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Abstract

We present a quantum field theoretic description on the t–J model on a square lattice with dilute holes
(i.e. near half-filling), based on the compact mutual Chern–Simons gauge theory. We show that, due to
the presence of non-perturbative monopole plasma configuration from the antiferromagnetic background,
holons (carrying electric charge) are linearly confined and strongly localized even without extrinsic disorder
taken into account. Accordingly, the translation symmetry is spontaneously broken at ground state. Such
an exotic localization is distinct from Anderson localization and essentially rooted in intrinsic Mott physics
of the t–J model. Finally, a finite-temperature phase diagram is proposed. The metal–insulator transition
observed in in-plane resistivity measurement is identified to a confinement–deconfinement transition from
the perspective of gauge theory. The transition is characterized by the order parameter “Polyakov-line”.
© 2013 Published by Elsevier B.V.

1. Introduction

A major issue of the single-band t–J model on a square lattice [1,2] is how the doped holes
(i.e. Zhang–Rice singlets [3] modeling the copper–oxygen hybridization) interact with spin
background eventually producing plentiful phase diagram of cuprate high-temperature super-
conductors. Analytic study on this model is intricate due to the projective Hilbert space (i.e.
two electrons are prohibited to simultaneously occupy the same site) in which electrons are
“fractionalized” with spin-charge separation and emergent gauge degrees of freedom [2,4–6].
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These exotic phenomena open a new window for condensed matter physicists searching for un-
conventional quantum states of matter, and also shed lights on the amazing unified description of
fundamental physical laws at different length scales [7].

At half-filling (each site is occupied by one electron), the t–J model is reduced to quan-
tum Heisenberg model which possesses antiferromagnetic long range order (AFLRO) and Mott
insulating property [2,8,9]. At this parent state, electric charge of electrons is totally frozen
out rendering a pure spin model. Near half-filling where hole concentration is extremely low,
charge localization and insulating ground state have been read out either directly or indirectly
from various types of experimental justification [10–13]. We know that disorder induces Ander-
son localization [14]. It is thus fundamental to ask whether the localization near half-filling of
cuprates is due to extrinsic disorder effect [10] or intrinsic quantum effect of the single-band t–J

model [15]. In other words, is the translation symmetry at the ground state of the t–J model
spontaneously broken?

Toward this direction, new progress has been made recently. Z. Zhu et al. perform a large-
scale density matrix renormalization group (DMRG) numerical simulation by keeping enough
number of states in each DMRG block with high accuracy [16]. The numerical result demon-
strates that the density of single hole is localized in ladder systems, which was explained by the
so-called phase string theoretical argument (More details and analysis can be found in Ref. [15]).
Experimentally, C. Ye et al. [17] are able to significantly enlarge bias range in scanning tunneling
microscopy (STM) to study the atomic scale electronic structure of the Ca2CuO2Cl2 parent com-
pound with electron-donated defects. A well-defined in-gap state appears near the edge of upper
Hubbard band (UHB) and is strongly localized in which the typical localization length is order
of lattice constant [17]. These new findings combined with previous experimental hints call for a
coherent theoretical description on charge dynamics of the t–J model near half-filling which is
the main purpose of this work.

In this paper, we shall provide a quantum field-theoretic approach to show that charge local-
ization is driven by the non-perturbative monopole effect of a compact U(1) gauge dynamics that
was initially introduced in Polyakov’s seminal papers [18]. We shall further propose the finite-
temperature phase diagram (Fig. 1(a)) near half-filling in which the metal–insulator transition is
identified to monopole-driven confinement–deconfinement transition characterized by the order
parameter “Polyalov-line” [19–21]. Essentially, electrons are fractionalized into bosonic holons
(carrying charge) and bosonic spinons (carrying spin), both of which are mutually entangled
via a mutual Chern–Simons action [22,23]. Spinons are condensed in Arovas–Auerbach formal-
ism [9] and form superfluid at extremely low doping at zero temperature. At finite temperatures
we assume spinons are still condensed (by adding a weak interlayer AF coupling J⊥ or in-plane
anisotropy αxy in spin space [8,10,24–26]) with a nonzero Néel magnetic transition temperature
TN where Bose condensation occurs. (See Fig. 1(a).) In such a saddle point ansatz, we study
charge dynamics at ground state and finite-temperature behavior below TN .

First, the effective theory of charge dynamics is a (2+1)D compact U(1) gauge theory coupled
to holons and ±2π phase-vortices arising from spinon superfluid. Since the gauge dynamics is
in confined phase where monopole operators are relevant, holons and ±2π phase-vortices are
enforced to form gauge-neutral bound states. Because phase-vortices are static particles with
infinite effective mass, the bound states eventually localize even without extrinsic disorder taken
into account. Hence, the translation symmetry is indeed broken spontaneously.

Second, a confinement–deconfinement transition of charge degree of freedom occurs at a fi-
nite temperature TMI. At T < TMI, holons are confined via linear potential and localized such that
charge transport is of insulating nature. This low-temperature phase is called “Monopole-Plasma-
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Fig. 1. (Color online.) (a) Intrinsic phase diagram near half-filling in absence of extrinsic disorder. T and δ stand for
temperature and hole concentration, respectively. The phase region of T < TN supports antiferromagnetic long range
order (AFLRO). In this spin-ordered region, there is an additional temperature scale TMI about which the system under-
goes metal–insulator transition. The high (low)-T region is metallic phase (“Monopole-Plasma-Insulating Phase”) as to
be explained in main texts. The dashed line segments imply that the present analysis is in fact self-consistent only near
half-filling. (b) A schematic description of holon localization in AF background. Black arrows form AF spin background
and blue balls are two holons. The red directional circle stands for a “−2π” phase-vortex whose core is occupied by a
holon. The three objects inside the dashed circle form a localized bound state.

Insulating Phase” as to be explained below. At T > TMI, the linear confinement disappears, but
holons still perceive a logarithmic interaction from static phase-vortices of spinon superfluid
background. Therefore, this high-temperature metallic phase supports a metallic behavior. TMI is
identified to the metal–insulator transition temperature scale observed in in-plane resistivity mea-
surement of heavily underdoped cuprates [10,27,28]. The phase diagram is shown in Fig. 1(a).
Disorder is absent in the present theoretical approach but physically disorder effect in a realistic
material is expected to further amplify localization and thereby enhance TMI.

The paper is organized as follows. In Section 2, the compact mutual Chern–Simons gauge
theory of the t–J model is reviewed where frequently used notations are introduced. The charge
localization shall be derived in Section 3 and the discussion of finite-temperature phase diagram
is arranged in Section 4. All results are summarized in Section 5.

2. Compact mutual Chern–Simons theory of doped Mott insulators

In this section, we first review our understanding of doped Mott insulators, especially the
phase string effect of the t–J model and its compact mutual-Chern–Simons gauge theory. More
details can be found in Refs. [22,23,29–32]. We stress that the present t–J model only contains
nearest-hopping term and indeed the electron- and hole-doped cases are symmetric although the
realistic cuprates have asymmetric phase diagram. By considering more hopping terms and super
exchange terms, it is possible that the asymmetric phenomena can be realized which is beyond
our present theoretical analysis.

Let’s start with the so-called “sign structure” of doped spin model. The significance of figuring
out the sign structure of a given theory can be illustrated by the Nagaoka state [33], one of
the few exact results about the t–J model. The Nagaoka problem, the U = ∞ Hubbard model
with one hole, is equivalent to the large J limit of Kondo lattice model with one conduction
electron [34]. It can be shown that the validity of Nagaoka theorem relies heavily on the triviality
of the sign structure of one hole hopping term of the t–J model [34]. The sign structure of a
model is called trivial when the Hamiltonian matrix has only non-positive off-diagonal elements
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in some well-chosen basis. If a Hamiltonian has trivial sign structure and satisfies some other
conditions, we can use Perron–Frobenius theorem to show that the ground state of the system is
non-degenerate and has a positive wave function in this well-chosen basis. It is the trivial sign
structures of the AF Heisenberg model and the one-hole infinity-U Hubbard model that give rise
to the Marshall theorem and the Nagaoka theorem.

At finite doping and finite J , however, the sign structure of the t–J model is highly nontriv-
ial [35]. We can also choose the Marshall bases {|φ〉} to make the off-diagonal matrix elements
of Heisenberg term non-positive. Nevertheless, nontrivial signs appear in the hopping term,
resulting in a model where the Perron–Frobenius theorem is no longer applicable. This can be
seen easily in slave-fermion formalism, where the hopping and Heisenberg terms can be written
as [30]

Ht = −t
∑

〈i,j〉,σ
σf

†
i fj b

†
jσ biσ + h.c., (1)

HJ = −J

2

∑
〈i,j〉,σ,σ ′

b
†
iσ b

†
j−σ bj−σ ′biσ ′ . (2)

Here, biσ is the annihilation operator of bosonic spinon at site i with spin σ (σ = ± denote spin
up/down), and fi the annihilation operator of fermionic holon at site i. The configurations with
more than one electrons at a certain site are projected out, leaving a Hilbert space with constraint∑

σ

b
†
iσ biσ + f

†
i fi = 1. (3)

The electron operator is written in this formalism as

ciσ = (−σ)if
†
i biσ , (4)

where the Marshall sign (−σ)i depends on the sublattice index (i even or odd) and the spin σ

of the electron. The sign structure of the Heisenberg term (2) is trivial, while the spin-dependent
sign structure of hopping term (1) indicates that a minus sign appears whenever a down spinon
exchanges with a holon. This is called the phase string effect [30].

To keep track of this nonrepairable phase string effect, we define a nonlocal unitary transfor-
mation

eiΘ̂ ≡ exp

(
−i

∑
i,l

θi(l)n
h
i n

b
l↓

)
, (5)

where θi(l) = Im ln(zi − zl), and zl = xl + iyl is the complex coordinate of site l. Under this

nonlocal unitary transformation Ô → eiΘ̂ Ôe−iΘ̂ , the t–J model becomes

Ht = −t
∑

〈i,j〉,σ
e
iAs

ij h
†
i hj e

iσAh
ji b

†
jσ biσ + h.c., (6)

HJ = −J

2

∑
〈i,j〉,σ,σ ′

e
iσAh

ij b
†
iσ b

†
j−σ e

iσ ′Ah
ji bj−σ ′biσ ′ . (7)

We have also used the Jordan–Wigner transformation in 2D to describe holons by bosonic oper-
ators hi ’s instead of fermionic operators fi ’s. The sign structure of the original t–J model after
the nonlocal unitary transformation is now represented by two compact U(1) gauge fields As and
Ah defined by



390 P. Ye, Q.-R. Wang / Nuclear Physics B 874 [FS] (2013) 386–398
As
ij ≡ 1

2

∑
l �=i,j

[
θi(l) − θj (l)

](
nb

l↑ − nb
l↓

)
(mod 2π), (8)

Ah
ij ≡ 1

2

∑
l �=i,j

[
θi(l) − θj (l)

]
nh

l (mod 2π). (9)

Those equations indicate that the holons (spinons) are the π (±π ) vortices of the gauge field
Ah (As ).

We can now use mean field theory to deal with this model, since the phase string effect is ex-
plicitly tracked by the nonlocal unitary transformation (5). This procedure bears a resemblance
to the simple direct product variational wave function treatment of the Haldane phase of 1D AF
spin-1 chain after a nonlocal unitary transformation, which makes it possible to use local fer-
romagnetic order parameter to reveal the nonlocal hidden string order of the phase [36]. The
validity of the above method can be also illustrated by the 1D t–J model which possesses non-
Fermi-liquid behavior. In 1D case, θi(l) = π · θ(l − i), where θ(x) is the Heaviside step function.
According to the definitions (8) and (9), the gauge fields As

ij and Ah
ij vanish. Thus the two terms

in the t–J model, Eq. (6) and Eq. (7), both have a trivial sign structure, with all the signs absorbed
into the definition of the fractionalization of physical electron operator. The simple mean field
treatment is then enough to get the correct Luttinger-liquid behavior of correlation functions [30].

At mean field level, the t–J model is reduced to the effective phase string model, with Hamil-
tonian Heff = Hh + Hs , and

Hh = −th
∑
〈i,j〉

e
iAs

ij h
†
i hj + h.c., (10)

Hs = −Js

∑
〈i,j〉,σ

e
iσAh

ij b
†
iσ b

†
j−σ + h.c., (11)

where, th and Js will be defined in below. This model possesses a compact U(1) ⊗ U(1) gauge
symmetry:

hi → hie
iθs

i , (12)

biσ → biσ eiσθh
i , (13)

A
s,h
ij → A

s,h
ij + θ

s,h
i − θ

s,h
j . (14)

It is instructive to formulate the above mean field theory in path integral formalism after reg-
ularizing appropriately on a cubic spacetime lattice. This is the so-called mutual Chern–Simons
gauge theory [22,23]. Each holon (spinon), as a π (±π )-flux tube, constitutes “electromagnetic”
flux of Ah

μ (As
μ) which is minimally coupled to spinon (holon). This structure leads to compact

mutual Chern–Simons topological term in which the compactness of As,h
μ is exactly protected.

In such a formalism, the partition function encompasses compact U(1)⊗U(1) gauge redundancy:

Z =
∑

{N s },{N h}

∫
D

[
As,Ah

]
D

[
h†, h, b†, b

]
e−S (15)

in which the action S = ∑
x L (x denotes spacetime coordinates) with L = Lh + Ls + LMCS.

Lh (Ls ) is the Lagrangian density for holon (spinon), which includes usual gauge covariant
operators responsible for minimal coupling between holon (spinon) and As (Ah). For further
derivation, we need to explicitly write down the concrete form of Ls :
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Ls = b
†
iσ

(
d0 − iσAh

0 + λs
)
biσ + u2

2

(
b

†
iσ biσ

)2 − Js

(
eiσAh

αb
†
i+α̂σ

b
†
i−σ + h.c.

)
, (16)

where, Einstein summation is employed for all indices. α,β, . . . denote space directions x̂

or ŷ. The indices μ,ν,λ . . . stand for spacetime directions. dν is forward difference opera-
tor on 3-dimensional spacetime lattice. u2 is onsite repulsion energy which softens hard-core
condition of Schwinger bosons. λs is chemical potential. The effective AF superexchange en-
ergy Js is defined as: Js = 1

2�s where bosonic resonating-valence bond (RVB) order parameter

�s ≡ ∑
σ 〈eiσAh

αb
†
i+α̂σ

b
†
i−σ 〉 �= 0 below the pseudogap temperature T0 [37]. This mean field RVB

condensate gaps out the usual U(1) gauge fluctuation (denoted as U(1)A) which arises from
single-occupancy constraint, in contrast to the strong gauge fluctuation in U(1)A slave-boson
theory [2]. In the latter, it is necessary to carefully investigate confinement–deconfinement of
the U(1)A gauge fluctuation by integrating out high energy modes of matter fields [2,38]. The
compactified mutual Chern–Simons term is expressed by:

LMCS = i

π
εμνλ

(
As

μ − 2πN s
μ

)
dν

(
Ah

λ − 2πN h
λ

)
, (17)

where, εμνλ is antisymmetric tensor of rank 3. N s,h
μ are two integer-valued link variables to take

account of the periodicity of the gauge field As,h
μ .

3. Monopoles, confinement and localization

3.1. Emergent compact gauge theory

In this section, we focus on the AF phase in the formalism of mutual Chern–Simons theory.
A compact U(1) gauge field theory emerges in the limit of low hole concentration.

At half-filling, spinon condensation leads to AFLRO. Near half-filling, we still assume spinon
condensation, i.e. 〈bσ 〉 �= 0. Let’s formally write spinon field bσ = (

√
n0 + h)eiσθ where n0 is

δ-dependent condensation fraction. By integrating out the massive amplitude fluctuation h of
spinon field [39], one can obtain the following effective Lagrangian:

L = g0

2

(
Ah

0 − d0θ
)2 + gα

2

(
Ah

α − dαθ
)2

+ i

π
εμνλ

(
As

μ − 2πN s
μ

)
dν

(
Ah

λ − 2πN h
λ

) +Lh, (18)

where, g0 = Js/4, g1 = g2 = 4n0Js . N h
α plays the key role of the static ±2π phase-vortices

arising from the spinon superfluid. θ is a scalar function of spacetime coordinate. By further
employing the unitary gauge [40], θ can be absorbed into Ah

μ, while, LMCS keeps invariant due
to the antisymmetry property of εμνλ. Since dμθ ∈R, one obtains a massive real vector field Ah

μ

with Ah
μ ∈R.

Therefore, the first two terms in Eq. (18) are replaced by g0
2 (Ah

0)2 + gα

2 (Ah
α)2 by keeping

Ah
μ ∈R in mind. Gaussian integration over Ah

μ leads to:

L = 1

4ẽ2

(
F s

μν − 2πnμν

)2 +Lc, (19)

where, ẽ = √
4n0Js is coupling constant of “emergent (2 + 1)D compact gauge dynamics”.

The “speed of light” is implicit here without loss of generality. The gauge field strength tensor
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F s
μν is defined as F s

μν = d̂μAs
ν − d̂νA

s
μ (d̂μ is backward difference operator on 3-dimensional

spacetime lattice). The new plaquette variable nμν is defined as: nμν ≡ (d̂μN s
ν − d̂νN s

μ ).

Lc = −i2εμνλAs
μdνN

h
λ + Lh. The definition of nμν here is locally well-defined. As will be

discussed below, nμν induces monopole configurations of three-dimensional Euclidean space-
time when N s

μ has singularity. It is particularly interesting that in the quantum paramagnetic
phase of non-linear sigma model, compact gauge degree of freedom is also found and plays an
important role in classifying quantum spin liquids [41–44]. In these systems, the compact gauge
degree of freedom is essentially due to the Wess–Zumino–Witten topological term of quantum
SU(2) spins [44].

It is clear that two kinds of particles simultaneously carry the gauge-charge of As , namely,
holon h in Lh and static ±2π phase-vortex arising from spinon superfluid. Let’s define (2 +
1)D current of phase-vortices as: εμνλdνN

h
λ = J μ, where, J0 ∈ Z, Jα = 0 (static vortices).

As such, Lc can be simplified to

Lc = −iAs
0

(
2J0 + h†h

) +Lh [As
0=0], (20)

where, Lh [As
0=0] stands for Lh without As

0 term. Hence, we find that the gauge-charge of J0 is
±2 while each holon carries +1 gauge-charge, such that, only possible negative gauge-charge
comes from J0.

3.2. Monopole plasma configuration

Monopole effect generically gets suppressed by finite density of matter field. Here, the holon
matter field which couples to As is extremely dilute, such that the monopole effect is expected to
be relevant [45]. Let’s briefly follow Polyakov’s approach [18] by using the present mathemati-
cal symbols and explicitly keep track of monopole effect in context of doped antiferromagnets.
In analog to the point-like solution “Dirac monopole” in three-dimensional space, we can define
the “magnetic field” vector as below (in dual lattice): Bμ = 1

2εμνλnνλ ·2π . The divergence of Bμ

is in general quantized at 2π , i.e., dμBμ = 2πq where q is integer scalar field defined on space-
time sites. q �= 0 if N s

μ has singularity. In general, nμν can be globally defined and factorized
into longitudinal and transversal components separately [18] (in the continuum limit, it becomes
the Hodge decomposition of a general differential form into exact, co-exact and harmonic forms
on a Riemannian manifold):

nμν = [
d̂μ(mν + χν) − d̂ν(mμ + χμ)

] − εμνλd̂λφ, (21)

where, mν is integer vector field, χν is a real vector field with absolute value smaller than 1. φ is a
real scalar field. It is a linear equation on lattice and one can check that the degrees of freedom of
those fields on both sides of the equation are indeed the same. Substituting factorization formula
of nμν into (19) we find that the As

μ can be combined with mμ + χμ rendering As
μ ∈ R. This

rearrangement brings convenience for the Gaussian integration for As
μ. The effective Lagrangian

is thus transformed into:

L = 1

4ẽ2

(
F s

μν

)2 − 2π2

ẽ2
φdμd̂μφ +Lc,

where, As
μ ∈ R. In deriving above expression, the crossing term “Fs

μνε
μνλd̂λφ” is neglected,

because

F s εμνλd̂λφ = 2εμνλd̂μAs d̂λφ = 2εμνλd̂μ

(
As d̂λφ

) − 2εμνλAs d̂μd̂λφ,
μν ν ν ν
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where the first term is trivial boundary term and the second term vanishes due to antisymmetry
property of εμνλ. To proceed further, let’s substitute factorization formula of nμν into dμBμ

resulting in: −�̂φ = q where �̂ ≡ dμd̂μ is lattice Laplacian. The formal solution of φ can be
written as: φ = −�̂−1q .

Finally, we obtain the final effective action:

Seff =
∑
x

(F s
μν)

2

4ẽ2
− 2π2

ẽ2

∑
x,x′

qx

(
�̂−1)

x,x′qx′ +
∑
x

Lc, (22)

where, the second term in the above action describes a 3D plasma of monopoles with Coulomb
interaction (−�̂−1)x,x′ ∼ |x − x′|−1. The configuration {q} represents distribution of point-like
“magnetic charge” (i.e. monopole). This Coulomb gas (monopole plasma) representation of com-
pact U(1) gauge theory serves as the starting point of our following discussions.

3.3. Confinement and localization at zero temperature

The monopole plasma has far-reaching consequences: the long-range interaction in monopole
plasma spoils out the correlation of original gapless As -photon at weak-coupling limit and gen-
erates a gap in the low-lying charge excitation spectrum. This gap generation can be viewed as
an alternative physical picture of Mott physics which strongly freezes charge degree of freedom
near half-filling.

The matter field h can be neglected at half-filling. In the absence of Lc, Eq. (19) is identified
to (2 + 1)D pure compact U(1) gauge theory [18,46], with Eq. (22) as its monopole plasma
representation. To show the confining nature of the (2 + 1)D pure compact U(1) gauge theory at
zero temperature, we can introduce a scalar field χ to reexpress the instanton part of the partition
function. Taking into account only qx = ±1 configurations, we obtain the following sine-Gordon
action:

Seff =
(

ẽ

2π

)2 ∑
x

(
(∇χ)2 − M2 cosχ

)
, (23)

where M2 = (2π/ẽ)2 exp(−const/ẽ2). χ plays the role of scalar potential of the Coulomb
charges, and its gradient is the electric (magnetic) field. The appearance of small mass M of χ in
weak-coupling ẽ limit leads to a short range correlation function of electromagnetic field of the
original U(1) theory. It is the finite density monopoles with long range interaction that spoil the
correlations.

In order to probe confinement of gauge-charge, one can define Wilson loop [47] as

W [C] = 〈
ei

∑
x As

μJμ
〉
,

where, C is a temporal rectangular r × t loop with r (t ) spatial (temporal) distance. Jμ is unit
current and forms the directional loop C. The underlying potential between test-particle and
test-antiparticle is defined as V (r) = − limt→∞ ln W [C]

t
. Repeating the same transformation from

Eq. (19) to Eq. (22), we find the similar formula for W [C]:

w[C] ∼ Z−1
∑
q

exp

(
−2π2

ẽ

∑
′
qx

(
�̂−1)

x,x′qx′
)

exp

(
2πi

∑
′
Qx

(
�̂−1)

x,x′qx′
)

. (24)

x x,x x,x



394 P. Ye, Q.-R. Wang / Nuclear Physics B 874 [FS] (2013) 386–398
It describe monopole plasma with a fixed external monopole configuration Qx . The screening
of the external monopole configuration requires a free energy proportional to the area of the
rectangle C. In other words, the Wilson loop exhibits area law at large t limit: W [C] ∼ e−κt r

with positive coefficient κ for any given coupling constant ẽ. Since strong coupling limit is
always a confinement state, we can reasonably draw the conclusion that (2 + 1)D pure compact
U(1) theory is always confined at zero temperature. As a results, all virtual particles that carry
gauge-charge in the vacuum of (2 + 1)D pure compact U(1) gauge theory must be confined into
gauge charge-neutral bound state.

Near half-filling, the doped dilute holes may be directly viewed as test-particles in the
gedanken-experiment which physically interprets Wilson loops [47], resulting in linear confine-
ment between holes and appropriate amounts of phase-vortices J0 of spinon superfluid. The
infinite effective mass of the latter leads to strong localization of holes (carrying charge de-
gree of freedom). As shown in Fig. 1(b), two holes form a localized state whose wave function
may be expressed as |two holes〉 = | , , 〉, where, and denote −2π phase-vortex and
hole, respectively. It carries zero gauge-charge (−2 + 1 + 1 = 0). As spin degree of freedom
is energetically expelled away from phase-vortex cores, a holon must occupy a core under the
single-occupancy constraint of the t–J model, justifying Fig. 1(b). Overall, we obtain the strong
localization without extrinsic disorder/impurities taken into account. Existence of monopole ef-
fect in a spinful charge-neutral superfluid drives the charge localization, and, the translation
symmetry is broken spontaneously.

Since the present quantum field-theoretic approach is based on the phase string decomposition
of electrons [30,48] as shown in Section 2, we emphasize that the essential origin of localization
mechanism can be traced back to the singular phase string effect discovered by Weng et al. [15,
30,48]. The phase string effect is mathematically captured by the exact “sign structure” of the
t–J model by formulating partition function with the worldline path-integral [35]. Pictorially,
the worldlines of one holon and one spin-↓ spinon wrap each other can contribute a minus sign
under Gutzwiller projection (the total particle number of spinons and holons at each site must
always be one). Such a particular sign structure encodes underlying non-Fermi-liquid behaviors
and implies the notion of “Sign Matter” introduced by Zaanen and Overbosch [49].

4. Phase diagram of finite temperature

4.1. The effect of finite temperature

At finite temperature, the compact U(1) theory has a deconfinement phase where the behavior
of holons changes dramatically. We identify this confinement–deconfinement transition with the
metal–insulator transition observed in experiments.

The same procedure dealing with zero temperature U(1) theory is valid at finite temperature.
The two differences are: (i) Three-dimensional infinite lattice is replaced by a lattice with imag-
inary time size β = 1/kBT . And only periodic configurations along this direction contribute
to the partition function. (ii) When calculating the Green’s function G(x − x′) = −(�̂−1)x,x′
in Eq. (22), the integral along the temporal direction is replaced by the Matsubara frequency
summation. Using the fact that the Fourier transformation of the lattice Laplacian operator
�̂x,x′ = ∑

μ(δx,x′+μ + δx,x′−μ − 2δx,x′) is 4
∑

μ sin2(kμ/2), the Green’s function in real space
is given by
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G(τ,x) = 1

β

π∫
−π

d2k
(2π)2

∞∑
n=−∞

exp(ik · x + iωnτ)

4
∑

i sin2 ki

2 + 4 sin2 ωn

2

. (25)

One can show that at zero-temperature limit β → ∞, the Green’s function reproduces the three-
dimensional Coulomb potential at large distance

G(τ,x) ∼ 1√
x2 + τ 2

, β → ∞. (26)

On the other hand, the high-temperature limit β → 0 give us an two-dimensional Coulomb po-
tential

G(x) ∼ 1

β

π∫
−π

d2k
(2π)2

exp(ik · x)

4
∑

i sin2(ki/2)
, β → 0. (27)

We conclude that finite temperature effectively reduce one dimension of our original theory.
The Coulomb gas has only one plasma phase in 3D; while in 2D, there is a Berezinskii–
Kosterlitz–Thouless transition from disorder phase to critical phase. The sine-Gordon repre-
sentation (23) of the Coulomb gas is also valid. And the 2D sine-Gordon model with inverse
temperature β ′ = 1/(βẽ2) is a well-studied model in conformal field theory. At low temperature
(large β , small β ′) of our original U(1) theory, the monopole effect term cosχ is relevant, result-
ing in a short range correlation function of χ , and the compact U(1) theory is in the confinement
phase. At high temperature (small β , large β ′), however, the monopole term is irrelevant, and the
compact U(1) theory is in the deconfinement phase. The confinement–deconfinement transition
do have measurable effect in our original t–J model.

4.2. Metal–insulator transition and order parameter

Experimentally, magneto-resistance measurement [50] of heavily underdoped YBa2Cu3O6 + x

compounds indicates that the development of AF order has little effect on the in-plane resistivity.
It is also found that the magnitude of in-plane resistivity is so large that conventional band
theory breaks down [28,51]. In the present theory, gauge-charge is linearly confined at all ẽ’s
at zero temperature. According to Svetitsky–Yaffe universality arguments [52], it is suggested
that a confinement–deconfinement transition exists at a finite temperature TMI. Therefore, it is
naturally addressed that electric charge transport may be explicitly altered when the system un-
dergoes the transition. At T < TMI holons are still linearly confined and strongly localized as
same as ground state, implying insulating nature of charge transport. The only source for provid-
ing charge mobility is thermal fluctuation. At T > TMI, the linear confinement disappears such
that the charge mobility is enhanced. Albeit disappearance of linear confinement, the logarithmic
interaction now plays the leading role and renders a metallic behavior. It is widely believed that
the confinement–deconfinement transition temperature TMI as a function of ẽ starts from origin
(0,0) in T –ẽ plane and roughly monotonically increases with the increase of ẽ [52–55]. Doping
holes in general depletes the spinon condensation fraction such that n0(δ) decreases with the in-
crease of doping δ, so does the coupling constant ẽ which is defined as

√
4n0Js . Correspondingly,

TMI should monotonically decrease. Consequently, we identify TMI as the metal–insulator tran-
sition temperature scale observed in in-plane resistivity measurement [28]. The order parameter
of this transition is so-called “Polyakov-line” [19–21]:
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O ≡
〈

exp

{
i

β∫
0

As
0 dτ

}〉
(28)

with β−1 = kBT and kB the Boltzmann constant. O = (�=)0 if T < (>)TMI, which characterizes
the preservation (breaking) of central group. The Polyakov-line was ever utilized in “Short-Range
Order phase” of Hubbard model by Wiegmann [56] but in quite a different context. Finally,
we obtain the phase diagram shown in Fig. 1(a). Starting from the present understanding on
localization, quantitative study of charge transport is quite interesting and will be extensively
addressed in our future work.

4.3. Dual-type “Nernst” effect: A new quantum phenomenon

At the end of the discussion, we in particular emphasize the novel vortex-core structure near
half-filling. In Fig. 1(b), a quantized unit electric charge (i.e. holon, the blue ball) is surrounded
by spinful supercurrent. For the lower holon, the supercurrent is counter-clockwise; for the upper
holon, the existence of the extra −2π phase-vortex (red directional circle) leads to net clockwise
supercurrent. In analog to Nernst effect [57] in which vortex is formed by electric supercurrent,
we predict that there is a dual-type effect if one can polarize spinful vorticity along ẑ-direction
(cuprate sample is put in xy-plane). Then, by applying temperature gradient along x̂-direction,
one can measure net spin accumulation at the two edges of ŷ-direction.

5. Summary

In conclusion, the present work provides a semi-quantitative quantum field-theoretic analysis
on the long-standing problem: can electric charge be intrinsically localized in the t–J model? The
monopole plasma configuration which comes from the antiferromagnetic background is proved
to play fundamental role of driving charged holes into localized states. Although it is a techni-
cal challenge to determine the concrete range of parameter t/J in which the result makes sense
from the present semi-quantitative analysis, our work has proved that the pure t–J model itself
has the intrinsic ability to stabilize such translation symmetry breaking phase without the help
of external disorder/impurity, which fundamentally differentiates the present localized ground
state from Anderson localization. This result is a reasonable answer to the recent STM experi-
mental finding and consistent to the phase string argument for DMRG numerical simulation of
ladder systems. Apart from this result, we also figure out the finite-temperature phase diagram
and especially theoretically explain the mechanism of metal–insulator transition found in elec-
tric in-plane resistivity measurement, which sheds light on a new way to reorganize transport
experimental findings in curates in a single framework. A much more quantitative study along
the present perspective is important and will be leaved to future work.
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