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INDECOMPOSABILITY OF THE BOUNDED DERIVED CATEGORIES OF

BRILL-NOETHER VARIETIES

XUN LIN, CHENGLONG YU

Abstract. We prove that the bounded derived category of coherent sheaves of the Brill-

Noether variety Gr
d(C) that parametrizing linear series of degree d and dimension r on a general

smooth projective curve C is indecomposable when d ≤ g(C)− 1.

1. Introduction

The semi-orthogonal decompositions of the bounded derived category of coherent sheaves have

many applications to the geometry of the spaces. As there are many examples of semi-orthogonal

decompositions [Kuz14] [Kuz22], a naive question is that whether the bounded derived categories

are indecomposable in sense of semi-orthogonal decompositions. The indecomposability is closely

related to the geometric space of the Bridgeland stability conditions, see [Lin, Section 5], and

it is useful in many aspects. For example, if we know an embedding from a nice space to an

indecomposable category, then the embedding must be an equivalence. In paper [KaOk18],

the authors show that if the base locus of the canonical divisor is of zero dimension, then

the bounded derived category is indecomposable. It is generalized to the singular varieties

[Sp21]. The paper [Lin] shows that if the para-canonical base locus of the canonical divisor

is of zero dimension, then the derived category is indecomposable, in particular, it completes

the picture of indecomposability of the derived categories of symmetric power of curves. Very

recently, F. Caucci study the para-canonical base point of the canonical divisor, connected the

indecomposability problems to the generic vanishing theorems, and obtained more examples

whose bounded derived categories of coherent sheaves are indecomposable, including Hilbert

scheme of points on certain surfaces [Ca21]. Other techniques of studying the indecomposability

of derived categories are to consider the families [BBOR], and new notions stably semi-orthogonal

indecomposability [Pir21].

Let C be a smooth projective curve over C. In this paper, we continue to study the indecom-

posability of derived categories of the Brill-Noether variety Gr
d(C) which is the d-th symmetric

power of C when r = 0. Recall that Gr
d(C) is the scheme that parametrizes degree d and di-

mension r linear series on C. When C is general, Gr
d(C) is smooth projective, and of expected

dimension. We prove the following.

Theorem 1.1. Let C be a general curve. The bounded derived categories Db(Gr
d(C)) is inde-

composable if d ≤ g(C)− 1.
1
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Very recently, Toda proved the Quot scheme formula [Tod21, Theorem 1.1] that was conjec-

tured by Jiang [Jia21], and obtained semi-orthogonal decompositions of derived categories of

Gr
d(C) as special cases.

Proposition 1.2. [Tod21, Corollary 1.5] Let C be a general curve. There is a semi-orthogonal

decomposition if δ ≥ 0,

Db(Gr
g−1+δ(C)) =

〈

(

δ
i

)

-copies of Db(Gr−i
g−1−δ(C)), 0 ≤ i ≤ min({δ, r + 1})

〉

.

The Theorem 1.1 implies that the components in the decompositions of Proposition 1.2 are

indecomposable. We complete the picture of the indecomposability of bounded derived categories

of Gr
d(C) for general curve C.

Our method follows from paper [Lin]. Firstly we write down a first Chern class formula in

Section 2. Since Gr
d(C) is a special case of the canonical blow-up of the determinantal varieties,

we start with a more general setting, namely, we compute a first Chern class formula for the

canonical blow-up of the determinantal varieties in Section 2, see Proposition 2.1.

In Section 3, we analyze the deformation property of the relative hyperplane class which

appears in the first Chern class formula. We relates the deformation of the relative hyperplane

to an algebraically global generations of vector bundles that is a weaker notion of continuous

globally generated [PP], see Proposition 3.4. Some other general theorems of indecomposability

of derived categories are obtained, we hope that there will be more examples, see Theorem 3.7

and Corollary 3.9.

In Section 4, we study the examples Gr
d(C), and prove the main Theorem 1.1. The key point

is an algebraically global generation of dual of the push forward of certain Poincaré bundle. The

method is to reduce the original problem of indecomposability to the concrete problems of linear

series.

2. The first Chern class formula

In this section, we compute the first Chern class formula for the canonical blow-up of the

determinantal varieties under some smoothness and dimension assumptions. The main examples

are the classical Brill-Noether varieties.

Let X be a smooth projective variety, and (E,F, γ) be a pair of vector bundles of rank n

and m with bundle morphism γ. Define Xk(γ) as the k-th degeneracy loci of γ, namely the

subvariety of X which parametrizes the the points x such that the rank of γx is less than or equal

to k. Consider a closed subscheme of the relative Grassmanian G(n− k,E) which parametrizes

the pair (x,W ) that x ∈ Xk(γ), W ⊂ Ker(γx). We denote this variety as X ′
k(γ) which is usually

called the canonical blow-up of Xk(γ). We always assume that X ′
k(γ) is smooth and of expected

dimension. For the precise definitions, see [ACGH, Chap II].
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Consider the Plücker embedding G(n − k,E) →֒ P(∧n−kE). Let H be the canonical relative

hyperplane section of O(1) on P(∧n−kE).

Proposition 2.1. The first Chern class formula of X ′
k(γ) is

−C1(X
′
k(γ)) = (rankF − rankE) ·H|X′

k
(γ) + u∗(−C1(X) + (n − k) · (C1(F )− C1(E))).

Proof. We write S as the tautological vector bundle on G(n − k,E), and Q as the universal

quotient bundle. There is a natural exact sequence of vector bundles

0 → S → p∗E → Q → 0.

Applying ⊗S∨, we get an exact sequence of vector bundles

0 → S∨ ⊗ S → S∨ ⊗ p∗E → S∨ ⊗Q → 0.

We denote the last term S∨ ⊗Q as M , which is the vector bundle of tangent directions on the

fibers of p. There is a tangent bundle formula

0 → M → TG(n−k,E) → p∗TX → 0.

We have

C1(M) = −C1(S
∨ ⊗ S) + C1(S

∨ ⊗ p∗E) = C1(S
∨ ⊗ p∗E).

The second equality is because C1(S
∨ ⊗ S) = rank(S) · C1(S

∨) + rank(S) · C1(S) = 0.

On the other hand,

C1(TG(n−k,E)) = C1(M) + p∗C1(TX).

Now we relate the Chern class of G(n − k,E) with the Chern class of X ′
k(γ) by the normal

bundle formula

0 → TX′

k
(γ) → TG(n−k,E)|X′

k
(γ) → NX′

k
(γ)|G(n−k,E) → 0.

Consider the morphisms of vector bundles

S
→֒

// p∗E
p∗γ

// p∗F .

Denote the composition of morphisms of the vector bundles as p∗γ again. By definition X ′
k(γ)

is the zeros of the section s ∈ Γ(S∨ ⊗ p∗F ) that induced from p∗γ. Since we assume that X ′
k(γ)

is of expected dimension and smooth, we have

NX′

k
(γ)|G(n−k,E)

∼= S∨ ⊗ p∗F |X′

k
(γ).

Therefore, we have Chern class formula

j∗C1(G(n − k,E)) = C1(X
′
k(γ)) + j∗C1(S

∨ ⊗ p∗F ).
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Combining the formulas above, we get

C1(X
′
k(γ)) =j∗C1(G(n − k,E)) − j∗C1(S

∨ ⊗ p∗F )

=j∗(C1(M) + p∗C1(X)− C1(S
∨ ⊗ p∗F ))

=j∗(C1(S
∨ ⊗ p∗E) + p∗C1(X) − C1(S

∨ ⊗ p∗F ))

= rank(E) · j∗C1(S
∨) + rank(S) · u∗C1(E) + u∗C1(X)− rank(S) · u∗C1(F )

− rank(F ) · j∗C1(S
∨)

=(rank(E) − rank(F )) · j∗C1(S
∨) + u∗C1(X) + (n − k) · u∗(C1(E)− C1(F ))

Since j∗C1(S
∨) = H|X′

k
(γ), therefore

−C1(X
′
k(γ)) = (rank(F )− rank(E)) ·H|X′

k
(γ) + u∗(−C1(X) + (n− k) · (C1(F )− C1(E))).

�

3. The deformations of the relative hyperplane

Let E be a vector bundle of rankn on a smooth projective variety X. Write (P(E),O(1)) as

projective bundle of E with the canonical universal bundle O(1).

p : P(E) −→ X.

Motivated by the Chern class formula in Section 2, we study the algebraic class of O(1).

Following paper [Lin], we write the notation PBs |L| for base point of the algebraic linear systems

of L. Note here that the base point is independent of the choice of line bundle in an algebraic

class. For convenient, we always define the base point of a class. Clearly, any algebraically

trivial line bundle on P(E) restricts to be trivial on the fibers of p, hence must be pulled back

of algebraically trivial line bundle on X. For linear series of O(1), we have a classical theorem.

Proposition 3.1. The following statements are equivalent,

(1) Bs |O(1)| = ∅.

(2) E∨ is globally generated.

Proof. There is an isomorphism by projection formula,

H0(P(E),O(1)) ∼= H0(X,E∨).

(1) =⇒ (2) : Given any closed point x ∈ X, since O(1) is base point free, there is a section

s1 such that s1|p−1x define a nontrivial hyperplane H1,x of P(Ex). Choose a non-zero vector

v ∈ H1,x, again since O(1) is base point free, there must be a section s2 defining a hyperplane

H2,x of P(Ex) such that v /∈ H2,x. The next step is to choose vector in H2,x ∩H1,x, and then get
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H3,x. By induction, we get sections 〈s1, · · · , sn〉. They are linearly independent in E∨
x . Suppose

not, then assume not all zero αi define
∑

αi · si,x = 0.

By construction, take v ∈ ∩≤n−1Hi,x, then si,x(v) = 0 for i ≤ n − 1, but sn,x(v) 6= 0, hence

αn = 0. Similarly,

α1 = α2 = · · · = αn−1 = 0,

a contradiction. Thus 〈s1, · · · , sn〉 generates E
∨
x .

(2) =⇒ (1) : Given any point (x, v) such that v ∈ P(Ex), since E∨ is globally generated,

there are sections 〈s1, · · · , sn〉 of E
∨ that generate E∨

x . Therefore there is a section sj such that

sj,x(v) 6= 0. This implies O(1) is base point free. �

We get a similar theorem for PBs |O(1)|. Before the statement, we firstly define algebraically

globally generated. It is a weaker notion than the continuous globally generated [PP].

Definition 3.2. The vector bundle E of rankn is algebraically globally generated if for any

closed point x of X, there exists n algebraically trivial line bundles {L1, · · · , Ln}, and sections

si of E ⊗ Li such that the local sections s1
s′i
, · · · , sn

s′n
generate the vector space Ex. Here s′i is

non-vanishing local section of Li under some trivialization around x. Note that the generation

property is independent of the choices of local trivializations.

Remark 3.3. If E is a line bundle, then E is algebraically globally generated if and only if

PBs |E| = ∅.

Proposition 3.4. The following statements are equivalent,

(1) PBs |O(1)| = ∩L∈Pic0(X) Bs |O(1) ⊗ p∗L| = ∅.

(2) E∨ is algebraically globally generated.

Proof. Given a line bundle L on X, there is a projection formula,

H0(P(E),O(1) ⊗ p∗L) ∼= H0(X,E∨ ⊗ L).

The proof is essentially the same with the proof of Proposition 3.1. �

Corollary 3.5. If a vector bundle E is algebraically globally generated, then ∧rE is also alge-

braically globally generated. In particular, PBs |detE| = ∅.

Proof. Let x be any closed point of X. Since E is algebraically globally generated, there exists

sections si of E ⊗Li where Li are algebraically trivial line bundles such that 〈si
s′i
〉 generates Ex.

Here s′i are the local non-vanishing sections of Li. Construct the wedge product of sections

{si1 ∧ si2 ∧ · · · ∧ sir}i1<i2<···<ir

which are sections of ∧rE ⊗n
1 Li. After quotient the local non-vanishing section of ⊗n

1Li, they

generate ∧rEx. �
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Turning back to X ′
k(γ), and we use the notations in Section 2. Observe that the property that

E∨ is algebraically globally generated is stronger than that PBs |H|X′

k
(γ)| = ∅, namely if E∨

is algebraically globally generated, then by Corollary 3.5, ∧rE∨ is also algebraically generated,

and hence PBs |O(1)| = ∅, where O(1) is the universal bundle on P(∧rE).

LetX ′
k(γ) satisfies the assumption in Section 2. We translate the condition PBs |H|X′

k
(γ)| = ∅.

Proposition 3.6. PBs |H|X′

k
(γ)| = ∅ if the following is true: Given any closed point y ∈ X ′

k(γ),

namely a pair (x,W ) such that x ∈ X ′
k and W ⊂ ker γx, dimW = n − k, there is a section sL

of ∧n−kE∨ ⊗L for some algebraically trivial line bundle L such that sL
s′
L

(detW ) 6= 0. Here s′L is

the local non-vanishing section of L around x.

Proof. The condition is saying that given any closed point (x,W ), there always exists an effective

divisor HL which are algebraically equivalent to O(1) such that (x,W ) /∈ HL. The section

HL|X′

k
(γ) does not vanish at (x,W ), therefore PBs |H|X′

k
(γ)| = ∅. �

Theorem 3.7. Assume that rankF ≥ rankE, E∨ is algebraically globally generated, and

PBs | −C1(X) + (n− k) · (C1(F )− C1(E))| = ∅.

Then Db(X ′
k(γ)) is indecomposable.

Proof. According to Proposition 2.1 and [Lin, Corollary 1.6], we only need that PBs |HX′

k
(γ)| =

∅, where H is the relative Hyperplane of O(1) on P(∧n−kE). If E∨ is algebracically generated,

then by Corollary 3.5, ∧n−kE is also algebraically globally generated. Therefore, by Theorem

3.4, we have PBs |H| = ∅, and then PBs |H|X′

k
(γ)| = ∅. �

Lemma 3.8. Let X be an abelian variety. If a class [L] of NS(X) is represented by an effective

divisor, then PBs |[L]| = ∅.

Proof. Assume that an effective divisor D represents [L]. Write D =
∑

ai · Pi where Pi are the

prime divisors, and ai are non-negative integers. According to [Lin, Corollary 4.4], PBs |Pi| = ∅,

therefore PBs |D| = ∅. Since the para-canonical base point is independent of choice of line

bundle in a class, we have PBs |[L]| = ∅. �

Corollary 3.9. Let X be an abelian variety, and (E,F, γ) be vector bundle on X with morphism

γ. Assume X ′
k(γ) is smooth and of expected dimension, rankF ≥ rankE, C1(F )−C1(E) can be

represented by an effective divisor, and E∨ is algebraically globally generated, then Db(X ′
k(γ))

is indecomposable.

4. The Brill-Noether variety

In this section, we study the scheme Gr
d(C) parametrizing degree d dimension r linear series

on a general algebraic curve C of genus g. We prove that Db(Gr
d(C)) is indecomposible for

general curve C if d ≤ g − 1.
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First we recall the construction of Gr
d(C). Let X = Picd(C) be the Picard variety parametriz-

ing degree d line bundles on C. There exists a Poincaré line bundle L on C×X such that for each

element L ∈ X, the restriction L|C×{L} is exactly L under the isomorphism C ×L ∼= C. Fix an

effective divisor D on C with degree 2g−d−1. Let Γ = D×X be an effective divisor on C×X.

Denote by ν the projection C × X → X. Then E = ν∗L(Γ) and F = ν∗(L(Γ)/L) are vector

bundles on X with rankE = g and rankF = 2g−d−1. There is an natural morphism γ : E → F

induced by L(Γ) → L(Γ)/L. Then Gr
d(C) = X ′

g−r−1(γ). Griffiths and Harris [Gri1980] showed

that each component of Gr
d(C) has expected dimension ρ = g − (r + 1)(g − d + r) for generic

curve C. Gieseker [Gie1982] proved that Gr
d(C) is smooth for generic curve C. Noted that the

Poincaré bundle L is uniquely determined up twist by pull back of line bundles R on X. The

twist of ν∗R does change E but does not change the variety Gr
d(C). For any point p ∈ C,

let ip be the section X → C × X defined by L 7→ (p, L). Denote by Lp = i∗p(L(Γ)). Here we

may assume that for some point p0 ∈ C, the bundle Lp0
∼= OX . Otherwise we replace L by

L ⊗ ν∗(Lp0)
−1. In order to apply our theorem 3.7 to Gr

d(C), we show the following.

Proposition 4.1. Under the assumption Lp0
∼= OX , the vector bundle E∨ constructed above is

algebraically globally generated.

Proof. The Poincaré line bundle L(Γ) defines a morphism C → Pic(X) by sending p to Lp. Since

Lp0
∼= OX , we have Lp ∈ Pic0(X) for all p ∈ C. For any point p ∈ C, we construct a section sp

of E∨ ⊗ Lp as follows. Since i∗p(L(Γ) ⊗ ν∗(L−1
p )) ∼= OX , we can choose a trivializing section tp

of L(Γ)⊗ ν∗(L−1
p )| on {p} ×X. Construct the section sp : E ⊗ L−1

p → C on X pointwisely by

sp|L : H
0(C,L(D)) → C

v 7→
v|p

tp|(p,L)
.

Let ai a nonzero section of Lp at point L. We claim that for generic (p1, · · · , pg) ∈ Cg, the

sections (sp1 |L)⊗a1, · · · , (spg |L)⊗ag form a basis of E∨|L. The claim follows from the following

lemma:

Lemma 4.2. Assume v0, v1, · · · , vr are linearly independent sections of a line bundle L over

an algebraic variety C. Fixing a nonzero section bp of L at each point p ∈ C. Denote by

vi(p) =
vi
bp

∈ k. Then for general points (p0, p1, · · · , pr) ∈ C(r+1), the matrix {vi(pj)}(r+1)×(r+1)

is invertible. (The invertibility does not depend on the choice of bp.)

Proof. We prove the lemma by induction on r. When r = 0, v0(p) 6= 0 for a generic

point p ∈ C. Assume the lemma is true for r ≥ 0. Consider r + 2 linearly indepen-

dent sections v0, v1, · · · , vr, vr+1. For general points (p0, p1, · · · , pr) ∈ C(r+1), denote by

B = {vi(pj)}0≤i≤r,0≤j≤r an invertible matrix . Let

v′r+1 = vr+1 − (vr+1(p0), · · · , vr+1(pr))B
−1(v0, · · · , vr)

T .
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Then v′r+1 6= 0 because v0, v1, · · · , vr, vr+1 are linearly independent, hence v′r+1(pr+1) 6= 0 for

generic pr+1 ∈ C. On the other hand, we have v′r+1(pi) = 0 for any 0 ≤ i ≤ r. Replacing vr+1

by v′r+1 does not change the invertibility of {vi(pj)}0≤i≤r+1,0≤j≤r+1. So the statement is proved

for r + 1. �

Apply the lemma to r = dimH0(C,L) − 1, we obtain the claim and hence the proposition is

proved.

�

Remark 4.3. When r = 0, the variety G0
d(C) = Cd and from the construction of section sp,

we can conclude that the zero locus of sp is the image of Cd−1 → Cd via map D 7→ D + p.

Combining with the Chern class formula we obtain that −C1(Cd) = [Θ] + (g − d − 1)[Cd−1].

This recovers results in [BiGoLee, Lemma 2.1].

Remark 4.4. The bundle E∨ is not globally generated. Otherwise, detE∨ ∼= OX(Θ) is also

globally generated, where Θ is theta divisor on X. This contradicts with the fact that

dimH0(X,OX (Θ)) = 1 and OX(Θ) has Θ as base locus.

Theorem 4.5. For a generic curve C, the derived category Db(Gr
d(C)) is indecomposable for

d ≤ g − 1.

Proof. The first Chern class of E is C1(E) = −[Θ], where Θ is the theta divisor on X and E has

rank g. The vector bundle F is trivial a vector bundle of rank 2g−d−1. So rankF ≥ rankE for

d ≤ g− 1. And −C1(X) + (r+1)(C1(F )−C1(E)) = (r+1)[Θ] is an effective class. Proposition

4.1 implies that E∨ is algebraically globally generated. So Db(Gr
d(C)) is indecomposable for

d ≤ g − 1 according to Corollary 3.9.

�
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