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ABSTRACT
We introduce an efficient algorithmic framework for learning sparse group models
formulated as the natural convex relaxation of a cardinality-constrained program
with Boolean variables. We provide theoretical techniques to characterize the equiv-
alent condition when the relaxation achieves the exact integral optimal solution, as
well as a rounding algorithm to produce a feasible integral solution once the opti-
mal relaxation solution is fractional. We demonstrate the power of our equivalent
condition by applying it to two ensembles of random problem instances that are
challenging and popularly used in literature and prove that our method achieves the
exactness with overwhelming probability and the nearly optimal sample complexity.
Empirically, we use synthetic datasets to demonstrate that our proposed method
significantly outperforms the state-of-the-art group sparse learning models in terms
of individual and group support recovery when the number of samples is small.
Furthermore, we show the out-performance of our method in cancer drug response
prediction.

1 INTRODUCTION

Sparsity is one of the most important concepts in statistical machine learning, which strongly connects
to the data & computational efficiency, generalizability, and interpretability of the model. Traditional
sparse estimation tasks aim at selecting sparse features at the individual level Tibshirani (1996);
Negahban et al. (2012). However, in many real-world scenarios, structural properties among the
individual features are assumed thanks to prior knowledge, and leveraging these structures may
improve both model accuracy and learning efficiency Gramfort & Kowalski (2009); Kim & Xing
(2012).
In this paper, we focus on learning the sparse group models for intersection-closed group sparsity,
where groups of variables are either selected or discarded together. The general task of learning the
sparse group models has been investigated quite a lot in literature, where most of the prior studies
are based on the structured sparsity-inducing norm regularization Friedman et al. (2010); Huang
et al. (2011); Zhao et al. (2009); Simon et al. (2013), which stems from Lasso Tibshirani (1996), the
traditional and popular technique for a sparse estimate at the individual feature level. As reviewed
in Bach et al. (2012); Jenatton et al. (2011), the structured sparsity-inducing norm is quite general and
can encode structural assumptions such as trees Kim & Xing (2012); Liu & Ye (2010), contiguous
groups Rapaport et al. (2008), directed-acyclic-graphs Zheng et al. (2018), and general overlapping
groups Yuan et al. (2011).
Another type of approach for learning the sparse group models is to view the task as a cardinality-
constrained program, where the constraint set encodes the group structures as well as restricts the
number of groups of variables being selected. Baldassarre et al. Baldassarre et al. (2013) investigate
the projection onto such cardinality-constrained set. However, due to the combinatorial nature
of the projection, directly applying the projected gradient descent with the projection Baldassarre
et al. (2013) to solve general learning problems with typical loss functions might not have good
results Kyrillidis et al. (2015). Recent work Pilanci et al. (2015) studies the Boolean relaxation of
the learning problem with cardinality constraints on the individual variables. This work Pilanci et al.
(2015) can be viewed as a special case of sparse group models, where each group contains only
one variable. Both the original work of Pilanci et al. (2015) and several follow-up papers Bertsimas
& Parys (2020); Bertsimas et al. (2020) show that the Boolean relaxation empirically outperforms
the sparse estimation methods using sparse-inducing norms (Lasso Tibshirani (1996) and elastic
net Zou & Hastie (2005)), especially when the sample size is small and the feature dimension is
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large. However, the results in Pilanci et al. (2015) cannot be applied to the sparse group models with
arbitrary group structures.
To fill the gap, in this paper, we study the sparse group models through a cardinality-constrained
program. We first propose the Boolean relaxation for sparse group models. We further establish an
analytical and algorithmic framework for our Boolean relaxation which includes a theorem stating
the equivalent condition for the relaxation to achieve the exactness (i.e., the optimal integral solution)
and a rounding scheme that produces an integral solution when the optimal relaxation solution is
fractional. We demonstrate the power of our equivalent condition theorem by applying it to two
ensembles of random problem instances that are challenging and popularly used in literature and
proving that our Boolean relaxation achieves the exactness with high probability and the nearly
optimal sample complexity. Our contributions are threefold:
1) We propose a novel framework that uses constraints to induce intersection-closed group spar-

sity. Baldassarre et al.Baldassarre et al. (2013) investigate the projection on the group sparsity
constraints. But our framework extends to any convex loss function with the group sparsity
constraints.

2) We prove our framework is tight and can achieve the exactness with high probability and the
nearly optimal sample complexity for two ensembles of random problem instances. This result is
inspired by Pilanci et al. (2015) but our derivations and proofs are not straightforward extensions
(e.g., due to the group structure, we need to analyze more complex feature-group matrices, prove
new matrix concentration properties, and carefully choose different regularization parameters).

3) Empirically, we perform extensive experiments to demonstrate that our framework significantly
outperforms the state-of-the-art methods when the sample size is small on simulated datasets.
Furthermore, we show the out-performance of our framework in cancer drug response prediction.

1.1 RELATED WORKS

Convex programming relaxations and their rounding techniques have been widely used for approx-
imating many combinatorial optimization problems that are computationally intractable (see, e.g.,
Williamson & Shmoys (2011)). The specific algorithmic technique in this work is inspired by the
Boolean relaxation method introduced in Pilanci et al. (2015) for learning sparsity at the individual
feature level. However, the additional group structure in our problem raises new algorithmic chal-
lenges, and both our Boolean relaxation formulation and its theoretical analysis (e.g., the equivalent
condition for the exactness) are different from their counterparts Pilanci et al. (2015).
As mentioned before, sparse estimation using structured sparsity-inducing norms were thoroughly
studied for learning structured sparsity under different structure assumptions motivated by various
practical scenarios Friedman et al. (2010); Huang et al. (2011); Zhao et al. (2009); Simon et al. (2013);
Tibshirani (1996); Bach et al. (2012); Kim & Xing (2012); Liu & Ye (2010); Rapaport et al. (2008);
Zheng et al. (2018); Yuan et al. (2011); Jenatton et al. (2011). However, none of these algorithms
provides the rigorous theoretical techniques as in this work to verify whether the algorithm has
produced the exact optimal solution. Also, as we will show in the experiments section, our proposed
method outperforms these algorithms on both synthetic and real-world datasets. In our experiments,
we also compare with the elastic net method Zou & Hastie (2005), which can only control the sparsity
at the individual feature level. There exist another family of structured sparsity-inducing norms Jacob
et al. (2009) that aim to model the union-closed families of supports, where the support of the solution
is a union of groups. Different from our proposed models, in which the support of the solution
is the intersection of the complements of some of groups considered (intersection-closed group
sparsity) Jenatton et al. (2009).
Another approach is to learn sparse group models by introducing the penalty functions for the
constraints and applying the convex relaxation to them. Bach Bach (2010) investigate to design norms
from submodular set-functions. Halabi et al. El Halabi & Cevher (2015); Halabi et al. (2018) study to
induce group sparsity using tight convex relaxation of linear matrix inequalities and combinatorial
penalties. Note that these works use convex regularizers to induce group sparsity while we use
constraints. Halabi et al. El Halabi & Cevher (2015); Halabi et al. (2018) study general equivalent
conditions to characterize the tightness of their relaxations while our theoretical results works for
specific distributions where their general conditions cannot be easily verified. We use different
analytical frameworks and thus the theoretical results cannot be directly compared.
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2 BOOLEAN RELAXATION FOR SPARSE GROUP MODEL

The organization of this section is as follows. In section 2.1, we introduce the original problem and
its exact boolean representation. In section 2.2, we propose the boolean relaxed program and provide
the condition under which the relaxed program is guaranteed to have an integer solution and hence
be tight. In section 2.3, we propose the rounding strategy if the relaxed program does not generate
integral solutions.

2.1 SPARSE GROUP MODEL AND ITS FORMULATION VIA BOOLEAN CONSTRAINTS

We consider a learning problem for a collection of n samples {(xi, yi) ∈ Rd × Y}ni=1 and define
the design matrix as X ∈ Rn×d, where x⊤

i ∈ Rd is the i-th row of X . This setup is flexible to
model various problems including binary classification (where the label space Y = {−1,+1}) and
regression problems (where the label space Y = R). For a linear model x 7→ w⊤x, our goal is to learn
a sparse weight vector w ∈ Rd whose support encodes certain structures reflecting the relationships
among the features which are usually defined by the prior knowledge. More formally, we need to
solve the following mathematical program.

P ∗ = min
w∈Θ

{
F (w) :=

n∑
i=1

f(w⊤xi; yi) +
1

2
ρ∥w∥22

}
. (1)

Here, the loss function f(·; ·) measures the prediction error by our linear model, where the common
choices include the squared loss for least-squares regression, the log loss for the logistic regression,
and the hinge loss for the support vector machine. The regularization term 1

2ρ∥w∥
2
2 in (1) makes sure

that the objective function is strongly convex and therefore has a unique optimal solution w∗ ∈ Rd.
Finally, the constraint set Θ encodes the sparsity requirements for both individual features and groups
of features. We use gi to denote the set of the indices of features in the i-th group and for any vector
w ∈ Rd, we use wgi to denote the vector containing all entries of w corresponding to the indices in
gi. We further assume that we have b predefined groups and then the cardinality constraint set Θ can
be written as

Θ =

w ∈ Rd

∣∣∣∣ ∥w∥0 ≤ k,

b∑
j=1

1
[∥∥wgj

∥∥
0
> 0
]
≤ h

 , (2)

where ∥ · ∥0 denotes the ℓ0 norm and 1[·] denotes the indicator variable that takes the value 1 when
the corresponding condition holds and 0 otherwise. The first constraint enforces the number of
contributing features to be less than k, and the second constraint makes sure the number of groups
that contain those selected features is less than h.
We also remark that the structured sparsity constraints defined by Θ in equation 2 is very flexible.
First, the ∥w∥0 ≤ k constraint imposes the feature-level sparsity requirement and encompasses the
unstructured sparsity model (as investigated in Pilanci et al. (2015)) as a special case. Second, the
group-level sparsity constraint is introduced by 1

[∥∥wgj

∥∥
0
> 0
]
≤ h covers the needs for structured

sparsity arising from many practical scenarios such as neuroimaging Gramfort & Kowalski (2009);
Xi et al. (2009), genomic analysis Rapaport et al. (2008); Kim & Xing (2012), and wavelet-based
denoising Zhao et al. (2009); Huang et al. (2011). The groups {gi}i∈{1,2,...,b} can be arbitrary sets
of the features and may model not only non-overlapping structured sparsity when gi ∩ gj = ∅,∀i, j
but also various overlapping patterns including the contiguous pattern, the block pattern, and the
hierarchical pattern as reviewed in Bach et al. (2012); Jenatton et al. (2011). Note that the first term
in equation 2 can be absorbed into the second term, which however will not have the sparsity control
at the individual level.
Note that the structured sparse group learning problem P ∗ defined in equation 1 involves only real
variables. In the following theorem, we show that the problem can be reformulated as a convex
program with additional Boolean variables and constraints, which will naturally lead to the Boolean
relaxation algorithm in the later sections.

Theorem 2.1 (Exact representation with Boolean constraints). Suppose that for each y ∈ Y , the
function t 7→ f(t; y) is closed and convex. The Legendre-Fenchel conjugate of f is f∗(s; y) :=
supt∈R{st− f(t : y)}. Then for any ρ > 0, the structured sparse learning problem P ∗ in equation 1
can be represented by the following Boolean convex program

P ∗ = min
(u,z)∈Γ

max
v∈Rn

{
− 1

2ρ
v⊤XD(u)X⊤v −

n∑
i=1

f∗(vi; yi)

}
︸ ︷︷ ︸

H(u)

, (3)
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where D(u) := diag(u) is a diagonal matrix with u ∈ Rd on its diagonal, and Γ is the constraint set
for u and v, defined as the follows,

Γ =

(u, z)

∣∣∣∣ d∑
i=1

ui ≤ k,

b∑
j=1

zj ≤ h, ui ≤ zj , ∀i ∈ gj , u ∈ {0, 1}d, z ∈ {0, 1}b
 .

The proof of Theorem 2.1 can be found in the supplementary materials Section A. In the theorem
statement, u is a vector of the Boolean indicators for the supports of the individual features and z is
also a vector of the Boolean indicators for the supports of the group features. H(u) in equation 3
is convex in u because it is the maximum of a family of functions that are linear with u. However,
the whole program is still computationally difficult due to the Boolean constraints u ∈ {0, 1}d and
z ∈ {0, 1}b. In the next subsection, we will relax these Boolean constraints which leads to a convex
program that can be efficiently solved for many popular loss functions f .

2.2 CONVEX PROGRAM THROUGH BOOLEAN RELAXATION AND THEORETICAL CONDITIONS
FOR EXACTNESS

We apply interval relaxation to both Boolean vector variables u and z, and obtain the Boolean
relaxation for P ∗ as follows.

PBR = min
(u,z)∈Ω

max
v∈Rn

{
− 1

2ρ
v⊤XD(u)X⊤v −

n∑
i=1

f∗(vi; yi)

}
, (4)

where

Ω =

(u, z)

∣∣∣∣ d∑
i=1

ui ≤ k,

b∑
j=1

zj ≤ h, ui ≤ zj , ∀i ∈ gj , u ∈ [0, 1]d, z ∈ [0, 1]b

 .

PBR is a convex program and can be solved by the sub-gradient-based optimization algorithm Nes-
terov (2009) if the inner maximization problem can be solved efficiently. In general, PBR can also be
converted into a minimax optimization problem and solved by methods in Lin et al. (2020).
We now investigate when PBR achieves the exact solution of P ∗, under the assumption that the groups
are non-overlapping. Note that PBR is a relaxation of P ∗ as defined in equation 3. The relaxation is
exact if and only if the optimal solution in PBR also happens to be integral and therefore feasible in
P ∗. The following theorem (proved in the supplementary materials Section B.1) characterizes the
equivalent condition for the exactness.

Theorem 2.2. Suppose that each feature belongs to only one group and the optimal integral solution
(û, ẑ) for P ∗ as defined in equation 3 selects k features and h groups, then the optimal solution of
PBR also recovers (û, ẑ) if and only if there exists non-negative λk and λh, such that

v̂ ∈ arg max
v∈Rn

{
− 1

2ρ
v⊤XD(û)X⊤v −

n∑
i=1

f∗(vi; yi)

}
(5)

1. For each group i such that ẑi = 1, it holds that
∀p ∈ gi, ûp = 1 ⇒ (X⊤

p v̂)2 > λk and (6)

∀p ∈ gi, ûp = 0 ⇒ (X⊤
p v̂)2 ≤ λk. (7)

2. For each group i such that ẑi = 1, it holds that∑
p∈gi,ûp=1

((X⊤
p v̂)2 − λk) > λh. (8)

3. For each group i such that ẑi = 0,∑
p∈gi

max{(X⊤
p v̂)2 − λk, 0} ≤ λh. (9)

Here, Xp denotes the p-th column of the design matrix X .

The special case of least-squares regression. Among all candidate choices of the loss function f ,
the squared loss f(t; y) = 1

2 (t− y)2 for least-squares regression is the most important and popular
one with many real-world applications Kim et al. (2007); Nguyen & Rocke (2002); Boulesteix &
Strimmer (2007); Fort & Lambert-Lacroix (2004), and the corresponding Legendre-Fenchel conjugate
becomes f∗(s; y) = s2

2 + sy. In this special case of the structured sparse learning for least-squares
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regression, the relaxed convex program PBR becomes the following form.

LBR = min
(u,z)∈Ω

{
G(u) := y⊤

(
1

ρ
XD(u)X⊤ + I

)−1

y

}
. (10)

The detailed derivation of equation 10 can be found in the supplementary materials Section B.2. We
let S denote the support of the unique optimal solution u∗ to the original Boolean program

L∗ := min
(u,z)∈Γ

{G(u)} (11)

and define the n× n matrix M by M :=
(
In + ρ−1XSX

⊤
S

)
. (12)

Now we are ready to apply Theorem 2.2 to the squared loss function and derive the sufficient and
necessary condition for the exactness of LBR (assuming non-overlapping groups), as follows.
Corollary 2.3. Suppose that each feature belongs to only one group and the optimal integral solution
(û, ẑ) selects k features and h groups, then LBR = L∗ if and only if there exist non-negative λk and
λh, such that

1. For each group i such that ẑi = 1, it holds that
∀p ∈ gi, ûp = 1 ⇒ (X⊤

p My)2 > λk and (13)

∀p ∈ gi, ûp = 0 ⇒ (X⊤
p My)2 ≤ λk. (14)

2. For each group i such that ẑi = 1, it holds that∑
p∈gi,ûp=1

((X⊤
p My)2 − λk) > λh. (15)

3. For each group i such that ẑi = 0,∑
p∈gi

max{(X⊤
p My)2 − λk, 0} ≤ λh. (16)

The proof of Corollary 2.3 can be found in the supplementary materials Section B.3. Corollary 2.3
creates an analysis framework for the exactness of the Boolean relaxation LBR where one only has to
construct two scalars λk and λh and verify the conditions in equation 14, equation 15, and equation 16.
In Section 3, we will follow this framework to theoretically prove the exactness of LBR for several
classes of problem instances that are popularly studied in the literature, demonstrating the power of
Corollary 2.3.

2.3 RANDOMIZED ROUNDING

When the Boolean relaxation is not exact (i.e., the optimal solution of the Boolean relaxation turns
out to be fractional), we describe in this section a rounding method to recover an integral solution.
We will apply randomized rounding, a state-of-the-art technique for converting fractional solutions
to integer solutions with provable approximation guarantees Pilanci et al. (2015), to the solution of
the relaxed problem PBR. Given the fractional solution ū ∈ [0, 1]d and z̄ ∈ [0, 1]b, our goal is to
recover a feasible Boolean solution u ∈ {0, 1}d and z ∈ {0, 1}b. For simplicity of exposition, we
show the rounding scheme for the case when each feature belongs to exactly one group. However, the
algorithm could be easily generalized to the cases of overlapping groups. In our rounding algorithm,
we first generate a feasible Boolean solution at the group level z ∈ {0, 1}b. For each group j, we
independently set zj according to the following probability distribution:

Pr[zj = 1] = z̄j and Pr[zj = 0] = 1− z̄j . (17)
Once the groups are decided, the ui is set to 0 for each feature i that belongs to a non-selected group.
For each selected group gj and for each feature i that belongs to the group, we independently set ui

according to the following probability distribution:

Pr[ui = 1] =
ūi

z̄j
and Pr[ui = 0] = 1− ūi

z̄j
. (18)

It is easy to verify that the Boolean solution generated by the method above matches the frac-
tional solution in the sense of expectation E[z] = z̄ and E[u] = ū, and furthermore their ex-
pected ℓ0 norms are given by E [∥z∥0] =

∑b
j=1 Pr [zj = 1] =

∑b
j=1 z̄j ≤ h, and E [∥u∥0] =∑d

i=1 (Pr[ũi = 1, z̃j = 1] + Pr[ũi = 1, z̃j = 0]) =
∑d

i=1 ūi ≤ k.
With these expectation bounds in hand, applying standard concentration inequalities, we can show
that if we let G = maxj |gj | be the size of the largest group, for any δ ∈ (0, 1/3), with probability
at least (1− exp(Ω(−hδ2))− exp(−Ω(k2δ2/(bG2)))), we have that ∥z∥0 ≤ (1 + δ)h and ∥u∥0 ≤
(1 + δ)k. This means that when the group sizes are relatively small, our randomized rounding
scheme produces a nearly optimal solution with high probability. Finally, once we have obtained
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the integral solution u, the weight vector w for the original problem equation 1 can be computed by
w := argminw∈Rd F (D(ũ)w).

Value guarantees for least-squares regression. For least-squares loss, we are also able to establish
theoretical guarantees for the value (i.e., H(u) as defined in equation 3) of our rounding scheme.
Without loss of generality, let us assume the columns of the design matrix X are normalized, i.e.,
∥Xp∥2 ≤ 1 for p ∈ {1, 2, . . . , d} and ∥y∥2 = 1. We have the following theorem and its proof is in
the supplementary materials Section C.

Theorem 2.4. Let (ū, z̄) be the optimal solution to the relaxed program. Let rz be the number of
fractional entries in z̄ and let ru be the number of fractional entries in ū. Let (u, z) be the integral
solution returned by our rounding scheme. For any δ > 0, with probability (1 − δ), it holds that

H(u)− P ∗ ≤ O
(

1
ρ

(√
rz log(rz/δ)G +

√
ru log(ru/δ)

))
.

3 THEORETICAL GUARANTEES OF LBR ON ENSEMBLES OF RANDOM
INSTANCES

In this section, we apply Corollary 2.3 to prove our relaxed program is tight and can achieves the
exactness with high probability and the nearly optimal sample complexity for two ensembles of
random problem instances.
We focus on the case of least-squares regression and its corresponding relaxation LBR. We will
introduce two ensembles of random problem instances and theoretically analyze the performance of
our LBR on them. The first random ensemble has been popularly used in literature to evaluate the
ℓ1 Sparse Group Lasso algorithms Simon et al. (2013); Friedman et al. (2010). The second random
ensemble is designed by us. It is more challenging compared to the first ensemble as there is more
than one “optimal” weight vector w at the feature level. However, the algorithm has to figure out the
one with the most group sparsity. For both ensembles, we will show that our LBR will successfully
recover both the group and feature sparsity with overwhelming probability and almost optimal sample
complexity (i.e., n – the number of observations).

3.1 RANDOM ENSEMBLE I

The first class of random instances can be generated as follows (illustrated in Fig. 1(a)). We first
generate the random design matrix X ∈ Rn×d with i.i.d. N (0, 1) entries. The d features are divided
into b groups where the size of each group is d/b. We will construct the regression weight vector
w ∈ Rd such that the first h groups will have non-zero coefficients and the coefficients in the rest
of the groups are 0. The number of non-zero coefficients in the j-th group (for j ∈ {1, 2, . . . , h}) is
kj and we have that

∑h
j=1 kj = k, where k is the total number of non-zero coefficients in w. For

each group j ∈ {1, 2, . . . , h}, we arbitrarily choose kj features in the group and randomly set the
corresponding coefficient in w to be ± 1√

k
. Finally, y = Xw + ϵ, where the noise vector ϵ ∈ Rn has

i.i.d. N (0, γ2) entries. The goal is to identify the support of w and the corresponding coefficients.
The following theorem provides the theoretical guarantee that given a sufficient amount of observa-
tions, LBR recovers the individual and group level sparsity for this random ensemble.

Theorem 3.1. Consider the random instance described above with parameters (n, d, k, γ, b, h) and
let y = Xw+ ϵ be the observed response vector. Suppose that γ ≥ 1. Let ρ = n1/2+δ (δ ∈ (0, 1/2)).
With probability at least (1 − d exp(−Ω(n2δ/(γ2k))) − d exp(−Ω(n1−2δ)), the relaxed program
LBR admits the optimal solution u∗ and z∗ where u∗

i = 1[wi ̸= 0] and z∗j = 1[j ∈ {1, 2, . . . , h}].

We remark that the regularization parameter ρ is set to n1/2+δ in our theorem, while in contrast, ρ
was set to

√
n in Pilanci et al. (2015) for the sparse learning problem without group constraints. In

fact, if we are only looking for (1− o(1)) success probability, we can set δ to be as large (close to
1/2) as possible. For example, if we set δ = 1/2− log logn

logn . The success probability is (1− o(1)) as
long as n/(γ2k log n) = ω(1), which means that we only need n = ω((k/γ2) log(k/γ2)) to achieve
the (1 − o(1)) success probability, which almost matches the information theoretic lower bound
Wainwright (2007) up to the logarithmic factor.

3.2 RANDOM ENSEMBLE II

We now describe the another class of random instances which is more challenging due to the multiple
candidate regression vectors (illustrated in Fig. 2(a)). We first generate a random design matrix
X ∈ Rn×d with two candidate k-sparse cross-fit regression vectors w(1), w(2) ∈ Rd, such that both
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vectors lead to the same expected response (i.e., Xw(1) = Xw(2)). The response vector is generated
by y = Xw(1) + ϵ where ϵ ∈ Rn has i.i.d. N (0, γ2) entries. The d feature dimensions are divided
into b groups of the same size d/b (for simplicity we assume that d is a multiple of b). The groups are
arranged in a way so that the non-zero coefficients of w(1) span h groups (where h · d/b ≥ k), and
the non-zero coefficients of w(2) span ζh groups (ζ > 1). Given (X, y) (after randomly permuting
the indices of the coordinates and the groups), the goal is to identify the support of w(1) since it is
sparser at the group level.
We next specifically describe how we generate w(1), w(2) and design the groups. For any vector
w ∈ Rk with no non-zero entries, we let the first k entries of w(1) filled by w and the rest filled by 0;
we also let the (k + 1)-th to the 2k-th entries of w(2) filled by w and the rest filled 0. We let each
of the first h groups contain k/h non-zero identical coordinates of w(1), and let each of the next ζh
groups contain k/(ζh) non-zero identical coordinates of w(2). We finally fill the b groups with the
coordinates numbered from (2k + 1) to d so that each group has the same size d/b.
We next describe how we generate the design matrix X . We first generate a random orthogonal matrix
Q such that Qw = w. This can be done by first fixing an arbitrary orthogonal matrix with w

∥w∥2
as

its first column (i.e., letting P = [ w
∥w∥2

, β1, β2, . . . , βk−1]), generating a random (k − 1)× (k − 1)

orthogonal matrix Q′, and finally letting Q = P · diag(1, Q′) · P⊤. We then generate the matrices
X1 ∈ Rn×k and X3 ∈ Rn×(d−2k) with i.i.d. N (0, 1) entries. Let X2 = X1Q. Since Q is orthogonal,
it is easy to see that in the the marginal distribution of X2, each entry is also i.i.d. N (0, 1). We finally
let X = [X1, X2, X3]. One can verify that Xw(1) = X1w as well as Xw(2) = X1Qw = X1w.
For the theoretical guarantee of LBR on our second random ensemble, we have the following theorem.

Theorem 3.2. Let X = [X1, X2, X3] and y = Xw(1) + ϵ be a random instance described above
with parameters (n, d, k, γ, b, h, ζ, w). Suppose there exists ξ > 0 such that ξ ≤ |wi| ≤ ζ1/4ξ
for all i ∈ {1, 2, . . . , k}. Also suppose that γ ≥ 1. Let ρ = n1/2+δ (δ ∈ (0, 1/2)). For large
enough constant ζ, with probability at least (1 − d exp(−Ω(n2δξ2/γ2)) − d exp(−Ω(n1−2δ))),
the relaxed program LBR admits the optimal solution u∗ and z∗ where u∗

i = 1[w
(1)
i ̸= 0] and

z∗g = 1[∃i ∈ g : w
(1)
i ̸= 0]. Here, we use g to denote both the index of a group and the set of the

features included in the group.

We first remark that the smallest possible value of ζ for the theorem to hold can be made arbitrarily
close to 1 (but greater than 1). This relaxation would only affect the constant coefficients in the Ω(·)
notations in the success probability bound. Also, similarly to the remark in Section 3.1, we may
set δ = 1/2 − log logn

logn . The success probability is (1 − o(1)) as long as nξ2/(γ2 log n) = ω(1).
Since ξ2 is usually Θ(1/k), again, we only need n = ω((k/γ2) log(k/γ2)) to achieve the (1− o(1))
success probability, almost matching the information theoretic lower bound Wainwright (2007) up to
the logarithmic factor.

4 EXPERIMENTS

In this section, we perform extensive experiments to investigate the effectiveness of the proposed
sparse group models under the setting of ℓ22-regularized least-squares regression specified in equa-
tion 10. We use both simulated datasets (non-overlapping groups) introduced in Sections 3.1 and 3.2
and a real-world application (overlapping groups) in cancer to evaluate the performance. To access
the performance on simulated data, we compute the recovery accuracy of both individual supports
and group supports, which are defined as AI(w) and AG(w), respectively:

AI(w) :=
|{i : wi ̸= 0, wtrue

i ̸= 0}|
|{i : wtrue

i ̸= 0}|
, AG(w) :=

|{j : wgj ̸= 0, wtrue
gj ̸= 0}|

|{j : wtrue
gj ̸= 0}|

. (19)

Here wtrue
i is the ith element of the ground-truth vector wtrue and wtrue

gj is the weight vector
for group gj . We apply the projected Quasi-Newton method Schmidt et al. (2009) to efficiently
solve equation 10. The details related to the optimization could be found in supplementary materials
Section E. If the solution of equation 10 is not integral, we use the rounding scheme proposed
in section 2.3. For the non-overlapping setting, we compare the performance of our method with
Sparse Group Lasso (SGL) Simon et al. (2013), Sparse G-group cover (SGCover) El Halabi &
Cevher (2015), and SGL∞(group level sparsity using ℓ∞ norm and individual level sparsity using ℓ1
norm); for the overlapping group setting, we compare with (SGL-Overlap) Yuan et al. (2011) and
SGCover El Halabi & Cevher (2015). We also compare our method with Elastic Net (ENet) Zou &
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Figure 1: (a) Illustration of the data generation process for Random Ensemble I. (b) AI as n increases. (c) AG as n increases. We average
results over 100 datasets and the error bar means 95% confidence interval. (d)–(g) Estimate k and h by out-of-sample of MSE by different
methods. The black vertical line indicates the true k. The results are averaged over 10 datasets and the error bar means standard deviation.

Hastie (2005) which is the state-of-the-art method for detecting sparse features at the individual level.
All experiments run on a computer with 8 cores 3.7GHz Intel CPU and 32 GB RAM.
4.1 SIMULATION EVALUATION OF RANDOM ENSEMBLE I

We first consider the simulation setting described in Section 3.1 in which we use d = 1000, b = 10,
k = 50 (ki = 10,∀i ∈ {1, 2, . . . , 5}), h = 5, and γ = 2.5 to generate the simulation data whose
signal-noise-ratio (SNR) is around 4. We evaluate the performance of all the methods on recovering
the ground truth weight vector wtrue with k = 50 contributing features distributed in h = 5 groups.
Feature selection with given support sizes k and h: We first consider the case when k and h are
given and equal to the ground-truth for all methods, while all other hyper-parameters are selected
by cross-validation. It is hard to let SGL, SGCover, and SGL∞ to select exact k individual features
and h groups of features so we indirectly control k and h by sweeping the regularization parameters.
For cases where these methods do not yield exact k individual features and h groups of features, we
rank their results and get the top k individual features and h groups of features instead. The same
procedure was adopted to ENet to select k features. In this setting, we do not need to worry about false
discovery rate (FDR), because it is complementary to the accuracy defined in equation 19. As shown
in Fig. 1(b) and (c), AI and AG of all competing methods converge to 1 with the increasing sample
size n. However, our proposed method converges the fastest among all the methods, indicating its
effectiveness on recovering the structured sparsity when the sample size is small. We further conduct
similar experiments with larger γ and show the results in the supplementary materials Section G.
Based on these results, we could confirm that our proposed method outperforms conventional methods
in selecting contributing features at both the individual level and group level.
Estimation of support sizes k and h: In the real-world scenario, we might not know the number
of contributing features and groups. Typically, they could be selected by cross-validation based on
the out-of-sample mean square error (MSE). Motivated by this practical need, in this study, we also
investigate whether the competing methods could accurately recover the ground truth k and h based
on the out-of-sample of MSE. As shown in Fig. 1(d)–(g), only our proposed method is able to provide
the smallest MSE at h = 5. In addition, for the number of contributing feature k, only our method
achieves the smallest MSE around the number of features k = 50.
Interpreting the superior performance of our method. All the competing methods are norm-based
and they rely on the regularization factor before the penalty norm to adjust to the support size
(group number and feature number) requirements. However, this connection is not explicit as our
Boolean relaxation where we directly require that

∑d
i=1 ui ≤ k and

∑b
i=1 zi ≤ h. Together with our

randomized rounding scheme, our Boolean relaxation method might be at an advantageous position to
utilize the prior knowledge on support sizes and/or recover the support sizes from the out-of-sample
MSE.
4.2 SIMULATION EVALUATION OF RANDOM ENSEMBLE II
Next, we consider a more challenging simulated data generated from the procedure introduced in
Section 3.2. We set d = 500, k = 80, h = 10, ζ = 4, and γ = 0.1 as described in Section 3.2. As
shown in Fig. 2(a), both w(1) and w(2) are “optimal” for the linear regression problem. However, the
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Figure 2: (a) Illustration of the data generation process for Random Ensemble II. (b) AI as n increases. (c) AG as n increases. We average
results over 100 datasets and the error bar means 95% confidence interval.

supports of w(1) are in h = 10 groups but the supports of w(2) are in ζh = 40 groups. The goal is to
test whether each method can recover the solution w(1), which is more sparse on the group level. We
control the parameters of each method to make it select k = 80 features in h = 10 groups. As shown
in Fig. 2(b) and (c), the recovery accuracy (AG and AI ) of the proposed method rapidly converges to
1 and 0.93 when more training samples are provided. Surprisingly, the recovery accuracy of all the
rest of the competing methods converge very slowly. Note that here we do not need to consider false
discovery rate (FDR) because each method selects exact k features in h groups, therefore, FDR is
complementary to the accuracy. Overall, under the setting of Random Ensemble II, the performance
improvement of our method over the-state-of-art algorithms is significant in terms of both recovery
accuracy.
4.3 CANCER DRUG RESPONSE PREDICTION
We further adapt our model and algorithm on a real-world application to predict the drug response. The
goal of the task is to find the essential genes and pathways that are responsible for the ineffectiveness
of cancer therapy. For this task, we chose ℓ22-regularized least-square regression model to predict the
continuous value of drug response. Table 1: Result comparison for IMATNIB.

Method k(s.d.) h(s.d.) Out-of-sample MSE ±95%CI

Proposed 46 7 32.6± 2.2

SGL-Overlap 92 (5.4) 19 (0.5) 46.9±3.7

ENet 60 (8.2) 18 (2.3) 39.6 ± 4.2

SGCover 321 (10.5) 13 (1.7) 55.4 ± 6.9

We collect drug response data from
the Cancer Therapeutics Response Por-
tal (CTRP) v2 and the Genomics of
Drug Sensitivity in Cancer (GDSC)
database Seashore-Ludlow et al. (2015);
Yang et al. (2013) with 684 chemotherapy
and targeted therapy drugs. For each drug, we create a separate machine learning task to predict
the drug response from the expression value of each gene for different tumor samples. In total, we
include 1,225 tumor samples and use the gene expression value of 2,369 genes. We focus on the
signal transduction pathways which are mined and collected by the Reactome database Jassal et al.
(2020). We only consider pathways that contain more than 10 genes and less than 80 genes. We
collect 207 pathways (gene groups), in which the average number of genes in each group is 28.9.
The gene expression data are extracted from CCLE Barretina et al. (2012). For each drug (machine
learning task), we hold 20% of the samples as the test set and used the remaining samples as training
and validation set. For each competing method, we use standard cross-validation to determine the
hyper-parameter based on the out-of-sample square error MSE on the validation set. Here we only
show the performance of the drug IMATNIB as a representative and put the performance of other
drugs in the supplementary materials Section I. Table 1 illustrates the estimation of k and h and the
out-of-sample MSE on the test set for drug IMATNIB with 10 bootstrap samples. We do not compare
with SGL∞ because the SpaSM package Sjöstrand et al. (2018) we used to solve SGL∞ cannot
handle overlapping groups. We find that our proposed method achieves the smallest out-of-sample
MSE as well as selects the smallest number of genes and pathways. More importantly, as shown
in supplementary materials Table S3, the selected pathways are all well associated with the drug
response and functional mechanisms of IMATNIB in different types of tumor cells supported by rich
literature. We also make predictions for other drugs and show the results in Table. S4.
5 CONCLUSION
In this paper, we propose a novel convex framework for learning structured sparsity. We provide
theoretical tools to verify the exactness of the solution of the relaxation, and a rounding algorithm
to produce the feasible integral solution when the relaxation solution is fractional. For the case of
least-squares loss, we perform extensive experiments to demonstrate the effectiveness of the proposed
framework.
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Supplementary Materials
A PROOF OF THEOREM 2.1
Proof Theorem 2.1. Let ui ∈ {0, 1} indicate whether the i-th feature is selected and ugj be a vector
containing ui, i ∈ gj . We then define D(u) := diag(u) and D(ugj ) := diag(ugj ). Considering the
change of variable w = D(u)w, we find the original problem equation 1 is equivalent to

P ∗ = min
∥D(u)w∥0 ≤ k∑b

j=1 1
[∥∥∥D(ugj

)wgj

∥∥∥
0
> 0

]
≤ h

{
n∑

i=1

f(w⊤D(u)xi; yi) +
1

2
ρ∥D(u)w∥22

}
. (20)

We further introduce zj ∈ {0, 1} to indicate whether the group of features gj is selected and obtain
the following equivalent formulation

P ∗ = min
∥D(u)w∥0 ≤ k∥∥∥D(ugj

)wgj

∥∥∥
0
≤ zj , ∀j∑b

j=1 zj ≤ h

{
n∑

i=1

f(w⊤D(u)xi; yi) +
1

2
ρ∥D(u)w∥22

}
. (21)

We further split w and u and then equation 21 becomes

P ∗ = min
(u,z)∈Γ

min
w∈Rd

{
n∑

i=1

f(w⊤D(u)xi; yi) +
1

2
ρ∥w∥22

}
, (22)

where

Γ =

(u, z)

∣∣∣∣ d∑
i=1

ui ≤ k,

b∑
j=1

zj ≤ h, ui ≤ zj ,∀i ∈ gj , u ∈ {0, 1}d, z ∈ {0, 1}b
 .

It is easy to verify that equation 22 achieves the same objective function value of equation 1 at the
same unique optimal solution w∗. It remains to prove the inner minimization is equivalent to

min
w∈Rd

{
n∑

i=1

f(w⊤D(u)xi; yi) +
1

2
ρ∥w∥22

}
= max

v∈Rn

{
− 1

2ρ
v⊤XD(u)X⊤v −

n∑
i=1

f∗(vi; yi)

}
.

(23)
Replacing f by its Legendre-Fenchel conjugate f∗, we have

min
w∈Rd

max
v∈Rn

{
n∑

i=1

w⊤D(u)xi · vi − f∗(vi : yi) +
1

2
ρ∥w∥22

}
. (24)

Under the stated assumptions, strong duality must hold and therefore minimum and maximum can be
exchanged.

max
v∈Rn

min
w∈Rd

{
n∑

i=1

w⊤D(u)xi · vi − f∗(vi : yi) +
1

2
ρ∥w∥22

}
. (25)

The objective function is strongly convex with respect to w. Hence, we can obtain the unique
minimizer w∗ = 1

ρ

∑n
i=1 D(u)xivi. Substituting w∗ yields equation 23.

B PROOFS AND DEVIATIONS FOR THE CONVEX FORMULATION

B.1 PROOF OF THEOREM 2.2

To prove Theorem 2.2, let us first provide the sufficient and necessary conditions for PBR to have
integral solutions in the following Lemma.

Lemma B.1. Suppose that each feature belongs to exactly one group. Then suppose that the integral
solution (û, ẑ) of equation 3 selects exactly k features and h groups. This solution is also the optimal
solution of the relaxed program PBR if and only if there exist non-negative {λup≤1, λup≥0}p∈[d],
{λzi≤1, λzi≥0}i∈[b], {λup≤zi}∀p∈gi , λk, and λh, such that

v̂ ∈ arg max
v∈Rn

{
− 1

2ρ
v⊤XD(û)X⊤v −

n∑
i=1

f∗(vi; yi)

}
(26)
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λup≤1 − λup≥0 + λk = (X⊤
p v̂)2 − λup≤zi , ∀p ∈ gi; (27)

λzi≤1 − λzi≥0 + λh =
∑
p∈gi

λup≤zi , ∀i ∈ [b]; (28)

λup≤1 = 0, ∀p : ûp = 0; (29)

λup≥0 = 0, ∀p : ûp = 1; (30)

λzi≤1 = 0, ∀i : ẑi = 0; (31)
λzi≥0 = 0, ∀i : ẑi = 1; (32)
λup≤zi = 0, ∀p ∈ gi : ûp < ẑi. (33)

To prove Lemma B.1, we need to use the following two theorems.

Theorem B.2 (Davis (2020)). Suppose x̄ is a local minimizer of f : Rd → R on a closed convex set
X ⊆ Rd. If f is differentiable at x̄, it holds that

−∇f(x̄) ∈ NX (x̄). (34)

Theorem B.3 (Davis (2020)). Let A ∈ Rm×n and let β ∈ Rm. Consider the polyhedron Q(A, β) =
{x|Ax ≤ β}. Suppose x ∈ Q(A, β), then the normal cone at x is NQ(A,β)(x) = {A⊤y|y ∈
Rm such that y ≥ 0 and y⊤(β −Ax) = 0}.

Proof of Lemma B.1. PBR is

PBR = min
(u,z)∈Ω

max
v∈Rn

{
− 1

2ρ
v⊤XD(u)X⊤v −

n∑
i=1

f∗(vi; yi)

}
︸ ︷︷ ︸

F (u,z)

, (35)

where Ω = {(u, z)|
∑

j uj ≤ k;
∑

i zi ≤ h;ui ≤ zj ;∀i ∈ gj ;u ∈ [0, 1]d; z ∈ [0, 1]b} is the feasible
set for (u, z). By Theorem B.2, we know (û, ẑ) is optimal if and only if the following inclusion
holds:

−∇F (û, ẑ) ∈ NΩ(û, ẑ), (36)

where NΩ(û, ẑ) is the normal cone at (û, ẑ).
Regarding the Left-Hand-Side of equation 36, by standard calculation, we have that ∂uiF (û) =
−(X⊤

i v̂)2 (v̂ is defined in equation 26) and ∂ziF (ẑ) = 0. Therefore,

−∇F (û, ẑ) =



(X⊤
1 v̂)2

(X⊤
2 v̂)2

...
(X⊤

d v̂)2

0
0
...
0


. (37)

Regarding the Right-Hand-Side of equation 36, we obtain the normal cone NΩ(û, ẑ) using The-
orem B.3. Specifically, the feasible set Ω is a polyhedron that can be presented by Ω(A, b) ={[

û
ẑ

] ∣∣∣ A [ û
ẑ

]
≤ β

}
, where the A matrix and β vector are constructed as follows.
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feature block: d columns︷ ︸︸ ︷
1

group block: b columns︷ ︸︸ ︷
−1

1
−1

. . .
1
−1

1 1 · · · 1
1
−1

1
−1

. . .
1
−1

1 1 · · · 1

A′


︸ ︷︷ ︸

A



û1

û2

...
ûd

ẑ1
ẑ2
...
ẑb


≤



1
0
1
0
...
1
0
k
1
0
1
0
...
1
0
h
0
...
0


︸︷︷︸

β

. (38)

Here, A′ is the feature-group relation matrix where for each feature group relation p ∈ gi, there is
a row in A′ where the p-th entry in the feature block is 1, the i-th entry in the group block is −1,
and all the rest entries are 0. According to Theorem B.3, we know the normal cone NΩ(û, ẑ) =

NΩ(A,b)(û, ẑ) =

{
A⊤λ

∣∣∣λ ∈ (R≥0)
c
: λ⊤

(
b−A

[
û
ẑ

])
= 0

}
, where c denotes the number of

constraints (i.e., the row dimension of A). We identify the entries of λ as follows: λup≤1 denotes the
dual parameter corresponding to the constraint up ≤ 1 for each feature p; λup≥0 denotes the dual
parameter corresponding to the constraint up ≥ 0 for each feature p; λk denotes the dual parameter
corresponding to the constraint

∑
j uj ≤ k; λzi≤1 denotes the dual parameter corresponding to the

constraint zi ≤ 1 for each group i; λzi≥0 denotes the dual parameter corresponding to the constraint
zi ≥ 0 for each group i; λh denotes the dual parameter corresponding to the constraint

∑
i zi ≤ h;

λup≤zi denotes the dual parameter corresponding to the constraint up ≤ zi for each feature p and
group gi such that p ∈ gi.
Finally, we conclude that the equivalent condition of equation 36 is there exists λ ∈ (R≥0)c

such that −∇F (û, ẑ) = A⊤λ and λ⊤
(
b−A

[
û
ẑ

])
= 0. By equation 37, we obtain equa-

tion 27 and equation 28 as the equivalent condition of −∇F (û, ẑ) = A⊤λ. We also obtain equa-
tion 29, equation 30, equation 31, equation 32, and equation 33 as the equivalent condition of

λ⊤
(
b−A

[
û
ẑ

])
= 0.

With Lemma B.1 in hand, we can prove Theorem 2.2 in the following.

Proof of Theorem 2.2. We first prove the sufficient condition. Given λk and λh, we only need to
construct non-negative {λup≤1, λup≥0}p∈[d], {λzi≤1, λzi≥0}i∈[b], {λup≤zi}∀p∈gi to satisfy equa-
tion 27-equation 33. By Lemma B.1, this will establish the optimality of (û, ẑ) in the relaxed program
PBR.
We first construct {λup≤1, λup≥0}p∈[d] and {λup≤zi}∀p∈gi as follows.

1. For each group i such that ẑi = 1, and for each p ∈ gi and ûp = 1, set λup≤1 = λup≥0 = 0

and λup≤zi = (X⊤
p v̂)2 − λk. For each p ∈ gi and ûp = 0, set λup≥0 = λk − (X⊤

p v̂)2 and
λup≤1 = λup≤zi = 0. By equation 14, one may verify that all constructed values in this
step are non-negative.
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2. For each group i such that ẑi = 1, set λzi≥0 = 0 and λzi≤1 =
∑

p∈gi,ûp=1((X
⊤
p v̂)2 −

λk)− λh, which is non-negative due to equation 15.
3. For each group i such that ẑi = 0, and for each p ∈ gi and (X⊤

p v̂)2 > λk, set λup≤1 =

λup≥0 = 0 and λup≤zi = (X⊤
p v̂)2 − λk. For each p ∈ gi and (X⊤

p v̂)2 ≤ λk, set
λup≥0 = λk − (X⊤

p v̂)2 and λup≤1 = λup≤zi = 0. Observe that we always have λup≤zi =

max{(X⊤
p v̂)2 − λk, 0} for each p ∈ gi.

4. For each group i such that ẑi = 0, set λzi≤1 = 0 and λzi≥0 = λh−
∑

p∈gi
max{(X⊤

p v̂)2−
λk, 0}, which is non-negative due to equation 16.

Finally, it is straightforward to verify that equation 27-equation 33 are satisfied by our constructed λ,
and therefore, by Lemma B.1, we conclude that (û, ẑ) is the optimal solution of the relaxed program
PBR.
We next prove the necessary condition. Given PBR and P ∗ have the same integral solution, we only
need to show there exist λk and λh that satisfy equation 14–equation 16. By Lemma B.1 and û is the
integral solution, we have

1. For each group i such that ẑi = 1 and ∀p ∈ gi, ûp = 1, we have
(X⊤

p v̂)2 = λk + λup≤1 + λup≤zi ⇒ (X⊤
p v̂)2 > λk. (39)

For each group i such that ẑi = 1 and ∀p ∈ gi, ûp = 0, we have
(X⊤

p v̂)2 = λk − λup≥0 ⇒ (X⊤
p v̂)2 ≤ λk. (40)

2. For each group i such that ẑi = 1 and all p ∈ gi, ûp = 1, we apply equation 39 and equa-
tion 28 and have∑

p∈gi,ûp=1

(
(X⊤

a v̂)2 − λk

)
= λh + λzi≤1 ⇒

∑
p∈gi,ûp=1

(
(X⊤

a v̂)2 − λk

)
> λh. (41)

3. For each group i such that ẑi = 0, we apply equation 40 and equation 28 and have∑
p∈gi

(
(X⊤

p v̂)2 − λk

)
= λh − λzi≥0 −

∑
p∈gi

λup≥0

⇒
∑
p∈gi

max{(X⊤
p v̂)2 − λk, 0} ≤ λh − λzi≥0 −

∑
p∈gi

λup≥0

⇒
∑
p∈gi

max{(X⊤
p v̂)2 − λk, 0} ≤ λh. (42)

B.2 DERIVATION OF EQUATION 10

In the case of least-square regression, the Legendre-Fenchel conjugate of the least-square loss
f(t; y) = 1

2 (t− y)2 is given by f∗(s; y) = s2

2 + sy. Substituting this conjugate function into H(u)
in equation 3 in Theorem 2.1, we have

H(u) = max
v∈Rn

{
− 1

2ρ
v⊤XD(u)X⊤v − 1

2
∥v∥22 − v⊤y

}
. (43)

We can verify that the unique optimal solution of H(u) is

v̂ = −
(
XD(u)X⊤

ρ
+ I

)−1

y. (44)

Substituting v̂ back into equation 3 and applying Theorem 2.1 yield the representation

LBR = min
(u,z)∈Ω

{
y⊤
(
1

ρ
XD(u)X⊤ + I

)−1

y

}
. (45)

B.3 PROOF OF COROLLARY 2.3

Proof of Corollary 2.3. Under the least-square regression setting, we apply Theorem 2.2 and based

on equation 5, we know v̂ = −
(

XD(û)X⊤

ρ + I
)−1

y. We further define M :=
(
In + ρ−1XSX

⊤
S

)
,

where S is the support set indicated by û and then v̂ = −My. Substituting v̂ by v̂ = −My in
Theorem 2.2 proves the Corollary.
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C PROOF OF THEOREM 2.4

Proof of Theorem 2.4. For least-squares loss f(t, y) = 1
2 (t− y)2, we have that

H(u) = max
v∈Rn

{
− 1

2ρ
v⊤XD(u)X⊤v − 1

2
∥v∥22 − v⊤y

}
.

Since the optimal value if non-negative, the optimal dual parameter v ∈ Rn must satisfy that
∥v∥2 ≤ 2∥y∥2 ≤ 2.
Note that

H(u)− P ∗ ≤ H(u)−H(ū) = H(u)−H(ũ) +H(ũ)−H(ū), (46)
where we set ũi = ūi/z̄j if the feature i belongs to group j and zj = 1, otherwise we set ũi = 0.
For H(u)−H(ũ), we have that
H(u)−H(ũ)

= max
v∈Rn

{
− 1

2ρ
v⊤XD(u)X⊤v − 1

2
∥v∥22 − v⊤y

}
− max

v∈Rn

{
− 1

2ρ
v⊤XD(ũ)X⊤v − 1

2
∥v∥22 − v⊤y

}
≤ max

v∈Rn

{
− 1

2ρ
v⊤X(D(u)−D(ũ))X⊤v

}
≤ 1

ρ
σmax

(
X(D(u)−D(ũ))X⊤) , (47)

where σmax(·) denotes the maximum singular value of the matrix. Similarly, for H(ũ)−H(ū), we
have that

H(ũ)−H(ū) ≤ 1

ρ
σmax

(
X(D(ũ)−D(ū))X⊤) . (48)

For X(D(ũ)−D(ū))X⊤, we rewrite it as

X(D(ũ)−D(ū))X⊤ =
∑
j

∑
i∈gj

(
zj ×

ūi

z̄j
− ūi

)
XiX

⊤
i .

Note that by our assumption, the operator norm of
∑

i∈gj

(
zj × ūi

z̄j
− ūi

)
XiX

⊤
i is at most |gj | ≤ G

and the mean of the random matrix is 0. By the Ahlswede-Winter matrix concentration bound
Ahlswede & Winter (2002); Oliveira et al. (2010), we have that

Pr
[
σmax

(
X(D(ũ)−D(ū))X⊤) ≥ √

rzGt
]
≤ rz exp(−Ω(t2)), (49)

where rz is the number of fractional entries in z̄. The standard matrix concentration bound (e.g.,
matrix Hoeffding) states that for n-dimensional random matrices X1, X2, . . . , XM , we have that
Pr[σmax(X1 + · · · + XM ) ≥ α] ≤ 2n exp(−α2/(8Mσ2)), where σ upper bounds the operator
norms of X1, X2, . . . , XM almost surely. In the context of Eq. (49), we have that σ = G and we
set α =

√
rzGt. Using the matrix concentration inequality, we upper bound the Left-Hand-Side of

Eq. (49) by 2n exp(−rzt
2/8M) ≤ 2n exp(−t2/8) (since rz ≥ M ). Note that this bound is already

good enough since the only difference from the Right-Hand-Side of Eq. (49) is the factor 2n instead
of rz . These factors would go into the logarithmic factor in the final error bound of Theorem 2.4 so
they do not make much difference.
To improve the factor 2n to rz in Eq. (49), we need to show that there exists rz dimensional subspace
whose basis vector denoted by the columns of Q ∈ Rn×rz so that X(D(ũ) − D(ū))X⊤ can be
written as Q(X ′

1 + . . . X ′
M )Q⊤ almost surely (where X ′

1, . . . , X
′
M are rz-dimensional matrices and

their operator norms are also bounded by G). The construction of Q and X ′
1, . . . , X

′
M is possible

because each matrix associated with a fractional variable z̄j is low rank and there are only rz fractional
z̄j’s. We then apply the above matrix concentration bound to X ′

1 + . . . X ′
M to derive Eq. (49).

For X(D(u)−D(ũ))X⊤, we have that
X(D(u)−D(ũ))X⊤ =

∑
i

(ui − ũi)XiX
⊤
i .

Again, by our assumption, the operator norm of (ui − ũi)XiX
⊤
i is at most 1, and the mean of

the random matrix is 0 (even when conditioned on z). Therefore, by the Ahlswede-Winter matrix
concentration bound Ahlswede & Winter (2002); Oliveira et al. (2010), we have that

Pr
[
σmax

(
X(D(u)−D(ũ))X⊤) ≥ √

rut|z
]
≤ ru exp(−Ω(t2)), (50)

where ru is the number of fractional entries in ū.
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Combining equation 46, equation 47, equation 48, equation 49, and equation 50, we have that with
probability at least (1− δ), it holds that

H(u)− P ∗ ≤ O

(√
rz log(rz/δ)G +

√
ru log(ru/δ)

ρ

)
,

proving the theorem.

D ANALYSIS OF THE PERFORMANCE OF LBR ON SYNTHETIC RANDOM
ENSEMBLES

D.1 PROOF OF THEOREM 3.1

Proof of Theorem 3.1. Let

M =

(
1

ρ
XD(u∗)X⊤ + I

)−1

.

For each feature index i ∈ {1, 2, . . . , n}, by y = Mw + ϵ, we have that
e⊤i X

⊤MXy = e⊤i X
⊤MXw + e⊤i X

⊤Mϵ. (51)
We first bound e⊤i X

⊤MXw as follows. Applying Lemma D.1 to each feature index i such that
wi ̸= 0, and via a union bound, we have that there exists a universal constant c1 ∈ (0, 1/3200), such
that with probability at least (1− 3k exp(−c1n

1−2δ)), it holds that

∀i : wi ̸= 0,

∣∣∣∣1ρe⊤i X⊤MXw

∣∣∣∣ ∈ [0.9/
√
k, 1.1/

√
k]. (52)

Also, applying Lemma D.2 to each feature index i such that wi = 0, and via a union bound, we have
that with probability at least (1− 4(d− k) exp(−c1n/k)), it holds that

∀i : wi = 0,

∣∣∣∣1ρe⊤i X⊤MXw

∣∣∣∣ ≤ 0.1/
√
k. (53)

We then bound e⊤i X
⊤Mϵ as follows. Note that M ≼ I . Therefore, applying Lemma D.3 to each

feature index i (with τ = 0.1ρ/
√
k), and via a union bound, we have that with probability at least

(1− 2d exp(−n/8)− 2d exp(−n2δ/(400γ2k))), it holds that
∀i ∈ {1, 2, . . . , d},

∣∣e⊤i X⊤Mϵ
∣∣ ≤ 0.1ρ/

√
k. (54)

Now we condition on the event that all of equation 52, equation 53, and equation 54 happen. By
equation 51, we have that

∀i : wi ̸= 0 :
∣∣e⊤i X⊤MXy

∣∣ ∈ [0.8ρ/
√
k, 1.2ρ/

√
k], (55)

∀i : wi = 0 :
∣∣e⊤i X⊤MXy

∣∣ ∈ [0, 0.2ρ/
√
k]. (56)

We now set λk = (0.2ρ/
√
k)2, λh = ((0.79ρ/

√
k)2 − λk) · kmin (where we let kmin =

minj∈{1,2,...,h}{kj} be the size of the smallest non-empty group (in terms of non-zero coefficients)),
and verify the conditions in Corollary 2.3 as follows:

1. Fix any group g such that z∗g = 1. For each i ∈ g such that u∗
i = 1, we have that wi ̸= 0

and therefore (e⊤i X
⊤MXy)2 ≥ (0.8ρ/

√
k)2 > λk by equation 55. For each i ∈ g such

that u∗
i = 0, we have that wi = 0 and therefore (e⊤i X

⊤MXy)2 ≤ (0.2ρ/
√
k)2 ≤ λk by

equation 56.
2. Fix any group g such that z∗g = 1. By equation 55, we have

∑
i∈g:u∗

i =1((e
⊤
i X

⊤My)2 −
λk) ≥ ((0.8ρ/

√
k)2 − λk) · kmin > λh.

3. Fix any group g such that z∗g = 0. By equation 55 and equation 56, we have∑
i∈g max{(e⊤i X⊤My)2 − λk, 0} ≤ 0 < λh.

Finally, the theorem is proved by collecting the failure probabilities of the desired events (equation 52,
equation 53, and equation 54).
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D.2 PROOF OF THEOREM 3.2

Proof of Theorem 3.2. Let

M =

(
1

ρ
XD(u∗)X⊤ + I

)−1

=

(
1

ρ
X1X

⊤
1 + I

)−1

=

(
1

ρ
X2X

⊤
2 + I

)−1

.

For each feature index i ∈ {1, 2, . . . , n}, by y = Mw(1) + ϵ, we have that
e⊤i X

⊤MXy = e⊤i X
⊤MXw(1) + e⊤i X

⊤Mϵ. (57)
We first bound e⊤i X

⊤MXw(1) as follows. Applying Lemma D.1 to each feature index i such that

w
(1)
i ̸= 0, and via a union bound, we have that there exists a universal constant c′1 ∈ (0, 1/3200),

such that with probability at least (1− 3k exp(−c′1n
1−2δ)), it holds that

∀i : w(1)
i ̸= 0,

∣∣∣∣1ρe⊤i X⊤MXw(1)

∣∣∣∣ ∈ [0.9|w(1)
i |, 1.1|w(1)

i |] ⊆ [0.9ξ, 1.1ζ1/4ξ]. (58)

Similarly, applying Lemma D.1 to each feature index i such that w(2)
i ̸= 0, and via a union bound,

we have that with probability at least (1− 3k exp(−c′1n
1−2δ)), it holds that

∀i : w(2)
i ̸= 0,

∣∣∣∣1ρe⊤i X⊤MXw(1)

∣∣∣∣ = ∣∣∣∣1ρe⊤i X⊤MXw(2)

∣∣∣∣ ∈ [0.9|w(2)
i |, 1.1|w(2)

i |] ⊆ [0.9ξ, 1.1ζ1/4ξ].

(59)

Finally, applying Lemma D.2 to each feature index i such that both w
(1)
i = 0 and w

(2)
i = 0, and via a

union bound, we have that with probability at least (1− 4(d− 2k) exp(−c′1nξ
2)), it holds that

∀i : w(1)
i = 0 ∧ w

(2)
i = 0,

∣∣∣∣1ρe⊤i X⊤MXw(1)

∣∣∣∣ ≤ 0.1ξ. (60)

We then bound e⊤i X
⊤Mϵ as follows. Note that M ≼ I . Therefore, applying Lemma D.3 to each

feature index i (with τ = 0.1ξρ), and via a union bound, we have that with probability at least
(1− 2d exp(−n/8)− 2d exp(−ξ2n2δ/(400γ2))), it holds that

∀i ∈ {1, 2, . . . , d},
∣∣e⊤i X⊤Mϵ

∣∣ ≤ 0.1ξρ. (61)

Now we condition on the event that all of equation 58, equation 59, equation 60, and equation 61
happen. By equation 57, we have that

∀i : w(1)
i ̸= 0 ∨ w

(2)
i ̸= 0 :

∣∣e⊤i X⊤MXy
∣∣ ∈ [0.8ξρ, 1.2ζ1/4ξρ], (62)

∀i : w(1)
i = 0 ∧ w

(2)
i = 0 :

∣∣e⊤i X⊤MXy
∣∣ ∈ [0, 0.2ξρ]. (63)

We now set λk = (0.2ξρ)2, λh = ((0.79ξρ)2−λk) ·(k/h), and verify the conditions in Corollary 2.3
as follows:

1. Fix any group g such that z∗g = 1. For each i ∈ g such that u∗
i = 1, we have that w(1)

i ̸= 0

and therefore (e⊤i X
⊤MXy)2 ≥ (0.8ξρ)2 > λk by equation 62. For each i ∈ g such that

u∗
i = 0, we have that w(1)

i = w
(2)
i = 0 and therefore (e⊤i X

⊤MXy)2 ≤ (0.2ξρ)2 ≤ λk by
equation 63.

2. Fix any group g such that z∗g = 1. By equation 62, we have
∑

i∈g:u∗
i =1((e

⊤
i X

⊤My)2 −
λk) = ((0.8ξρ)2 − λk) · (k/h) > λh.

3. Fix any group g such that z∗g = 0. By equation 62 and equation 63, we have∑
i∈g max{(e⊤i X⊤My)2 − λk, 0} ≤ ((1.44ξρ)2

√
ζ − λk) · (k/(ζh)) ≤ ((1.44ξρ)2 −

λk) · (k/(
√
ζh)) = 2.0336(ξρ)2 · (k/h)/

√
ζ < λh, where the last inequality holds for large

enough constant ζ > 1.

Finally, the theorem is proved by collecting the failure probabilities of the desired events (equation 58,
equation 59, equation 60, and equation 61).

D.3 TECHNICAL LEMMAS

Lemma D.1. Suppose k ≤ n/4. Let X ∈ Rn×k be a matrix with i.i.d. N (0, 1) entries. Let
ρ = n1/2+δ (δ ≥ 0), and M = (I + 1

ρXX⊤)−1. For any ϵ ≥ 32nδ−1/2, any fixed vector
z ∈ Rk such that ∥z∥∞ ≤ 1 and any fixed index i ∈ {1, 2, . . . , k}, with probability at least
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(1− 3 exp
(
−n1−2δϵ2/2048

)
), it holds that∣∣∣∣e⊤i (1

ρ
X⊤MX − I

)
z

∣∣∣∣ ≤ ϵ,

where ei is the i-th (column) basis vector.

Proof. The proof follows the similar lines of Part (1) of the proof of Lemma 2 in Pilanci et al. (2015).
However, we adopt a different regularization parameter ρ.
We write X = UDV ⊤ for the singular decomposition of X . By standard results on the singular
value of Gaussian random matrices (e.g., Davidson & Szarek (2001)), for each t ≥ 0, it holds that

Pr[∀j ∈ {1, 2, . . . , k} :
√
n−

√
k − t ≤ Djj ≤

√
n+

√
k + t] ≥ 1− 2 exp(−t2/2).

In particular, if we set t =
√
n/4, we have that

Pr[∀j ∈ {1, 2, . . . , k} :
√
n/4 ≤ Djj ≤ 7

√
n/4] ≥ 1− 2 exp(−n/32). (64)

The rest of the proof will be carried out by conditioning on the successful event in equation 64. Note
that

X⊤MX = V (ρI +D2)−1D2V ⊤,

and therefore,
1

ρ
X⊤MX − I = V [(ρI +D2)−1D2 − I]V ⊤ = V D̃V ⊤,

where we let D̃ := diag({ D2
jj

ρ+D2
jj

− 1}j∈{1,2,...,k}), and have that D̃jj ≥ 0 and D̃jj ≤ 16nδ−1/2 for

all j ∈ {1, 2, . . . , k} due to the successful event in equation 64. Note that∣∣∣∣e⊤i (1

ρ
X⊤MX − I

)
z

∣∣∣∣ = ∣∣∣e⊤i V D̃V ⊤z
∣∣∣ =

∣∣∣∣∣∣
∑
j

VijD̃jj

∑
q

Vqjzq

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑
j

V 2
ijD̃jjzi

∣∣∣∣∣∣+
∣∣∣∣∣∣
∑
j

VijD̃jj

∑
q:q ̸=i

Vqjzq

∣∣∣∣∣∣ . (65)

It is easy to bound the first term in equation 65 by∣∣∣∣∣∣
∑
j

V 2
ijD̃jjzi

∣∣∣∣∣∣ ≤ 16nδ−1/2. (66)

Let Ṽ be the (k − 1)× k matrix obtained by removing the i-th row from V , and let z̃ be the (k − 1)-
dimensional vector by removing the i-th entry of z. We can rewrite the second term in equation 65
as ∣∣∣∣∣∣

∑
j

VijD̃jj

∑
q:q ̸=i

Vqjzq

∣∣∣∣∣∣ =
∣∣∣e⊤i V D̃Ṽ ⊤z̃

∣∣∣ . (67)

Observe that even when conditioned on D (and therefore D̃), e⊤i V D̃Ṽ ⊤ is a (k − 1)-dimensional
vector pointing towards a uniform random direction, and its 2-norm is at most 16nδ−1/2. On the
other hand, z̃ is a fixed (k − 1)-dimensional vector with ∥z̃∥2 ≤

√
k − 1. Therefore, by standard

spherical concentration inequality, we have that

Pr
[∣∣∣e⊤i V D̃Ṽ ⊤z̃

∣∣∣ ≤ ϵ− 16nδ−1/2
]
≥ 1− exp

(
−n(ϵ− 16nδ−1/2)2/512

)
≥ 1− exp

(
−n1−2δϵ2/2048

)
. (68)

Combining equation 65, equation 66, equation 67, equation 68, and collecting the probabilities, we
prove the desired result.

Lemma D.2. Suppose k ≤ n/4. Let X ∈ Rn×k be a matrix with i.i.d. N (0, 1) entries. Let u ∈ Rk

be a column vector with i.i.d. N (0, 1) entries. Let ρ = n1/2+δ (δ ≥ 0), and M = (I + 1
ρXX⊤)−1.

For any ϵ ∈ (0, 1) and any fixed vector z ∈ Rk such that ∥z∥2 ≤ 1 , with probability at least
(1− 4 exp

(
−nϵ2/32

)
), it holds that ∣∣∣∣1ρu⊤MXz

∣∣∣∣ ≤ ϵ.
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Proof. The following proof is based on the standard calculation, which also appeared in Part (2) of
the proof of Lemma 2 in Pilanci et al. (2015).
Write X = UDV ⊤ for the singular decomposition of X . Again, we have equation 64 and will
condition on the successful event in equation 64 for the rest of the proof. Note that

1

ρ
MXz = U(ρD−1 +D)−1V ⊤z,

and therefore ∥∥∥∥1ρMXz

∥∥∥∥
2

≤ 4/
√
n

by the successful event in equation 64. Thus, 1
ρu

⊤MXz is a centered Gaussian with standard

deviation 4/
√
n, and the probability that

∣∣∣ 1ρu⊤MXz
∣∣∣ > ϵ is at most 2 exp(−ϵ2n/32) by the standard

Gaussian tail bound. The lemma is proved by collecting the failure probabilities.

Lemma D.3. Let u ∈ Rn be a column vector with i.i.d. N (0, 1) entries. Let M ∈ Rn×n be any
PSD matrix (which might depend on u) such that its eigenvalues are at most 1. Let ϵ ∈ Rn be an
independent column noise vector with i.i.d. N (0, γ2) entries. For any τ > 0, with probability at least
(1− 2 exp(−n/8)− 2 exp(−τ2/(4γ2n))), it holds that∣∣u⊤Mϵ

∣∣ ≤ τ.

Proof. By standard χ2 concentration results, we have that with probability at least (1−2 exp(−n/8)),
it holds that ∥u∥22 ≤ 2n. The rest of the proof will be carried out conditioning on this event.
Note that ∥Mu∥2 ≤ ∥u∥2. Therefore, u⊤Mϵ ∼ N (0, γ2∥u∥22). By the standard Gaussian tail bound,
we have that

Pr[|u⊤Mϵ| ≤ τ ] ≥ 1− 2 exp(−τ2/(2γ2∥u∥22)) ≥ 1− 2 exp(−τ2/(4γ2n)).
The lemma is proved by collecting the failure probabilities.

E OPTIMIZATION

We use the projected Quasi-Newton (PQN) method to solve the optimization LBR defined in equa-
tion 10. The details of PQN is elaborated in Schmidt et al. (2009) Algorithm 1, therefore, we refer the
interested audiences to Schmidt et al. (2009) for more details. To apply PQN, we need to know the
gradient of the objective function in equation 10. The partial gradient of G(u) w.r.t ui can be written
as

∂G(u)

∂ui
= −1

ρ

(
X⊤

i

(
1

ρ
XD(u)X⊤ + I

)−1

y

)
. (69)

Computing such a gradient requires the solution of a rank-∥u∥0 linear system of size n, which can
be calculated in time O(∥u∥30) + O(nd) via the QR decomposition. When the sparsity level k is
relatively small, such computation is not expensive.
We also need to do the following projection in PQN.

min
x∈Ω

: ∥x− y∥22, (70)

where Ω is defined in Section 2.2. The projection on the relaxed constraint set Ω can be efficiently
obtained by a commercial solver (we use Gurobi Gurobi Optimization, LLC (2022)).

F NUMERICAL VERIFICATION OF COROLLARY 2.3
Corollary 2.3 states that under the least-squares regression setting, under certain conditions, the
solution of the relaxed program is integral and consistent with the optimal solution of the problem
with Boolean constraints. In this section, we numerically verify the equivalence established in
Corollary 2.3.
We consider to generate synthetic data follow Random Ensemble I. we set d = 200, b = 10, k = 50
(ki = 10,∀i ∈ {1, 2, . . . , 5}), h = 5. We vary sample size n and SNR (controlled by γ) to see
whether the solution of the relaxed program is the optimal integral solution of the program with
Boolean constraints.
For each n and SNR, we randomly generate 10 datasets. We run our relaxed program on these 10
datasets and count the number of solutions that are the same as the integral solutions of the program
with Boolean constraints. As shown in the Table S1, the proposed equivalence can be achieved when
the sample size and SNR are large.
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Figure S1: Performance comparison for different γs. (a) AI as n increases when γ = 3.5. (b) AG as n
increases when γ = 3.5. We average results over 10 datasets and the error bar means 95% confidence interval.

Table S1: Number of solutions that is the integral solutions
of the program with Boolean constraints .

SNR n = 100 n = 200 n = 300 n = 1, 000
40 0/10 10/10 10/10 10/10
30 0/10 10/10 10/10 10/10
20 0/10 0/10 0/10 10/10

G ADDITIONAL EXPERIMENTS FOR RANDOM ENSEMBLE I
We compare our proposed method with other state-of-the-art methods on simulation data generated
from Random Ensemble I with different γs. We first set γ = 3.5 and compare the performance of
the competing methods on recovering the individual and group supports. Note that when γ = 3.5,
the signal to noise ratio is around 3. We compare the competing methods on 10 different data sets
generated from Random Ensemble I with γ = 3.5. As illustrated in Fig. S1 (a) and (b), our proposed
method still outperforms all the competing methods in terms of both AI and AG with the increasing
number of samples.

H EXPERIMENTS FOR SYNTHETIC DATA SATISFYING MUTUAL
INCOHERENCE CONDITION

In Random Ensemble I, we generate xi ∼ N (0, I) as i.i.d features. In this experiments, we aims to
evaluate the performance of the competing methods in the presence of correlation between features.
We follow the way we generate the data in Random Ensemble I, where we set d = 1000, b = 10,
k = 50 (ki = 10,∀i ∈ {1, 2, . . . , 5}), h = 5, and γ = 0.1. Then only different is that we generate
xi ∼ N (0,Σ), where Σ is the Toeplitz covariance matrix Σij = p|i−j|. Such matrices satisfy the
mutual incoherence condition, required by ℓ1-regularized estimators to be statistically consistent.
We consider p = 0.2 and p = 0.7 for Σ to evaluate the competing methods’ performance under
different correlations. The performance is shown in Fig. S2. We find that when p = 0.2, support
recovery (both individual level Fig. S2(a) and group level Fig. S2(b)) can be easily achieved by most
of the models. And our model outperforms other competing methods. However, when p = 0.7, all
models have difficulties to accurately recover the support at the individual level (Fig. S2(c)), which
makes sense because the correlation between features are high so that finding the correct features
becomes more challenge. Our model still outperforms other competing methods at both individual
level (Fig. S2(c)) and group level (Fig. S2(d)).

I ADDITIONAL EXPERIMENTS FOR CANCER DRUG RESPONSE PREDICTION

We first show Table. S3, which illustrates the pathways and genes identified by the proposed method
for drug IMATNIB and the corresponding researches that support the findings.
We further find the targeted pathways and genes for three other drugs: GEFITINIB, BEXAROTENE,
and BOSUTINIB. In Table. S4, we show the number of targeted pathways and genes identified by
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Figure S2: Performance comparison for different ps. (a) AI as n increases when p = 0.2. (b) AG as n
increases when p = 0.2. (c) AI as n increases when p = 0.7. (d) AG as n increases when p = 0.y. We average
results over 10 datasets and the error bar means 95% confidence interval for (a)-(d).

each competing method and the out-of-sample MSE. As shown our method achieves the smallest
out-of-sample MSE and the fewest number of pathways and genes.

J TIME COMPARISON FOR RANDOM ENSEMBLE I
We compared the running time for experiments of Random Ensemble I when the sample size is 1,000
in the Table. S2.

Table S2: Time comparison (mean ± s.d.) for Random Ensemble I when the sample size is 1000.
Method SGL SGL_∞ SGCover ENEt Proposed
Time (s) 1.4±0.1 4.2± 0.2 20.8±0.9 0.2±0.03 24.4±2.1

K IMPLEMENTATION DETAILS

For section 4.1 subsection “Feature selection with given support sizes k and h” and section 4.2, we
select the parameters as follows. For our method, because k and h are given, we only have one
parameter ρ in (1) left, we select ρ by the 5-fold CV in terms of MSE. For the result of the methods,
which cannot control k and h, we just sweep the parameters to let them yield the desired k and h. For
the real-world application, we select the parameters in terms of out-of-sample MSE.

L CODE AVAILABILITY

The codes for the proposed method can be found here: https://anonymous.4open.
science/r/L0GL-F107/Readme

Table S3: Pathways and genes identified by the proposed methods for IMATNIB.
Pathway Genes Reference
RHO GTPases Activate WASPs and WAVEs ARPC1B WASF1 ARPC5 WASL CYFIP1 ACTG1 ACTR3 Gu et al. (2009); Huang et al. (2008); Chen et al. (2018)

Regulation of PTEN gene transcription LAMTOR3 LAMTOR4 SNAI1 RPTOR RRAGA RRAGB MBD3
RRAGD PHC3 GATAD2A RCOR1 MECOM CBX8 LAMTOR2 Nishioka et al. (2011); Peng et al. (2010); Huang et al. (2014)

Signaling by PDGF PDGFC COL4A3 COL6A2 COL6A3 COL9A3 Malavaki et al. (2013); Li et al. (2006); Heldin (2013)

Retinoid metabolism and transport CLPS LRP8 APOC3 SDC4 LPL LRP10 LRP12 APOA2 Hoang et al. (2010)

TCF transactivating complex RBBP5 KAT5 PYGO1 PYGO2 BCL9 Zhang et al. (2021); Coluccia et al. (2007); Corrêa et al. (2012)

Deactivation of the beta-catenin transactivating complex RBBP5 SOX3 SRY PYGO1 PYGO2 CBY1 BCL9 Zhou et al. (2003); Leo et al. (2013)

RAS processing ZDHHC9 GOLGA7 BCL2L1 ABHD17B Chung et al. (2006); Braun & Shannon (2008)
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Table S4: Result comparison for three other drugs.
Durg Method k (s.d.) h (s.d.) Out-of-sample MSE ± 95% CI

BOSUTINIB Proposed method 36 5 29.4±2.1
SGL-Overlap 64 ( 4.3) 9 (0.9) 42.6 ± 2.3

ENet 48 (5.3) 18(3.2) 35.4 ± 3.1
SGCover 240 (10.4) 15 (1.8) 52.4 ± 4.2

GEFITINIB Proposed method 42 6 35.4 ± 1.4
SGL-Overlap 78 (4.6) 13 (1.3) 4.78 ± 2.1

ENet 49 (5.6) 15 (2.1) 38.7 ± 2.9
SGCover 278 (13.4) 12 (2.4) 59.6 ± 3.6

BEXAROTENE Proposed method 52 8 36.9 ± 1.8
SGL-Overlap 86 (3.8) 15 (1.5) 61.8 ± 2.7

ENet 64 (5.2) 17 (3.5) 38.4 ± 2.3
SGCover 312 (16.3) 18 (2.3) 58.2 ± 3.1
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