
Dynamic Car Dispatching and Pricing: Revenue and Fairness for Ridesharing
Platforms

Zishuo Zhao1 , Xi Chen2 , Xuefeng Zhang1 and Yuan Zhou3∗

1University of Illinois Urbana-Champaign,
2New York University,

3Yau Mathematical Sciences Center, Tsinghua University
zishuoz2@illinois.edu, xc13@stern.nyu.edu, xuefeng8@illinois.edu, yuan-zhou@tsinghua.edu.cn

Abstract

A major challenge for ridesharing platforms is to
guarantee profit and fairness simultaneously, espe-
cially in the presence of misaligned incentives of
drivers and riders. We focus on the dispatching-
pricing problem to maximize the total revenue
while keeping both drivers and riders satisfied. We
study the computational complexity of the prob-
lem, provide a novel two-phased pricing solution
with revenue and fairness guarantees, extend it to
stochastic settings and develop a dynamic (a.k.a.,
learning-while-doing) algorithm that actively col-
lects data to learn the demand distribution during
the scheduling process. We also conduct extensive
experiments to demonstrate the effectiveness of our
algorithms.

1 Introduction
Ridesharing is a novel form of sharing economy that utilizes
mobile apps to match drivers and riders to allow riders to take
trips conveniently and make profits for drivers. Compared to
traditional taxi platforms, ridesharing platforms enable riders
to put orders on the system in advance of the trip for drivers to
take, so that the system can optimally plan the rides to make
it more efficient. Previous studies on planning algorithms for
ridesharing platforms adopt a variety of methodologies in-
cluding combinatorial optimization [Bei and Zhang, 2018],
reinforcement learning [Li et al., 2019], or both [Qin et al.,
2020]. However, planning trips only in the centralized way
does not guarantee that each individual driver and rider has
the incentive to obey the plan, which calls for efficient and
fair pricing mechanisms so that following the plan will be
“happy” for each party and maximize their utilities.

The pricing mechanism for taxi platforms depends on dis-
tance and waiting time, but it is too simple to either well
represent the cost of drivers or match the supply and de-
mand, which may result in dissatisfaction on both sides and
lead to refusal of trips. For example, a rider wants to take an
important trip with a short distance and a low price. How-
ever, there is a traffic jam and it may take a long time for

∗Corresponding Author

the driver to cover the trip. This situation will create an op-
portunity cost that discourages the driver to accept the order.
Were the charged price higher, the rider would probably not
mind the slight increase of cost but the driver will be satisfied
to accept the trip, which benefits both parties. However, we
should be careful about the price adjustment: if two friends
take the same trip, but at different prices, the one who takes
the trip with a higher price may “envy” the other and will be
dissatisfied with the platform. This issue may also apply to
the drivers: if two drivers initially at the same time and lo-
cation are assigned different trips that earn different profits,
the driver with lower profit would also be dissatisfied with
the platform. Therefore, to make the platform satisfied by
each agent, the algorithm should be “envy-free” (as in Def-
inition 5). Another important property is “subgame-perfect
Nash equilibrium”, which means that each driver is assigned
with a plan, following which he/she can get the best utility
among all alternative actions given others’ actions are fixed,
so that no driver has the incentive to deviate from the plan (as
in Definition 4).

In this paper, we propose a fairness-aware algorithmic
framework for dynamic car dispatching and pricing, which
consists of the following three-fold contributions:

1. We study the computational complexity of the task of
dispatching and pricing for total revenue maximization,
propose a versatile generalized network flow model for
the task, and provide theoretical guarantees (Section 3).

2. We propose a novel two-phase pricing mechanism that
decouples and sets different prices on drivers’ and rid-
ers’ sides, which can adapt to situations where the
drivers’ and riders’ interests misalign1 and guarantee
fairness for both parties (Section 4).

3. We consider the stochastic nature of ridesharing orders
and study the online learning setting. We natural ex-
tend the model to the stochastic setting (Section 5), en-
abling the use of Thompson sampling-based algorithm
to learn the valuation distributions from the partial in-
formation given by the riders’ responses, and balance
the exploration-exploitation trade-off (Appendix E).

Finally, in Section 6, we perform extensive experimental eval-
uations of our assumptions and algorithms in the real-world

1Please see the illustrative example in Appendix C.

datasets and demonstrate the effectiveness of our methods.
We have also shown that our algorithm runs in polynomial

time. Please refer to Section 7 for detailed complexity analy-
sis.

Related Works. There are several related works in the ex-
isting literature. Bei and Zhang; Qin et al.; Wang et al. [2018;
2020; 2018] study how to dispatch the drivers efficiently
in a centralized way, and Hrnčı́ř et al.; Li et al. [2015;
2019] study the dispatching problem via multiagent systems,
but they do not consider pricing which is essential for the ap-
plication in platforms. Riquelme et al. [2015] study optimal
pricing via queue theory, but they assume a single location,
which is too simple for application. Castillo et al. [2017] dis-
cuss the phenomenon of “wild goose chase” in which drivers
spent most time driving to take a distant order in unbalanced
supply and demand, and propose the method of adjusting
price to avoid its detriment to efficiency, but they do not con-
sider fairness. Bimpikis et al. [2019] look into the effects of
pricing to supply-demand balance, revenue and consumers’
surplus, but adopt an over-simplified model of n pairwise
equidistant locations, which is not even geometrically pos-
sible for large n. Yan et al. [2018] also provide an algorithm
for dynamic matching and pricing, but the matching and pric-
ing algorithms are decoupled, making the performance sub-
optimal. In particular, the very recent work [Ma et al., 2020],
which shares a similar motivation as our work, studies how
to maximize social welfare, i.e. the summation of riders’ val-
uations minus drivers’ costs among all trips, via an bidding-
based dispatching and pricing algorithm. In that paper, each
rider should bid a maximally acceptable price for them, and
the truthful mechanism guarantees that it is in each rider’s in-
terest to report their true valuation. However, there are some
gaps from their mechanism to the reality. First of all, it is
not practical for riders to bid their valuation like an auction.
Second, the mechanism maximizes total social welfare, not
drivers’ revenue, but ride-sharing platforms are indeed inter-
ested in their profits. Also, it assumes that all future orders is
known at the beginning, which is not realistic. In contrast, our
algorithm optimizes the total revenue via dynamically learn-
ing the order distribution from the riders’ responses on our
carefully designed prices.

2 Preliminaries
We assume the service zone is divided into a family L of dis-
crete locations, and the planning horizon is a family T of dis-
crete time slots. Therefore, there are |L| · |T | spatiotemporal
states, denoted by S = L× T .

We also assume that the travelling time from one state
s = (l, t) ∈ S to another location s′ is deterministically de-
fined by the known function δ(l, l′, t) ∈ Z+. We call each
pair of the spatiotemporal states (s, s′) a spatiotemporal arc.
For each s = (l, t) and s′ = (l′, t′), we say the arc (s, s′) is
admissible if t′ ≥ t+ δ(l, l′, t). We denote by Q the set of all
admissible arcs.

Each admissible arc (s, s′) ∈ Q is associated with a known
deterministic cost c(s, s′) which is incurred to any driver that
drives along this arc. The order of the i-th rider is described
by an admissible arc (si, s

′
i) ∈ Q and a valuation vi which is

the maximum amount the rider would like to pay for the ride.
Since vi is not revealed to the ridesharing platform, we call
oi = (si, s

′
i, vi) the i-th latent order, and denoteR = {oi,∀i}

the set of latent orders.
The task of the scheduling algorithm for the ride-sharing

platform involves the decision of a rider-side pricing function
p : S × S → [0,+∞) (which has to be independent of the
rider to ensure envy-freeness). For each rider i with latent or-
der oi = (si, s

′
i, vi), the scheduling algorithm offers the price

p(si, s
′
i). The rider only accepts the offer if vi ≥ p(si, s

′
i) in

which case the platform receives p(si, s′i) as income. Serving
the order also incurs the driver cost according to c(·, ·) along
the arcs. After all trips, the drivers will leave the platform.

The first goal of the scheduling algorithm is to maximize
the total revenue which is defined to be the total income (col-
lected from the riders) minus the total cost (incurred by the
drivers). Then, the second goal of the scheduling algorithm is
to compute the driver-side payment function y : S × S →
[0,+∞) to distribute the income to the drivers in a subgame-
perfect and envy-free manner. (Note that the payment func-
tion also has to be independent of the drivers to ensure envy-
freeness.)

The above-described scheduling problem involves the
complex optimization of multiple sets of decision variables.
The unknown latent order set introduces further challenges to
the task. To approach this complex problem, we will first con-
sider the deterministic setting where the latent order set R is
fully revealed to the scheduling algorithm, and the schedul-
ing problem becomes a pure static optimization task. Then,
we assume that R is drawn from a latent distribution, and de-
sign an online learning algorithm that simultaneously learns
the latent distribution and optimizes the total revenue.

In the following two sections, we describe each phase of
the problem with more details and mathematical rigor, and
propose our algorithms to achieve the optimal policy.

3 Phase 1 of the Deterministic Setting:
Maximum Revenue Car Dispatching

In this section, we introduce our algorithm to the maximum
revenue car dispatching problem in the deterministic setting
(i.e., when the set of latent ordersR is known to the platform).
For convenience, we first introduce the following non-linearly
weighted circulation (NLWC) problem, and the maximum
revenue car dispatching problem can be formulated based on
NLWC definition.

Definition 1. In the non-linearly weighted circulation
(NLWC) problem, there is a directed graph G = (V,E). For
each directed edge e ∈ E, we associate it with the flow lower
bound `(e), the flow upper bound u(e) and the reward func-
tion r(·; e) : N → R. The goal is to find a flow f : E → N
so that f satisfies the flow upper and lower bounds (i.e.,
`(e) ≤ f(e) ≤ u(e),∀e ∈ E) and flow conservation (i.e.,∑

e going out of s f(e) =
∑

e going into s f(e),∀s ∈ V), and the
total reward

∑
e∈E r(f(e); e) is maximized.

Observe that when the reward functions are linear (i.e.,
r(x; e) = w(e) · x), the NLWC problem becomes the canon-
ical minimum cost circulation problem, which admits a poly-

nomial time algorithm [Tardos, 1985] (with the signs of the
linear coefficients flipped).

With the formulation of the NLWC problem in place, we
are ready to describe our maximum revenue car dispatching
problem in the deterministic setting. Here, we assume that the
platform knows all the riders’ information; i.e., for each rider
i, we know that his/her latent order oi = (si, s

′
i, vi). Based

on this information, for each arc (s, s′) ∈ Q, we calculate
the number of latent orders following the arc and denote it by
o(s, s′); then, for each 1 ≤ i ≤ o(s, s′), we define vi(s, s′) to
be the i-th largest valuation among all latent orders following
(s, s′). Note that if the platform plans to accept k orders on
the arc (s, s′), to maximize the income, the price should be set
as p(s, s′) = vk(s, s′), and the total income generated from
this arc becomes k · vk(s, s′).

In light of the discussion above, we will construct a di-
rected graph (V0, E0) so that the maximum revenue car dis-
patching problem becomes calculating NLWC on the graph,
where the flow along each arc indicates the number of drivers
the platform plans to dispatch.

We first let the vertex set V0 = S∪{I,O}where I is the ar-
tificial source and O is the artificial sink; together, a directed
edge eO,I that goes from O to I is set up with `(eO,I) = 0
flow lower bound and u(eO,I) = +∞ flow upper bound and
the constant-zero reward function: r(·; eO,I) ≡ 0. We then
set up the following sets of edges.

• (Initialize drivers.) For each spatiotemporal state swith
ns initial drivers, we set up a directed edge eI,s going
from I to swith both flow upper and lower bounds equal
to `(eI,s) = u(eI,s) = ns, and the constant-zero reward
function r(·; eI,s) ≡ 0. The flow f(eI,s) represents the
number of drivers to start working from the state s.

• (Leaving drivers.) For any spatiotemporal state s, we
set up a directed edge es,O going from s to O with
`(es,O) = 0 lower bound, u(es,O) = +∞ upper bound,
and the constant-zero reward function r(·; es,O) ≡ 0.
The flow f(es,O) represents the number of drivers to
leave the system at the state s.

• (Driving without a rider.) For any admissible arc
(s, s′) ∈ Q, we set up a directed edge e(o)s,s′ going from s

to s′ with `(e(o)s,s′) = 0 lower bound, u(e
(o)
s,s′) = +∞ up-

per bound. The flow f = f(e
(o)
s,s′) represents the number

of drivers to drive through the arc (s, s′) without carry-
ing a rider. Therefore, we set up the linear reward func-
tion r(f ; e

(o)
s,s′) = −c(s, s′) · f .

• (Driving with a rider.) For any admissible arc (s, s′) ∈
Q, we set up a directed edge e(w)

s,s′ going from s to s′

with `(e(w)
s,s′) = 0 lower bound, u(e

(w)
s,s′) = o(s, s′) up-

per bound. The flow f = f(e
(w)
s,s′) represents the num-

ber of drivers to drive through the arc (s, s′) with a
rider. Therefore, we define the non-linear reward func-
tion r(f ; e

(w)
s,s′) = [vf (s, s′)− c(s, s′)] · f .

Given (V0, E0), the maximum revenue car dispatching
problem in the deterministic setting is equivalent to finding

the optimal solution to NLWC on the directed graph (V0, E0).
Formally, we directly have the proposition below.

Proposition 1. Let f∗ be the optimal solution to NLWC on
the directed graph (V0, E0). To achieve the maximum rev-
enue in the car dispatching task, the platform may direct the
drivers to drive with/without carrying a rider or leave the
platform based on the flow value on the corresponding sets
of edges. The total weight of f∗ is the maximum revenue the
platform may collect.

Proposition 1 also enables us to design the routing plan
for each individual driver based on the NLWC solution. For-
mally, a route A = (a1, a2, . . . , az) is a sequence of spa-
tiotemporal arcs such that the ending state of each arc ai is
the same as the beginning state of the next arc ai+1 (for all
i ∈ {1, 2, . . . , z−1}). At each time step and for each driver q,
the routing plan Aq is just a route which starts at the driver’s
current state.

While the general NLWC problem is computationally in-
tractable, the maximum revenue car dispatching problem, as
a special case of NLWC, is unfortunately not easier. Formally,
we present the following negative result for the maximum
revenue car dispatching problem. The proof of Theorem 1
is deferred to Appendix A.1. Note that since maximum rev-
enue car dispatching is a special case, we may not directly use
the NP-Hardness proof of NLWC, and have to design a new
hardness instance instead.

Theorem 1. The maximum revenue car dispatching problem,
even in the deterministic setting, is NP-hard.

On the positive side, we propose a natural regularity condi-
tion in Definition 2. We will show that when the condition is
satisfied, the maximum revenue car dispatching problem can
be solved in polynomial time.
Definition 2 (Regularity). We say that a maximum revenue
car dispatching problem instance satisfies the regularity con-
dition if for each admissible spatiotemporal arc (s, s′), and
each k ∈ {1, 2, . . . , o(s, s′)}, the sequence v′k(s, s′) is mono-
tonically non-increasing with k, where we define

v′k(s, s
′) :=

{
v1(s, s

′) (k = 1)
k · vk(s, s′)− (k − 1)vk−1(s, s

′) (k ≥ 2)
.

In the definition, v′k(s, s′) can be interpreted as the
marginal reward of accepting the k-th highest price order
on arc (s, s′). The regularity condition then requires that the
marginal reward sequence is not increasing with the increas-
ing number of accepted orders on any arc, which is a standard
assumption in economics literature (see, e.g., [Al et al., 2005;
Zhao et al., 2015; Wang and Zhang, 2011]). Indeed, in our
empirical evaluation, we verify that the regularity condition
holds in the real-world data.

We now present our edge decomposition algorithm (details
in Algorithm 1) for the maximum revenue car dispatching
problem. At a higher level, Algorithm 1 first manages to de-
compose each non-linear directed edge in (V0, E0) to a family
of edges with linear costs and creates a minimum linear-cost
circulation problem instance (V0, Ẽ, ˜̀, ũ,−w̃), then invokes
the existing polynomial-time time algorithm for the mini-
mum linear-cost circulation problem, and finally aggregates

Algorithm 1: The Edge Decomposition Algorithm

1: Construct the NLWC instance (V0, E0, `, u, r);
2: E1 ← {e(w)

s,s′ ∈ E0}, E2 ← E0 − E1; Ẽ ← ∅;
3: for e(w)

s,s′ ∈ E1 do
4: for i ∈ {1, 2, . . . , o(s, s′)} do
5: Ẽ ← Ẽ ∪ e(w,i)

s,s′ ; (˜̀(e
(w,i)
s,s′), ũ(e

(w,i)
s,s′))← (0, 1);

6: w(e
(w,i)
s,s′)← r(i; e

(w)
s,s′)− r(i− 1; e

(w)
s,s′)

7: end for
8: end for
9: for e ∈ E2 do

10: Ẽ ← Ẽ ∪ e;
(

˜̀(e), ũ(e)
)
← (`(e), u(e));

11: w̃(e)←
{
−c(s, s′) (if both s, s′ ∈ S)
0 (otherwise)

;

12: end for
13: Invoke the polynomial-time algorithm [Tardos,

1985] to compute the minimum cost circulation of
(V0, Ẽ, ˜̀, ũ,−w̃) where −w̃ is the coefficient function
of the linear costs, denote the optimal flow by f̃ ;

14: for e ∈ E0 do
15: if e = e

(w)
s,s′ ∈ E1 then f(e)←

∑
i f̃(e

(w,i)
s,s′);

16: else f(e)← f̃(e);
17: end for
18: return f ;

the flows in each family to construct the optimal solution to
the original problem.

In Algorithm 1, the edge set E1 denotes the edges cor-
responding to “driving with a rider” and E2 the rest of the
edges. We also observe that the only non-linear edges are the
ones to drive with a rider (in E1), while the rest edges (in
E2) already have linear costs. For the edges in E1, the algo-
rithm decomposes them from Line 3 to Line 8: since the flow
on each edge in E1 represents the amount of the rider orders
accepted along the corresponding spatiotemporal arc, the al-
gorithm assigns each decomposed edge with unitary capacity,
and the corresponding flow represents an additional order to
be accepted along the arc, and naturally the weight function is
defined based on the marginal reward function v′k(·, ·). Also
note that the algorithm always returns an integral flow be-
cause of the integrality property of the minimum linear-cost
circulation problem. Regarding the theoretical guarantee of
Algorithm 1, we prove the following theorem:
Theorem 2. Algorithm 1 runs in polynomial time, and when
the regularity condition is met, the returned flow f achieves
the maximum revenue of the car dispatching problem on the
directed graph (V0, E0).

Proof. We only need to prove that in the NLWC problem with
regularity, each non-linear edge inE1 with finite capacity can
be substituted by a finite number of linear edges.

Consider an edge e = e
(w)
s,s′ ∈ E1, then `(e) = 0. Then,

for each i ∈ N s.t. 1 ≤ i ≤ u(e), we add to Ẽ an linear
edge ei(s, s′, 0, 1, w(i)−w(i− 1)). Since r(i; e(w)

s,s′)− r(i−
1; e

(w)
s,s′) decreases with i, when we should put t amount of

flow from s, s′ in G1, the optimal plan is to saturate edges
e
(w,1)
s,s′ , e

(w,2)
s,s′ , · · · , e

(w,t)
s,s′ , with total reward r(t; e(w)

s,s′), identi-
cal to the NLWC model.

Therefore, we realize the same edge-reward function as the
NLWC model with a minimum cost circulation model. While
the Maximum Revenue Car Dispatching problem needs in-
teger solutions, from the total unimodularity property of the
minimum cost circulation problem, it is guaranteed that our
algorithm outputs an integer basic solution. Therefore, we can
indeed solve regular Maximum Revenue Car Dispatching via
the minimum cost circulation problem.

We also remark that even when in the general scenario
(without the regularity condition), a simple variation of Al-
gorithm 1 also serves as a good approximation to the optimal
solution. It virtually approximates the edge reward function
by its concave envelope to “iron” it to a concave function
[Chawla et al., 2007]. Please refer to Appendix B for details.

4 Phase 2 of the Deterministic Setting: Fair
Reward Re-allocation to Drivers

Recall that in Phase 1 we have found the maximum revenue
that can be achieved by any dispatching plan in the determin-
istic setting. Along the way, we have also figured out how
many drivers are needed for a spatiotemporal arc (s, s′) ∈ Q
with a rider (namely f(e

(w)
s,s′)) and without carrying a rider

(namely f(e
(o)
s,s′)). For convenience, we define F (s, s′) :=

f(e
(w)
s,s′) + f(e

(o)
s,s′) to be the total number of drivers we plan

to dispatch along the arc (s, s′). In this section, we develop
methods to figure out the fair payment scheme y : S × S →
[0,+∞) for driving along each spatiotemporal arc to ensure
that the drivers are well incentivized to cooperate with the
platform and execute the optimal-revenue dispatching plan.
Formally, we define the fairness condition as follows.
Definition 3 (Fair re-allocation). A re-allocation scheme is
fair if and only if following conditions are satisfied:

• Budget-balance. Let I be the total income collected from
the riders. This should also be the exact amount to be
distributed to the drivers.2 Formally, it is required that∑

(s,s′)∈Q y(s, s′) · F (s, s′) = I.

• Non-negative producer surplus. For each arc driven, the
payment should be at least the cost; i.e., for each
(s, s′) ∈ Q so that F (s, s′) > 0, it is required that
y(s, s′) ≥ c(s, s′).

• Subgame-perfectness. This is formally defined soon in
Definition 4 which, together with the non-negative pro-
ducer surplus condition, makes sure that the drivers do
not have the incentive to refuse and deviate from the dis-
patching plan.

• Envy-freeness. This is formally defined in Definition 5
which makes sure that the drivers do not complain that
the dispatching plan is more favorable to others than
themselves.

2We omit the amount that the platform would like to keep for
profit, which can be easily added to the constraint w.l.o.g.

Note that we need to define subgame-perfectness and envy-
freeness in details. Before doing this, we need to introduce a
few new notations and definitions.

We will model the drivers’ behavior as an extensive game
[Glazer and Rubinstein, 1996], where, at each state, each
driver has the freedom to choose any route starting from
the current state. At any time step, let Aq denote the rout-
ing plan given by the platform for the driver q, let A :=
{A1, A2, . . . } denote the set of routing plans for all drivers,
and let A−q := A \ {Aq}. For each driver q, let uq(A) de-
note the utility (i.e., net profit) of driver q if all drivers fol-
low the routing plan A. In particular, we have that uq(A) =∑

(s,s′)∈Aq
(y(s, s′)− c(s, s′)).

The subgame-perfectness condition requires that given re-
ward re-allocation scheme and the set of routing plans for
all drivers by the platform, any driver q does not have the
incentive to deviate from the routing plan given to him/her.
Formally, we make the following definition.
Definition 4 (Subgame-perfectness). A reward re-allocation
scheme is subgame-perfect if at any time step, let A :=
{A1, A2, . . . } be the routing plans decided by the platform,
and for any driver q, and for each route A′q sharing the
same starting state as Aq , it holds that uq(Aq, A−q) ≥
uq(A′q, A−q).

Note that in game theory, a subgame-perfect Nash equilib-
rium in a extensive game is a strategy profile for the agents
such that at any point of the game, the agents’ strategies form
a Nash equilibrium for the continuation of the game. Defini-
tion 4 requires that reward re-allocation scheme makes sure
that the routing plan given by Proposition 1 is a subgame-
perfect Nash equilibrium.

We would also like to make sure that each driver does not
feel comparably inferior than others at the same state. For-
mally, we define the envy-freeness condition as follows.
Definition 5 (Envy-freeness). A reward re-allocation scheme
is envy-free if at any time step, letA := {A1, A2, . . . } be the
routing plans decided by the platform, and for any two drivers
q and q′ staying at the same state, it holds that uq(A) =
uq′(A).

Now we have completed the formal definition of a fair re-
allocation scheme. The following lemma provides an elegant
characterization of all fair re-allocation schemes and enables
us to find such schemes only among the potential-based re-
allocation algorithms. The proof of Lemma 1 can be found in
Appendix A.2.
Lemma 1. Given a routing plan A, a reward re-allocation
is fair if and only if there exists a corresponding potential
function P : S → R≥0 such that

1. For any s ∈ S where A directs at least one driver to
leave at state s (we call such states the terminal states),
it holds that P (s) = 0.

2. ∀(s, s′) ∈ Q, y(s, s′)− c(s, s′) ≤ P (s)− P (s′).
3. ∀(s, s′) ∈ Q : F (s, s′) > 0, y(s, s′)−c(s, s′) = P (s)−
P (s′) ≥ 0.

4.
∑

s∈S P (s)(degi(s) − dego(s)) =∑
(s,s′)∈Q F (s, s′)(p(s, s′) − c(s, s′)), where degi(s)

and dego(s) are the number of drivers to enter and
leave the platform at the state s respectively.

Leveraging the power of Lemma 1, we are able to prove
the following theorem stating that a fair reward re-allocation
scheme always exists in all non-degenerating scenarios (i.e.,
the total revenue is non-negative and at least one driver starts
from a non-terminal state).

Theorem 3. Let S# ⊆ S denote the set of terminal states. If
there exist s1 ∈ S \ S# and s2 ∈ S such that F (s1, s2) > 0
and I ≥

∑
(s,s′)∈Q F (s, s′) · c(s, s′) (recall I is the total in-

come collected from the riders), then there exists a fair reward
allocation plan.

Proof. We define a directed graph G′ on vertex set V (G′) =
(S − S#) ∪ {t}, in which all states in S# are contracted in
a single vertex t. For each order from s /∈ S# to s′ we add a
directed edge (s, s′) with length 1 if s′ /∈ S#, or (s, t) with
length 1 if s′ ∈ S#, and for each possible cruise arc from s
to s′ we add an edge with length 0.

As all arcs advance in time, the graph is a directed acyclic
graph (DAG). Therefore, we can define P̃ (s) as the maximum
distance of all paths from s to t, or 0 if s ∈ S#. Then we
let R∗ = {(s, s′) ∈ Q : f(s, s′) > 0}, define µ(s, s′) =

P̃ (s)− P̃ (s′), and then we allocate the revenue proportional
to µ, i.e. let

P (s) = P̃ (s) ·
I −

∑
(s,s′)∈Q F (s, s′)c(s, s′)∑

(s,s′)∈Q F (s, s′)µ(s, s′)
. (1)

Because of the assumption that I ≥∑
(s,s′)∈Q F (s, s′)c(s, s′), we are ensured that

r(s, s′) − c(s, s′) is proportional to µ(s, s′) with a non-
negative ratio. We can see all constraints are satisfied.

When the fair re-allocation scheme is not unique, we solve
the quadratic program in Figure 1 to find the scheme to
minimize the total squared distortion between the price paid
by the rider and the reward allocated to the driver among
all trips. In this way, we try the best to let the reward re-
allocation reasonably reflects the real income generated by
driving through each arc. It is straightforward to see that the
constraints (3,4,5,6,7) in the quadratic program implement
the conditions stated in Lemma 1.

5 The Stochastic-Demand Setting
In the previous sections, we studied the optimal car dispatch-
ing and reward allocation task assuming the access to the full
listR of latent orders, which is not realistic in practice. In this
section, we assume that R is drawn from an unknown distri-
bution {D(s, s′)} and address the problem with techniques
combining both learning and optimization. To achieve this
goal, we study the optimal car dispatching and reward allo-
cation task with the distribution {D(s, s′)} known. We will
refer to this task as the stochastic-demand setting.

Our algorithm for the stochastic-demand setting is a nat-
ural extension of that for the deterministic setting presented
in the previous sections. Below we describe the adaptation

Minimize
∑

F (s,s′)>0

F (s, s′)(p(s, s′)− y(s, s′))2

Subject to P (s) ≥ 0, ∀s ∈ S (2)

y(s, s′) = P (s)− P (s′) + c(s, s′), ∀F (s, s′) > 0 (3)

y(s, s′) ≤ P (s)− P (s′) + c(s, s′), ∀(s, s′) ∈ Q (4)
P (s) = 0, ∀s ∈ S# (5)

y(s, s′) ≥ c(s, s′), ∀F (s, s′) > 0 (6)∑
s∈S

P (s)(degi(s)− dego(s))

=
∑

(s,s′)∈Q

F (s, s′)(p(s, s′)− c(s, s′)) (7)

Figure 1: Quad. Prog. with decision variables {P (s)}s∈S

we make for each phase in the deterministic setting. We
will also introduce a special parametric demand distribution
(Gaussian-Poisson distribution) for the learning algorithm in
Appendix D.1.

Phase 1: Revenue Optimization. For each arc (s, s′),
we denote xs,s′ as the random variable for the number
of latent orders, {vt}t∈[xs,s′]

as the random variables for
the valuations, and denote D(s, s′) as the distribution of
(xs,s′ , {vt}t∈[xs,s′]

), with the assumption that each vt are
i.i.d. variables.

For each arc (s, s′), if we fix the price to be p and plan
to dispatch n drivers to the arc, the number of the fulfilled
latent orders will be the smaller value of n and the number of
orders of valuations at least p. Therefore, given D(s, s′), we
may compute the following quantities:

• The probability mass function P(i; s, s′, p) : N → R
for the number of qualified orders (orders with valua-
tion at least p): P(i; s, s′, p) =

∑∞
j=0 b(i, j; Pr[vt ≥

p]) Pr[xs,s′ = j], where b(k, n;P) =
(
n
k

)
P k(1−P)n−k

computes the binomial distribution.

• Let ũ(n; s, s′, p) be the number of the fulfilled
latent orders; its expectation: E[ũ(n; s, s′, p)] =∑∞

i=0 P(i; s, s′, p) min{i, n}.
• The expected revenue on (s, s′) at price p and n drivers:
R(n, p; s, s′) = p · E[ũ(n; s, s′, p)]− c(s, s′) · n.

The following definition states the optimization problem
we have to solve in order to maximize the revenue in car dis-
patching in the stochastic-demand setting.

Definition 6. Given D(s, s′) for all arcs (s, s′), the Stochas-
tic Maximum Revenue Car Dispatching problem is to find
the optimal solution to the NLWC problem on the directed
graph (V0, E0), where (V0, E0) is constructed in a similar
way as described above Proposition 1, and the only differ-
ence is that for the edges corresponding to driving with a
rider, we set the corresponding reward function r(n; e

(w)
s,s′) =

maxp∈R≥0{R(n, p; s, s′)}.

In Definition 6, r(n, e(w)
s,s′) is re-defined so as to equal the

maximum possible (over all candidate prices) expected rev-
enue generated by dispatching n drivers to the arc (s, s′).
Therefore, the optimal solution to the stochastic maximum
revenue car dispatching problem is the maximum possible ex-
pected revenue achieved by any dispatching plan.

Note that in Definition 6, the only quantity that specifically
depends on the form of the demand distribution is the non-
linear reward function on the edges e(w)

s,s′ .

Phase 2: Fair Re-allocation. After solving the NLWC
problem on (V0, E0), we obtain the number of drivers to dis-
patch and the price for each arc (s, s′). With this informa-
tion, we may invoke the quadratic program in Figure 1 to find
out the potential-based reward re-allocation scheme for the
drivers. We are able to show the following the fairness guar-
antees in the stochastic-demand setting, while the detailed
proof is omitted since it is almost the same as the proof in
Phase 2 of the deterministic setting.

Theorem 4. In the stochastic-demand setting, the potential-
based reward re-allocation scheme obtained by the QP in
Figure 1 satisfies the fairness conditions in Definition 3, ex-
cept for that the budget-balance condition is changed to the
following expectation version.

• Expected-budget-balance. The expected income col-
lected from the riders should equal to the amount to be
distributed to the drivers.3 Formally, it is required that∑

(s,s′)∈Q y(s, s′) · F (s, s′) = E[I], where I is the col-
lected income.

Online Learning. We use a Thompson sampling-based al-
gorithm to learn the demand distributions from riders’ re-
sponses to given prices. The details are deferred to Ap-
pendix E.

6 Experimental Evaluation
Due to space constraints, we defer many of the experiments
to Appendix G. For example, we empirically verify the regu-
larity of Gaussian-Poisson distributions in Appendix G.1, and
evaluate the online learning algorithm in Appendix G.2; we
also show an illustrative example of our fair re-allocation al-
gorithm on the real-world dataset in Appendix G.3.

Experiments are run on an Intel i7-8750H, 24GB RAM
computer with MATLAB 2021b.

6.1 Model Setting
We now evaluate our algorithm by simulated experiments on
the DiDi Chuxing public dataset [Didi Chuxing, 2021] col-
lected from the real-world ridesharing in Chengdu, China. For
one day, we extract all orders and driver initial positions and
discretize the locations into 10 × 10 = 100 squares with di-
mension 2km × 2km, and divide the time interval between
8am and 1pm in a day into 20 slots, each of which spans 15
minutes. Therefore, there are 2000 spatio-temporal states in a
day, and we use the reward column in the dataset as the rider’s

3Similarly, here we also omit the amount that the platform would
like to keep for profit.

valuation for the trip. Finally, we assume the latent orders fol-
low the Gaussian-Poisson distribution (Appendix D.1), and
collect the data for 30 days and fit the numbers and valuations
of orders in any arc into the Gaussian-Poisson distribution, as
the true model parameters.

Robustness. To evaluate the generalization ability of our
algorithm, we modify the following two key parameters in
experiments: the number of drivers and the standard devia-
tions of the riders’ valuations. Here we report the experimen-
tal results showing that our algorithms still perform well un-
der these different experimental environments.

In Table 1, we modify the number of drivers. In the 50%
drivers setting we remove each driver with 50% independent
probability and in the 200% drivers setting we duplicate every
driver. In Table 2, we modify the standard deviations of the
riders’ valuations by 0.5 and 1.5 times respectively.

6.2 Revenue Evaluation
Given the true model parameters, we invoke the algorithms
described in Section 5 to find out the offline (model param-
eters known) optimal revenue of the Stochastic Maximum
Revenue Car Dispatching problem. We refer to this value as
the two-phase value (2P). For comparison, we introduce the
baseline distance-based fix-price algorithm (FP) where the
price for each arc is proportional to the distance of the trip
with a globally fixed (but tuned) ratio, and the dispatching is
done via the same network-flow-based planning algorithm.

6.3 Fairness Evaluation
To evaluate the fairness, we define theA(s) as the average net
income of all drivers initially at state s. For a driver q ∈ Q,
we denote sq as the initial state of q and uq as the total net
income of q. Then, we define the absolute unfairness Ξ =√∑

q∈Q(uq−A(sq))2

|Q| and relative unfairness ξ = Ξ/
∑

q∈Q uq

|Q| ,
which can be interpreted as the absolute and relative fluctu-
ation of drivers’ net incomes from given initial states. We
have proven that our two-phased algorithm guarantees zero
unfairness, and evaluate the unfairness of baseline pricing al-
gorithms. To show the contribution of re-allocation, we refer
to the result of only Phase 1 as P1.

6.4 Results
We report the revenue (Rev) and relative unfairness (Unf) of
different settings in following tables.

We see that our algorithm achieves higher revenue than the
fixed-price algorithm, and our re-allocation phase eliminates
the unfairness that would typically range from 10% to 25% of
drivers’ incomes, which increases with numbers of drivers.

Intuitively, a large number of drivers would tend to result
in increased unfairness as they fulfill a large portion of la-
tent orders with a wider spread of profits (analysis in Ap-
pendix G.4). Therefore, the re-allocation phase becomes es-
sential for satisfaction of drivers especially in this scenario.

7 Computational Complexity Analysis
Let n,m, a be the number of states, latent orders and admissi-
ble arcs, respectively. Our Phase 1 essentially solves a linear

#drivers 6655 13411 26822
Rev Unf Rev Unf Rev Unf

2P 6.82 0.000 9.32 0.000 11.17 0.000
P1 6.82 0.114 9.32 0.172 11.17 0.243
FP 5.54 0.108 7.56 0.168 9.02 0.244

Table 1: Rev(×104)/Unf with different numbers of drivers .

stddev 0.5σ 1.0σ 1.5σ
Rev Unf Rev Unf Rev Unf

2P 10.36 0.000 9.32 0.000 8.61 0.000
P1 10.36 0.167 9.32 0.172 8.61 0.178
FP 7.90 0.162 7.56 0.168 7.25 0.172

Table 2: Rev(×104)/Unf with modified standard deviations .

program of size O(m + a), which runs in Õ((m + a)2.373)
time [Cohen et al., 2019]. Our Phase 2 solves a quadratic
problem of O(n) variables and O(a) input size, which can
be transformed into a semidefinite program that runs in
Õ(
√
n(an2 + a2.373 + n2.373)) time [Jiang et al., 2020].

8 Conclusion
In this paper, we present an algorithmic framework for car
dispatching and pricing with both revenue and fairness guar-
antees. Empirical evaluation shows that our method performs
better than the baseline alternatives in the real-world dataset.
For future directions, it is interesting to prove the regular-
ity of edge demand functions in Gaussian-Poisson distribu-
tion and explore the regularity property of other distributions,
and mathematically prove the guarantees of our Thompson
Sampling algorithm (e.g., its convergence property and finite-
sample regret bound).

Acknowledgments
Zishuo Zhao would appreciate Shiyuan Wang for discussions
in relevant topics and Shuran Zheng for valuable comments
in improvement of a preliminary version. Zishuo Zhao is sup-
ported in part by NSF CCF-2006526.

References
[Al et al., 2005] Maiwenn J. Al, Talitha L. Feenstra, and Ben

A. van Hout. Optimal allocation of resources over health
care programmes: dealing with decreasing marginal utility
and uncertainty. Health Economics, 14(7):655–667, 2005.

[Bei and Zhang, 2018] Xiaohui Bei and Shengyu Zhang. Al-
gorithms for trip-vehicle assignment in ride-sharing. In
Thirty-second AAAI conference on artificial intelligence,
2018.

[Bimpikis et al., 2019] K. Bimpikis, O. Candogan, and
D. Saban. Spatial pricing in ride-sharing networks. Op-
erations Research, 67, 2019.

[Castillo et al., 2017] Juan Camilo Castillo, Dan Knoepfle,
and Glen Weyl. Surge pricing solves the wild goose
chase. In ACM Conference on Economics and Compu-
tation, pages 241–242, 2017.

[Chawla et al., 2007] Shuchi Chawla, Jason D Hartline, and
Robert Kleinberg. Algorithmic pricing via virtual valua-
tions. In Proceedings of the 8th ACM Conference on Elec-
tronic Commerce, pages 243–251, 2007.

[Cohen et al., 2019] Michael B. Cohen, Yin Tat Lee, and
Zhao Song. Solving linear programs in the current ma-
trix multiplication time. In Proceedings of the 51st An-
nual ACM SIGACT Symposium on Theory of Computing,
page 938–942, New York, NY, USA, 2019. Association for
Computing Machinery.

[Didi Chuxing, 2021] Didi Chuxing. The GAIA Pub-
lic Dataset. https://outreach.didichuxing.com/research/
opendata/en/, 2021. Accessed: 2021-08-31.

[Glazer and Rubinstein, 1996] Jacob Glazer and Ariel Ru-
binstein. An extensive game as a guide for solving a nor-
mal game. journal of economic theory, 70(1):32–42, 1996.

[Hrnčı́ř et al., 2015] Jan Hrnčı́ř, Michael Rovatsos, and
Michal Jakob. Ridesharing on timetabled transport ser-
vices: A multiagent planning approach. Journal of Intelli-
gent Transportation Systems, 19(1):89–105, 2015.

[Jiang et al., 2020] Haotian Jiang, Tarun Kathuria, Yin Tat
Lee, Swati Padmanabhan, and Zhao Song. A faster interior
point method for semidefinite programming. In 2020 IEEE
61st Annual Symposium on Foundations of Computer Sci-
ence (FOCS), pages 910–918. IEEE, 2020.

[Li et al., 2019] Minne Li, Zhiwei Qin, Yan Jiao, Yaodong
Yang, Jun Wang, Chenxi Wang, Guobin Wu, and Jieping
Ye. Efficient ridesharing order dispatching with mean field
multi-agent reinforcement learning. WWW ’19, 2019.

[Ma et al., 2020] Hongyao Ma, Fei Fang, and David C.
Parkes. Spatio-temporal pricing for ridesharing platforms.
SIGecom Exch., 18(2):53–57, December 2020.

[Qin et al., 2020] T. Qin, X. Tang, Y. Jiao, F. Zhang, and
J. Ye. Ride-hailing order dispatching at didi via reinforce-
ment learning. Interface, 50(5):272–286, 2020.

[Riquelme et al., 2015] Carlos Riquelme, Siddhartha Baner-
jee, and Ramesh Johari. Pricing in ride-sharing platforms:
A queueing-theoretic approach. In ACM Conference on
Economics and Computation, page 639, 2015.

[Tardos, 1985] Éva Tardos. A strongly polynomial minimum
cost circulation algorithm. Combinatorica, 5(3):247–255,
1985.

[Wang and Zhang, 2011] Jian Wang and Yi Zhang. Utilizing
marginal net utility for recommendation in e-commerce.
In Proceedings of the 34th international ACM SIGIR con-
ference on Research and development in Information Re-
trieval, pages 1003–1012, 2011.

[Wang et al., 2018] Zhaodong Wang, Zhiwei Qin, Xi-
aocheng Tang, Jieping Ye, and Hongtu Zhu. Deep
reinforcement learning with knowledge transfer for online
rides order dispatching. In 2018 IEEE International
Conference on Data Mining (ICDM), pages 617–626.
IEEE, 2018.

[Yan et al., 2018] Chiwei Yan, Helin Zhu, Nikita Korolko,
and Dawn Woodard. Dynamic pricing and matching in
ride-hailing platforms. Naval Research Logistics, Forth-
coming, 2018.

[Zhao et al., 2015] Tongtiegang Zhao, Jianshi Zhao, Pan Liu,
and Xiaohui Lei. Evaluating the marginal utility principle
for long-term hydropower scheduling. Energy Conversion
and Management, 106:213–223, 2015.

https://outreach.didichuxing.com/research/opendata/en/
https://outreach.didichuxing.com/research/opendata/en/

	Introduction
	Preliminaries
	Phase 1 of the Deterministic Setting: Maximum Revenue Car Dispatching
	Phase 2 of the Deterministic Setting: Fair Reward Re-allocation to Drivers
	The Stochastic-Demand Setting
	Experimental Evaluation
	Model Setting
	Revenue Evaluation
	Fairness Evaluation
	Results

	Computational Complexity Analysis
	Conclusion

