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Abstract. We consider the periodic review dynamic pricing and inventory control
problemwith fixed ordering cost. Demand is random and price dependent, and unsatisfied
demand is backlogged. With complete demand information, the celebrated (s,S,p) policy
is proved to be optimal, where s and S are the reorder point and order-up-to level for
ordering strategy, and p, a function of on-hand inventory level, characterizes the pricing
strategy. In this paper, we consider incomplete demand information and develop online
learning algorithms whose average profit approaches that of the optimal (s,S,p) with a
tight Õ( ��

T
√ ) regret rate. A number of salient features differentiate our work from the

existing online learning researches in the operations management (OM) literature. First,
computing the optimal (s,S,p) policy requires solving a dynamic programming (DP) over
multiple periods involving unknown quantities, which is different from the majority of
learning problems in OM that only require solving single-period optimization questions. It
is hence challenging to establish stability results through DP recursions, which we accom-
plish by proving uniform convergence of the profit-to-go function. The necessity of analyz-
ing action-dependent state transition over multiple periods resembles the reinforcement
learning question, considerably more difficult than existing bandit learning algorithms.
Second, the pricing function p is of infinite dimension, and approaching it is much more
challenging than approaching a finite number of parameters as seen in existing researches.
The demand-price relationship is estimated based on upper confidence bound, but the con-
fidence interval cannot be explicitly calculated due to the complexity of the DP recursion.
Finally, because of the multiperiod nature of (s,S,p) policies the actual distribution of the
randomness in demand plays an important role in determining the optimal pricing strate-
gy p, which is unknown to the learner a priori. In this paper, the demand randomness is
approximated by an empirical distribution constructed using dependent samples, and a
novelWasserstein metric-based argument is employed to prove convergence of the empiri-
cal distribution.
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1. Introduction
The joint optimization of pricing and inventory
control has received tremendous attention from both
academia and practice. In the literature, there is a vast
amount of research devoted to this topic under a vari-
ety of problem settings (Petruzzi and Dada 1999,
Elmaghraby and Keskinocak 2003, Yano and Gilbert
2003, Chen and Simchi-Levi 2012).

One of the most classic settings is the dynamic
pricing and inventory control problem with fixed

ordering cost. The firm makes periodic pricing and in-
ventory ordering decisions, and the ordering cost
includes both a fixed component and a variable com-
ponent that is proportional to the ordering quantity.
Demand is random and price dependent, and the firm
aims to maximize the total profit over all periods. The
celebrated (s,S,p) policy, first put forth by Thomas
(1974), is proved to be optimal with only additive
demand randomness for both finite and infinite plan-
ning horizons in Chen and Simchi-Levi (2004a, b).
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Under the (s,S,p) policy, if the inventory level at the
beginning of a period is below the reorder point s, an
order will be placed to bring the inventory to the or-
der-up-to level S. Otherwise, no order is placed. Price
depends on the initial inventory level of the same pe-
riod, and is characterized by p as a function of inven-
tory level.

Prior studies on this topic assume complete infor-
mation of demand; that is, the firm knows both
the demand-price relationship and the distribution for
demand randomness, which is hardly satisfied in
practice. In this paper, we explore the problem under
incomplete demand information, in which case both
the expected demand (as a function of price) and the
distribution of additive noises are unknown a priori.
We consider the additive demand model D0(p) + β,
where the demand-price curve D0(p) ≡D(η(p)|θ0) is in
the parametric from with unknown parameters θ0 ∈Θ
that can be estimated by a regression oracle O, and β

represents the random noise, for which the distribu-
tion is unknown in the nonparametric sense. Our pro-
posed framework for the demand-price curve admits
both the linear and the generalized linear model.

1.1. Main Results and Contributions
We shall summarize major results and contributions.

1.1.1. Online Learning Algorithm and Convergence
Rate. Using the full-information optimal (s,S,p) policy
as a natural benchmark, we develop online learning
algorithms for the joint pricing and inventory control
problem with fixed ordering cost. Only taking histori-
cal data as input, we use upper confidence bound
(UCB) to estimate the unknown parameters of the
demand curve D0(p), and construct an empirical distri-
bution using dependent samples to approximate the
distribution of the random noise β. The expected profit
of the algorithms converges to the profit of the full-
information optimal (s,S,p) policy with a cumulative
regret on the order of Õ( ��

T
√ ), which matches the theo-

retical lower bound (Theorems 1 and 2).

1.1.2. Stability Results of DP Recursion. With com-
plete demand information, computing the optimal
(s,S,p) policy requires solving a dynamic program-
ming (DP) over multiple periods. The states are inven-
tory levels at the beginning of a period, and p is the
optimal action (price) given the state (inventory level).
This is in contrast to most problems in pricing, inven-
tory control, and assortment planning that only re-
quire solving single-period optimization problems
(with incomplete information).

The complexity of multiperiod DP recursion imposes
significant challenges in establishing convergence of a
learning algorithm, in which both the demand rate curve

and the distribution of the demand noise are unknown.
One key element to establish convergence is certain sta-
bility properties, which guarantees that a small estima-
tion error (in the demand rate curve or the demand
noise distribution) translates to a small profit loss. In the
case of single-period optimization, such stability proper-
ties can be established via proving Lipschitz continuity
of the action function and bounded second-order deriva-
tives of the reward function (Broder and Rusmevichien-
tong 2012; Chen et al. 2019b; Chen and Shi 2019a, b).
However, in our problem, establishing stability proper-
ties of the multiperiod DP recursion requires much more
delicate analysis and understanding into the structure of
the DP problem.

In this paper, we prove that the empirical profit-to-go
function (Lemma 8), surrogate profit-to-go function
(Lemma 10), and long-run average profit function (Lem-
ma 9 and Corollary 4) converge to their full-information
counterpart uniformly over the state space. These con-
vergence results all build up the stability property
through the DP recursions. The necessity of analyzing
state transitions of the DP recursion renders this prob-
lem a direct application of reinforcement learning, which is
different than other learning algorithms in operations
management (OM) that are based on bandits.

1.1.3. Learning an Infinite Dimensional Object. In an
(s,S,p) policy, (s, S) are two-dimensional scalars dictat-
ing when to order and the order-up-to level, but p is a
function of (continuous) inventory levels and is of infi-
nite dimension. The need to learn an infinite dimension-
al object has not been seen in online learning problems
in the OM literature. For problems with multidimen-
sional learning object, a common approach is to learn
them in layers. For example, for joint pricing and inven-
tory control without fixed ordering cost, one would like
to approach the optimal inventory-price pair, (y, p),
which is two dimensional. All works that learn (y, p) un-
der nonparametric noise, including Burnetas and Smith
(2000), Chen et al. (2019a, 2021), and Keskin et al. (2022),
proposed two-layer learning algorithms, with each
layer learning in one dimension. Other examples in-
clude Chen and Shi (2019a) learning a two-dimensional
tailored base-surged (TBS) policy in dual sourcing in-
ventory systems, and Yuan et al. (2019) learning a two-
dimensional (s, S) policy for the pure inventory control
problem with fixed ordering cost. For the latter, their
two-layer algorithm estimates S in the first layer using
stochastic gradient decent (SGD) and δ � S− s in the
second layer by updating an active set after discretiza-
tion. With an infinite dimensional object, we are defi-
nitely not able to adopt this approach.

1.1.4. Convergence Rate of Empirical Distributions
with Dependent Samples. We use an empirical distri-
bution to approximate the unknown distribution of
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the random noise β. There are two technical chal-
lenges arising from this approach:

1. The true values of {βt} are not directly observable, be-
cause βt � dt −D(η(pt)|θ0) involves unknown quantity θ0.

Instead, one can only estimate βt via β̂t � dt− D(η(pt)|θ̂t)〉,
where θ̂t is the estimate of θ0 at time t. Hence, the quality
of β̂t samples depends on the quality of the estimates θ̂t,
which are unfortunately heterogeneous because of the na-
ture of linear or generalized linear contextual bandit
structures;

2. The {̂βt} samples are dependent because of the de-
pendency of pt and θ̂t across periods. β̂t obtained from
prior selling periods are statistically correlated with the
(s,S,p) policy implemented on later periods. This
means that the impacts of the errors (from both θ̂t and
the empirical approximation itself) of β on the expected
profit of optimized (s,S,p) must be bounded in an uni-
form manner, adding another layer of sophistication to
the convergence problem.

In this paper, we use the following strategies to ad-
dress the two major challenges mentioned previously:

1. To overcome the heterogeneity of the qualities of
estimation of θ̂t, we only utilize data points β̂t from cer-

tain time periods, when the corresponding θ̂t has a
high enough accuracy level. We can also rigorously
prove that there are always sufficient number of time
periods during which θ̂t is an accurate estimate of θ0;

2. To address the data dependency and uniform conver-
gence issue, we adopt a novel Wasserstein metric-based
argument to prove convergence rate of the empirical
distribution (Lemma 6, Corollary 1, and Lemma 7),
which is new in the literature. In contrast, the empirical
distributions in Chen et al. (2019a, 2021) andKeskin et al.
(2022) are all based on independent samples and their
convergence can be argued by relatively simple proba-
bility tools such as the Hoeffding’s inequality.

1.1.5. Applying UCB to Inventory Control Problems.
To our knowledge, this is the first paper that solves a
data-driven inventory control problem using UCB, a
technique successfully adopted in pricing and assort-
ment planning problems. The necessity of an UCB-
based approach, compared with explore-then-exploit
or gradient descent strategies in the previous litera-
ture (Chen et al. 2019a, 2021; Yuan et al. 2019), is justi-
fied by the lack of concavity in the (s,S,p)-learning
problem we considered, especially regarding the
infinite-dimensional object p. Hence, an explore-then-
exploit type algorithm delivers suboptimal regret
(e.g., Õ(T2=3)) in our problem.

The fundamental challenge of applying UCB to in-
ventory control problems lies in how UCB-type algo-
rithms are analyzed. Virtually all analysis of UCB

algorithms relies on the following principle: Regret is
upper bounded by the total lengths of the confidence in-
tervals. For example, in multiarmed bandit the above
principle trivially holds by concentration inequalities; in
linear contextual bandit, the UCB principle is justified by
the analysis of ordinary least squares estimators, which
asserts that the estimation error of θ̂ is characterized by
the sample covariance. The total lengths of the confidence
intervals are subsequently upper bounded by elliptical po-
tential lemmas.

In our problem, however, such a regret principle is
highly nontrivial to prove. This is because, as multiper-
iod inventory control policies are implemented, the
sum of lengths of the confidence intervals (bounding
the estimation errors in θ0 and the distribution of β)
depend on the trajectories of the inventory levels, which
in turn depend on the estimated pricing strategy pb
that can be drastically different from the optimal pricing
function p∗, despite that they may have similar ex-
pected per-period profit. Hence to adopt the UCB
framework one must prove that the (expected) regret
of the proposed UCB algorithm is upper bounded by
the (expected) lengths of confidence intervals on the tra-
jectories being implemented; see, for example, Corollary 4
with the right-hand side depending on p instead of the
optimal p∗. This subtle yet significant technical diffi-
culty resembles the analysis of Q-learning algorithms
in reinforcement learning (Jin et al. 2019) rather than
single-period bandit learning problems.

1.2. Literature Review
Our work is closely related to the following two
streams of literature on pricing and inventory control.

1.2.1. Literature on Joint Pricing and Inventory Con-
trol. Since the seminal paper of Federgruen and Hech-
ing (1999), the joint pricing and inventory control
problem has been studied extensively in the literature.
Readers are referred to survey papers Petruzzi and
Dada (1999), Elmaghraby and Keskinocak (2003),
Yano and Gilbert (2003), and Chen and Simchi-Levi
(2012) for a comprehensive overview of the field.

The joint optimization of pricing and inventory con-
trol with fixed ordering cost and stochastic demand is
first introduced by Thomas (1974), who proposed the
elegant (s,S,p) policy and conjectured that it is opti-
mal under fairly general conditions for the backlog-
ging system. According to this policy, inventory is not
replenished until it drops below the reorder point s,
and then it is ordered up to the order-up-to level S.
Price depends on the initial inventory level of the
same period, and is characterized by the function p,
which is a function of the initial inventory level. For
the backlogging system, in Chen and Simchi-Levi
(2004a), the (s,S,p) policy is proved to be optimal for
additive demand under finite planning horizon, and
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in Chen and Simchi-Levi (2004b), it is proved to be
optimal for general demand models under both the
average and discounted profit criterion and infinite
planning horizon. The (s,S,p) policy is further studied
in Polatoglu and Sahin (2000) for the lost-sales inven-
tory system. Chen et al. (2006) proved that the (s,S,p)
policy is optimal for additive demand in the lost-sales
system, and Song et al. (2009) proved the same result
for multiplicative demand. Huh and Janakiraman
(2008) reestablished the optimality of (s,S,p) for both
backlogging and lost-sales systems using an alterna-
tive approach. They characterized single-period con-
ditions that are key to establish optimality of (s, S)
type policies. The joint pricing and inventory control
problem with fixed ordering cost is also studied for
the continuous review inventory system in Feng and
Chen (2003), Chao and Zhou (2006), and Chen and
Simchi-Levi (2006). Results in Chen and Simchi-Levi
(2004a, b) are then extended by Yin and Rajaram
(2007) to Markovian environments. Hu et al. (2019)
considered both convex and concave variable cost and
developed heuristics for the problem.

Existing studies on the topic all assume the firm
knows the demand-price relationship and distribution
for demand noise, which is hardly satisfied in prac-
tice. Our work differs from the existing literature by
not imposing this assumption, and instead, we devel-
op learning algorithms that make pricing and invento-
ry ordering decisions based on historical data.

1.2.2. Literature on Pricing and Inventory Control with
Demand Learning. Existing models on pricing and in-
ventory control with demand learning can be catego-
rized into online and offline settings. For the offline
setting, Levi et al. (2007, 2015), Cheung and Simchi-Levi
(2019), and Ban (2020) implemented sample average ap-
proximation (SAA) to inventory control problems, Ban
and Rudin (2018) applied the empirical risk minimiza-
tion principle to solve the newsvendor problem with
feature information, and Ban et al. (2020) tested the ef-
fect of model misspecification on the newsvendor prob-
lem by exploring different estimation methods. Bu et al.
(2020) considered the pricing problem with offline learn-
ing under censored data, and Qin et al. (2019) studied
the offline joint pricing and inventory control problem
without fixed ordering cost, in which available samples
are assumed to be independent.

There are considerable technical challenges arising
from an online/dynamic learning perspective com-
pared with offline learning of pricing and inventory
control strategies. The major difference is that, in an
online learning setting, the inventory control levels
and the advertised prices (price functions) are adap-
tively chosen and therefore statistically correlated
with the randomly realized demands in prior time pe-
riods. Such statistical correlation results in two major

technical challenges. First, because of the adaptive na-
ture of the inventory/pricing policies the data samples
obtained in online learning may not be well condi-
tioned, making classical statistical analysis much
more difficult. Furthermore, the realized noises of the
demands in prior periods are also correlated with the in-
ventory or pricing strategies implemented in later peri-
ods, making regret analysis even more challenging.

For the pure pricing problem with online learning,
Harrison et al. (2012) identified the true demand from
a set of two candidate functions using Bayesian up-
dating. Keskin and Zeevi (2014) estimated unknown
parameters of a linear demand model by least-square
regression. Broder and Rusmevichientong (2012) and
den Boer and Zwart (2014) used maximum likelihood
estimation (MLE) and maximum quasi-likelihood esti-
mation (MQLE), respectively, to learn some general
parametric models. Ban and Keskin (2021) studied the
data-driven pricing problem under discontinuous de-
mand, and den Boer and Keskin (2020) solved the
personalized pricing problem using high-dimensional
feature information. First moment estimation was
used by Cheung et al. (2017) under the constraint of
limited price changes, and linear approximation was
used by Besbes and Zeevi (2015) to approximate a non-
parametric demand model. For the pricing problem
with limited initial inventory, see Besbes and Zeevi
(2009) and Wang et al. (2014) for data-driven algo-
rithms for single product and Besbes and Zeevi (2012),
Ferreira et al. (2018), Chen et al. (2019b), and Chen and
Shi (2019b) for multiple products. Wang et al. (2019)
studied both the pure pricing problem and pricing
with initial inventory. They considered a general non-
parametric model that allows multimodality of the re-
ward function and used UCB plus local polynomial
approximation to approach the true optimal price.

For inventory control problems with online de-
mand learning, see applications of SGD in Huh and
Rusmevichientong (2009) for learning in the periodic
lost-sale system, Shi et al. (2016) for considerations of
warehouse capacity, Huh et al. (2009) and Zhang et al.
(2020) for systems with positive lead time and lost
sales, and Zhang et al. (2018) for learning in the per-
ishable inventory system. Other approaches includ-
ing Huh et al. (2011) implementing the Kaplan-Meier
estimator, Chen and Plambeck (2008) using Bayesian
updating, Agrawal and Jia (2019) following the bi-
section procedure, and Besbes and Muharremoglu
(2013) leveraging the structure of the newsvendor
quantile solution. Chen and Shi (2019a) learned the
best tailored base-surge policy in dual sourcing in-
ventory systems by combining bisection and SGD.
Yuan et al. (2019) studied the periodic inventory
system with lost sales and fixed ordering cost, and
their algorithm relies on a combination of policy
elimination and SGD.

Chen et al.: Pricing and Inventory Control with Fixed Ordering Cost and Online Learning
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Less research has been done on joint pricing and in-
ventory control with online demand learning; most of
them do not consider fixed ordering cost except one,
and none have learned the best (s,S,p) policy. For pa-
pers not considering fixed ordering cost, this stream
of research originates from Burnetas and Smith (2000),
which developed a gradient decent-type algorithm
for the repeated single period problem without carry-
over inventories. They showed the average profit
converges to the true optimal profit under complete
demand information but did not provide the conver-
gence rate. Chen et al. (2019a) considered the joint
pricing and inventory control model with backlogged
demand. They developed a linear approximation
based nonparametric learning algorithm that achieves
a tight regret rate. Chen et al. (2021) considered the
joint optimization problem with lost sales and cen-
sored demand, and their spline approximation-based
learning algorithm achieves a regret that almost matches
the theoretical lower bound. Keskin et al. (2022) consid-
ered the joint pricing and inventory control problem for
perishable products in a changing environment and
estimated demand parameters by MQLE. Chen et al.
(2019a) adopted general parametric demand models and
considered constraints of limited price changes in the
lost-sale system. Yang (2020) is the only paper that con-
sidered fixed ordering cost. Instead of (s,S,p), they
adopted a one-price-(s, S) policy as benchmark, under
which the price is fixed throughout the planning horizon
and does not change based on inventory levels. This
benchmark is suboptimal for the full-information prob-
lem without performance justification. They considered
discrete price and discrete demand. When demand is

unbounded, their regret is O( ī2:193 + i1:193T0:839), and

when demand is bounded, their regret is Õ( i1:415T0:708),
where i is the number of candidate price levels, there-
fore, their result cannot be generalized to continuous
price decisions.

1.2.3. Literature on Linear Contextual Bandit. In the
linear contextual bandit question, at each time period
t an action space At is given, with each action a ∈At
being associated with a context vector xta ∈ R

d. The
objective is to select actions {at} so that the linear
rewards 〈xta,θ0〉 are maximized, where θ0 is an un-
known regression model.

There have been extensive prior studies on linear
contextual bandit in both the operations research and
computer science literature (Auer 2002, Dani et al.
2008, Filippi et al. 2010, Rusmevichientong and Tsitsi-
klis 2010, Abbasi-Yadkori et al. 2011, Li et al. 2019).
Some tools from the linear contextual bandit literature,
for example the elliptical potential lemma, are useful in
our problem as well (Lemma 4 upper bounding the to-
tal lengths of confidence bounds). Nevertheless,

the linear contextual bandit problem is a stateless
single-period optimization problems with contexts
supplied by the nature, whereas the inventory control
problem is multiperiodic and relies on much more deli-
cate analysis and insights into the structure of the DP sol-
utions, as we have remarked in the previous section.

Our learning framework admits both linear models
and generalized linear models, which have been stud-
ied in, for example, Keskin and Zeevi (2014), Nambiar
et al. (2019), and Ban and Keskin (2021).

2. Problem Formulation
We consider a retailer selling one type of product over
T time periods, conveniently labeled as t � 1, 2, : : : ,T.
At the beginning of every period t, after observing the
initial inventory level xt, the retailer makes a pricing
decision pt, as well as an inventory order-up-to deci-
sion yt ≥ xt, such that the inventory level reaches yt
after ordering. Demand is stochastic and price depen-
dent and realizes to be dt. If dt is lower than yt, there
are leftover inventories that will be carried over to the
next period. If dt is higher than yt, unsatisfied de-
mands are backlogged.

Demand and system costs can be characterized us-
ing a model M � (D0,μ0, k, c,h), where the parameters
are explained as follows:

1. The term D0 : [0, 1] → [d0,d0] is the (expected) de-
mand function that maps a price p ∈ [0, 1] to an ex-
pected demandD0(p) ∈ [d0,d0];

2. The term μ0 is a probability measure that governs
the process of the noise variables; more specifically,
given an advertised price p, the realized demand is a
random variable of the form dt �D0(p) + β where
Eμ0

[β] � 0;
3. The expression k > 0 is the fixed ordering cost,

which is incurred if yt > xt;
4. The expression c > 0 is the variable ordering cost

of ordering one unit of inventory; and
5. The term h : R→ R

+ is the holding cost (when the
remaining inventory level is positive) or the backlogging
cost (when the remaining inventory level is negative).

This is the joint inventory and pricing control
model studied in Chen and Simchi-Levi (2004a, b)
with fixed ordering cost. Departing from the exist-
ing literature, in our paper, we assume that the
demand curve D0 and the noise distribution μ0 are
unknown and must be learned or estimated on the
fly as inventory and pricing decisions are sequentially
made. All the other model parameters k, c, and h are
assumed to be known.

An admissible policy is represented by a sequence
of order-up-to levels and price levels, {yt,pt, t � 1, : : : ,T},
for which (yt, pt) only depend on historical informa-
tion up to period t – 1, (yr,pr,dr : r � 1, : : : , t− 1), but
not on future information. Given any admissible policy
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π, the sequence of events for each period t is de-
scribed as follows:

1. At the beginning of period t, the retailer observes
the initial inventory level xt.

2. The retailer decides the selling price pt and the in-
ventory order-up-to level yt ≥ xt. New orderings, if
there is any, arrive instantaneously.

3. Demand realizes to be dt �D0(pt) + βt and is satis-
fied to the maximum extent using on-hand inventory.
Unsatisfied demand is backlogged, and any leftover in-
ventory is carried to the next period. The state transi-
tion is xt+1 � yt − dt:

4. At the end of period t, the retailer collects profit

rt � − k × 1{yt > xt}︸������︷︷������︸
fixed ordeing cost

− c(yt − xt)︸��︷︷��︸
variable ordering cost

+ pt(D0(pt) + βt)︸������︷︷������︸
sales revenue

− h(yt −D0(pt) − βt)︸��������︷︷��������︸
holding=backlogging cost

: (1)

In (1), rt, t � 1, : : : ,T are not independent, because rt
depends on xt, which correlates with inventory lev-
els, demand realizations and rewards of previous
periods.

We are interested in designing an admissible policy
that maximizes the expected long-run average profit.
More specifically, for a policy π, we are interested in

RT(π) :� 1
T

∑T
t�1

E[rt] r1, : : : , rT ~ π,M (2)

for sufficiently large time horizon T. Equivalently, let
π∗ ∈Π be the optimal policy within a certain policy
family Π maximizing the average profit defined in
Equation (2). We are interested in designing a (dy-
namically changing) policy π̂ such that the cumulative
regret

T × [RT(π∗) −RT(π̂)] (3)

is minimized with high probability.

2.1. The (s,S,p) Policies and Their Average Rewards
Under an (s,S,p) policy, the retailer will only order
new inventories when xt < s, and after ordering the
inventory level reaches yt � S. The function p pre-
scribes the pricing decision that depends on the initial
inventory level of the same period. With known de-
mand curve D0 and noise distribution μ0, the work of
Chen and Simchi-Levi (2004b) proves that, under mild
conditions (which we will detail in Section 2.2), there
exists a stationary (s,S,p) policy that is optimal for in-
finite horizon under both the average and discounted
profit criterion.

We next detail, for a certain π � (s,S,p) policy, how
to calculate its long-run average per-period reward
RT(π). For convenience of our presentation and analy-
sis, we opt for a slightly more general notation that

applies for an arbitrary noise distribution μ. The opti-
mal (s,S,p) policy under the full-information setting
can be obtained by simply replacing all occurrences of
μ with the true noise distribution μ0 for the rest of this
section.

Define H0(x,p;μ) as the expected immediate reward
of pricing decision p at inventory level x, without or-
dering new inventories. It is easy to verify that

H0(x,p;μ) � −Eμ[h(x−D0(p) − β)] + pD0(p) − cD0(p):
(4)

For a certain (s,S,p) policy, define quantities I(s,x,p;μ)
andM(s,x,p;μ) as follows:

I(s,x,p;μ) :�
H0(x,p(x);μ)
+Eμ[I(s,x−D0(p(x)) − β,p;μ)], x ≥ s,

0, x < s;

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(5)

M(s,x,p;μ) :� 1+Eμ[M(s,x−D0(p(x)) − β,p;μ)], x ≥ s,
0, x < s:

{
(6)

As indicated by the definitions in (5) and (6), I(s,
x,p;μ) represents the expected total reward collected
over a time interval that starts with x initial inventory
and ends as soon as the inventory level drops to be-
low s, andM(s,x,p;μ) represents the expected number
of time periods for the inventory to drop from x to
below s.

Define r(s,S,p;μ) as
r(s,S,p;μ) :� −k+ I(s,S,p;μ)

M(s,S,p;μ) : (7)

When I(s,S,p;μ0) and M(s,S,p;μ0) are bounded,
lemma 2 from Chen and Simchi-Levi (2004b) shows
that limT→∞RT(π) � r(s,S,p;μ0).

Throughout the rest of this paper, we use Πssp to
denote the class of all (s,S,p) policies. We also write
(s∗,S∗,p∗) for the optimal policy π∗ ∈Πssp that maxi-
mizes r(s,S,p;μ0).

2.2. Assumptions and Discussion
We make the following standard assumptions on
model parametersD0, μ0, and h(·).

(A1)D0 : [0, 1] → [d0,d0] is continuous, monotonical-
ly decreasing, and satisfiesD0(0) � d0, D0(1) � d0;

(A2) The noise distribution μ0 satisfies D0(p) + β ∈
[d,d] almost surely for all p, and d > 0; furthermore,
μ0 is continuous and is equipped with a probability
density function (PDF) fμ0

such that || fμ0
||∞ < A for some

constantA <∞; and
(A3) The holding/backlogging cost h(·) is convex

and Lipschitz continuous with Lipschitz constant
L′ ≥ 1. More specifically, for any x,x′ ∈ R and λ ∈ [0, 1],
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it holds that |h(x) − h(x′)| ≤ L′|x− x′| and h(λx+ (1−
λ)x′) ≤ λh(x) + (1−λ)h(x′).

Assumptions A1 and A2 are very mild and are satis-
fied by most commonly used demand functions and
bounded noise distributions. A3 is a conventional as-
sumption in the inventory control literature (Chen and
Simchi-Levi 2004b) and is satisfied, for example, when
both the holding cost and backlogging cost are linear.
This assumption is needed for the (s,S,p) policy to be
optimal and for regret analyses later.

We remark that the assumption that D0(p) + β ≥ d > 0
in A2 can be relaxed to the following condition: con-
sider the random process that starts with inventory
level S (upper bound for order-up-to level, see defini-
tion in Assumption C1) and keeps offering the highest
price (p � 1) without restocking, the inventory dimin-
ishes after a finite number of time periods with proba-
bility 1−O(T−2). Indeed, this is the only property used
by our analysis that is relevant to d. This condition can
be further relaxed such that the inventory diminishes
after O(logT) number of time periods with probability
1−O(T−2), and our regret convergence rate will be af-
fected up to a logarithmic factor in this case.

In this paper we consider parametric demand rate
functions with the following specific assumptions are
imposed on D0.

(B1) There exists a known feature map η : [0, 1] → R
d

(e.g., η(p) � (1,p) with d � 2) and a given parametric
model {D(·|θ0) : θ0 ∈Θ} with unknown parameter θ0

such thatD0(p) ≡D(η(p)|θ0);
(B2) There exists a known constant L <∞ such

that ||η(p)||2 ≤ L, ||η(p) − η(p′)||2 ≤ L|p− p′|, and |D0(p) −
D0(p′)| ≤ L2|p− p′| for all p,p′ ∈ [0, 1].

(B3) There exists a regression oracle O with the fol-
lowing guarantee. Given a set of time periods
H � {1, 2, : : : ,τ}, and given pt as the advertised price at
each time period t ∈H and dt �D0(pt) + βt as the real-
ized demand, the regression oracle O finds an estimate
θ̂ of the unknown regression parameter θ0. Let Λ �
Id×d +∑

t∈Hη(pt)η(pt)�. There exists γ � γ(d,d,L,T) that
only logarithmically depends on T, such that with
probability 1−O(T−2),1 for every p ∈ [0, 1], it holds that∣∣∣D0(p) −D(η(p)|θ̂)

∣∣∣ ≤ γ

������������������
η(p)�Λ−1η(p)

√
: (8)

2.2.1. Linear Models. Our assumption about the re-
gression model naturally admits the linear model
where Θ ⊆ R

d and D(η(p)|θ0) � η(p)�θ0. More specifi-
cally, for the linear model, we let the regression oracle
O use the (regularized) least-squares estimation, that
is, let

θ̂Linear :� arg min
θ∈Rd

1
2

∑
t∈H

|dt − 〈η(pt),θ〉|2 + 1
2
||θ||22

{ }
: (9)

Using standard self-normalized empirical process
arguments, we can prove the following lemma (in the
online appendix) showing that the constructed regres-
sion oracle satisfies Assumption B3.

Lemma 1. Suppose that γ ≥
�����������������
2d

2
d ln (T2L)

√
. If we use

Equation (9) to estimate the parameter for the linear model,
then Equation (8) holds with probability 1−T−2.

2.2.2. Generalized Linear Models. Our assumption also
admits the generalized linear model where Θ ⊆ R

d

and D(η(p)|θ0) � υ(η(p)�θ0) for υ(·) as a given link
function. If we assume υ(·) is continuously differentia-
ble, Lipschitz with constant kυ and cυ � infθ0∈Θ,p∈[0,1]υ′

(η(p)�θ0) > 0, the following regression oracle satisfies
Assumption B3 with γ �O(kυc−1υ d

��������������
d ln 3(TLd)√ ),

θ̂GLM :� arg min
θ∈Θ

∣∣∣∣∣∣∣∣∑
t∈H

(υ(η(pt)�θ) − dt)η(pt)
∣∣∣∣∣∣∣∣
Λ−1

: (10)

Formally, we have the following lemma.

Lemma 2. There exists a universal constant CGLM > 0
such that if we suppose that γ ≥ CGLM · kυc−1υ d

��������������
d ln 3(TLd)√

and use Equation (10) to estimate the model parameters,
then Equation (8) holds with probability 1−T−2.

For the details about the proof of Lemma 2, we refer
the readers to Proposition 1 of Filippi et al. (2010).

Finally, the following condition reflects prior knowl-
edge and the potential ranges of the optimal inventory
levels s∗ and S∗. This assumption can be partially re-
moved in Section 5 with a more complicated dynamic
inventory management and pricing algorithm.

(C1) The algorithm has access to inventory level
ranges 0 < s < s ≤ S < S <∞ such that s∗ ∈ [s, s] and
S∗ ∈ [S,S]; we also assume that S ≥ d because otherwise
the problem trivializes.

3. Our Proposed Algorithm
In this section, we first explain our estimation ap-
proaches for the unknown demand function and noise
distribution, based on which we then introduce our
proposed algorithm. In Section 3.1, we develop upper
confidence bounds for the demand function D0, and in
Section 3.2, we build an empirical approximation for
the unknown distribution μ0 using dependent and care-
fully selected samples. Section 3.3 presents a DP proce-
dure explaining how to solve for the corresponding
(s,S,p) policy given estimators of D0 and μ0. Our pro-
posed learning algorithm is presented in Section 3.4.

The algorithm proceeds in epochs, conveniently
labeled as B1,B2, : : : , and at the beginning of every ep-
och, it renews its estimations for D0 and μ0 following
the approaches presented in Sections 3.1 and 3.2, re-
spectively. Then based on the updated estimators and
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following the approach in Section 3.3, it recomputes
the (s,S,p) policy, which is then implemented for the
new epoch.

3.1. Upper Condence Bounds for D0

Let b ∈ {1, 2, : : : } be a particular epoch and Hb−1 � B1 ∪ : : :

∪ Bb−1 be the union of all epochs prior to b. For
time period t ∈Hb−1, let pt be the advertised price and
dt �D0(pt) + βt be the realized demand. Let the

estimate θ̂b of the unknown regression parameter θ0

be computed by the regression oracle O specified
in Assumption B3 given samples from Hb−1. Define
Λb :� Id×d +∑

t∈Hb−1 η(pt)η(pt)�. For every p ∈ [0, 1],
define Δb(p) as

Δb(p) :� γ

������������������
η(p)�Λ−1

b η(p)
√

,

where γ > 0 is the oracle-specific parameter specified
in Assumption B3. We then define an upper estimate
of D0, Db, as

Db(p) :�min {d0,d0 + L2(1− p),D(η(p)|θ̂b) +Δb(p)},
(11)

where d0,d0 are maximum andminimumdemands de-
fined in Assumption A1, and L is the Lipschitz constant
defined in Assumption B2. The Lipschitz continuity of
η(p) andΛb ≥ I imply the continuity of Δb(·) in p, which
further implies the continuity ofDb(·) in p.

3.2. Empirical Distributional Approximation of μ0

One key challenge in the learning-while-doing setting
is the fact that all of the important quantities H0, I,M
and r involve expectational evaluated under the noise
distribution μ0, an object which we do not know a pri-
ori. In this section, we give details on how empirical
distributions are used to approximate μ0.

At the beginning of epoch b, let E<b ⊆ B1 ∪ : : :Bb−1
be a nonempty subset of historical selling periods used
to approximate the noise distribution μ0. We define
the empirical noise distribution μ̂b as

μ̂b :�
1

|E<b|
∑
t∈E<b

I[dt −D(η(pt)|θ̂b(t))], (12)

where I[β′] is the point mass at β′ and b(t) denotes the
epoch to which selling period t belongs. Samples in
{dt −D(η(pt)|θ̂b(t))}t are dependent because both pt and

θ̂b(t) are dependent across periods. For technical rea-
sons, E<b is not chosen to include all selling periods
prior to epoch b. Instead, we construct E<b such that
all t ∈ E<b have small estimation errors ofD0 on the ad-
vertised prices.

To further upper bound the deviation of H0(x,p; μ̂b)
from H0(x,p;μ0), we need to demonstrate that the em-
pirical distribution μ̂b is close to the true noise

distribution μ0. Because such deviations must include
the estimation errors of D0 by Db(t) themselves, it is
crucial to select time periods t ∈ B1 ∪ : : : Bb−1 during
which the error Δb(t)(pt) is small. To this end, we de-
fine E<b as

E<b :� t ∈ B1 ∪ : : : ∪ Bb−1 : Δb(t)(pt) ≤ κ=
��
b

√{ }
, (13)

where κ > 0 is a scaling algorithm parameter, set as

κ � 2d−3=2dS3=2
γ

������������
d ln (TL2)√

. Note that κ will only de-
pend logarithmically on T. As we show later in the
proof of Lemma 6, our selection of κ leads to
|E<b| ≥ b=2, meaning that the set is nonempty, and
therefore the definition in Equation (13) is proper. The
idea of the construction of E<b in Equation (13) is as
follows. Note that dt −D(η(pt)|θ̂b(t)) � βt + (D(η(pt)|θ0)
−D(η(pt)|θ̂b(t))). Although βt is the desired sample

from the noise distribution, D(η(pt)|θ0) −D(η(pt)|θ̂b(t))
is incurred because of the estimation error of θ̂b(t),
which may be very large. Also the absolute value of
this estimation error is upper bounded by Δb(t)(pt).
Constructing E<b as in Equation (13) allows us to
only exploit selling periods during which the estima-
tion errors are sufficiently small. This ensures that the
obtained (approximate) noise samples {dt −D(η(pt)|
θ̂b(t))}t∈E<b

are of high quality.

3.3. Dynamic Optimization of (s,S,p) Strategies
With the upper confidence bounds Db and the
approximate noise distribution μ̂b constructed at the be-
ginning of epoch b, we use the dynamic programming
approach detailed in the work of Chen and Simchi-Levi
(2004a) to obtain an approximately optimal strategy
(sb,Sb,pb) to be carried out during epoch b.

First we define an upper bound estimate Hb(x,p; μ̂b)
on H0(x,p; μ̂b) as
Hb(x,p; μ̂b) :� −E

μ̂b
[h(x−Db(p) − β)]

+pDb(p) − cDb(p) + (c+ L′)Δb(p), (14)

where the constant L′ is defined in Assumption A3.
For any s ∈ [s, s], S ∈ [S,S], r ∈ R, demand function

D : [0, 1] → [d,∞), noise distribution μ and their asso-
ciated H : R × [0, 1] → R, define

φ(s,S)(x;D, r,μ)

:�
sup
p∈[0,1]

H(x,p;μ) − r+Eμ[φ(s,S)(x−D(p) − β;D, r,μ)], x ≥ s;

0, x < s:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(15)

With D �Db and H �Hb(·, ·; μ̂b), the functions φ(s,S)(x;
Db, r, μ̂b) can be computed for every s ∈ [s, s], S ∈ [S,S]
and r ∈ R, because both H(·, ·; μ̂b) and the expectation
with respect to μ̂b can be evaluated. For every (s, S),
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define

rb(s,S) :� inf {r ∈ R : φ(s,S)(S;Db, r, μ̂b) � k} (16)

and let the pricing strategy p (associated with invento-
ry levels s, S) be the optimal solution to the φ(s,S)

(·;Db, rb(s,S), μ̂b) dynamic programming; that is, p(x)
is defined such that φ(s,S)(x;Db, rb(s,S), μ̂b) �Hb(x,p(x); μ̂b)−
rb(s,S) +E

μ̂b
[φ(s,S)(x−Db(p(x)) − β;Db, rb(s,S), μ̂b)] for

all x.
Comparing equations in (15)–(16) with those in

(4)–(7), it is easy to observe connections between
them; r(s,S,p;μ) in (7) represents the expected per-
period profit, which includes both the immediate re-
ward H and the fixed ordering cost k. On the other
hand, φ(s,S)(S;D, r,μ) in (15) accumulates the immedi-
ate reward H over time and subtracts a constant r ev-
ery period. If the constant r in (15) equals the expected
per-period profit (after charging H every period and k
every replenishment), intuitively one would expect
φ(s,S)(S;D, r,μ) to be equal to k. Lemma 3 of Chen and
Simchi-Levi (2004b) confirms this connection, which
shows that φ(s,S)(S;D, r∗(s,S),μ) � k, where r∗(s,S) �
suppr(s,S,p;μ). Therefore, rb(s,S) can be considered as
an empirical approximation of r∗(s,S).

We finally remark that in practice, one may discretize
the choices of s, S, x, and p in the dynamic program-
ming scheme described previously with granularity
T−1. This leads to a computationally efficient algorithm.
Conversely, by the Lipschitz property of Hb(·, ·; μ̂b), it
can be shown that the error caused by discretization is
at most O(T−1), which does not affect the order of the
overall regret.

3.4. The Algorithm
Our proposed algorithm is based on an (s,S,p) policy
with evolving inventory levels (s, S) and pricing strate-
gies p. As mentioned earlier, in our algorithm the T
time periods are partitioned into epochs, labeled as B1,
B2, : : : . Restocking only occurs at the first time period of
each epoch Bb, b ∈ {1, 2, : : : }. Each epoch Bb is also asso-
ciated with inventory levels (sb, Sb) and pricing strategy
pb, such that for the first time period tb ∈ Bb, the re-
stocked inventory level is ytb � Sb; the epoch Bb termi-
nates whenever xt < sb, and for all t ∈ Bb\{tb}, yt � xt
and pt � pb(xt). Algorithm 1 gives a pseudo-code de-
scription of our proposed algorithm.

Algorithm 1 (Main Algorithm: Dynamic Inventory Control
and Pricing with Unknown Demand)

1: Input: problem parameters k, c, h, time horizon T,
the regression-oracle-specific parameter γ.

2: Output: inventory and pricing decisions yt, pt for
each t ∈ [T].

3: for epoch b � 1, 2, 3, : : : do

4: Compute the model estimate θ̂b using the re-
gression oracleO and samples fromHb−1;

5: Construct upper-confidence bounds Db as in
Equation (11);

6: Construct μ̂b � 1
|E<b |

∑
t∈E<b

I[dt −D(η(pt)|θ̂b(t))],
where E<b is constructed in Equation (13);

7: ConstructHb as in Equation (14);
8: For every s ∈ [s, s],S ∈ [S,S] compute φ(s,S)(S;

Db, r, μ̂b) as in Equation (15) and find rb(s,S) �
inf {r ∈ R : φ(s,S)(S;Db, r, μ̂b) � k};

9: Select (sb,Sb) � argmax s,Srb(s,S) and let pb be
the optimal pricing decisions associated with dynamic
programming φ(sb ,Sb)(·;Db, rb(sb,Sb), μ̂b);

10: For the first time period tb in epoch Bb set ytb �
Sb and ptb � pb(Sb); for the rest of epoch Bb set yt � xt
and pt � pb(xt); epoch Bb terminates once xt < sb;

11: end for

Updates of the (s,S,p) policies being implemented
occur at the beginning of each epoch, as detailed from
Step 4 to Step 9 in Algorithm 1. More specifically, at
the beginning of epoch b when policy update is due,
we first collect all realized demand information from
previous epochs to construct model estimate θ̂b (of
the demand-rate curve) and noise distribution μ̂b.
With estimates θ̂b and μ̂b, dynamic programming (re-
flected in φ(sb ,Sb)(·;Db, rb, μ̂b)) is computed to obtain an
approximately optimal pricing function pb, as well as
the inventory levels sb, Sb.

On the computational side, we remark that Algo-
rithm 1 requires DP computation to be carried out ev-
ery epoch. Because each epoch lasts for at most (S −
S)=d �O(1) time periods, Algorithm 1 requires Ω(T)
DP computations which is rather intensive. Further-
more, the boundary between sb and Sb must be known
a priori (reflected in the s ≤ S assumption) to make
sure that the inventory level is increased to Sb at the be-
ginning of each epoch. In Section 5, we present a vari-
ant of Algorithm 1 with infrequent policy changes to
further reduce the number of DP calculations required
to O(d logT), and to remove the s ≤ S condition.

3.5. Regret Convergence
Now we provide the convergence rate for the regret
of Algorithm 1.

Theorem 1. Let π be the policy described in Algorithm 1.
Suppose that all assumptions listed in Section 2.2 hold.
Then with probability 1−O(T−1), it holds that
T × (RT(π∗) −RT(π))
≤O((S=d )7=2(L′ +A+ 1)2(C1 + 1)(d + 1)(c+ L′ + 1)

γ
�������������
dT ln (TL)√ ),

where π∗ is the optimal policy in Πssp that maximizes
r(s,S,p;μ0), C1 > 0 is a constant depending only on d,d,
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and only a universal constant factor is hidden in the O(·)
notation.

The regret bound in Theorem 1 grows in the order
of Õ( ��

T
√ ) if we omit the dependencies on other param-

eters. With D(η(p)|θ0) � η(p)�θ0, k � c � 0 and h(·) ≡ 0,
the problem becomes a pure pricing problem with un-
known linear demand functions. As long as d > 1, the
works of Broder and Rusmevichientong (2012) and
Keskin and Zeevi (2014) prove an Ω( ��

T
√ ) lower bound

for any admissible pricing policies. Therefore, the
Õ( ��

T
√ ) regret established in Theorem 1 is optimal.
To prove Theorem 1, there are two parts of critical

analyses. First, estimation errors of Db, θ̂b and Hb(x,
p; μ̂b) need to be upper bounded as functions of data
size, showing that as more data accumulates, estima-
tions get more accurate at fast enough rates. Second,
stability results through DP recursions need to be es-
tablished, so that small estimation errors can guaran-
tee small differences in the DP solution and profit.
Detailed analyses for proving Theorem 1 will be pre-
sented in the next section.

Remark 1. If D0 follows the linear model, we may

choose γ �
�����������������
2d

2
d ln (T2L)

√
by Lemma 1. Now if we

only focus on the dependencies on d and T, the regret
of Algorithm 1 is upper bounded O(d ��

T
√

lnT).

4. Regret Analysis
In this section, we present analyses to prove Theorem
1. In Section 4.1, we upper bound the estimation er-
rors of Db, θ̂b and Hb(x,p; μ̂b). In Section 4.2, we estab-
lish stability results of DP recursions. In Section 4.3,
we present the final steps to prove Theorem 1 unify-
ing results developed in the previous sections.

Before diving into the technical details, we first pro-
vide the following proposition showing that, for ep-
och based strategies such as the proposed Algorithm 1
or the stationary (s∗,S∗,p∗) strategy, its cumulative re-
ward can be (with high probability) approximated by
the r(s,S,p;μ0) function defined in Equation (7).

Proposition 1. Let π be an epoch-based policy with epochs
B1 ∪ : : : ∪ BB � {1, : : : ,T}, such that an (sb,Sb,pb) policy is
executed in epoch Bb,

2 (with sb ∈ [s, s], Sb ∈ [S,S]), and that
the choices of (sb,Sb,pb) only depend on the filtration of prior
epochsHb−1. Then with probability 1−O(T−1), it holds that∑T

t�1
rt −

∑B
b�1

∑
t∈Bb

r(sb,Sb,pb;μ0)
∣∣∣∣∣

∣∣∣∣∣ ≤O(C3d
���������
T logT

√ ), (17)

where C3 :� �(S − s)=d� and only a universal constant fac-
tor is hidden in the O(·) notation.
With Proposition 1, to upper bound the cumulative re-
gret of Algorithm 1 defined in (3), it suffices to upper

bound ∑
br(s∗,S∗,p∗;μ0) − r(sb,Sb,pb;μ0)with high prob-

ability (i.e., probability 1−O(T−1)), where (s∗,S∗,p∗) is
the optimal policy inΠssp maximizing r(s,S,p).

4.1. Upper Bounds for Estimation Errors
In this section, we provide upper bounds for the dis-
tances between Db(p) and D0(p), μ̂b and μ0, Hb(x,p; μ̂b)
and H0(x,p;μ0). In particular, because only dependent
samples are accessible to construct the empirical dis-
tribution μ̂b, commonly used approaches cannot be
applied to prove its convergence. We therefore use a
novel Wasserstein metric-based argument, which is
new in the literature.

4.1.1. Comparing Db(p) and D0(p). To compare Db(p)
constructed in (11) with the true demand function
D0(p), note that by Assumption B2, we have that
D0(p) ≤ d0 + L2(1− p) holds for all p ∈ [0, 1]. By As-
sumption B3 and a union bound over all (at most T)
epochs, we have with probability 1−O(T−1) that
|D(η(p)|θ̂b) −D0(p)| ≤ Δb(p) holds uniformly over all
epochs b ∈ {1, 2, : : : } and all p ∈ [0, 1]. Combining these
two facts, we deduce the following lemma.

Lemma 3. With probability 1−O(T−1) uniformly over all
epochs b ∈ {1, 2, : : : }, it holds that Db(p) ≥D0(p) and
Db(p) −D0(p) ≤ 2Δb(p) for all p ∈ [0, 1].

Lemma 3 also implies that Db(1) �D0(1) � d0 with
high probability, because D(η(1)|θ̂b) +Δb(1) must ex-
ceed D0(1) � d0 with high probability.

Although the lengths of the confidence intervals
Δb(p) may vary wildly for different epochs b and on
different advertised prices p, the following lemma,
also famously known in the linear contextual bandit
literature as the elliptical potential lemma (Auer 2002,
Filippi et al. 2010, Rusmevichientong and Tsitsiklis
2010, Abbasi-Yadkori et al. 2011), upper bounds the
total sum of the lengths of the confidence intervals for
the first B epochs. For completeness we also include
the proof of Lemma 4 in the online appendix.

Lemma 4. Consider the first B epochs. With probability 1,
it holds that ∑B

b�1
∑

t∈Bb
Δb(pb(xt)) ≤ d−1dSγ

����������������
dB ln (2BL2)√

.

4.1.2. Comparing m̂b and m0. In this section, we
establish performance guarantees on the approxima-
tions μ̂b, constructed in (12). Because samples in

{dt −D(η(pt)|θ̂b(t))}t∈E<b
that are used to construct μ̂b

are dependent (see discussions in Section 3.2), simply
applying concentration inequalities cannot prove that
μ̂b is close to μ0, and this is significantly different than
Chen et al. (2019a, 2021), Keskin et al. (2022), and
Qin et al. (2019) that are able to access independent
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samples. Instead, we adopt a creative argument based
on the Wasserstein metric.

We first introduce the Wasserstein metric, based on
which we will establish convergence of empirical meas-
ures. Let μ,ν be two probability measures supported
on a compact set I ⊆ R. Let Ξ(μ,ν) be the set of all dis-
tributions supported on I × I such that the marginali-
zation are μ and ν, respectively. For any p ∈ [1,∞), the
ℓp-Wasserstein distance between μ and ν is defined as

Wp(μ,ν) :� inf
ξ∈Ξ(μ,ν)

∫
I×I

|x− y|pdξ(x, y)
{ }[ ]1=p

: (18)

It is a standard result that Wp is a metric and therefore
satisfies basic properties for metric distances such as
symmetry and subadditivity.

In this paper, we exclusively use the ℓ1 version of
the Wp metric. It is a famous result (Kantorovich and
Rubinstein 1958) that the W1 distance is equivalent to
the discrepancy measured by 1 − Lipschitz functions.
More specifically, let F � { f : I → R; | f (x) − f (y)| ≤
|x− y|, ∀x,y ∈ I} be the set of all functions that are 1 −
Lipschitz continuous. It then holds that

W1(μ,ν) � sup
f∈F

∣∣∣∣∣
∫
I

f (x)d(μ(x) − ν(x))
∣∣∣∣∣

� sup
f∈F

|Eμ[ f (x)] −Eν[ f (x)]|: (19)

Hence, W1 can be conveniently used to (uniformly)
upper bound deviation on functions that are Lipschitz
continuous, which will be helpful in our later analysis.

The final part of this section is on how empirical
measures converge with respect to the W1 distance
metric. Let μ be a probability measure supported on I

and x1, : : : ,xn~i:i:dμ be n independent samples. Denote
μ̂n � 1=n∑n

i�1I[xi] as the empirical measure, where
I[xi] is the point mass on xi. The following result is
cited from theorem 2 of Fournier and Guillin (2015).

Lemma 5. There exists a constant c > 0 depending only on
|I |, such that for any ε ∈ (0, 1),

Pr W1(μ̂n,μ) ≥ ε
[ ] ≤ e−cnε

2
:

Next, we develop upper bounds for the distance be-
tween the empirical distribution μ̂b constructed in (12)
and the true noise distribution μ0. The following lemma,
built on Lemma 5, upper bounds the W1-distance be-
tween μ̂b and μ0. It is proved in the online appendix.

Lemma 6. Suppose κ in Equation (13) satisfies

κ ≥ 2d−3=2dS3=2
γ

������������
d ln (TL2)√

. Then there exists a constant
C1 > 0 depending only on d,d, such that for any δ ∈ (0, 1),
with probability 1− 2δ uniformly over all epochs b that

W1(μ̂b,μ0) ≤ C1

�������������
log (T=δ)

b

√
+ κ��

b
√ :

With Lemma 6, the following corollary immediately
follows Equation (19), using the equivalence between
the W1-distance and uniform concentration over
Lipschitz continuous functions.

Corollary 1. Conditioned on the event that W1(μ̂b,μ0) ≤
C1

������������
2 logT=b

√ + κ=
��
b

√
for all b, it holds for any L-Lipschitz

continuous function f and any epoch b that

|E
μ̂b
[ f (β)] −Eμ0

[ f (β)]| ≤ L C1

�������������
log (T=δ)

b

√
+ κ��

b
√

[ ]
:

Finally, we also show that μ̂b and μ0 are close in the
Kolmogorov-Smirnov statistic. The proof is based on
the Dvoretzky-Kiefer-Wolfowitz inequality (Dvoretzky
et al. 1956, Massart 1990) and is deferred to the online
appendix.

Lemma 7. Let F̂
μn

and Fμ0
be the cumulative density func-

tions (CDFs) of μ̂n and μ0. With probability 1− 2δ, it holds
uniformly over all epochs b that

sup
β

|F̂
μn
(β) − Fμ0

(β)| ≤
��������������
log (2T=δ)

b

√
+Aκ��

b
√ :

4.1.3. Comparing Hb(x,p; m̂b) and H0(x,p;m0). Now
we compare Hb(x,p; μ̂b) constructed in (14) with the
true immediate reward H0(x,p;μ0). Note that Hb(x,p;
μ̂b) and H0(x,p;μ0) are mainly different in the demand
function D and the noise distribution μ. Proposition 2
upper bounds the difference resulting fromD, whereas
μ is held the same. Proposition 3 upper bounds the dif-
ference stemming from μ, whereas D is held the same.
Both propositions are proved in the online appendix.

Proposition 2. Conditioned on the event that Db(p) ≥
D0(p) and Db(p) −D0(p) ≤ 3(c+ L′)Δb(p) for all p ∈ [0, 1],
it holds with probability 1 that Hb(x,p; μ̂b) ≥H0(x,p; μ̂b)
and Hb(x,p; μ̂b) −H0(x,p; μ̂b) ≤ 2(c+ L′)Δb(p) for all x
and p ∈ [0, 1].
Proposition 3. Conditioned on the event that W1(μ̂b,μ0)
≤ C1

�������
2 logT

b

√
+ κ��

b
√ , it holds with probability 1 that |H0(x,p;

μ̂b) −H0(x,p;μ0)| ≤ L′ C1

�������
2 logT

b

√
+ κ��

b
√

( )
.

4.2. Stability Results Through DP Recursions
In this section, we analyze DP recursions to prove con-
vergences of the empirical profit-to-go function, surro-
gate profit-to-go function, and long-run average profit
function. The necessity of analyzing action-dependent
state transition over multiple periods resembles ques-
tions in reinforcement learning, which is significantly
more challenging than bandit learning algorithms in
the existing operations management literature.
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Alongside our proof, we prove several technical
results that might be of independent interest as well.
To facilitate our proof, for an (s,S,p) policy, r ∈ R, de-
mand function D, noise distribution μ, and the associ-
ated H : R × [0, 1] → R, we define

ψ(s,S,p)(x;D, r,μ) :�
H(x,p(x);μ) − r
+Eμ[ψ(s,S,p)(x−D(p(x)) − β;D, r,μ)], x ≥ s;

0, x < s:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(20)

Intuitively, the ψ(s,S,p) function is defined recursively to
capture the expected excessive per-period reward of a
fixed pricing function p not necessarily being the optimal
solution to the DP problem defined in Equation (15).
Clearly, if p is the optimal pricing policy implied by
φ(s,S)(·;D, r,μ), we have that

ψ(s,S,p)(·;D, r,μ) ≡ φ(s,S)(·;D, r,μ): (21)

However, for other (suboptimal) pricing policies, such
equalities might not hold.

Recall that C3 :� �(S − s)=d� <∞. Every epoch lasts
for atmostC3 time periods almost surely. This quantity
will be repeatedly used in the following analysis.

4.2.1. Properties of f(s,S)(·) and rb(·). We first estab-
lish several properties of the φ(s,S)(·) function defined
in Equation (15). In the following lemma, the demand
function D(·) is general and not necessarily D0 or Db,
and the same for μ and H.

Lemma 8. For any s ∈ [s, s],S ∈ [S,S], demand function
D : [0, 1] → [d,d], approximate noise measure μ and imme-
diate reward function H (built on D and μ), the following
properties hold (with probability 1):

1. For every r > r′, if x < s then it holds that φ(s,S)(x;D,
r,μ) ≤ φ(s,S)(x;D, r′,μ), if x ∈ [s,S], then φ(s,S)(x;D, r,μ) <
φ(s,S)(x;D, r′,μ); for every r > r′ and x ≤ S, it also holds that
φ(s,S)(x;D, r′,μ) −φ(s,S)(x;D, r,μ) ≤ C3(r− r′);

2. There exists r ∈ R such that φ(s,S)(S;D, r,μ) � k;
3. If sup β|Fμ(β) − Fμ0

(β)| ≤ ε for some ε ∈ (0, 1), then
for every s ≤ x ≤ x′ ≤ S and p, |φ(s,S)(x;D, r,μ) −φ(s,S)

(x′;D, r,μ)| ≤ (C3L′ +A)|x− x′| + 2ε;
4. Consider D,H such that D(p) ≥D(p) and H(x,p;μ) ≥

H(x,p;μ) for every p ∈ [0, 1] and x ≤ S, and that D are con-
tinuous with D(1) � d0. φ(s,S)(x;D, r,μ) ≥ φ(s,S)(x;D, r,μ)
for every r; and

5. If sup β|Fμ(β) − Fμ0
(β)| ≤ ε and W1(μ,μ0) ≤ ε hold for

some ε ∈ (0, 1), then for every s ≤ x ≤ S and p, it holds that
|φ(s,S)(x;D, r,μ) −φ(s,S)(x;D, r,μ0)| ≤ C3(C3L′ +A+ 2)ε.

The proofs of the properties in Lemma 8 are rather
technical and we defer the complete proof to the on-
line appendix. However, we remark, at a higher level,

on the intuitive meanings of the properties here to
help the readers get a big picture of the properties
listed.

Property 1 shows that the φ(s,S)(·) function is mono-
tonically decreasing in r, holding the other variables
fixed, because of the –r term in the definition of
φ(s,S)(·) in Equation (15). Property 2 shows the exis-
tence of a unique r at which φ(s,S) at x � S evaluates to
k (where the uniqueness is because of Property 1).
Property 4 shows that, by replacing D, H with their
uniform upper bounds D, H, the φ(s,S)(·) function does
not decrease. All these three properties are quite intui-
tive and can be proved by simply following the
definitions.

Property 3 shows that, if μ is close to μ0 whose
PDF is uniformly upper bounded, then φ(s,S)(·) is also
smooth in the inventory level x. The upper bound on
supβ|Fμ(β) − Fμ0

(β)| is essential for this property to
hold, because if μ is not (approximately) smooth then
a small change in x could potentially lead to signifi-
cant changes in probability mass in the recursion
formula.

Property 5 shows that, if μ is close to μ0 then the
function φ(s,S)(·) does not change much by replacing
μ0 with μ. Importantly, the distance between μ and μ0

are measured in the W1-distance, which implies uni-
form concentration of Lipschitz functionals.

With Lemma 8, the following corollary shows that
rb(s,S) computed in Algorithm 1 are legitimate upper
bounds of per-period rewards of any pricing function p.

Corollary 2. Conditioned on the event that Db(p) ≥Db(p)
for all p, it holds that rb(s,S) ≥ suppr(s,S,p; μ̂b) for all

s ∈ [s, s],S ∈ [S,S].

4.2.2. Properties of c(s,S,p)(·) and rb(·). Lemmas 9 and
10 are the two key lemmas of this analysis.

Lemma 9. For any s ∈ [s, s],S ∈ [S,S], noise distribution
μ and pricing strategy p, if ψ(s,S,p)(S;D0, r,μ) ≥ k− ε for
some ε > 0 and r ∈ R, then r(s,S,p;μ) ≥ r− ε, where
r(s,S,p;μ) is the average-reward of policy (s,S,p) under
noise distribution μ defined in Equation (7).

At a higher level, Lemma 9 shows that if a pricing
function p has a ψ-value not too smaller than k with
respect to certain profit hypothesis r and noise distri-
bution μ, then the expected per-period profit of the
policy (s,S,p) cannot be much smaller than r (mea-
sured with respect to μ). The purpose of this lemma is
to reduce the question of lower bounding the per-
period reward of an (s,S,p) policy by establishing
the stability of ψ (with D0 and μ0 being replaced by
their empirical surrogates), a task completed later by
Lemma 10.
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Corollary 3. Conditioned on the upper bounds in Lemmas 6
and 7 on W1(μ̂b,μ0) and supβ|F̂μb

(β) − Fμ0
(β)|, it holds

that

sup r (s,S,p;μ0) ≥ sup r (s,S,p; μ̂b)

−C3(C3L′ +A+ 2)
��������������
log (2T=δ)

b

√
+ (A+ 1)κ��

b
√

[ ]
:

This corollary shows that if two noise distributions are
close to each other, the optimal expected per-period
profit under one distribution cannot be much worse
than under the other one.

For a particular (s,S,p) policy, consider the stochas-
tic process {zτ}τ∈N defined as

zτ � S, τ � 0;
zτ−1 −D0(p(zτ−1)) − β, τ > 0;

where β~i:i:d:μ0:

{
(22)

Define also τ0 ∈ N as the stopping time of the first zτ
such that zτ < s, or more specifically

τ0 :�min{τ ∈ N : zτ < s}: (23)

Intuitively, {zτ}τ≤τ0 are the (random) inventory levels
starting at S, priced by p until it falls below s, with de-
mand noises generated by μ0.

Lemma 10. For any s, S, consider policy p that is an opti-
mal solution to φ(s,S)(·;Db, r, μ̂b). Conditioned on the event
that Db(p) ≥D0(p) and Db(p) −D0(p) ≤ 2Δb(p) for all
p ∈ [0, 1], and the results in Lemmas 6 and 7, it holds for
all r ∈ R that∣∣∣ψ(s,S,p)(S;Db, r, μ̂b) −ψ(s,S,p)(S;D0, r,μ0)

∣∣∣
≤ 3(c+ L′)E ∑

τ<τ0

Δb(p(zτ))
[ ]

+C3((4C3L′ + 2A)C1 + 4)
��������������
log (2T=δ)

b

√
+ (A+ 1)κ��

b
√

( )
,

(24)

where the stochastic process {zτ}τ∈N and stopping time τ0
are defined in Equations (22) and (23), respectively.

Lemma 10 shows that, the difference in ψ values by
replacing μ0,D0 with their empirical estimates, can be
effectively upper bounded by the aggregated lengths
of confidence bands on the expected inventory level tra-
jectory priced by p. The fact that the right-hand side of
Equation (24) is independent from the actual optimal
price function p∗ is of vital importance in the analysis
of UCB-type policies, as we have remarked and em-
phasized in the introduction.

Corollary 4. Conditioned on the event described in Lemma
10, for every s ∈ [s, s],S ∈ [S,S] and pricing policy p being

the optimal pricing policy solved by φ(s,S)(·;Db, rb(s,S), μ̂b)
it holds that

rb(s,S) − r(s,S,p;μ0) ≤ 3(c+ L′)E∑
τ<τ0

Δb(p(zτ))

+C3((4C3L′ + 2A)C1 + 4)
��������������
log (2T=δ)

b

√
+ (A+ 1)κ��

b
√

( )
:

Corollary 4 can be proved by combining results from
Lemmas 9 and 10. It considers the pricing policy de-
veloped by the DP procedure under parameter esti-
mators and shows that the performance of the pricing
policy under the true per-period profit r(s,S,p;μ0) is
not far away from the empirical reward rb(s,S) if the
parameter estimators are close to the true estimators.

4.3. Putting It Together
We are now ready to put all results in previous sec-
tions together and complete our proof of Theorem 1.
The rest of the proof is conditioned on the event that
Db(p) ≥D0(p) and Db(p) −D0(p) ≤ 2Δb(p) for all p ∈
[0, 1] and b, and that W1(μ̂b,μ0) ≤ C1

����������������
log (T=δ)=b√ + κ=

��
b

√
,

supβ|F̂μb
(β) − Fμ0

(β)| ≤ �����������������
log (2T=δ)=b√ +Aκ=

��
b

√
. With

δ � 1=T, the success event occurs with probability at
least 1−O(T−1), because of Lemmas 3, 6, and 7.

Recall the definition that (s∗,S∗,p∗) is the maximizer
of r(·;μ0). Let also ( s̃∗b, S̃∗

b, p̃
∗
b) be the maximizer of

r(·; μ̂b). With Proposition 1, we need to upper bound∑
br(s∗,S∗,p∗;μ0) − r(sb,Sb,pb;μ0). Using the standard

argument of UCB-type analysis, we have that

∑
b
r(s∗,S∗,p∗;μ0) − r(sb,Sb,pb;μ0)

≤ ∑
b

{
|r(s∗,S∗,p∗;μ0) − r( s̃∗b, S̃∗

b, p̃
∗
b; μ̂b)| + r( s̃∗b, S̃∗

b, p̃
∗
b; μ̂b)

− rb( s̃∗b, S̃∗
b) + rb( s̃∗b, S̃∗

b) − rb(sb,Sb) + rb(sb,Sb)
− r(sb,Sb,pb;μ0)

}
≤ ∑

b

{
C3(C3L′ +A+ 2)

��������������
log (2T=δ)

b

√
+ (A+ 1)κ��

b
√

[ ]
+ r( s̃∗b, S̃∗

b, p̃
∗
b; μ̂b) − rb( s̃∗b, S̃∗

b) + rb( s̃∗b, S̃∗
b)

− rb(sb,Sb) + rb(sb,Sb) − r(sb,Sb,pb;μ0)
}
,

(25)

≤ ∑
b

{
C3(C3L′ +A+ 2)

��������������
log (2T=δ)

b

√
+ (A+ 1)κ��

b
√

[ ]

+ rb( s̃∗b, S̃∗
b) − rb(sb,Sb) + rb(sb,Sb) − r(sb,Sb,pb;μ0)

}
,

(26)
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≤ ∑
b

{
C3(C3L′ +A+ 2)

��������������
log (2T=δ)

b

√
+ (A+ 1)κ��

b
√

[ ]

+ rb(sb,Sb) − r(sb,Sb,pb;μ0)
}
,

(27)

≤ ∑
b

{
20C2

3(L′ +A+ 1)(C1 + 1)
��������������
log (2T=δ)

b

√
+ (A+ 1)κ��

b
√

( )

+3(c+ L′)E ∑
τ<τ(b)0

Δb(pb(z(b)τ ))
}
, (28)

where {z(b)τ }τ∈N and τ(b)0 are the stochastic process and
stopping time defined in Equations (22) and (23)
with respect to the (sb,Sb,pb) policy. In the previous
chain of derivations, Equation (25) holds because of
Corollary 3 and the upper bounds on supβ|F̂μb

(β) −
Fμ0

(β)| and W1(μ̂b,μ0) (by Lemmas 6 and 7). Equation
(26) holds because of Corollary 2, which asserts that
rb( s̃∗b, S̃∗

b) ≥ suppr( s̃∗b, S̃∗
b,p; μ̂b) � r( s̃∗b, S̃∗

b, p̃
∗
b; μ̂b) for all b.

Equation (27) holds because (sb, Sb) is the maximizer
of rb(·, ·) according to Step 9 of Algorithm 1. Equation
(28) holds by invoking Corollary 4.

Invoking Lemma 4, setting δ � T−1, and recalling

that κ � 2d−3=2dS3=2
γ

������������
d ln (TL2)√

and C3 � �(S − s)=d� ≤
S=d, we have that Equation (28) further implies that∑

b
r s∗,S∗,p∗;μ0

( )− r sb,Sb,pb;μ0

( )
≤O 1( ) × C2

3 L′ +A+ 1( ) C1 + 1( ) S=d
( )3=2

d + 1
( )

γ
��������������
dT ln TL2( )√ + c+ L′( )d−1

dSγ
����������������
dT ln 2TL2( )√

≤O S=d
( )7=2

L′ +A+ 1( )2 C1 + 1( ) d + 1
( )(

c+ L′ + 1( )γ �������������
dT ln TL( )√ )

, 29( )
where only universal constant factors are hidden in the
O(·) notation. This completes the proof of Theorem 1.

5. Improved Algorithm: Infrequent
DP Updates

In this section, we present an improved algorithm
(with provable Õ( ��

T
√ )-regret guarantees) that achieves

the following two objectives:
1. In Algorithm 1, a dynamic programming needs to

be carried out after each epoch b to obtain a new policy
(sb,Sb,pb). Because each epoch lasts at most S=d �O(1)
selling periods, the algorithm requiresΩ(T)DP calcula-
tions which can be computationally expensive. In the
improved algorithm, only O(d logT) DP calculations

are needed to achieve virtually the same regret, which
is muchmore computationally efficient.

2. In Assumption C1, it is assumed that prior knowledge
is available on disjoint ranges of s∗,S∗, or more specifically
s∗ ≤ s ≤ S ≤ S∗. Although a lower bound on s∗ (and simi-
larly an upper bound on S∗) is most of the time available,
s ≤ S could be a strong condition.Without this condition,
Algorithm 1 may not attain the desired regret bound be-
cause Sb+1 might be potentially smaller than sb+1, making
selling inventories at the beginning of epoch b + 1 not
feasible. This limitation can be fully removed by our im-
proved algorithmwith infrequent DP updates.

We will impose the following assumption replacing
Assumption C1 earlier:

(C1') The algorithmhas access to inventory level ranges
0 < s < S <∞ such that s∗,S∗ ∈ [s,S]; we also assume that
S ≥ d because otherwise the problem trivializes.

Algorithm 2 (Dynamic Inventory Control and Pricing with
Infrequent DP Solutions)

1: Input: problem parameters k, c, h, time horizon T,
the regression-oracle-specific parameter γ.

2: Output: inventory and pricing decisions yt, pt for
each t ∈ [T].

3: Initialize: θ̂0 � 0d, Λ1 � Id×d and ζ1 � 1;
4: for epoch b � 1, 2, 3, : : : do
5: if det (Λb) ≥ 2ζb or b � 2ι for some ι ∈ N then
6: Update ζb+1 � det (Λb) and compute the

model estimate θ̂b using the regression oracle O and
samples fromHb−1;

7: Construct upper-confidence bounds Db as
in Equations (11) and (14);

8: Construct μ̂b � 1
|E<b |

∑
t∈E<bI[dt −D(η(pt)|θ̂b(t))],

where E<b is constructed in Equation (13);
9: For every s,S ∈ [s,S] compute φ(s,S)(S;

Db, r, μ̂b) as in Equation (15) and find rb(s,S) �
inf {r ∈ R : φ(s,S)(S;Db, r, μ̂b) � k};

10: Select (sb,Sb) � argmaxs,Srb(s,S) and let pb
be the optimal pricing decisions associated with dy-
namic programming φ(sb ,Sb)(·;Db, rb(sb,Sb), μ̂b);

11: else
12: Set θ̂b � θ̂b−1, ζb+1 � ζb, Db �Db−1, μ̂b �

μ̂b−1, sb � sb−1, Sb � Sb−1 and pb � pb−1;
13: end if
14: If the current inventory level exceeds Sb, set pt

� 0 until inventory level falls below Sb; ∗
15: For the first time period tb in epoch Bb set ytb �

Sb and ptb � pb(Sb); for the rest of epoch Bb set yt � xt
and pt � pb(xt); epoch Bb terminates once xt < sb;

16: UpdateΛb+1 � Λb +∑
t∈Bb

η(pt)η(pt)�;
17: end for
∗This step may only happen when the policy

changes. It does not belong to any epoch; and because
it happens very infrequently, its incurred regret can
be bounded separately.
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Theorem 2. Let π′ be the policy described in Algorithm 2.
Suppose that all assumptions listed in Section 2.2 hold, ex-
cept for Assumption C1, which is replaced by Assumption
C1′. Then with probability 1−O(T−1) it holds that

T × (RT(π∗) −RT(π′))
≤O((S=d)7=2(L′ +A+ 1)2(C1 + 1)(d + 1)(c+ L′ + 1)
γ

���������������
dT log (TL)√ ),

where π∗ is the optimal policy in Πssp that maximizes
r(s,S,p;μ0). Furthermore, with probability 1, Steps 6–10
are executed for at most O(d log (TL)) times.

In the previous O(·) notations, we only hide univer-
sal constant factors.

The regret bound in Theorem 2 grows in the order
of Õ( ��

T
√ ) if dependencies on other parameters are

omitted, which matches the theoretical lower bound
(see discussion after Theorem 1). Remark 1 also ap-
plies to the regret bound in Theorem 2.

Comparing Algorithm 2 with Algorithm 1, which
updates the (s,S,p) policy to be implemented at
the beginning of every epoch, the new algorithm only
updates/changes policies infrequently. More specifi-
cally, a new (s,S,p) policy is computed only if 2ι, ι ∈
{1, 2, : : : , } epochs are met, or the determinant of the
sample covariance Λb doubles. This greatly reduces
the number of DP calculations from O(T) to O(dlogT).
It also removes the s ≤ S condition in Assumption C3,
because Step 14 in Algorithm 2, which suffers constant
regret per period, is carried out for at most O(dlogT)
periods because of the infrequent policy changes.

The proof of Theorem 2 is given in the online
appendix.

6. Numerical Results
To corroborate our theoretical analysis, we report
some numerical results comparing the performances
of our proposed algorithms with some baseline meth-
ods on synthetically generated data. The first model
we used in our numerical studies is two dimensional
with feature map η(p) � (1,p), demand model θ0 �
(18, − 15), fixed ordering cost k � 10, variable ordering
cost c � 0.25, and noise distribution μ0 being the uni-
form distribution on [−1, 1]. The parametric demand
model is the simple linear model, that is, D(η(p)|θ) �
〈η(p),θ〉. The holding/backlogging cost function h is
a piecewise linear function h(x) � hmax {x, 0}−
bmin{x, 0}, with holding cost h � 0:05 and backlog-
ging cost b � 1. Numerical results and comparisons
for this model are reported in Figures 1 and 3. Figure
2 reports the results for a three-dimensional model
with η(p) � (1,p,p2) and θ0 � (18, − 12, − 3), and the
other problem parameters remain the same.

We compare our algorithm (with infrequent changes)
to a baseline algorithm using exploration-exploitation,
with T0 �

��
T

√
and T0 � T2=3 pure exploration phases.

More specifically, the baseline algorithm collects data
using a random policy during the exploration phase,
estimates the unknown demand curve and noise dis-
tribution based on the collected demand observations,
and computes an empirical optimal (s,S,p) that is im-
plemented during the exploitation phase (detailed
pseudo codes for the baseline algorithm can be found
in the online appendix). Figures 1 to 3 report the
average rewards and regret compared with the oracle
solution with access to full model information. As
we can see, our proposed algorithm significantly out-
performs explore-then-exploit baselines, especially in

Figure 1. (Color online) Average Rewards and Regret for Our Algorithm and the Baseline Exploration-Exploitation Algorithm
with Varying Time Horizons (x-Axis) on the Two-Dimensional Problem Instance
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cases where the time horizon is short (e.g., T � 210 �
1024 periods). Comparing the convergence rate of our al-
gorithm with the baseline algorithms, one observes the
advantage of iterative updating. For small T, the gap be-
tween our algorithm and the baseline algorithms is even
larger, and this is because the proportion of exploration
length is large for small T, yielding a larger percentage
of profit loss for baseline algorithms. One also observes
that the algorithm with T0 �

��
T

√
outperforms that with

T0 � T2=3, because the exploration length under T0 �
T2=3 is too long, and the profit loss incurred by explora-
tion outweighs the benefit of generating more data.

Table 1 also reports how the (s,S,p) policies com-
puted by our algorithm converge to the optimal so-
lution with full information (because the p function
is infinite dimensional, we only report the values of
p on inventory levels 10, 20, 30, and 40) on the three-
dimensional problem instance. We also report the
difference in the per-period rewards (Δreward) be-
tween the optimal solution and the current solution
computed by the bandit algorithm. As we can see,
with as few as 500 time periods the policies com-
puted by our algorithm are already very close to the
optimal policy in hindsight.

Figure 2. (Color online) Average Rewards and Regret for Our Algorithm and the Baseline Exploration-Exploitation Algorithm
with Varying TimeHorizons (x-Axis) on the Three-Dimensional Problem Instance
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Figure 3. (Color online) Average Rewards and Regret for Our Algorithm and the Baseline Exploration-Exploitation Algorithm
with Varying Time Horizons (x-Axis) on the Two-Dimensional Problem Instance, with Short Time Horizons
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6.1. Sensitivity Analysis
In this section, we report additional numerical results on
the sensitivity of the performance of our algorithm with
respect to several model and algorithm parameters.

In the first set of experiment we report the perfor-
mance of our algorithm with different settings of the
upper inventory order-up-to level S (the lower limit s
on the other hand can be conveniently set to zero in
most cases), shown in Figure 4. As we can see, when
the time horizon is short the performance of our algo-
rithm is insensitive to the aggressive or conservative
choices of S. For slightly longer time horizons, the per-
formance of our algorithm remains stable as long as S
is not too large.

Next, we report the performance of our algorithm
with different values of k (the fixed ordering set-up
cost) and c (the variable ordering cost) in Figure 5. As
we can see, the regret of our algorithm remains stable
under various settings of fixed and variable ordering
costs setups, and the regret decreases as the time
horizon increases, indicating the effectiveness of our
proposed algorithm under different model parameter
settings.

7. Conclusion and Future Research
In this paper, we study the problem of coordinating
inventory control and pricing with fixed ordering cost
and incomplete demand information. By developing
an epoch-based UCB approach, our proposed algo-
rithm achieves the optimal Õ( ��

T
√ ) cumulative regret.

Going beyond this paper, we believe the next impor-
tant question along this research direction is to handle
censored demand in the fixed ordering cost inventory
model (with pricing components). In a censored de-
mand model, the realized demand dt per every period
is not directly observable; instead only censored de-
mands max {dt,yt} are observable. The censorship of
realized demands impose significant challenges to a
UCB-type method because the maximum likelihood
models are truncated, and therefore clean confidence
bounds are much more difficult to construct.

Another important future research direction is to
consider nonparametric demand functions. Our cur-
rent techniques do not easily extend to the nonpara-
metric regime as the problem becomes significantly
different. Indeed, recently Chen et al. (2020) showed

Table 1. Convergence of the (s,S,p) Solution Obtained by Our Proposed Algorithm over T � 10,000 Selling Periods

s S p(10) p(20) p(30) p(40) Δreward

Optimal solution 2.0 49.8 0.89 0.85 0.78 0.77 0

t � 50 2.7 49.1 1.00 1.00 1.00 0.73 0.36
t � 100 3.0 52.1 1.00 1.00 0.79 0.75 0.28
t � 500 2.3 52.1 0.98 0.92 0.79 0.77 0.06
t � 1,000 2.3 49.2 0.94 0.87 0.81 0.77 0.05
t � 5,000 2.0 50.0 0.89 0.85 0.79 0.77 0.02
t � 10,000 2.0 52.6 0.87 0.85 0.79 0.77 0.02

Figure 4. (Color online) Performance Sensitivity with Respect to S on Two-Dimensional and Three-Dimensional Problem
Instances with Time Horizon Ranging from 200 to 104
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an Ω̃(T3=5) regret lower bound for the nonparametric
setting even when there is no fixed ordering cost,
meaning that the problem is inherently more difficult
than the parametric setting.
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Endnotes
1 The randomness is taken over {βt}t∈H and the internal randomness
of O.
2 This means that re-stocking only occurs at the first time period of
each epoch, and an epoch Bb terminates when xt< sb for the first time.
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