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1. Introduction
1.1. Background on soliton equation with self-consistent sources

Soliton equations with self-consistent sources, proposed by
Mel'nikov [37], have important applications in hydrodynamics,
plasma physics and solid state physics (see, e.g., [7,37-39,41]). It is
known that the sources may change the velocities of the solitons
[33,61], similar observation can be found in [17,40]. Later, some
explicit solutions (such as solitons, positons, negatons) of some
soliton equations with sources were obtained by using Darboux
transformations (see the references in [30]) and the Hirota method
[62].

Given an integrable system, its version with self-consistent
sources is not unique. The most known such generalization of the
Kadomtsev-Petviashvili (KP) equation is [37]

(Qur — 12Ul x — U xxx) x — 3U yy + 4(r*q)!xX =0, (1.1)
4y =q+2uq, rf‘y = —r?‘xx — 2ur®, (1.2)
with the column-vector function q = (q;)j=1,...x and the row-
vector function r* = (r;f)j:1,,,,,,<. It describes the interaction of a
long wave with a short-wave packet propagating at an angle to
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each other. However, other more complicated extensions are also
known [21,37], and in order to find a unified framework to study
such systems, a systematical method was proposed on the base of
Sato’s theory [35]; see also [2] for a similar treatment of Gel'fand-
Dikii hierarchies or [26] for derivation of equations with sources as
rational reductions of KP hierarchy.

Recall that the KP hierarchy [6,43] reads

o0
Lg, =[L% L], whereL:&—i—Zuiaﬂ. (13)
i=1

and “+” sign in subscript part of L7 indicates the projection to
the non-negative part of L" with respect to the powers of 9. It
is known that it allows for a squared eigenfunction symmetry (or
“ghost flow”) [49,3]

K
Le=|) g7 'r5,L|, (1.4)
j=1

where q and r* are solutions of the linear problem for the KP
hierarchy and its adjoint

e, =15@, 1, =—(3)"(), (15)

correspondingly. The idea to generate the KP hierarchy with self-
consistent sources is to modify a specific flow (say ti-flow, whose
modification will be denoted by f;) by the squared eigenfunction
symmetry as
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K
L= |:Lli+ZQja_]r7:L:|, (1.6)
j=1

keeping in Eqs. (1.5) all flows except the t,-flow. In particular, Egs.
(1.1)=(1.2) follow from identification: u =uq, x=t1, y =ty, t =1t3.

This systematic method has been used to generate exten-
sions with self-consistent sources of the CKP [57], multicompo-
nent KP [22], and some other hierarchies. A generalized dressing
method has been also derived for these soliton hierarchies with
sources, and some soliton solutions were obtained [36]. Recently, a
bilinear identity for the KP hierarchy with sources and their Hirota
bilinear equations were obtained [34].

1.2. Discrete KP hierarchy and the Hirota equation

By replacing in the Sato approach the partial differential 9
by the partial difference operator A one arrives [28,24] to a
differential-difference KP hierarchy, which allows [50] for the
squared eigenfunction symmetry and gives in consequence self-
consistent sources extensions [58]|. Analogously one can obtain
g-deformed KP hierarchy [31,32] with sources.

A fully discrete KP hierarchy was proposed in [53]. In [23] the
hierarchy was obtained from the Sato-like approach, and it was
confirmed (as conjectured in [59]) that all equations of the hierar-
chy can be obtained from Hirota’s discrete KP equations [18]

T(i) T(jk) — T(j) T(ik) + Tk T(ij) = 0, 1<i< ] <k, (1.7)

here and in all the paper we use the short-hand notation with
indices in brackets meaning shifts in discrete variables, for exam-
ple ty(1,...,n,...) =t(N1,...,n; £ 1,...). The Hirota equa-
tions (1.7) have a special position among discrete integrable sys-
tems (see for example reviews [59,27]) both on the classical and
the quantum level. In particular, as was shown by Miwa [42] a
single Hirota equation encodes the full KP hierarchy. A crucial
property of the Hirota equation is that the number of independent
variables can be arbitrary large, and such an extension does not
create inconsistency or multivaluedness. This property, called mul-
tidimensional consistency [1,44], is nowadays placed at the central
point of discrete integrability theory and is considered as the pre-
cise analogue of existence of a hierarchy of nonlinear evolution
equations in the case of continuous systems.

Recently, a “source generalization” method was proposed in
[20] which is based on replacing arbitrary constants in multisoliton
solutions of an integrable equation without sources by arbitrary
functions of one variable, and looking then for coupled bilinear
equations whose solutions are those expressions. The method was
applied there to Hirota's discrete KP equation producing the fol-
lowing system

T1)Te3) — T@T3) + T3)T12) = P(13)0 ) (18)

where the column-vector function ¢ = (0j)j=1,. k., and the row-
vector function p* = (p;-‘)j=1 ,,,,, x satisfy

T30 (1) — (10 3) =0T13),
TWPE) ~ T3P =TP(3): (1.9)

The original motivation of the paper was to reinterpret this
result from the squared eigenfunction symmetry point of view,
and this is the subject of Section 2, where we use relation [50]
between the discrete squared eigenfunction symmetry and vecto-
rial binary Darboux transformation. Then in Section 3 we present
the linear problems for Eq. (1.8) with the corresponding binary
Darboux transformation interpretation. Finally, in Section 4, using
the known meaning of Darboux-type transformations as generators
of additional independent discrete variables [29], we demonstrate

that after an appropriate change of independent coordinates the
equation with sources becomes just a system of Hirota’s discrete
KP equations. The number of additional dimensions depends on
the number of source functions.

2. The binary Darboux transformation flow as the source
generation procedure

The Hirota system provides the compatibility condition for the
linear problem [5]

T T(ij) .

V=¥, 1=i<j 21
Y= ¥ 0 r(,-)'ﬁ <i<j (2.1)
or its adjoint

* « _ T . .
v~ Vo= .L.(i)r(j)'/’(ij)’ 1<i<j. 2.2)

There exists [54,55] an important duality between the linear prob-
lems and the Hirota equation itself.

Corollary 2.1. The functions

o=19, ¢"=1Y" (2.3)
satisfy the following bilinear form of the linear problem and its adjoint

i) — THPj) =bTa). 1< (2.4)
09 ~ TP =TG- (25)

Let us recall also [47], using notation of [15], the necessary
background on binary Darboux transformations of the Hirota sys-
tem.

Theorem 2.2. Given the solution (column vector) @ : ZN — V of the
linear system (2.1), and given the solution (row vector) @* : ZN — (V)*
of the adjoint linear system (2.2), construct the linear operator valued
potential 2[w, w*]: ZN — L(V), defined by the system of compatible
equations

AiR[w, 0" | =0®w;, i=1,...,N, (2.6)

where A; is the standard partial difference operator in direction of n;.
Then (the binary Darboux transform of) the t-function

T=1detR[w, ®*] (2.7)

satisfies the Hirota equation (1.7) again.

Remark. The binary Darboux transformation provides a symmetry
of the Hirota equation. Its infinitesimal version on the level of the
KP hierarchy is provided by the squared eigenfunction symmetry.

Corollary 2.3. We will need the following consequence of Egs. (2.6):

(det 2[w, @*]) =det52[(u,w*](1+wf,-).f2[w,w*]7]w). (2.8)

(@
Corollary 2.4. Define the potentials [y, ®*] and 2 [w, ¥ *] by analogs
of Egs. (2.6), i.e.,

ARV o =¥ aw), ALley =0yl  (29)
If the potential 2[w, w*] is invertible, then

V=v -2y, 020, 0] o, (2.10)
¥V =y -0 2w, 0] 2w, ], (2.11)

provide corresponding solutions of the transformed linear problem and
its adjoint.
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Remark. Recall that in the proof [47] of Theorem 2.2 and Corollar-
ies 2.3-2.4 one makes use of the so-called bordered determinant
formula [19]

Ml xa M x

q g+ — | Mp —

det(Mp xyp)_ yf, 1 _' E (212)
where M = (Mf,)p,q:L_wK is a square matrix, ¥ = (x9)g=1,._k is

a column vector, and y* = (y’l",)p:1 k is a row vector. Then

Egs. (2.10) and (2.11) for scalar functions 1[7 and 1ﬁ* can be written
in the form

- [0, w* w1l

w= SZ{:Z7Z))*% ;‘.L{Z[a)’w]! 1’

-~ Q * Q * -
i :‘ (@ 0% 200971 o1, o,

® "

used in other parts of the paper.

Corollary 2.5. The function

=00 o] o (213)

satisfies also the transformed linear problem. By m denote the corre-
sponding solution of the initial linear problem (2.1).

Remark. Formula (2.13) can be formally obtained from a trans-
formation of the trivial (vector valued) solution ¥ =0 € V of the
linear problem with the constant square matrix [0, ®*] = —1 in
(2.10). See however Proposition 4.3 of Section 4 for another inter-
pretation.

Notice that one can formally rewrite transformation formula
(2.10) as

V=9 - A7 (¥ )T, (2.14)
which gives a discrete analogue of the squared eigenfunction sym-
metry (see also [59], where in the scalar dimV =1 case it is called
the discrete adjoint flow). The general idea of getting equations
with self-consistent sources as modification of a usual flow by the
squared eigenfunction flow motivates to formulate the following
result.

Theorem 2.6. Pick up one direction, n; say, and modify the ith discrete
flow by the above binary Darboux transformation as follows:
‘L’d) = ‘E(i), etc. (2.15)

Then in the new discrete coordinates the Hirota system is replaced by the
system with self-consistent sources

TH Tk — T T T T TG = _(T‘"*)( il (T Gy

i<j<k, (2.16)
with
TT(;
T () — Tk :nﬂ, (2.17)
) (k) -
ThH Tk
* % LTk
@y — @) = D) (2.18)

T
while r and the transformation datum w are related by Eq. (2.13).

Proof. The left-hand side of Egs. (2.16) after using (2.7) reads

LHS = 7(j) T(jk) (det ) i) — T(j) T(ik) (det ) ik
+ Tik Taij) (det £2) i,

where we abbreviate 2 = 2[w, w*]. After making use of the Hi-
rota system (1.7), the evolution rule (2.6) of the potential £ and
the corresponding evolution rule (2.8) of its determinant we obtain

TiHT(jHT —TTi TTGj
LHs = TOT0) <l<>< ) gy +&w%)
T T T T T
x ((det2)2 ')

(0N
Finally, the adjoint linear problem (2.2) satisfied by the transforma-

tion datum ®*, and the transformation rule (2.7) of the t-function
give the right-hand side of Egs. (2.16). O

Remark. In the formulation of Theorem 2.6 we assumed that the
index i of the modified direction satisfies i < j < k. When we mod-
ify other index we correspondingly modify also the sign of the
right-hand side, i.e.

T(i) T(]’k) - ‘L’G)T(,‘k) + Tk T(i}') = (Tw*)(ik) (‘L’]l')(].), (2.19)
T(i) ‘E(ﬂz) — ‘C(j)‘l,’(”;) + T(l~<) T(ij) = —(‘C(g*)ﬁj)(‘[n)(f{). (2.20)
Define functions

o =17, P =1w", (2.21)

then taking in Eq. (2.19) i=1, j =2 and k = 3, by Corollary 2.1 we
obtain Egs. (1.8)-(1.9) of [20].

Remark. Needless to say, in any triple of non-modified variables
we have the Hirota system (1.7).

3. The linear problem for the Hirota equation with
self-consistent sources

In this section we give the linear problem (and the adjoint lin-
ear problem) for the main part of the discrete KP equation with
sources. We keep the notation i for the discrete modified flow, but
we present its interpretation within the squared eigenfunction (bi-
nary Darboux transformation) symmetry only after we checked the
postulated form of the linear problem.

Proposition 3.1. Eq. (2.16) of the discrete KP system with sources is
the compatibility condition of the following linear system (assuming
i<j<k):

Vo=V = V— o[y @] w (31)
(i) ) 6 T0) ’ [)OX
Tk
Vi —Yu=Vv , (3.2)
OO T

with [y, @*] given by the following system of compatible equations:
AiR[Y, 0| =¥ Qw(; j#i (3.3)
Proof. Substract from Eq. (3.1) its version with index j replaced
by k, and add Eq. (3.2). Then the left-hand side vanishes, and the
right hand side, after making use of the definition of [y, @w*] and
Eq. (2.18) gives Eq. (2.16). O

Corollary 3.2. The adjoint linear problem reads

TT;
* ko gk (i)) * *]
Vi Vo =V, T 02l ¥ e .
(i) )
T T(jk)
Vi =V =¥z, )

O 770
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with [, ¥*] given by the following system of compatible equations
AR[m y)=m @Yl j#i. (3.6)

Proof. Substract from Eq. (3.4) shifted in k its version with j and
k exchanged, and add Eq. (3.5) shifted in i. Then the left-hand side
vanishes, and the right-hand side, after making use of the defini-
tion of [, ¥*] and Eq. (3.5) once again gives Eq. (2.16). O

Remark. In checking the compatibility conditions above we didn’t
use Egs. (2.17). However, if we substract from Eq. (3.1) shifted in k
its version with j and k exchanged, and add Eq. (3.2) shifted in i,
then we obtain Eq. (2.16) but using this time also Egs. (2.17).

Let us derive (3.1), the novel part of the linear system for
Eqgs. (2.17) which is different from (2.1), starting from the binary
Darboux transformation (2.10) of . After some calculation using
formula (2.8) we obtain

~ 7)) ( (det R[w, @*])(j)
Vo~V =¥_ ( et 2o o ).
T(i) T(j) et 2w, w*] ()

— L[y, 0] 7). (3.7)

which after using transformation formula (2.7) and identifica-
tion (2.15) is identical with Eq. (3.1).

To derive Eq. (3.4) starting from the binary Darboux transforma-
tion (2.11) of ¥* is only slightly more involved. The transformation
formula (2.11) leads directly to

T
i+ 0 [0, 0"]
i) T(j)
-1

+ w}"ij).fl[w, a)*](,.j)ﬂ[w, v

A -1 %711
v —vo=v o 2[@.¥7]
—1 ‘L"L’(ij)
W 74 7(j)

(3.8)
One can notice that
Aj(2[w. 0] 2w, ¥7])

=Q(w, w*]_lw QY - 02w, w*]_]SZ[w, ://*])(].),
which due to Eq. (2.13) allows for the interpretation
2w, 0] 2o, v*] = e[, 3] =2[x, v*]. (39)

Then Eq. (3.8) can be transformed, using Eq. (2.8) and properties
of @*, into

~ % ~x  TTip [ (det 2[w, ®*])(;
Vi Vo=V, o < TR

TiTg) \ detLlw, o]/
+ o 2[x, 1/!*](,.), (3.10)
which after using formula (2.7) and identification (2.15) is identical
with Eq. (3.4).

4. The discrete KP equation with sources from the standard
Hirota system

It is known that in the system of Hirota equations (1.7) the
number of independent variables can be arbitrarily large. More-
over, as in other fundamental discrete integrable systems, there is
essentially no difference between a Darboux-type transformation
and a step into an additional dimension in the parameter space.
Such an observation for certain integrable systems like the dis-
crete Darboux equations [16], and the lattice potential modified
Korteweg-de Vries equation [45], is one of roots of the present-
day approach to integrability of discrete systems as the so-called

multidimensional consistency [1,44]. In the theory, the fundamen-
tal possibility of extending the number of independent variables
of a given nonlinear system by adding its copies in different di-
rections restates the Bianchi superposition principle for Darboux
transformations.

Having shown that the discrete KP equation with sources can
be interpreted within the squared eigenfunction symmetry (bi-
nary Darboux transformation) approach, the idea of embedding the
equation into the Hirota system in an appropriate large number of
dimensions is very natural. However some details still have to be
worked out.

Let us split independent variables in the system of Hirota equa-
tions (1.7) into two parts:

(1) the evolution variables with indices i, j, k, from 1 to N, and

(2) the transformation variables of the first type with indices a
from N+ 1 to N + K, and of the second type with indices b
from N+ K+ 1 to N+ 2K.

The order of parameters introduced above is a consequence of
signs in the Hirota system (1.7) which is going to produce correct
signs in the linear problems and other ingredients of the binary
Darboux transformation. It is known from both algebraic [47] and
geometric [11] considerations that the Darboux transformation cor-
responds to a forward shift in a discrete variable, while the adjoint
Darboux transformation (which may be considered as an inverse
of the Darboux transformation) corresponds to a backward shift.
By the duality [54,55] between the linear problems and the Hirota
equation itself, which we already described in Corollary 2.1 one
obtains the following result.

Proposition 4.1. Define a row-vector @™ and a column-vector @ with K
components

T T
b= ) ol = —(bq), where
T
1<p,q<K,p=ap—N, q=bg—N—-K. (4.1)

Then

(1) the Hirota system for two evolution variables and one transforma-
tion variable takes the form of the linear system (2.1) satisfied by ®,
and its adjoint (2.2) satisfied by @*;

(2) the Hirota system for one evolution variable and two transforma-
tion variables of different types compared with Eq. (2.6) allows for
identification of the transformation potential matrix elements as fol-
lows:

T(=ap.by)
2) = [0 0} = % (4.2)

The Hirota system in transformation variables gives rise to the
Bianchi permutability principle for various Darboux transforma-
tions. For our needs it is enough to study the additional variable
interpretation of superpositions of binary Darboux transformations.
Before doing that let us recall a four variable Pliicker form [56] of
the Hirota equation
Taj) Ty — Taky Ty + TanTa =0, 1<i<j<k<l, (4.3)

which can be obtained directly from three copies of Eq. (1.7) for
triplets (i, j, k), (i, j,I) and (i, k, ).

Remark. Eq. (4.3) was an important step in deriving [13] the dis-
crete Darboux equations [4,14] from the Hirota system.

The procedure to provide a dictionary between the binary Dar-
boux transformation formulas (2.7), (2.10)-(2.11) and the Hirota
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equation in the transformation variables will involve standard cal-
culations using the bordered determinants technique, as in (2.12).
To match with the known equations let us combine the transfor-
mation variables into pairs (ap,bp), p=1,..., K, and then fix the
order within each group

ag <ag—1 <...<dp, b] <b2<...<b1(,

which we will follow in making use of Eq. (4.3). To make the
notation shorter, instead of 7(_q,,) we write 7p; (this notation
extends also to other functions of the discrete variables). Moreover,
we write TR instead of 71,2, k].

Proposition 4.2. The solution t of the Hirota system (1.7) translated in
Kth order “binary” shift can be expressed in terms of its mixed first order
binary shifts T(q, b, in a form (2.7) of the Kth order binary transfor-
mation

g = tdet(2[0, ®}]). p.q=1,....K,

with the transformation potentials given by (4.1) and (4.2).

(4.4)

Proof. The case K =1 is just the definition (4.2) of the matrix ele-
ment 91] = Q[w', 7). To validate the induction step we apply the
column elimination technique starting from the right lower-corner
element 2§

1 1
det 2 = 2¢ |25 — 2 () 24| = ;(T|~QZ|)[K]’
p,gq=1,...,K—1,

where we used the four variable Hirota equation (4.3) for indices
i=ag, j=ap, k=Dbg, | =bg written in the form

q q q(oK\"1 5K
‘Qp[K]=‘QP_‘QK('QK) -va

p,.q=1,...,K—1. O (4.5)

To present the discrete KP equation with self-consistent sources
in the additional variable approach let us uncover the meaning of
the solution & of the linear problem defined by Eq. (2.13).

Proposition 4.3. Let the K-vector @ and the K x K matrix 2[w, ®*]
be given as in (4.1) and (4.2). Then the components t',r =1, ..., K, of
solution 1 of the equation

Ty = Q[w,w*]_lw (4.6)
read
r K—r Y@

Proof. By Cramer’s formula

; det 2,
b —

Kl det®’
where the matrix £, is obtained from 2 = 2[w, ®*] by replacing
its r-th column by @w. When r > 1, to find det £, we extract the
left upper-corner .Q]] and we eliminate other elements of the first

row to obtain the determinant of the (K — 1) x (K — 1) matrix with
the (r — 1)th column consisting of

-1
oy =0’ -2{(2]) w0, g=2.....K (4.8)
and other elements of the form
q q I\~ 1o1
Qiy=ei-2l(2)"2). pg=2....K p#r.  (49)

Both Egs. (4.8) and (4.9) are consequences of the three and four
term Hirota equations (1.7) and (4.3), respectively, written in ap-
propriate variables.

Application of such left upper-corner row-reduction procedure
r—1 times gives

r r
S o 2, $2k
det 2 = " det :
K ok K|
A AT A

We then eliminate elements of the last column starting from the
right lower-corner element .Q,’g to get

o 2L, 2
det| : : :
o @, o of
o @, e 2
= 2K det : : : ,
—of 1 oK 2571/ 1

where we used the following consequences of the Hirota equations
(1.7) and (4.3)

ol =~ + 25 (28) X, g=r. K1, (410)
q q 4 (oKk\—1,Kk
‘Qp[K]:QP_‘QK(‘QK) *va
p=r+1,....,.K—-1, gq=r,...,K—1. (411)

We apply (K —r) times such left lower-corner column-reduction
procedure, and we make use of Eq. (4.4) and of the natural identity

o = Qlf(—r(ar)) P
T /m

to conclude the proof. O

Remark. The analogs of Egs. (4.8) and (4.10) for the solutions w*
of the adjoint linear problem in their additional variables interpre-
tation (4.1) can be also obtained from the Hirota system (1.7) and
read

-1
Wy =y —@i(21)7 2, p=2,....K,
-1
Oy =—h + 0 (26) T 2F, p=1,....K—1.

By putting the above ingredients together we obtain the final
result.

Proposition 4.4. Consider the Hirota system in 2K + N dimensions and
define composite flow i modifying the ith discrete flow, 1 <i < N, by
the binary shift [K]. Then, depending on the order of indices i, j, k from
1 to N we have the discrete KP system with sources as in Theorem 2.6
(or in the subsequent remark), where @* and m are given in Egs. (4.1)
and (4.7).

Finally, we provide the additional variables interpretation of the
remaining part of the binary Darboux transformation formulas in
the part related to transformations of the wave function ¢ and the
adjoint wave function ¥*. The proofs consist of direct verification.

Proposition 4.5. The functions

T(=ap)

2p=2[¥, 0] =V, TP , (4.12)
Tibg)

21 = @l ¥ ] =¥}, (4:13)
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are indeed the potentials in the sense of Egs. (2.9), and the evolution of
the wave function and its adjoint in the binary Darboux transformation
direction reads

Vo =¥ — 200 0;)(25) ",

Vi gy =¥ — Q[0 7] (25) o},

(414)

(4.15)

We have therefore constructed basic ingredients of the interpre-
tation of binary transformation of the t-function and of the wave
function ¢ and its adjoint ¥* which are:

(1) elements w? and a); of the transformation data @ =
(@N)g=1,...x and w* = (a);)p:LMK in terms of the elementary
shifts and the backward elementary shifts of the t-function
(4.1);

(2) elements Qg of the matrix potential R[w,w*] =
(.Q[wq,w;;])p,q:lw_,K in terms of the mixed binary shifts of
the t-function (4.2);

(3) elements 2, of the matrix potential 2[y,w*] =
([, a);])pzlp_,,K in terms (4.12) of the elementary backward
shifts of the wave function ¥ and of the 7-function;

(4) elements 29 of the matrix potential [w,y¥*] =
([, ¥*1)g=1,...k in terms (4.13) of the elementary forward
shifts of the wave function ¥ and of the t-function.

By reductions of the corresponding determinants and using for-
mulas (4.14)-(4.15) we have the following result, which in con-
junction with Section 3 provides the additional variables inter-
pretation of the linear problem for the discrete KP equation with
sources.

Proposition 4.6. The Kth order binary shifts of the wave function ¥ and
of the adjoint wave function ¥* can be written as follows:

Vg =V - 2y, 0" ]|2[e, )

| 2[w, 0*] ® |
_‘Slw,w*] '~|Q[w,a) 1, (4.16)
Vo = —0'2[w,0] 2o, ¥
2w, w*] Lw,v* w11
=‘ o.0) 2003 glw,01]|”, 417)

which agrees with the transformation formulas (2.10)-(2.11) provided
we interpret the Darboux transformations as shifts in the additional
transformation variables.

Proof. We will show only the Kth order binary shift formula for
the wave function ¥ leaving to the reader analogous proof for ¥ *.
The case K =1 has been shown already in (4.14). To validate the
induction step we first notice the following consequence of the
linear problem (2.1):

-1
i =—2p + 2k (2§) 2y, p=1.....K—1. (4.18)

Then we calculate the determinant in the numerator by the col-
umn reduction with respect to the element 2%, that is

q q q
2, 2 o

K
QFf 2§ of =2
2,

q q
gﬁ A N

LK1

using also Eqgs. (4.10), (4.11), (4.16) and (4.18). O

5. Conclusion and remarks

In the paper we presented the discrete KP equation with self-
consistent sources [20] as coming from the (sourceless) discrete KP
system of Hirota in multidimensions by suitable cut-off of a sub-
space in the full discrete variables space. Our approach provides
also the corresponding linear problem and its adjoint. An impor-
tant step in the derivation was the squared-eigenfunction approach
to the equation with sources, which we also interpreted in the
spirit of the binary Darboux transformations.

Our result can be considered as a step towards the following
research problems:

(1) find the self-consistent source extensions by the squared-
eigenfunction approach of other distinguished three dimen-
sional integrable discrete equations and corresponding lattice
maps (discrete Darboux equations and the quadrilateral lattice
maps [4,14], discrete BKP equation [42], discrete CKP equa-
tion [25], quadratic reductions of quadrilateral lattices [8]) us-
ing known binary Darboux transformations for these systems;

(2) find the self-consistent source extensions of distinguished re-
ductions of the Hirota system like the discrete (modified)
Korteweg-de Vries equation [45] or other discrete Gel'fand-
Dikii type equations [46];

(3) using the known connection (on the continuous level) of
the squared eigenfunction symmetry and the so-called re-
stricted flows of integrable hierarchies [2,60,51,52] find dis-
crete analogs of the restricted flow equations;

(4) use known algebro-geometric or analytic techniques of getting
solutions to the Hirota system and its distinguished reductions
find corresponding solutions of their extensions with sources;

(5) find non-commutative integrable discrete equations with
sources from their known sourceless versions [48,9,10,12].

We would like to stress that the relation between discrete the
KP equation with sources and the standard system of Hirota’s dis-
crete KP equations becomes elementary and visible on the level of
discrete systems only. The present-day interest in integrable dis-
crete systems is a reflection of the fact that in the course of a
continuous limiting procedure which often “brings artificial com-
plications” [59], various symmetries and relations between differ-
ent discrete systems are lost or hidden. Our paper gives a new
example supporting this claim, and shows once again the promi-
nent role of Hirota’s discrete KP equation in integrable systems
theory.
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