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Abstract. Tautological systems are Picard-Fuchs type systems arising
from varieties with large symmetry. In this survey, we discuss recent
progress on the study of tautological systems. This includes tautological
systems for vector bundles, a new construction of Jacobian rings for
homogenous vector bundles, and relations between period integrals and
zeta functions.
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1. Introduction

Period integrals connect Hodge theory, number theory, mirror symme-
try, and many other important areas of math. The study of periods has a
long history dating back to Euler, Legendre, Gauss, Abel, Jacobi and Pi-
card in the form of special functions, which are periods of curves. Period
integrals first appeared in the form of hypergeometric functions. The name
hypergeometric functions appeared to have been introduced by John Wallis
in his book Arithmetica Infinitorum (1655). Euler introduced the theory of
elliptic integrals. Gauss studied their differential equations, now known as
Euler-Gauss hypergeometric equations. Legendre made the first connection
to geometry of hypergeometric equations through the theory of elliptic inte-
grals. He showed that periods of the Legendre family of elliptic curves were
in fact solutions to a special hypergeometric equation. Euler obtained the
power series solutions to the Euler-Gauss equations and also wrote them in
terms of contour integrals. He introduced the important idea that instead
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of considering one elliptic integral at a time, one should look at a fam-
ily of such integrals, and consider the corresponding differential equations.
This appeared to be the first example of variation of Hodge structures and
Picard-Fuchs equations.

The theory of deformations of higher dimensional complex varieties was
pioneered by Kodaira and Spencer [22, 21, 23]. The modern study of varia-
tion of Hodge structures started from the work of Griffiths [12], and contin-
ued by Deligne [3, 4, 5], Schmid [33], and others. For example, periods of
hypersurfaces in P

n were studied in [12] from the point of view of variation
of Hodge structures. Thanks to the relations between pole order filtrations
and Hodge filtrations, there is a so-called reduction of pole method for com-
puting Picard-Fuchs systems for hypersurfaces in P

n.
Two natural generalizations of Pn are toric varieties and homogenous

Fano varieties. For toric varieties, Gel’fand, Kapranov and Zelevinski [8]
found a multivariable PDE systems, now known as GKZ hypergeometric
system, that annihilates periods of toric hypersurfaces. More recently, Lian,
Song, and Yau [28, 29] established a holonomic differential system they
called a tautological system for varieties with large symmetry, giving a vast
generalization of GKZ systems. The machinery of D-module is introduced
in tautological systems and opens new ways to study hypersurfaces in ho-
mogenous Fano varieties. For instance, in [2, 17], Huang, Lian, Yau, together
with their collaborators, obtained general solution rank formulas, which re-
covered the formula for GKZ system, and also proved the completeness of
tautological systems for homogenous Fano varieties. More interestingly, new
candidates for large complex structure limits appeared naturally as the pro-
jected Richardson varieties. For GKZ systems, there are also new results
inspired by this approach. For example, in [18], the solutions of GKZ sys-
tems are realized as chain integrals or semiperiods.

There are already many interesting phenomena in toric hypersurfaces,
especially Calabi-Yau hypersurfaces, in which GKZ system plays an impor-
tant role. For instance, the famous mirror symmetry between genus zero
Gromov-Witten invariants and periods of mirror toric Fano varieties in the
sense of Batyrev [1], was proved independently by Givental [9, 10] and
Lian-Liu-Yau [25, 26, 27]. On the B-side of mirror symmetry, the solu-
tions to GKZ systems are explicitly given by a cohomology-valued function
introduced by Hosono-Lian-Yau [13] which they called the B-series. Aside
from giving a close formula for power series of periods of toric Calabi-Yau
hypersurfaces, this function has many interesting number theoretic proper-
ties – integrality, divisibility, modularity, etc. Similar problems for periods
of Calabi-Yau hypersurfaces in homogenous Fano varieties are still open and
in need of further explorations.

The theory of tautological systems behaves very nicely for homogenous
varieties. For instance, the solutions can all be realized as period integrals
along homology classes of the complement of the hypersurfaces. On the other
hand the solutions to GKZ systems correspond to period integrals, or Euler
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integrals on complement inside the affine tori. In some sense, the solutions
forget the compactifications of algebraic tori. A conjectural formula, pro-
posed by Hosono-Lian-Yau [13] – the hyperplane conjecture – provides an
algorithm to exclude those extra solutions and characterizes periods from
the B-series. In the case of projective spaces, the conjecture has recently
been proved by Lian-Zhu [30]. The proof uses both completeness of the tau-
tological system for P

n as a homogenous variety, and the B-series formula
as the solutions to the GKZ system for Pn as a toric variety. The hyperplane
conjecture in general case remains open.

Here is an outline of this paper. In section 2, we discuss the construc-
tion of tautological systems [29] and Riemann-Hilbert type results [17] to
homogenous vector bundles in [16]. In section 3, we study the Jacobian ring
description of variation of Hodge structures arising from the family appeared
in section 2. Section 4 is devoted to some arithmetic properties of period in-
tegrals of hypersurfaces in both toric and flag varieties. In particular, we
proved a conjecture made by Vlasenko [35] on an algorithm to compute the
unit root part of the F -crystal associated to toric hypersurfaces.

1.1. Notations. We first fix the following notations in the following
discussions.

(1) Let G be a complex Lie group and g = Lie(G)
(2) Let Xn be a smooth projective variety together with action of G.
(3) Let Er be a G-equivariant vector bundle on X with rank r.
(4) Assume V ∨ = H0(X,E) has basis a1, · · · , aN and dual basis a∨i .
(5) Let f ∈ V ∨ be an section and Yf the zero locus of f . We further

assume Yf is smooth with codimension r.

2. Tautological systems for homogenous vector bundles

Definition 2.1 (Period integrals). We first start with the definition
of period integrals. Consider a family π : Y → B of d-dimensional compact
Kähler manifolds. We fix a choice of holomorphic d-form ω ∈ H0(B, π∗KY/B).
In many cases, we have a canonical choice of ω from residue formula. For
any parallel cycle σ, the period integral is defined to be

∫
σ ω, which is a

holomorphic function defined on B.

The key tool to study period integral is the linear differential operators
annihilating the period integral, called Picard-Fuchs operators. Now we con-
struct the holomorphic d-form ω and Picard-Fuchs operators when Y → B
is the zero loci of vector bundle sections. For simplicity, we only discuss the
Calabi-Yau family.

Let Xn be a smooth n-dimensional Fano variety and E be a vector
bundle of rank r over X. Denote the dual space of global sections by V =
H0(X,E)∨. Assume that any generic section s ∈ V ∨ defines a nonsingular
subvariety Ys = {s = 0} in X with codimension r, which gives a family of
compact Kähler manifolds π : Y → B = V ∨ −D on the complement of the
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discriminant locus D. If we further assume detE ∼= K−1
X , the adjunction

formula implies that

(2.1) KYs
∼= KX ⊗ detE|Ys

∼= OYs .

A section s of KX ⊗ detE ∼= OX gives a family of holomorphic top forms
ωs on Ys corresponding to constant section 1 of OYs , also called the residue
of s.

If E splits as a direct sum of line bundles, the residue map is defined on
line bundles and generalized to E by induction. In the nonsplitting case, we
can apply the residue formula in the splitting case locally and glue it together
to get a global residue formula. It is not clear how to derive the global
information from these local formulas and the Dwork-Griffiths reduction of
pole algorithm turns out to be complicated for multivariable families. We
follow the idea in [28, 29] by introducing the global residue formula on
principal bundle.

2.1. Calabi-Yau bundles and adjunction formulas. We first ex-
plain the idea in the classical case when X is Pn. We view P = C

n+1 \{0} as

C
∗ principal bundle. There is an n-form on Ω =

∑
i xidx0 ∧ · · · d̂xi · · · ∧ dxn

on C
n+1 \ {0}. Any section f of O(n + 1) is a degree (n + 1)-polynomial

on C
n+1 \ {0}. Then Ω

f vanishes along the vertical direction and invariant

under C
∗ action. So it can be descended to X with simple pole along Yf

and ω = Res Ω
f . In this example, we need the construction of holomorphic

n-form Ω on principal bundle, and the transformation factor cancels the one
from KX . The notion of Calabi-Yau bundles is introduced in [29] is used to
construct such an Ω and induces an adjunction formula on principal bun-
dles. The canonical sections of holomorphic top forms used in period integral
are given by this construction. First we recall the definition of Calabi-Yau
bundles in [29]

Definition 2.2 (Calabi-Yau bundle). Denote H and G to be complex
Lie groups. Let p : P → X be a principal H-bundle with G-equivariant ac-
tion. A Calabi-Yau bundle structure on (X,H) says that the canonical bundle
of X is the associated line bundle with character χ : H → C

∗. The following
short exact sequence

(2.2) 0 → Ker p∗ → TP → p∗TX → 0

induces an isomorphism

(2.3) KP
∼= p∗KX ⊗ det(P ×ad(H) h

∨).

Fixing an isomorphism P ×H Cχ
∼= KX , the isomorphism (2.3) implies that

KP is a trivial bundle on P and has a section ν which is the tensor product
of nonzero elements in Cχ and det h∨. This holomorphic top form satisfies
that

(2.4) h∗(ν) = χ(h)χ−1
h

(h)ν,
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where χh is the character of H on det h by adjoint action. The tuple (P,H,
ν, χ) satisfying (2.4) is called a Calabi-Yau bundle.

Conversely, any section ν satisfying (2.4) determines an isomorphism
P ×H Cχ

∼= KX . Since the only line bundle automorphism of KX → X
fixingX is rescaling whenX is compact, such ν is determined up to rescaling
(Theorem 3.12 in [29]). So the equivariant action of G on P → X changes ν
according to a character β−1 of G. We say the Calabi-Yau bundle is (G, β−1)-
equivariant.

When E is the line bundle K−1
X , the following is the residue formula for

Calabi-Yau bundles:

Theorem 2.3 ([29], Theorem 4.1). If (P,H, ν, χ) is a Calabi-Yau bun-
dle over a Fano manifold X, the middle dimensional variation of Hodge
structure Rdπ∗(C) associated with the family π : Y → B of Calabi-Yau hy-
persurfaces has a canonical section of the form

(2.5) ω = Res
ιξ1 · · · ιξmν

f
.

Here ξ1, · · · , ξm are independent vector fields generating the distribution of
H-action on P , and f : B×P → C is the function representing the universal
section of P ×H Cχ−1

∼= K−1
X .

If E is a direct sum of line bundles associated to characters of H, the
residue formula is similar to (2.5) by induction. For general vector bundle,
we need Cayley’s trick to study the residue forms.

2.2. Cayley’s trick. Let P = P (E∨) be the projectivation of E∨ and
O(1) be the hyperplane section bundle on P. The projection map is denoted
by π : P → X. From now on, we assume E is ample and by definition, is
equivalent to O(1) being ample. We collect the propositions relating the
geometry of X and P in the following. Proposition 2.4 and 2.6 are from
[34],[24] and [31].

Proposition 2.4. (1) There is a natural isomorphism H0(X,E) ∼=
H0(P,O(1)). The corresponding section in H0(P,O(1)) is also de-
noted by f .

(2) Let Ỹ be the zero locus of f in P. Then Ỹ is smooth if and only if
Y is smooth with codimension r or empty.

(3) There is an natural isomorphism KP
∼= π∗(KX ⊗ detE)⊗O(−r)

From now on, we assume Y is smooth with codimesion r ≥ 2.

Definition 2.5. The variable cohomology Hn−r
var (Y ) is defined to be cok-

ernel of Hn−r(X) → Hn−r(Y ).

Proposition 2.6. There is an isomorphism

(2.6) Hn+r−1(P− Ỹ ) ∼= Hn+r−2
var (Ỹ )(−1) ∼= Hn−r

var (Y )(−r)
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We now consider the Calabi-Yau case, equivalently detE ∼= K−1
X , for

simplicity. Then we have the vanishings in the Hodge filtration Fn+r−1−k = 0
for k < r − 1 and isomorphisms

H0(P,OP) → H0(P,KP ⊗O(r)) → FnHn+r−1(P− Ỹf )

→ Fn−rHn−r(Yf ).(2.7)

Consider the principle bundle adjunction formula for base space P. Let
(P,H, ν, χ) is a Calabi-Yau bundle over P. The image of 1 in H0(P,KP ⊗
O(r)) has the form Ω

fr on principle bundle P . This corresponds to the residue

form ω via the above isomorphisms.

2.3. Tautological systems. Straightforward calculations from the
residue formula Ω

fr gives the following theorem.

Theorem 2.7. Let I(P(E∨), V )) be the ideal of the image of the map
P → P(V ). Denote Zx =

∑
Z(x)ijai∂j for x ∈ g �→ Z(x)ijaia

∨
j ∈ End(V ).

Then period integral Iγ satisfies the following system of differential equa-
tions:

(1) Geometric constraints Q(∂a)Iγ = 0 (Q ∈ I(P(E∨), V ))
(2) Symmetry operators (Zx + β(x))Iγ = 0 (x ∈ g)

(3) Euler operator (
∑

i ai
∂
∂ai

+ r)Iγ = 0

We call the differential system in Theorem 2.7 tautological system for
(X,E,H,G). It’s the same as the cyclic D-module τ(G,P(E∨),O(−1), β̂)
defined in [28] [29] by

(2.8) τ = DV ∨/DV ∨(J(P(E∨)) + Z(x) + β̂(x), x ∈ ĝ).

Here J(P(E∨)) = {Q(∂a)|Q ∈ I(P(E∨))}, Ĝ = G × C
∗ with Lie algebra

ĝ = g⊕ Ce and β̂ = (β, r).
We can apply the holonomicity criterion for tautological system in

[28],[29].

Theorem 2.8. If the induced action of G on P(E∨) has finite orbits, the
corresponding tautological system τ is regular holonomic.

Example 2.9 (Complete intersections). When E = ⊕r
1Li is a direct

sum of very ample line bundles, the above system recovers the tautological
system for complete intersections in [29]. This case is equivalent to say that
the structure group of E is reduced to the complex torus (C∗)r. So we have
symmetry group (C∗)r acting on the fibers of E. This gives the usual Euler

operators in [29]. Let X̂i be the cone of X inside Vi = H0(X,Li)
∨ under the

linear system of Li. The cone of P(E∨) inside V = ⊕r
i=1Vi is fibered product

X̂i over X. So the geometric constrains are the same as [29]. Assume X is
a G-variety consisting of finite G-orbits and Li are G-homogenous bundles.
Then P(E∨) admits an action of G̃ = G× (C∗)r−1 with finite orbits. This is
the same holonomicity criterion as [29] for complete intersections.
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Example 2.10 (Homogeneous varieties). Let G be a semisimple complex
Lie group and X = G/P is a generalized flag variety quotient by a parabolic
subgroup P . This forms a principal P -bundle over X. We assume E to be a
homogenous vector bundle from a representation of P and the action of G on
P(E∨) is transitive. Then the projectivation of P(E∨) is also a generalized
flag variety for a parabolic subgroup P ′ ⊂ P . Hence the G-action on P(E∨)
is transitive. If O(1) is very ample on P(E∨), the defining ideal of P(E∨) in
P(V ) is given by the Kostant-Lichtenstein quadratic relations. Furthermore,
any character of G is trivial, hence β is zero. So the differential system is
regular holonomic and explicitly given in this case.

2.4. Solution rank. Now we discuss the solution rank for the system.
There are two versions of solution rank formula for hypersurfaces. One is in
terms of Lie algebra homology, see [2]. One is in terms of perverse sheaves on
X, see [17]. Here we have similar description for zero loci of vector bundle
sections.

2.4.1. Lie algebra homology description. We fix some notations. Let R =
C[V ]/I(P(E∨)) be the coordinate ring of P. Let Z : ĝ → End(V ) be the
extended representation by e acting as identity. We extend the character
β : ĝ → C by assigning β(e) = r.

Definition 2.11. We define DV ∨-module structure on R[a]ef ∼= R[a1,
· · · aN ] as follows. The functions ai acts as left multiplication on R[a1, · · · aN ].
The action of ∂ai on R[a1, · · · aN ] is ∂ai + a∨i .

Then we have the following DV ∨-module isomorphism.

Theorem 2.12. There is a canonical isomorphism of DV ∨-module

(2.9) τ ∼= R[a]ef/Z∨(ĝ)R[a]ef

This leads to the Lie algebra homology description of (classical) solution
sheaf

Corollary 2.13. If the action of G on P(E∨) has finitely many orbits,
then the stalk of the solution sheaf at b ∈ V ∨ is

(2.10) sol(τ) ∼= HomD(Ref(b)/Z∨(ĝ)Ref(b),Ob) ∼= H0(ĝ, Ref(b))

2.4.2. Perverse sheaves description. We follow the notations in [17].

(1) Let L
∨ be the total space of O(1) and L̊

∨ the complement of the
zero section.

(2) Let ev : V ∨ × P → L
∨, (a, x) �→ a(x) be the evaluation map.

(3) Assume L
⊥ = ker(ev) and U = V ∨ × P − L

⊥. Let π : U → V ∨.
Notice that U is the complement of the zero locus of the universal
section.

(4) Let DP,β = (DP⊗kβ)⊗Ugk, where kβ is the 1-dimensional g-module
with character β and k is the trivial g-character.

(5) Let N = OV ∨ � DP,β.
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We have the following theorem. See Theorem 2.1 in [17].

Theorem 2.14. There is a canonical isomorphism

(2.11) τ ∼= H0π∨
+(N|U )

A direct corollary is the following

Corollary 2.15. If β(g) = 0, there is a canonical surjective map

(2.12) τ → H0π∨
+OU .

In terms of period integral, we have an injective map

(2.13) Hn+r−1(X − Yb) → Hom(τ,OV ∨,b)

given by

(2.14) γ �→
∫
γ

Ω

f r

We have similar solution rank formula. We assume G-action on P has
finitely many orbits. Let F = Sol(DP,β) = RHomDan(Dan

P,β,Oan
P
) be a per-

verse sheaf on P.

Corollary 2.16. Let b ∈ V ∨. Then the solution rank of τ at b is
dimH0

c (Ub,F|Ub
).

Now we apply the solution rank formulas to different cases.
2.4.3. Irreducible homogeneous vector bundles. In the following, we as-

sume X is homogeneous G-variety and the lifted G-action on P is also tran-
sitive. In other words, we have X = G/P and P = G/P ′ with P/P ′ ∼= P

r−1.
Then we have the following corollary

Corollary 2.17. If β(g) = 0, then the solution rank of τ at point
b ∈ V ∨ is given by dimHn−r

var (Yb).

Example 2.18. Let X = G(k, l) be Grassmannian and F be the tauto-
logical bundle of rank k. Then E ∼= F∨ ⊗O( l−1

k ) is an ample vector bundle

with detE ∼= K−1
X . The corresponding P is homogenous under the action of

SL(l + 1)

2.4.4. Complete intersections.

Corollary 2.19. If E is direct sum of line bundles Li on partial flag
variety X = G/P . Consider the group action G × Gr−1

m , then the solution
rank is

dimHn+r−1(P− Ỹb − (∪iDi))

where Di are coordinate hypersurfaces in P

This is not satisfying because the final cohomology is not directly related
toX. Let Y1, · · · , Yr be the zero locus of the Li component of section sb. From
the geometric realization of some solutions as period integral as rational
forms along the cycles in the complement of Y1 ∪ · · · ∪ Yr, we have the
following conjecture:
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Conjecture 2.20. There is a natural isomorphism of solution sheave
as period integrals

(2.15) HomDV ∨ (τV ,O)|b ∼= Hn(X − (Y1 ∪ · · · ∪ Yr))

3. Jacobian rings for homogenous vector bundles

In this section, we examine an explicit description of Jacobian rings for
homogenous vector bundles.

3.1. Line bundles. In this subsection, we consider the case that E
is an ample line bundle L on partial flag variety X = G/P . The Hodge
structure of Yf is determined by ambient space X by Lefschetz hyperplane
theorem except the middle dimension. Let Uf = X − Yf and Hn−1

van (Y ) is
the kernel of Gysin morphism Hn−1(Y ) → Hn+1(X). Hodge structures of
Y and U are related by the Gysin sequence

(3.1) 0 → Hn
prim(X) → Hn(U) → Hn−1

var (Y )(−1) → 0

Here Hn
prim(X) is the corker of the Gysin morphism Hn−2(Y ) → Hn(X).

Definition 3.1. Let R be the graded ring R = ⊕k≥0H
0(X,Lk). The

generalized Jacobian ideal J is the graded ideal generated by f, LZf for Z ∈
g. Here the Lie derivative LZf is from the natural g-action on H0(X,L).
Then M = ⊕k≥0H

0(X,KX ⊗ Lk+1) is a graded R-module.

This definition gives Green’s Jacobian ring [11] under suitable vanishing
conditions, see Proposition 3.7. The vanishing conditions we will consider is
as follows.

(3.2) Hp(X,Ωq
X ⊗ Ll) = 0 with p > 0, q ≥ 0, l ≥ 1

(3.3) H1(X, (G×adP p)⊗ Lk ⊗KX) = 0 for k ≥ 1

Theorem 3.2. Let 0 ≤ k ≤ n − 1 and assume L satisfies conditions
(3.3) and (3.2) for (p, q, l) in the following range {1 ≤ p ≤ k, q = n− p, l =
k − p+ 1} ∪ {1 ≤ p ≤ k − 1, q = n− p− 1, l = k − p} ∪ {1 ≤ p ≤ k − 1, q =
n− p, l = k − p}, then the map

(M/JM)k → Fn−kHn(U)/Fn−k+1Hn(U)

is an isomorphism. It is compatible with multiplication map H0(X,L) ×
(M/JM)k → (M/JM)k+1 and the Higgs field from Gauss-Manin connection

The proof follows the argument in Theorem 6.5 [36]. The spaces and
maps involved in this description are in terms of representations of

Remark 3.3. If L and KX are multiples of the same ample line bundle
L′, then R and M can be embedded in the coordinate ring R′ = ⊕Hk(X,
(L′)k). We can define the Jacobian ideal J ′ to be the ideal generated by
f, LZf in R′. Then the degree-k summand (M/JM)k is the corresponding
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summand in R′/J . When X = P
n, we can take L′ to be O(1) bundle. Let

L = O(d). The vanishing conditions are satisfied except kd = n for condi-
tion 3.3. When kd 
= n, this is the same Jacobian ring description for Hodge
structures of hypersurfaces in projective spaces. More specifically, the Jaco-
bian ideal defined here are generated by xj

∂f
∂xi

if we view f as polynomial of

homogenous coordinates [x0, · · · , xn]. The usual Jacobian ideal are generated

by ∂f
∂xi

. When kd 
= n, the corresponding degree part in the usual Jacobian

ring are quotients of elements in the form
∑

i gi
∂f
∂xi

with gi homogenous with
degree greater than 0, which are the same degree part of ideal generated by
xj

∂f
∂xi

.

Remark 3.4. In order to get similar description as P
n and coordinate

ring C[a1, · · · an+1], we consider M to be the total space of H-principal bun-
dle over X with G-equivariant action. The character χ : H → C

∗ is associ-
ated with the line bundle L. In many cases, the total space M is embedded
in affine space M̄ as Zariski open set and global sections of structure sheaf
of M is extended to M̄ . Assume that the G-action also extends to M̄ . For
example, when X = G(a, b) is the Grassmannian, we can take M to be the
Stiefel manifold and M̄ the affine space A

ab. The coordinate ring R is iden-
tified with C[M̄ ]H,χ, which is the functions that are equivariant under the
H action by characters mχ. The basis can be given by standard monomials.
Then the sections f and LZfare identified with elements in C[M̄ ] similar as
the P

n case.

Remark 3.5. For hypersurfaces in irreducible Hermitian symmetric
spaces, the Jacobian ring defined here is already given by Saito in [32]. See
Lemma 4.1.12 [32].

Remark 3.6. The Kodaira-Spencer map H0(X,L) → H1(Y, TY ) has
kernel equal to J if H1(X,TX ⊗ L−1) = 0, and is surjective if H2(X,TX ⊗
L−1) = 0. In this case, the multiplication map H0(X,L)/J × (M/JM)k →
(M/JM)k+1 gives the Higgs field in universal deformation family of Y . For
example this holds for Grassmannians G(a, b) with b ≥ 5 with any ample
line bundle L.

Now we discuss the relation to Green’s Jacobian ring [11]. See Saito’s
identification of two definitions for Hermitian symmetric spaces, Lemma
3.2.3 [32]. First we recall Green’s definition of Jacobian ring. Let ΣL be the
first prolongation bundle. It is the bundle of first order differential operators
on L. The differentiation of f gives a section df ∈ H0(X,Σ∗

L ⊗ L). This

induces a map H0(X,Lk ⊗KX ⊗ΣL) → H0(X,Lk+1 ⊗KX). The Jacobian
ring Rk is the cokernel of this map.

Proposition 3.7. If L is ample and satisfies condition 3.3, then
(M/JM)k ∼= Rk.

3.2. Vector bundles. When E is vector bundle, we apply Cayley’s
trick to reduce the calculation to the hypersurface case. The corresponding
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vanishing conditions are

(3.4)

Hp(X,Ωq−a
X ⊗ ∧aE⊗Sl−aE) = 0

for p > 0, q ≥ 0 and 0 ≤ a ≤ l − 1

or Hp(X,Ωq−a
X ⊗ ∧a+1E⊗Sl−a−1E) = 0

for p > 0, q ≥ 0 and 0 ≤ a ≤ l − 1

and

(3.5) H1(X, (G×adP p)⊗ Sk(E)⊗ detE ⊗KX) = 0 for k ≥ r.

Definition 3.8. Let Sk(E) be the symmetric product of E. Then the
coordinate ring of P is R = ⊕k≥0H

0(X,Sk(E)) graded by k. Let M =
⊕k≥r−1H

0(X,Sk+1−r(E)⊗detE⊗KX) be a graded R-module with gradings
k. The Jacobian ideal J is the ideal in R generated by f and LZf, Z ∈ g.
Denote Nk = H0(X,E∨ ⊗ Sk+1−r(E)⊗ detE ⊗KX). There is a map from
Nk to Mk defined by pairing the E∨ component with f .

Theorem 3.9. If E satisfies the vanishing conditions (3.5), (3.4) for
p, q, l in the range {1 ≤ p ≤ k+ r− 1, q = n+ r− 1− p, l = k+ r− p}∪{1 ≤
p ≤ k+r−2, q = n+r−p−2, l = k+r−1−p}∪{1 ≤ p ≤ k+r−2, q = n+r−1−
p, l = k+r−1−p} and (3.4) with p = 1, q−a = n, a = r−2, l−a = k−r+2,
then we have the following description of the Hodge structure of Y

(3.6) Hn−r−k,k
var (Y ) ∼= Mk+r−1/Nk+r−1f + JMk+r−2

Remark 3.10. When X is Grassmannian and E splits as direct sum
of line bundles, similar characterization of Hodge groups are carried out
independently by Enrico Fatighenti and Giovanni Mongardi in [7]. They also
obtained the Hodge numbers appearing in these examples via this description.

For the methods checking these vanishing conditions, see [15].

4. Hasse-Witt invariants and unit roots

The relations between Picard-Fuchs systems and zeta functions were
pioneered in Dwork’s study of zeta functions for hypersurfaces. In particular,
for the Dwork/Fermat family

(4.1) Xn+1
0 + · · ·Xn+1

n − (n+ 1)tX0 · · ·Xn = 0,

The fundamental period is

Iγ = F (λ) = nFn−1

(
1

n+1 ,
2

n+1 , · · · ,
n

n+1
1, 1, · · · , 1 ;λ

)
(4.2)

=

∞∑
r=0

(
1

n+1

)
r

(
2

n+1

)
r
· · ·

(
n

n+1

)
r

(r!)n
λr.
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The Hasse-Witt matrix H-Wp for the family mod prime p given by the
truncation of F (λ).

(4.3) H-Wp(λ) =
(p−1)F (λ) =

p−1∑
r=0

(
1

n+1

)
r

(
2

n+1

)
r
· · ·

(
n

n+1

)
r

(r!)n
λr.

According to a theorem of Igusa-Manin-Katz, the Hasse-Witt matrices are
solutions to Picard-Fuchs equations mod p. In this example, the mod p
solutions in some sense“approximate” the solution in characteristic zero.
Furthermore, when the Hasse-Witt matrix is invertible, there is exactly one
p-adic unit root in the interesting factor of zeta-function of the variety over
finite field. This factor is also determined by the fundamental period [6, 37].

We generalize this example to multivariable toric hypersurfaces and also
hypersurfaces in G/P . The main results are that for Calabi-Yau hyper-
surfaces in toric and flag varieties, the fundamental period determines the
Hasse-Witt matrices and unit roots of the zeta functions for the family mod
p.

More specifically, we proved the following conjecture by Vlasenko [35].
Let k be a perfect field of characteristic p. Let W (k) be the ring of Witt
vectors of k. Denote σ : W → W be the absolute Frobenius automorphism
of W . For any W -scheme Z, let Z0 = Z ⊗W k be the reduction mod p.
Let S = Spec(R) be an affine W -scheme. Let R∞ = lim←−R/psR and S∞ =

Spf(R∞). We fix a Frobenius lifting on R and also denote it by σ, which is
a ring endomorphism σ : R → R such that σ(a) = ap mod pR. Let X be a
smooth complete toric variety defined by a fan. The 1-dimensional primitive
vectors v1, · · · vN correspond to toric divisors Di. Assume L = O(

∑
kiDi)

with ki ≥ 1. Let Δ = {v ∈ R
n|〈v, vi〉 ≥ −ki} and Δ̊ the interior of Δ. Then

H0(X,L) has a basis corresponding to uI ∈ Δ∩Z
n and H0(X,L⊗KX) has

basis e∨i identified with ui ∈ Δ̊ ∩ Z
n. Let f =

∑
aIt

uI , aI ∈ R be a Laurent
series representing a section of H0(X,L). Let (αs)i,j be a matrix with ij-th
entry equal to the coefficient of tp

suj−ui in (f(t))p
s−1. The endmorphism σ is

also extended entry-wisely to matrices. It is proved in [35] that αs satisfies
the following congruence relations

Theorem 4.1 (Theorem 1 in [35]). (1) For s ≥ 1,

αs ≡ α1 · σ(α1) · · ·σs−1(α1) mod p.

(2) Assume α1 is invertible in R∞. Then

αs+1 · σ(αs)
−1 ≡ αs · σ(αs−1)

−1 mod ps.

(3) Under the condition of (2), for any derivation D : R → R, we have

D(σm(αs+1)) · σm(αs+1)
−1 ≡ D(σm(αs)) · σm(αs)

−1 mod ps+m.

Suppose that f defines a smooth hypersurface π : Y → S. Under suitable
conditions guaranteeing the existence of unit root part U0 of the F -crystal
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Hn−1
cris (Y0/S∞, the Frobenius matrix and connection matrix of U0 are con-

jectured to be the limits of matrices in Theorem 4.1.

Conjecture 4.2 ([35]). The Frobenius matrix is the p-adic limit

(4.4) F = lim
s→∞

αs+1σ(αs)
−1.

The connection matrix is given by

(4.5) ∇D = lim
s→∞

D(αs)(αs)
−1.

We prove the above conjecture under mild assumptions on toric va-
rieties in [14]. Especially, the assumptions holds for hypersurfaces of P

n

in general positions. The main idea of the proof uses the local expansion
method by Katz [19, 20] adapted to log geometry setting. At the same time,
the relations to period integrals are carried out by explicit calculations of
fundamental periods via local expansions. Similar results holds for partial
flag varieties. The key ingredient is torus charts on G/P via Bott-Samelson
desingularization of Schubert varieties.
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