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Abstract
Arthur classified the discrete automorphic representations of symplectic and orthogonal
groups over a number field by that of the general linear groups. In this classification, those
that are not from endoscopic lifting correspond to pairs (φ, b), where φ is an irreducible
unitary cuspidal automorphic representation of some general linear group and b is an integer.
In this paper, we study the local components of these automorphic representations at a nonar-
chimedean place, and we give a complete description of them in terms of their Langlands
parameters.
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1 Introduction

Let G be a split symplectic or special odd orthogonal group over a number field k. Arthur [1]
proved the automorphic representations of G(Ak) can be parametrized by the global Arthur
parameters, which are isobaric sums

ψ = �i (φi � νbi ),

where φi is certain irreducible unitary cuspidal automorphic representation of a general linear
group and νbi is the (bi − 1)-th symmetric power representation of SL(2, C). For any such
ψ , Arthur attached a global Arthur packet �ψ , which is a multi-set of isomorphism classes
of irreducible admissible representations of G(Ak). This packet admits a restricted tensor
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product decomposition

�ψ := ⊗v �ψv

where we denote by ψv the local component of ψ at each place v, and �ψv is a multi-set of
isomorphism classes of irreducible admissible representations of G(kv), called local Arthur
packet. By the local Langlands correspondence for general linear groups [2–4,8], we can
associate φi,v with a representation of the Weil–Deligne group WDkv :=Wkv × SL(2, C)

at the nonarchimedean places (resp. Wkv at the archimedean places), which will still be
denoted by φi,v . Then ψv can be viewed as a representation of WDkv × SL(2, C) at the
nonarchimedean places (resp. Wkv × SL(2, C) at the archimedean places). In particular,
Arthur showed that it factors through the Langlands dual group of G(kv). We will call ψv

a local Arthur parameter for G(kv). In this paper, we would like to describe the Langlands
parameters of the elements inside �ψv , when ψ consists of a single term, i.e.,

ψ = φ � νb (1.1)

and v is a nonarchimedean place. It follows from Arthur’s theory [1] that the representations
in such �ψ do not come from endoscopic lifting, so this justifies our title.

From now on, we will let G be a split symplectic or special odd orthogonal group over
a p-adic field F . Let ̂G be the complex dual group of G. We recall an Arthur parameter for
G(F) is a ̂G-conjugacy class of admissible homomorphisms

ψ : WF × SL(2, C) × SL(2, C) → ̂G

with the property that ψ(WF ) is bounded. By composing with the standard representation of
̂G, we can view ψ as a representation of WF × SL(2, C) × SL(2, C). It decomposes as

ψ = ⊕n
i=1 ρi ⊗ νai ⊗ νbi (1.2)

where ρi is an irreducible unitary representation of WF and ai , bi ∈ Z. To describe the
associated packet �ψ , we will take ρi to be the corresponding irreducible supercuspidal
representation of GL(dρi , F) through the local Langlands correspondence. Then we can
construct a self-dual representation of GL(N , F) by

πGL
ψ := ×n

i=1 Sp(St(ρi , ai ), bi ),

which is an induction of the Speh representations. Recall the Steinberg representation
St(ρi , ai ) is the unique irreducible subrepresentation of the induction

ρi ||(ai−1)/2 × ρi ||(ai−3)/2 · · · × ρi ||−(ai−1)/2

and the Speh representation Sp(St(ρi , ai ), bi ) is the unique irreducible subrepresentation of

St(ρi , ai )||−(bi−1)/2 × St(ρi , ai )||−(bi−3)/2 · · · × St(ρi , ai )||(bi−1)/2 (1.3)

We will also denote the Steinberg representation by

〈(ai − 1)/2, . . . ,−(ai − 1)/2〉
and the Speh representation by a matrix

⎛

⎜

⎝

(ai − bi )/2 · · · 1 − (ai + bi )/2
...

...

(ai + bi )/2 − 1 · · · −(ai − bi )/2

⎞

⎟

⎠ (1.4)
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Nonarchimedean components of non-endoscopic... 887

where each row corresponds to the exponents of the shifted Steinberg representations in (1.3).
Since πGL

ψ is self-dual, one can consider its twisted character. Arthur [1] proved that there
exists a stable finite linear combination of characters on G(F), whose twisted endoscopic
transfer is this twisted character. By the linear independence of characters, this determines�ψ

as a finite subset of isomorphism classes of irreducible admissible representations of G(F).
(Moeglin [7] proved the Arthur packet is always multiplicity free in this case.) However, this
does not tell us explicitlywhich representations are contained in it. To answer this question,we
need a parametrization of the set Irr(G(F)) of isomorphism classes of irreducible admissible
representations of G(F). This is given by the local Langlands correspondence for G(F).
Arthur [1] proved that there is a canonical bijection (after fixing a Whittaker datum)

Irr(G(F)) ∼= {(φ, ε)|φ ∈ 	(G(F)), ε ∈ Irr(Sφ)},
where	(G(F)) is the set of Langlands parameters, which are ̂G-conjugacy classes of admis-
sible homomorphisms

φ : WF × SL(2, C) → ̂G,

and

Sφ :=π0(ẐG(φ)/Z(̂G)),

where Z
̂G(φ) is the stabilizer of φ in ̂G and Z(̂G) is the center of ̂G. We will call the pair

(φ, ε) complete Langlands parameter of G(F), and denote the corresponding representation
by π(φ, ε).

Back to the Arthur parameter (1.2), let us write Ai = (ai + bi )/2 − 1, Bi = |ai − bi |/2
and ζi = sgn(ai −bi ). When ai = bi , we may choose ζi arbitrarily. We will call (ρ, ai , bi ) or
(ρ, Ai , Bi , ζi ) Jordan blocks, and denote the set of Jordan blocks by Jord(ψ). For simplicity,
we will assume that

ρi = ρ for some fixed ρ, and (ρ, ai , bi ) all have the same parity as ̂G. (1.5)

Since we want to study the local component of a global Arthur parameter of the type (1.1),
we can assume all bi are equal and denote it by b. So we may rewrite (1.2) as

ψ = ⊕n
i=1 ρ ⊗ νai ⊗ νb (1.6)

Under our assumptions, all ai will have the same parity. The simplest case is whenψ consists
of a single term, i.e.,

ψ = ρ ⊗ νa ⊗ νb

and a ≥ b. In this case, we have the following result due to Mœglin [6, Theorem 4.2]. Firstly,
there is a bijection

�ψ → {(l, η) ∈ Z × {±1} | 0 ≤ l ≤ [(A − B + 1)/2] and εl,η = 1}/ ∼
where

εl,η:=ηA−B+1(−1)[(A−B+1)/2]+l (1.7)

and the equivalence relation ∼ only identifies those (l, η) and (l ′, η′) for l = l ′ = (A − B +
1)/2. Secondly, the representation π(ψ, l, η) parametrized by (l, η) satisfies

π(ψ, l, η) ↪→
⎛

⎜

⎝

B · · · −A
...

...

B + l − 1 · · · −(A − l + 1)

⎞

⎟

⎠� π(φ′, ε′) (1.8)
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as the unique irreducible subrepresentation. Here the matrix represents a shifted Speh repre-
sentation (cf. (1.4)) and π(φ′, ε′) is a discrete series representation of G ′(F), which is of the
same type as G(F). The complete Langlands parameter φl of the shifted Speh representation
factors through that of the inducing representation (cf. (1.3)), i.e.,

φl = ⊕l−1
i=0 (ρ||i−(A−B)/2 ⊗ νA+B+1)

and

φ′ = ⊕A−l
C=B+l ρ ⊗ ν2C+1.

We can view φ′ as an Arthur parameter, where the second SL(2, C) maps trivially. Then its
Jordan blocks are (ρ,C,C,+) for B + l ≤ C ≤ A − l. The character ε′ can be represented
by a sign function over this set of Jordan blocks. In this way, we have

ε′(ρ,C,C,+) = (−1)C−(B+l)η.

The sign condition εl,η = 1 guarantees that

A−l
∏

C=B+l

ε′(ρ,C,C,+) = 1,

which is the necessary condition for ε′ to define a character of Sφ′ . One can also describe the
complete Langlands parameter (φ, ε) for π(ψ, l, η) from the embedding (1.8). Indeed,

φ = φl ⊕ φ′ ⊕ φ∨
l .

Moreover, ε corresponds to ε′ under the natural isomorphisms Sφ
∼= Sφ′ .ByMœglin’s result,

one can also view π(φ′, ε′) as an element in�ψ ′ , whereψ ′ is the Arthur parameter of G ′(F)

consisting of only one Jordan block (ρ, A − l, B + l,+). In particular,

π(φ′, ε′) = π(ψ ′, l ′, η′) (1.9)

for l ′ = 0 and η′ = ε′(ρ, B + l, B + l,+). To save notations, we will write

π(ψ ′, l ′, η′) = π((ρ, A − l, B + l, 0, η′,+)).

In general, we can divide the Jordan blocks in (1.6) into two classes.

• ai ≥ b, i.e., ζi = +: Ai − Bi = b − 1, Ai + Bi = ai − 1. So all intervals [Bi , Ai ] have
the same length and are centered beyond (b − 1)/2.

• ai < b, i.e., ζi = −: Ai − Bi = ai − 1, Ai + Bi = b − 1. So all intervals are centered
at (b − 1)/2.

We reorder the Jordan blocks such that Ai ≥ Ai−1. Then there exists an integer m such that
(ρ, Ai , Bi , ζi ) is in the first class if i > m and the second class if i ≤ m. Now we can state
our main results.

1.1 Reductions

Theorem 1.1 Suppose Ai , Bi ∈ Z. Letψ ′ be obtained fromψ by replacing all (ρ, Ai , Bi , ζi )
by (ρ, A′

i , B
′
i , ζ

′
i ) such that: ζ ′

i = + and

• A′
i = Ai , B ′

i = Bi for i > m;
• A′

i = Ai − Bi , B ′
i = 0 for i ≤ m.

123



Nonarchimedean components of non-endoscopic... 889

Then there is a bijection

�ψ → �ψ ′ , π → π ′

such that any representation π ∈ �ψ is given as the unique irreducible subrepresentation
of

π ↪→ ×i≤m

⎛

⎜

⎝

−Bi · · · −Ai
...

...

−1 · · · −(Ai − Bi + 1)

⎞

⎟

⎠� π ′

for the corresponding π ′ ∈ �ψ ′ . Moreover, if (φ′, ε′) is the complete Langlands parameter
of π ′, then the complete Langlands parameter (φ, ε) of π is given as follows:

φ = (⊕i≤mφi ) ⊕ φ′ ⊕ (⊕i≤mφ∨
i ),

where φi is the Langlands parameter of the corresponding shifted Speh representation and
ε corresponds to ε′ under the natural isomorphism Sφ

∼= Sφ′ .

Theorem 1.2 Suppose Ai , Bi /∈ Z. We consider the maximal sequence of integers

0 = s0 < s1 < · · · < sl = m

such that As j − Bs j �= As j+1 − Bs j+1. For any 0 ≤ k ≤ l, we get a new parameter ψ ′
k by

replacing all (ρ, Ai , Bi , ζi ) by (ρ, A′
i , B

′
i , ζ

′
i ) such that: ζ ′

i = + and

• A′
i = Ai , B ′

i = Bi for i > m;
• A′

i = Ai − Bi − 1/2, B ′
i = 1/2 for i ≤ m and i �= sk;

• A′
i = Ai − Bi + 1/2, B ′

i = 1/2 for i = sk .

Then we can divide �ψ into l + 1 classes, i.e.,

�ψ = �l
k=0 �ψ(k),

and for any 0 ≤ k ≤ l, we can get an injection

�ψ(k) ↪→ �ψ ′
k
, π → π(ψ ′

k, l
′, η′),

such that

π ↪→ ×sk �=i≤m

⎛

⎜

⎝

−Bi · · · −Ai
...

...

−1/2 · · · −(Ai − Bi + 1/2)

⎞

⎟

⎠

×
⎛

⎜

⎝

−Bsk · · · −Ask
...

...

−3/2 · · · −(Ask − Bsk + 3/2)

⎞

⎟

⎠� π(ψ ′
k, l

′, η′)

as the unique irreducible subrepresentation. Here we have parametrized the elements of�ψ ′
k

by (l ′, η′) as explained in Sect. 1.2 below. The image is characterized by the condition that
for all i ≤ sk ,

• l ′i = 0;
• η′

i = −∏ j<i (−1)A j−Bj+1.
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When k �= 0, the second condition can also be simplified as η′
1 = −1. Moreover, if (φ′, ε′) is

the complete Langlands parameter of π(ψ ′
k, l

′, η′), then the complete Langlands parameter
(φ, ε) of π is given as follows:

φ = (⊕i≤mφi ) ⊕ φ′ ⊕ (⊕i≤mφ∨
i ),

where φi is the Langlands parameter of the corresponding shifted Speh representation and
ε corresponds to ε′ under the natural isomorphism Sφ

∼= Sφ′ .

1.2 A special case

The previous two theorems reduce our problem to the following special case (cf. ψ ′, ψ ′
k):

ψ = ⊕n
i=1(ρ ⊗ νai ⊗ νbi ),

where Ai ≥ Ai−1, Bi ≥ Bi−1 and ζi = +. In this case, we have the following result.

Theorem 1.3 Suppose we are in the special case described above.

(1) There is a bijection

�ψ → {(l, η) ∈ Z
n × {±1}n | 0 ≤ li ≤ [(Ai − Bi + 1)/2], (1.10) and (1.11)

are satisfied }/ ∼
where l = (li ), η = (ηi ), and

{

ηi+1 = (−1)Ai−Bi ηi ⇒ Ai+1 − li+1 ≥ Ai − li , Bi+1 + li+1 ≥ Bi + li ,

ηi+1 �= (−1)Ai−Bi ηi ⇒ Bi+1 + li+1 > Ai − li .
(1.10)

and
n
∏

i=1

εli ,ηi = 1 (1.11)

where εli ,ηi is defined as in (1.7). We have identified (l, η) ∼ (l ′, η′), whenever
{

l = l ′

ηi = η′
i unless li = (A − B + 1)/2

(2) Let π(ψ, l, η) be the representation parametrized by (l, η). Consider the maximal
sequence of integers

0 = k0 < · · · < kr = n

such that Ak j − lk j < Bk j+1 + lk j+1. When Ai − li ≥ Bi+1 + li+1, we take

ti = (Ai − li ) + (Bi+1 + li+1)

2

and

δi =
{

1 if ti − Ai ∈ Z

1/2 if ti − Ai /∈ Z
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Then we have

π(ψ, l, η) ↪→ ×n
i=1

⎛

⎜

⎝

Bi · · · −Ai
...

...

Bi + li − 1 · · · −(Ai − li + 1)

⎞

⎟

⎠

︸ ︷︷ ︸

Ii

×r
i=1 ×ki−1< j<ki

⎛

⎜

⎝

Bj+1 + l j+1 · · · −(A j − l j )
...

...

t j − δ j · · · −(t j + δ j )

⎞

⎟

⎠

︸ ︷︷ ︸

Ĩ j

�π ′

as the unique irreducible subrepresentation, where

π ′ = π
(

∪i

{

· · ·
})

with
{

· · ·
}

=
{

(ρ, Aki − lki , Bki + lki , 0, ηki ,+)
}

if ki − ki−1 = 1, and
{

· · ·
}

=
{

(

ρ, Aki − lki , tki−1 − δki−1 + 1, 0, (−1)tki−1−δki−1+1−(Bki +lki )ηki ,+
)

,

∪ki−1+1< j<ki

(

ρ, t j + δ j − 1, t j−1 − δ j−1 + 1, 0, (−1)t j−1−δ j−1+1−(Bj+l j )η j ,+
)

,

(

ρ, tki−1+1 + δki−1+1 − 1, Bki−1+1 + lki−1+1, 0, ηki−1+1,+
)

}

otherwise. Here π ′ is a tempered representation of a group G ′(F) of the same type
as G(F), and its complete Langlands parameter (φ′, ε′) can be described as in (1.9).
Moreover, the complete Langlands parameter (φ, ε) of π(ψ, l, η) is given as follows:

φ = (⊕ j φ̃ j ) ⊕ (⊕iφi ) ⊕ φ′ ⊕ (⊕iφ
∨
i ) ⊕ (⊕ j φ̃

∨
j )

where φi (resp. φ̃ j ) is the Langlands parameter of the corresponding shifted Speh repre-
sentation Ii (resp. Ĩ j ) and ε corresponds to ε′ under the natural isomorphism Sφ

∼= Sφ′ .

Remark 1.4 When the intervals [Bi , Ai ] are disjoint, the condition (1.10) becomes void. In
that case, the result is due to Mœglin [6, Theorem 4.2].

1.3 Even orthogonal groups

Let G be a quasisplit special even orthogonal group over F , split over a quadratic extension
E/F . Let θ0 be an outer automorphism of G over F , induced from the conjugate action of
the even orthogonal group. Let �0 = 〈θ0〉 and G�0 = G � �0, which is isomorphic to the
even orthogonal group. Let θ̂0 be the dual automorphism on Ĝ, which commutes with the
action of Gal(E/F). The local Langlands correspondence for G�0(F) takes the following
form: there is a canonical bijection (after fixing a θ0-stable Whittaker datum)

Irr(G�0(F)) ∼= {(φ, ε)|φ ∈ 	̄(G(F)), ε ∈ Irr(S�0
φ )},

123
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where 	̄(G(F)) is the set of θ̂0-orbits of Langlands parameters ofG(F), which are ̂G�〈θ̂0〉-
conjugacy classes of admissible homomorphisms

φ : WF × SL(2, C) → ̂G � Gal(E/F)

and

S�0
φ :=π0(ẐG�〈θ̂0〉(φ)/Z(̂G)Gal(E/F)).

This follows from Arthur’s results on the local Langlands correspondence for G(F) and
the θ0-twisted endoscopic character relations (cf. [1] and [9, Theorem 4.3]). We will call
the pair (φ, ε) complete Langlands parameter of G�0(F), and denote the corresponding
representation by π�0(φ, ε).

For anyArthur parameterψ ofG(F), Arthur [1] has associated it with a finitemulti-set �̄ψ

of �0-orbits in Irr(G(F)), in the same way as we have described for symplectic and special
odd orthogonal groups. This is also multiplicity free due to Moeglin [7]. In [10] we define
the Arthur packet �

�0
ψ for G�0(F) to be the subset of isomorphism classes of irreducible

representations of G�0(F), whose restriction to G(F) have irreducible constituents in �̄ψ .
In this paper, we will also prove the analogues of Theorem 1.1, 1.2, 1.3 for �

�0
ψ .

2 Review of Moeglin’s parametrization

From now on, we will let G be a quasisplit symplectic or special orthogonal group over a
p-adic field F . In order to get a uniform description, we will also take�0 = 1 andG�0 = G,
when G is not special even orthogonal. Let ψ be an Arthur parameter of G(F). We will
review Moeglin’s parametrization of elements in �

�0
ψ . The reader is referred to [9,10] for

more details.
Let ψp be the parameter consisting of Jordan blocks of ψ that has the same parity as

̂G, and >ψ be an admissible order on Jord(ψp). The admissibility condition requires that
for any (ρ, A, B, ζ ), (ρ, A′, B ′, ζ ′) ∈ Jord(ψp) satisfying A > A′, B > B ′ and ζ = ζ ′,
we have (ρ, A, B, ζ ) >ψ (ρ, A′, B ′, ζ ′). Then Mœglin showed that there is an injection
depending on >ψ

�
�0
ψ ↪→

{

(l, η) ∈ Z
Jord(ψp) × {±1}Jord(ψp) | l(ρ, A, B, ζ )

∈ [0, (A − B + 1)/2], (2.2) is satisfied
}

/∼�0
, (2.1)

where
∏

(ρ,A,B,ζ )∈Jord(ψp)

εl,η(ρ, A, B, ζ ) = 1 (2.2)

and

εl,η(ρ, A, B, ζ ):=η(ρ, A, B, ζ )A−B+1(−1)[(A−B+1)/2]+l(ρ,A,B,ζ ).

Here we say (l, η) ∼�0 (l ′, η′) if and only if

{

l = l ′

(η/η′)(ρ, A, B, ζ ) = 1 unless l(ρ, A, B, ζ ) = (A − B + 1)/2.

123
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This is the parametrization appearing in Sect. 1.2, where we have implicitly chosen the
order >ψ to be that of the indexes. For any (l, η) in (2.1), we let π

�0
M,>ψ

(ψ, l, η) be the
associated representation if (l, η) is in the image, or zero otherwise. Mœglin also expressed

the nonvanishing of π
�0
M,>ψ

(ψ, l, η) in terms of the nonvanishing of certain Jacquet module
(cf. (2.3)). Following this description, we have developed a procedure in [10] to determine
the image explicitly. As an application, we give the formula (1.10) for characterizing the
image in the special case (cf. Sect. 1.2). The proof will be given in Appendix A.

What turns out crucial to this procedure [10] is to understand how the injection (2.1)
changes when one changes the order >ψ . This is also one of the main results in [10] and we
will recall it here. Suppose we have two adjacent Jordan blocks (ρ, Ai , Bi , ζi ) (i = 1, 2)
with respect to the admissible order >ψ , and

(ρ, A2, B2, ζ2) >ψ (ρ, A1, B1, ζ1).

Suppose the new order >′
ψ obtained by switching the two is still admissible. Then by def-

inition, either ζ1 �= ζ2 or one of {[Bi , Ai ]}i=1,2 is included in the other. Let us define ψ−
by

Jord(ψ−) = Jord(ψ)\{(ρ, A2, B2, ζ2), (ρ, A1, B1, ζ1)}.

Suppose

π
�0
M,>ψ

(ψ, l, η) = π
�0
M,>′

ψ

(ψ, l ′, η′) �= 0,

then the restrictions of (l, η) and (l ′, η′) to Jord(ψ−) are equivalent with respect to (∼�0 )
and the following conditions are satisfied.

(1) If ζ1 = ζ2, it suffices to consider the case [B2, A2] ⊇ [B1, A1]. Then we are in one of
the following situations.

(a) If η2 �= (−1)A1−B1η1 and η′
1 = (−1)A2−B2η′

2, then

⎧

⎪

⎨

⎪

⎩

l1 = l ′1
l2 − l ′2 = (A1 − B1 − 2l1) + 1

η′
1 = (−1)A2−B2η1

(b) If η2 = (−1)A1−B1η1 and η′
1 �= (−1)A2−B2η′

2, then

⎧

⎪

⎨

⎪

⎩

l1 = l ′1
l ′2 − l2 = (A1 − B1 − 2l1) + 1

η′
1 = (−1)A2−B2η1

(c) If η2 = (−1)A1−B1η1 and η′
1 = (−1)A2−B2η′

2, then

⎧

⎪

⎨

⎪

⎩

l1 = l ′1
(l ′2 − l ′1) + (l2 − l1) = (A2 − B2) − (A1 − B1)

η′
1 = (−1)A2−B2η1

123
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(2) If ζ1 �= ζ2, then

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

l ′2 = l2
l ′1 = l1
η2 = (−1)A1−B1+1η′

2

η1 = (−1)A2−B2+1η′
1

This formula suggests that for (ρ, A, B, ζ ) ∈ Jord(ψp) with B = 0, the choice of sign ζ

will affect the parametrization (cf. [10, Proposition 7.5]).

2.1 Terminology

We recall a few terminologies from [9] [10]. Let ψ be an Arthur parameter of G(F) such
that ψ = ψp . Let ρ be an irreducible unitary supercuspidal representation of GL(dρ, F).
We denote by Jordρ(ψ) the subset of Jord(ψ) containing ρ. A subset J of Jordρ(ψ) is
said to have discrete diagonal restriction if the intervals [B, A], [B ′, A′] do not intersect
for any (ρ, A, B, ζ ), (ρ, A′, B ′, ζ ′) ∈ Jordρ(ψ). We sayψ has discrete diagonal restriction
if Jordρ(ψ) has discrete diagonal restriction for all ρ. A Jordan block (ρ, A, B, ζ ) is said
to be far away from a subset J of Jordρ(ψ) if

B > 2|J | ·
(

∑

(ρ,A′,B′,ζ ′)∈J

A′ + |J |
∑

(ρ,A′,B′,ζ ′)∈Jordρ(ψ)

(A′ − B ′ + 1)
)

and we will write (ρ, A, B, ζ ) � J (cf. [10, Section 2]).
Let >ψ be an admissible order on Jord(ψ) and we index Jordρ(ψ) for each ρ so that

(ρ, Ai , Bi , ζi ) >ψ (ρ, Ai−1, Bi−1, ζi−1).

A new parameterψ� is said to dominateψ with respect to>ψ if Jordρ(ψ�) is obtained by
shifting (ρ, Ai , Bi , ζi ) to (ρ, Ai + Ti , Bi + Ti , ζi ) with Ti ≥ 0 for each ρ, and >ψ induces
an admissible order on Jord(ψ�). In this case, π

�0
M,>ψ

(ψ, l, η) and π
�0
M,>ψ

(ψ�, l, η) are
related as follows:

π
�0
M,>ψ

(ψ, l, η):= ◦{ρ:Jordρ(ψ)�=∅} ◦(ρ,Ai ,Bi ,ζi )∈Jordρ(ψ)

Jac(ρ,Ai+Ti ,Bi+Ti ,ζi )→(ρ,Ai ,Bi ,ζi )π
�0
M,>ψ

(ψ�, l, η), (2.3)

where i is decreasing (cf. [9, Remark 8.4]). If we further assume both of them are nonzero,
then we have

π
�0
M,>ψ

(ψ�, l, η) ↪→ ×{ρ:Jordρ(ψ)�=∅}

×(ρ,Ai ,Bi ,ζi )∈Jordρ(ψ)

⎛

⎜

⎝

ζi (Bi + Ti ) · · · ζi (Bi + 1)
...

...

ζi (Ai + Ti ) · · · ζi (Ai + 1)

⎞

⎟

⎠� π
�0
M,>ψ

(ψ, l, η).

where i is increasing (cf. [9, Proposition 8.5]).
At last, we will say a few words about the operators used in (2.3). Let M = GL(dρ)×G−

be the Levi component of a standard maximal parabolic subgroup P of G. For any finite-
length smooth representation π�0 of G�0(F), we can decompose the semisimplification of
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its Jacquet module as follows

s.s. JacP (π�0) =
⊕

i

τi ⊗ σi ,

where τi (resp. σi ) are irreducible representations of GL(dρ, F) (resp. G�0− (F)). We define
Jacxπ�0 for any real number x to be

Jacx (π
�0) =

⊕

τi=ρ||x
σi .

We also define

Jacx1,...,xsπ
�0 = Jacxs ◦ · · · ◦ Jacx1π

�0

for any ordered sequence of real numbers {x1, . . . , xs}. Let

Xi =
⎡

⎢

⎣

ζi (Bi + Ti ) · · · ζi (Bi + 1)
...

...

ζi (Ai + Ti ) · · · ζi (Ai + 1)

⎤

⎥

⎦

with respect to (ρ, Ai + Ti , Bi + Ti , ζi ) in the previous paragraph. Then
Jac(ρ,Ai+Ti ,Bi+Ti ,ζi )→(ρ,Ai ,Bi ,ζi ) is defined to be JacXi :=◦x∈Xi Jacx , where x ranges over Xi

from top to bottom and left to right.

3 Step one

In the next three sections, wewill give the proofs of themain results stated in the introduction.
TheArthur parameters (cf. (1.2)) considered in these proofs are always under the Assumption
(1.5). Later we will make some comments on the general case (cf. Sect. 6).

In step one, we consider a subclass of representations in the special case (cf. Sect. 1.2).
In the special case, we have

ψ = ⊕n
i=1(ρ ⊗ νai ⊗ νbi )

where Ai ≥ Ai−1, Bi ≥ Bi−1 and ζi = +. We fix the order so that

(ρ, Ai , Bi , ζi ) >ψ (ρ, Ai−1, Bi−1, ζi−1).

Now let us consider π
�0
M,>ψ

(ψ, l, η), where l = 0. In this case, we can reinterpret the nonva-
nishing condition (1.10) as follows.

• If Ai ≥ Bi+1, then ηi+1 = (−1)Ai−Bi ηi . Let ti = (Ai + Bi+1)/2 and

δi =
{

1 if ti − Ai ∈ Z

1/2 if ti − Ai /∈ Z

• If Ai < Bi+1, then there is no condition on ηi+1.

Consider the maximal sequence of integers

0 = k0 < · · · < kr = n

such that Ak j < Bk j+1. We would like to show
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Theorem 3.1

π
�0
M,>ψ

(ψ, l, η) ↪→ ×r
i=1 ×ki−1< j<ki

⎛

⎜

⎝

Bj+1 · · · −A j
...

...

t j − δ j · · · −(t j + δ j )

⎞

⎟

⎠

︸ ︷︷ ︸

Ĩ j

�σ�0 (3.1)

as the unique irreducible subrepresentation, where

σ�0 :=π
�0
M,>ψ

(

∪i

{

· · ·
})

is a tempered representation with
{

· · ·
}

=
{

(ρ, Aki , Bki , 0, ηki ,+)
}

if ki − ki−1 = 1, and

{

· · ·
}

=
{

(

ρ, Aki , tki−1 − δki−1 + 1, 0, (−1)tki−1−δki−1+1−Bki ηki ,+
)

,

∪ki−1+1< j<ki

(

ρ, t j + δ j − 1, t j−1 − δ j−1 + 1, 0, (−1)t j−1−δ j−1+1−Bj η j ,+
)

,

(

ρ, tki−1+1 + δki−1+1 − 1, Bki−1+1, 0, ηki−1+1,+
)

}

otherwise. Moreover, the induced representation I in (3.1) is a subrepresentation of the
costandard representation, obtained by taking induction of the shifted Steinberg representa-
tions from rows of Ĩ j together with σ�0 .

The following corollary is an immediate consequence of the theorem.

Corollary 3.2 In the notations of Theorem 3.1, the complete Langlands parameter (φ, ε) of
π

�0
M,>ψ

(ψ, l, η) is given as follows:

φ = (⊕ j φ̃ j ) ⊕ φ′ ⊕ (⊕ j φ̃
∨
j )

where φ̃ j is the Langlands parameter of Ĩ j , (φ′, ε′) is the complete Langlands parameter of
σ�0 , and ε corresponds to ε′ under the natural isomorphism S�0

φ
∼= S�0

φ′ .

We will prove Theorem 3.1 by induction on

n−1
∑

i=1

max {Ai − Bi+1, 0}.

Suppose it is not zero. Let us choose the maximal integer s < n such that As − Bs+1 ≥
Ai − Bi+1 for all 1 ≤ i < n. By maximality of s, we have Bs+2 > Bs+1 or s = n − 1.
Moreover, there exists l ≤ s + 1 such that

As = As−1 = · · · = Al−1 and Bs+1 = Bs = · · · = Bl

and Al−1 > Al−2 or l = 2.
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Lemma 3.3

π
�0
M,>ψ

(ψ, l, η) ↪→ ×s
j=l−1〈Bj+1, . . . ,−A j 〉 � π

�0
M,>ψ

(ψ ′, l, η′),

where A′
j = A j − 1, B ′

j+1 = Bj+1 + 1 and η′
j+1 = −η j+1 for l − 1 ≤ j ≤ s.

Proof Since l = 0, we can reorganize the Jordan blocks for l − 1 ≤ j ≤ s + 1 as

(ρ, As+1, Bs+1 + 1, 0,−ηs+1,+) > (ρ, Bs+1, Bs+1, 0, ηs+1,+) > (ρ, As, Bs+1, 0, ηs,+)

> · · · > (ρ, Al , Bl+1, 0, ηl ,+) > (ρ, Al−1, Bl , 0, (−1)Bl−Bl−1ηl−1,+)

> (ρ, Bl − 1, Bl−1, 0, ηl−1,+),

where we have splitted the first and last ones. Note the last Jordan block above disappear
when Bl = Bl−1. Then we can move (ρ, Bs+1, Bs+1, 0, ηs+1,+) to the second last position
(or last when Bl = Bl−1) above. By the change of order formula, it can be combined with
the last term. So we get

(ρ, As+1, Bs+1 + 1, 0,−ηs+1,+) > (ρ, As , Bs+1, 1,−ηs,+)

> · · · > (ρ, Al , Bl+1, 1,−ηl ,+) > (ρ, Al−1, Bl , 1,−(−1)Bl−Bl−1ηl−1,+)

> (ρ, Bl , Bl−1, 0, ηl−1,+)

Since Al−1 > Al−2 and Bs+2 > Bs+1, we get by applying Lemma 4.3

π
�0
M,>ψ

(ψ, l, η) ↪→ ×s
j=l−1〈Bj+1, . . . ,−A j 〉 � π

�0
M,>ψ

(ψ ′, l, η′).

��
By Lemma 3.3 and the induction assumption, we have

π
�0
M,>ψ

(ψ, l, η) ↪→ ×s
j=l−1〈Bj+1, . . . ,−A j 〉 � I ′ (3.2)

and

I ′:= ×r
i=1 ×ki−1< j<ki

⎛

⎜

⎝

B ′
j+1 · · · −A′

j
...

...

t j − δ j · · · −(t j + δ j )

⎞

⎟

⎠

︸ ︷︷ ︸

Ĩ j

� σ�0

Moreover, I ′ is a subrepresentation of the costandard representation, obtained by taking
induction of the shifted Steinberg representations from rows of Ĩ j together with σ�0 . Com-
bined with the maximality of As − Bs+1, we see the induction in (3.2) is a subrepresentation
of the costandard representation as we want. It also follows that the induction in (3.2) has a
unique irreducible subrepresentation. Since Ĩ j are interchangeable with each other (cf. [10,
Corollary 4.3]), one can combine 〈Bj+1, . . . ,−A j 〉 with Ĩ j for l −1 ≤ j ≤ s, and this gives
(3.1).

4 Step two

We will settle the special case in this step, hence complete the proof of Theorem 1.3. Let

ψ = ⊕n
i=1(ρ ⊗ νai ⊗ νbi )
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where Ai ≥ Ai−1, Bi ≥ Bi−1 and ζi = +. We fix the order so that

(ρ, Ai , Bi , ζi ) >ψ (ρ, Ai−1, Bi−1, ζi−1).

By Theorem A.1, π
�0
M,>ψ

(ψ, l, η) �= 0 if and only if (1.10) is satisfied. We would like to
prove the following theorem.

Theorem 4.1

π
�0
M,>ψ

(ψ, l, η) ↪→ ×i

⎛

⎜

⎝

Bi · · · −Ai
...

...

Bi + li − 1 · · · −(Ai − li + 1)

⎞

⎟

⎠

︸ ︷︷ ︸

Ii

� π
�0
M,>ψ

(

∪i (ρ, Ai − li , Bi + li , 0, ηi , ζi )
)

(4.1)

as the unique irreducible subrepresentation. Moreover, after applying (3.1) to

π
�0
M,>ψ

(

∪i (ρ, Ai − li , Bi + li , 0, ηi , ζi )
)

, (4.2)

we can embed the right hand side of (4.1) into an induced representation I. Then I is a sub-
representation of the costandard representation, obtained by taking induction of the shifted
Steinberg representations from the shifted Speh representations with a tempered representa-
tion σ�0 as in Theorem 3.1.

The following corollary is an immediate consequence of the theorem.

Corollary 4.2 In the notations of Theorem 4.1, the complete Langlands parameter (φ, ε) of
π

�0
M,>ψ

(ψ, l, η) is given as follows:

φ = (⊕iφi ) ⊕ φ′ ⊕ (⊕iφ
∨
i )

where φi is the Langlands parameter of Ii , (φ′, ε′) is the complete Langlands parameter of
(4.2), and ε corresponds to ε′ under the natural isomorphism S�0

φ
∼= S�0

φ′ .

We will prove Theorem 4.1 by induction on
∑

i=1 li . Among all i such that li �= 0, let us
choose maximal s for the property that As − Bs ≥ Ai − Bi for any such i . By the maximality
of s, we have Bs+1 > Bs or s = n. Moreover, there exists l ≤ s such that

As = · · · = Al and Bs = · · · = Bl

and Al > Al−1 or l = 1.

Lemma 4.3

π
�0
M,>ψ

(ψ, l, η) ↪→ ×s
i=l〈Bi , . . . ,−Ai 〉 � π

�0
M,>ψ

(ψ ′, l ′, η),

where A′
i = Ai − 1, B ′

i = Bi + 1, and l ′i = li − 1 for l ≤ i ≤ s.

Proof Let ψ(l)
� be a dominating parameter of ψ such that the Jordan blocks for i < l remains

the same, and the Jordan blocks for i ≥ l are shifted by Ti , so that they are disjoint and far

away from ∪i<l{(ρ, Ai , Bi , ζi )}. Similarly, we can define ψ
(s+1)
� (resp. ψ

′(s+1)
� ).
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π
�0
M,>ψ

(ψ
(l)
� , l, η) ↪→ ×s

i=l〈Bi + Ti , . . . ,−(Ai + Ti )〉×

×s
i=l

⎛

⎜

⎝

Bi + Ti + 1 · · · Bi + 2
...

...

Ai + Ti − 1 · · · Ai

⎞

⎟

⎠� π
�0
M,>ψ

(ψ
′(s+1)
� , l ′, η)

↪→ ×s
i=l

(

〈Bi + Ti , . . . ,−Ai 〉 × 〈−(Ai + 1), . . . ,−(Ai + Ti )〉
︸ ︷︷ ︸

Ii

)

×

×s
i=l

⎛

⎜

⎝

Bi + Ti + 1 · · · Bi + 2
...

...

Ai + Ti − 1 · · · Ai

⎞

⎟

⎠

︸ ︷︷ ︸

I Ii

� π
�0
M,>ψ

(ψ
′(s+1)
� , l ′, η)

We can switch Ii with I I j (cf. [10, Corollary 4.3]). Since Al > Al−1, we can then take the
dual of Ii (cf. [10, Proposition 4.6]). Moreover, we can combine I Ii with I∨

i , for otherwise,

JacAi+Ti π
�0
M,>ψ

(ψ
(l)
� , l, η) �= 0, which is impossible. Therefore, we get

π
�0
M,>ψ

(ψ
(l)
� , l, η) ↪→ ×s

i=l〈Bi + Ti , . . . ,−Ai 〉×

×s
i=l

⎛

⎜

⎝

Bi + Ti + 1 · · · Bi + 2
...

...

Ai + Ti · · · Ai + 1

⎞

⎟

⎠� π
�0
M,>ψ

(ψ
′(s+1)
� , l ′, η)

↪→ ×s
i=l

(

〈Bi + Ti , . . . ,−Ai 〉 ×
⎛

⎜

⎝

Bi + Ti + 1 · · · Bi + 2
...

...

Ai + Ti · · · Ai + 1

⎞

⎟

⎠

)

� π
�0
M,>ψ

(ψ
′(s+1)
� , l ′, η)

It follows

π
�0
M,>ψ

(ψ
(s+1)
� , l, η) ↪→ ×s

i=l〈Bi , . . . ,−Ai 〉 � π
�0
M,>ψ

(ψ
′(s+1)
� , l ′, η)

↪→ ×s
i=l 〈Bi , . . . ,−Ai 〉 ×

(

×i>s

⎛

⎜

⎝

Bi + Ti · · · Bi + 1
...

...

Ai + Ti · · · Ai + 1

⎞

⎟

⎠

︸ ︷︷ ︸

I I Ii

)

� π
�0
M,>ψ

(ψ ′, l ′, η).

Since Bs+1 > Bs , we can switch 〈Bi , . . . ,−Ai 〉 with I I I j (cf. [10, Corollary 4.3]). Hence,

π
�0
M,>ψ

(ψ, l, η) ↪→ ×s
i=l〈Bi , . . . ,−Ai 〉 � π

�0
M,>ψ

(ψ ′, l ′, η).

��

By Lemma 4.3 and the induction assumption, we have

π
�0
M,>ψ

(ψ, l, η) ↪→ ×s
i=l 〈Bi , . . . ,−Ai 〉 � I ′ (4.3)
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and

I ′:= ×s
i=l

⎛

⎜

⎝

Bi + 1 · · · −(Ai − 1)
.
.
.

.

.

.

Bi + li − 1 · · · −(Ai − li + 1)

⎞

⎟

⎠

︸ ︷︷ ︸

I Ii

× ×i<l or i>s

⎛

⎜

⎝

Bi · · · −Ai
.
.
.

.

.

.

Bi + li − 1 · · · −(Ai − li + 1)

⎞

⎟

⎠

︸ ︷︷ ︸

I Ii

× × some j

⎛

⎜

⎝

Bj+1 + l j+1 · · · −(A j − l j )
.
.
.

.

.

.

t j − δ j · · · −(t j + δ j )

⎞

⎟

⎠

︸ ︷︷ ︸

Ĩ j

� σ�0

Moreover, I ′ is a subrepresentation of the costandard representation, obtained by taking
induction of the shifted Steinberg representations from the shifted Speh representations with
σ�0 . We claim the induction in (4.3) is a subrepresentation of the costandard representation
as we want.

To prove the claim, we need to show any shifted Steinberg representation above, whose
shift is less than that of 〈Bs, . . . ,−As〉, can be moved to the front. By our choice of s, it
suffices to consider 〈x, . . . ,−y〉 from rows of Ĩ j .Moreover, it is necessary that l j+1 = l j = 0.
There are two cases.

(1) If As ≤ A j , then y ≥ As .
(2) If Bs ≥ Bj+1, then x ≤ Bs .

In either case, we see 〈x, . . . ,−y〉 and 〈Bs, . . . ,−As〉 are interchangeable (cf. [10, Corollary
4.3]). Thisfinishes the proof of our claim.As a consequence, the induction in (4.3) has a unique
irreducible subrepresentation. So we can combine 〈Bi , . . . ,−Ai 〉with I Ii for l ≤ i ≤ s, and
this gives (4.1).

5 Step three

In this step we will prove Theorems 1.1 and 1.2, which reduce our problem to the special case
settled in the previous step. In order to apply the induction argument, we need to generalize
our problem (cf. (1.6)) to the following case

ψ = ⊕n
i=1(ρ ⊗ νai ⊗ νbi )

where Ai ≥ Ai−1 and there exists m ≤ n such that

• if i > m, then ζi = +, Bi+1 ≥ Bi ;
• if i ≤ m, then ζi = −, and Bi ≤ Bi−1.

We choose the order so that

(ρ, Ai , Bi , ζi ) >ψ (ρ, Ai−1, Bi−1, ζi−1).

Among all i ≤ m such that Bi �= 0 (resp. 1/2), we choose s ≤ m maximal for the property
that

• As ≥ Ai for all such i ;
• Bs ≥ Bi , if As = Ai for any such i
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By the maximality of s, we have Bs > Bs+1 or s = m. Moreover, there exists l ≤ s such
that

As = · · · = Al and Bs = · · · = Bl

and Al > Al−1 or l = 1.

Lemma 5.1 There is a bijection between

�
�0
ψ → �

�0
ψs

π
�0
M,>ψ

(ψ, l, η) → π
�0
M,>ψ

(ψ s, l, η)

such that

π
�0
M,>ψ

(ψ, l, η) ↪→ ×s
i=l〈−Bi , · · · ,−Ai 〉 � π

�0
M,>ψ

(ψ s, l, η),

where ψ s is obtained from ψ by changing (ρ, Ai , Bi , ζi ) to (ρ, Ai − 1, Bi − 1, ζi ) for
l ≤ i ≤ s.

Proof We first show

π
�0
M,>ψ

(ψ, l, η) �= 0 ⇔ π
�0
M,>ψ

(ψ s, l, η) �= 0.

Following the procedure in [10, Section 8], we can first reduce to the case that all
(ρ, Ai , Bi , ζi ) for i > m are far away from ∪i≤m{(ρ, Ai , Bi , ζi )}, except for one
(ρ, A j , Bj , ζ j ). This is done by the operations of “pull” and “expand” (cf. [10, Section 7.1,
7.2]). Since A j ≥ Ai for all i ≤ m, then we can “expand” [Bj , A j ] and change the sign
ζ j to negative (cf. [10, Section 7.3]). In this way, we can further reduce to the case that all
(ρ, Ai , Bi , ζi ) for i > m are far away from ∪i≤m{(ρ, Ai , Bi , ζi )}. Since Al > Al−1 and
Bs > Bs+1, the inclusion relations of intervals are not changed after shifting [Bi , Ai ] to
[Bi − 1, Ai − 1] for l ≤ i ≤ s. Then it is not hard to see from the procedure in [10, Section
8] again that the nonvanishing condition is not changed.

Next we impose a new order >′
ψ by moving {(ρ, Ai , Bi , ζi )}si=l to the front. Suppose

π
�0
M,>ψ

(ψ, l, η) = π
�0
M,>′

ψ

(ψ, l ′, η′),

then

π
�0
M,>ψ

(ψ s, l, η) = π
�0
M,>′

ψ

(ψ s, l ′, η′)

by the change of order formula. So it suffices to prove the lemma under this new order. Let
ψ� be the parameter obtained by shifting [Bi , Ai ] to [Bi + Ti , Ai + Ti ] for l ≤ i ≤ s, which
are disjoint and far away from the rest. Then

π
�0
M,>′

ψ

(ψ�, l ′, η′) ↪→ ×s
i=l

⎛

⎜

⎝

−(Bi + Ti ) · · · −(Ai + Ti )
...

...

−Bi · · · −Ai

⎞

⎟

⎠� π
�0
M,>′

ψ

(ψ s, l ′, η′),
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where i increases. It follows

π
�0
M,>′

ψ

(ψ�, l ′, η′) ↪→
⎛

⎜

⎝

−(Bl + Tl) · · · −(Al + Tl)
...

...

−(Bl + 1) · · · −(Al + 1)

⎞

⎟

⎠× 〈−Bl , . . . ,−Al〉×

×s
i=l+1

⎛

⎜

⎝

−(Bi + Ti ) · · · −(Ai + Ti )
...

...

−Bi · · · −Ai

⎞

⎟

⎠� π
�0
M,>′

ψ

(ψ s, l ′, η′)

↪→
⎛

⎜

⎝

−(Bl + Tl) · · · −(Al + Tl)
...

...

−(Bl + 1) · · · −(Al + 1)

⎞

⎟

⎠×

×s
i=l+1

⎛

⎜

⎝

−(Bi + Ti ) · · · −(Ai + Ti )
...

...

−Bi · · · −Ai

⎞

⎟

⎠

× 〈−Bl , . . . ,−Al〉 � π
�0
M,>′

ψ

(ψ s, l ′, η′)

Continuing this way, we should get

π
�0
M,>′

ψ

(ψ�, l ′, η′) ↪→ ×s
i=l

⎛

⎜

⎝

−(Bi + Ti ) · · · −(Ai + Ti )
...

...

−(Bi + 1) · · · −(Ai + 1)

⎞

⎟

⎠×

×s
i=l 〈−Bi , . . . ,−Ai 〉 � π

�0
M,>′

ψ

(ψ s, l ′, η′)

It follows

π
�0
M,>′

ψ

(ψ, l ′, η′) ↪→ ×s
i=l〈−Bi , . . . ,−Ai 〉 � π

�0
M,>′

ψ

(ψ s, l ′, η′).

This finishes the proof. ��

Remark 5.2 In this lemma, it is critical to have A j ≥ Ai for ζ j = +, ζi = −. Here we give
a counter-example when this condition is not satisfied. Suppose

Jord(ψ) = {(ρ, A1, B1, ζ1), (ρ, A2, B2, ζ2)}
with Ai , Bi ∈ Z, ζ1 = −, ζ2 = +, and A1 > B1 + B2 > A2 > A1 − B1. Let

Jord(ψ ′) = {(ρ, A1 − B1, 0, ζ1), (ρ, A2, B2, ζ2)}.
We claim |��0

ψ | > |��0
ψ ′ |, which will result in a contradiction to Lemma 5.1. After changing

ζ1 to positive, we can apply Theorem 1.3 to ψ ′. Then there is a bijection

�
�0
ψ ′ → {(l, η) ∈ Z

2 × {±1}2 | 0 ≤ li ≤ [(Ai − Bi + 1)/2], (1.10) and (1.11) are satisfied }/ ∼�0

where l = (li ), η = (ηi ). By our assumption, [0, A1 − B1] intersects with [A2, B2], so the
condition (1.10) is not void. On the other hand, let

Jord(ψ ′′) = {(ρ, A1, B1, ζ1), (ρ, A2 − B2, 0, ζ2)}
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By applying Jac(ρ,A2,B2,ζ2)→(ρ,A2−B2,0,ζ2), we get a surjection

�
�0
ψ → �

�0
ψ ′′ (5.1)

By our assumption, [0, A2 − B2] does not intersect with [A1, B1]. So by [6, Theorem 4.2],
there is a bijection

�
�0
ψ ′′ → {(l, η) ∈ Z

2 × {±1}2 | 0 ≤ li ≤ [(Ai − Bi + 1)/2], (1.11) is satisfied }/ ∼�0

Hence, |��0
ψ | ≥ |��0

ψ ′′ | > |��0
ψ ′ |. From (2.1), we also see (5.1) is actually a bijection.

5.1 Integral case

We assume Ai , Bi ∈ Z. Recall ζi = + for i > m and ζi = − for i ≤ m. We get a new
parameter ψ ′ by replacing all (ρ, Ai , Bi , ζi ) by (ρ, A′

i , B
′
i , ζ

′
i ) such that: ζ ′

i = ζi and

• A′
i = Ai , B ′

i = Bi for i > m;
• A′

i = Ai − Bi , B ′
i = 0 for i ≤ m.

Theorem 5.3 There is a bijection

�
�0
ψ → �

�0
ψ ′

π
�0
M,>ψ

(ψ, l, η) → π
�0
M,>ψ

(ψ ′, l, η)

such that

π
�0
M,>ψ

(ψ, l, η) ↪→ ×i≤m

⎛

⎜

⎝

−Bi · · · −Ai
...

...

−1 · · · −(Ai − Bi + 1)

⎞

⎟

⎠

︸ ︷︷ ︸

Ii

�π
�0
M,>ψ

(ψ ′, l, η) (5.2)

as the unique irreducible subrepresentation.
Let us assume

π
�0
M,>ψ

(ψ ′, l, η) = π
�0
M,>ψ

(ψ ′, l ′, η′).

after changing ζi to positive for i ≤ m. By applying (4.1) and (3.1) to π
�0
M,>ψ

(ψ ′, l ′, η′), we
can embed the right hand side of (5.2) into an induced representation I. Then I is a sub-
representation of the costandard representation, obtained by taking induction of the shifted
Steinberg representations from the shifted Speh representations with a tempered representa-
tion σ�0 as in Theorem 3.1.

Proof We can prove this by induction on
∑

i≤m Bi . By Lemma 5.1 and the induction assump-
tion, we have

π
�0
M,>ψ

(ψ, l, η) ↪→ ×s
i=l 〈−Bi , . . . ,−Ai 〉 � Is (5.3)
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and

Is := ×s
i=l

⎛

⎜

⎝

−(Bi − 1) · · · −(Ai − 1)
.
.
.

.

.

.

−1 · · · −(Ai − Bi + 1)

⎞

⎟

⎠

︸ ︷︷ ︸

I I Ii

× ×i<l or m≥i>s

⎛

⎜

⎝

−Bi · · · −Ai
.
.
.

.

.

.

−1 · · · −(Ai − Bi + 1)

⎞

⎟

⎠

︸ ︷︷ ︸

I I Ii

×

×n
i=1

⎛

⎜

⎝

B ′
i · · · −A′

i
.
.
.

.

.

.

B ′
i + l ′i − 1 · · · −(A′

i − l ′i + 1)

⎞

⎟

⎠

︸ ︷︷ ︸

I Ii

× × some j

⎛

⎜

⎜

⎝

B ′
j+1 + l ′j+1 · · · −(A′

j − l ′j )
.
.
.

.

.

.

t ′j − δ j · · · −(t ′j + δ j )

⎞

⎟

⎟

⎠

︸ ︷︷ ︸

Ĩ j

� σ�0

Moreover, Is is a subrepresentation of the costandard representation, obtained by taking
induction of the shifted Steinberg representations from the shifted Speh representations with
σ�0 . We claim the induced representation in (5.3) is a subrepresentation of the costandard
representation as we want.

To prove the claim, we need to show any shifted Steinberg representation above, whose
shift is less than that of 〈−Bs, . . . ,−As〉, can be moved to the front. There are two cases.

(1) If it is in the form 〈−x, . . . ,−y〉 from I I Ii , then by our choice of s, we have As ≥ y
and x ≥ Bs . Hence, 〈−x, . . . ,−y〉 and 〈−Bs, . . . ,−As〉 are interchangeable.

(2) If it is in the form 〈x, . . . ,−y〉 from I Ii or Ĩ j , then we have y ≥ As . Otherwise,

x − y

2
≥ − y

2
> − As

2
≥ − As + Bs

2
,

which contradicts to our assumption about the shifts. Hence, 〈x, . . . ,−y〉 and
〈−Bs, . . . ,−As〉 are interchangeable (cf. [10, Corollary 4.3]).

This finishes the proof of our claim. As a consequence, the induction in (5.3) has a unique
irreducible subrepresentation. So we can combine 〈−Bi , . . . ,−Ai 〉 with I I Ii for l ≤ i ≤ s,
and this gives (5.2). ��

The following corollary is an immediate consequence of Theorem 5.3.

Corollary 5.4 In the notations of Theorem 5.3, the complete Langlands parameter (φ, ε) of
π

�0
M,>ψ

(ψ, l, η) is given as follows:

φ = (⊕iφi ) ⊕ φ′ ⊕ (⊕iφ
∨
i )

where φi is the Langlands parameter of Ii , (φ′, ε′) is the complete Langlands parameter of
π

�0
M,>ψ

(ψ ′, l, η), and ε corresponds to ε′ under the natural isomorphism S�0
φ

∼= S�0
φ′ .

5.2 Half-integral case

We assume Ai , Bi /∈ Z. Recall ζi = + for i > m and ζi = − for i ≤ m.

Theorem 5.5 Consider the maximal sequence of integers

0 = s0 < s1 < · · · < sl = m

such that As j − Bs j �= As j+1 − Bs j+1. For any 0 ≤ k ≤ l, we get a new parameter ψ ′
k by

replacing all (ρ, Ai , Bi , ζi ) by (ρ, A′
i , B

′
i , ζ

′
i ) such that: ζ ′

i = + and
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• A′
i = Ai , B ′

i = Bi for i > m;
• A′

i = Ai − Bi − 1/2, B ′
i = 1/2 for i ≤ m and i �= sk;

• A′
i = Ai − Bi + 1/2, B ′

i = 1/2 for i = sk .

Then we can divide �
�0
ψ into l + 1 classes, i.e.,

�
�0
ψ = �l

k=0 �
�0
ψ (k).

For any 0 ≤ k ≤ l, we put an order >ψ ′
k
on Jord(ψ ′

k) so that

(ρ, A′
i , B

′
i , ζ

′
i ) >ψ ′

k
(ρ, A′

i−1, B
′
i−1, ζ

′
i−1).

Then we can get an injection

�
�0
ψ (k) ↪→ �

�0
ψ ′
k
, π�0 → π

�0
M,>ψ ′

k

(ψ ′
k, l

′, η′),

such that

π�0 ↪→ ×sk �=i≤m

⎛

⎜

⎝

−Bi · · · −Ai
...

...

−1/2 · · · −(Ai − Bi + 1/2)

⎞

⎟

⎠

︸ ︷︷ ︸

Ii

×
⎛

⎜

⎝

−Bsk · · · −Ask
...

...

−3/2 · · · −(Ask − Bsk + 3/2)

⎞

⎟

⎠

︸ ︷︷ ︸

Isk

� π
�0
M,>ψ ′

k

(ψ ′
k, l

′, η′) (5.4)

as the unique irreducible subrepresentation. The image is characterized by the condition that
for all i ≤ sk ,

• l ′i = 0;
• η′

i = −∏ j<i (−1)A j−Bj+1.

When k �= 0, the second condition can also be simplified as η′
1 = −1.

After applying (4.1) and (3.1) to π
�0
M,>ψ ′

k

(ψ ′
k, l

′, η′), we can embed the right hand side

of (5.4) into an induced representation I. Then I is a subrepresentation of the costandard
representation, obtained by taking induction of the shifted Steinberg representations from the
shifted Speh representations with σ�0 as in Theorem 3.1.

The following corollary is an immediate consequence of the theorem.

Corollary 5.6 In the notations of Theorem 5.5, the complete Langlands parameter (φ, ε) of
π�0 is given as follows

φ = (⊕iφi ) ⊕ φ′ ⊕ (⊕iφ
∨
i )

where φi is the Langlands parameter of Ii , (φ′, ε′) is the complete Langlands parameter of
π

�0
M,>ψ ′

k

(ψ ′
k, l

′, η′), and ε corresponds to ε′ under the natural isomorphism S�0
φ

∼= S�0
φ′ .

We will prove Theorem 5.5 by induction on
∑

i≤m(Bi − 1/2).
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906 B. Xu

5.2.1 Change sign

Suppose
∑

i≤m

(Bi − 1/2) = 0, (5.5)

i.e., Bi = 1/2 for i ≤ m. We change the order >ψ so that

(ρ, Ai , 1/2, ζi ) >ψ (ρ, Ai+1, 1/2, ζi+1)

for 1 ≤ i ≤ m − 1. Then there are two cases.

First case: lm �= 0 or ηm = 1. There exists l ≤ m such that

Am = Am−1 = · · · = Al with Al > Al−1 or l = 1.

Let ψ ′′ be obtained from ψ by replacing all (ρ, Ai , Bi , ζi ) by (ρ, Ai − 1, 1/2,−ζi ) for
l ≤ i ≤ m. Note ψ ′′ also falls into the general case that we consider in the beginning of
Sect. 5. We also change >ψ ′′ by reversing the order for the Jordan blocks with negative ζ .
It can be obtained by moving (ρ, Ai − 1, 1/2,−ζi ) to the front of the last m Jordan blocks,
one by one as i goes from l to m. In particular, it satisfies

(ρ, Ai , Bi , ζi ) >ψ ′′ (ρ, Am − 1, 1/2,−ζm) >ψ ′′ · · · >ψ ′′ (ρ, Al − 1, 1/2,−ζl)

>ψ ′′ (ρ, A j , 1/2, ζ j )

for any i > m and j < l.

Lemma 5.7 There is a bijection
{

π
�0
M,>ψ

(ψ, l, η) ∈ �
�0
ψ | lm �= 0 or ηm = 1

}

→ �
�0
ψ ′′

such that

π
�0
M,>ψ

(ψ, l, η) ↪→ ×m
i=l〈−1/2, · · · ,−Ai 〉 � π

�0
M,>ψ ′′ (ψ

′′, l ′′, η′′),

where (l ′′, η′′) only differs from (l, η) for 1 ≤ i ≤ m.Wewill setηm = −1 if lm = (Am+ 1
2 )/2.

Then

(i < l)

{

l ′′i = li

η′′
i = ηi (−1)(m−l+1)(Ai− 1

2 )

(l ≤ i < m)

{

η′′
l = −ηm(−1)(l−1)(Ai+ 1

2 )

η′′
i+1 = (−1)Ai− 3

2 η′′
i

(l ≤ i ≤ m) l ′′i =
{

lm − 1 if ηm = −1

lm if ηm = 1

Proof If π
�0
M,>ψ

(ψ, l, η) �= 0, then it is necessary that

li = lm and ηi = (−1)Ai+1− 1
2 ηi+1 for l ≤ i < m.

(cf. [10, Lemma 5.5]) Similarly, if π
�0
M,>ψ ′′ (ψ

′′, l ′′, η′′) �= 0, then it is necessary that

l ′′i = l ′′m and η′′
i+1 = (−1)Ai− 3

2 η′′
i for l ≤ i < m.
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So for the bijection, it suffices to show

π
�0
M,>ψ

(ψ, l, η) �= 0 ⇔ π
�0
M,>ψ ′′ (ψ

′′, l ′′, η′′) �= 0

Let ψ� (resp. ψ ′′�) be dominating parameters obtained from ψ (resp. ψ ′′) by changing
(ρ, Ai , Bi , ζi ) to (ρ, Ai + Ti , Bi + Ti , ζi ) for i > m, far away from the remaining ones. By
Proposition B.1 together with the change of order formulas, we know

π
�0
M,>ψ

(ψ�, l, η) �= 0 ⇔ π
�0
M,>ψ ′′ (ψ

′′�, l ′′, η′′) �= 0.

Moreover, we have

π
�0
M,>ψ

(ψ�, l, η) ↪→ ×m
i=l〈−1/2, . . . ,−Ai 〉 � π

�0
M,>ψ ′′ (ψ

′′�, l ′′, η′′). (5.6)

Suppose π
�0
M,>ψ

(ψ, l, η) �= 0, then if we apply ◦i>mJacXi (i decreasing) with

Xi =
⎡

⎢

⎣

Bi + Ti · · · Bi + 1
...

...

Ai + Ti · · · Ai + 1

⎤

⎥

⎦

to the right hand side of (5.6), we should also get something nonzero. We claim the result
must be

×m
i=l〈−1/2, . . . ,−Ai 〉 � ◦i>m JacXi π

�0
M,>ψ ′′ (ψ

′′�, l ′′, η′′),

which shows the nonvanishing of π
�0
M,>ψ ′′ (ψ

′′, l ′′, η′′). Otherwise, since Ai + 1 > Am for

i > m, there exist j > m and t ≥ 1 such that

JacX j,t ◦ ◦ j>i>m JacXi (RHS.(5.6))

contains a term

×m−1
i=l 〈−1/2, . . . ,−Ai 〉 × 〈−1/2, . . . ,−(Am − 1)〉
×JacX−

j,t
◦ ◦ j>i>m JacXi π

�0
M,>ψ ′′ (ψ

′′�, l ′′, η′′) �= 0

where

X j,t :=
⎡

⎢

⎣

Bj + Tj · · · Bj + t
...

...

A j + Tj · · · A j + t

⎤

⎥

⎦

and X−
j,t means that we take away the entry Am from the last column of X j,t . For X

−
j,t to be

well-defined, we must have

Bj + 1 ≤ Bj + t ≤ Am < A j + 1 ≤ A j + t

Letψ ′′
> be obtained fromψ ′′� by changing (ρ, Ai +Ti , Bi +Ti , ζi ) back to (ρ, Ai , Bi , ζi ) for

j > i > m and (ρ, A j + Tj , Bj + Tj , ζi ) to (ρ, A j + t, Bj + t, ζ j ). Then we can conclude

JacBj+t,...,Am−1,Am+1,...,A j+t π
�0
M,>ψ ′′ (ψ

′′
>, l ′′, η′′) �= 0.

It follows JacAm+1π
�0
M,>ψ ′′ (ψ

′′
>, l ′′, η′′) �= 0. But this is impossible, since Bi + Ti > Am + 1

for i > j , and

Bi ≤ Bj < Bj + t ≤ Am < Am + 1
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for j > i > m.
Conversely, if π

�0
M,>ψ ′′ (ψ

′′, l ′′, η′′) �= 0, then

π
�0
M,>ψ ′′ (ψ

′′�, l ′′, η′′) ↪→ ×i>m CXi � π
�0
M,>ψ ′′ (ψ

′′, l ′′, η′′),

where

CXi :=
⎛

⎜

⎝

Bi + Ti · · · Bi + 1
...

...

Ai + Ti · · · Ai + 1

⎞

⎟

⎠ .

Since CXi and 〈−1/2, . . . ,−Am〉 are interchangeable for i > m, it follows from (5.6) that

π
�0
M,>ψ

(ψ, l, η) ↪→ ×m
i=l〈−1/2, . . . ,−Ai 〉 � π

�0
M,>ψ ′′ (ψ

′′, l ′′, η′′).

Hence π
�0
M,>ψ

(ψ, l, η) �= 0. In the meantime, we have also shown the inclusion relation as
well. ��

Second case: lm = 0 and ηm = −1. By [10, Lemma 5.5], it is necessary that li = 0 for
i < m. Therefore,

ηi = (−1)Ai+1− 1
2 ηi+1 for i < m.

We get a new parameter ψ ′ by changing (ρ, Am, 1/2, ζm) to (ρ, Am, 1/2,−ζm), and
(ρ, Ai , 1/2, ζi ) to (ρ, Ai − 1, 1/2,−ζi ) for i < m. After imposing the usual order >ψ ′
on the Jordan blocks of ψ ′, i.e.,

(ρ, Am, 1/2,−ζm) >ψ ′ (ρ, Am−1 − 1, 1/2,−ζi ) >ψ ′ · · · >ψ ′ (ρ, A1 − 1, 1/2,−ζ1),

we would get (l ′, η′) from (l, η) by requiring l ′i = 0 for i ≤ m and

η′
1 = −1 and η′

i+1 = (−1)Ai− 3
2 η′

i for i < m.

Lemma 5.8

π
�0
M,>ψ

(ψ, l, η) ↪→ ×i<m〈−1/2, . . . ,−Ai 〉 � π
�0
M,>ψ ′ (ψ

′, l ′, η′),

Proof Let ψ(k) be the parameter by changing (ρ, Am, 1/2, ζm) to (ρ, Am, 1/2,−ζm), and
(ρ, Ai , 1/2, ζi ) to (ρ, Ai − 1, 1/2,−ζi ) for m − k < i < m. We will also change the order
to >ψ(k) by moving these Jordan blocks to the front of the last m Jordan blocks as i goes
from m − k + 1 to m. The representations inside the corresponding packets are parametrized
by (l(k), η(k)) with respect to >ψ(k) .

Since lm = 0 and ηm = −1,

π
�0
M,>ψ

(ψ, l, η) = π
�0
M,>

ψ(1)
(ψ(1), l(1), η(1))

where (l(1), η(1)) satisfies

η
(1)
i = (−1)Am+ 1

2 ηi for i < m.

Since l(1)i = 0 for i < m, we also have

η
(1)
i = (−1)Ai+1− 1

2 η
(1)
i+1 for i < m − 1.
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We compute

η
(1)
m−1 = (−1)Am+ 1

2 ηm−1 = (−1)Am+ 1
2 (−1)Am− 1

2 ηm = 1.

So we can apply Lemma 5.7. Choose l ≤ m − 1 such that

Am−1 = · · · = Al with Al > Al−1 or l = 1.

Then

π
�0
M,>

ψ(1)
(ψ(1), l(1), η(1)) ↪→ ×m−1

i=l 〈−1/2, . . . ,−Ai 〉
�π

�0
M,>

ψ(m−l+1)
(ψ(m−l+1), l(m−l+1), η(m−l+1)),

To go further, we need to compute

η
(m−l+1)
l−1 = η

(1)
l−1

m−1
∏

i=l

(−1)Ai− 1
2 =

m−1
∏

i=l

(−1)Ai− 1
2

m−1
∏

i=l

(−1)Ai− 1
2 = 1

This means we can repeat the previous process. It is not hard to see that one gets eventually

π
�0
M,>

ψ(m−l+1)
(ψ(m−l+1), l(m−l+1), η(m−l+1)) ↪→ ×i<l〈−1/2, . . . ,−Ai 〉

�π
�0
M,>

ψ(m)
(ψ(m), l(m), η(m))

As a result, we get

π
�0
M,>ψ

(ψ, l, η) ↪→ ×i<m〈−1/2, . . . ,−Ai 〉 � π
�0
M,>

ψ(m)
(ψ(m), l(m), η(m))

By definitionψ(m) = ψ ′. So it remains to show (l(m), η(m)) = (l ′, η′). It is clear that l(m)
i = 0

for i ≤ m. Hence,

η
(m)
i+1 = (−1)Ai− 3

2 η
(m)
i for i < m.

By Lemma 5.7,

η
(m)
1 = −η

(m−k)
k

for maximal k < m such that A1 = Ai for all i ≤ k. From the above discussion, we see
η

(m−k)
k = 1. So η

(m)
1 = −1. Hence, η(m) = η′. ��

Combining the two cases, we can describe �
�0
ψ under the assumption (5.5) as follows.

Consider the maximal sequence of integers

0 = s0 < s1 < · · · < sl = m

such that As j �= As j+1. For any 0 ≤ k ≤ l, we get a new parameter ψ ′
k by replacing all

(ρ, Ai , Bi , ζi ) by (ρ, A′
i , B

′
i , ζ

′
i ) such that: ζ

′
i = + and

• A′
i = Ai , B ′

i = Bi for i > m;
• A′

i = Ai − 1, B ′
i = 1/2 for i ≤ m and i �= sk ;

• A′
i = Ai , B ′

i = 1/2 for i = sk .
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Then we can divide �
�0
ψ into l + 1 classes, i.e.,

�
�0
ψ = �l

k=0 �
�0
ψ (k).

For any 0 ≤ k ≤ l, we can get an injection

�
�0
ψ (k) ↪→ �

�0
ψ ′
k
, π�0 → π

�0
M,>ψ ′

k

(ψ ′
k, l

′, η′),

such that

π�0 ↪→ ×i≤m and i �=sk 〈−1/2, . . . ,−Ai 〉 � π
�0
M,>ψ ′

k

(ψ ′
k, l

′, η′). (5.7)

The image is characterized by the condition that for all i ≤ sk ,

• l ′i = 0;

• η′
i = −∏ j<i (−1)A j+ 1

2 .

Because of the first condition, the second condition can be simplified as η′
1 = −1 when

k �= 0.
After applying (4.1) and (3.1) to π

�0
M,>ψ ′

k

(ψ ′
k, l

′, η′), we get

π�0 ↪→ ×i≤m and i �=sk 〈−1/2, . . . ,−Ai 〉 � I ′ (5.8)

and

I ′:= ×n
i=1

⎛

⎜

⎝

B ′
i · · · −A′

i
...

...

B ′
i + l ′i − 1 · · · −(A′

i − l ′i + 1)

⎞

⎟

⎠

︸ ︷︷ ︸

I Ii

× × some j

⎛

⎜

⎝

B ′
j+1 + l ′j+1 · · · −(A′

j − l ′j )
...

...

t ′j − δ j · · · −(t ′j + δ j )

⎞

⎟

⎠

︸ ︷︷ ︸

Ĩ j

� σ�0 (5.9)

Note if 〈x, . . . ,−y〉 from I Ii or Ĩ j has shift less than that of 〈−1/2, . . . ,−Ai 〉, then it is
necessary that y ≥ Ai . So they are interchangeable (cf. [10, Corollary 4.3]). This shows
the induced representation in (5.8) is a subrepresentation of the costandard representation
as we want. As a consequence, the induced representation in (5.8) has a unique irreducible
subrepresentation. Therefore, the same is true for that of (5.7).

5.2.2 Resolution

Now we can complete the proof of Theorem 5.5. By Lemma 5.1 and induction assumption,
we have

π�0 ↪→ ×s
i=l 〈−Bi , . . . ,−Ai 〉 � Is (5.10)
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and

Is := ×s
i=l

⎛

⎜

⎝

−(Bi − 1) · · · −(Ai − 1)
...

...

−1/2 · · · −(Ai − Bi + 1/2)

⎞

⎟

⎠

︸ ︷︷ ︸

I I Ii

× ×{i<l or m≥i>s}\{sk }

⎛

⎜

⎝

−Bi · · · −Ai
...

...

−1/2 · · · −(Ai − Bi + 1/2)

⎞

⎟

⎠

︸ ︷︷ ︸

I I Ii

×
⎛

⎜

⎝

−Bsk · · · −Ask
...

...

−3/2 · · · −(Ask − Bsk + 3/2)

⎞

⎟

⎠

︸ ︷︷ ︸

I I Isk

� I ′

if s �= sk , and

Is := ×s−1
i=l

⎛

⎜

⎝

−(Bi − 1) · · · −(Ai − 1)
...

...

−1/2 · · · −(Ai − Bi + 1/2)

⎞

⎟

⎠

︸ ︷︷ ︸

I I Ii

× ×i<l or m≥i>s

⎛

⎜

⎝

−Bi · · · −Ai
...

...

−1/2 · · · −(Ai − Bi + 1/2)

⎞

⎟

⎠

︸ ︷︷ ︸

I I Ii

×
⎛

⎜

⎝

−(Bsk − 1) · · · −(Ask − 1)
...

...

−3/2 · · · −(Ask − Bsk + 3/2)

⎞

⎟

⎠

︸ ︷︷ ︸

I I Isk

� I ′

if s = sk . Here I ′ is defined as in (5.9). Moreover, Is is a subrepresentation of the costandard
representation, obtained by taking induction of the shifted Steinberg representations from
the shifted Speh representations with σ�0 . We claim the induced representation in (5.10) is
a subrepresentation of the costandard representation as we want.

To prove the claim, we need to show any shifted Steinberg representation above, whose
shift is less than that of 〈−Bs, . . . ,−As〉, can be moved to the front. There are two cases.

(1) If it is in the form 〈−x, . . . ,−y〉 from I I Ii , then by our choice of s,
{

x ≥ Bs if y ≤ As,

x = 1/2 < Bs if y > As .

In either case, 〈−x, . . . ,−y〉 and 〈−Bs, . . . ,−As〉 are interchangeable.
(2) If it is in the form 〈x, . . . ,−y〉 from I Ii or Ĩ j in (5.9), then we have y ≥ As . Hence,

〈x, . . . ,−y〉 and 〈−Bs, . . . ,−As〉 are interchangeable (cf. [10, Corollary 4.3]).
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912 B. Xu

This finishes the proof of our claim. As a consequence, the induction in (5.10) has a unique
irreducible subrepresentation. So we can combine 〈Bi , . . . ,−Ai 〉 with I I Ii for l ≤ i ≤ s,
and this gives (5.4).

6 Comments on the general case

Let ψ be an Arthur parameter of G(F) (cf. (1.2)) with the assumption that all bi = b. Note
we do not assume (1.5) here. Let ψnp be any representation of WF × SL(2, C) × SL(2, C)

such that

ψ = ψnp ⊕ ψp ⊕ ψ∨
np,

where ψ∨
np is the dual of ψnp . Mœglin [5, Theorem 6] proved that there is a bijection

�
�0
ψ → �

�0
ψp

, π�0 → τ�0 .

such that

π�0 =
(

×(ρi ,ai ,bi )∈Jord(ψnp) Sp(St(ρi , ai ), bi )
)

� τ�0

We can embed τ�0 into a costandard representation,which is an induction of shifted Steinberg
representations and a tempered representation of a group of the same type asG(F). Note these
shifted Steinberg representations are interchangeable with the ones from Sp(St(ρi , ai ), bi )
for (ρi , ai , bi ) ∈ Jord(ψnp) by the parity condition. So the complete Langlands parameter
(φ, ε) of π�0 will be given as

φ = (⊕iφi ) ⊕ φ′ ⊕ (⊕iφ
∨
i )

where φi is the Langlands parameter of Sp(St(ρi , ai ), bi ) for (ρi , ai , bi ) ∈ Jord(ψnp),
(φ′, ε′) is the complete Langlands parameter of τ�0 and ε corresponds to ε′ under the canon-
ical isomorphism S�0

φ
∼= S�0

φ′ .
At last, we can extend our main results (Theorem 1.1, 1.2, 1.3) toψp by applying them to

each ρ appearing in Jord(ψp). For the proofs, it suffices tomodify the induction assumptions
in the proofs of Theorems 3.1, 4.1, 5.3, 5.5 by considering all Jordan blocks ofψp , and apply
Theorem A.3 for the nonvanishing result in the special case (cf. Sect. 3, 4).

Appendix A: A nonvanishing result

In this appendix, we will prove the following nonvanishing result. Letψ be an Arthur param-
eter of G(F) (cf. (1.2)) under the Assumption (1.5). Let >ψ be an admissible order and we
index the Jordan blocks in Jord(ψ) such that

(ρ, Ai+1, Bi+1, ζi+1) >ψ (ρ, Ai , Bi , ζi ).

Let

J := ∪n
i=1 {(ρ, Ai , Bi , ζi )} ⊆ Jord(ψ)

Suppose

Ai+1 ≥ Ai , Bi+1 ≥ Bi , ζi+1 = ζi for i < n
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and

J c � J , J c has discrete diagonal restriction,

where J c:=Jord(ψ)\J . Then we have the following theorem.

Theorem A.1 π
�0
M,>ψ

(ψ, l, η) �= 0 if and only if the following condition are satisfied for all
i < n:

{

ηi+1 = (−1)Ai−Bi ηi ⇒ Ai+1 − li+1 ≥ Ai − li , Bi+1 + li+1 ≥ Bi + li ,

ηi+1 �= (−1)Ai−Bi ηi ⇒ Bi+1 + li+1 > Ai − li
(A.1)

Proof The necessity of the condition follows from [10, Lemma 5.5]. So it remains to prove
its sufficiency. We will proceed by induction on |J |. If |J | = 2, this has been proved in [10,
Proposition 5.2].

Suppose |J | = m+1.We first “expand” [Bm+1, Am+1] to [B∗
m+1, A

∗
m+1] (cf. [10, Section

7.2]), so that B∗
m+1 = Bm . By [10, Proposition 7.4], we know π

�0
M,>ψ

(ψ, l, η) �= 0 if and
only if

π
�0
M,>ψ

(

ψ−, l−, η−; (ρ, A∗
m+1, B

∗
m+1, l

∗
m+1, ηm+1, ζm+1)

)

�= 0 (A.2)

where ψ− is defined by

Jord(ψ−) = Jord(ψ)\{(ρ, Am+1, Bm+1, ζm+1)}
and

l∗m+1 = lm+1 + (Bm+1 − Bm).

It is easy to check that the condition (A.1) holds for π
�0
M,>ψ

(ψ, l, η) if and only if it holds for
the representation in (A.2). So we will assume Bm+1 = Bm from now on.

Next we can “pull” [Bm+1, Am+1], [Bm, Am] (cf. [10, 7.1]), so that they are far away
from ∪i<m{(ρ, Ai , Bi , ζi )}. By [10, Proposition 7.1, 7.3], we know π

�0
M,>ψ

(ψ, l, η) �= 0 if
the following representations are all nonzero. So it suffices to show each of them is nonzero
by our induction assumption. Let ψ− be defined by

Jord(ψ−) = Jord(ψ)\{(ρ, Am+1, Bm+1, ζm+1), (ρ, Am, Bm, ζm)}.
(1) Show

π
�0
M,>ψ

(

ψ−, l−, η−; (ρ, Am+1 + T , Bm+1 + T , lm+1, ηm+1, ζm+1), (ρ, Am

+ T , Bm + T , lm, ηm, ζm)
)

�= 0 (A.3)

for some T . Let J− = Jord(ψ−). Then we will choose T so that J c− � J−. To make
J c− having discrete diagonal restriction, we will shift [Bm+1 + T , Am+1 + T ] further
to [Bm+1 + T ′, Am+1 + T ′] such that Bm+1 + T ′ > Am + T . Then by our induction
assumption,

π
�0
M,>ψ

(

ψ−, l−, η−; (ρ, Am+1 + T ′, Bm+1 + T ′, lm+1, ηm+1, ζm+1), (ρ, Am

+T , Bm + T , lm, ηm, ζm)
)

�= 0
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914 B. Xu

Let ψ� be the dominating parameter with discrete diagonal restriction, obtained by
shifting [Bi , Ai ] to [Bi + Ti , Ai + Ti ] with Ai + Ti < Bm + T for all 1 ≤ i ≤ m − 1.
Then

π
�0
M,>ψ

(ψ�, l, η) ↪→ ×i<m

⎛

⎜

⎝

ζi (Bi + Ti ) · · · ζi (Bi + 1)
...

...

ζi (Ai + Ti ) · · · ζi (Ai + 1)

⎞

⎟

⎠� π
�0
M,>ψ

(

ψ−, l−, η−;

(ρ, Am+1 + T ′, Bm+1 + T ′, lm+1, ηm+1, ζm+1), (ρ, Am + T , Bm + T , lm, ηm, ζm)
)

By [10, Proposition 5.2],

Jac(ρ,Am+1+T ′,Bm+1+T ′,ζm+1)→(ρ,Am+1+T ,Bm+1+T ,ζm+1)π
�0
M,>ψ

(ψ�, l, η) �= 0.

So after we apply the same Jacquet functor to the full induced representation above, we
should get something nonzero. Since Bm+1 + T + 1 > Ai + Ti for i < m, the result is

×i<m

⎛

⎜

⎝

ζi (Bi + Ti ) · · · ζi (Bi + 1)
...

...

ζi (Ai + Ti ) · · · ζi (Ai + 1)

⎞

⎟

⎠

� Jac(ρ,Am+1+T ′,Bm+1+T ′,ζm+1)→(ρ,Am+1+T ,Bm+1+T ,ζm+1)

π
�0
M,>ψ

(

ψ−, l−, η−; (ρ, Am+1 + T ′, Bm+1 + T ′, lm+1, ηm+1, ζm+1),

(ρ, Am + T , Bm + T , lm, ηm, ζm)
)

�= 0

This shows (A.3).
(2) Show

π
�0
M,>ψ

(

ψ−, l−, η−; (ρ, Am+1 + T , Bm+1 + T , lm+1, ηm+1, ζm+1), (ρ, Am , Bm , lm , ηm , ζm)
)

�= 0

(A.4)

for some T . Let J− = Jord(ψ−) � {(ρ, Am, Bm, ζm)}. We can choose T so that J c− �
J−. Then the statement follows from our induction assumption immediately.

(3) Show

π
�0
M,>′

ψ

(

ψ−, l ′−, η′
−; (ρ, Am+1, Bm+1, l

′
m+1, η

′
m+1, ζm+1),

(ρ, Am + T , Bm + T , l ′m, η′
m, ζn−1)

)

�= 0 (A.5)

for some T , where >′
ψ is obtained by switching (ρ, Am+1,

Bm+1, ζm+1) with (ρ, Am, Bm, ζm), and (l ′, η′) = S+
m+1(l, η) (cf. [10, Section 6.1])

given by the change of order formula. Let J− = Jord(ψ−)�{(ρ, Am+1, Bm+1, ζm+1)}.
We can choose T so that J c− � J−. Then the statement follows from our induction
assumption again, provided we can verify the representation in (A.5) satisfies (A.1).
Indeed, we only need to show
{

η′
m+1 = (−1)Am−1−Bm−1ηm−1 ⇒ Am+1 − l ′m+1 ≥ Am−1 − lm−1, Bm+1 + l ′m+1 ≥ Bm−1 + lm−1,

η′
m+1 �= (−1)Am−1−Bm−1ηm−1 ⇒ Bm+1 + l ′m+1 > Am−1 − lm−1.

(A.6)

We leave it to the next lemma. ��
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Lemma A.2 (A.6) holds.

Proof We divide into three cases according to the change of order formula.

(1) If ηm+1 �= (−1)Am−Bmηm , then
{

η′
m+1 = ηm

l ′m+1 = (Bm + lm) − (Am − lm) + lm+1 − 1

We get

Bm+1 + l ′m+1 = (Bm+1 + lm+1) + (Bm + lm) − (Am − lm) − 1

Am+1 − l ′m+1 = (Am+1 − lm+1) + (Am − lm) − (Bm + lm) + 1

By (A.1), we have

Bm+1 + lm+1 > Am − lm .

(a) When ηm �= (−1)Am−1−Bm−1ηm−1, then η′
m+1 �= (−1)Am−1−Bm−1ηm−1. We need to

show

Bm+1 + l ′m+1 > Am−1 − lm−1.

By (A.1), we have

Bm + lm > Am−1 − lm−1.

Then

Bm+1 + l ′m+1 ≥ Bm + lm > Am−1 − lm−1.

(b) When ηm = (−1)Am−1−Bm−1ηm−1, then η′
m+1 = (−1)Am−1−Bm−1ηm−1. We need to

show
{

Bm+1 + l ′m+1 ≥ Bm−1 + lm−1

Am+1 − l ′m+1 ≥ Am−1 − lm−1

By (A.1), we have
{

Bm + lm ≥ Bm−1 + lm−1

Am − lm ≥ Am−1 − lm−1

Then

Bm+1 + l ′m+1 ≥ Bm + lm ≥ Bm−1 + lm−1

Am+1 − l ′m+1 ≥ Am+1 − lm+1 ≥ Am − lm ≥ Am−1 − lm−1

(2) If ηm+1 = (−1)Am−Bmηm and

lm+1 − lm < (Am+1 − Bm+1)/2 − (Am − Bm) + lm,

then
{

η′
m+1 �= ηm

l ′m+1 = (Am − lm) − (Bm + lm) + lm+1 − 1
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We get

Bm+1 + l ′m+1 = (Bm+1 + lm+1) − (Bm + lm) + (Am − lm) + 1

Am+1 − l ′m+1 = (Am+1 − lm+1) − (Am − lm) + (Bm + lm) − 1

By (A.1), we have
{

Bm+1 + lm+1 ≥ Bm + lm
Am+1 − lm+1 ≥ Am − lm

(a) When ηm �= (−1)Am−1−Bm−1ηm−1, then η′
m+1 = (−1)Am−1−Bm−1ηm−1. We need to

show
{

Bm+1 + l ′m+1 ≥ Bm−1 + lm−1

Am+1 − l ′m+1 ≥ Am−1 − lm−1

By (A.1), we have

Bm + lm > Am−1 − lm−1.

Then

Bm+1 + l ′m+1 ≥ (Am − lm) + 1 ≥ (Am−1 − lm−1) + 1 ≥ Bm−1 + lm−1

Am+1 − l ′m+1 ≥ (Bm + lm) − 1 ≥ Am−1 − lm−1

(b) When ηm = (−1)Am−1−Bm−1ηm−1, then η′
m+1 �= (−1)Am−1−Bm−1ηm−1. We need to

show

Bm+1 + l ′m+1 > Am−1 − lm−1

By (A.1), we have
{

Bm + lm ≥ Bm−1 + lm−1

Am − lm ≥ Am−1 − lm−1

Then

Bm+1 + l ′m+1 ≥ (Am − lm) + 1 ≥ (Am−1 − lm−1) + 1 > Am−1 − lm−1

(3) If ηm+1 = (−1)Am−Bmηm and

lm+1 − lm ≥ (Am+1 − Bm+1)/2 − (Am − Bm) + lm,

then
{

η′
m+1 = ηm

l ′m+1 = (Am+1 − Bm+1) − lm+1 − (Am − lm) + (Bm + lm)

We get

Bm+1 + l ′m+1 = (Am+1 − lm+1) − (Am − lm) + (Bm + lm)

Am+1 − l ′m+1 = (Bm+1 + lm+1) − (Bm + lm) + (Am − lm)

By (A.1), we have
{

Bm+1 + lm+1 ≥ Bm + lm
Am+1 − lm+1 ≥ Am − lm
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(a) When ηm �= (−1)Am−1−Bm−1ηm−1, then η′
m+1 �= (−1)Am−1−Bm−1ηm−1. We need to

show

Bm+1 + l ′m+1 > Am−1 − lm−1

By (A.1), we have

Bm + lm > Am−1 − lm−1.

Then

Bm+1 + l ′m+1 ≥ Bm + lm > Am−1 − lm−1

(b) When ηm = (−1)Am−1−Bm−1ηm−1, then η′
m+1 = (−1)Am−1−Bm−1ηm−1. We need to

show
{

Bm+1 + l ′m+1 ≥ Bm−1 + lm−1

Am+1 − l ′m+1 ≥ Am−1 − lm−1

By (A.1), we have
{

Bm + lm ≥ Bm−1 + lm−1

Am − lm ≥ Am−1 − lm−1

Then

Bm+1 + l ′m+1 ≥ Bm + lm ≥ Bm−1 + lm−1

Am+1 − l ′m+1 ≥ Am − lm ≥ Am−1 − lm−1

��
More generally, we can drop the Assumption (1.5), but only assume ψ = ψp . Suppose

for each ρ appearing in Jord(ψ), we have the same setup as in Theorem A.1. Then we have

Theorem A.3 π
�0
M,>ψ

(ψ, l, η) �= 0 if and only if the condition (A.1) is satisfied for each ρ.

Proof We can apply the arguments of the proof of Theorem A.1 to each ρ one by one, which
reduces it to the case that |J | = 2 for eachρ. Then this case follows from [10, Proposition 5.3].

��

Appendix B. Change sign

In this appendix, we would like to extend [10, Proposition 7.6] as follows. Let ψ be an
Arthur parameter of G(F) such that ψ = ψp . We choose an admissible order >ψ and fix
an irreducible unitary supercuspidal representation ρ of GL(dρ, F). Let us index the Jordan
blocks in Jordρ(ψ) such that

(ρ, Ai+1, Bi+1, ζi+1) >ψ (ρ, Ai , Bi , ζi ).

Suppose there exists n such that for i > n,

(ρ, Ai , Bi , ζi ) � ∪n
j=1{(ρ, A j , Bj , ζ j )}.

Moreover, there exists 1 ≤ m ≤ n such that

Am = · · · = A1 ≥ Ai , Bm = · · · = B1 = 1/2, ζm = · · · = ζ1 �= ζi
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918 B. Xu

for m < i ≤ n. We introduce another parameter ψ∗ by changing (ρ, Ai , Bi , ζi ) to (ρ, Ai +
1, Bi ,−ζi ) for i ≤ m. For any (l, η), such that

li+1 = li , ηi+1 = (−1)Ai− 1
2 ηi for i < m, (B.1)

we can associate it with (l∗, η∗), defined as follows. For i > m,

l∗i = li , η∗
i = ηi .

For i < m,

l∗i+1 = l∗i , η∗
i+1 = (−1)Ai+ 1

2 η∗
i . (B.2)

Then it remains to specify l∗1 , η∗
1, which are given by

η∗
1 = −η1, l∗1 =

{

l1 + 1 if η1 = 1

l1 if η1 = −1

In case l1 = (A1 + 1
2 )/2, we fix η1 = −1.

Proposition B.1 π
�0
M,>ψ

(ψ, l, η) �= 0 if and only if π�0
M,>ψ

(ψ∗, l∗, η∗) �= 0. Moreover,

π
�0
M,>ψ

(ψ∗, l∗, η∗) ↪→ ×m
i=1〈−ζi1/2, . . . ,−ζi (Ai + 1)〉 � π

�0
M,>ψ

(ψ, l, η) (B.3)

Remark B.2 [10, Proposition 7.6] settles the case when m = 1.

Proof As in the proof of [10, Proposition 7.6], we can reduce it to the case that

m = n and Jord(ψ)\ ∪n
i=1 {(ρ, Ai , Bi , ζi )} has discrete diagonal restriction.

Because of the conditions (B.1) and (B.2), we have

π
�0
M,>ψ

(ψ, l, η) �= 0 and π
�0
M,>ψ

(ψ∗, l∗, η∗) �= 0

by Theorem A.3. So we only need to show (B.3), and we will proceed by induction on n.
Letψ∗

> be obtained fromψ∗ by changing (ρ, An +1, 1/2,−ζn) to (ρ, An +1+Tn, 1/2+
Tn,−ζn) for Tn sufficiently large. Then by our induction assumption, we have

π
�0
M,>ψ

(ψ∗
>, l∗, η∗) ↪→ ×n−1

i=1 〈−ζi1/2, . . . ,−ζi (Ai + 1)〉 � π
�0
M,>ψ

(ψ(n)
> , l(n), η(n))

where ψ
(n)
> is obtained from ψ∗

> by changing (ρ, Ai + 1, 1/2,−ζi ) back to (ρ, Ai , 1/2, ζi )
for 1 ≤ i < n. Moreover,

l(n)
i = li , η

(n)
i = ηi for i < n,

and

l(n)
i = l∗i , η

(n)
i = η∗

i for i ≥ n.

Then we claim

π
�0
M,>ψ

(ψ(n)
> , l(n), η(n)) ↪→

⎛

⎜

⎝

−ζn(1/2 + Tn) · · · −ζn1/2
...

...

−ζn(An + 1 + Tn) · · · −ζn(An + 1)

⎞

⎟

⎠

︸ ︷︷ ︸

CXn

�π
�0
M,>ψ

(ψ, l, η).

(B.4)
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where

Xn :=
⎡

⎢

⎣

−ζn(1/2 + Tn) · · · −ζn1/2
...

...

−ζn(An + 1 + Tn) · · · −ζn(An + 1)

⎤

⎥

⎦

If this is the case, then

π�0
>ψ

(ψ∗
>, l∗, η∗) ↪→ ×n−1

i=l 〈−ζi1/2, . . . ,−ζi (Ai + 1)〉 × CXn � π
�0
M,>ψ

(ψ, l, η)

∼= CXn × ×n−1
i=l 〈−ζi1/2, . . . ,−ζi (Ai + 1)〉 � π

�0
M,>ψ

(ψ, l, η),

from which (B.3) follows.
We still need to show the claim (B.4). Letψ(n) be obtained fromψ

(n)
> bymoving (ρ, An +

1+Tn, 1/2+Tn,−ζn) back to (ρ, An +1, 1/2,−ζn). Suppose π
�0
M,>ψ

(ψ(n), l(n), η(n)) �= 0,
then

π
�0
M,>ψ

(ψ(n)
> , l(n), η(n)) ↪→

⎛

⎜

⎝

−ζn(1/2 + Tn) · · · −ζn3/2
...

...

−ζn(An + 1 + Tn) · · · −ζn(An + 2)

⎞

⎟

⎠� π
�0
M,>ψ

(ψ(n), l(n), η(n)).

(B.5)

To show the nonvanishing of π
�0
M,>ψ

(ψ(n), l(n), η(n)), we need to switch to a new order >′
ψ

by moving (ρ, An + 1, 1/2,−ζn) to the last position. Then

π
�0
M,>ψ

(ψ(n), l(n), η(n)) = π
�0
M,>′

ψ

(ψ(n), l
′(n), η

′(n)),

where

l
′(n)
i = l(n)

i , η
′(n)
i = η

(n)
i for i > n,

and

l
′(n)
i = l(n)

i , η
′(n)
i = (−1)An−1/2η

(n)
i for i < n,

and

l
′(n)
n = l∗1 , η

′(n)
n = η∗

1 .

Let ψ
(n)
� be a dominating parameter for ψ(n) with respect to >′

ψ , obtained by changing

(ρ, Ai , Bi , ζi ) to (ρ, Ai + Ti , Bi + Ti , ζi ) for i < n. We also require that ψ(n)
� has discrete

diagonal restriction. Then by [10, Proposition 7.6],

π
�0
M,>′

ψ

(ψ
(n)
� , l

′(n), η
′(n)) ↪→ 〈−ζn1/2, . . . ,−ζn(An + 1)〉 � π

�0
M,>′

ψ

(ψ�, l ′, η′),

whereψ� is obtained fromψ
(n)
� by changing (ρ, An+1, 1/2,−ζn) back to (ρ, An, 1/2, ζn).

Note

l ′i = l
′(n)
i , η′

i = η
′(n)
i for i �= n,

and

l ′n = l1, η′
n = η1.
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It is easy to check by the change of order formula that

π
�0
M,>ψ

(ψ, l, η) = π
�0
M,>′

ψ

(ψ, l ′, η′).

In particular, the right hand side is nonzero. Therefore,

π
�0
M,>′

ψ

(ψ�, l ′, η′) ↪→ ×n−1
i=1

⎛

⎜

⎝

ζi (1/2 + Ti ) · · · ζi3/2
...

...

ζi (Ai + Ti ) · · · ζi (Ai + 1)

⎞

⎟

⎠� π
�0
M,>′

ψ

(ψ, l ′, η′)

Combined with the previous inclusion, we get

π
�0
M,>′

ψ

(ψ
(n)
� , l

′(n), η
′(n)) ↪→ 〈−ζn1/2, . . . ,−ζn(An + 1)〉×

×n−1
i=1

⎛

⎜

⎝

ζi (1/2 + Ti ) · · · ζi3/2
...

...

ζi (Ai + Ti ) · · · ζi (Ai + 1)

⎞

⎟

⎠� π
�0
M,>′

ψ

(ψ, l ′, η′)

∼= ×n−1
i=1

⎛

⎜

⎝

ζi (1/2 + Ti ) · · · ζi3/2
...

...

ζi (Ai + Ti ) · · · ζi (Ai + 1)

⎞

⎟

⎠

× 〈−ζn1/2, . . . ,−ζn(An + 1)〉 � π
�0
M,>′

ψ

(ψ, l ′, η′)

Consequently, π�0
M,>′

ψ

(ψ(n), l
′(n), η

′(n)) �= 0 and

π
�0
M,>′

ψ

(ψ(n), l
′(n), η

′(n)) ↪→ 〈−ζn1/2, . . . ,−ζn(An + 1)〉 � π
�0
M,>′

ψ

(ψ, l ′, η′).

Substitute the above expression into (B.5), we obtain

π
�0
M,>ψ

(ψ(n)
> , l(n), η(n)) ↪→

⎛

⎜

⎝

−ζn(1/2 + Tn) · · · −ζn3/2
...

...

−ζn(An + 1 + Tn) · · · −ζn(An + 2)

⎞

⎟

⎠

× 〈−ζn1/2, . . . ,−ζn(An + 1)〉 � π
�0
M,>ψ

(ψ, l, η).

Note the Jordan blocks in Jordρ(ψ) satisfies Ai < An + 1 for i ≤ n, and Bi > An + 1+ Tn
for i > n. If we apply JacXn to the right hand side of the above expression, we can only get
π

�0
M,>ψ

(ψ, l, η). This means the left hand side is the unique irreducible subrepresentation of
the right hand side. Therefore,

π
�0
M,>ψ

(ψ(n)
> , l(n), η(n)) ↪→ CXn � π

�0
M,>ψ

(ψ, l, η),

which is exactly (B.4). This finishes our proof. ��
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