energy t are considered, the
spin chain is replaced by a spin-S t-J chain. The motivation of this paper is to generalize the discussions of
the Haldane phase to the doped spin chain. The first result of this paper is that, for the model considered here,
the Z2 sign structure in the usual Ising basis can be totally removed by two consecutive unitary transformations
consisting of a spatially local one and a nonlocal one. Direct from the sign structure, the second result of this
paper is that the Marshall theorem and the Lieb-Mattis theorem for pure spin systems are generalized to the
t-J chain for arbitrary S and δ. A corollary of the theorem provides us with the ground-state degeneracy in
the thermodynamic limit. The third result of this paper is about the phase diagram. We show that the defining
properties of the Haldane phase survive in the small t/J limit. The large t/J phase supports a gapped spin sector
with similar properties (ground-state degeneracy, edge state, and string order parameter) of the Haldane chain,
although the charge sector is gapless.
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I. INTRODUCTION

It is well known, from Haldane’s conjecture, that the
one-dimensional (1D) spin-S antiferromagnetic Heisenberg
model is gapped if S is integer, and gapless if S is half-odd-
integer [1,2]. The odd integral spin chain is in the Haldane
phase, which is one of the simplest examples of the symmetry-
protected topological (SPT) phases [3,4]. The Haldane phase
is characterized by several nontrivial defining properties: the
ground-state degeneracy in open boundary condition, the
symmetry-protected edge states, the hidden antiferromagnetic
order unveiled by nonzero string order parameter, etc. The
motivation of this paper is to generalize these discussions to
the doped spin chain and investigate the physical properties of
the ground state of the 1D t-J model.

The Hamiltonian of the 1D t-J model investigated in this
paper is given by

H =
∑
〈ij〉,m

−tij (c†i,mcj,m + H.c.)

+
∑
〈ij〉

Jij (Si · Sj − S2ninj ). (1)

The system is on an open chain with L sites and N spin-
S “electrons” together with Nh = L − N holes. The hole
doping concentration is defined as δ ≡ Nh/L. The “electron”
annihilation operator ci,m at site i carries z-component spin
Sz = m (= −S,−S + 1, . . . ,S), and can be either hard-core
bosonic or fermionic. ni = ∑

m ni,m = ∑
m c

†
i,mci,m is the

particle-number operator of “electrons” at site i. The total
Hilbert space H is defined by the nondoubly constraint
“ni � 1” at every site i. tij and Jij on each link 〈ij 〉 are always
positive, and the link dependence is allowed. In this paper,
the first term and the second term in Eq. (1) will be called
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“t-term” Ht and “J -term” HJ , respectively. When the doping
concentration δ is zero, the above t-J model is reduced to the
antiferromagnetic Heisenberg model.

From the perspective of numerical analysis, quantum Monte
Carlo (QMC) is a complementary tool to investigate strongly
correlated systems [5]. However, the notorious sign problem of
electronic and frustrated bosonic models generically plagues
the application of QMC, for the functional integrals usually
do not have a positive-definite measure [6]. Although it is
generally a nondeterministic polynomial hard problem [7],
there exist some special models which turn out to be sign
problem free, after carefully analyzing the sign structure of
them [8–10]. Here, sign structure is roughly referred to as
in what circumstances the minus “probabilities” arise in the
functional integral. Recently, Berg et al. have also attempted to
modify a fermionic model to make it sign problem free before
using the QMC method [11].

The notion of sign structure of a given model is also espe-
cially emphasized throughout this paper. The validity of many
theorems, which have been playing very important roles in an
analytic approach to universal properties of strongly correlated
quantum magnets in low dimensions, crucially depends on
the sign structure of these models. Along with the celebrated
Marshall theorem[12],1 many other theorems on pure spin
models have been proposed [13–15]. However, if charge

1The Marshall theorem is not restricted only in systems with
equal size sublattices and can be stated as follows: the ground state
of the spin-S antiferromagnetic Heisenberg model with NA (NB )
sublattice A (B) sites has total spin quantum number S|NA − NB |.
This conclusion can be drawn from the observation that the ground
state of the infinite-range antiferromagnetic Heisenberg model (i.e.,
H∞ = J

∑
i∈A,j∈B Si · Sj with J > 0), constructed in the last step of

the proof of the Marshall theorem, has total spin quantum number
S|NA − NB | [15,18]. This version of Marshall theorem is used in our
paper to prove our generalized theorems.
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degrees of freedom are introduced by doping holes, problems
generically become more intricate. Most of the rigorous results
on doped spin models, e.g., Nagaoka theorem [16,17], Lieb
theorem [18], flat-band ferromagnetism [19–23], and Tasaki
theorem [24], are valid merely for one hole doping or other
fixed doping. We will generalize the Marshall theorem and the
Lieb-Mattis theorem to the 1D t-J model for arbitrary spin S

and hole density δ in this paper.
The organization of the paper is as follows. We first set

up a general theory concerning the sign structure of a generic
Hamiltonian and its ground state in Sec. II. Following this
theory, the sign structure of the 1D spin-S t-J model in the
usual Ising basis is identified in Sec. III by consecutively
performing two unitary transformations: the “Marshall sign
transformation” [12,15], which is spatially local, and the
“phase string transformation” originally proposed by Weng
et al. [25–28], which is spatially nonlocal.2

In Sec. IV, we turn to the physical properties (rather than
“abstract” sign structure) of the state after doping the Haldane
phase. Two theorems (generalized Marshall theorem and
generalized Lieb-Mattis theorem) are proposed in Sec. IV A,
directly from the sign structure of the 1D spin-S t-J model.
One corollary of the theorem is about the ground-state
degeneracy in the thermodynamic limit.

In addition to rigorous analysis above, Sec. IV B deals with
physical properties of the t-J model in other approaches. We
first briefly discuss the phase diagram of the model. Then,
topological properties, such as edge states and string order
parameter, are investigated. We also point out the relation
between sign structure and string order parameter.

We summarize this paper in Sec. V. Some future directions
based on this work will also be discussed. One appealing di-
rection is to investigate the interplay of spin rotation symmetry
and topological properties (e.g., ground-state degeneracy and
edge states) in the presence of holes by introducing spin-orbital
couplings, while those holes play the role of a “symmetry
breaker.”

II. SIGN STRUCTURE OF A GENERIC MODEL

In this section, we emphasize the sign structure of a given
Hamiltonian and the ground state. We show that it is the
Perron-Frobenius theorem that connects the sign-problem-free
condition in QMC and the condition for trivial sign structure of
the ground state. The reason for identifying the sign structure
of the model is that many key physical properties of the
model, such as the ground-state total spin and ground-state
degeneracy, are determined by the sign structure. The trivial
sign basis is also constructed explicitly and a geometric
interpretation for the sign trivial condition is given.

A. Sign structure of a Hamiltonian in QMC

We first clarify in what circumstances we can say a model
is sign problem free in QMC. The starting point of QMC is to

2Nonlocal unitary transformation means that it can not be decom-
posed to a product of several unitary transformations acting on only
nearby sites.

express the partition function as (β = 1/T with temperature
T )

Z ≡ Tr e−βH =
∞∑

k=0

βk

k!

∑
{αi }

k−1∏
i=0

〈αi+1|(−H )|αi〉, (2)

where |αi〉 ∈ Γ and Γ is a basis we choose. We assume
all the matrix elements of the Hamiltonian in the basis Γ
are real numbers. This expression is called stochastic series
expansion [29,30]. The partition function Z can be expressed
as a summation of non-negative numbers, labeled by integer k

and a sequence of basis states {|αi〉} with |α0〉 = |αk〉, if

k−1∏
i=0

〈αi+1|(−H )|αi〉 � 0, ∀ k � 2, |αi〉 ∈ Γ, |α0〉 = |αk〉.

(3)

The k = 1 term 〈α0|(−H )|α0〉 is omitted because it can
be shifted to be positive by adding a constant term to the
Hamiltonian. A geometric interpretation of Eq. (3) based on
the notion of state complex will be given in Sec. II C.

Note that we can also use the world-line QMC expression

Z = Tr e−βH �
∑
{αi }

∏
i

〈αi+1|e−�τH |αi〉

�
∑
{αi }

∏
i

[δαi+1,αi
+ �τ 〈αi+1|(−H )|αi〉] (4)

to derive the condition (3): to employ the standard MC method,
one should make sure that the “probability” in Eq. (4) is non-
negative, which implies Eq. (3).

B. Sign structure of the ground state

In this paper, when talking about the sign structure of a
state

|�〉 =
∑
α∈Γ

aα|α〉 (5)

in a given basis Γ, we are referring to the signs of the
coefficients aα in this basis (we assume the Hamiltonian matrix
elements are all real, then all energy eigenstates have real
coefficients in this basis). The sign structure of the ground
state of a model is closely related to the sign structure of the
Hamiltonian. The bridge connecting these two sign structures
is the Perron-Frobenius theorem.

We first present the Perron-Frobenius theorem [31]: let
A = {aij } be an n × n matrix with aij � 0 for i 	= j . If
A is irreducible in the sense that, for any i 	= j , there
exists a positive integer k, such that (Ak)ij 	= 0, then the
Perron-Frobenius theorem states that the eigenvector of A

with minimum eigenvalue is unique, and has strictly positive
coefficients in this basis.

Physically, for a given Hamiltonian H and given basis Γ0,
the conditions for the Perron-Frobenius theorem are (i) the
inequality

〈α|H |β〉 � 0, ∀ |α〉,|β〉 ∈ Γ0, |α〉 	= |β〉 (6)

is satisfied; (ii) the model is irreducible, in the sense that every
two states |α〉 and |β〉 in Γ0 can be connected by a consecutive
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action of the Hamiltonian. In more precise words, there exists a
sequence of basis states {|α1〉,|α2〉, . . . ,|αK〉} with |α1〉 = |α〉
and |β〉 = |αK〉, such that 〈αi |H |αi+1〉 	= 0 for all 0 � i �
K − 1. The Perron-Frobenius theorem states that the ground
state

|�0〉 =
∑
α∈Γ

aα|α〉 (7)

is unique, and the coefficients satisfy

aα > 0, ∀ |α〉 ∈ Γ0. (8)

The Perron-Frobenius theorem makes it possible to unveil
the sign structure of the ground-state wave function (8)
from the sign structure of the Hamiltonian equation (6). Since
the coefficients aα are all positive, we will say a model is
accompanied with trivial sign structure in the basis Γ0 if Eq. (6)
is satisfied.

As a matter of fact, the two conditions on the sign structure
of the Hamiltonian equations (3) and (6) are equivalent to each
other: if Eq. (3) is satisfied in the basis Γ, then there exists a
basis Γ0, which is obtained from Γ by a unitary transformation,
such that Eq. (6) is satisfied (the explicit construction of Γ0

from Γ is given in Appendix A); the converse proposition is
obviously true. Since the unitary transformation from Γ to Γ0

can remove the minus signs of the ground-state wave function
in the basis Γ, we can also say the model has removable Z2

sign structure in the basis Γ if Eq. (3) is satisfied.

C. Geometric interpretation

The condition for removable Z2 sign structure Eq. (3) can
be interpreted geometrically. A graph can be used to represent
the structure of a given model (see Fig. 1): each basis state in
Γ is denoted by a point; each line connecting two points |α〉
and |β〉 represents the nonzero matrix element 〈α|(−H )|β〉.
We will call this graph a state complex since it is a simplicial
complex in which the 0-simplices represent the basis states
of the total Hilbert space H, rather than points in space or

1

2

3

4

5

6

FIG. 1. (Color online) State complex. An example of state com-
plex with six basis states is shown in this figure. Each point i

represents a basis state |αi〉; each line connecting two points i

and j represents nonzero number 〈αi |(−H )|αj 〉. The geometric
interpretation of Eq. (3) is that the flux through each closed loop
in the state complex is non-negative.

space-time in the group cohomology classification theory of
bosonic SPT states [3,4,32,33].

By viewing 〈α|(−H )|β〉 as Berry connection, Eq. (3) means
the flux through any closed loop of the graph is positive.
Mathematically, it suggests that the Hamiltonian, in the basis
Γ as a 1-cochain, belongs to the trivial element of the first
cohomology group of the state complex. At the same time,
the condition for trivial sign structure [Eq. (6)] means the
connections are all positive, which also indicates that all
the fluxes are positive. It is for this reason that the two
conditions (3) and (6) are equivalent.

The notion of state complex can be used to construct a
family of exactly solvable models. In general, we can construct
a fixed-point wave function with trivial Z2 sign structure:
all amplitudes are the same in an irreducible space. The
Hamiltonian has the following properties: all off-diagonal
elements are −1 or 0; the sum of every column of the
Hamiltonian matrix is zero. We call it the Laplacian model
following the spectral graph theory since the Hamiltonian is the
Laplacian operator of a graph with every vertex representing
a basis state of the Hilbert space. The ground state of the
model is an equal weight superposition of all basis states in
this irreducible space. It is a fixed-point wave function in the
sense that the amplitudes are either one or zero.

Many exactly solvable models, of which the ground state
is an equal weight superposition of a collection of basis
states, belong to the category of the Laplacian model. For
example, the Rokhsar-Kivelson (RK) point of the quantum
dimer model [34], the toric code model [35], and the doubled
semion model [36,37] all possess ground states with the above
structure.

III. SIGN STRUCTURE OF THE 1D SPIN-S t- J MODEL

After clarifying the sign structure of a generic model and
its ground state, we now turn to the sign structure of the 1D
t-J model for arbitrary spin S. As can be verified, Eq. (3) is
satisfied for the 1D spin-S t-J model in the usual Ising basis.
Therefore, our next task is to find out the special basis Γ0 by
properly adding minus signs to the usual Ising basis states, in
order to support the trivial sign structure of the model.

In this section, we will first unveil the sign structure of
the 1D t-J model from the basis transformation point of
view. Although expressions in fractionization formalism are
sometimes tedious, the transformation of the Hamiltonian,
discussed in Appendix B, is an equivalent approach to show
the trivial sign structure of the model directly. After that, a
lemma on the sign structure of the ground state of the model is
proposed. The sign structure of the (doped) Affleck-Kennedy-
Lieb-Tasaki (AKLT) state is analyzed in the last subsection.

A. Basis transformation

The trivial sign basis Γ0 will be constructed from the
usual Ising basis by two consecutive unitary transformations:
spatially local Marshall sign transformation (MST) [12,15] and
spatially nonlocal phase string transformation (PST) [25–28].

045106-3



QING-RUI WANG AND PENG YE PHYSICAL REVIEW B 90, 045106 (2014)

1. Marshall sign transformation

The usual Ising basis of the Hilbert space of the 1D t-J
model can be denoted by

|{hi}; {mi}〉 = c
†
i1,mi1

c
†
i2,mi2

. . . c
†
iN ,miN

|0〉, (9)

where {hi} and {mi} represent the positions of the holes
and the z-component spin of the “electrons,” respectively.
We choose the order of the creation operators such that
i1 < i2 < · · · < iN . The set {1,2, . . . ,L} is the disjoint union
of two sets {i1,i2, . . . ,iN } and {h1,h2, . . . ,hNh

}.
As a spatially local unitary transformation, MST transforms

the usual Ising basis to the Marshall basis [12,15]:

|{hi}; {mi}〉′ =
∏
j,m

(−1)j (S+m)nj,m |{hi}; {mi}〉 . (10)

In this new basis, the usual Ising basis state |mj 〉 on sites j

is modified by an additional sign (−1)S+mj if j belongs to
sublattice B, and unchanged if j belongs to sublattice A.

The J term in the new basis has only nonpositive off-
diagonal matrix elements. However, there is a price to be paid
because a new sign (−1)S+m appears in front of the t-term in
the Marshall basis. In order to further remove the new signs in
front of the t-term, we should continue to perform the so-called
phase string transformation.

2. Phase string transformation

The purpose of PST [25–28] is to absorb the signs in the
t-term while keeping the J -term invariant. We can introduce a
sign (−1)S+m whenever a hole appears on the left side of a spin
with Sz = m. This nonlocal unitary transformation results in a
basis rotation from the Marshall basis [Eq. (10)] to the rotated
Ising basis:

|{hi}; {mi}〉′′ =
∏

i<j ;m

(−1)(S+m)nh
i nj,m |{hi}; {mi}〉′, (11)

where nh
i = 1 − ni is the hole number operator.

As claimed above, PST successfully makes the t-term
sign trivial without introducing new signs in front of the
J -term. Therefore, MST and PST together (i.e., a total unitary
transformation U = UPSTUMST) make the Hamiltonian (1)
sign trivial in a new basis.

B. Sign structure of the ground state

After clarifying the sign structure of the Hamiltonian of
the 1D spin-S t-J model by two unitary transformations, the
sign structure of the ground state can be identified following
the discussions in Sec. II B. We can now draw one of the key
conclusions in this paper on the 1D spin-S t-J model Eq. (1):

Lemma. In any subspace labeled by z-component total spin
quantum number Sz

tot, the lowest-energy state is unique and
has positive-definite coefficients in the rotated Ising basis [see
Eq. (11)].

The proof is as follows. We have shown the following
in Sec. III A: (i) in the rotated Ising basis Eq. (11), the
off-diagonal matrix elements of the 1D t-J model are all
nonpositive: 〈α|H |β〉 � 0 for all states |α〉 	= |β〉. Now, let
us fix the z component of the total spin Sz

tot = M . One can
also verify that (ii) the space H(Sz

tot = M), as a subspace of

the total Hilbert space H, is closed and irreducible under the
action of the Hamiltonian (1). Provided with the two properties
of our model, we can state now, due to the Perron-Frobenius
theorem, that the ground state in the subspace H(Sz

tot = M) is
unique and has strictly positive coefficients in the rotated Ising
basis.

C. Sign structure of (doped) AKLT state

Although the trivial sign structure of a Hamiltonian leads
to the trivial sign structure of the ground state, the converse
proposition is not true. The AKLT model [38,39] is a simple
counterexample. The Hamiltonian of the AKLT model

HAKLT = J
∑
〈ij〉

(
Si · Sj + 1

3
(Si · Sj )2 + 2

3

)
(12)

has a biquadratic term, which makes the model not sign trivial
in the usual Ising basis. The nontrivial sign structure can be
verified by noticing

〈00|(−Hij )| − +〉〈− + |(−Hij )| + −〉〈+ − |(−Hij )|00〉 < 0,

(13)

where |+〉,|0〉,|−〉 are three states with Sz = 1,0,−1, respec-
tively, and Hij is the term in Eq. (12) involving the degrees
of freedom on the link 〈ij 〉. According to the criterion for
removable Z2 sign structure [Eq. (3)], the negative sign in
Eq. (13) indicates there does not exist a sign attachment
procedure to the usual Ising basis, such that the AKLT
Hamiltonian becomes sign trivial, i.e., Eq. (6) is satisfied.
The condition for the Perron-Frobenius theorem is broken,
but the conclusion of the theorem will be shown to be also true
in the Marshall basis.

The ground state of the AKLT model

|�AKLT〉 =
∏

i

(b†i↑b
†
i+1↓ − b

†
i↓b

†
i+1↑)|0〉 (14)

has trivial sign structure in the Marshall basis: by performing
the Marshall sign transformation bjσ → (−σ )j bjσ , the AKLT
state becomes a state with only non-negative amplitude in
the Marshall basis [Eq. (10)]. It means the sign structure
of the AKLT state is exactly the same as that of the spin-1
antiferromagnetic Heisenberg model, even though the sign
structures of the two Hamiltonians are different.

The doped AKLT state [40] has similar sign structure. In
Sec. IV B 2, we will discuss more about the relation between
sign structure and string order parameter, and conclude that a
state with nonzero string order parameter necessarily possesses
this kind of sign structure.

IV. DOPING HALDANE PHASE

It is known from Haldane’s conjecture that the antifer-
romagnetic Heisenberg chain with integral spin is gapped,
while the half-odd-integral spin chain is gapless [1,2]. The
antiferromagnetic Heisenberg chain with odd spin is in the
Haldane phase, which is one of the simplest examples of SPT
phases in 1D [3,4].

In this section, we will dope the antiferromagnetic
spin chain and investigate the ground-state properties of

045106-4



SIGN STRUCTURE AND GROUND-STATE PROPERTIES . . . PHYSICAL REVIEW B 90, 045106 (2014)

the t-J model. Directly from the sign structure of the model
emphasized above, exact theorems on ground-state total spin
and degeneracy are discussed first. Then, we turn to other
results of the t-J model, including phase diagram and other
topological properties (edge states and string order parameter).

A. Ground-state degeneracy

The sign structure of the ground state of the 1D spin-S t-J
model is given in Sec. III B. The sign structure is closely related
to the physical properties of the model. In fact, we can prove
the following two theorems (generalized Marshall theorem and
generalized Lieb-Mattis theorem) for the 1D spin-S t-J model
Eq. (1):

Theorem 1 (generalized Marshall)). The ground state has
total spin quantum number S0

tot = 0 if N is even, and S0
tot = S if

N is odd. The ground state is unique apart from the (2S0
tot + 1)-

fold spin degeneracy.
Theorem 2 (generalized Lieb-Mattis). If we denote the

lowest-energy eigenvalue belonging to total spin Stot by
E(Stot), then the energy levels are ordered as E(Stot) <

E(Stot + 1) for all Stot � S0
tot.

The proofs of the above two theorems, which directly rely
on the sign structure of the ground state discussed in Sec. III B,
are given in Appendix C.

Theorem 1 asserts that, for a finite system, the ground-
state total spin quantum number is 0 or S, i.e., the ground-
state degeneracy is 1 or 2S + 1, depending on the parity of
the “electron” number. The parity will become irrelevant in
the thermodynamic limit. Thus, there is a direct corollary of
Theorem 1:

Corollary. The ground-state degeneracy for the 1D spin-S
t-J model (1) in the thermodynamic limit is at least 2S + 2.

To illustrate this result, numerical evidences of the ground-
state total spin oscillation for small lattice size systems are
shown in Fig. 2.

Singlet

Triplet

2 4 6 8 10

0.05

0.00

0.05

L

E
J

FIG. 2. (Color online) Ground-state total spin oscillation. For the
1D spin-1 t-J model (t = 10J ) with one hole (Nh = 1), lowest
energies (per site) of singlet states (red dots) and triplet states (blue
squares) are plotted. At each L, the average of the two data points
is set to zero for convenience. If L is odd (even), i.e., N = L − Nh

is even (odd), the singlet energy is lower (higher) than that of the
triplet. These results agree with the generalized Marshall theorem
and the corollary that the thermodynamical ground-state degeneracy
is at least 2S + 2.

TABLE I. Small t/J phase and large t/J phase for spin integer
and half-odd-integer t-J chain.

Small t/J Large t/J

S = 1,2,3, . . . Charge Gapped Gapless
Spin Gapped

S = 1
2 , 3

2 , 5
2 , . . . Charge Gapped Gapless

Spin Gapless

Note that the above theorems and corollary on the ground-
state degeneracy are valid for any spin S, parameter region
t/J (recall that t,J > 0), and hole doping concentration δ.
Different from the degeneracy from symmetry, this degeneracy
is approximate for finite system and only exact in the
thermodynamic limit. This property reminds us of the fourfold
ground-state degeneracy of the spin-1 Haldane chain. Our
theorem indicates that, after doping holes to the Haldane chain,
the ground state of the spin-1 t-J chain may also possess some
nontrivial topology.

We will investigate more about the topological properties
(edge states and string order parameter) in the following
section.

B. Phase diagram, edge states, and string order parameter

Similar to the phase diagram of the 1D spin- 1
2 t-J

model [41], the spin-S t-J chain also has (at least) two phases.
In Appendix D, we analyze the charge sector and spin sector
of the model. The results are shown in Table I and can be
summarized as follows:

The charge sector of the 1D spin-S t-J model is gapped
for small t/J , and gapless for large t/J , regardless of the
integral or half-odd-integral nature of spin S. Meanwhile, the
spin sector is gapped for integral S, and gapless for half-odd-
integral S in both small and large t/J limits.

Now, let us turn to the topological properties of edge states
and string order parameter in different phases. For simplicity,
we focus on spin-1 t-J model henceforth.

1. Edge states

One of the key properties characterizing the Haldane phase
is the edge states of the spin-1 open chain. From the perspective
of the AKLT model, the fourfold ground-state degeneracy also
comes from the edge states. The result in Sec. IV A that the
ground-state degeneracy is four even after doping the Haldane
chain, suggests that there are also edge states for the t-J chain.

In the small t/J limit (see Appendix D for this phase),
holes gather near the boundaries. If NL holes are at the left
boundary of the chain, then there are Nh − NL holes at the
right boundary. Because of the inequality 0 � NL � Nh, apart
from the spin degeneracy, there are Nh + 1 ground states due
to different hole distributions in the thermodynamic limit.
To connect any two of them by consecutive actions of the
local hole hopping term, we need to perform at least L times.
Therefore, the energy barrier between any two of these states
is thermodynamically large, and they are degenerate in the
thermodynamic limit. The key point is that the bulk of the chain
is charge gapped for small t/J . Each of the Nh + 1 ground
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states can be adiabatically connected to the Haldane chain
with length N through decreasing t/J to 0. Thus, the spin- 1

2
edge states, supporting projective representation of SO(3) spin
rotation, are also present for the spin-1 t-J chain in the small
t/J limit.

On the other hand, in the large t/J limit (see also
Appendix D for this phase), mobile holes will smear the edge
states. Because the ground-state wave function has nonzero
overlap with the basis state in which the hole distribution can
be any possible one, the width of the edge state is of order Nh.
If δ < 0.5, the two edge states at two boundaries are still well
separated in space. In this sense, the edge states are also stable
against small perturbations as in the pure spin Haldane chain.

In summary, the small t/J phase of the spin-1 t-J chain can
be adiabatically connected to the Haldane phase by decreasing
t/J to zero. Although the edge states of the Haldane chain
may be smeared, they still exist after doping. For the large t/J

phase, even though the charge sector is gapless, the edge states
are also stable if δ < 0.5.

2. String order parameter

Aside from edge states, we can also use the string order
parameter to unveil the nontrivial topology of the ground state.
String order parameter, which is defined as

Ostring = lim
|i−j |→∞

〈
−Sz

i exp

⎛
⎝i

∑
i<l<j

πSz
l

⎞
⎠ Sz

j

〉
, (15)

was initially introduced to unveil the hidden order of the AKLT
state and the Haldane phase [42,43]. The small t/J phase is the
same as the Haldane phase. Therefore, we will mainly focus
on the large t/J phase and use string order parameter to detect
the hidden order of it.

It seems impossible to analytically calculate the string order
parameter for the large t/J ground state of t-J model which
can not be written explicitly. But, we can rigorously calculate
the string order parameter for the doped AKLT model [40],
which belongs to the same universality class as the ground
state of the large t/J limit of the spin-1 t-J chain.

In fact, the string order transformation [42,43] has two
effects: keeping track of the sign structure and the antiferro-
magnetic order. This can be seen from the action of string order
transformation from Eq. (E1) to (E3) and the discussion around
Eq. (E3). In other words, the nonzero string order parameter
in the Haldane phase indicates the rigidity of the Marshall
sign structure and the antiferromagnetic order. A state with
nonzero string order parameter necessarily possesses this kind
of sign structure. Therefore, similar to the symmetry-breaking
order, the sign structure of the ground state seems also to be a
universal property to characterize a generic phase.

In Appendix E, we show that the string order parameter for
spin-1 doped AKLT state is

Od AKLT
string = (

2
3

)2
(1 − δ)2. (16)

Note that when δ = 0, the above result becomes (2/3)2,
which is exactly the string order parameter for the AKLT
state [42,43]. This result suggests the system still possesses
nontrivial topological structure as the Haldane chain as long
as δ 	= 1. The hidden antiferromagnetic order and the hidden

Z2 × Z2 symmetry-breaking theory can also be used to
characterize this gapless phase.

V. SUMMARY

To sum up, we have showed that, for any sign-problem-free
model in QMC, one can find a special basis Γ0 in which
the ground state has only non-negative coefficients. For the
1D spin-S t-J model, we can rigorously identify the sign
structure after two unitary transformations: the Marshall sign
transformation and the phase string transformation. After that,
we proved two theorems concerning the ground-state total
spin quantum number and the ordering of excited states for
this model, which determine the ground-state degeneracy in
the thermodynamic limit. We also discussed the edge states
and the string order parameter for the spin-1 t-J chain. The
small t/J phase is gapped and can be adiabatically connected
to the Haldane phase. The large t/J phase has gapless
charge excitation, but still possesses nontrivial topology as the
Haldane chain, which is indicated by ground-state degeneracy,
edge states, and the nonzero string order parameter.

It is significant to look for the basis Γ0 for other lattice
models with removable Z2 sign structure, and then analyze
their properties following the same strategy in this paper. One
may also expect that in some models, generalizing the Abelian
transformations (e.g., UMST and UPST) to non-Abelian ones
is desirable. Finally, doped holes in Eq. (1) do not break
spin rotation symmetry. It is interesting to numerically and
analytically investigate the relation between the topological
properties (e.g., ground-state degeneracy, edge states) and spin
rotation symmetry [SO(3) for integer spin; SU(2) for half-odd
spin] through introducing spin-orbital couplings, i.e., replacing
tij c

†
i,mcj,m by a general term t

m,m′
ij c

†
i,mcj,m′ in Eq. (1).
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APPENDIX A: CONSTRUCTION OF THE TRIVIAL SIGN
BASIS Γ0

In this Appendix, we will remove the Z2 signs of the basis
Γ and construct the trivial sign basis Γ0 in Eq. (6) explicitly,
provided that the condition for removable Z2 sign structure
[Eq. (3)] is satisfied in the basis Γ.

Let us denote the dimension of the total Hilbert space
H by D. The basis states in Γ will be denoted by |αi〉, i.e.,
Γ = {|α1〉,|α2〉, . . . ,|αD〉}. To simplify our notation, we define
Aij = 〈αi |(−H )|αj 〉.
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The construction of Γ0 contains several steps:
Step 1. Choose any two different states |αi0〉,|αi1〉 ∈ Γ, such

that Ai1i0 < 0. Note that if there do not exist such two states,
then Γ0 = Γ is the basis we want.

Step 2. Add a minus sign to |αi1〉, i.e., |αi1〉 −→ −|αi1〉. We
will denote the new basis state by |αi1〉 thereafter. After this
transformation, Ai1i0 > 0 is satisfied. Now proceed to one of
the following two steps.

Step 3. If there exists a basis state |αi2〉, such that Ai2i1 < 0,
then go back to step 2 and do similar transformation to |αi2〉.
The basis state |αi2〉 must be different from all the previously
visited states, otherwise there exists a sequence of states from
|αi2〉 to |αi2〉 itself, such that Eq. (3) is broken.

Step 4. If for any basis state |αi2〉 the condition Ai2i1 � 0
is always satisfied, then the present loop is finished and we
should go back to step 1 to start a new loop.

If a loop is finished, we get an integer sequence i0,i1, . . . ,in,
such that Aij+1,ij � 0 for all 0 � j < n − 1. The sequence ends
because all the integers must be different from each other as
mentioned in step 3, and the total number of basis states D is
finite.

Furthermore, we can show for any two different states
|αij 〉,|αik 〉 ∈ Γ0,i = {|αi0〉,|αi1〉, . . . ,|αin〉}, the condition (6),
i.e., Aikij � 0, is satisfied. The reason is as follows: if Aikij < 0,

then Aikij

∏k−1
l=j Ail+1,il < 0 (assuming j < k without loss of

generality) which contradicts Eq. (3). As a result, all the
states in Γ0,i can be viewed as a single point in the state
complex. This procedure does not lead to any contradiction: if
for a state |αl〉 ∈ Γ,|αl〉 /∈ Γ0,i , there exist two different states
|αj 〉,|αk〉 ∈ Γ0,i , such that Ail 	= 0 (i = j,k), then Ail (i = j,k)
must have the same sign because of Eq. (3). Note that in every
loop of construction, when we need to add a minus sign to a
state |αi〉 in step 2, we should add minus signs to all the states
belonging to the same point as |αi〉 in the state complex.

After one loop of construction, the number of points in
the state complex is reduced by at least one. Because of the
finiteness of the total number of basis states D, we will end up
with a basis Γ0, which is obtained by adding minus signs to
the basis states in Γ, such that Eq. (6) is satisfied.

APPENDIX B: TRANSFORMATION OF THE
HAMILTONIAN

In this Appendix, we will discuss the transformation of the
Hamiltonian under MST and PST in the fractionization formal-
ism, which is more convenient to unveil the sign structure. In
the fractionization formalism, the creation operator of the spin-
S “electron” is fractionalized to a spin part and a charge part.
We can use 2S + 1 kinds of spinons di,m (m = −S, . . . ,S)
or two kinds of Schwinger bosons biσ [σ =↑ (+1), ↓ (−1)]
to represent the spin part of the particle at site i. The holon
annihilation operator at site i is denoted by hi . The resulting
two kinds of fractionalization formalisms are given by

c
†
im = d

†
i,mhi, (B1)

c
†
im = 1√

(S + m)!(S − m)!
(b†i↑)S+m(b†i↓)S−mhi. (B2)

We choose spinons di,m, biσ , and holon hi all to be bosons.
The local constraint on the Hilbert space at site i is

nh
i +

∑
m

nd
i,m = nh

i + 1

2S

(
nb

i↑ + nb
i↓

) = 1, (B3)

where nd
i,m = d

†
i,mdi,m, nb

iσ = b
†
iσ biσ , nh

i = h
†
i hi are particle-

number operators of each boson.
Let us focus on the transformation of the J -term first. It

is more convenient to use spinons biσ to express the original
J -term in Eq. (1):

HJ =
∑

〈ij〉,σ,σ ′
−Jij

2
(σσ ′)b†iσ b

†
j σ̄ bjσ̄ ′biσ ′ . (B4)

The Marshall sign transformation is a local unitary transfor-
mation which can be expressed as

UMST = exp

⎛
⎝iπ

∑
j,m

j (S + m)nb
j,m

⎞
⎠ . (B5)

We can also substitute bjσ → (−σ )j bjσ to absorb the Marshall
sign [12,15], resulting in a J -term with trivial sign structure:

H ′
J = UMSTHJ U

†
MST =

∑
〈ij〉,σ,σ ′

−Jij

2
b
†
iσ b

†
j σ̄ bjσ̄ ′biσ ′ , (B6)

which possesses only nonpositive signs in front of every term.
This result indicates that MST already makes the J -term sign
trivial. Under the nonlocal phase string transformation

UPST = exp

⎛
⎝iπ

∑
i<j ;m

(S + m)nh
i n

b
j,m

⎞
⎠ , (B7)

the J -term is invariant:

H̃J = UPSTH ′
J U

†
PST = H ′

J =
∑

〈ij〉,σ,σ ′
−Jij

2
b
†
iσ b

†
j σ̄ bjσ̄ ′biσ ′ .

(B8)

The above PST is the high-spin generalization of the spin- 1
2

phase string transformation [25–28]. The physical meaning of
PST is to add a sign (−1)S+m to the basis states whenever
a holon hi appears on the left side of a spinon dj,m. The
invariance of the J -term under PST comes from the fact that
HJ does not change the positions of holons, and HJ

i,i+1, when
acting on the Hilbert space of two spin-1 particles on sites i

and i + 1, does not change the number nd
i,0 + nd

i+1,0(mod2).
Now turn to the transformation of the t-term. It is more

convenient to use spinons di,m to express the t-term in Eq. (1):

Ht =
∑
i,m

−tij (d†
i,mdi+1,mh

†
i+1hi + H.c.). (B9)

After the absorption of the Marshall sign by MST: dj,m →
(−1)(S+m)j dj,m, the t-term becomes

H ′
t =

∑
i,m

−tij ((−1)S+md
†
i,mdi+1,mh

†
i+1hi + H.c.). (B10)

To keep track of the signs appearing when a hole exchanges
with a spinon, we perform the nonlocal phase string trans-
formation [Eq. (B7)] to the Marshall sign transformed t-term
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[Eq. (B10)]. We then totally remove the signs of the t-term
without adding new signs to the J -term:

H̃t = UPSTH ′
t U

†
PST =

∑
i,m

−tij (d†
i,mdi+1,mh

†
i+1hi + H.c.).

(B11)

The trivial sign structure of the t-J Hamiltonian af-
ter MST and PST [Eqs. (B8) and (B11)] is accompa-
nied with physical operators with highly nontrivial non-
local signs. As an example, the creation operator of
the original spin-S “electron” [Eq. (B1)] is now given
by

c̃
†
j,m = Uc

†
j,mU † = (−1)(S+m)j exp

⎛
⎝iπ

∑
l<j ;m

(S + m)nh
l n

b
j,m

⎞
⎠ b

†
j,mhj exp

⎛
⎝iπ

∑
l>j ;m

(S + m)nh
jn

b
l,m

⎞
⎠ , (B12)

where U = UPSTUMST is the unitary transformation as a combination of MST and PST. For the spin-1 case, the above formulas
can be written separately as

c̃
†
j,±1 = b

†
j,±1hj exp

⎛
⎝iπ

∑
l>j

nh
j n

b
l,0

⎞
⎠ , (B13)

c̃
†
j,0 = (−1)j exp

⎛
⎝iπ

∑
l<j

nh
l n

b
j,0

⎞
⎠ b

†
j,0hj exp

⎛
⎝iπ

∑
l>j

nh
j n

b
l,0

⎞
⎠ . (B14)

Any correlation function of the original “electron” operators
contains the nontrivial nonlocal signs which may dramatically
change the properties of the correlation function, although the
ground state of Eqs. (B8) and (B11) is simple in the sense of
sign structure.

APPENDIX C: PROOFS OF THE GENERALIZED
MARSHALL THEOREM AND LIEB-MATTIS THEOREM

We will prove the two theorems stated in Sec. IV A. The
crucial point is the lemma on the sign structure of the 1D
spin-S t-J model discussed in Sec. III B. Similar results for
the spin- 1

2 model were proposed [44]. Since our paper mainly
focuses on the spin-1 model, our results are more general in
the sense that the two theorems are valid for arbitrary spin S.

Proof of Theorem 1. Let us replace tij in Eq. (1) by “t tij ”
where the dimensionless parameter t ∈ [0,1] (when t = 0,
the t-term vanishes; when t = 1, it is recovered). We first
investigate the t-J model with t = 0. The system now becomes
a collection of antiferromagnetic Heisenberg chain segments
separated by static holes. There are totally C

Nh

L = L!/(Nh!N !)
different hole distribution configurations denoted by {hi}. The
total Hilbert space H is a direct sum of C

Nh

L subspaces which
are disconnected under the action of the t= 0 Hamiltonian:
H = ⊕{hi }H({hi}). As a result, the true ground state |�0〉 in H
is the one that has the lowest energy among the ground states
in the subspaces H({hi}).

For a fixed subspace H({hi}), the ground state |�0({hi})〉
can be expressed as the tensor product of |ψj 〉, which is the
ground state of the spin segment labeled by j and satisfies
the Marshall theorem. We will show that |�0〉 is a state
with all the spins forming a complete spin chain of length
N without breaking. To verify this result, let us begin with a
general subspace and focus on two nearest-neighbor segments
with lengths N1 and N2. Both the ground states |ψ1〉 and
|ψ2〉 of the two segments have strictly positive coefficients

in the Marshall basis. If we put the two segments together
(labeling the ending site of the first segment by I , and the
beginning site of another segment by I + 1), the only relevant
Hamiltonian term that potentially contributes to the energy
change is �H = JI,I+1SI · SI+1 defined on link 〈I,I + 1〉.
For the tensor product state |ψ〉 = |ψ1〉 ⊗ |ψ2〉, the energy
difference 〈ψ |�H |ψ〉 is strictly negative because of the
strictly positive nature of the coefficients of |ψ1〉 and |ψ2〉 in
the Marshall basis. Therefore, by ignoring the holes at the
two boundaries, the ground state |�0〉 is the same as the
ground state of a complete spin chain with length N and
no breaking. The degeneracy for |�0〉 has two sources: the
positions of the static holes [(Nh + 1)-fold degeneracy], and
the possible spin degeneracy due to the Marshall theorem. In
1D, |NA − NB | = 0 (or 1) if L is even (or odd), thus these
ground states have the total spin quantum number as claimed
in the Theorem 1.

Now, we tune t from zero to nonzero. As a discrete label of
the irreducible representations of the spin rotational symmetry,
the total spin quantum number of the ground states can not
change, but the degeneracy due to the positions of the static
holes may be lifted. Note that the states with spin degeneracy
have different Sz

tot, while the Nh + 1 states degenerated due to
hole placement have the same Sz

tot. The lemma in Sec. III B
states that the ground state is unique in the subspace with fixed
Sz

tot for all t > 0. Therefore, the ground-state degeneracy due
to the hole placement is truly lifted. The ground state is unique
apart from the (2S0

tot + 1)-fold spin degeneracy. �
Proof of Theorem 2. We also consider the case t = 0 first.

In fact, the arguments in the proof of Theorem 1 at t = 0 are
valid in the subspace H(Sz

tot = M) instead of the total Hilbert
space H. Thus, we have the conclusion that the ground state
of the t-J model with t = 0 in the subspace H(Sz

tot = M)
is the same as that of a complete spin chain of length N

in the subspace H(Sz
tot = M). According to the Lieb-Mattis

theorem [14] on the energy ordering of spin systems, Theorem
2 is correct at t = 0.
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Let us now consider nonzero t . If Theorem 2 is broken for
some nonzero t , say E(Stot) � E(Stot + 1) for some Stot � S0

tot,
then by decreasing the parameter t , there exists a critical
nonzero tc, such that E(Stot) = E(Stot + 1) at this t = tc point.
The ground state in the subspace H(Sz

tot = Stot) is now at
least twofold degenerate. This conclusion contradicts the
statement that the ground state is unique in the subspace
H(Sz

tot = Stot) according to the Perron-Frobenius theorem.
Therefore, Theorem 2 is valid for all positive t . �

APPENDIX D: PHASE DIAGRAM

1. Charge sector

Although we have asserted in Sec. III B that there is an
energy gap for finite system due to the Perron-Frobenius
theorem, it does not exclude the possibility that the energy
gap shrink to zero in the thermodynamic limit. Take the
antiferromagnetic spin-S chain for example: the Marshall
theorem tells us there is an energy gap for finite spin chain
no matter whether S is an integer or a half-odd-integer; but,
Haldane showed that the energy gap remains nonzero in the
thermodynamic limit only for integer spin chains [1,2].

For the 1D t-J model, when a hole breaks the spin chain
into two segments, the exchange energy will be lifted by
2Jeff , where −Jeff (of order J ) is the energy per bond of
a Heisenberg spin chain. If two holes occupy nearby sites,
the energy cost is only Jeff . Effectively, holes will acquire
a nearest-neighbor attractive interaction −Jeff . Therefore, we
can write the effective charge model

Heff = −t
∑

i

(h†
i hi+1 + H.c.) − Jeff

∑
i

nh
i n

h
i+1, (D1)

which is a spinless fermion model with nearest-neighbor
attractive interaction. Note that the above effective charge
model is valid no matter whether the initial spin chain is gapless
or gapped.

The effective charge model [Eq. (D1)] can be well under-
stood since the spin- 1

2 ferromagnetic XXZ model

HXXZ =
∑
〈ij〉

[ − JXY

(
Sx

i Sx
j + S

y

i S
y

j

) − JzS
z
i S

z
j

]
(D2)

can be mapped exactly to Eq. (D1) by using Jordan-Wigner
transformation [45,46]. The parameters of the effective charge
model and the ferromagnetic XXZ model are related by

JXY = 2 t, Jz = Jeff . (D3)

Note that the chemical potential term, which can be used to
tune the number of holes in Eq. (D1), corresponds to the
magnetic filed term in the XXZ model [Eq. (D2)].

The phase diagram of the XXZ model is obtained from the
Bethe ansatz or bosonization method [46,47]. The ferromag-
netic phase of the XXZ model in the region Jz > JXY implies
the phase separation of the effective charge model when
t/Jeff < 1

2 . On the other hand, for Jz < JXY or t/Jeff > 1
2 , the

effective charge model will behave as a Luttinger liquid. These
results suggest the charge sector of the t-J model possesses a
phase transition from gapped phase to gapless Luttinger liquid
phase.

If we choose open boundary conditions, holes have the
tendency to live at the boundary to avoid energy cost of
order Jeff by breaking the spin chain. On the other hand,
the energy gain by injecting a hole into the mobile band
is 2 t . Therefore, we expect that holes will be localized at
the boundary (gapped) if 2 t < Jeff and delocalized (gapless)
if 2 t > Jeff , which agrees with the discussion above. In
Appendix D 3, we illustrate this picture in the single-hole case.

Note that, for the XXZ model, the phase transition point
Jz = JXY does not change with respect to the magnetization.
However, the critical value of t/J depends on the hole doping
concentration δ since parameter Jeff in the effective charge
model [Eq. (D1)] will vary with respect to δ generally.

2. Spin sector

The spin sector of our model is clear in two limit cases:
t/J → 0 and t/J → ∞. These two cases will be discussed
separately. As claimed above, the t-J model possesses phase
separation for small t/J . As we decrease t/J , the system
will adiabatically connect to the pure spin chain, as holes
will be localized at two boundaries. Therefore, the small t/J

phase of the spin-S t-J model is in the same phase as the
spin-S antiferromagnetic Heisenberg model. The spin sector is
gapless if S is half-odd-integer, and gapped if S is integer [1,2].

It is known that, for the spin- 1
2 t-J model, the spin sector

and the charge sector are totally separated in the limit t/J →
∞ [48]. The charge degrees of freedom behave as spinless
fermions, while the spin sector is equivalent to the 1D spin- 1

2
Heisenberg model. Therefore, the spin sector of the spin-S
t-J model in the limit t/J → ∞ is the same as in the limit
t/J → 0. This is also true for the t-J model with other spin
S. The reason is as follows: Let the ground state of the spin-S
t-J model with J = 0 be

|ψc〉 =
∑
{in}

a({in})
N∏

n=1

c
†
in,mn

|0〉, (D4)

where n labels the spin-S “electrons,” and in,mn are the
position and spin of the nth “electron,” correspondingly. The
ground states are highly degenerated as the spin configuration
{mn} can be chosen arbitrarily. The ground state of the t-J
model with an infinitesimally small J must have the same
t-term energy as |ψc〉, otherwise the energy gain from the
J -term (note that J → 0) can not afford the energy cost of
the t-term. Therefore, the only possible ground state is the one
with spin-charge separation:

|ψ〉 =
∑
{in}

a({in})
⎛
⎝∑

{mn}
b({mn})

N∏
n=1

c
†
in,mn

|0〉
⎞
⎠ . (D5)

To further gain J -term energy, the coefficients b({mn}) must
be the same as the ground state of the pure Heisenberg spin
chain:

|ψs〉 =
∑
{mn}

b({mn})
N∏

n=1

c†n,mn
|0〉. (D6)

The spin-charge separation truly happens in the limit t/J →
∞ for the t-J model with arbitrary spin S.
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We can construct an exactly solvable fixed-point Hamilto-
nian to illustrate the spin-charge separation in the t/J → ∞
limit. The fixed-point wave function of the pure spin model,
which shares the same universal properties with the ground
state of the spin-1 Heisenberg chain, is the so-called AKLT
state [38,39]. By replacing the J -term of the 1D spin-1 t-J
model by the AKLT Hamiltonian, we obtain the doped AKLT
model. The ground state of this model is explicitly constructed
in Ref. [40]. We will discuss more about this wave function
and calculate the string order parameter for the ground state of
the doped AKLT model in Sec. IV B 2.

3. Single-hole t- J model

In this Appendix, we will derive an effective model for
the charge sector of the single-hole t-J model. Numerical and
analytical calculation both show that there is a critical value for
t/J : if t/J is small, the hole will be localized at the boundary
of the chain and there is a finite-energy gap in thermodynamic
limit; if t/J is large, the hole will be extended in space and
the system is gapless.

Let E0(L) be the ground-state energy for an antiferromag-
netic Heisenberg spin-1 chain with L lattice sites. In the limit
L → ∞, the total energy approaches E0(L) → −Jeff(L − 1),
where −Jeff is the exchange energy per bond, which is of
course proportional to the original J in the Heisenberg model.
Now, consider a system with L lattice sites and a static hole
(t = 0) at site n (1 < n < L). The true ground state |ψ0(n)〉
is the tensor product of the ground states of two spin chains
with length L1 = n − 1 and L2 = L − n. The ground-state
energy is E0(L1,L2) = E0(L1) + E0(L2), which becomes
−Jeff(L1 + L2 − 2) = −Jeff(L − 3) = E0(L) + 2Jeff in the
limit L1,L2 → ∞. Consider now another wave function
|ψ1(n)〉, which is obtained from the ground state of a spin
chain with length L − 1, by adding a lattice site at site n

and shifting sites greater than n by one. The total exchange
energy for |ψ1(n)〉 is E1(L1,L2) = [(L − 3)/(L − 2)]E0(L −
1). In the limit L1 + L2 → ∞, E1(L1,L2) approaches also
−Jeff(L − 3). Thus, we can conclude that the wave function
|ψ1(n)〉 is a good approximation for the ground state of a spin
chain with a static hole at site n in the limit L1,L2 → ∞. The
energy difference between this state and the ground state of
a spin chain with length L is 2Jeff . We should also mention
that if n = 0 or L, the energies for |ψ0〉 and |ψ1〉 are both
−Jeff(L − 2) = E0(L) + Jeff , which is lower than that of the
1 < n < L cases since the hole on the boundary does not break
the spin chain.

The advantages for using |n〉 ≡ |ψ1(n)〉 rather than |ψ0(n)〉
is that the subspace {|n〉} is closed under the action of the
hopping term Ht :

Ht |n〉 = −t (|n − 1〉 + |n + 1〉) . (D7)

This implies spin-charge separation as the hole hopping
process does not modify the spin background. The above
spin-charge separation is exact rather than an approximation
if we are dealing with the doped AKLT model rather than the
t-J model [40].
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FIG. 3. (Color online) The energy gap of effective charge model
as a function of lattice size L. (a) For t/Jeff < 1, the system has a
finite gap which decreases with the increasing of t/Jeff < 1. (b) For
t/Jeff � 1, the system is always gapless in the thermodynamic limit.

After combining the exchange energy and the hopping term
together, we get the effective charge model for a single hole

Heff = −t

L−1∑
n=1

(|n〉〈n + 1| + H.c.) − Jeff (|1〉〈1| + |L〉〈L|) ,

(D8)

up to some constant. We have made an approximation that
the exchange energies for different states |n〉 (1 < n < L)
are the same: E0(L) + 2Jeff . This model can be solved easily
numerically since the Hilbert space dimension is L, rather than
an exponential function of L as the original t-J model. The
energy gap �, as a function of lattice length L and t/Jeff , is
shown in Figs. 3 and 4, respectively. These results tell us the
energy gap is nonzero in thermodynamic limit if t < Jeff , and
zero if t � Jeff .

In fact, the above conclusion can be drawn analytically.
First, let us consider the point t = Jeff . We will set t = Jeff = 1
for simplicity. The Hamiltonian at this point has the following
properties: all off-diagonal elements are −1 or 0; the sum
of every column of the Hamiltonian is zero (after adding a
constant 2 to the Hamiltonian). This is an example of the
Laplacian models defined in Sec. II C. The ground state of
the Laplacian model can be solved exactly: an equal weight
superposition of all basis states in an irreducible space. In our
specific case, the ground state is

|φ(t = Jeff)〉 =
∑

n

|n〉, (D9)
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FIG. 4. (Color online) The charge gap �/Jeff as a function of
t/Jeff . There is a quantum-critical point at t/Jeff = 1 which separates
the charge gapped phase with the charge gapless phase. The energy
gap is measured in a system with L = 500 lattice sites.

which indicates that the hole density distribution will be
uniform along the whole chain. The system is gapless since
the ground-state energy −2 touches the bottom of the energy
band for the hopping term εk = −2 cos k.

If t < Jeff , the onsite potential at site 1 and L is lower than
that of the Laplacian model. Since the hole has uniform density
in the ground state of the Laplacian model, we expect the hole
density distribution now will be centered at the two boundaries.
In fact, the ground state in which the hole is localized at the
left boundary of the chain, in the thermodynamic limit, is

|φ(t < Jeff)〉 =
∑

n

(
t

Jeff

)n

|n〉, (D10)

with proper normalization factor. A similar result holds for
another ground state in which the hole is localized at the
right boundary. The ground-state energy with respect to
Eq. (D8) is E = −Jeff − t2/Jeff , which is always below the
bulk energy band. Therefore, there is a charge energy gap in
the thermodynamic limit for t < Jeff , as indicated by Fig. 3(a).

On the other hand, for t > Jeff , the energy gap is zero
in thermodynamic limit [see Fig. 3(b)]. The onsite boundary
potential is too high, and every eigenstate is extended in
space. It can also be seen from the fact that the localized
state [Eq. (D10)] can not be normalized if t/Jeff > 1.

APPENDIX E: STRING ORDER PARAMETER
FOR DOPED AKLT

Let us first calculate the string order parameter for the
AKLT state. The calculation for the doped AKLT state is
parallel to this procedure. Up to a global normalization factor,
the AKLT state (14) can be written as

|�AKLT〉 =
∑

{mi }, mi=0,±1

δHAF
{mi } ηM

(
1√
2

)N0

|{mi}〉. (E1)

The coefficient of a given Ising basis state |{mi}〉 has three
contributions: (i) δHAF

{mi } is a factor to ensure the hidden
antiferromagnetic order of the Ising configuration {mi}: if the
mi = ±1 spins form an antiferromagnetic chain after ignoring
the mi = 0 spins, then δHAF

{mi } = 1; otherwise, δHAF
{mi } = 0. (ii) The

sign factor ηM = (−1)N
B
0 is the Marshall sign where NB

0 is the
number of mi = 0 spins at sites belonging to the B sublattice.
(iii) The factor (1/

√
2)N0 , where N0 is the number of mi = 0

spins, comes from the normalization of Schwinger boson rep-
resentation of spin-1: |mi = 0〉 = b

†
i↑b

†
i↓|0〉i , |mi = ±1〉 =

(1/
√

2)(b†i,↑/↓)2|0〉i . We can choose one of the four ground
states to calculate the string order parameter by assuming the
first and the last mi 	= 0 on the chain are both mi = 1. To
calculate the string order parameter, we should perform the
so-called string order transformation Usot [42,43]:

Usot =
∏
i<j

exp
(
iπSz

i S
x
j

)
. (E2)

It is also a nonlocal unitary transformation as PST. The string
order transformation has two effects: (i) removing the Marshall
signs; (ii) transforming the hidden antiferromagnetic order to
the hidden ferromagnetic order. After this transformation, the
AKLT state (E1) becomes

|�̃AKLT〉 =
∑

{mi }, mi=0,±1

δHFM
{mi }

(
1√
2

)N0

|{mi}〉, (E3)

where δHFM
{mi } = 1, if the mi 	= 0 spins form a ferromagnetic

chain with all mi = 1 after ignoring the mi = 0 spins;
otherwise, δHFM

{mi } = 0. The original string order parameter

Ostring = lim
|i−j |→∞

〈
−Sz

i exp

⎛
⎝i

∑
i<l<j

πSz
l

⎞
⎠ Sz

j

〉
(E4)

is transformed to the usual ferromagnetic correlation function

Õstring = UsotOstringU
†
sot = lim

|i−j |→∞
〈
Sz

i S
z
j

〉
. (E5)

The calculation of the string order parameter (E5) for the
AKLT state (E3) is now straightforward:

ÕAKLT
string = lim

|i−j |→∞
〈�̃AKLT|Sz

i S
z
j |�̃AKLT〉

〈�̃AKLT|�̃AKLT〉

= lim
|i−j |→∞

∑
{mi }, mi=0,±1 δHFM

{mi } (1/2)N0mimj∑
{mi }, mi=0,±1 δHFM

{mi } (1/2)N0

=
(

2

3

)2

. (E6)

In the last step, the statistical averages for mi and mj are
decoupled. Each of them contributes a factor 2

3 because the
factor (1/2)N0 makes the statistical distributions for mi = 0
and 1 1

3 and 2
3 .

Now, turn to the string order parameter for the doped AKLT
state. By replacing the J -term of the 1D spin-1 t-J model by
the AKLT Hamiltonian (12), we obtain the doped AKLT model
(“d AKLT”)

Hd AKLT = −t
∑
i,m

(c†i,mci+1,m + H.c.)

+ J
∑

i

(
Si · Si+1 + 1

3
(Si · Si+1)2 + 2

3
nini+1

)
.

(E7)
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The ground state of this model is explicitly constructed
in Ref. [40]. Note that the constant term 2

3 in Eq. (12)
is replaced by (2/3)nini+1, which is now one of the

crucial points to make the model exactly solvable. The
ground state of this model with Nh holes is given
by [40]

|�d AKLT(Nh)〉 =
∑

{hi },P∈SNh

sgn(P ) exp

⎛
⎝i

∑
j

kPj
hj

⎞
⎠ ∑

{mi }, mi=0,±1

δHAF
{mi } η

′
M

(
1√
2

)N0

|{hi}; {mi}〉, (E8)

where sgn(P ) is the signature of the element P of the permutation group SNh
, {kj } are Nh momenta with lowest single-particle

energies [40]. Note that for the Marshll sign η′
M in the above formula, the sublattice B is defined on a lattice by ignoring all hole

sites. After string order transformation [Eq. (E2)], this state becomes

|�̃d AKLT(Nh)〉 =
∑

{hi },P∈SNh

sgn(P ) exp

⎛
⎝i

∑
j

kPj
hj

⎞
⎠ ∑

{mi }, mi=0,±1

δHFM
{mi }

(
1√
2

)N0

|{hi}; {mi}〉. (E9)

We can perform a similar calculation for the string order parameter:

Õd AKLT
string = lim

|i−j |→∞
〈�̃d AKLT(Nh)|Sz

i S
z
j |�̃d AKLT(Nh)〉

〈�̃d AKLT(Nh)|�̃d AKLT(Nh)〉

= lim
|i−j |→∞

∑
{hi }

∑
{mi } δHFM

{mi }
∣∣∑

P∈SNh
sgn(P ) exp

(
i
∑

j kPj
hj

)∣∣2
(1/2)N0mimj∑

{hi }
∑

{mi } δHFM
{mi }

∣∣∑
P∈SNh

sgn(P ) exp
(
i
∑

j kPj
hj

)∣∣2
(1/2)N0

=
(

2

3

)2

(1 − δ)2. (E10)

In the last step, we used the density-density correlation function for Fermi gas 〈ninj 〉 = n̄2 if |i − j | → ∞. The Fermi gas
behavior of the charge degrees of freedom contributes a factor (1 − δ)2 besides the factor (2/3)2 inherited from the AKLT state.
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