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1. Introduction

In [5] Geiss-Leclerc-Schröer studied Lusztig’s semi-canonical basis [10] for the en-
veloping algebra U(n). Here n is the maximal nilpotent subalgebra of some symmetric 
Kac-Moody Lie algebra over C. They raised the question of the relation between the 
semi-canonical basis, the canonical basis and the singular support (cf. [5], 1.5), referring 
to a conjecture made by Lusztig for the Weyl group algebra (cf. [9], 4.17).

In this paper, we consider the conjecture of Geiss-Leclerc-Schröer mentioned above 
for the quiver (I, Q) of type A with orientation Ω : i → i +1. The variety EV,Ω of quiver 
representations in an I-graded vector space V admits a stratification by an action of a 
reductive group GV . For each orbit S, we can associate a perverse sheaf IC(S, C). They 
give rise to a basis {gS} for U(n), called the canonical basis. By considering the union 
of the conormal bundles over the GV -orbits on EV,Ω

ΛV :=
⋃
S

T ∗
SEV,Ω

Lusztig constructed the semi-canonical basis for U(n), denoted by φS , with respect 
to the irreducible component T ∗

SEV,Ω. Let M(EV,Ω)GV be the space of GV -invariant 
constructible functions on EV,Ω. Then Lusztig [8] showed that there is an algebra iso-
morphism

U(n) ∼= MΩ :=
⊕
V ∈V

M(EV,Ω)GV ,

where V is the set of isomorphism classes of I-graded vector spaces and the product on 
MΩ is given by convolution. So we can view the canonical and semi-canonical bases as 
elements in MΩ. Let mS′,S ∈ C be the coefficients of the expansion of gS with respect 
to the basis {φS′}, i.e.,

gS =
∑

mS′,SφS′ .

S′
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On the other hand, Kashiwara and Shapira constructed a characteristic cycle CC(F)
for a constructible sheaf F on a manifold (cf. [6]). In particular, we have the following 
formula

CC(IC(S,C)) = [T ∗
SEV,Ω] +

∑
S′⊆S

nS′,S [T ∗
S′EV,Ω], nS′,S ∈ Z≥0.

Furthermore, they constructed a morphism

Eu : L(T ∗EV,Ω) → M(EV,Ω)

where L(T ∗EV,Ω) denotes the group of Lagrangian cycles and M(EV,Ω) the space of 
constructible functions on EV,Ω, such that

Eu(CC(IC(S,C))) = (−1)dimSgS .

The above mentioned conjecture of Geiss-Leclerc-Schröer can be made precise as follows.

Conjecture 1.1. Eu([T ∗
SEV,Ω]) =(−1)dimSφS or equivalently mS′,S =(−1)dimS′−dimSnS′,S.

In this paper we develop a strategy to approach this conjecture. First let us formulate 
the dual statement. Let M(ΛV )GV be the space of GV -invariant constructible functions 
on ΛV . The pullback along EV,Ω ↪→ ΛV defines an algebra homomorphism

Ψ : MΠ :=
⊕
V ∈V

M(ΛV )GV −→ MΩ

where the product on MΠ is also given by convolution. Lusztig [8] showed that this in-
duces an isomorphism Ψ0 on a subalgebra MΠ of MΠ. Let MΠ(V ) := MΠ∩M(ΛV )GV . 
We have a diagram

MΠ(V )
∼=

Ψ0

M(ΛV )GV

Ψ

M(EV,Ω)GV .

(1)

Lusztig [10] showed that there exists a basis {φ̃S} of MΠ(V ) parametrized by the GV -
orbits S in EV,Ω satisfying

φ̃S(x, y) =
{

0 if (x, y) ∈ OS′ and S′ �= S

1 if (x, y) ∈ OS

where OS is some open dense subset of T ∗
SEV,Ω. By definition, φS = Ψ0(φ̃S). We define 

the dual semi-canonical basis to be ρS(φ) := Ψ−1
0 (φ)(z) for φ ∈ M(EV,Ω)GV and z is 
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any point in OS . Let KGV
(EV,Ω) be the Grothendieck group of GV -equivariant perverse 

sheaves on EV,Ω. The local Euler characteristic gives an isomorphism

χ : KGV
(EV,Ω) ⊗Z C

∼=−→ M(EV,Ω)GV , F �→ φF

where φF (x) := χ(Fx). Define χmic
S (φF ) := mS(CC(F)), the multiplicity of [T ∗

SEV,Ω] in 
CC(F). Then Conjecture 1.1 is equivalent to the following dual statement.

Conjecture 1.2. (−1)dimSχmic
S = ρS.

In order to approach this conjecture, we define a section of Ψ

ηV : M(EV,Ω)GV −→ M(ΛV )GV (2)

by (ηV (φF ))(x, y) := χ(RΦfy [−1](F)x), where fy : EV,Ω → C is the linear functional 
defined by y ∈ T ∗

S,xEV,Ω. This map has been introduced in [3] in a more general setting. 
The link with characteristic cycles is as follows.

Proposition 1.3 (cf. Proposition 4.6). For F ∈ DGV
(EV,Ω) and (x, y) ∈ (T ∗

SEV,Ω)reg (cf. 
(4)), we have

ηV (φF )(x, y) = (−1)dim ΛV −dim ŜmS(CC(F)).

Here Ŝ is the dual orbit of S.

As a consequence, Conjecture 1.2 is equivalent to

Ψ−1
0 (φ)|OS∩(T∗

SEV,Ω)reg = (−1)dim ΛV −dim Ŝ−dimS ηV (φ)|OS∩(T∗
SEV,Ω)reg

for all φ ∈ M(EV,Ω)GV . Indeed, it is possible to show that

dim ΛV − dim Ŝ − dimS ≡ 0 mod 2 (3)

from the fact that IC(S, C)∨ = IC(Ŝ, C), where (·)∨ is the Fourier-Sato transform. We 
will not include the argument here, since it is not our main focus. Now we can state our 
main result.

Theorem 1.4. For type A2 quiver, Ψ−1
0 |M(EV,Ω)GV = ηV .

Conjecture 1.2 for type A2 quiver follows from this theorem and (3). We shall point out 
that Conjecture 1.2 in this case also follows from the known results (−1)dimSχmic

S = g∗S
[12] and ρS = g∗S [5], where g∗S is the dual canonical basis. Nevertheless, the purpose of 
this paper is to develop a strategy for studying Conjecture 1.2 in all cases. We plan to 
apply our strategy to some special orbits in the future.
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The paper is organized as follows. In §2 we review the notion of characteristic cycles. In 
§3 we review the classical work of Lusztig on the canonical bases and the semi-canonical 
bases. Both sections contain no new results and we mainly follow Lusztig’s notations. In 
§4.1, we introduce the map ηV and show its image consists of constructible functions. 
The ideas are from [3]. In §4.2, we prove Proposition 4.6. Our main tool is stratified 
Morse theory (cf. [14]). Note that in order to apply the results of [14], some Whitney 
type regularity condition is required. This is verified in Appendix A. In §4.3, we show 
that the equality ηV = Ψ−1

0 is equivalent to the compatibility of ηV with convolution 
(cf. Proposition 4.12). In §4.4 and §4.5, we reduce it further to a problem of vanishing 
cycle calculation.

Conjecture 1.5 (cf. Conjecture 4.26). We have χ(RΦhy0
[−1](1))(1,x0) = 1.

Finally, in §5, we show that the last conjecture is true for type A2 quiver. We prove this 
result by showing that the relevant nearby cycle has Euler characteristic 0. We should 
remark that even in this case, the singular locus of hy0 can be very complicated, and it 
could involve singular irreducible components of various dimensions. We show that the 
relevant nearby cycle has Euler characteristic 0 by constructing a fibration of the Milnor 
fiber over some compact space and showing the fibers all have Euler characteristic 0. 
Then the result follows from the Leray spectral sequence.
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2. Characteristic cycles

In this section we review some generalities on characteristic cycles, our main reference 
is [6]. Nothing is new in this section.

2.1. Micro-support and characteristic cycles

To introduce the micro-support of a C×-sheaf on a manifold, we follow [6] section 8.6 
to give a definition using vanishing cycles.

Consider a complex manifold X with a holomorphic function

f : X → C.
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Moreover, we assume that Y = f−1(0) is non-singular. Also, let p : C → C be the 
function p(z) = exp(2π

√
−1z), considered as the universal covering map of C×. Finally, 

let p : X → X be the pullback of p along f .

Definition 2.1. Let Db(X) be the bounded derived category of C-coefficient abelian 
sheaves F on X.

Definition 2.2. Let F ∈ Db(X). Let i : Y → X be the natural embedding. The nearby-
cycle functor is defined by

RΨf (F) = i∗Rp∗p
∗(F).

We also need to consider the vanishing cycles, which is

Definition 2.3. Let RΦf (F) ∈ Db(X) be the unique element such that we have the 
following distinguished triangles

i∗(F) → RΨf (F) → RΦf (F) −→+1 .

Now we can define the micro-support SS(F) of a constructible sheaf F .

Definition 2.4. Let Db
c(X) be the subcategory of Db(X) consisting elements with bounded 

constructible cohomology sheaves. It is a full subcategory. Let p ∈ T ∗X and F ∈ Db
c(X), 

then we define a subset SS(F) ⊆ T ∗(X) by the following

(1) p /∈ SS(F ).
(2) There exists an open neighborhood U of p such that for any x ∈ X and any holo-

morphic function f : W → C defined in a neighborhood W ⊆ X of x with f(x) = 0
and df(x) ∈ U , one gets RΦf (F)x = 0.

Remark. Note that such a definition works well for varieties over other fields. More 
precisely, Beilinson [2] constructed micro-support for arbitrary base field, and Saito [13]
constructed characteristic cycle for sheaves on varieties over a finite field.

Finally, following Kashiwara and Shapira, we can attach a Lagrangian cycle CC(F)
to F ∈ Db

c(X) in a functorial way. Its support is contained in SS(F). We call CC(F)
the characteristic cycle of F . We do not give the exact definition but just list some of its 
properties.

Proposition 2.5. Let X and Y be complex manifolds, and F ∈ Db
c(X), G ∈ Db

c(Y ). We 
have

(1) CC(F � G) = CC(F) � CC(G).
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(2) CC(DX(F)) = CC(F), where DX is the Verdier dual.
(3) Let F ′ → F → F ′′ −→+1 be a distinguished triangle in Db

c(X). Then

CC(F) = CC(F ′) + CC(F ′′).

(4) Assume that F is a local system. Then we have

CC(F) = (−1)dim(X) rank(F)[T ∗
XX].

(5) We have supp(CC(F)) ⊆ SS(F) and the two coincide when F is perverse.
(6) (Milnor type formula) Let x ∈ U ⊆ X be an open subset. Suppose f : U → C is 

holomorphic and f(x) = 0. Assume that the section Cf = (y, df(y)) of the natural 
projection T ∗X → X intersects SS(F ) transversally. Then we have

−χ(RΦf (F|U )x) = (CC(F), Cf )T∗U,x

(7) Let F be perverse. Then

CC(F) ≥ 0.

Proof. (1) is (9.4.1) in [6], (2) is proved in Proposition 9.4.4 in [6] and (3) is proved 
in Proposition 9.4.5 in [6]. Note that in (2) our formula differs from that of [6] by an 
antipodal pullback since we are working with complex varieties. For (4), we refer to [13, 
Lemma 5.11], and for (5) and (6), see [13, Theorem 5.9, Lemma 5.13 (1) and Proposition 
5.14 (2)]. Again, we note that the characteristic cycle in [6] differs from ours by a sign 
since we require CC(F) ≥ 0 for a perverse sheaf F , following [13]. Finally, (7) follows 
from [13, Proposition 5.14 (1)]. �
2.2. Constructible functions, Lagrangian cycles and characteristic cycles

We introduce the following set of constructible functions on complex varieties.

Definition 2.6. A function φ : X → C is constructible if f(X) is finite and f−1(c) is a 
constructible subset of X in the Zarisky topology for any c ∈ C. The set of constructible 
functions on X is denoted by M(X).

Remark. Our definition of constructible functions is more restrictive than that of [6].

Notation 2.7. Let K(X) be the C-coefficients Grothendieck group of Db
c(X), i.e., the full 

subcategory of Db(X) consisting of elements with bounded constructible cohomology 
sheaves with C-coefficients.
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Definition 2.8. Let L(T ∗X) be the free abelian group generated by the complex conic 
Lagrangian subvarieties of T ∗X. Here by Lagrangian subvariety we mean middle dimen-
sional algebraic subvariety of T ∗X such that the pull-back of the canonical symplectic 
form vanishes.

Remark. Naturally we have CC(F) ∈ L(T ∗X) for any F ∈ K(X).

Definition 2.9. We have group homomorphisms

χ : K(X) → M(X), F �→ χ(F), (χ(F))(x) = χ(Fx)

and

CC : K(X) → L(T ∗X), F �→ CC(F).

Theorem 2.10. The homomorphisms χ and CC are surjections such that

ker(χ) = ker(CC).

Moreover, the kernel is described as follows: it is generated by [F1] − [F2] with F1, F2 ∈
Db

c(X) such that there exists a stratification X =
∐

i Xi by locally closed semi-algebraic 
subvarieties (in the sense of real algebraic topology) such that F1|Xi

 F2|Xi
for all i.

Proof. Cf. [6, Theorem 9.7.1, 9.7.10]. Note that regardless of the modification we made 
on the relevant objects, the proof is exactly the same. �
Remark. In our applications, with the objects involved replaced by their equivariant 
versions, the morphisms χ and CC become in fact isomorphisms.

Following [6], we define an Euler morphism Eu from L(T ∗X) to M(X) as follows

Definition 2.11. Let x ∈ X, U ⊆ X a neighborhood of x and φ : U → R satisfying 
φ(x) = 0, dφ(x) = 0 and the Hessian of φ at x is positive definite. Let λ ∈ L(T ∗X), then 
we put

Eu(λ)(x) = 	([Cφ] ∩ λ)x

where Cφ = {(y, dφ(y))|y ∈ U}.

Remark. In [6], it is shown to be well defined (cf. (9.7.26)).

We are ready to state the following
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Theorem 2.12 ([6, Theorem 9.7.11]). The diagram:

K(X)
CC χ

L(T ∗X)
Eu

M(X)

is commutative, and the horizontal arrow is isomorphic.

3. Canonical bases and semi-canonical bases

In this section we recall the classical construction of the canonical basis and the semi-
canonical basis, due to Lusztig. We only state the relevant facts in the case of quivers of 
simply laced type, we refer to [10], [8] for a detailed discussion.

3.1. Representation of quiver algebras and preprojective algebras

Let Q = (I, H, s, e) be a finite quiver without loops. Thus

(1) I is a finite set of vertices;
(2) H is a finite set of directed edges called arrows;
(3) s (resp. e) : H → I sends an arrow to its starting point (resp. end points);
(4) there is an involution h → h̄ satisfying e(h̄) = s(h), s(h̄) = e(h).

Let Ω ⊆ H be an orientation, i.e., Ω ∪ Ω = H, Ω ∩ Ω = ∅. Let CH be the path algebra 
associated to H. For i ∈ I, set

ri =
∑

h∈Ω:s(h)=i

hh−
∑

α∈Ω:e(h)=i

hh ∈ CH.

Notation 3.1. We denote by (Q, Ω) the sub-quiver generated by Ω.

Definition 3.2. Let H(Q, Ω) = CΩ be the quiver algebra generated by Ω and

Π(Q) = CH/J

where J is the ideal generated by the elements ri above. We call Π(Q) the preprojective 
algebra associated to Q.

Notation 3.3. Let V =
⊕

i∈I Vi be an I-graded vector space. Let

|V | := (dim(Vi))i∈I

be its dimension vector.
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Definition 3.4. View the variety

EV,Ω = {(xh)h∈Ω : xh ∈ Hom(Vs(h), Ve(h))}

as the representation variety of H(Q, Ω) with underlying space V .

Definition 3.5. A representation of the preprojective algebra Π(Q) on V is an element 
(xh)h∈H ∈ EV,Ω ×EV,Ω satisfying the relation∑

{h∈Ω:s(h)=i}
xhxh −

∑
{h∈Ω:e(h)=i}

xhxh = 0.

Let p = h1h2 · · ·ht be a path in H. Set

xp = xh1xh2 · · ·xht

We say that the representation is nilpotent if there is an N in N such that xp = 0 for
any path p of length greater than N . Let ΛV be the set of nilpotent representations on 
V .

Remark. Note that if V i is an I-graded vector space with |V i| = (δi,j)j∈I (here δ is 
the Kronecker symbol), then ΛV i consists of one single point and we denote by Zi the 
corresponding representation. We also note that the nilpotency condition is equivalent 
to requiring that the representation admits a composition series consists of only simple 
modules isomorphic to Zi for i ∈ I.

We recall some basic results concerning the algebra Π(Q).

Proposition 3.6 ([5, Proposition 3.1]). The following are equivalent

(a) The algebra Π(Q) is finite dimensional.
(b) Every finite dimensional representation of Π(Q) is nilpotent.
(c) (Q, Ω) is a Dynkin quiver.

3.2. Convolution products and canonical bases

We recall the construction of canonical bases through convolution products.

Definition 3.7. Let X be a complex variety and f : X → C a constructible function. We 
define ∫

x∈X

f(x) =
∑
c∈C

c χ(f−1(c)),

where χ is the Euler characteristic with compact support.
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Notation 3.8. Let GV =
∏

i∈I GL(Vi) be the automorphism group of V , which acts on 
EV,Ω and ΛV by conjugation.

Definition 3.9. Let M(EV,Ω)GV be the set of GV -invariant constructible functions on EV . 
Similarly one can define M(ΛV )GV .

Definition 3.10. Let V, V ′, V ′′ be I-graded vector spaces such that

|V | = |V ′| + |V ′′|.

Then we have a bilinear map

∗ : M(EV ′,Ω)GV ′′ ×M(EV ′′,Ω)GV ′′ → M(EV,Ω)GV

by

(φ′ ∗ φ′′)(x) =
∫

y⊆x

φ′(y)φ′′(x/y), x ∈ EV

where y runs through all the subrepresentations of x such that the underlying vector 
space is isomorphic to V ′. Similarly, we have a bilinear map

∗ : M(ΛV ′)GV ×M(ΛV ′′)GV → M(ΛV )GV .

Definition 3.11. Let

MΩ =
⊕
V ∈V

M(EV,Ω)GV , MΠ =
⊕
V ∈V

M(ΛV )GV ,

where V is the set of isomorphism classes of I-graded vector spaces.

Proposition 3.12. The vector spaces MΩ and MΠ with the convolution product ∗ are 
unital associative algebras.

Proof. We refer to [5] section 5.4 and [8] section 10.19. �
Definition 3.13. Let MΩ (resp. MΠ) be the subalgebra of MΩ (resp. MΠ) generated 
by the function 1Si

(resp. 1Zi
), i ∈ I, where Si (resp. Zi) is the dimension 1 irreducible 

representation which is concentrated in degree i. Also, let

MΩ(V ) = MΩ ∩M(EV,Ω)GV , MΠ(V ) = MΠ ∩M(ΛV )GV

Proposition 3.14 ([7, Proposition 9.8]). If Q is of Dynkin type, then MΩ = MΩ.
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Notation 3.15. Let g be a symmetric Kac-Moody algebra and n a maximal nilpotent Lie 
subalgebra. Let Q be the associated quiver. Also, let U(n) be the enveloping algebra of 
n.

Theorem 3.16. We have isomorphisms of algebras

Ψ : U(n) → MΩ, Φ : U(n) → MΠ

with

Ψ(ei) = 1Si
, Φ(ei) = 1Zi

,

where ei, i ∈ I is a set of Chevalley generators for U(n).

Proof. For Ψ, we refer to [8] Proposition 10.20, and for Φ, we refer to [10]. �
We give another description of the map Ψ in terms of the quantum enveloping algebra, 

which is also due to Lusztig. We briefly recall the construction.

Notation 3.17. For each V , Lusztig defined a subset PΩ(V ) of perverse sheaves on EV,Ω. 
Let Kv(Ω, V ) be the Z[v±]-module generated by the elements of PΩ(V ). Moreover, he 
defined a convolution product

∗ : Kv(Ω, V ′) ×Kv(Ω, V ′′) → Kv(Ω, V )

for I-graded vector spaces V ′, V ′′ such that |V | = |V ′| + |V ′′|. Finally, let

Kv(Ω) =
⊕
V ∈V

Kv(Ω, V )

be the resulting unital associative algebra.

Theorem 3.18. We have an isomorphism of algebras

Ψv : Uv(n) → Kv(Ω) ⊗Z[v±] Q(v), Ψ(Ei) = 1Si

where Ei, i ∈ I is a set of Chevalley generators for the quantized algebras Uv(n) and 1Si

is the constant sheaf on the variety corresponding to the one dimensional representation 
Si.

Proof. Cf. [8], §10.17. �
Remark. By letting v = 1, we recover the previous map Ψ by identifying Ei to ei (cf. 
[8], §10.20).
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Definition 3.19. Let Uv,Z(n) = Ψ−1
v (Kv(Ω)).

Let Irr(ΛV ) be the set of irreducible components of ΛV .

Definition 3.20. Following Lusztig, we define for each graded vector space V a C-basis

{φZ |Z ∈ Irr(ΛV )}

of MΠ. The function φZ is uniquely characterized by the fact that it is equal to 1 on a 
dense open subset of Z and equal to 0 on a dense open subset of any other irreducible 
component Z ′ of ΛV [10, Lemma 2.5].

4. Quiver of type A

Let Q = (I, H, s, e) be a quiver of type A. Let I = {1, 2, · · · , r} and Ω be the orien-
tation i → i + 1. Let V =

⊕
i∈I Vi be an I-graded vector space.

EV,Ω =
⊕

1�i<r

Hom(Vi, Vi+1), GV =
∏

1�i�r

GL(Vi).

Let DGV
(EV,Ω) be the GV -equivariant derived category of constructible complexes on 

EV,Ω and KGV
(EV,Ω) the corresponding Grothendieck group. Then the local Euler char-

acteristic gives an isomorphism

χ : KGV
(EV,Ω) ⊗Z C

∼−→ M(EV,Ω)GV , F �→ φF ,

where φF (x) = χ(Fx). Let Ω̄ be the opposite orientation, and

EV,Ω̄ =
⊕

1�i<r

Hom(Vi+1, Vi).

Let

EV = EV,Ω ⊕ EV,Ω̄ ↪→ End(V ), GV ↪→ GL(V ).

We define a GL(V )-invariant nondegenerate bilinear form on End(V ) by the trace

〈 , 〉 : End(V ) × End(V ) → C, 〈x, y〉 = tr(xy).

It defines a GV -invariant nondegenerate bilinear form on gV := Lie(GV ), and a GV -
invariant nondegenerate pairing

〈 , 〉 : EV,Ω × EV,Ω̄ → C.
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Under this pairing, we can identify

EV,Ω̄
∼= E∗

V,Ω and T ∗EV,Ω ∼= EV
∼= T ∗EV,Ω̄.

On End(V ), we have the Lie bracket [x, y] := xy − yx and

ΛV = {(x, y) ∈ EV | [x, y] = 0}.

We decompose ΛV into irreducible components,

ΛV
∼=

⋃
S

T ∗
SEV,Ω ∼=

⋃
C

T ∗
CEV,Ω̄

which are closures of conormal bundles over orbits on EV,Ω and EV,Ω̄ respectively. For 
any orbit S ⊆ EV,Ω, we define the dual orbit Ŝ ⊆ EV,Ω̄ by the condition that

T ∗
SEV,Ω ∼= T ∗

Ŝ
EV,Ω̄.

We also define

(T ∗
SEV,Ω)reg := T ∗

SEV,Ω\ ∪S′ 
=S T ∗
S′EV,Ω. (4)

Then it is easy to see that

(T ∗
SEV,Ω)reg ⊆ S × Ŝ.

4.1. Constructible functions

We will define a map

ηV : M(EV,Ω)GV → M(ΛV )GV ,

which has been introduced in [3] in a more general setting.

Definition 4.1. For any (x, y) ∈ ΛV , ηV (φF )(x, y) = χ(RΦfy [−1](F)x), where fy :
EV,Ω → C is defined by fy(z) = 〈 z, y 〉.

Next we show the image of ηV lies in M(ΛV )GV .

Proposition 4.2. For F ∈ DGV
(EV,Ω), ηV (φF ) ∈ M(ΛV )GV .

To prove this, we will give another description of ηV following [3]. Let S ⊆ EV,Ω be 
any orbit and Ŝ ⊆ EV,Ω̄ be its dual. We would like to define ηV (φF ) on each T ∗

Ŝ
EV,Ω̄ as 

follows.
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EV,Ω × Ŝ

π

EV,Ω × EV,Ω̄

〈 , 〉

EV,Ω C

Note

T ∗
Ŝ
EV,Ω̄ ⊆ 〈 , 〉−1(0). (5)

Denote the restriction of 〈 , 〉 to EV,Ω × Ŝ by fS .

Lemma 4.3. For F ∈ DGV
(EV,Ω) and (x, y) ∈ T ∗

Ŝ
EV,Ω̄,

(RΦfS [−1](π∗F))(x,y) ∼= (RΦfy [−1](F))x. (6)

Proof. Let ZGV
(y) be the stabilizer of y in GV . We have an isomorphism

GV ×ZGV
(y) EV,Ω ∼= EV,Ω × Ŝ, (g, z) �→ (gz, gy).

The inclusion

EV,Ω → GV ×ZGV
(y) EV,Ω, z �→ (1, z) (7)

gives a section of π

i : EV,Ω → EV,Ω × Ŝ, z �→ (z, y).

The pullback along the inclusion induces an equivalence of categories

DGV
(GV ×ZGV

(y) EV,Ω) ∼= DZGV
(y)(EV,Ω).

Since 〈 , 〉 is GV -invariant, for any G ∈ DGV
(EV,Ω × Ŝ) ∼= DGV

(GV ×ZGV
(y) EV,Ω), we 

get

RΦfy (i∗G) ∼= i∗RΦ〈 , 〉(G).

Let G = π∗F , then i∗G = F . So

RΦfy (F) ∼= i∗RΦfS (π∗F).

In particular,

RΦfy (F)x ∼= i∗(RΦfS (π∗F))x ∼= RΦfS (π∗F)(x,y). �
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Remark 4.4. In the lemma, we have used the following general fact. Suppose H is a 
closed subgroup of G and X is an H-space. Then the inclusion

i : X ↪→ G×H X, x �→ (1, x)

induces an equivalence of categories

DG(G×H X) ∼= DH(X), G �→ i∗G

Let f : G ×H X → C be a G-invariant continuous function. Then we have base change

RΦf◦i(i∗G) ∼= i∗RΦf (G),

for any G ∈ DG(G ×H X).

Corollary 4.5. ηV (φF )|T∗
Ŝ
EV,Ω̄

= χ(RΦfS [−1](π∗F))|T∗
Ŝ
EV,Ω̄

.

In particular, ηV (φF ) is constructible on T ∗
Ŝ
EV,Ω̄. Since

ΛV =�
S

T ∗
Ŝ
EV,Ω̄,

we see ηV (φF ) ∈ M(ΛV )GV .

4.2. Characteristic cycles

For F ∈ DGV
(EV,Ω), let mS(CC(F)) be the multiplicity of [T ∗

SEV,Ω] in CC(F). Let 
f be the restriction of 〈 , 〉 to S× Ŝ. The goal of this subsection is to prove the following 
proposition.

Proposition 4.6. For F ∈ DGV
(EV,Ω) and (x, y) ∈ (T ∗

SEV,Ω)reg,

ηV (φF )(x, y) = (−1)dimΛV −dimŜmS(CC(F)).

The proof will occupy the whole section. Recall ηV (φF )(x, y) = χ(RΦfy [−1](F)x). By 
[14, Lemma 1.3.2],

(RΦfy [−1](F))x ∼= (RΓre(fy)�0(F))x

In terms of stratified Morse theory, the right hand side is called the local Morse data, 
denoted by LMD(L, re(fy), x). We have the following splitting formula for the local 
Morse data.
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Theorem 4.7. For F ∈ DGV
(EV,Ω) and (x, y) ∈ (T ∗

SEV,Ω)reg,

LMD(F , re(fy), x) ∼= TMD(F , re(fy), x) ⊗L
C NMD(F , re(fy), x)

with

TMD(F , re(fy), x) := (RΓre(fy)�0(1S))x

the tangential Morse data, and

NMD(F , re(fy), x) := (RΓre(fy)�0(F|NS
))x

the normal Morse data with respect to a normal slice NS ⊆ EV,Ω to S at x.

Proof. It follows from [14, Theorem 5.3.3], which has some regularity condition on the 
stratification. We will verify this condition for our case in Appendix A. �

As a direct consequence, we have

Corollary 4.8. χ(LMD(F , re(fy), x)) = χ(TMD(F , re(fy), x)) · χ(NMD(F , re(fy), x)).

It is the normal Morse data that relates to the characteristic cycle, namely

(−1)dimSχ(NMD(F , re(fy), x)) = mS(CC(F)).

This differs from [14, (5.21)] by a sign (−1)dimS , which makes mS(CC(F)) positive 
whenever F is perverse. By [14, Lemma 1.3.2],

TMD(F , re(fy), x) ∼= RΦfy [−1](1S)x

NMD(F , re(fy), x) ∼= RΦfy [−1](F|NS
)x.

So it remains to determine χ(TMD(F , re(fy), x)). Instead of computing it directly, we 
shall apply the splitting formula to the other vanishing cycle RΦfS [−1](π∗F)(x,y) in (6). 
By [14, Lemma 1.3.2] again

(RΦfS [−1](π∗F))(x,y) ∼= (RΓre(fS)�0(π∗F))(x,y) = LMD(π∗F , re(fS), (x, y)).

The stratification of EV,Ω by GV -orbits induces a stratification of EV,Ω×Ŝ, which satisfies 
the same condition on regularity. Note (x, y) ∈ S × Ŝ.

Lemma 4.9. d(fS)|(x,y) = (π∗dfy)|(x,y).
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Proof. For (v, w) ∈ Tx(EV,Ω) ⊕ Ty(Ŝ), let us choose curves x(t), y(t) on EV,Ω and Ŝ
respectively such that

x(0) = x, x′(0) = v and y(0) = y, y′(0) = w

We compute the image of (v, 0) and (0, w) separately under d(fS)(x,y):

(v, 0) �→ d〈x(t), y〉
t

|t=0 = 〈v, y〉

(0, w) �→ d〈x, y(t)〉
t

|t=0 = 〈x,w〉 = 0

where the last equality follows from (5). This finishes the proof. �
Since (x, y) ∈ (T ∗

SEV,Ω)reg, then d(fS)|(x,y) ∈ T ∗
S×Ŝ

(EV,Ω× Ŝ)reg. So we can apply the 
splitting formula again.

Theorem 4.10. For F ∈ DGV
(EV,Ω) and (x, y) ∈ (T ∗

SEV,Ω)reg,

LMD(π∗F , re(fS), (x, y)) ∼= TMD(π∗F , re(fS), (x, y)) ⊗L
C NMD(π∗F , re(fS), (x, y)).

(8)

where

TMD(π∗F , re(fS), (x, y)) := (RΓre(f)�0(1S×Ŝ))(x,y)

NMD(π∗F , re(fS), (x, y)) := (RΓre(fS |NS×{y})�0(π∗F|NS×{y}))(x,y)

Proof. It follows from [14, Theorem 5.3.3]. �
By [14, Lemma 1.3.2] again,

TMD(π∗F , re(fS), (x, y)) ∼= RΦf [−1](1S×Ŝ)(x,y)

NMD(π∗F , re(fS), (x, y)) ∼= RΦfS |NS×{y} [−1](π∗F|NS×{y})(x,y).

By the natural isomorphism NS
∼= NS × {y}, we have

RΦfS |NS×{y}(π
∗F|NS×{y})(x,y) ∼= RΦfy|NS

(F|NS
)x.

Hence,

NMD(π∗F , re(fS), (x, y)) ∼= NMD(F , re(fy), x).

So it suffices to compute TMD(π∗F , re(fS), (x, y)), equivalently RΦf [−1](1 ̂)(x,y).
S×S
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Proposition 4.11. RΦf [−1](1S×Ŝ)(x,y) = C[dimΛV − dimŜ − dimS].

This proposition is a special case of [3, Theorem 6.7.5]. For the convenience of the 
reader, we will reproduce its proof in Appendix A.

4.3. Compatibility with convolutions

In the introduction, we have considered the following diagram

MΠ(V )
∼=

Ψ0

M(ΛV )GV

Ψ

M(EV,Ω)GV

Starting from this subsection, we will investigate when ηV = Ψ−1
0 .

Proposition 4.12. The following statements are equivalent.

(1) ηV = Ψ−1
0 |M(EV,Ω)GV ;

(2) Im ηV ⊆ MΠ(V );
(3) For any decomposition of I-graded vector spaces V = V 1 ⊕ V 2,

ηV 1(φ1) ∗ ηV 2(φ2) = ηV (φ1 ∗ φ2) (9)

for any φ1 ∈ M(EV 1,Ω)GV 1 and φ2 ∈ M(EV 2,Ω)GV 2 .

Proof. Since Ψ0 is an algebra isomorphism, then (1) implies (2) and (3). By the definition 
of ηV , we have Ψ ◦ ηV = id. So (2) implies (1). Let |V | = (di)i∈I and d =

∑
i∈I di. Let

S|V | := {a ∈ I{1,··· ,d} | |a−1(i)| = di}.

It follows from (3) that

ηV (1Sa(1) ∗ · · · ∗ 1Sa(d)) = 1Za(1) ∗ · · · ∗ 1Za(d) ∈ MΠ(V ),

for a ∈ S|V |. By [8, Proposition 7.3], that M(EV,Ω)GV is spanned by 1Sa(1) ∗ · · · ∗ 1Sa(d)

for all a ∈ S|V |. So (3) implies (2). �
We begin by recalling the definitions of the two convolutions in (9). Consider the 

following diagram
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E′
V 1,V 2,Ω

p2

p1

E′′
V 1,V 2,Ω

p3

EV 1,Ω × EV 2,Ω EV,Ω

(10)

where

E′′
V 1,V 2,Ω

:=
{

(x,Fil)|x ∈ EV,Ω, Fil : 0 = W 0 � W 1 � W 2 = V x-stable with

|W k/W k−1| = |V k| for k = 1, 2
}
,

E′
V 1,V 2,Ω

:=
{

(x,Fil, ϕ1, ϕ2)|(x,Fil) ∈ E′′
V 1,V 2,Ω and ϕk : V k ∼−→ W k/W k−1 for k = 1, 2

}
,

and

p3 : E′′
V 1,V 2,Ω → EV,Ω, (x,Fil) �→ x

is proper;

p2 : E′
V 1,V 2,Ω → E′′

V 1,V 2,Ω, (x,Fil, ϕ1, ϕ2) �→ (x,Fil)

is a principal GV 1 ×GV 2 -bundle;

p1 : E′
V 1,V 2,Ω → EV 1,Ω ×EV 2,Ω, (x,Fil, ϕ1, ϕ2) �→ (ϕ−1

1 xϕ1, ϕ
−1
2 xϕ2)

is smooth, where we denote the induced morphisms on W k/W k−1 still by x. To see the 
properties of p1, p2, p3 more easily, we will give another description of the diagram.

We fix a filtration Fil : 0 = W̄ 0 � W̄ 1 � W̄ 2 = V , where W̄ 1 = V 1. Let ϕ̄1 : V 1 →
W̄ 1/W̄ 0 be the identity and ϕ̄2 : V 2 → W̄ 2/W̄ 1 be the composition of V 2 → V → V/V 1. 
Let

E�0
V 1,V 2,Ω := {x ∈ EV,Ω|x stabilizes Fil} ↪→ E′

V 1,V 2,Ω, x �→ (x,Fil, ϕ̄1, ϕ̄2)

It admits an action by

G�0
V 1,V 2 := {g ∈ GV |g stabilizes Fil}

a parabolic subgroup of GV . It has a Levi component GV 1 × GV 2 and the unipotent 
radical is

G+
1 2 := {g ∈ G�0

1 2 |ϕ̄−1
k gϕ̄k = id for k = 1, 2}.
V ,V V ,V
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The following lemma is immediate.

Lemma 4.13. We have GV -equivariant isomorphisms

GV ×
G

�0
V 1,V 2

E�0
V 1,V 2,Ω

∼= E′′
V 1,V 2,Ω, (g, x) �→ (gx, gFil)

GV ×G+
V 1,V 2

E�0
V 1,V 2,Ω

∼= E′
V 1,V 2,Ω, (g, x) �→ (gx, gFil, gϕ̄1, gϕ̄2)

By this lemma, we can rewrite diagram (10) as

GV ×G+
V 1,V 2

E�0
V 1,V 2,Ω

p′
2

p′
1

GV ×
G

�0
V 1,V 2

E�0
V 1,V 2,Ω

p′
3

EV 1,Ω ×EV 2,Ω EV,Ω

(11)

where

p′3 : GV ×
G

�0
V 1,V 2

E�0
V 1,V 2,Ω → EV,Ω, (g, x) �→ gx

p′2 : GV ×G+
V 1,V 2

E�0
V 1,V 2,Ω → GV ×

G
�0
V 1,V 2

E�0
V 1,V 2,Ω, (g, x) �→ (g, x)

p′1 : GV ×G+
V 1,V 2

E�0
V 1,V 2,Ω → E�0

V 1,V 2,Ω ↪→ E′
V 1,V 2,Ω

p1−→ EV 1,Ω ×EV 2,Ω

For F1 ∈ DGV 1 (EV 1,Ω), F2 ∈ DGV 2 (EV 2,Ω), we define

F1 ∗ F2 := p3!F ′′

where

p∗2F ′′ ∼= p∗1(F1 � F2).

For φ1 ∈ M(EV 1,Ω)GV 1 , φ2 ∈ M(EV 1,Ω)GV 1 , we define φ1 ∗ φ2 ∈ M(EV,Ω)GV by

(φ1 ∗ φ2)(x) =
∫

p−1
3 (x)

φ′′(x,Fil)

where

φ′′(x,Fil) = φ1(x1)φ2(x2)

with

x1 = ϕ−1
1 xϕ1, x2 = ϕ−1

2 xϕ2

for any choice of isomorphisms ϕk : V k → W k/W k−1.
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Proposition 4.14. For F1 ∈ DGV 1 (EV 1,Ω), F2 ∈ DGV 2 (EV 2,Ω),

φF1 ∗ φF2 = φF1∗F2 .

Proof. We have

φF1∗F2(x) = χ(H∗(p−1
3 (x),F ′′)) =

∫
p−1
3 (x)

χ(F ′′),

where for the second equality we refer to [1] Proposition 24.16. It is easy to see that 
χ(F ′′) = φ′′. �

Next consider the following diagram

Λ′
V 1,V 2

q2

q1

Λ′′
V 1,V 2

q3

ΛV 1 × ΛV 2 ΛV

(12)

where

Λ′′
V 1,V 2 :=

{
(x, y,Fil)|(x, y) ∈ ΛV , Fil : 0 = W 0 � W 1 � W 2 = V (x, y)-stable with

|W k/W k−1| = |V k| for k = 1, 2
}

Λ′
V 1,V 2 :=

{
(x, y,Fil, ϕ1, ϕ2)|(x, y,Fil) ∈ Λ′′

V 1,V 2 and

ϕk : V k ∼−→ W k/W k−1 for k = 1, 2
}
,

and

q3 : Λ′′
V 1,V 2 → ΛV , (x, y,Fil) �→ (x, y)

is proper;

q2 : Λ′
V 1,V 2 → Λ′′

V 1,V 2 , (x, y,Fil, ϕ1, ϕ2) �→ (x, y,Fil)

is a principal GV 1 ×GV 2 -bundle;

q1 : Λ′
V 1,V 2 → ΛV 1 ×ΛV 2 , (x, y,Fil, ϕ1, ϕ2) �→ ((ϕ−1

1 xϕ1, ϕ
−1
1 yϕ1), (ϕ−1

2 xϕ2, ϕ
−1
2 yϕ2))

where we denote the induced morphisms on W k/W k−1 still by x, y.
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For φ1 ∈ M(ΛV 1)GV 1 , φ2 ∈ M(ΛV 2)GV 2 , we define φ1 ∗ φ2 ∈ M(ΛV )GV by

(φ1 ∗ φ2)(x, y) =
∫

q−1
3 (x,y)

φ′′(x, y,Fil)

where

φ′′(x, y,Fil) = φ1((x1, y1))φ2((x2, y2))

with

x1 = ϕ−1
1 xϕ1, y1 = ϕ−1

1 yϕ1; x2 = ϕ−1
2 xϕ2, y2 = ϕ−1

2 yϕ2

for any choice of isomorphisms ϕk : V k → W k/W k−1.
One can easily extend this convolution to constructible functions on EV 1 , EV 2 by 

considering the diagram

E′
V 1,V 2

q′2

q′1

E′′
V 1,V 2

q′3Λ′
V 1,V 2

q2

q1

Λ′′
V 1,V 2

q3EV 1 × EV 2 EV

ΛV 1 × ΛV 2 ΛV

where

E′′
V 1,V 2 :=

{
(x, y,Fil)|(x, y) ∈ EV , Fil : 0 = W 0 � W 1 � W 2 = V (x, y)-stable with

|W k/W k−1| = |V k| for k = 1, 2
}
,

E′
V 1,V 2 :=

{
(x, y,Fil, ϕ1, ϕ2)|(x, y,Fil) ∈ E′′

V 1,V 2 and

ϕk : V k ∼−→ W k/W k−1 for k = 1, 2
}
.

Note both the top and right squares are Cartesian, but the left one is not. The following 
lemma is immediate from the definition.
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Lemma 4.15. For φ1 ∈ M(EV 1)GV 1 , φ2 ∈ M(EV 2)GV 2 ,

(φ1 ∗ φ2)|ΛV
= φ1|ΛV 1 ∗ φ2|ΛV 2 .

For F1 ∈ DGV 1 (EV 1), F2 ∈ DGV 2 (EV 2), we can also define convolution

F1 ∗ F2 := q′3!F ′′

where

q′ ∗2 F ′′ ∼= q′ ∗1 (F1 � F2).

One can also show easily that

φF1 ∗ φF2 = φF1∗F2 .

Now we attempt to establish (9) directly. It suffices to show that for any F1 ∈
DGV 1 (EV 1,Ω), F2 ∈ DGV 2 (EV 2,Ω),

ηV 1(φF1) ∗ ηV 2(φF2) = ηV (φF1∗F2).

We first expand the right hand side. For (x, y) ∈ ΛV ,

ηV (φF1∗F2)(x, y) = χ(RΦfy [−1](F1 ∗ F2)x) = χ(RΦfy [−1](p3!F ′′)x).

By proper base change,

RΦfy (p3!F ′′) ∼= p3!(RΦfy◦p3F ′′).

Hence,

χ(RΦfy (p3!F ′′)x) = χ(H∗(p−1
3 (x), RΦfy◦p3F ′′)) =

∫
p−1
3 (x)

χ(RΦfy◦p3F ′′)

where for the second equality we refer to [1] Proposition 24.16. By smooth base change,

p∗2(RΦfy◦p3F ′′) ∼= RΦfy◦p3◦p2(p∗2F ′′).

We can also express the left hand side as an integration.

(ηV 1(φF1) ∗ ηV 2(φF2))(x, y) =
∫

q−1
3 (x,y)

ηV 1(φF1)(x1, y1) · ηV 2(φF2)(x2, y2)

Comparing the two integrals, we see
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q−1
3 (x, y) ↪→ p−1

3 (x), (x, y,Fil) �→ (x,Fil).

Then both integrals are equal if

(1) χ(RΦfy◦p3F ′′) = 0 over p−1
3 (x)\q−1

3 (x, y).
(2) χ(RΦfy◦p3 [−1]F ′′)(x, Fil) = ηV 1(φF1)(x1, y1) · ηV 2(φF2)(x2, y2) for (x, y, Fil) ∈

q−1
3 (x, y).

By the induction as defined in the next section, (1) can be reduced to (19). For (2), we 
can rewrite the right hand side as

ηV 1(φF1)(x1, y1) · ηV 2(φF2)(x2, y2) = χ(RΦfy1
[−1](F1)x1)χ(RΦfy2

[−1](F2)x2).

Theorem 4.16 (Sebastiani-Thom).

RΦfy1
[−1](F1)x1 ⊗L

C RΦfy2
[−1](F2)x2

∼= RΦfy1⊕fy2
[−1](F1 � F2)(x1,x2),

where

fy1 ⊕ fy2 : EV 1,Ω × EV 2,Ω → C, (x′
1, x

′
2) �→ fy1(x′

1) + fy2(x′
2).

By smooth base change,

p∗1RΦfy1⊕fy2
(F1 � F2) ∼= RΦ(fy1⊕fy2 )◦p1(p

∗
1(F1 � F2)).

So (2) is equivalent to

χ(RΦ(fy1⊕fy2 )◦p1(p
∗
1(F1 � F2))(x,Fil,ϕ1,ϕ2)) = χ(RΦfy◦p3◦p2(p∗2F ′′)(x,Fil,ϕ1,ϕ2)). (13)

Although p∗1(F1 � F2) ∼= p∗2F ′′,

(fy1 ⊕ fy2) ◦ p1 �= fy ◦ p3 ◦ p2 (14)

(cf. Example 4.17). So we can not conclude the equality directly. This is the main reason 
that we have to approach (9) in a roundabout way.

Example 4.17. Let I = {1, 2}, V1 = Ce1, V2 = Ce2 ⊕ Ce3. Let V 1 = Ce1 ⊕ Ce2 and 
V 2 = Ce3. Then

EV,Ω = Hom(Ce1,Ce2 ⊕Ce3) ∼=
{(

a
b

)
| a, b ∈ C

}
EV,Ω̄ = Hom(Ce2 ⊕Ce3,Ce1, ) ∼= {(c d) | c, d ∈ C}

E�0
V 1,V 2,Ω = Hom(Ce1,Ce2) ∼=

{(
a
0

)
| a ∈ C

}
,
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and

GV = GL(V1) ×GL(V2) ∼= GL1(C) ×GL2(C).

The action of GV on EV,Ω is given by

(k,
(
h11 h12
h21 h22

)
) ·

(
a
b

)
=

(
h11 h12
h21 h22

)(
a
b

)
k−1.

The pairing between EV,Ω and EV,Ω̄ is given by

〈
(
a
b

)
, (c d)〉 = ac + bd

Let x = 0, y = (0 1), Fil = Fil in (13). Then y1 = 0, y2 = 0. Hence, (fy1 ⊕ fy2) ◦ p1 = 0. 
To see fy ◦ p3 ◦ p2 is not identically zero, it is the same to show that for fy ◦ p′3 ◦ p′2. We 
compute its pullback to GV × E�0

V 1,V 2,Ω

((k,
(
h11 h12
h21 h22

)
),
(
a
0

)
) �→ h21ak

−1,

and this is clearly not the zero function.

4.4. Inductions

We fix an I-graded isomorphism V = V 1 ⊕ V 2 ⊕ · · · ⊕ V n and a filtration

Fil : 0 = W̄ 0 � W̄ 1 � · · · � W̄n = V

where

W̄ k := V 1 ⊕ · · · ⊕ V k

Let ϕ̄k : V k ↪→ W̄ k → W̄ k/W̄ k−1. The goal is to calculate

φ1 ∗ · · · ∗ φn

for φk ∈ M(EV k,Ω)GV k . We will define

IndV 1,··· ,V n : ⊗n
k=1M(EV k,Ω)GV k → M(EV,Ω)GV

as follows. Consider the diagram
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E′
V 1,··· ,V n,Ω

p2

p1

E′′
V 1,··· ,V n,Ω

p3

EV 1,Ω × · · · ×EV n,Ω EV,Ω

(15)

where

E′′
V 1,···V n,Ω :=

{
(x,Fil)|x ∈ EV,Ω, Fil : 0 = W 0 � · · · � Wn = V x-stable with

|W k/W k−1| = |V k| for k = 1, · · · , n
}
,

E′
V 1,···V n,Ω :=

{
(x,Fil, {ϕk}nk=1)|(x,Fil) ∈ E′′

V 1,···V n,Ω and

ϕk : V k ∼−→ W k/W k−1 for k = 1, · · · , n
}
,

and

p3 : E′′
V 1,··· ,V n,Ω → EV,Ω, (x,Fil) �→ x

is proper;

p2 : E′
V 1,··· ,V n,Ω → E′′

V 1,··· ,V n,Ω, (x,Fil, {ϕk}nk=1) �→ (x,Fil)

is a principal GV 1 × · · · ×GV n-bundle;

p1 : E′
V 1,··· ,V n,Ω → EV 1,Ω × · · · ×EV n,Ω, (x,Fil, {ϕk}nk=1) �→ {ϕ−1

k xϕk}nk=1

is smooth, where we denote the induced morphisms on W k/W k−1 still by x. To see the 
properties of p1, p2, p3 more easily, we will give another description of the diagram. Let

E�0
V 1,··· ,V n,Ω := {x ∈ EV,Ω|x stabilizes Fil} ↪→ E′

V 1,··· ,V n,Ω, x �→ (x,Fil, {ϕ̄k}nk=1)

It admits an action by

G�0
V 1,··· ,V n := {g ∈ GV |g stabilizes Fil}

a parabolic subgroup of GV . It has a Levi component GV 1 ×· · ·×GV n and the unipotent 
radical is

G+
1 n := {g ∈ G�0

1 n |ϕ̄−1
k gϕ̄k = id for k = 1, · · · , n}.
V ,··· ,V V ,··· ,V
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Lemma 4.18.

GV ×
G

�0
V 1,··· ,V n

E�0
V 1,··· ,V n,Ω

∼= E′′
V 1,··· ,V n,Ω, (g, x) �→ (gx, gFil)

GV ×G+
V 1,··· ,V n

E�0
V 1,··· ,V n,Ω

∼= E′
V 1,··· ,V n,Ω, (g, x) �→ (gx, gFil, {gϕ̄k}nk=1)

GV ×G+
V 1,··· ,V n

E�0
V 1,··· ,V n,Ω

p′
2

p′
1

GV ×
G

�0
V 1,··· ,V n

E�0
V 1,··· ,V n,Ω

p′
3

EV 1,Ω × · · · ×EV n,Ω EV,Ω

(16)

where

p′3 : GV ×
G�0

V 1,··· ,V n
E�0

V 1,··· ,V n,Ω → EV,Ω, (g, x) �→ gx,

p′2 : GV ×G+
V 1,··· ,V n

E�0
V 1,··· ,V n,Ω → GV ×

G
�0
V 1,··· ,V n

E�0
V 1,··· ,V n,Ω, (g, x) �→ (g, x),

p′1 : GV ×G+
V 1,··· ,V n

E�0
V 1,··· ,V n,Ω → E�0

V 1,··· ,V n,Ω ↪→ E′
V 1,··· ,V n,Ω

p1−→ EV 1,Ω × · · · × EV n,Ω.

For φk ∈ M(EV k,Ω)GV k (k = 1, · · · , n), we define

IndV 1,··· ,V n(φ1 ⊗ · · · ⊗ φn)(x) =
∫

p−1
3 (x)

φ′′(x,Fil)

where

φ′′(x,Fil) = φ1(x1) · · ·φn(xn)

with

xk = ϕ−1
k xϕk

for any choice of isomorphisms ϕk : V k → W k/W k−1. For Fk ∈ DG
V k

(EV k,Ω)(k =
1, · · · , n), we define

IndV 1,··· ,V n(F1 � · · ·� Fn) := p3!F ′′

where

p∗2F ′′ ∼= p∗1(F1 � · · ·� Fn).

Proposition 4.19. For Fk ∈ DG
V k

(EV k,Ω)(k = 1, · · · , n),

IndV 1,··· ,V n(φF1 ⊗ · · · ⊗ φFn
) = φInd 1 n (F1�···�Fn).
V ,··· ,V
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Proof. We have

φIndV 1,··· ,V n (F1�···�Fn)(x) = χ(H∗(p−1
3 (x),F ′′)) =

∫
p−1
3 (x)

χ(F ′′)

where for the second equality we refer to [1] Proposition 24.16. It is easy to see that 
χ(F ′′) = φ′′. �
Proposition 4.20. For φk ∈ M(EV k,Ω)GV k (k = 1, · · · , n),

φ1 ∗ · · · ∗ φn = IndV 1,··· ,V n(φ1 ⊗ · · · ⊗ φn)

Proof. We will prove it by induction on n. When n = 2, there is nothing to show. 
Suppose n > 2. By induction assumption,

φ1 ∗ · · · ∗ φn = (φ1 ∗ φ2) ∗ · · · ∗ φn = IndV 1,V 2(φ1 ⊗ φ2) ∗ · · · ∗ φn

= IndW̄ 2,··· ,V n(IndV 1,V 2(φ1 ⊗ φ2) ⊗ · · · ⊗ φn)

Consider the following diagram

E′
V 1,··· ,V n,Ω

Ẽ′
V 1,··· ,V n,Ω Ẽ′

W̄ 2,··· ,V n,Ω E′′
V 1,··· ,V n,Ω

E′
W̄2,··· ,V n,Ω E′′

W̄ 2,··· ,V n,Ω

E′
V 1,V 2,Ω ×

∏n
k=3 EV k,Ω E′′

V 1,V 2,Ω ×
∏n

k=3 EV k,Ω

EV 1,Ω × EV 2,Ω ×
∏n

k=3 EV k,Ω EW̄ 2,Ω ×
∏n

k=3 EV k,Ω EV,Ω

where

Ẽ′
W̄ 2,··· ,V n,Ω =

{
(x,Fil, {ϕk}nk=3, ψ2)|(x,Fil) ∈ E′′

V 1,··· ,V n,Ω,

ϕk : V k ∼−→ W k/W k−1(k � 3), ψ2 : W̄ 2 ∼−→ W 2
}

and

Ẽ′
V 1,··· ,V n,Ω =

{
(x,Fil, {ϕk}nk=1, ψ2)|(x,Fil, {ϕk}nk=1) ∈ E′

V 1,··· ,V n,Ω, ψ2 : W̄ 2 ∼−→ W 2
}
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Ẽ′
V 1,··· ,V n,Ω

→ E′
V 1,V 2,Ω ×

n∏
k=3

EV k,Ω, (x,Fil, {ϕk}nk=1, ψ2) �→
(
(x′,Fil′, ϕ′

1, ϕ
′
2), {ϕ−1

k xϕk}nk=3

)
where

x′ = ψ−1
2 xψ2, Fil′ : 0 = ψ−1

2 (W 1) � ψ−1
2 (W 2) = W̄ 2

and

ϕ′
1 = ψ−1

2 ϕ1, ϕ′
2 = ψ−1

2 ϕ2

In particular,

Ẽ′
W̄ 2,··· ,V n,Ω

∼= (E′′
V 1,V 2,Ω ×

n∏
k=3

EV k,Ω) ×(EW̄2,Ω×
∏n

k=3 E
V k,Ω) E

′
W̄2,··· ,V n,Ω

∼= E′
W̄2,··· ,V n,Ω ×E′′

W̄2,··· ,V n,Ω
E′′

V 1,··· ,V n,Ω

and

Ẽ′
V 1,··· ,V n,Ω

∼= (E′
V 1,V 2,Ω ×

n∏
k=3

EV k,Ω) ×(E′′
V 1,V 2,Ω×

∏n
k=3 E

V k,Ω) Ẽ
′
W̄ 2,··· ,V n,Ω

Let φk = φFk
. It suffices to show

IndV 1,··· ,V n(F1 � · · ·� Fn) = IndW̄ 2,··· ,V n(IndV 1,V 2(F1 � F2) � · · ·� Fn).

This can be seen easily by tracing the diagram. �
We will also define

IndV 1,··· ,V n : ⊗n
k=1M(ΛV k)GV k → M(ΛV )GV

as follows. Consider the diagram

Λ′
V 1,··· ,V n

q2

q1

Λ′′
V 1,··· ,V n

q3

ΛV 1 × · · · × ΛV n ΛV

(17)

where
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Λ′′
V 1,···V n :=

{
(x, y,Fil)|(x, y) ∈ ΛV , Fil : 0 = W 0 � · · · � Wn = V (x, y)-stable

|W k/W k−1| = |V k| (1 � k � n)
}

Λ′
V 1,···V n :=

{
(x, y,Fil, {ϕk}nk=1)|(x, y,Fil) ∈ Λ′′

V 1,···V n and

ϕk : V k ∼−→ W k/W k−1 (1 � k � n)
}

and

q3 : Λ′′
V 1,··· ,V n → ΛV , (x, y,Fil) �→ (x, y)

is proper;

q2 : Λ′
V 1,··· ,V n → Λ′′

V 1,··· ,V n , (x, y,Fil, {ϕk}nk=1) �→ (x, y,Fil)

is a principal GV 1 × · · · ×GV n-bundle;

q1 : Λ′
V 1,··· ,V n → ΛV 1 × · · · × ΛV n , (x, y,Fil, {ϕk}nk=1) �→ {(ϕ−1

k xϕk, ϕ
−1
k yϕk)}nk=1

where we denote the induced morphisms on W k/W k−1 still by x, y.
For φk ∈ M(ΛV k)GV k , we define

IndV 1,··· ,V n(φ1 ⊗ · · · ⊗ φk)(x, y) =
∫

q−1
3 (x,y)

φ′′(x, y,Fil)

where

φ′′(x, y,Fil) = φ1((x1, y1)) · · ·φn((xn, yn))

with

xk = ϕ−1
k xϕk, yk = ϕ−1

k yϕk

for any choice of isomorphisms ϕk : V k → W k/W k−1.
One can easily extend this induction constructible functions on EV k by considering 

the diagram
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E′
V 1,··· ,V n

q′2

q′1

E′′
V 1,··· ,V n

q′3Λ′
V 1,··· ,V n

q2

q1

Λ′′
V 1,··· ,V n

q3EV 1 × · · · ×EV n EV

ΛV 1 × · · · × ΛV n ΛV

where

E′′
V 1,··· ,V n :=

{
(x, y,Fil)|(x, y) ∈ EV,Ω, Fil : 0 = W 0 � W 1 � W 2 = V (x, y)-stable

|W k/W k−1| = |V k| (1 � k � n)
}

E′
V 1,··· ,V n :=

{
(x, y,Fil, {ϕk}nk=1)|(x, y,Fil) ∈ E′′

V 1,··· ,V n and

ϕk : V k ∼−→ W k/W k−1 (1 � k � n)
}
.

Note both the top and right squares are Cartesian, but the left one is not. The following 
lemma follows immediately from the definition.

Lemma 4.21. For φk ∈ M(EV k,Ω)GV k (1 � k � n),

IndV 1,··· ,V n(φ1 ⊗ · · · ⊗ φn)|ΛV
= IndV 1,··· ,V n(φ1|ΛV 1 ⊗ · · · ⊗ φn|ΛV n ).

For Fk ∈ DG
V k

(EV k) (1 � k � n), we can also define induction

IndV 1,··· ,V n(F1 � · · ·� Fn) := q′3!F ′′

where

q′ ∗2 F ′′ ∼= q′ ∗1 (F1 � · · ·� Fn).

One can also show easily that

IndV 1,··· ,V n(φF1 ⊗ · · · ⊗ φFn
) = φIndV 1,··· ,V n (F1�···�Fn)

Proposition 4.22. For φk ∈ M(ΛV k)GV k (k = 1, · · · , n),

φ1 ∗ · · · ∗ φn = IndV 1,··· ,V n(φ1 ⊗ · · · ⊗ φn).
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Proof. It suffices to show for φk ∈ M(EV k)GV k (1 � k � n),

φ1 ∗ · · · ∗ φn = IndV 1,··· ,V n(φ1 ⊗ · · · ⊗ φn).

The proof is similar to that of Proposition 4.20. �
4.5. Further reduction of (9)

Let |V | = (di)i∈I and d =
∑

i∈I di. Let

S|V | := {a ∈ I{1,··· ,d} | |a−1(i)| = di}

For any a ∈ S|V |, we fix an I-graded isomorphism V = V 1 ⊕ · · · ⊕ V d such that

|V k| = (δa(k),i)i∈I

Note EV k,Ω = ΛV k = EV k = {0}. Denote by 1k the characteristic function on EV k,Ω. 
The following statement is a special case of (9).

Conjecture 4.23.

ηV 1(11) ∗ · · · ∗ ηV d(1d) = ηV (11 ∗ · · · ∗ 1d). (18)

Remark 4.24. ηV k(1k) = 1Λ
V k

.

Indeed, we have

Lemma 4.25. Conjecture 4.23 is equivalent to (9).

Proof. We only need to show that (9) follows from Conjecture 4.23. By [8, Proposition 
7.3], it suffices to show (9) for

φI = 1I,1 ∗ · · · ∗ 1I,dI
∈ M(EV I ,Ω)GV I

φII = 1II,1 ∗ · · · ∗ 1II,dII
∈ M(EV II ,Ω)GV II

associated with aI ∈ S|V I | and aII ∈ S|V II | respectively. By Conjecture 4.23,

ηV I (φI) ∗ ηV II (φII)

= (ηV I,1(1I,1) ∗ · · · ∗ ηV I,dI (1I,1)) ∗ (ηV II,1(1II,1) ∗ · · · ∗ ηV II,dII (1II,1))

= ηV (1I,1 ∗ · · · ∗ 1I,dI
∗ 1II,1 ∗ · · · ∗ 1II,dII

)

= ηV (φI ∗ φII) �
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Now we will describe our approach to Conjecture 4.23. By Proposition 4.20 and Propo-
sition 4.22, it suffices to show

IndV 1,··· ,V d(ηV 1(11) ⊗ · · · ⊗ ηV d(1d)) = ηV (IndV 1,··· ,V d(11 ∗ · · · ∗ 1d)).

Note 1k = φ1k
, where 1k ∈ DG

V k
(EV k,Ω). So it is the same as

IndV 1,··· ,V d(ηV 1(φ11) ⊗ · · · ⊗ ηV d(φ1d
)) = ηV (fInd

V 1,··· ,V d (11�···�1d)).

We first expand the right hand side. For (x, y) ∈ ΛV ,

ηV (fInd
V 1,··· ,V d (11�···�1d))(x, y) = χ(RΦfy [−1](11 � · · ·� 1d)x) = χ(RΦfy [−1](p3!F ′′)x)

By proper base change,

RΦfy (p3!F ′′) ∼= p3!(RΦfy◦p3F ′′)

Hence,

χ(RΦfy (p3!F ′′)x) = χ(H∗(p−1
3 (x), RΦfy◦p3F ′′)) =

∫
p−1
3 (x)

χ(RΦfy◦p3F ′′).

By smooth base change,

p∗2(RΦfy◦p3F ′′) ∼= RΦfy◦p3◦p2(p∗2F ′′) ∼= RΦfy◦p3◦p2(1).

We can also express the left hand side as an integration,

IndV 1,··· ,V d(ηV 1(φ11) ⊗ · · · ⊗ ηV d(φ1d
))(x, y)

=
∫

q−1
3 (x,y)

ηV 1(φ11)(x1, y1) · · · ηV d(φ1d
)(xd, yd)

=
∫

q−1
3 (x,y)

1,

due to the fact that (xk, yk) = 0 for 1 � k � d. Comparing the two integrals, we see

q−1
3 (x, y) ↪→ p−1

3 (x), (x, y,Fil) �→ (x,Fil).

If we want to prove that the two integrals are equal, it suffices to show

RΦfy◦p3◦p2(1)(x,Fil,{ϕk}d
k=1) = 0 for (x,Fil) ∈ p−1

3 (x)\q−1
3 (x, y), (19)
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χ(RΦfy◦p3◦p2 [−1](1))(x,Fil,{ϕk}d
k=1) = 1 for (x,Fil) ∈ q−1

3 (x, y). (20)

To show these, we adopt the diagram

GV ×E�0
V 1,··· ,V d,Ω

p′
0

GV ×G+
V 1,··· ,V d

E�0
V 1,··· ,V d,Ω

p′
2

p′
1

GV ×
G

�0
V 1,··· ,V d

E�0
V 1,··· ,V d,Ω

p′
3

EV 1,Ω × · · · × EV d,Ω EV,Ω

Let

GV × E�0
V 1,··· ,V d,Ω � (g0, x0) �→ (x,Fil, {ϕk}dk=1)

and

hy : GV ×E�0
V 1,··· ,V d,Ω → C, (g, x′) �→ 〈gx′, y〉

be the pullback of fy ◦ p3 ◦ p2 along p′0. Then by smooth base change,

RΦfy◦p3◦p2(1)(x,Fil,{ϕk}d
k=1)

∼= RΦhy
(1)(g0,x0).

If RΦhy
(1)(g0,x0) �= 0, then h is singular at (g0, x0). So we compute

dh|(g0,x0) : T(g0,x0) (GV ×E�0
V 1,··· ,V d,Ω)

∼= gV × E�0
V 1,··· ,V d,Ω → C, (u, v) �→ 〈[u, x], y〉 + 〈g0v, y〉.

Since (x, y) ∈ ΛV , 〈[u, x], y〉 = 0. So dh|(g0,x0) = 0 if and only if 〈g0v, y〉 = 0 for all 
v ∈ E�0

V 1,··· ,V d,Ω. Since

〈g0v, y〉 = 〈v, g−1
0 y〉,

this is also equivalent to require that g−1
0 y stabilizes Fil, which is the same to say y

stabilizes g0Fil = Fil, i.e., (x, Fil) ∈ q−1
3 (x, y). So we have shown (19).

We are now left with (20). Assume (x, Fil) ∈ q−1
3 (x, y), i.e., y0 := g−1

0 y ∈ E�0
V 1,··· ,V d,Ω̄. 

By applying g0, we get
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(g, x′) GV × E�0
V 1,··· ,V d,Ω

hy0

C

(g0g, x
′) GV × E�0

V 1,··· ,V d,Ω

hy

where RΦhy
(1)(g0,x0)

∼= RΦhy0
(1)(1,x0). So we have reduced it to the following statement.

Conjecture 4.26. χ(RΦhy0
[−1](1))(1,x0) = 1.

In the next section, we will prove this for type A2 quiver.

5. Quiver of type A2

Let V = V1 ⊕ V2 be a graded vector space and Ω be the orientation 1 → 2. Let 
di = dimVi and d1 + d2 = d.

EV,Ω = Hom(V1, V2), EV,Ω̄ = Hom(V2, V1), GV = GL(V1) ×GL(V2).

For (x, y) ∈ EV,Ω × EV,Ω̄ and g = (g1, g2) ∈ GV , we have the group action

g · x = g2xg
−1
1 , g · y = g1yg

−1
2

We also have the Lie bracket

[x, y] = (−yx, xy) ∈ End(V1) × End(V2)

and GV -invariant nondegenerate pairing

〈x, y〉 = tr(xy).

We fix an I-graded isomorphism V = V 1 ⊕V 2 ⊕ · · ·⊕V d such that dimV k = 1. Then

V1 = V t1 ⊕ · · · ⊕ V td1 , V2 = V s1 ⊕ · · · ⊕ V sd2 ,

where t1 < · · · < td1 and s1 < · · · < sd2 . Select all indexes

1 = μ1 < μ2 < · · · < μe = d1 + 1,

1 = ν1 < ν2 < · · · < νf = d2 + 1.

such that
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tμi−1 + 1 < tμi
= tμi+1 − 1, for i < e;

sνi−1 + 1 < sνi
= sνi+1 − 1, for i < f.

Then the list {1, 2, · · · , d} would correspond to either of these cases below:
(1)

sν1 , · · · , sν2−1; tμ1 , · · · tμ2−1; sν2 · · · · · · ; sνf−1 , · · · , sνf−1; tμe−1 · · · tμe−1, e = f,

(2)
sν1 , · · · , sν2−1; tμ1 , · · · tμ2−1; sν2 · · · · · · ; tμe−1 · · · tμe−1; sνf−1 , · · · , sνf−1, e = f − 1,

(3)
tμ1 , · · · tμ2−1; sν1 , · · · , sν2−1; tμ2 · · · · · · ; tμe−1 · · · tμe−1; sνf−1 , · · · , sνf−1, e = f,

(4)
tμ1 , · · · tμ2−1; sν1 , · · · , sν2−1; tμ2 · · · · · · ; sνf−1 , · · · , sνf−1; tμe−1 · · · tμe−1, e = f + 1.

We fix a filtration

Fil : 0 = W̄ 0 � W̄ 1 � · · · � W̄ d = V

where

W̄ k := V 1 ⊕ · · · ⊕ V k.

Let

E�0
V 1,··· ,V d,Ω := {x ∈ EV,Ω|x stabilizes Fil}.

It admits an action by

G�0
V 1,··· ,V d := {g ∈ GV |g stabilizes Fil}

a Borel subgroup of GV . It has a Levi component GV 1 × · · · ×GV d , which is a maximal 
torus, and the unipotent radical is

G+
V 1,··· ,V d := {g ∈ G�0

V 1,··· ,V d |ϕ̄−1
k gϕ̄k = id for k = 1, · · · , d},

where ϕ̄k : V k ↪→ W k �→ W k/W k−1. Similarly we can define E�0
V 1,··· ,V d,Ω̄.

We also fix basis vectors vk for V k, then they give a basis for each Vi. Under these 
basis, we have

EV,Ω = Hom(V1, V2) ∼= Matd2×d1(C),

EV,Ω̄ = Hom(V2, V1) ∼= Matd1×d2(C),

GV = GL(V1) ×GL(V2) ∼= GL(d1,C) ×GL(d2,C).
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Let Bi be the Borel subgroup of GL(di, C), consisting of upper triangular matrices with 
unipotent radical Ui, then

G�0
V 1,··· ,V d

∼= B1 ×B2, G+
V 1,··· ,V d

∼= U1 × U2.

To describe the elements of E�0
V 1,··· ,V d,Ω in terms of matrices, we should turn a d2×d1

matrix into a block matrix by requiring the first row in k-th row block is row νk and the
first column in k-th column block is column μk. There are f − 1 row blocks and e − 1
column blocks. Depending on the previous four cases, we will get the following shape of 
elements x = {Xi,j} ∈ E�0

V 1,··· ,V d,Ω. We will use ∗ and 0 to indicate the blocks. In case 
(1), ⎛⎜⎜⎜⎜⎝

∗ ∗ · · · ∗ ∗
0 ∗ · · · ∗ ∗
...

...
. . .

... ∗
0 0 · · · ∗ ∗
0 0 · · · 0 ∗

⎞⎟⎟⎟⎟⎠ .

In case (2), ⎛⎜⎜⎜⎜⎝
∗ ∗ · · · ∗
0 ∗ · · · ∗
...

...
. . .

...
0 0 · · · ∗
0 0 · · · 0

⎞⎟⎟⎟⎟⎠ .

In these two cases, if Xi,j �= 0, then

νk � i < νk+1 for k < f ⇒ j � μk.

In case (3), ⎛⎜⎜⎝
0 ∗ · · · ∗
...

...
. . .

...
0 0 · · · ∗
0 0 · · · 0

⎞⎟⎟⎠ .

In case (4), ⎛⎜⎜⎝
0 ∗ · · · ∗ ∗
...

...
. . .

... ∗
0 0 · · · ∗ ∗
0 0 · · · 0 ∗

⎞⎟⎟⎠ .

In these two cases, if Xi,j �= 0, then
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νk � i < νk+1 for k < f ⇒ j � μk+1.

Similarly, for y = {Yi,j} ∈ E�0
V 1,··· ,V d,Ω̄. In case (1) and (2), if Yi,j �= 0, then

μk � i < μk+1 for k < e ⇒ j � νk+1.

In case (3) and (4), if Yi,j �= 0, then

μk � i < μk+1 for k < e ⇒ j � νk.

5.1. Vanishing cycle

For y0 ∈ E�0
V 1,··· ,V d,Ω̄, we want to compute the vanishing cycle of

hy0 : GV × E�0
V 1,··· ,V d,Ω → C, (g, x) �→ 〈gx, y0〉

at (1, x0), where (x0, y0) ∈ ΛV . First we would like to show that it suffices to consider 
those y0 in nice shape. Suppose y′0 = g′ · y0 for g′ ∈ G�0

V 1,··· ,V d , then

(g, x) GV × E�0
V 1,··· ,V d,Ω

hy0

C

(g′gg′ −1, g′ · x) GV × E�0
V 1,··· ,V d,Ω

hy′
0

Let x′
0 = g′ · x0, then it is the same to consider the vanishing cycle of hy′

0
at (1, x′

0). So 
we can change y0 by the action of G�0

V 1,··· ,V d
∼= B1 ×B2. Note the action of B1 on y0 is 

by row operations and the action of B2 on y0 is by column operations. For each nonzero 
column s of y0, let αs be the first nonzero entry from the bottom. By the action of B1, 
we can make all entries above αs be zero. Then by the action of B2, we can make all 
entries on the right of αs be zero. If we do this process from the first column to the last 
column, then we can make each row and column of y0 contain at most one nonzero entry, 
which can be further normalized to be one. From now on, we will assume y0 satisfies 
this property. Let us index the nonzero entries in y0 by a set A and α ∈ A corresponds 
to the entry (iα, jα). Let I = {iα|α ∈ A}, J = {jα|α ∈ A}. Our choice of y0 has the 
following consequence on x0.

Lemma 5.1. Xij = 0 for j ∈ I or i ∈ J at x0.
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Proof. Since [x0, y0] = 0, then x0y0 = y0x0 = 0. The result follows immediately from 
our assumption on y0. �

Let Ūi the unipotent radical of the opposite Borel subgroup B̄i. Then the map

(Ū1 × Ū2) × (B1 ×B2) → GL(d1,C) ×GL(d2,C), (u, b) �→ ub

is smooth. By smooth base change, it suffices to consider the vanishing cycle of the 
pullback

h̃y0 : (Ū1 × Ū2) × (B1 ×B2) × E�0
V 1,··· ,V d,Ω → C

One can also consider the composition of the projection

pr : (Ū1 × Ū2) × (B1 ×B2) × E�0
V 1,··· ,V d,Ω → (Ū1 × Ū2) ×E�0

V 1,··· ,V d,Ω

with the restriction of hy0 to (Ū1 × Ū2) ×E�0
V 1,··· ,V d,Ω, and we denote it by h̄y0 . Then we 

have a commutative diagram

(u, b, x) (Ū1 × Ū2) × (B1 ×B2) ×E�0
V 1,··· ,V d,Ω

h̃y0

C

(u, b, b · x) (Ū1 × Ū2) × (B1 ×B2) ×E�0
V 1,··· ,V d,Ω

h̄y0

So it is the same to consider h̄y0 . Finally, since h̄y0 factors through pr, by smooth base 
change it suffices to consider the restriction of hy0 to (Ū1 × Ū2) × E�0

V 1,··· ,V d,Ω, and we 

denote it still by h̄y0 . So we have shown

Lemma 5.2. RΦhy0
(1)(1,x0)

∼= RΦh̄y0
(1)(1,x0).

Let us denote the entries of g−1
1 by Mij and that of g2 by Nij . We want to calculate 

h̄y0 explicitly,

h̄y0((g1, g2), x) = tr(xg−1
1 y0g2)

=
∑
i,j

∑
s>i

XijYjsNsi +
∑
i,j

∑
r<j

XijMjrYrs +
∑
i,j

∑
r<j
s>i

XijMjrYrsNsi

=
∑

α∈A,i

XiiαNjαi +
∑

α′∈A,j

Xjα′ jMjiα′ +
∑

α′′∈A,i,j

XijMjiα′′Njα′′ i.
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There are three terms in the summation. We first consider Xij appearing in both of the 
first two terms. They are necessarily of the form Xjα′ iα . Let us define

T = {(α′, α) ∈ A2|Xjα′ iα �= 0}.

We have an inclusion

π : T → J × I, (α′, α) �→ (jα′ , iα).

Lemma 5.3. For any (α′, α) ∈ T , Xjα′ iα appears in both of the first two terms.

Proof. By the shape of x and y0, we know if Xjα′ iα �= 0, then jα > jα′ and iα > iα′ . 
The rest is clear. �

Combining the terms with Xjα′ ,iα for (α′, α) ∈ T , we get

∑
(α′,α)∈T

Xjα′ ,iα

(
Njαjα′ + Miαiα′ +

∑
α′′∈A: iα′′<iα

jα′′>jα′

Miαiα′′Njα′′ jα′

)
. (21)

The remaining terms are ∑
α∈A,i/∈J

XiiαNjαi (22)

∑
α′∈A,j /∈I

Xjα′ jMjiα′ (23)

∑
α′′∈A,i/∈J,j /∈I

XijMjiα′′Njα′′ i (24)

∑
α′′∈A,i∈J,j /∈I

XijMjiα′′Njα′′ i (25)

∑
α′′∈A,i/∈J,j∈I

XijMjiα′′Njα′′ i. (26)

The goal is to separate the variables so that the function can be viewed as a quadratic 
form in some variables (called quadratic variables) with coefficients in different variables 
(called coefficient variables). First we set Mji (j /∈ I, i ∈ I), Nji (j ∈ J, i /∈ J) and Xij

(i ∈ J, j /∈ I) or (i /∈ J, j ∈ I) quadratic variables; set Nji (j ∈ J, i ∈ J), Xij (i /∈ J, j /∈ I)
coefficient variables. Note the variables Mji (i /∈ I), Nji (j /∈ J) will never appear, so 
we can set them arbitrary. (We will set them as coefficient variables if not specified.) It 
remains to deal with

Mji (j ∈ I, i ∈ I)
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which only appear in (21) and (26), and

Xij (i ∈ J, j ∈ I)

which only appear in (21). Note in the latter case, Xij �= 0 only when (i, j) ∈ π(T ). To 
achieve our goal, we need to make some change of variables. For any (α′, α) ∈ T ,

M ′
iαiα′ = Njαjα′ + Miαiα′ +

∑
α′′∈A: iα′′<iα

jα′′>jα′

Miαiα′′Njα′′ jα′

= Miαiα′ +
(
Njαjα′ +

∑
α′′∈A: iα′′<iα

jα′′>jα′

Miαiα′′Njα′′ jα′

)
.

To see this is well-defined, we impose a partial order on T such that

(α′, α) >T (α′′, α) if jα′ < jα′′

Then

Miαiα′ = M ′
iαiα′ +

∑
(α′′,α)∈T

(α′′,α)<T (α′,α)

U iα
jα′ ,jα′′M

′
iαiα′′ + U iα

jα′ (27)

where U iα
jα′ ,jα′′ are polynomials in Nij (i, j ∈ J), and U iα

jα′ are polynomials in Nij (i, j ∈ J)
and Miαiα′′ for any (α′′, α) /∈ T ). Set U iα

jα′ ,jα′ = 1. After this change of variables, (21)
becomes ∑

(α′,α)∈T

Xjα′ iαM
′
iαiα′ . (28)

We can also split (26) into two parts:

(26)a :
∑

(α′′,α′)/∈T,i/∈J

Xiiα′Miα′ iα′′Njα′′ i

and

(26)b :
∑

(α′′,α′)∈T,i/∈J

Xiiα′Miα′ iα′′Njα′′ i

Substitute (27) into (26)b, we get∑
′

XiiαMiαiα′Njα′ i
(α ,α)∈T,i/∈J
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=
∑

(α′,α)∈T,i/∈J

Xiiα

(
M ′

iαiα′ +
∑

(α′′,α)∈T
(α′′,α)<T (α′,α)

U iα
jα′ ,jα′′M

′
iαiα′′ + U iα

jα′

)
Njα′ i

=
∑

(α′′,α)∈T

( ∑
(α′,α)∈T

(α′,α)�T (α′′,α),i/∈J

XiiαU iα
jα′ ,jα′′Njα′ i

)
M ′

iαiα′′ +
∑

(α′,α)∈T,i/∈J

XiiαU iα
jα′Njα′ i

Combined with (28), we get

∑
(α′,α)∈T

(
Xjα′ iα+

∑
(α′′,α)∈T

(α′′,α)�T (α′,α),i/∈J

XiiαU iα
jα′′ ,jα′Njα′′ i

)
M ′

iαiα′ +
∑

(α′,α)∈T,i/∈J

XiiαU iα
jα′Njα′ i.

For (α′, α) ∈ T , let

X ′
jα′ iα = Xjα′ iα +

∑
(α′′,α)∈T

(α′′,α)�T (α′,α),i/∈J

XiiαU iα
jα′′ ,jα′Njα′′ i. (29)

Substitute X ′
jα′ iα into the previous expression, we get

∑
(α′,α)∈T

X ′
jα′ iαM

′
iαiα′ +

∑
(α′,α)∈T,i/∈J

XiiαU iα
jα′Njα′ i. (30)

In sum, after the substitutions by M ′
iαiα′ and X ′

jα′ iα for all (α′, α) ∈ T , we see

(21) + (26)b = (30).

Combined with (26)a, we rewrite them as

(21)′ :
∑

(α′,α)∈T

X ′
jα′ iαM

′
iαiα′

and

(26)′ :
∑

i/∈J,(α′′,α′)/∈T

Xiiα′Miα′ iα′′Njα′′ i +
∑

i/∈J,(α′′,α′)∈T

Xiiα′U iα′
jα′′Njα′′ i

so

tr(xg−1
1 y0g2) = (21)′ + (22) + (23) + (24) + (25) + (26)′.

We will set M ′
iαiα′ and X ′

jα′ iα for (α′, α) ∈ T as quadratic variables. We will also set the 
variables Miαi ′ for (α′, α) /∈ T as coefficient variables.
α
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5.2. Euler characteristic of Milnor fiber

We want to compute

χ(RΦh̄y0
[−1](1)(1,x0)) = 1 − χ(RΨh̄y0

(1)(1,x0)).

The idea is to relate χ(RΨh̄y0
(1)(1,x0)) with the Euler characteristic of the Milnor fiber 

for h̄y0 at (1, x0). We will recall the definition of the Milnor fiber below.
Let f be an analytic function germ at the origin of Cn+1 with f(0) = 0. Let

Bε := {z ∈ Cn+1 | |z0|2 + · · · |zn|2 < ε}

and S2n+1
ε = ∂B̄ε.

Theorem 5.4 (Milnor [11]).

ϕε : S2n+1
ε \f−1(0) −→ S1, z �→ f(z)/|f(z)|

is a smooth locally trivial fibration for ε sufficiently small.

Definition 5.5. For any θ ∈ S1 and ε sufficiently small as in the above theorem, ϕ−1
ε (θ)

is called the Milnor fiber of f at the origin.

To compare with the nearby cycle, we consider another description of the Milnor fiber. 
For 0 < δ � ε, let

D∗
δ = {t ∈ C | 0 < |t| < δ}.

Theorem 5.6 (Lê [15]).

ψ : Bε ∩ f−1(D∗
δ ) −→ D∗

δ

is a smooth locally trivial fibration for 0 < δ � ε both sufficiently small.

Proposition 5.7. For sufficiently small δ, ε as in the above theorem and any a ∈ D∗
δ , 

ψ−1(a) is diffeomorphic to the Milnor fiber of f at the origin.

Proof. Cf. [4, Proposition 1.4]. �
As a consequence, we can also define the Milnor fiber to be ψ−1(a). By [14, Lemma 

1.1.1],

χ(RΨf (1)0) ∼= χ(ψ−1(a)). (31)
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Now let us assume f(z) is a homogeneous polynomial of degree N . Following [4], we 
call f−1(1) the global Milnor fiber of f at the origin.

Proposition 5.8. f−1(1) is diffeomorphic to the Milnor fiber of f at the origin.

Proof. We can construct a homeomorphism g such that the following diagram commutes

S2n+1
ε \f−1(0)

g

ϕ

f−1(S1)

f

S1

Here

g : z �→ |f(z)|− 1
N · z.

Note for any z ∈ f−1(S1), there exists unique t ∈ R+ such that t 1
N · z ∈ S2n+1

ε . One can 
check that this gives the inverse. �
Remark 5.9. Since the above diagram holds for all ε, then in the case of homogeneous 
polynomials the Milnor fiber at the origin is homeomorphic to ϕ−1

ε (θ) for any ε.

5.3. Application

Let f = h̄y0((g1, g2), x), whose variables are denoted by (Xij, Mij , Nij). After change 
of variables in Section 5.1, we denote the set of new variables by z = (X ′

ij , M
′
ij , N

′
ij). 

Then we want to compute the Euler characteristic of the Milnor fiber of f(z) at the 
point z0 = (x′

ij , 0, 0). We choose a small ball around this point

Bε :=
{

(X ′
ij ,M

′
ij , N

′
ij) |

∑
ij

|X ′
ij − x′

ij |2 +
∑
ij

|M ′
ij |2 +

∑
ij

|N ′
ij |2 � ε

}
such that

ϕε = f/|f | : Sε\f−1(0) −→ S1

is a smooth fibration as in Theorem 5.4. Let V be the subset of coefficient variables and 
W be the subset of quadratic variables. Let

B̄V
ε :=

{
(X ′

ij ,M
′
ij , N

′
ij)V |

∑
ij

|X ′
ij − x′

ij |2 +
∑
ij

|M ′
ij |2 +

∑
ij

|N ′
ij |2 � ε

}

which is the projection of B̄ε onto the coefficient variables. It is a ball around the pro-
jection z0

V of z0. For any zV ∈ B̄V
ε , we have
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|zV − z0
V |2 � ε.

Let

fzV (zW ) = f(zV , zW ) for zW = (X ′
ij ,M

′
ij , N

′
ij)W .

It is a quadratic form. Let z0
W be the projection of z0 to the quadratic variables. Note 

X ′
ij ∈ W if and only if i ∈ J or j ∈ I. By Lemma 5.1 and the formula (29), we have 

z0
W = 0. Let

ϕzV ,ε−|zV −z0
V |2 = fzV /|fzV | : S2|W |−1

ε−|zV −z0
V |2\f

−1
zV (0) −→ S1

So we have a diagram

S
2|W |−1
ε−|zV −z0

V |2\f
−1
zV (0) S1

Sε\f−1(0)

πV

S1

B̄V
ε

which gives a fibration of the Milnor fiber ϕ−1
ε (θ) for some θ ∈ S1 over a closed subset 

CV
ε of B̄V

ε . In view of Remark 5.9, the fiber ϕ−1
zV ,ε−|zV −z0

V |2(θ) is homeomorphic to the 
Milnor fiber of fzV at the origin. By (31),

χ(ϕ−1
zV ,ε−|zV −z0

V |2(θ)) = χ(RΨfzV
(1)0). (32)

Next we would like to compute the Euler characteristic of ϕ−1
zV ,ε−|zV −z0

V |2(θ) through the 
nearby cycle. To do so, we need the following lemma.

Lemma 5.10. rank Hessian(fzV )0 is even.

Proof. We can divide the set W of variables into two classes:

W1 = {M ′
iαiα′ | (α′, α) ∈ T} ∪ {M ′

ji | j /∈ I, i ∈ I} ∪ {X ′
ij | i /∈ J, j ∈ I}

and

W2 = {X ′
jα′ iα | (α′, α) ∈ T} ∪ {N ′

ji | j ∈ J, i /∈ J} ∪ {X ′
ij | i ∈ J, j /∈ I}

such that the Hessians of the restrictions of fzV to variables in W1 (resp. W2) are both 
zero at 0. Then the Hessian must be in the form
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Hessian(fzV ) =
(

0 B
BT 0

)
.

So its rank is even. �
Corollary 5.11. χ(RΨfzV

(1)0) = 0.

Proof. Since fzV is a quadratic form, we can change the coordinates such that

fzV (u) =
r∑

i=1
u2
i

where r = rank Hessian(fzV ) is even by the previous lemma. By Sebastiani-Thom theo-
rem,

RΦfzV
[−1](1)0 = C[−r].

Hence χ(RΦfzV
[−1](1)0) = (−1)r = 1. It follows χ(RΨfzV

(1)0) = 0. �
Proposition 5.12. χ(RΨf (1)z0) = 0.

Proof. We have χ(RΨf (1)z0) = χ(ϕ−1
ε (θ)), where θ ∈ S1. The latter admits a fibration

over CV
ε ⊆ B̄V

ε with fibers ϕ−1
zV ,ε−|zV −z0

V |2(θ). By the Leray spectral sequence

Hp(CV
ε , (RqπV )∗1) ⇒ Hn(ϕ−1

ε (θ)),

we have

χ(ϕ−1
ε (θ)) =

∑
p,q

(−1)p+qdimHp(CV
ε , (RqπV )∗1) =

∑
q

(−1)qχ(H∗(CV
ε , (RqπV )∗1))

=
∑
q

(−1)q
∫
CV

ε

χ((RqπV )∗1) =
∫
CV

ε

χ((RπV )∗1).

By Corollary 5.11 and (32),

χ((RπV )∗1)zV = χ(π−1
V (zV )) = χ(ϕ−1

zV ,ε−|zV −z0
V |2(θ)) = 0.

Hence, χ(ϕ−1
ε (θ)) = 0. �

This completes the proof of Conjecture 4.26 for type A2 quiver.
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Appendix A

A.1. Regularity of stratification

Let X be a closed subset of a smooth real manifold M of dimension m. A smooth 
stratification of X is a filtration

X0 ⊆ · · · ⊆ Xn ⊆ X

by closed subsets such that Xi := Xi\Xi−1 is a smooth i-dim submanifold of M . For 
j > i, we say Xj is w-regular over Xi at x ∈ Xi ∩X

j if there exists a neighborhood U
of x in M and constant C such that in suitable local coordinates

d(Tx′Xi, Tx′′Xj) < C‖x′′ − x′‖

for all x′ ∈ U ∩Xi, x′′ ∈ U ∩Xj . Here we have chosen a norm ‖ · ‖ on Rm and identify 
Tx′Xi, Tx′′Xj with subspaces of Rm. We define the distance between any two subspaces 
V, W of Rm to be

d(V,W ) := supv∈V,‖v‖=1d(v,W )

In our setting, we will take M to be a complex variety and Xi to be semialgebraic subsets 
of M . By [14, Remark 4.1.9], we have

w-regular ⇒ Whitney a-regular, b-regular and d-regular

So in order to apply [14, Theorem 5.3.3], it suffices to show w-regularity.

Proposition A.1. The stratification of EV,Ω by GV -orbits is w-regular.

Proof. Let Si, Sj be GV -orbits such that S̄j ⊇ Si. For x ∈ Si, we choose a small neigh-
borhood U of x in EV,Ω such that U ∩ Si ⊆ Si is compact. For any x′ ∈ U ∩ Si, 
Tx′Si = [gV , x′]. We fix a norm on EV,Ω. Let N(x′) be the subspace of gV orthogonal to 
the kernel of

gV → EV,Ω, h �→ [h, x′].

Let

C(x′) := sup{‖h‖ |h ∈ N(x′) and ‖[h, x′]‖ = 1}

It is bounded by some positive constant C on U ∩ Si. For x′′ ∈ U ∩ Sj , x′ ∈ U ∩ Si, we 
can find h ∈ gV with ‖h‖ � C such that
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d(Tx′Si, Tx′′Sj) = d([h, x′], Tx′′Sj) � d([h, x′], [h, x′′])

= ‖[h, x′ − x′′]‖ � C ′ · ‖h‖ · ‖x′ − x′′‖ � C ′C · ‖x′ − x′′‖

for some positive constant C ′ independent of h, x′, x′′. �
A.2. A vanishing cycle calculation

We will prove Proposition 4.11 following that of [3, Theorem 6.7.5]. Let us recall the 
statement.

Proposition A.2. RΦf [−1](1S×Ŝ)(x,y) = C[dimΛV − dimŜ − dimS], where f is the re-
striction of 〈 , 〉 to S × Ŝ.

First we need to make some preparations.

Lemma A.3. The function f is singular over T ∗
S(EV,Ω)reg, i.e., df |T∗

S (EV,Ω)reg = 0.

Proof. For any (x, y) ∈ T ∗
S(EV,Ω)reg and u ∈ TxS, we have df(x,y)(u) = 〈u, y〉 = 0. 

Similarly, we have df(x,y)(v) = 〈x, v〉 = 0 for any v ∈ TyŜ. This finishes the proof. �
Fix (x, y) ∈ T ∗

S(EV,Ω)reg and let N ⊆ S× Ŝ be a normal slice to T ∗
S(EV,Ω)reg at (x, y). 

In particular, we require N ∩ T ∗
S(EV,Ω)reg = (x, y). The key step is to show

Proposition A.4. The Hessian of f at (x, y) has rank dimS + dim Ŝ − n = dimN . 
Moreover, the Hessian of f |N at (x, y) is non-degenerate.

We can pull back f to the Lie algebras gV × gV of GV ×GV near a neighborhood of 
(x, y) as follows

F (h1,h2) = 〈exp(h1)x, exp(h2)y〉 : gV × gV → C

It is easy to see that the rank of Hessian of f at (x, y) is the same as that of F at (0, 0).

Lemma A.5. In a small neighborhood of 0 in gV , one can express

exp(h)x = x + [h, x] + 1
2 [h, [h, x]] + · · · + 1

n! [h, [h, . . . , [h, x] · · · ]] + · · ·

exp(h)y = y + [h, y] + 1
2 [h, [h, y]] + · · · + 1

n! [h, [h, . . . , [h, y] · · · ]] + · · ·

Proof. For any h ∈ gV we can find real number δ > 0, which only depends on the norm 
of h, such that the vector-valued function

G(t) := exp(th)x : [−δ, δ] → V,
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can be expressed as

G(t) = G(0) + G′(0)t + 1
2G

′′(0)t2 + · · · + 1
n!G

(n)(0)tn + · · ·

Since

G(n)(t) = exp(th)[h, [h, . . . , [h, x] · · · ]]

then

exp(th)x = x + [h, x]t + 1
2[h, [h, x]]t2 + · · · + 1

n! [h, [h, . . . , [h, x] · · · ]]tn + · · ·

= x + [th, x] + 1
2 [th, [th, x]] + · · · + 1

n! [th, [th, . . . , [th, x] · · · ]] + · · ·

This proves the first equality. The second equality can be proved in the same way. �
Let us write Z1(h) = exp(h)x − (x + [h, x]) and Z2(h) = exp(h)y − (y + [h, y]). Then

F (h1, h2) = 〈x + [h1, x], y + [h2, y]〉 + 〈x + [h1, x], Z2(h2)〉

+ 〈Z1(h1), y + [h2, y]〉 + 〈Z1(h1), Z2(h2)〉

The degree 2 terms in the above expression can only come from 〈[h1, x], [h2, y]〉,
〈x, Z2(h2)〉 and 〈Z1(h1), y〉. Therefore,

Hessian(F )(0,0) =
(

Hessian(〈Z1(h1), y〉)(0,0) B
BT Hessian(〈x, Z2(h2)〉)(0,0)

)
where

B =
( ∂2

∂h1∂h2
〈[h1, x], [h2, y]〉

)
(0,0)

It is not hard to see that B corresponds to the bilinear form

〈[h1, x], [h2, y]〉 : gV × gV → C

after we identify T(0,0)(gV × gV ) with gV × gV . Since

〈[h1, x], [h2, y]〉 = 〈[y, [h1, x]], h2〉,

then the rank of the above bilinear form is dim [y, [gV , x]]. So we have shown

Lemma A.6. rank Hessian(F )(0,0) � dim [y, [gV , x]].



442 T. Deng, B. Xu / Journal of Algebra 598 (2022) 392–444
Next, we would like to show

Lemma A.7. dim [y, [gV , x]] = dimS + dim Ŝ − dim ΛV .

Proof. It is easy to see that [gV , x] = TxS and Ker[y, ·]|EV,Ω = T ∗
Ŝ,y

EV,Ω̄. Since (x, y) is 
regular, T ∗

Ŝ,y
EV,Ω̄ ∩S ×{y} contains an open neighborhood of (x, y) in T ∗

Ŝ,y
EV,Ω̄. Hence 

T ∗
Ŝ,y

EV,Ω̄ ⊆ TxS. So dim [y, [gV , x]] = dimTxS − dimT ∗
Ŝ,y

EV,Ω̄ = dimTxS − (dim ΛV −
dimTyŜ) = dimS + dim Ŝ − dim ΛV . �
Corollary A.8. T(x,y)(T ∗

S(EV,Ω)) = {(u, v) ∈ TxS × TyŜ | [u, y] + [x, v] = 0}.

Proof. For any (u, v) ∈ T(x,y)(ΛV ), one can choose smooth α : [0, 1] → V, β : [0, 1] →
EV,Ω̄ such that

α(0) = x, β(0) = y, dα(1) = u, dβ(1) = v

and (α(t), β(t)) ∈ ΛV . Then [α(t), β(t)] = 0. Differentiate it at t = 0:

0 = lim
t→0

1
t

(
[α(t), β(t)] − [x, y]

)
= lim

t→0

1
t

(
[α(t) − x, β(t)] + [x, β(t) − y]

)
= [lim

t→0

α(t) − x

t
, lim
t→0

β(t)] + [x, lim
t→0

β(t) − y

t
] = [u, y] + [x, v]

It follows

T(x,y)(ΛV ) ⊆ {(u, v) ∈ T ∗EV,Ω | [u, y] + [x, v] = 0}.

Since (x, y) is regular, T(x,y)(ΛV ) = T(x,y)(T ∗
S(EV,Ω)) ⊆ TxS × TyŜ. So

T(x,y)(ΛV ) ⊆ {(u, v) ∈ TxS × TyŜ | [u, y] + [x, v] = 0}

and it is enough to show the dimension of the right hand side is equal to dim ΛV . Now 
let us consider

ϕ(u, v) = [u, y] + [x, v] : TxS × TyŜ → gV

Note Kerϕ = {(u, v) ∈ TxS × TyŜ | [u, y] + [x, v] = 0}. The image of ϕ is [[gV , x], y] +
[x, [gV , y]] = [[gV , x], y]. By the previous lemma, dim Imϕ = dimS + dim Ŝ − dim ΛV . 
Hence dim Kerϕ = dim ΛV . This finishes the proof. �

Next we would like to compute the Hessian of f at (x, y) in a different way. Let us 
choose local coordinates for a neighborhood U of (x, y) in S × Ŝ such that

U ∩ T ∗
S(EV,Ω)reg = {ξ = (ξi)mi=1 ∈ U | ξn+1 = · · · = ξm = 0}
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and

U ∩N = {ξ = (ξi)mi=1 ∈ U | ξ1 = · · · = ξn = 0}.

By taking U sufficiently small, we can assume f |U has analytic expansion

f =
∑

i1,··· ,il

ci1,··· ,ilξ
mi1
i1

· · · ξmil
il

.

Since f is singular over T ∗
S(EV,Ω)reg, the above expression can not have terms ξiξj with 

i � n, j > n. Note f |T∗
S (EV,Ω)reg = 0. So

Hessian(f |U )0 =
(

0 0
0 Hessian(f |N )0

)
.

It follows rank Hessian(f |U )0 = rank Hessian(f |N )0 � dimN . Combining Lemma A.6
and Lemma A.7, we have proved Proposition A.4. Now we can prove Proposition A.2.

Proof. Let us choose local coordinates for a neighborhood U of (x, y) in S× Ŝ such that

U ∩ T ∗
S(EV,Ω)reg = {ξ = (ξi)mi=1 ∈ U | ξn+1 = · · · = ξm = 0}.

Let

N = {ξ = (ξi)mi=1 ∈ U | ξ1 = · · · = ξn = 0},

which is a normal slice to U ∩ T ∗
S(EV,Ω) at (x, y). Since f vanishes and is singular on 

T ∗
S(EV,Ω)reg, we can assume

f(ξ) =
∑
i,j>n

αi,j(ξ)ξiξj

By Proposition A.4, the Hessian of f |N is non-degenerate. So we can make a change of 
coordinates

ξ′k =
∑
k,l

bkl(ξ)ξl

following the Grahm-Schmidt process such that

(
bk,l(ξ)

)
k,l

=
(
In 0
0 B(ξ)

)
where B(ξ) is upper-triangular with constant function 1 on the diagonal, and
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f(ξ′) =
∑
i>n

βi(ξ′)ξ′ 2i ,

for βi(ξ′) nonzero on a small neighborhood W ⊆ U . By choosing a branch of square 
roots, we can make a further change of coordinates by

ξ′′i =
{
ξ′i if i � n√
βi(ξ′) ξ′i if i > n

Then

f(ξ′′) =
∑
i>n

ξ′′ 2i

It follows from Sebastiani-Thom theorem that

(RΦf [−1](1U ))(x,y) = C[−dimN ].

This finishes the proof. �
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