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Higher Spin Holography

Abstract

This dissertation splits into two distinct halves. The first half is devoted to the study

of the holography of higher spin gauge theory in AdS3. We present a conjecture that the

holographic dual of WN minimal model in a ’t Hooft-like large N limit is an unusual “semi-

local” higher spin gauge theory on AdS3×S1. At each point on the S1 lives a copy of

three-dimensional Vasiliev theory, that contains an infinite tower of higher spin gauge fields

coupled to a single massive complex scalar propagating in AdS3. The Vasiliev theories at

different points on the S1 are correlated only through the AdS3 boundary conditions on

the massive scalars. All but one single tower of higher spin symmetries are broken by the

boundary conditions. This conjecture is checked by comparing tree-level two- and three-

point functions, and also one-loop partition functions on both side of the duality. The

second half focuses on the holography of higher spin gauge theory in AdS4. We demonstrate

that a supersymmetric and parity violating version of Vasiliev’s higher spin gauge theory in

AdS4 admits boundary conditions that preserve N = 0, 1, 2, 3, 4 or 6 supersymmetries. In

particular, we argue that the Vasiliev theory with U(M) Chan-Paton and N = 6 boundary

condition is holographically dual to the 2+1 dimensional U(N)k × U(M)−k ABJ theory in

the limit of large N, k and finite M . In this system all bulk higher spin fields transform

in the adjoint of the U(M) gauge group, whose bulk t’Hooft coupling is M
N . Our picture
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Abstract

suggests that the supersymmetric Vasiliev theory can be obtained as a limit of type IIA

string theory in AdS4 × CP
3, and that the non-Abelian Vasiliev theory at strong bulk ’t

Hooft coupling smoothly turn into a string field theory. The fundamental string is a singlet

bound state of Vasiliev’s higher spin particles held together by U(M) gauge interactions.

iv



Contents

Title Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Citations to Previously Published Work . . . . . . . . . . . . . . . . . . . . . . . ix
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x
Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

I AdS3 higher spin holography 1

1 Introduction and Summary 2

2 Higher Spin Gravity with Matter in AdS3 and Its CFT Dual 11
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 A brief review of Vasiliev’s system in AdS3 . . . . . . . . . . . . . . . . . . . 15
2.3 Propagators and two point functions . . . . . . . . . . . . . . . . . . . . . . 21

2.3.1 The physical fields and propagators . . . . . . . . . . . . . . . . . . . 21
2.3.2 Propagators in modified de Donder gauge . . . . . . . . . . . . . . . 27
2.3.3 The asymptotic boundary condition . . . . . . . . . . . . . . . . . . . 29
2.3.4 Higher spin two point function . . . . . . . . . . . . . . . . . . . . . . 32

2.4 Three point functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.4.1 The second order equation for the scalars . . . . . . . . . . . . . . . . 33
2.4.2 The three point function . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.5 The dual CFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.5.1 The proposal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.5.2 WN currents and primaries . . . . . . . . . . . . . . . . . . . . . . . . 38
2.5.3 A test on the three point function . . . . . . . . . . . . . . . . . . . . 40

2.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.A Linearizing Vasiliev’s equations . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.A.1 Derivation of the scalar boundary to bulk propagator . . . . . . . . . 46
2.A.2 The linearized higher spin equations . . . . . . . . . . . . . . . . . . 49

v



Contents

2.A.3 Derivation of higher spin boundary-to-bulk propagator in modified de
Donder gauge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.B Second order in perturbation theory . . . . . . . . . . . . . . . . . . . . . . . 62
2.B.1 A star-product relation . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.B.2 Derivation of U0,µ and U2

µ|αβ . . . . . . . . . . . . . . . . . . . . . . . 63
2.B.3 Computation of the three point function . . . . . . . . . . . . . . . . 65

2.C The deformed vacuum solution . . . . . . . . . . . . . . . . . . . . . . . . . 75

3 Correlators in WN Minimal Model Revisited 83
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.2 Definitions and conventions for the WN minimal model . . . . . . . . . . . . 88
3.3 Coulomb gas formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.3.1 Rewriting free boson characters . . . . . . . . . . . . . . . . . . . . . 91
3.3.2 WN characters and partition function . . . . . . . . . . . . . . . . . . 93
3.3.3 Coulomb gas representation of vertex operators and screening charge 95

3.4 Sphere three-point function . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
3.4.1 Two point function and normalization . . . . . . . . . . . . . . . . . 98
3.4.2 Extracting correlation functions from affine Toda theory . . . . . . . 101
3.4.3 Large N factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

3.5 Sphere four-point function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
3.5.1 Screening charges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
3.5.2 Integration contours . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
3.5.3 The conformal blocks for N = 3 . . . . . . . . . . . . . . . . . . . . . 119
3.5.4 Null state differential equations . . . . . . . . . . . . . . . . . . . . . 122
3.5.5 The contour for general N . . . . . . . . . . . . . . . . . . . . . . . . 125

3.6 Torus two-point function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
3.6.1 Screening integral representation . . . . . . . . . . . . . . . . . . . . 127
3.6.2 Monodromy and modular invariance . . . . . . . . . . . . . . . . . . 132
3.6.3 Analytic continuation to Lorentzian signature . . . . . . . . . . . . . 133

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
3.A The residues of Toda structure constants . . . . . . . . . . . . . . . . . . . . 138
3.B Monodromy of integration contours . . . . . . . . . . . . . . . . . . . . . . . 142
3.C Identifying the conformal blocks with contour integrals . . . . . . . . . . . . 144
3.D Monodromy invariance of the sphere four-point function . . . . . . . . . . . 146
3.E q-expansion of the torus two-point function . . . . . . . . . . . . . . . . . . . 149
3.F Thermal two-point function in Virasoro minimal models . . . . . . . . . . . 151

4 A Semi-Local Holographic Minimal Model 156
4.1 Summary of Section 3.4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
4.2 New single-trace operators/elementary particles . . . . . . . . . . . . . . . . 158
4.3 Large N operator relations involving ω2 and ω3 . . . . . . . . . . . . . . . . 161
4.4 Hidden symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

vi



Contents

4.5 Approximately conserved higher spin currents . . . . . . . . . . . . . . . . . 165
4.6 The single particle spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
4.7 Large N partition functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
4.8 Interactions and a semi-local bulk theory . . . . . . . . . . . . . . . . . . . . 174
4.9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
4.A Higher spin charges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
4.B An approximately conserved spin-2 current . . . . . . . . . . . . . . . . . . . 182
4.C Null-state equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
4.D WN characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
4.E Some three-point functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

II AdS4 higher spin holography 191

5 ABJ Triality: from Higher Spin Fields to Strings 192
5.1 Introduction and Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
5.2 Vasiliev’s higher spin gauge theory in AdS4 and its supersymmetric extension 199

5.2.1 The standard parity violating bosonic Vasiliev theory . . . . . . . . . 201
5.2.2 Nonabelian generalization . . . . . . . . . . . . . . . . . . . . . . . . 218
5.2.3 Supersymmetric extension . . . . . . . . . . . . . . . . . . . . . . . . 219
5.2.4 The free dual of the parity preserving susy theory . . . . . . . . . . . 223

5.3 Higher Spin symmetry breaking by AdS4 boundary conditions . . . . . . . . 226
5.3.1 Symmetries that preserve the AdS Solution . . . . . . . . . . . . . . . 227
5.3.2 Breaking of higher spin symmetries by boundary conditions . . . . . 230

5.4 Partial breaking of supersymmetry by boundary conditions . . . . . . . . . . 243
5.4.1 Structure of Boundary Conditions . . . . . . . . . . . . . . . . . . . . 244
5.4.2 The N = 2 theory with two ! chiral multiplets . . . . . . . . . . . . 248
5.4.3 A family of N = 1 theories with two ! chiral multiplets . . . . . . . 250
5.4.4 The N = 2 theory with a ! chiral multiplet and a ! chiral multiplet 252
5.4.5 A family of N = 2 theories with a ! chiral multiplet and a ! chiral

multiplet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
5.4.6 The N = 3 theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
5.4.7 The N = 4 theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
5.4.8 An one parameter family of N = 3 theories . . . . . . . . . . . . . . . 255
5.4.9 The N = 6 theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
5.4.10 Another one parameter family of N = 3 theories . . . . . . . . . . . . 257

5.5 Deconstructing the supersymmetric boundary conditions . . . . . . . . . . . 257
5.5.1 The goal of this section . . . . . . . . . . . . . . . . . . . . . . . . . . 257
5.5.2 Marginal multitrace deformations from gravity . . . . . . . . . . . . . 259
5.5.3 Gauging a global symmetry . . . . . . . . . . . . . . . . . . . . . . . 265
5.5.4 Deconstruction of boundary conditions: general remarks . . . . . . . 269
5.5.5 N = 3 fixed line with 1 hypermultiplet . . . . . . . . . . . . . . . . . 274

vii



Contents

5.5.6 N = 3 fixed line with 2 hypermultiplets . . . . . . . . . . . . . . . . . 279
5.5.7 Fixed Line of N = 1 theories . . . . . . . . . . . . . . . . . . . . . . 282
5.5.8 N = 2 theory with 2 chiral multiplets . . . . . . . . . . . . . . . . . . 285

5.6 The ABJ triality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
5.6.1 From N = 3 to N = 4 Chern-Simons vector models . . . . . . . . . . 288
5.6.2 ABJ theory and a triality . . . . . . . . . . . . . . . . . . . . . . . . 292
5.6.3 Vasiliev theory and open-closed string field theory . . . . . . . . . . . 293

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
5.A Details and explanations related to Section 5.2 . . . . . . . . . . . . . . . . . 298

5.A.1 Star product conventions and identities . . . . . . . . . . . . . . . . . 298
5.A.2 Formulas relating to ι operation . . . . . . . . . . . . . . . . . . . . . 299
5.A.3 Different Projections on Vasiliev’s Master Field . . . . . . . . . . . . 300
5.A.4 More about Vasiliev’s equations . . . . . . . . . . . . . . . . . . . . . 301
5.A.5 Onshell (Anti) Commutation of components of Vasiliev’s Master Field 303
5.A.6 Canonical form of f(X) in Vasiliev’s equations . . . . . . . . . . . . . 304
5.A.7 Conventions for SO(4) spinors . . . . . . . . . . . . . . . . . . . . . . 305
5.A.8 AdS4 solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
5.A.9 Exploration of various boundary conditions for scalars in the non

abelian theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
5.B Supersymmetry transformations on bulk fields of spin 0, 1

2 , and 1 . . . . . . 310
5.B.1 δϵ: spin 1 → spin 1

2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
5.B.2 δϵ: spin

1
2 → spin 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 313

5.B.3 δϵ: spin
1
2 → spin 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 315

5.B.4 δϵ: spin 0 → spin 1
2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 315

5.C The bulk dual of double trace deformations and Chern Simons Gauging . . . 316
5.C.1 Alternate and Regular boundary conditions for scalars in AdSd+1 . . 316
5.C.2 Gauging a U(1) symmetry . . . . . . . . . . . . . . . . . . . . . . . . 323

5.D Supersymmetric Chern-Simons vector models at large N . . . . . . . . . . . 328
5.D.1 N = 2 theory with M ! chiral multiplets . . . . . . . . . . . . . . . 328
5.D.2 N = 1 theory with M ! chiral multiplets . . . . . . . . . . . . . . . 330
5.D.3 The N = 2 theory with M ! chiral multiplets and M ! chiral multiplets330
5.D.4 The N = 3 theory with M hypermultiplets . . . . . . . . . . . . . . . 331
5.D.5 A family of N = 2 theories with a ! chiral multiplet and a ! chiral

multiplet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
5.D.6 The N = 4 theory with one hypermultiplet . . . . . . . . . . . . . . . 334
5.D.7 N = 3 U(Nk1)× U(M)k2 theories with one hypermultiplet . . . . . . 335
5.D.8 The N = 6 theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336
5.D.9 N = 3 U(N)k1 × U(M)k2 theories with two hypermultiplets . . . . . 338

5.E Argument for a Fermionic double trace shift . . . . . . . . . . . . . . . . . . 339
5.F Two-point functions in free field theory . . . . . . . . . . . . . . . . . . . . . 341

Bibliography 343

viii



Citations to Previously Published Work

Chapter 2 is essentially identical to

“Higher Spin Gravity with Matter in AdS3 and Its CFT Dual”, C.-M. Chang
and X. Yin, JHEP 1210 (2012) 024, [arXiv:1106.2580].

Chapter 3 is essentially identical to

“Correlators in WN Minimal Model Revisited”, C.-M. Chang and X. Yin, JHEP
1210 (2012) 050, [arXiv:1112.5459].

Chapter 4 is essentially identical to

“A semi-local holographic minimal model”, C.-M. Chang and X. Yin, Phys.Rev.
D88 (2013) 106002, [arXiv:1302.4420].

Chapter 5 is excerpted from

“ABJ Triality: from Higher Spin Fields to Strings”, C.-M. Chang, S. Minwalla,
T. Sharma, and X. Yin, J.Phys. A46 (2013) 214009, [arXiv:1207.4485].

Electronic preprints (shown in typewriter font) are available on the Internet at the fol-
lowing URL:

http://arXiv.org

ix



Acknowledgments

I want to thank my advisor, Xi Yin, for his guidance, patience, supports, encouragement,

and the many insightful discussions we had, and also all the advice he has given me through

out these years. Working closely with him over the past few years has been an incredible

intellectual experience.

The work in this thesis cannot be done without the collaboration with Shiraz Minwalla

and Tarun Sharma. I have also been very fortunate to collaborate with and learn from

Ying-Hsuan Lin, Abhishek Pathak, Shu-Heng Shao, Wei Song, Andrew Strominger, and

Yifan Wang. Their enthusiasm, powerful intuition, and hard work were the keys to make

our projects working smoothly.

I would like to express my deep thanks to all professors of the Department of Physics

and High Energy Theory Group at Harvard. I learned a lot from lectures of Howard Georgi,

Lisa Randall, Subir Sachdev, Matthew Schwartz, Andrew Strominger, Cumrun Vafa and Xi

Yin. Throughout graduate school, I have learned a tremendous amount from conversations

with students and postdocs in the Harvard group. Among postdocs, many thanks to Murad

Alim, Alejandra Castro, Miranda Cheng, Geoffrey Compere, Loganayagam Ramalingam,

Tatsuo Azeyanagi, and Wei Song. I am greatly indebted to the students, Tarek Anous,

Yang-Ting Chen, Clay Cordova, Gim Seng Ng, Sam Espahbodi, Ying-Hsuan Lin, Vyacheslav

Lysov, Abhishek Pathak, Ashwin Rastogi, Shu-Heng Shao, David Simmons-Duffin, and Nick

Vanmeter.

Finally, I am grateful to my parents,張光中 and袁宇英 , and to my brother,張其昌 ,

and my grandfather,張是欽 , for their unwavering love and support, and for always being

there for me whenever I needed them. I want to thank my boyfriend, Justin. Whenever I

was depressed, he brought happiness to me.

x



Dedicated to my grandfather張是欽,

my father張光中,

my mother袁宇英,

my brother張其昌,

and Justin.

xi



Part I

AdS3 higher spin holography

1



Chapter 1

Introduction and Summary

One of the greatest challenges in theoretical physics is formulating a quantum theory of

gravity, a theory that would unify quantum mechanics and general relativity. Despite the

fact that we live in a de Sitter space, quantum gravity in asymptotically anti-de Sitter space

has instead undergone substantial development in the past decade due to the advance of

AdS/CFT correspondence [1, 2, 3].

The AdS/CFT correspondence in principle gives a precise and non-perturbative formula-

tion of quantum gravity in terms of large N gauge theories. In practice, our understanding of

quantum gravity using AdS/CFT has been largely limited by difficulties in solving strongly

coupled large N gauge theories. Thus, exactly solvable models of strongly coupled gauge

theories with a semi-classical gravity dual are highly desirable. In two dimensions, there are

lots of exactly solvable conformal field theories. Most of them do not have a large N limit

that allows for a weakly coupled gravity dual. In [4], Gaberdiel and Gopakumar proposed

that the coset models

SU(N)k × SU(N)1
SU(N)k+1

(1.1)

2



Chapter 1: Introduction and Summary

in the ’t Hooft-like large N limit, where N, k are taken to infinity while fixing the ’t Hooft

coupling λ = N/(k +N), are dual to some weakly coupled bulk theory . The central charge

of the CFT is

c = (N − 1)

(
1− N(N + 1)

(N + k)(N + k + 1)

)
= N(1 − λ2) +O(N0). (1.2)

The linear dependence on N is characteristic of a vector model. This coset model has

a holomorphic spin-s current W (s) and an anti-holomorphic spin-s current W
(s)

for each

spin s = 2, 3, 4, · · · , N . The Fourier modes of W (s) generate the WN algebra, which is

a higher spin generalization of the Virasoro algebra. The coset models (1.1) are usually

refereed to as the WN minimal model. In the large N limit, the WN algebra turns into

the W∞[λ] algebra that contains generators with arbitrary spins. In WN minimal model,

the WN primary operators, the primaries with respect to the WN algebra, are labeled by

two representatons (Λ+,Λ−), where Λ± are the highest weight representations of SU(N)k

and SU(N)k+1, respectively.1 For fixed representations Λ+,Λ− at sufficiently large N ,2 the

fusion coefficients for the primary operators in the WN minimal model is simply given by

the product of the fusion coefficients in the SU(N)k and SU(N)k+1 WZW models, i.e.

NWN

(Λ1
+,Λ1

−)(Λ2
+,Λ2

−)
(Λ3

+,Λ3
−) = N (k)

Λ1
+Λ2

+

Λ3
+N (k+1)

Λ1
−Λ2

−

Λ3
−, (1.3)

where N (k)
Λ1Λ2

Λ3
is the fusion coefficient of SU(N)k WZW model.

The gravity dual of WN minimal model at large N is a higher spin gauge theory, which

contains a tower of gauge fields of spins s = 2, 3, 4, · · · ,∞ that are dual to the higher spin

1A prior, the primary should also depend on the highest weight representation Λ0 of SU(N)1. However,
Λ0 can be determining by requiring Λ+ + Λ0 − Λ− being inside the root lattice of SU(N).

2Namely representations that are found in the tensor product of finitely many fundamental or anti-
fundamental representations of SU(N), at large N .

3



Chapter 1: Introduction and Summary

currents W (s) and W
(s)
. The pure higher spin gauge theory on AdS3 can be described by

the Chern-Simons action with hs(λ)× hs(λ) gauge algebra. The higher spin algebra hs(λ)

is an infinite dimensional Lie algebra, and by a Brown-Henneaux type computation, it was

shown, in [5, 6, 7], that W∞[λ] is the the asymptotic symmetry algebra of higher-spin gravity

based on the algebra hs(λ). It also follows from this computation that the bulk coupling

constant is proportional to inverse the square root of the central charge, i.e.

gbulk ∼
1√
c
∼ 1√

N
. (1.4)

The primary operators in the WN minimal model, constructed from the diagonal modular

invariant, do not carry spin. They should be dual to scalar elementary particles and their

bound states with zero angular momentum, that become unbound in the infinite N (zero

bulk coupling) limit. In particular, the primary operator φ1 = ( , 0) is dual to a scalar field

with left and right conformal dimension equal to

h( ,0) =
1

2
(1 + λ) (1.5)

in the large N limit. The primary φ̄1 = (¯, 0) has the same dimension in the large N limit,

and is dual to the anti-particle of ( , 0). The primary operators ( , 0) and ( , 0) have

conformal weights

h( ,0) = 1 + λ, h( ,0) = 2 + λ (1.6)

in the large N limit. Note that h( ,0) and h( ,0) are twice the dimension of ( , 0) plus a

non-negative integer. This allows for the identification of ( , 0) and ( , 0) as two-particle

states of φ1’s. In general, the primary operators of the form (Λ, 0) are dual to the multi-

particle states of B(Λ) φ1’s, where B(Λ) is the number of boxes of the Young tableaux of

the representation Λ (here we assume that B(Λ) does not scale with N). The WN minimal

4



Chapter 1: Introduction and Summary

model in the large N limit has a symmetry that exchanges Λ+ with Λ−, while flipping the

sign of λ. Hence, the primary φ̃1 = (0, ) is dual to a scalar elementary particle, with

dimension

h(0, ) =
1

2
(1− λ), (1.7)

and the primaries (0,Λ) are dual to the multi-particle states of φ̃1. The fusion coefficients

(1.3) implies that the primaries of the form (Λ, 0) (or (0,Λ)) are closed under the OPE, as

long as Λ is small compared to N . They form a closed subsector of the WN minimal model

in the large N limit. Either one of these two subsectors has a consistent set of n-point

functions on the sphere, in the sense that they factorize through only operators within the

same subsector. In Chapter 2, we proposed a bulk dual for each of the subsectors. The

classical bulk theory is described by Vasiliev’s system in three dimensions [8, 9, 10], which is

a higher spin gauge theory of gauge fields of spin s = 2, 3, · · · ,∞ based on the higher spin

algebra hs(λ), coupled to a complex massive scalar field of mass squared m2 = −(1 − λ2).

This conjecture has also been checked by matching the three-point function
〈
φ1φ̄1W (s)

〉

computed on both side of the correspondence in Chapter 2 and [10, 11].

To go beyond these two subsectors, in Chapter 3, we study the bulk dual of the class of

primary operators (Λ+,Λ−) for Λ± being one- or two-box representations. In this class of

primaries, we identify a number of single-trace operators, which are dual to single-particles

states in the bulk. They are summarized as follows,

φ1 = ( , 0), φ̃1 = (0, ), ω1 = ( , ),

φ2 =
1√
2
[( , )− ( , )] , φ̃2 =

1√
2
[( , )− ( , )] ,

ω2 =
1√
2
[( , )− ( , )] .

(1.8)

φ1, φ̃1,φ2, φ̃2 have spin zero and dimension of order 1 in the large N limit. They are dual to

5



Chapter 1: Introduction and Summary

massive scalars in the bulk theory. ω1,ω2 have spin zero and dimension of order 1/N . They

are dual to massless scalars in the bulk. By analyzing exact results of three-point functions,

in particular, we demonstrate that the three-point function of three single-trace operators

in (1.8) is of order 1/
√
N in the large N limit. This agrees with our expectation from the

bulk Witten’s diagram of three single elementary particles in a weakly coupled theory,

∼ 1√
N
∼ gbulk.

All the other primary operators are identified as multi-trace operators, which are dual to

multi-particle states in the bulk. They are summarized in the following table.

Λ+
Λ− 0

0 1 φ̃1 Lφ̃1 φ̃2
1

φ1 ω1
1√
2
(φ̃1ω1 + φ̃2)

1√
2
(φ̃1ω1 − φ̃2)

Lφ1
1√
2
(φ1ω1+φ2)

1
2(ω

2
1 +
√
2ω2)

1√
2
(Lω1− 1√

2
(φ1φ̃2−φ2φ̃1))

φ2
1

1√
2
(φ1ω1−φ2)

1√
2
(Lω1+

1√
2
(φ1φ̃2−φ2φ̃1))

1
2(ω

2
1 −
√
2ω2)

The operator LO is defined as

LO =
1

2
√
2hO

(
O∂∂̄O − ∂O∂̄O

)
, (1.9)

which is dual to an excited state of a two-particle state in the bulk. Consider two single-

trace operators, for example φ1 and ω1 in (1.8), the single-particle states dual to φ1 and

ω1 can form a bound state, which is dual to a double-trace operator 1√
2
[( , ) + ( , )].

By analyzing the exact three-point functions, we demonstrate in Section 3.4 that the three

point function of φ1, ω1, and
1√
2
[( , ) + ( , )] is of order 1 in the large N limit. This

agrees with the bulk Witten’s diagram of two elementary particles with their bound state,

6



Chapter 1: Introduction and Summary

∼ 1.

Our identification of single-trace operators versus multi-trace oprators is subject to a peculiar

relation [12, 50]:

1

2hω1

∂∂̄ω1 = φ1φ̃1, hω1 =
λ

2N
, (1.10)

which, although naively seems to be in conflict with large N factorization, has a very natural

bulk interpretation that will be discussed later.

In Section 4.2, we carry on the identification of single-trace operators for the class of

primaries that includes also the operators with Λ+ or Λ− being three-box representations.

We find three more single-trace operators φ3, φ̃3 and ω3,

φ3 =
1√
6

[√
2( , )− ( , )− ( , ) +

√
2( , )

]
,

φ̃3 =
1√
6

[√
2( , )− ( , )− ( , ) +

√
2( , )

]
,

ω3 =
1√
3

[
( , )− ( , ) + ( , )

]
,

(1.11)

and all the other primary operators are identified as multi-trace operators. The large N

factorization has also been check for this larger class of primaries. In the large N limit,

φn, φ̃n have the same value of dimension and higher spin charges as φ1, φ̃1, and the dimension

and higher spin charges of ωn are n times bigger than the corresponding values for ω1. It is

very tempting to conjecture that the single-trace operators of finite dimension in the large

N limit fall into the three classes φn, φ̃n and ωn for n being positive integers. φn is a

linear combination of primaries (Λ+,Λ−) with (n, n − 1) boxes, φ̃n is a linear combination

of primaries with (n − 1, n) boxes, and ωn is a linear combination of primaries (Λ,Λ) with

7



Chapter 1: Introduction and Summary

Λ being n-box representations, which has dimension ∼ n/N in the large N limit. However,

this is not the full story; there are more single-trace operators. The key observation is that

(1.10) can be interpreted as a current non-conservation equation,

∂̄(j(1)1 )z =
λ√
N
φ1φ̃1, (1.12)

where j(1)1 = (j(1)1 )zdz + (j(1)1 )z̄dz̄ = (∂ω1dz + ∂̄ω1dz̄)/
√
2hω1 is the level-1 descendent of ω1

with normalized two-point function. In the infinite N limit, the right hand side of (1.12)

vanishes, and (j(1)1 )z becomes a primary spin-1 current. We refer these kind of operators

as large N primary operators, the operators that effectively become primary fields in the

infinite N limit. We propose that the bulk dual of (j(1)1 )z is a U(1) Chern-Simons gauge field

Aµ coupled to two scalar fields Φ and Φ̃, which are dual to φ1 and φ̃1, respectively. Φ and Φ̃

have the same mass but satisfy different boundary condition (fall-off behavior near the AdS

boundary), which however is incompatible with the U(1) gauge transformation generated

by Aµ. As a result, the U(1) gauge symmetry, though is conserved in the bulk classically, is

broken by 1/N effects induced by the scalar boundary conditions; hence, is hidden from the

boundary CFT point of view. This entire picture is checked in Section 4.4 by an explicit

bulk computation of the Witten’s diagram

(j(1)1 )z

φ1

φ̃1

which after taking the ∂̄-derivative is proportional to the factorized Witten’s diagram,

8
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φ1φ̃1

φ1

φ̃1

This computation essentially reproduces the current non-conservation equation (1.12). In

Section 4.3 and Section 4.5, we demonstrate that the level-1 descendants of ω2,ω3 and also

a level-2 descendant of ω1 satisfy similar current non-conservation equations as (1.12). We

propose that the bulk dual of them are Chern-Simons spin-1 gauge fields and also a spin-2

gauge field in the bulk.

The amount of evidences are enough for us to present a consistent conjecture in Section

4.6, that for each ωn there exist a tower of large N primaries j(s)n , which are conserved

spin s ≥ 1 currents in the infinite N limit. The complete spectrum of single-trace operator

of WN minimal model is then given by a tower of spin-0 WN primaries φn, φ̃n,ωn and a

tower of spin-s large N primaries j(s)n , all of which are complex. In Section 4.7, we provide a

highly nontrivial check on this spectrum of single-trace operators, by matching the the torus

partition of WN minimal in the infinite N limit with the bulk one-loop partition function

given by this spectrum.

The approximately conserved spin-s currents j(s)n are dual to gauge fields in AdS3 of

various spins, which generate hidden higher spin gauge symmetries in the bulk. The massive

scalars dual to φn, φ̃n are charged under the hidden higher spin gauge symmetries. In Section

4.8, we determine the gauge generators associated with the hidden symmetry currents, which

are incompatible with the boundary conditions on the massive scalars and leads to the

breaking of symmetry.

9
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Our conjecture on the large N spectrum, combined with the identification of the gauge

generators acting on the matter scalars, leads to a dramatically new picture of the holo-

graphic dual of the WN minimal model. We propose that the dual higher spin gauge theories

is a “semi-local”3 theory living on AdS3×S1. This is not an ordinary four-dimensional field

theory, however. At each point of the S1, there is a tower of higher spin gauge fields in AdS3,

coupled to a single complex massive scalar field, of the type described by Vasiliev’s system

in three dimensions. The different Vasiliev theories at different points on the S1 appear to

be decoupled at the level of bulk equations of motion. Rather, they interact only through

the boundary condition which mixes scalar fields living at different points on the circle S1.

Essentially, while all the scalars classically have the same mass in AdS3, the boundary con-

dition assigns one scaling dimension 2hφ on right-moving modes of the scalar on the circle,

and the complementary scaling dimension 2hφ̃ = 2− 2hφ on left-moving modes of the scalar

on the circle.

While our proposal for the holographic dual is rather unconventional due to the large

degeneracy in the bulk fields, it seems to be unavoidable due to peculiarities in the structure

of large N factorization in WN minimal model. We believe that it is characteristic of gauged

vector models on non-simply connected spaces [14, 15]. Presumably, what we see here is the

field theory of the tensionless limit of a more conventional string theory in AdS3, dual to

quiver-like generations of the WN minimal model, and the S1 should come from a topological

sector of the string theory in this limit.

3The terminology comes from analogy with the holographic theory of semi-local quantum liquids [13].
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Chapter 2

Higher Spin Gravity with Matter in

AdS3 and Its CFT Dual

2.1 Introduction

The AdS/CFT correspondence [1, 2, 3] has given us a tremendous amount of insight in

quantum gravity through its duality with large N gauge theories. Progress does not come

easily, however. The regime in which the bulk theory reduces to semi-classical gravity is

typically dual to a gauge theory in the strong ’t Hooft coupling regime, and is difficult to

solve. In the opposite limit, where the gauge theory is weakly coupled, the bulk theory is

typically in a very stringy regime, involving strings in AdS whose radius is very small in

string units (though large in Planck units, as long as N is large). With a few exceptions,

such as the purely NS-NS background of AdS3 [16], in which case the dual CFT is singular

[17, 18], generally the bulk string theory involves Ramond-Ramond fluxes; even the free

string spectrum is difficult to solve, and the full string field theory appears to be out of

11



Chapter 2: Higher Spin Gravity with Matter in AdS3 and Its CFT Dual

reach at the moment.

A particularly simple class of conjectured AdS/CFT dualities [19, 20, 4] avoids these

difficulties. These involve boundary CFTs whose numbers of degrees of freedom scales like

N rather than N2. In the AdS4/CFT3 conjecture of [19], the boundary theory is given by

the critical O(N) vector model. Such a duality can be extended to Chern-Simons-matter

theories with vector matter representations [21]. In the AdS3/CFT2 conjecture of [4], the

boundary theory is the WN minimal model, which can be realized as the coset model

SU(N)k × SU(N)1
SU(N)k+1

. (2.1)

In these examples, the CFT is either exactly solvable or has a simple 1/N expansion

that can be computed straightforwardly order by order. The dual bulk theories, however,

are higher spin extensions of gravity, involving an infinite tower1 of higher spin gauge fields.

In the case of [4], additional massive scalar matter fields are coupled to the higher spin

gauge fields. It is likely that these higher spin gauge theories are UV complete (at least

perturbatively) theories that contain gravity, due to the large number of gauge symmetries,

and are interesting toy models for quantum gravity. However, they do not reduce to semi-

classical gravity in any limit. Note that the higher spin symmetry can be broken by AdS

boundary conditions [19, 23], but this breaking is controlled by the coupling constant of the

theory and is in some sense rather mild.

The goal of the current paper is to understand the conjectured duality of [4] at the in-

teracting level, in particular, to the second order in perturbation theory. In fact, a careful

1While a pure higher spin gauge theory in AdS3 involving spins up to N can be formulated in terms of
SL(N,R)×SL(N,R) Chern-Simons theory, it is not known how to couple this theory to scalar matter fields.
The construction of [22] requires an infinite set of gauge fields of spins s = 2, 3, · · · ,∞. This is the system
conjectured to be dual to the WN minimal model in [4]. While the dynamical mechanism that renders the
set of spins finite in the interacting theory has not yet been understood, this seeming mismatch is not visible
at any given order in perturbation theory.
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examination of the spectrum of the linearized Vasiliev system leads us to propose a modifi-

cation of the conjecture of [4]. A key insight of [4] is that, in the large N limit of the coset

model (2.1), λ = N/(N + k) plays the role of the ’t Hooft coupling, and the basic primaries

labelled by representations (!; 0) and (0;!) (as well as the conjugate representations) have

finite scaling dimensions ∆+ and ∆− in the ’t Hooft limit, and are conjectured to be dual

to massive scalars in the bulk. We will consider a version of Vasiliev’s system that involve

a gauge field of spin s for s = 2, 3, · · · ,∞, coupled to two real massive scalar fields. We

propose that it is dual to a subsector of the WN minimal model, generated by the WN cur-

rents together with two basic primary operators of dimension ∆+, labelled by (!; 0) and

(!; 0), or two basic primaries of dimension ∆− labelled by (0;!) and (0;!), depending on

the boundary condition imposed on the bulk scalar. We will refer to these two subsectors

as the ∆+ subsector and the ∆− subsector, respectively. Each subsector has closed OPEs,

and hence consistent n-point functions on the sphere, in the sense that they only factorize

through operators within in the same subsector. This identification is natural by comparing

the bulk fields and boundary operators, and also avoids the puzzle with “light states” in

the ’t Hooft limit of the coset model.2 However, it suggests that the bulk Vasiliev system is

non-perturbatively incomplete, though makes sense to all order in perturbation theory. It

may be possible to enlarge Vasiliev’s system to obtain a higher spin-matter theory that is

dual to the full WN minimal model, but such a bulk theory would be subject to the strange

feature of having a large number of light states. We will not address this possibility in the

current paper. There is, on the other hand, a minimal truncation of Vasiliev system, where

2The “light states” are the primaries labelled by a pair of identical representations, (R;R), whose dimen-
sion scales like 1/N in the large N limit. While the contribution of such states to the partition function is
argued in [4] to decouple in the strict infinite N limit, they show up in OPEs of basic primaries when 1/N
corrections are taken into account.
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one keeps only the even spin fields and one out of the two real massive scalars. We conjecture

that this system is dual to the orthogonal group version of the WN minimal model.3

The main nontrivial check of our proposal is a comparison of the tree level three-point

functions involving two scalars and one higher spin field in the bulk, and the ’t Hooft limit

of the corresponding three point function in the dual CFT. In order to carry out such a

computation, we first solve for the boundary to bulk propagators of Vasiliev’s master fields,

and then expand the nonlinear equations of motion to second order in perturbation theory

and compute the three point function. We encounter subtleties with gauge ambiguity and

boundary condition on the higher spin fields, and will find explicit formulae for the gauge

field propagators obeying the boundary condition of [5]. While one may expect that, in

principle, such three point functions are determined by symmetries and Ward identities, the

implementation of the latter is not so trivial on the CFT side. For instance, we do not

know a simple way to carry out the 1/N expansion of the coset model, and must calculate

correlators exactly at finite N first, and then take the ’t Hooft limit. For various quantities

of interest in the CFT, analytic formulae for general spins are often difficult to obtain, and

instead one computes case by case for the first few spins. The results have a nontrivial

dependence on the ’t Hooft coupling λ, which is mapped to a deformation parameter ν

in the bulk theory. The case in which the bulk theory is the simplest, namely the ν = 0

“undeformed” theory, is mapped to λ = 1/2. In this paper, most of our computation is

performed within the ν = 0 theory, and is compared to the λ = 1/2 case of the WN minimal

model. In Appendix 2.C we give some formulae useful for the deformed bulk theory with

nonzero ν, though the analogous computation of correlators in the deformed theory is left

3The ’t Hooft limit of this class of CFTs are recently studied in [24].
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to future work.

More precisely, we compute correlators of the form ⟨OOJ (s)⟩ at tree level in the ν = 0

undeformed bulk theory. These three-point functions are fixed by conformal symmetry up

to the overall coefficient; the latter is computed unambiguously as a function of the spin

s. The result is then compared to the three point functions in the WN minimal model, in

the large N limit, at ’t Hooft coupling λ = 1/2. We test the conjectured duality using

the explicit expression for the spin 3 current in the coset construction, and found perfect

agreement.

We begin with a brief review of the three-dimensional Vasiliev’s system in Section 2.2. In

Section 2.3 we describe the linearized spectrum of the bulk theory, as well as propagators and

boundary conditions, while leaving technical details to Appendix 2.A. Some useful formulae

for the deformed bulk theory (i.e. with nonzero ν) are given in Appendices 2.C. In Section

2.4, we work to second order in perturbation theory and compute the three point functions

of interest. The details of these derivations are given in Appendix 2.B. Our proposal of the

dualities and a test on the three point functions are presented in Section 2.5. We conclude

in Section 2.6.

2.2 A brief review of Vasiliev’s system in AdS3

Throughout this paper, we will consider the Vasiliev system in AdS3, which consists of

one higher spin gauge field for each spin s = 2, 3, 4, · · · , coupled to a pair of real massive

scalar fields. We will often work explicitly with the Poincaré coordinates of AdS3, with

xµ = (z, xi), i = 1, 2, and the metric ds2 = 1
z2 (dz

2 + dxidxi). Following Vasiliev, we

introduce the auxiliary bosonic twistor variables yα, zα, where α = 1, 2 is a spinorial index,
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as well as the Grassmannian variables ψi, i = 1, 2, which obey {ψi,ψj} = 2δij .4 The master

fields are: W a 1-form in the spacetime parameterized by xµ, S a 1-form in the auxiliary

zα-space, and B a scalar field. All of them are functions of xµ, yα, zα, as well as ψi,5

W = Wµ(x|y, z,ψi)dx
µ,

S = Sα(x|y, z,ψi)dz
α,

B = B(x|y, z,ψi).

(2.2)

These fields are subject to a large set of gauge symmetries. The infinitesimal gauge trans-

formation is parameterized by a function ϵ(x|y, z,ψ),

δW = dxϵ+ [W, ϵ]∗,

δS = dzϵ+ [S, ϵ]∗,

δB = [B, ϵ]∗.

(2.3)

One further imposes a truncation so that W,B are even functions of (y, z) whereas Sα is

odd in (y, z) (so that the 1-form S is even under (y, z, dz) +→ (−y,−z,−dz)). The gauge

parameter ϵ is then restricted to be an even function of (y, z) as well. One introduces a

star-product ∗ on functions of (y, z), defined by

f(y, z) ∗ g(y, z) =
∫

d2ud2veuvf(y + u, z + u)g(y + v, z − v). (2.4)

Here and throughout this paper, the spinors are contracted as uv = uαvα = −vαuα = −vu

and uσv = uασαβvβ for a matrix σ. The integration measure d2ud2v above is normalized

4Note that while the equations of motion treats ψ1 and ψ2 on equal footing, the choice of vacuum will
not. The ψi’s can be thought of as purely a bookkeeping device.

5In Vasiliev’s original papers, the master fields depend on the additional Grassmannian variables k, ρ.
This will be discussed in Appendix 2.C. We will refer it as the “extended Vasiliev system”, the Vasiliev
system we present here is obtained by making a projection (1+k)/2 on all fields, and effectively eliminating
k, ρ.
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such that f ∗ 1 = f . The Grassmannian variables ψi commute with yα, zα and do not

participate in the ∗ product. Under the star-product, the auxiliary variables yα generate the

three dimensional higher spin algebra hs(1, 1) [25]6, which is an associative algebra, whose

general element can be represented by a even analytic function of in yα. In particular,

hs(1, 1) has a subalgebra sl(2) whose generator can be written as Tαβ = y(α ∗ yβ). An inner

product on this algebra is defined as (A,B) = A(y) ∗B(y)
∣∣
y=0

.

We define an involution ι on the star algebra as follows: ι(yα) = iyα, ι(zα) = −izα,

ι(dzα) = −idzα, and the action of ι reverses the order of all products (including the mul-

tiplication of ψi’s); in particular, ι(ψ1ψ2) = ψ2ψ1 = −ψ1ψ2. The master fields W,S,B are

then subject to the reality condition7

ι(W )∗ = −W, ι(S)∗ = −S, and ι(B)∗ = B, (2.5)

where the superscript ∗ stands for taking the complex conjugate on the component fields

while leaving the auxiliary variables yα, zα,ψi untouched.

Vasiliev’s equations of motion are now written as

dxW +W ∗W = 0,

dxS + dzW + {W,S}∗ = 0,

dzS + S ∗ S = B ∗Kdz2,

dxB + [W,B]∗ = 0,

dzB + [S,B]∗ = 0.

(2.6)

6We will also consider hs(λ) the one parameter deformation of hs(1, 1) in Appendix 2.C.

7Such a reality condition is necessary because, as we will see later, the physical components of the B
master field are of the form ψ2Ceven +ψ2ψ1Codd where Ceven is a real scalar and Codd is a purely imaginary
scalar field.
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Here dx and dz denote the exterior derivative in spacetime coordinates xµ and the auxiliary

variables zα respectively. K ≡ ezy is known as the Kleinian. It has the properties

K ∗K = 1, K ∗ f(y, z) = Kf(z, y), f(y, z) ∗K = Kf(−z,−y). (2.7)

A few comments on (2.6) are in order. The third equation in (2.6) can be thought of as

the definition of the scalar master field B. The fourth equation is equivalent to a Bianchi

identity for the field strength of the connection A = W + S, which follows from the second

and third equation. The last equation, however, is an independent equation for B.8

Note that the equations of motion (2.6) are preserved under the involution ι, if one sends

(W,S,B) to (−W,−S,B) at the same time. In particular, Vasiliev’s system can be further

truncated down to what we refer to as the “minimal Vasiliev’s system”. The latter is defined

by projecting the master fields onto the ι-invariant components, namely

ι(W ) = −W, ι(S) = −S, and ι(B) = B. (2.8)

We will see later that the minimal Vasiliev’s system contains only the even spin gauge

fields and a single matter scalar. Though, in most of this paper, we will be considering the

untruncated Vasiliev’s system, where gauge spins of all spins greater than or equal to 2 are

included.

The equations (2.6) are formulated in a background independent manner. To formulate

the perturbation theory, one begins by choosing a vacuum solution, and identifies the physi-

cal propagating degrees of freedom by linearizing the equations around the vacuum solution.

One may then proceed to higher orders in perturbation theory and study interactions in this

8This is different from the four-dimensional version of Vasiliev’s system, which involves a similar set of
equations.
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background. It turns out that the system (2.6) admits a 1-parameter family of distinct AdS3

vacua, labeled by a real parameter ν. In fact, the parameter ν appears in a non-dynamical,

auxiliary component of B, and thus the 1-parameter family of AdS3 vacua are not connected

by physical deformations, but should rather be thought of as different theories in AdS3. In

this paper, we will focus on the simplest, “undeformed” theory, corresponding to the ν = 0

vacuum. The deformed vacua/theories (ν ̸= 0) are discussed in Appendix 2.C. The pertur-

bation theory, and in particular the study of three point functions, of the deformed theory

is left to future work.

The undeformed AdS3 vacuum solution is given by

B = 0, S = 0, W = W0 ≡ w0(x|y) + ψ1e0(x|y), (2.9)

where W0 is a flat connection satisfying dxW0+W0 ∗W0 = 0. With W0(x|y,ψ1) chosen to be

a quadratic function of y, the flatness condition is classically equivalent to the Chern-Simons

formulation of Einstein’s equation with negative cosmological constant in three dimensions.

In other words, the equations of motion is obeyed if the 1-forms e0, w0 are chosen as the

dreibein and spin connection for AdS3, contracted with yα in spinorial notation. In Poincaré

coordinates xµ = (z, xi), they can be written as

w0(x|y) ≡ wαβ
0 (x)yαyβ = −yσ

µzy

8z
dxµ, e0(x|y) ≡ eαβ0 (x)yαyβ = −yσ

µy

8z
dxµ. (2.10)

Our convention for e0 is such that

(eµ0 )αβ(e0µ)
γδ = − 1

64
(δγαδ

δ
β + δδαδ

γ
β), (eµ0 )αβ(e0ν)

αβ = − 1

32
δµν . (2.11)

Expanding around this vacuum solution, we will write W = W0 + Ŵ , and the equations of
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motion in its perturbative form as

D0Ŵ = −Ŵ ∗ Ŵ ,

D0S + dzŴ = −{Ŵ , S}∗,

dzS − B ∗Kdz2 = −S ∗ S,

dzB = −[S,B]∗,

D0B = −[Ŵ , B]∗,

(2.12)

where we have defined D0 ≡ dx + [W0, ·]∗. By choosing a zα-dependent gauge function, one

can always go to a gauge in which S|zα=0 = 0. The physical degrees of freedom are entirely

contained in the zα-independent part of the master fields, whereas the zα-dependence are

determined via the equations of motion. It is then useful to decompose W,B as

W (x|y, z,ψ) = W0 + Ω(x|y,ψ) +W ′(x|y, z,ψ)

B(x|y, z,ψ) = C(x|y,ψ) +B′(x|y, z,ψ)
(2.13)

where Ω and C are the restriction of Ŵ and B to zα = 0, respectively, while W ′ and B′

obey W ′
∣∣
zα=0

= B′
∣∣
zα=0

= 0. We will see that Ω and C contain the higher spin gauge fields

and two real scalar fields, whereas W ′ and B′ are auxiliary fields. At the linearized level,

the equations (2.12) reduce to

D0Ω
(1) = −{W0,W

′(1)}∗|z=0, (2.14)

dzW
′(1) = −D0S

(1), (2.15)

dzS
(1) = C(1) ∗Kdz2, (2.16)

B′(1) = 0, (2.17)

D0C
(1) = 0, (2.18)
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where the superscript (n) labels the order of the component of the respective field in the

perturbative expansion. These equations will be analyzed in detail in the next section as

well as in Appendix 2.A. We will then proceed to the quadratic order and study the cubic

coupling and three point functions in Section 2.4.

Let us note that the system of equations (2.6) and the AdS3 vacuum (2.9) are invariant

under a global U(1) symmetry,

W → eiθψ1We−iθψ1 , S → eiθψ1Se−iθψ1 , B → eiθψ1Be−iθψ1 . (2.19)

This U(1) rotates the phase of the complex scalar matter field, while leaving the higher

spin fields invariant. Note that (2.19) preserves the reality condition (2.5). While it is a

symmetry of the classical theory, and is expected to be a perturbative symmetry of the

quantum theory, it should be broken non-perturbatively (or alternatively, become gauged),

as anticipated in any quantum theory of gravity [26, 27]. In the proposed dual CFT, the U(1)

rotates the basic primaries (!; 0) and (!; 0) with opposite phases. As far as correlators of a

fixed number of basic primaries are concerned, in the large N limit, this U(1) is effectively

a symmetry of the theory, since any correlation function that violates the U(1) vanishes by

the fusion rule. This U(1) is obviously broken when N basic primaries are inserted, as the

tensor product of N fundamental representations of SU(N) contains a singlet.

2.3 Propagators and two point functions

2.3.1 The physical fields and propagators

In this subsection we will describe the physical degrees of freedom in the linearized master

fields, as well as their propagators. The details of the derivations starting from Vasiliev’s
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equation are given in Appendix 2.A.

The scalar matter field

The linearized scalar master field C(1)(x|y,ψ) can be decomposed as

C(1)(x|y,ψi) = C(1)
aux(x|y,ψ1) + ψ2C

(1)
mat(x|y,ψ1). (2.20)

C(1)
aux is purely auxiliary; the only solution to its equation of motion is a constant, which

parameterizes a family of AdS3 vacua. We will set C(1)
aux = 0 for now. C(1)

mat can be expanded

in y as

C(1)
mat =

∑
C(1),n

mat (x|y,ψ1) =
∑

C(1),n
mat α1···αn(x|ψ1)y

α1 · · · yαn. (2.21)

It follows from D0(ψ2C
(1)
mat) = 0 that the bottom component C(1),0

mat (x|ψ1) obeys the usual

Klein-Gordon equation for a massive scalar field in AdS3,

(
∇µ∂µ −m2

)
C(1),0

mat (x|ψ1) = 0, m2 = −3
4
. (2.22)

Expanding further in ψ1, C
(1),0
mat (x|ψ1) = Ceven(x) + ψ1Codd(x) contain a pair of real scalars

of mass squared m2 = −3
4 in AdS units. Due to the reality condition (2.5), Ceven is real

whereas Codd is a purely imaginary scalar field. They can be paired up to a complex massive

scalar as Ceven + Codd, with Ceven − Codd its complex conjugate. Under the global U(1)

symmetry (2.19), Ceven ± Codd transform as

Ceven ± Codd → e±iθ (Ceven ± Codd) . (2.23)

In the dual boundary CFT, this complex scalar corresponds to a complex scalar operator

of dimension ∆+ or ∆−, depending on the choice of boundary condition. Here

∆± = 1± 1

2
=

3

2
or

1

2
. (2.24)
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The higher components C(1),n
mat are expressed in terms of derivatives of C(1),0

mat through the

equation of motion.

In the ν-deformed vacua, C(1)
mat still describes a pair of real massive scalar fields, with

mass squared m2 = −3
4 +

ν(ν±2)
4 , where the ± sign depends on a choice of projection. This

is discussed in Appendix 2.C.

The boundary-to-bulk propagator for the scalar is Cmat,0 = K(x⃗, z)∆ for ∆ = 3/2 or

∆ = 1/2, where K(x⃗, z) ≡ z
x⃗2+z2 , x⃗ = (x1, x2). It is convenient to introduce another

auxiliary variable ψ̃1, satisfying ψ̃2
1 = 1, to label the two different boundary conditions, so

that ∆ = 1 + ψ̃1/2. With the δ-function source on Ceven component:

C(1)
mat(x⃗, z → 0|y,ψ1) = 2πψ̃1z

1− ψ̃1
2 δ2(x) (2.25)

turned on on the boundary, the boundary-to-bulk propagator for the master field C(1)
mat(x|y,ψ1)

is then given by

C(1)
mat(x|y,ψ1) =

(

1 + ψ1
1 + ψ̃1

2
yΣy

)

e
ψ1
2 yΣyK1+

ψ̃1
2 , (2.26)

where Σ ≡ σz − 2z
x2σµxµ. We can also turn on the source on Codd component:

C(1)
mat(x⃗, z → 0|y,ψ1) = 2πψ1ψ̃1z

1− ψ̃1
2 δ2(x) (2.27)

on the boundary. The boundary-to-bulk propagator will be just (2.26) times ψ1.

Under the action of the involution ι, Ceven is invariant whereas Codd changes sign. Hence

only Ceven survives the minimal truncation (2.8). Thus, the “minimal Vasiliev system”

contains only a single real scalar scalar, which is dual to a real scalar operator in the boundary

CFT. Note that in writing the boundary-to-bulk propagator (2.26), we have chosen to turn

on a source for Ceven only, and the result is invariant under the projection by ι.
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The higher spin fields

The higher spin gauge fields, as well as some auxiliary fields, are contained in Ω(x|y,ψ),

which may be decomposed in the form

Ω(1)(x|y,ψi) = Ωhs(x|y,ψ1) + ψ2Ω
sc(x|y,ψ1). (2.28)

As the notations suggest, Ωhs contain the higher spin gauge fields in AdS3, while Ωsc are in

fact auxiliary fields determined by the scalar matter fields. The linearized equations take

the form

D0Ω
hs = 0, D̃0Ω

sc = −ψ2{W0,ψ2W
mat}∗|z=0. (2.29)

where we have defined

D̃0 ≡ dx + [w0, ·]∗ − ψ1{e0, ·}∗. (2.30)

It is demonstrated in Appendix 2.A.2 that up to gauge transformations, Ωsc have no

propagating degrees of freedom and are determined entirely in terms of Cmat. Ωhs, on

the other hand, obeys the (linearized) Chern-Simons equation with higher spin algebra

hs(1, 1)⊕ hs(1, 1). They are related to the metric-like higher spin fields, which are usually

written in terms of traceless symmetric tensors, in the following way.

First, expand Ωhs
αβ ≡ Ωhs

µ (eµ0 )αβ in y as

Ωhs
αβ(x|y,ψ1) =

∑
Ωhs,(n)
αβ (x|y,ψ1) =

∑
Ωhs,n
αβ|α1···αn

(x|ψ1)y
α1 · · · yαn , (2.31)

and then express the components in terms of symmetric traceless tensors (in spinorial no-

tation) as

Ωhs,(n)
αβ|α1···αn

(x|ψ1) = χn,+
αβα1···αn

+ ϵ(α1(αχ
n,0
β)α2···αn)

+ ϵ(α(α1ϵβ)α2χ
n,−
α3···αn)

, (2.32)
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or equivalently,

Ωhs,(n)
αβ (x|y,ψ1) =

1

(n+ 2)(n+ 1)
∂α∂βχ

+
n (x|y,ψ1) +

1

n
y(α∂β)χ

0
n(x|y,ψ1) + yαyβχ

−
n (x|y,ψ1).

(2.33)

Here χ+
n (x|y,ψ1) is defined as χn,+

α1···αn+2
contracted with yα’s, and similarly for χ0

n(x|y,ψ1)

and χ−
n (x|y,ψ1). Next, we expand in ψ1, and write

χ±/0
n = χn,±/0

even + ψ1χ
n,±/0
odd . (2.34)

It turns out that χeven are determined in terms of (derivatives of) χodd through the equation

of motion. Furthermore, χn,0
odd can be gauged away entirely. The residual gauge symmetry

on χn,±
odd (y) takes the form

δχn,+
odd (y) = −∇

+λnodd(y),

δχn,−
odd (y) = −

1

n(n + 1)
∇−λnodd(y),

(2.35)

where λnodd(y) is related to the gauge parameter ϵ by ϵ = ψ1λnodd. ∇± are defined here as

∇+ ≡ (yeµ0y)∇µ, ∇− ≡ (∂ye
µ
0∂y)∇µ, (2.36)

where ∇µ acts on a tensor (· · · )α1α2··· as the spin-covariant derivative. Under the ι-action,

only the even spin fields are invariant. Hence, the “minimal” Vasiliev’s system only contains

higher spin gauge fields with even spins, and its dual boundary CFT contains only even spin

currents.

In the metric-like formulation, the spin-s gauge field is described by a rank s double

traceless symmetric tensor Φµ1···µs . It may be decomposed into irreducible representations

of the Lorentz group as

Φµ1···µs = ξµ1···µs + g(µ1µ2χµ3···µs), (2.37)
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where ξ and χ are traceless symmetric tensors of rank s and s − 2, respectively. With the

identification

χ2s−2,+
odd = ξ(s), χ2s−2,−

odd = − 2s− 3

32(s− 1)
χ(s), (2.38)

where ξ(s) is defined as ξµ1···µs contracted with (eµ0 )αβy
αyβ, and similarly for χ(s), the Chern-

Simons form of the equations of motion can be shown to be equivalent to the Fronsdal form

of the equation on Φ,

(!−m2)Φµ1···µs − s∇(µ1∇µΦµµ2···µs) +
1

2
s(s− 1)∇(µ

1
∇µ

2
Φµ

µµ3···µs)

− s(s− 1)g(µ1µ2Φ
µ
µµ3···µs) = 0,

(2.39)

which is invariant under the gauge transformation:

δΦµ1···µs = ∇(µ1ηµ2···µs), (2.40)

where ηµ2···µs is a symmetric traceless gauge parameter. The gauge transformation (2.40) is

also equivalent to (2.35) under the identification (2.38).

In three dimensions, the higher spin gauge fields do not have bulk propagating degrees of

freedom. In AdS3, just as in the more familiar case of gravitons (s = 2), there are boundary

excitations of the higher spin fields, corresponding to field configurations that cannot be

gauged away by gauge transformations that vanish on the boundary of the AdS spacetime.

A careful analysis of the gauge conditions is necessary in order to talk about boundary-to-

bulk propagators and bulk-to-bulk propagators. We will first consider Metsaev’s modified de

Donder gauge [28], which is convenient for solving higher spin propagators in AdS in general

dimensions. We will see, however, that the propagators found in this gauge violates (the

higher spin generalization of) Brown-Henneaux boundary condition, and are not directly

applicable to the computation of boundary correlators. Nonetheless, this gauge should be
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useful in doing loop computations in the bulk. We will then proceed to find the appropriate

boundary-to-bulk propagators that obey Brown-Henneaux boundary condition, which allows

for computations of boundary correlators.

2.3.2 Propagators in modified de Donder gauge

The modified de Donder gauge was introduced by Metsaev in [28]. This gauge has the

advantage that the equations of motion for different components of free higher spin gauge

fields decouple, and hence the solutions can be obtained easily. The implementation of the

gauge condition, on the other hand, is a bit complicated. It can be described as follows.

Start with the double traceless symmetric Φs
µ1···µs

which obeys the Fronsdal equation in

AdS3. Write Φs
A1···As

= Φs
µ1···µs

eµ1
A1

· · · eµs

As
where Ai are local Lorentz frame indices. Define a

generating function/field

Φs(x|Y ) = Φs
A1···As

Y A1 · · ·Y As, (2.41)

where Y A = (Y z, Y 1, Y 2) are auxiliary vector variables (analogous to the twistor variables

yα introduced previously). One then performs a linear transformation on Φs(x|Y ),

φ(x|Y ) = z−
1
2NΠφΦΦs(x|Y ), (2.42)

where z is the Poincaré radial coordinate, N is an operator that acts as a separate normal-

ization factor on each component of Φ(x|Y ) of given degree in Y z and Y⃗ = (Y 1, Y 2), and

ΠφΦ involves derivatives on Y z and Y⃗ . See Appendix 2.A.3 for the definition of these opera-

tors. The resulting generating field φ(x|Y ) is double traceless with respect to the directions

parallel to the boundary, namely

(
∂2

∂Y⃗ 2

)2

φ(x|Y ) = 0. (2.43)
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The modified de Donder gauge is defined by a gauge condition of the form

Cφ(x|Y ) = 0, (2.44)

where C is an operator involving up to two derivatives on Y⃗ and one spacetime derivative.

The key point is that, in this case, the Fronsdal equation for Φs is re-expressed in terms of

equations on φ(x|Y ) as

[
!+ ∂2z −

(r − 1
2)(r −

3
2)

z2

]
φr(x|Y⃗ ) = 0, (2.45)

where φr(x|Y⃗ ) are the components of φ(x|Y ) expanded in Y z,

φ(x|Y ) =
s∑

r=0

(Y z)s−rφr(x|Y⃗ ). (2.46)

The equation of motion is then straightforwardly solved in momentum space. Note that the

gauge condition (2.44) relates the different components φr(x|Y⃗ ). After solving φ(x|Y ), one

can translate it back into Φs(x|Y ), and further into the frame-like fields χ(s),±
odd . The result

for the boundary-to-bulk propagator of χ(s),±
odd due to a chiral spin-s current J (s)

++···+ source

inserted at x⃗ = 0 is given in momentum space explicitly by (up to the overall normalization

factor)

χ(s),+
odd (p⃗, z|y) =

s∑

r=0

ir
(
s

r

)
pr−1(p+)s−r(y1)s+r(y2)s−rzKr−1(z|p⃗|),

χ(s),−
odd (p⃗, z|y) = s

2(2s− 1)

s∑

r=0

ir
(
s− 2

r

)
pr−1(p+)s−r(y1)s+r−2(y2)s−r−2zKr−1(z|p⃗|).

(2.47)

The details of the derivation is given in Appendix 2.A.3. These propagators, however, do not

obey the higher spin analog [5, 6] of Brown-Henneaux boundary condition [29], which should

be imposed in order for the dual CFT to have the appropriate higher spin symmetry. In fact,

we know that any solution to the linearized higher spin equations in AdS3 must be a pure
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gauge in the bulk. The key to finding the appropriate boundary-to-bulk propagator is then

to find the appropriate gauge transformation near the boundary. In the next subsection,

we will see that such a gauge transformation takes a rather simple form. The bulk-to-bulk

propagators in the modified de Donder gauge may still prove useful for loop computations

in the bulk, which we hope to revisit in the future.

2.3.3 The asymptotic boundary condition

Let us begin with the spin 2 case, and consider the Brown-Henneaux boundary condition

[29] on metric fluctuations. In the Y -algebra language, a spin 2 tensor field sourced by a

positively polarized stress-energy tensor insertion on the boundary, at x⃗ = 0, that obeys

Brown-Henneaux boundary condition is given by

Φ2(x|Y ) ∼ δ2(x⃗)(Y +)2 + (subleading contact terms) +
z2

(x−)4
(Y −)2. (2.48)

On the RHS we only indicated the leading order terms in the z → 0 limit; their coefficients

are not specified. The boundary-to-bulk propagators in the modified de Donder gauge,

derived in the previous subsection, does not obey this boundary condition. It suffices to

examine the spin 2 case. In position space, the graviton boundary to bulk propagator in the

modified de Donder gauge (for a positively polarized source) is

Φ2(Y ) =
2i

π
Y zY + x+z

(x2 + z2)2
− i

π
(Y +)2

z2

(x2 + z2)2
+

i

π
Y +Y − (x+)2

(x2 + z2)2
. (2.49)

In the limit z → 0, it goes like

Φ2(Y ) ∼ δ2(x)(Y +)2 + (subleading contact terms) +
Y −Y +

(x−)2
, (2.50)

which clearly violates the boundary behavior of (2.48).
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Similarly, the higher spin gauge fields are subject to the an analog of the Brown-Henneaux

boundary conditions [5, 6]. For general spin s, the boundary condition is such that the

boundary-to-bulk propagator for a positive polarized spin-s source is

Φs(x|Y ) ∼ z2−sδ2(x⃗)(Y +)s + (subleading contact terms) +
(Y −)szs

(x−)2s
, (2.51)

where the coefficient are again not specified. Let us examine this boundary condition (2.51)

in more detail. In three dimension, similarly to gravitons, the higher spin gauge fields do not

have any propagating degrees of freedom in the bulk. In other words, any solution to the

equation of motion can be (locally) written in a pure gauge form, Φs(x|Y ) = Y ADAηs(x|Y ).

However, the gauge parameter ηs(x|Y ) may have nonzero higher spin charge, the latter is

given by a boundary integral, and the higher spin gauge field Φs(x|Y ) would not be gauge

equivalence to zero. As proposed in [5], the boundary behavior of the gauge parameter

ηs(x|Y ) can be fixed by demanding the gauge field Φs(x|Y ) obeys the boundary condi-

tions (2.51). With some effort, we find the appropriate gauge parameter ηs(x|Y ) near the

boundary:

ηs(x|Y ) =
s−1∑

u=0

2s−2u−1∑

r=1

u∑

v=0

(−1)r+u

(2u)!

(
u

v

)(2u−1∏

j=0

(r + j)

)(
u∏

j=1

2j − 1

2s− 2j − 1

)

× (Y 3)2v+r−1(Y −)u−v(Y +)s−r−v−u z2u+r−s

(x−)2u+r
+O(zs+1),

(2.52)

and the corresponding gauge field

Φs(x|Y ) = Y ADAηs(x|Y )

= 2πz2−sδ2(x)(Y +)s + (subleading contact terms)

+ (−1)s(2s− 1)
(Y −)szs

(x−)2s
+O(zs+1).

(2.53)

Notice that the leading analytic term on the RHS of (2.53) is proportional to the two point

function of the boundary higher spin currents. Since the gauge parameter is a traceless
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tensor, i.e. ∂2Y ηs(Y ) = 0, we can substitute Y A = eAαβy
αyβ in (2.52) and obtain, modulo an

overall normalization coefficient, the gauge parameter in the (spinorial) y-algebra language

(see (2.35)):

λs(y) = −4
2s−1∑

r=1

(y1)2s−r−1(y2)r−1 zr−s

(x−)r
+O(zs+1). (2.54)

For later use, we also compute the boundary-to-bulk propagators for the generating function

of frame-like fields, χ(s),±/0
odd and χ(s),±/0

even using (2.143) and (2.138), and compute Ωhs,(s)
11 and

Ωhs,(s)
22 using (2.134). They are

χ(s),+
odd = 2π(y1)2sz2−sδ2(x) + (subleading contact terms) +

(2s− 1)(y2)2szs

(x−)2s
+O(zs+1),

χ(s),0
odd = 0,

χ(s),−
odd = (contact terms of the order z4−2s and higher) +O(zs+1),

(2.55)

and

χ(s),+
even = −2π(y1)2sz2−sδ2(x) + (subleading contact terms)− (2s− 1)(y2)2szs

(x−)2s
+O(zs+1),

χ(s),0
even = (contact terms of the order z3−2s and higher) +O(zs+1),

χ(s),−
even = (contact terms of the order z4−2s and higher) +O(zs+1),

(2.56)

as well as

Ωhs,(s)
11 (y) = −2(1− ψ1)π(y

1)2s−2z2−sδ2(x) + (subleading contact terms) +O(zs+1),

Ωhs,(s)
22 (y) = (contact terms of the order z4−s and higher)− (1− ψ1)

(2s− 1)(y2)2s−2zs

(x−)2s
+O(zs+1).

(2.57)

Notice that the leading contact term in Ωhs,(s)
11 is proportional to (1−ψ1); in other words, we

have imposed the Dirichlet boundary condition on the component (1−ψ1)Ω
hs,(s)
11 . Similarly,

for the negative polarized higher spin gauge field, we impose the Dirichlet boundary condition
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on the component (1 + ψ1)Ω
hs,(s)
22 .

2.3.4 Higher spin two point function

With these formulae at hand, we can now compute the two point function of the higher

spin currents on the boundary. The linearized higher spin equation D0Ωhs = 0 can be

obtained from the quadratic part of a Chern-Simons type action:

Shs = −
∫

dψ1

∫ (
Ωhs, dΩhs + 2W0 ∗ Ωhs

)
. (2.58)

We decompose the higher spin gauge field as

Ωhs = Ωhs
z dz + Ωhs

+ dx+ + Ωhs
− dx−. (2.59)

Modulo the equation of motion, the variation of the action (2.58) is

δShs = −
∫

dψ1

∫
dx+dx− 1

z2
[(
Ωhs

+ , δΩhs
−
)
−
(
Ωhs

− , δΩhs
+

)]
, (2.60)

which, however, is non-vanishing under the boundary condition (2.57). To cancel it, we add

a boundary term to the action:

Shs,b = −
∫

dψ1

∫
dx+dx− 1

z2
ψ1

(
Ωhs

+ ,Ωhs
−
)
, (2.61)

whose variation is

δShs,b = −
∫

dψ1

∫
dx+dx− 1

z2
ψ1

[(
Ωhs

+ , δΩhs
−
)
+
(
Ωhs

− , δΩhs
+

)]
. (2.62)

Hence, the variation of the total action Shs + Shs,b is

δShs + δShs,b = −
∫

dψ1

∫
dx+dx− 1

z2
[
(1 + ψ1)

(
Ωhs

+ , δΩhs
−
)
− (1− ψ1)

(
Ωhs

− , δΩhs
+

)]
.

(2.63)
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which indeed vanishes under the boundary condition (2.57), or equivalently the Dirichlet

boundary condition on the components (1− ψ1)Ωhs
+ and (1 + ψ1)Ωhs

− .

Since the bulk action (2.58) vanishes on-shell, the only contribution to the two-point

function comes from the boundary term (2.61). Evaluating the boundary integral (2.61)

using the higher spin boundary-to-bulk propagators, we obtain the two point function of

higher spin currents:

⟨Js(x1)Js(x2)⟩ =
∫

d2x
1

z2
4π(∂y2)

2s−2z2−sδ2(x− x1)
(2s− 1)(y2)2s−2zs

(x− − x−
2 )

2s

= 4π
(2s− 1)!

(x−
12)

2s
.

(2.64)

This is indeed the structure expected from conformal invariance.

2.4 Three point functions

2.4.1 The second order equation for the scalars

To extract the cubic couplings in the bulk Lagrangian, or the three point correlation

function of boundary operators, we need to express the master fields in terms of the physical

fields and expand the equations of motion to quadratic order. For the purpose of studying

three point functions involving the scalars, it suffices to work with the equations for the

master field B, to the second order. They are

dzB
(2) = −[S(1), B(1)]∗,

D0B
(2) = −[W (1), B(1)]∗.

(2.65)
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Decomposing W (1), B(1), B(2) as in (2.13), and restricting the second equation at z = 0, we

obtain

dzB
′(2) = −[S(1),ψ2C

(1)
mat]∗,

D0C
(2) = −[W0, B

′(2)]∗
∣∣
z=0
− [W ′(1),ψ2C

(1)
mat]∗

∣∣
z=0

− [Ωhs,ψ2C
(1)
mat]∗ − [ψ2Ω

sc,ψ2C
(1)
mat]∗.

(2.66)

We remind the reader that C(1) = C(1)
aux + ψ2C

(1)
mat and Ω(1) = Ωhs + ψ2Ωsc, and we have

set C(1)
aux = 0. The S(1) and W ′(1) are linear in ψ2, and the first equation implies B′(2) is

independent of ψ2. Decomposing C(2) in a similar way as C(2)(x|y,ψ) = C(2)
aux(x|y,ψ1) +

ψ2C
(2)
mat(x|y,ψ1), we obtain the second order equation for the scalars:

D0ψ2C
(2)
mat = −[Ωhs,ψ2C

(1)
mat]∗, (2.67)

or more explicitly

D0ψ2C
(2)
mat = −ψ2[Ω

even, C(1)
mat]∗ + ψ2ψ1{Ωodd, C(1)

mat}∗, (2.68)

where Ωeven and Ωodd are the components in the decomposition Ωhs = Ωeven + ψ1Ωodd.

We further decompose C(2)
mat as C(2)

mat(y) =
∑∞

n=0C
(2),n
mat α1···αny

α1 · · · yαn, and specialize

(2.68) to the case n = 0, 2.

∂µC
(2),0
mat − 4ψ1(e0µ)

αβC(2),2
mat αβ = U0

µ,

∇µC
(2),2
mat αβ − 2ψ1(e0µ)αβC

(2),0
mat − 24ψ1(e0µ)

γδC(2),4
mat γδαβ = U2

µ|αβ,

(2.69)

where U0
µ and U2

µ|α1α2
are the first two coefficient of the y-expansion of the RHS of (2.68).

After some simple manipulations, it follows that

(!−m2)C(2),0
mat = ∇µU

0,µ + 4ψ1(e
µ
0)
αβU2

µ|αβ . (2.70)
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The RHS is calculated in terms of the first order fields in Appendix 2.B.2. The resulting

the second order equation for the scalars can be written in the form

(!−m2)C(2),0
mat =

∞∑

s=2

C(1),2s−2
mat (∂y)Ξs(y), (2.71)

where Ξs(y) is expressed in terms of the higher spin fields as

Ξs(y) = 8
[
χ(s),+
odd (y) + (2s− 2)(2s− 1)χ(s),−

odd (y)
]

+ 32ψ1

[
1

(2s− 1)
∇−χ(s),+

odd (y)− (2s− 2)∇+χ(s),−
odd (y)

]
.

(2.72)

2.4.2 The three point function

The boundary-to-bulk propagator for the higher spin gauge field satisfying the general-

ized Brown-Henneaux boundary condition (2.51) is determined by the boundary behavior

of the gauge transformation (2.54). The latter is enough for us to compute the three point

function of one higher spin gauge field and two scalars. Suppose the cubic action of a higher

spin gauge field and two scalars is of the form as the higher spin gauge field couples to the

higher spin current, i.e.
∫

d2x

(
dz

z3

)
Φs

µ1···µs
T µ1···µs
s (2.73)

where the higher spin current T µ1···µs
s is a quadratic function of the scalar and its derivatives.

Since the boundary to bulk propagator for high spin gauge field can be written in a “pure

gauge” form: Φs
µ1···µs

= ∇(µ1η
s
µ2···µs)

, and the higher spin current is conserved: ∇µT µµ1···µs−1
s =

0, we have ∫
d2x

(
dz

z3

)
∇µ1η

s
µ2···µs

T µ1···µs
s

=

∫
d2xdz∂µ1

(
1

z3
ηsµ2···µs

T µ1···µs
s

)

= − lim
z→0

1

z3

∫
d2x ηsµ2···µs

T zµ2···µs
s ,

(2.74)
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which only depends on the boundary behavior of the gauge parameter at z → 0.

The RHS of the second order equation (2.71) gives the variation of the cubic action with

respect to the scalar up to some possible boundary terms.

δS =

∫
dψ1

∫
d2xdz

z3
ψ1δC

(1),0
mat

∞∑

s=2

C(1),2s−2
mat (∂y)Ξs(y). (2.75)

While it is possible to recover the cubic part of the action from (2.75), in the form (2.73),

we will not need it for the computation of the three point function. The tree level three

point function is computed by varying the bulk action with respect to three sources inserted

on the boundary, and so it suffices to work with (2.75) directly, by evaluating it on the

boundary-to-bulk propagators for the higher spin gauge field and scalars. This computation

is performed explicitly in Appendix 2.B.3. The resulting three point function of one higher

spin current and two scalars is:

〈
O(x1)O(x2)Js(x3)

〉
= −4π(s+ ψ̃1(s− 1))Γ(s)

1

|x12|2+ψ̃1

(
x−
12

x−
13x

−
23

)s

. (2.76)

Here O and O are dual to Ceven + Codd and Ceven − Codd respectively. They have scaling

dimension ∆+ = 3
2 or ∆− = 1

2 depending on the choice of boundary condition, corresponding

to ψ̃1 = 1 or ψ̃1 = −1. The position dependent factor on the RHS of (2.76) is fixed by

conformal symmetry. The only nontrivial data here are contained in the overall coefficient,

which is unambiguous given the normalization of the currents. These will be compared to

representations of the WN algebra in the ’t Hooft limit in the next section.
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2.5 The dual CFT

2.5.1 The proposal

It has been proposed in [4] that Vasiliev’s higher spin-matter system (more precisely,

a version of this theory with four real massive scalars) is dual to the WN minimal model,

which can be realized by the coset model

SU(N)k ⊕ SU(N)1
SU(N)k+1

. (2.77)

This CFT has a ’t Hooft-like scaling limit, in which N is taken to be large while keeping

the ’t Hooft coupling

λ =
N

N + k
(2.78)

to be fixed. In the infinite N limit, λ becomes a continuous parameter, in the range 0 <

λ < 1. It is proposed that λ is mapped to the parameter ν that label AdS3 vacua, with the

identification λ = 1
2(1±ν). The undeformed, ν = 0 vacuum we have been considering so far

would be mapped to the λ = 1/2 case. In the ’t Hooft limit, “basic primaries” of (left plus

right) scaling dimension ∆± = 1± λ are mapped to the massive scalars in the bulk, whereas

all other primaries are found in the OPEs of the basic primaries, their duals interpreted as

bound states in the bulk.

A puzzle with this proposal is the existence of low lying primary operators in the coset

CFT, whose dimension scale like 1/N and form a discretuum in the ’t Hooft limit. This has

been further addressed in [30]. It is unclear how to interpret the dual of such states in the

bulk.

Here we put forward a different proposal, namely that the Vasiliev higher spin-matter

system, involving only two real massive scalars in the bulk, is dual to a subsector of the WN
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minimal model, generated by the two basic primaries of either dimension ∆+ or dimension

∆−, depending on the boundary condition for the bulk scalar field. This subsector has

closed OPE and is consistent as a CFT on the sphere, though not on Riemann surfaces of

nonzero genus, as it is not modular invariant. Hence, we believe that the bulk Vasiliev’s

system is nonperturbatively incomplete, though makes sense perturbatively to all orders in

its coupling constant (i.e. 1/N).

In a similar manner, we further propose that the “minimal” Valisiev’s system, obtained

via the truncation to fields invariant under the ι-involution (2.8), is dual to a subsector of

the orthogonal group version of the coset model,9

SO(N)k ⊕ SO(N)1
SO(N)k+1

. (2.79)

Because SO(N) has only even degree Casimir invariants, the coset model contains only the

even spin currents. The real scalar in the “minimal” Valisiev’s system is dual to one of the

real basic primary operators, either (!; 0) or (0;!), depending on the choice of boundary

condition for the bulk scalar.

2.5.2 WN currents and primaries

Let Ka(z) be the currents of the SU(N)k current algebra, and Ja(z) the currents of

SU(N)1. Our convention for the group generators of SU(N) is such that

Tr(T aT b) = −δab (2.80)

9The bulk gauge group of the minimal Vasiliev theory, in the Chern-Simons language, when truncated to
a finite (even) spin N , is Sp(N,R)×Sp(N,R). In mapping representations of the higher spin algebra in the
bulk to primaries labeled by representations of the affine Lie algebra of the minimal model, a transpose on the
Young tableaux is involved [30]. This suggests that the dual minimal model is based on SO rather than Sp
coset. We thank T. Hartman for pointing this out. Note also that the analogous Sp coset construction would
not give a WN minimal model; its primaries are generally not labelled simply by a pair of representations,
but a triple of representations [31].
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where Tr is taken in the fundamental representation. The cubic symmetric tensor is defined

to be

dabc = −iTr({T a, T b}T c). (2.81)

The SU(N)k currents, for instance, are normalized with the OPE

Ka(z)Kb(0) ∼ − k

z2
δab + fabcK

c(0)

z
, (2.82)

where fabc = −Tr([T a, T b]T c). The spin-2 current, i.e. the stress-energy tensor of the coset

model constructed out of the Sugawara tensors, is given by

T (z) = W 2(z)

= − 1

2(N + k)
: KaKa : − 1

2(N + 1)
: JaJa : +

1

2(N + k + 1)
: (Ka + Ja)(Ka + Ja) :

(2.83)

The spin-3 current W 3, in the ’t Hooft limit, is written as

W 3(z) = dabc

[
3λ2

(1− λ)(2− λ) : KaKbJc : − 3λ

1 − λ : KaJ bJc : + : JaJ bJc :

]
. (2.84)

The normalization is such that the two point function of W 3 is given by

⟨W 3(z)W 3(0)⟩ = −6(1 + λ)(2 + λ)

(1− λ)(2− λ)
N5 + (1/N corrections). (2.85)

One may also construct higher spin-s currents out of the product of s Ka and Ja’s, subject

to the constraint that W s is primary with respect to the diagonal SU(N)k+1. This is

rather cumbersome, which we shall not attempt here. Nonetheless, we will perform one

unambiguous check with the spin-3 current.

Let us now turn to the primary operators with respect to the WN algebra. These are

labelled by three representations of SU(N), (ρ, µ; ν); here ρ, µ, ν are the height weight vectors

of the respective representations, subject to the condition that the sum of the Dynkin labels
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is less than or equal to the level, and the constraint that ρ + µ − ν lies in the root lattice

of SU(N). Further, it follows from the second SU(N) being at level 1 that µ is uniquely

determined given ρ and ν. Following the notation of [4], the primaries are labeled by (ρ; ν).

We consider the diagonal modular invariant, by pairing up identical representations on the

left and right moving sectors. The basic primaries are:

O+ = (!; 0)⊗ (!; 0), O+ = (!; 0)⊗ (!; 0),

O− = (0;!)⊗ (0;!), O− = (0;!)⊗ (0;!).

(2.86)

In the ’t Hooft limit, O± (and O±) have conformal weight h± = h̄± = 1±λ
2 .

Our proposal is that with the ∆+ boundary condition, the two real massive scalars in

the bulk, combined into a complex scalar Ceven + Codd, is dual to O+, while its complex

conjugate Ceven − Codd is dual to O+. According to the fusion rule, the OPEs of O+ and

O+ involve only primaries labeled by the representations of the form (R; 0). In particular,

the operators O−,O− and the low lying primaries of the form (R;R) do not appear in the

OPEs of O+ and O+. Thus, this subsector of the CFT closes on the sphere.

Alternatively, with ∆− boundary condition imposed on the bulk scalar, we propose the

dual to the be subsector generated by O− and O−.

2.5.3 A test on the three point function

The spin-3 current acts on the basic primaries O± as

W 3
0 |O−⟩ = C!|O−⟩,

W 3
0 |O+⟩ = −C!

(1 + λ)(2 + λ)

(1− λ)(2− λ)
|O+⟩,

(2.87)

where C! is the cubic Casimir for the fundamental representation, given by

C!|!⟩ = dabcJ
a
0J

b
0J

c
0 |!⟩, C! = iN2 (2.88)
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in our convention. The three point function ⟨O∆(z1)O∆(z2)W s(z3)⟩ is determined by con-

formal symmetry to be of the form

A(s)

|z12|2∆

(
z12

z13z23

)s

. (2.89)

We will write ⟨O∆O∆W s⟩ ≡ A(s) for the coefficient. It follows from the action of W 3
0 on

the primary states that

⟨O+O+W
3⟩ = −iN2 (1 + λ)(2 + λ)

(1− λ)(2− λ) , ⟨O−O−W
3⟩ = iN2. (2.90)

If we define J (s) to be the spin-s current with normalized two-point function, namely

⟨J (s)(z)J (s)(0)⟩ = z−2s (this fixes J (s) up to a sign), then we have

⟨O+O+J
(2)⟩ = N− 1

2

√
1 + λ

2(1− λ)
, ⟨O−O−J

(2)⟩ = N− 1
2

√
1− λ

2(1 + λ)
,

⟨O+O+J
(3)⟩ = N− 1

2

√
(1 + λ)(2 + λ)

6(1− λ)(2− λ)
, ⟨O−O−J

(3)⟩ = −N− 1
2

√
(1− λ)(2− λ)
6(1 + λ)(2 + λ)

.

(2.91)

From the bulk, we have computed the three point function ⟨OOJ (s)⟩ in the undeformed

theory, with the result (after normalizing the spin-s current)

⟨O+O+J
(s)⟩ = gΓ(s)

√
2s− 1

Γ(2s− 1)
, ⟨O−O−J

(s)⟩ = (−)sg Γ(s)√
Γ(2s)

. (2.92)

Here g is the overall coupling constant of the bulk theory. This should be compared with

the CFT at λ = 1/2. With the identification

g =
1√
N
, (2.93)

we see that (2.92) precisely agrees with (2.91) at λ = 1/2. (2.92) then further makes

predictions for the three point functions ⟨OOJ (s)⟩ of spin s ≥ 4 in the WN coset CFT, in

the ’t Hooft limit at λ = 1/2, which remains to be computed directly on the CFT side.
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Further, it would be very interesting to compute these three point functions in the deformed

bulk theory, i.e. the AdS3 vacua with nonzero ν, which should be mapped to the CFT with

’t Hooft parameter away from λ = 1/2. We hope to report on this in future works.

2.6 Concluding remarks

In this paper, we have developed the perturbation theory of Vasiliev’s higher spin-matter

system in AdS3, to the second order. This allowed us to compute the bulk tree level three

point functions, in the undeformed ν = 0 vacuum. The result passed a nontrivial test

that involves the explicit expression for the spin-3 current in the WN minimal model (at

the special value of ’t Hooft coupling λ = 1/2). Our result from the bulk also makes

predictions on three point functions involving currents of spin s ≥ 4 which in principle can

be straightforwardly computed (though tedious) in the coset CFT, by constructing the WN

currents out of the spin 1 affine currents, and then taking the ’t Hooft limit.

A natural next step is to move away from the undeformed, ν = 0 vacuum, and consider

the deformed bulk theory, which should be dual to the CFT away from λ = 1/2. In

Appendix 2.C, we have derived the boundary to bulk propagator for the scalar master field

in the deformed theory. The computation of correlators using these expressions could be

complicated, though at least one can work order by order expanding in ν, which amounts

to expanding in λ− 1
2 in the dual CFT.

Next, one would like to go beyond leading order in 1/N . The basic primaries in the WN
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minimal model have exact scaling dimensions

∆+ = 2h(!; 0) =
N − 1

N
(1 +

N + 1

N
λ),

∆− = 2h(0;!) =
N − 1

N
(1− N + 1

N + λ
λ).

(2.94)

Identifying ∆± = 1±
√

1 +m2
±, we see that the renormalized mass of the bulk scalar with

the two different boundary conditions are

m2
+ = −

[(
1 +

λ

N

)2 − λ2
](

1− 1

N2

)
,

m2
− = −(1− λ2)

(
1 +

λ

N

)−2(
1− 1

N2

)
.

(2.95)

The bulk scalar propagator depend on the boundary condition (∆+ or ∆−), which presum-

ably leads to the different renormalized masses m+ and m− through loop corrections. The

difference between m+ and m−, say at order 1/N , or one-loop in the bulk, can in prin-

ciple be understood [32, 23] in terms of the tree level four-point functions, by factorizing

the difference in the bulk propagators for the two boundary conditions into the product of

boundary-to-bulk propagators. To compute either m2
− or m2

+ form the bulk, however, re-

quires performing a genuine one-loop computation in Vasiliev’s theory. The precise relation

between the bulk deformation parameter ν and the ’t Hooft coupling λ of the boundary

CFT, beyond the leading order in 1/N , is presumably also regularization dependent.

We proposed that Vasiliev’s system is dual to not the entire WN minimal model CFT,

but only a subsector of it, generated by the basic primaries O+,O+ and the WN currents,

or the subsector generated by O−,O− and the WN currents, depending on whether ∆+ or

∆− boundary condition is imposed on the two bulk scalars. These two subsectors close on

their OPEs, and lead to consistent n-point functions on the sphere. However, they are not

modular invariant. From the perspective of the bulk higher spin gravity theory, modular
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invariance is expected to be restored by gravitational instantons (analytic continuation of

BTZ black holes), which are non-perturbative. At the level of perturbation theory, it is

consistent that the bulk theory is dual to a subsector of a modular invariant CFT. The

duality we are proposing is analogous to the statement that pure gravity in AdS3, at the

level of perturbation theory, is dual to the subsector of a CFT involving only Virasoro

descendants of the vacuum, i.e. operators made out of products of stress-energy tensors.

The latter lead to a consistent set of n-point functions on the sphere, though do not give

modular invariant genus one partition functions by themselves.

If our proposal is correct, then it suggests that Vasiliev’s system is non-perturbatively

incomplete, though makes sense to all orders in perturbation theory. One may suspect that

solitons, in particular black hole solutions, should be included and could make the theory

modular invariant. However, we are not aware of a modular invariant completion of the ∆+

or ∆− subsector of WN minimal model that requires adding only states/operators whose

dimensions scale with N (and are large in the large N limit). The WN minimal model itself

would amount to adding not only states of dimension of order 1, but also a large number of

light states whose dimensions go like 1/N , which seems pathological from the perspective

of the bulk theory.

It is clearly of great interest, still, to understand the bulk theory dual to the full WN

minimal model, since the latter is non-perturbative defined and exactly solvable. It is shown

in [30] that the descendants of the light states give rise to bound states of the basic primaries,

while the light states themselves become null in the infinite N limit. It is unclear how to

understand this from the bulk. A possibility is that additional massless scalars should be

added in the bulk theory, with the non-standard boundary condition (so that they are dual
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to operators of dimension 0 rather than 2, classically). It would be an interesting challenge

to construct such a theory in AdS3.
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2.A Linearizing Vasiliev’s equations

2.A.1 Derivation of the scalar boundary to bulk propagator

In this subsection, we study the linearized equations (2.18), and solve for the boundary-

to-bulk propagator for the master field C(1).

Decomposing the C(1) as in (2.20) the equation D0C(1) = 0 is written as

dxC
(1)
aux + 4(wαβ

0 yα
∂

∂yβ
+ ψ1e

αβ
0 yα

∂

∂yβ
)C(1)

aux = 0

dxC
(1)
mat + 4wαβ

0 yα
∂

∂yβ
C(1)

mat − 2ψ1e
αβ
0 (yαyβ +

∂2

∂yα∂yβ
)C(1)

mat = 0

(2.96)

Expand C(1)
mat/aux(x|y,ψi) as in (2.21), we write the first equation of (2.96) as

∂µC
(1),n
aux α1···αn − 4n(w0µ)(α1

βC(1),n
aux βα2···αn) − 4nψ1(e0µ)(α1

βC(1),n
aux βα2···αn) = 0. (2.97)

Contracting this equation with (eµ0 )γδ, and symmetrizing the indices (γδα1 · · ·αn), we get

∇(γδC
(1),n
aux α1···αn) = 0 with ∇αβ = eµαβ∇µ, (2.98)

which means that C(1)
aux carries no propagating degree of freedom. We can simply set C(1)

aux =

0.

The second equation of (2.96) can be written as

∂µC
(1),n
mat α1···αn − 4n(w0µ)(α1

βC(1),n
mat βα2···αn)

− 2ψ1(e0µ)(α1α2C
(1),n−2
mat α3···αn) − 2(n+ 2)(n+ 1)ψ1(e0µ)

αβC(1),n+2
mat αβα1···αn = 0.

(2.99)

Or contracting this equation with (eµ0 )αβ gives

∇αβC
(1),n
mat α1···αn +

1

16
ψ1ϵ(α(α1ϵβ)α2C

(1),n−2
mat α3···αn)

+
1

16
(n+ 2)(n+ 1)ψ1C

(1),n+2
mat αβα1···αn = 0.

(2.100)
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This equation is in a reducible representation of the permutation group of permuting the

indices. To simplify the equation, we decompose it into irreducible representations by con-

tracting with the tensor ϵαβ or symmetrizing all the indices. First, contracting (2.100) with

ϵαα1 gives

∇α
βC

(1),n
mat αα2···αn −

n + 1

16n
ψ1ϵβ(α2C

(1),n−2
mat α3···αn) = 0. (2.101)

Contracting (2.101) with ϵβα2 gives

∇αβC(1),n
mat αβα3···αn +

n+ 1

16(n− 1)
ψ1C

(1),n−2
mat α3···αn = 0. (2.102)

Next, we want to symmetrize the indices of equations (2.100), (2.101), and (2.102). It

is convenient to reintroduce the auxiliary yα-variable. By contracting the indices of the

equations (2.100), (2.101), and (2.102) with the yα’s which automatically symmetrizes all

the indices, we obtain

∇+C(1),n
mat (y)−

1

16
(n+ 2)(n+ 1)ψ1C

(1),n+2
mat (y) = 0,

∇0C(1),n
mat (y) = 0,

∇−C(1),n
mat (y)−

1

16
(n+ 1)nψ1C

(1),n−2
mat (y) = 0,

(2.103)

where

C(1),n
mat (y) = C(1),n

mat α1···αny
α1 · · · yαn (2.104)

which is the degree n homogeneous polynomial in the Taylar expansion of the matter field

Cmat(y), and we define the operators

∇+ = (y/∇y), ∇0 = (y/∇∂y), ∇− = (∂y/∇∂y). (2.105)
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They obey commutation relations

[∇0,∇±] = 0,

[∇+,∇−] =
N + 1

16
!AdS −

N (N + 2)(N + 1)

64
,

(∇0)2 = ∇+∇− +
N 2

64
!AdS +

N 2(N + 2)

128
.

(2.106)

with N = y∂y and !AdS ≡ −32∇αβ∇αβ where ∇αβ is defined to act covariantly both on

explicit spinor indices as well as on indices contracted with yα. Iterating the first equation

of (2.103), we get

C(1),2s
mat (y) =

1

(2s)!
(16ψ1∇+)sC(1),0

mat . (2.107)

Since C(1)
mat(y) is an even function in yα, it is totally determined by its lowest component

C(1),0
mat via the above relation. After some simple manipulations of (2.103) using (2.106), we

derive

!AdSC
(1),n
mat = −1

4
(3 + n(n + 2))C(1),n

mat . (2.108)

For n = 0, the equation gives the usual Klein-Gordon equation on AdS3, (2.22). The higher

components C(1),n
mat are determined by C(1),0

mat through the linearized equations of motion.

The equation (2.22) is solved by scalar boundary to bulk propagator Cmat,0 = K(x, z)∆

for ∆ = 3/2 or ∆ = 1/2, where K(x, z) ≡ z
x2+z2 . It is convenient to introduce another

auxiliary variable ψ̃1, satisfying ψ̃2
1 = 1, to label the different boundary conditions, so that

∆ = 1 + ψ̃1/2. The (∇+)s acting on K∆ is

(∇+)sK∆ =
1

8s

(
s∏

j=1

(∆+ j − 1)

)
(yΣy)sK∆, (2.109)

and using (2.107), we obtain

C(1)
mat(y) =

(
1 + ψ1

1 + ψ̃1

2
yΣy

)
e
ψ1
2 yΣyK1+

ψ̃1
2 , (2.110)

where Σ = σz − 2z
x2σµxµ.
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2.A.2 The linearized higher spin equations

In this subsection, we study the linearized equations (2.14),(2.15),(2.16), and rewrite

them as the (linearized) Chern-Simons equation and Fronsdal equation by eliminating all

the auxiliary degrees of freedom.

The (2.15) and (2.16) imply that W ′ is solved in terms of S and further in terms of

C(1)
mat; hence, in particular, it is linear in ψ2. Decomposing Ω(1) as in (2.28), the linearized

equations are written in (2.29).

The linearized gauge transformations act by

δW (1) = dxϵ+ [W0, ϵ]∗,

δS(1) = dzϵ.

(2.111)

Let us restrict to gauge transformations that leave S(1) invariant, namely ϵ = λ(x|y,ψ1) +

ψ2ρ(x|y,ψ1), where λ(x|y,ψ1) and ρ(x|y,ψ1) transform Ωhs and Ωsc independently at the

linearized level. Their actions are

δΩsc = dxρ+ ψ2[W0,ψ2ρ]∗ = ∇xρ− ψ1{e0, ρ}∗,

δΩhs = dxλ+ [W0,λ]∗ = ∇xλ+ ψ1[e0,λ]∗.

(2.112)

We show that Ωsc contains no dynamical degrees of freedom. First consider the homo-

geneous part of the equation,

D̃0Ω
sc = 0, (2.113)

or more explicitly,

∇xΩ
sc(x|y,ψ1)− ψ1e0(x|y) ∧∗ Ωsc(x|y,ψ1) + ψ1Ω

sc(x|y,ψ1) ∧∗ e0(x|y) = 0. (2.114)

We have emphasized the wedge product between 1-forms, so the last terms involve the

49



Chapter 2: Higher Spin Gravity with Matter in AdS3 and Its CFT Dual

∗-anti-commutator of the components of e0 and Ωsc. Expand Ωsc as

Ωsc(x|y,ψ1) = dxµ
∞∑

n=0

Ωsc,n
µ|α1···αn

(x|ψ1)y
α1 · · · yαn. (2.115)

In components, the homogeneous equation for Ωsc is written as

∇[µΩ
sc,n
ν]|α1···αn

− 2ψ1(e0[µ)(α1α2Ω
sc,n−2
ν]|α3···αn)

− 2(n+ 2)(n+ 1)ψ1(e0[µ)
αβΩsc,n+2

ν]|αβα1···αn
= 0.

(2.116)

Converting µ, ν into spinor indices, we obtain

∇(α
γΩsc,n

β)γ|α1···αn
− 2ψ1eα

γ
|(α1α2Ω

sc,n−2
β)γ|α3···αn)

− 2(n + 2)(n+ 1)ψ1e(α
γ|δτΩsc,n+2

β)γ|δτα1···αn
= 0.

(2.117)

where

eαβ|γδ ≡ (eµ0)αβ(e0µ)γδ = −
1

64
(ϵαγϵβδ + ϵαδϵβγ). (2.118)

We can write (2.117) as

∇(α
γΩsc,n

β)γ|α1···αn
− 1

16
ψ1ϵ(α(α1Ω

sc,n−2
β)α2|α3···αn)

+
1

16
(n + 2)(n+ 1)ψ1ϵ

γδΩsc,n+2
γ(α|β)δα1 ···αn

= 0.

(2.119)

In components, the gauge transformation (2.112) for Ωsc can be written as

δΩsc,n
µ|α1···αn

= ∇µρ
n
α1···αn

− 2ψ1(eµ)(α1α2ρ
n−2
α3···αn)

− 2(n + 2)(n+ 1)ψ1(eµ)
αβρn+2

αβα1···αn
, (2.120)

or

δΩsc,n
αβ|α1···αn

= ∇αβρ
n
α1···αn

+
1

16
ψ1ϵ(α(α1ϵβ)α2ρ

n−2
α3···αn)

+
1

16
(n+ 2)(n+ 1)ψ1ρ

n+2
αβα1···αn

. (2.121)

Decomposing Ωsc,(n)
αβ|α1···αn

as

Ωsc,(n)
αβ|α1···αn

= ζn,+αβα1···αn
+ ϵ(α1(αζ

n,0
β)α2···αn)

+ ϵ(α(α1ϵβ)α2ζ
n,−
α3···αn)

, (2.122)
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we find that ζn,+ and ζn,− can be gauged away by ρn+2 and ρn−2. Furthermore, by sym-

metrizing (αβα1 · · ·αm) of (2.119), ζn,0 can be fully determined by ζn,+ and ζn,−.

Now let us turn to the higher spin fields, Ωhs. Their linearized equations are written

more explicitly as

∇xΩ
hs + e0 ∧∗ Ωhs + Ωhs ∧∗ e0 = 0, (2.123)

or in components,

∇[µΩ
hs,n
ν]|α1···αn

− 4nψ1(e0[µ)(α1
βΩhs,n

ν]|βα2···αn)
= 0. (2.124)

Replacing [µν] with spinor indices, we can write it as

∇(α
γΩhs,n

β)γ|α1···αn
− 4nψ1e(α

γ
|(α1

δΩhs,n
β)γ|δα2···αn)

= 0, (2.125)

or

∇(α
γΩhs,n

β)γ|α1···αn
+

1

16
nψ1ϵ(α1(αΩ

hs,n
β)
γ
|γα2···αn) −

1

16
nψ1Ω

hs,n
(α(α1 |β)α2···αn)

= 0. (2.126)

Let us decompose Ωhs,(n)
αβ|α1···αn

into the irreducible representation of the permutation group of

permuting the indices as

Ωhs,(n)
αβ|α1···αn

= χn,+
αβα1···αn

+ ϵ(α1(αχ
n,0
β)α2···αn)

+ ϵ(α(α1ϵβ)α2χ
n,−
α3···αn)

. (2.127)

Conversely,

Ωhs,n
(αβ|α1···αn)

= χn,+
αβα1···αn

,

Ωhs,n
(α1

γ
|γα2···αn) =

n+ 2

2n
χn,0
α1···αn

,

Ωhs,nγδ
|γδα1···αn−2 =

n + 1

n− 1
χn,−
α1···αn−2

.

(2.128)

Next, we want to also decompose the equation (2.126) into the irreducible representation of

the permutation group. Symmetrizing all indices (αβα1 · · ·αn) in (2.126) gives

∇(α1
γχn,+

α2···αn+2)γ
− 1

2
∇(α1α2χ

n,0
α3···αn+2)

− 1

16
nψ1χ

n,+
α1···αn+2

= 0. (2.129)

51



Chapter 2: Higher Spin Gravity with Matter in AdS3 and Its CFT Dual

On the other hand, contracting (2.126) with ϵαα1 gives

∇α
γΩβγ|

α
α2···αn +∇β

γΩαγ|
α
α2···αn

− ψ1

16

[
(n+ 3)Ωβ

γ
|γα2···αn + (n− 1)ϵ(α2βΩ

γδ
|γδα3···αn) + (n− 1)Ωα(α2|β

α
α3···αn)

]
= 0.

(2.130)

Now symmetrizing (βα2 · · ·αn) gives

−∇γδχn,+
γδα1···αn

− 2

n
∇(α1

γχn,0
α2···αn)γ

+
n+ 2

n
∇(α1α2χ

n,−
α3···αn)

− n+ 2

8n
ψ1χ

n,0
α1···αn

= 0. (2.131)

Alternatively, contract (2.130) with ϵβα2 gives

n + 2

n
∇γδχn,0

γδα1···αn−2
− 2(n+ 1)(n− 2)

n(n− 1)
∇γ

(α1χ
n,−
α2···αn−2)γ

+
(n+ 2)(n+ 1)

8(n− 1)
ψ1χ

n,−
α1···αn−2

= 0.

(2.132)

As in the previous subsection, we reintroduce the auxiliary variable yα, and define

χ+
n (y) = χn,+

α1···αn+2
yα1 · · · yαn+2,

χ0
n(y) = χn,0

α1···αn
yα1 · · · yαn,

χ−
n (y) = χn,−

α1···αn−2
yα1 · · · yαn−2,

(2.133)

and so

Ωhs,(n)
αβ (y) =

1

(n+ 2)(n+ 1)
∂α∂βχ

+
n (y) +

1

n
y(α∂β)χ

0
n(y) + yαyβχ

−
n (y). (2.134)

The three equations derived previously for χ, (2.129), (2.131), and (2.132), can now be

written as

1

n + 2
∇0χ+

n (y) +
1

2
∇+χ0

n(y)−
n

16
ψ1χ

+
n (y) = 0,

1

(n + 2)(n+ 1)
∇−χ+

n (y)−
2

n2
∇0χ0

n(y)−
n+ 2

n
∇+χ−

n (y)−
n + 2

8n
ψ1χ

0
n(y) = 0,

− n+ 2

n2(n− 1)
∇−χ0

n(y)−
2(n+ 1)

n(n− 1)
∇0χ−

n (y) +
(n+ 2)(n+ 1)

8(n− 1)
ψ1χ

−
n (y) = 0.

(2.135)
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Now expand χ±/0
n in ψ1,

χ±/0
n = χn,±/0

even + ψ1χ
n,±/0
odd . (2.136)

We can now solve χeven in terms of χodd:

χn,+
even(y) =

16

n

[
1

n + 2
∇0χn,+

odd (y) +
1

2
∇+χn,0

odd(y)

]
,

χn,0
even(y) =

8

n+ 2

[
n

(n+ 2)(n+ 1)
∇−χn,+

odd (y)−
2

n
∇0χn,0

odd(y)− (n+ 2)∇+χn,−
odd (y)

]
,

χn,−
even(y) =

8

n

[
1

n(n+ 1)
∇−χn,0

odd(y) +
2

n + 2
∇0χn,−

odd (y)

]
.

(2.137)

At this point, it is convenient to use part of the gauge symmetry to gauge away χ0
odd com-

pletely (we will show this in the later part of this subsection), and then write

χn,+
even(y) =

16

n(n + 2)
∇0χn,+

odd (y),

χn,0
even(y) =

8

n + 2

[
n

(n + 2)(n+ 1)
∇−χn,+

odd (y)− (n+ 2)∇+χn,−
odd (y)

]
,

χn,−
even(y) =

16

n(n + 2)
∇0χn,−

odd (y).

(2.138)

Plugging back in (2.135) (with χ0
odd = 0), we obtain (the second equation is automatically

satisfied because of the second equation of (2.106))

16

n(n+ 2)2
(∇0)2χn,+

odd (y) +
4n

(n+ 2)2(n+ 1)
∇+∇−χn,+

odd (y)− 4(∇+)2χn,−
odd (y)−

n

16
χn,+
odd (y) = 0,

− 8

(n+ 2)(n+ 1)n
(∇−)2χn,+

odd (y) +
8(n+ 2)

n2
∇−∇+χn,−

odd (y)−
32(n+ 1)

n2(n+ 2)
(∇0)2χn,−

odd (y)

+
(n+ 2)(n+ 1)

8
χn,−
odd (y) = 0.

(2.139)

By using (2.106), we rewrite (2.139) as

!AdSχ
n,+
odd (y) +

2n+ 8− n2

4
χn,+
odd (y) +

16

(n + 1)
∇+∇−χn,+

odd (y)− 16n(∇+)2χn,−
odd (y) = 0,

!AdSχ
n,−
odd (y)−

(n2 + 2n+ 4)

4
χn,−
odd (y)−

8

n
∇+∇−χn,−

odd (y) +
8

(n+ 1)n2
(∇−)2χn,+

odd (y) = 0.

(2.140)
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Now let us examine the gauge transformations on χ±. The gauge transformation on the

components of Ωhs,n is

δΩhs,n
αβ|α1···αn

= ∇αβλ
n
α1···αn

− n

16
ψ1ϵ(α1(αλ

n
β)α2···αn). (2.141)

In terms of χ±,0, we have

δχn,+
α1···αn+2

= ∇(α1α2λ
n
α3···αn+2),

δχn,0
α1···αn

=
2n

n+ 2
∇(α1

γλnα2···αn)γ +
n

16
ψ1λ

n
α1···αn

,

δχn,−
α1···αn−2

=
n− 1

n + 1
∇γδλnγδα1···αn−2

.

(2.142)

Expanding λn as λn = λneven + ψ1λnodd, we can use λneven to set χn,0
odd = 0, and χn,+

odd ,χ
n,−
odd

transform under gauge transformation generated by the residual gauge parameter λnodd as

δχn,+
odd (y) = −∇

+λodd(y),

δχn,−
odd (y) = −

1

n(n + 1)
∇−λodd(y).

(2.143)

It is very useful to rewrite the equations of motion in the metric-like formulation. In the

metric like formulation, we have the metric like field Φµ1···µs which is totally symmetric and

satisfies the double traceless condition:

Φµν
µνµ5···µs = 0. (2.144)

Φµ1···µs satisfies the Fronsdal equation (2.39), and transforms under the gauge transformation

as (2.40).

We show that the Fronsdal equation (2.39) and the frame-like equation (2.139) are equiv-

alent. Let us decompose Φµ1···µs into the irreducible representation of the Lorentz group as
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in (2.37). Plugging this in to (2.39), we obtain

(!−m2)ξµ1···µs + (!−m2)g(µ1µ2χµ3···µs) − s∇(µ1∇µξµµ2···µs)

+ (2s− 3)∇(µ1∇µ2χµ3···µs) − (s− 2)g(µ1µ2∇µ3∇µχµµ4···µs)

− 2(2s− 1)g(µ1µ2χµ3···µs) = 0.

(2.145)

Contracting this with gµ1µ2 , we get

(2s− 1)(!−m2)χµ3···µs − s(s− 1)∇µ∇νξµνµ3···µs + (2s− 3)!χµ3···µs

+ (2s− 3)(s− 2)∇µ∇(µ3χµµ4···µs) − 2(s− 2)∇(µ3∇µχµµ4···µs)

− (s− 2)(s− 3)g(µ3µ4∇µ∇νχµνµ5···µs) − 2(2s− 1)2χµ3···µs = 0.

(2.146)

By using the formula

∇µ∇(µ3χµµ4···µs) = ∇(µ3∇µχµµ4···µs) − (s− 1)χµ3···µs , (2.147)

we can simplify (2.146) as

(2s− 1)(!−m2)χµ3···µs − s(s− 1)∇µ∇νξµνµ3···µs + (d+ 2s− 5)!χµ3···µs

+ (2s− 5)(s− 2)∇(µ3∇µχµµ4···µs) − (2s− 3)(s− 2)(s− 1)χµ3···µs

− 2(2s− 1)2χµ3···µs − (s− 2)(s− 3)g(µ3µ4∇µ∇νχµνµ5···µs) = 0.

(2.148)

Defining

ξs(y) = yα1 · · · yα2s(eµ1
0 )α1α2 · · · (e

µs

0 )α2s−1α2sξµ1···µs ,

χs(y) = yα1 · · · yα2s(eµ1
0 )α1α2 · · · (e

µs−2
0 )α2s−5α2s−4χµ1···µs−2 ,

(2.149)

we can write (2.145) and (2.148) as

!AdSξ
s − s(s− 3)ξs +

16

2s− 1
∇+∇−ξs + (2s− 3)(∇+)2χs = 0,

!AdSχ
s − (s2 − s + 1)χs − 4

s− 1
∇+∇−χs − 64

(2s− 1)(s− 1)(2s− 3)
(∇−)2ξs = 0.

(2.150)
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We can then identify (2.140) and (2.150) by

χ2s−2,+
odd = ξs, χ2s−2,−

odd = − 2s− 3

32(s− 1)
χs. (2.151)

Later, we will also write χ2s−2,±
odd as χ(s),±

odd for convenience.

Let us also analyze the gauge transformation. Plugging (2.37) into (2.40), we have

δξµ1···µs + g(µ1µ2δχµ3···µs) = ∇(µ1ηµ2···µs). (2.152)

Contracting this with gµ1µ2 , we obtain

δχµ3···µs =
s− 1

2s− 1
∇µηµµ3···µs . (2.153)

It follows that

δξs(y) = ∇+ηs(y),

δχs(y) = − 16

(2s− 1)(2s− 3)
∇−ηs(y).

(2.154)

The gauge transformations (2.143) and (2.154) are also equivalent by the identification

(2.151).

2.A.3 Derivation of higher spin boundary-to-bulk propagator in

modified de Donder gauge

The Fronsdal equation (2.39) can be easily solved in the modified de Donder gauge

proposed by Metsaev in [28]. As in (2.28), we define the generating function Φs(x|Y ) of

the metric-like higher spin gauge field Φs
µ1···µs

. The field Φs(x|Y ) is related to χ2s−2,+ and

χ2s−2,+ by

χ2s−2,+
odd (y) = ξs(y) = Φs(Y )

∣∣
Y A→eAαβyαyβ

,

χ2s−2,−
odd (y) = − 2s− 3

32(s− 1)
χs(y) = − 2s− 3

64(2s− 1)(s− 1)

∂2Φs(Y )

∂Y 2

∣∣
Y A→eAαβyαyβ

.
(2.155)
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Using the variable Y A, we can rewrite the Fronsdal equation (2.39), the gauge transformation

(2.40), and the double traceless condition (2.144) as

(
!AdS − s(s− 3)− Y ADA ∂

∂Y B
DB

+
1

2
Y ADAY BDB ∂

∂Y C

∂

∂Y C
− Y AY A ∂

∂Y B

∂

∂Y B

)
Φs(x|Y ) = 0,

δΦs(x|Y ) = Y ADAηs(x|Y ),
(
∂2

∂Y 2

)2

Φs(x|Y ) = 0,

(2.156)

where DA is the covariant derivative acting both on explicit frame indices as well as on

indices contracted with Y A; in particular !AdS = DADA. As proposed by Metsaev [28], one

then perform a linear transformation:

φ(x|Y ) = z−
1
2NΠφΦΦs(x|Y ), (2.157)

and the inverse of it is

Φs(x|Y ) = z
1
2ΠΦφNφ(x|Y ), (2.158)

where the various operators are defined as

N ≡
(
2NzΓ(NY⃗ +Nz − 1

2)Γ(2NY⃗ − 1)

Γ(NY⃗ −
1
2)Γ(2NY⃗ +Nz − 1)

)1/2

,

ΠφΦ ≡ ΠY⃗ + Y⃗ 2 1

4(NY⃗ + 1)
ΠY⃗

(
∂2

∂Y⃗ 2
+

NY⃗ + 1

NY⃗

∂2

∂Y z2

)
,

ΠΦφ ≡ ΠY + Y 2 1

2(2NY + 3)
ΠY

(
∂2

∂Y⃗ 2
− 2

2NY + 1

∂2

∂Y z2

)
,

ΠY⃗ ≡ Π(Y⃗ , 0, NY⃗ ,
∂

∂Y⃗
, 0, 2), ΠY ≡ Π(Y⃗ , Y z, NY ,

∂

∂Y⃗
,
∂

∂Y z
, 3),

Π(Y⃗ , Y z, A,
∂

∂Y⃗
,
∂

∂Y z
, B) ≡

∞∑

n=0

(Y 2)n
(−)nΓ(A + B−2

2 + n)

4nn!Γ(A+ B−2
2 + 2n)

(
∂2

∂Y 2

)n

,

NY⃗ = Y⃗ · ∂

∂Y⃗
, Nz = Y z ∂

∂Y z
, NY ≡ NY⃗ +Nz.

(2.159)
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The modified de Donder gauge condition written in terms of the field φ(x|Y ) is:

C̄φ(x|Y ) = 0, (2.160)

where

C̄ ≡ ∂

∂Y⃗
· ∂⃗ − 1

2
Y⃗ · ∂⃗ ∂2

∂Y⃗ 2
+

1

2
e1

∂2

∂Y⃗ 2
− ē1Π

′,

Π′ ≡ 1− Y⃗ 2 1

4(NY⃗ + 1)

∂2

∂Y⃗ 2
,

e1 = e1,1

(
∂z +

2s− 3− 2Nz

2z

)
,

ē1 =
(
∂z −

2s− 3− 2Nz

2z

)
ē1,1,

e1,1 = Y zf, ē1,1 = f
∂

∂Y z
,

f ≡ ε
( 2s− 2−Nz

2s− 2− 2Nz

)1/2
, ε = ±1.

(2.161)

In this gauge, the equations of motion is simplified as

(
!+ ∂2z −

1

z2
(r − 1

2
)(r − 3

2
)
)
φr = 0, (2.162)

where φr(x|Y⃗ ) are the components of φ(x|Y ) expanded in Y z as in (2.46), and the general

solution of this equation is

φr(p⃗, z|Y⃗ ) = Cr
1(p⃗, Y⃗ )

√
zJr−1(z|p⃗|) + Cr

2(p⃗, Y⃗ )
√
zYr−1(z|p⃗|), (2.163)

where we Fourier transformed φr(x|Y⃗ ) as

φr(x|Y⃗ ) =

∫
d2x φr(p⃗, z|Y⃗ ) ep⃗·x⃗. (2.164)

Notice that p⃗ is imaginary momentum. We can Wick rotate back to the real momentum

by p⃗→ ip⃗. For the purpose of computing the boundary-to-bulk propagator, we can simply

replace Jr−1(z|p⃗|) and Yr−1(z|p⃗|) by i−r+1Kr−1(x).
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Next, let us solve for the functions Cr
1(p⃗, Y⃗ ) and Cr

2(p⃗, Y⃗ ) using the double traceless

condition and the gauge condition. Let us first look at the reduced double traceless condition.

It is convenient to define

Y + = Y 1 + iY 2 and Y − = Y 1 − iY 2. (2.165)

The double traceless condition (2.43) can be written as

(
∂

∂Y +

∂

∂Y −

)2

Cr(p⃗, Y⃗ ) = 0. (2.166)

The general solution of it is

Cr(p⃗, Y⃗ ) = cr++(p⃗)(Y
+)r + cr−+(p⃗)Y

−(Y +)r−1 + cr+−(p⃗)Y
+(Y −)r−1 + cr−−(p⃗)(Y

−)r. (2.167)

for r > 2. For the r = 1, 2, we have

C1(p⃗, Y⃗ ) = c1+Y
+ + c1−Y

− and C2(Y⃗ ) = c2++(Y
+)2 + c2+−Y

+Y − + c2−−(Y
−)2. (2.168)

Next, let us consider the gauge condition (2.160).

C̄φ(x|Y ) =

(
∂

∂Y⃗
· p⃗− 1

2
Y⃗ · p⃗ ∂2

∂Y⃗ 2
+

1

2
e1

∂2

∂Y⃗ 2
− ē1Π

′
) s∑

r=0

(Y z)s−r φr(p⃗, z|Y⃗ )

=

[
∂

∂Y⃗
· p⃗− 1

2
Y⃗ · p⃗ ∂2

∂Y⃗ 2
+

1

2
Y zε

( 2s+ d− 4−Nz

2s+ d− 4− 2Nz

)1/2(
∂z +

2s+ d− 5− 2Nz

2z

)
∂2

∂Y⃗ 2

−
(
∂z −

2s+ d− 5− 2Nz

2z

)
ε
( 2s+ d− 4−Nz

2s+ d− 4− 2Nz

)1/2 ∂

∂Y z
Π′
] s∑

r=0

(Y z)s−r φr(p⃗, z|Y⃗ )

=
s∑

r=0

(Y z)s−r

[
∂

∂Y⃗
· p⃗− 1

2
Y⃗ · p⃗ ∂2

∂Y⃗ 2
+

1

2
Y zε

(s + r + d− 4

2r + d− 4

)1/2(
∂z +

2r + d− 5

2z

)
∂2

∂Y⃗ 2

−ε
(
∂z −

2r + d− 3

2z

)(s+ r + d− 3

2r + d− 2

)1/2 s− r

Y z
Π′
]
φr(p⃗, z|Y⃗ )

=
s∑

r=0

(Y z)s−r

[
∂

∂Y⃗
· p⃗− 1

2
Y⃗ · p⃗ ∂2

∂Y⃗ 2
+

1

2
Y z
(s+ r − 2

2r − 2

)1/2(
∂z +

2r − 3

2z

)
∂2

∂Y⃗ 2

−ε
(
∂z −

2r − 1

2z

)(s+ r − 1

2r

)1/2 s− r

Y z
Π′
]
φr(p⃗, z|Y⃗ ).

(2.169)
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The gauge condition can be written as

(
p⃗

p
· ∂

∂Y⃗
− 1

2

p⃗

p
· Y⃗ ∂2

∂Y⃗ 2

)
φr+1 +

1

2

( s+ r

2r + 2

)1/2(
∂z +

2r + 1

2z

)
∂2

∂Y⃗ 2
φr+2

− ε
(
∂z −

2r − 1

2z

)(s+ r − 1

2r

)1/2
(s− r)Π′φr = 0.

(2.170)

with p ≡ |p⃗|. Plugging (2.163) into (2.170), we obtain

(
p⃗

p
· ∂

∂Y⃗
− 1

2

p⃗

p
· Y⃗ ∂2

∂Y⃗ 2

)
Cr+1 +

1

2

( s+ r

2r + 2

)1/2 ∂2

∂Y⃗ 2
Cr+2

+ ε
(s+ r − 1

2r

)1/2
(s− r)

(
1− Y⃗ 2 1

4(r − 1)

∂2

∂Y⃗ 2

)
Cr = 0,

(2.171)

or more explicitly,

[
p+

p
∂+ +

p−

p
∂− −

(p+

p
Y − +

p−

p
Y +
)
∂+∂−

]
Cr+1 + 2

( s+ r

2r + 2

)1/2
∂+∂−C

r+2

+ ε
(s+ r − 1

2r

)1/2
(s− r)

(
1− Y⃗ 2 1

r − 1
∂+∂−

)
Cr = 0,

(2.172)

with ∂± = ∂Y ±. Plugging (2.167) and (2.168) into the above equation, we obtain

r
p+

p
cr++(p⃗) + ε

(s+ r − 2

2(r − 1)

)1/2
(s− r + 1)cr−1

++ (p⃗) + (2− r)
p−

p
cr−+(p⃗) + 2

(s+ r − 1

2r

)1/2
rcr+1

−+ (p⃗) = 0,

(2.173)

and

r
p−

p
cr−−(p⃗) + ε

(s+ r − 2

2(r − 1)

)1/2
(s− r + 1)cr−1

−− (p⃗) + (2− r)
p+

p
cr+−(p⃗) + 2

(s+ r − 1

2r

)1/2
(r)cr+1

+− (p⃗) = 0,

(2.174)

for r > 2, and in the cases r = 1, 2,

2
p+

p
c2++(p⃗) + ε

(s
2

)1/2
(s− 1)c1+(p⃗) + 2

(s+ 1

4

)1/2
2c3−+(p⃗) = 0,

2
p−

p
c2−−(p⃗) + ε

(s
2

)1/2
(s− 1)c1−(p⃗) + 2

(s+ 1

4

)1/2
2c3+−(p⃗) = 0,

p+

p
c1+(p⃗) +

p−

p
c1−(p⃗) + 2

(s
2

)1/2
c2+−(p⃗) = 0.

(2.175)
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We can consistently set cr+− = 0 = cr−+ for r > 2, and obtain

r
p+

p
cr++(p⃗) + ε

(s+ r − 2

2(r − 1)

)1/2
(s− r + 1)cr−1

++ (p⃗) + (2− r)
p−

p
cr−+(p⃗) = 0, (2.176)

and

r
p−

p
cr−−(p⃗) + ε

(s+ r − 2

2(r − 1)

)1/2
(s− r + 1)cr−1

−− (p⃗) + (2− r)
p+

p
cr+−(p⃗) = 0, (2.177)

for r > 2, and

2
p+

p
c2++(p⃗) + ε

(s
2

)1/2
(s− 1)c1+(p⃗) = 0,

2
p−

p
c2−−(p⃗) + ε

(s
2

)1/2
(s− 1)c1−(p⃗) = 0,

p+

p
c1+(p⃗) +

p−

p
c1−(p⃗) + 2

(s
2

)1/2
c2+−(p⃗) = 0,

(2.178)

for r = 1, 2. The solution to the above recursive equations is given by

cr++ =
s!

(s− r)!r!

√
2s−r(s− 1)!(s+ r − 2)!

(r − 1)!(2s− 2)!
(−εp

+

p
)s−rcs++,

cr−− =
s!

(s− r)!r!

√
2s−r(s− 1)!(s+ r − 2)!

(r − 1)!(2s− 2)!
(−εp

−

p
)s−rcs−−,

(2.179)

and

c2+−(p⃗) =

√
2s−2s!(s− 1)!

(2s− 2)!
(−εp

+

p
)scs++ +

√
2s−2s!(s− 1)!

(2s− 2)!
(−εp

−

p
)scs−−. (2.180)

Starting from here and in what follows, we set ε = −1 and only consider the positively

polarized fields by setting cs−− = 0. Plugging (2.179) and (2.180) back to (2.167) and

(2.168), then back to (2.163), and Wick rotating to the real momenta, we obtain

φ(p⃗, z|Y⃗ , Y z)

=
s∑

r=1

i1−r s!

(s− r)!r!

√
2s−r(s− 1)!(s+ r − 2)!

(r − 1)!(2s− 2)!

(
p+

p

)s−r

(Y z)s−r(Y +)rcs++

√
zKr−1(pz)

+ i−1

√
2s−2s!(s− 1)!

(2s− 2)!

(
p+

p

)s

cs++Y
+Y −(Y z)s−2√zK1(pz).

(2.181)
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Using the transformation (2.158), we arrive at the expression for the boundary to bulk

propagator in momentum space, in the modified de Donder gauge,

Φs(p⃗, z|Y )

= z
1
2ΠΦφNφ(p⃗, z|Y⃗ , Y z)

=
s∑

r=1

∞∑

n=0

(−1)ni1−rΓ(s− n− 1
2)

4nn!Γ(s− 1
2)

s!

(s− r − 2n)!r!

(
p+

p

)s−r

Y 2n(Y z)s−r−2n(Y +)rcs++zKr−1(pz)

+
∞∑

n=0

(−1)ni−1Γ(s− n− 1
2)

4nn!Γ(s− 1
2)

(s− 2)!

(s− 2− 2n)!

(
p+

p

)s

cs++Y
2n(Y z)s−2−2nY +Y −zK1(pz).

(2.182)

In terms of the frame-like fields, using (2.155), we have

χ(s),+
odd (p⃗, z|y) =cs++

s∑

r=0

ir
s!

(s− r)!r!
pr−1(p+)s−r(y1)s+r(y2)s−rzKr−1(z|p⃗|),

χ(s),−
odd (p⃗, z|y) =cs++

s

2(2s− 1)

s∑

r=0

ir
(s− 2)!

(s− r − 2)!r!
pr−1(p+)s−r(y1)s+r−2(y2)s−r−2zKr−1(z|p⃗|).

(2.183)

2.B Second order in perturbation theory

2.B.1 A star-product relation

Let us write the following useful formula for the star-product:

A(y) ∗B(y) =
∞∑

n=0

(
n∑

m=0

∞∑

p=0

(m+ p)!(n−m+ p)!

p!m!(n−m)!
Aα1···αp(β1···βmB

α1···αp
βm+1···βn)

)
yβ1 · · · yβn

(2.184)

where A(y) and B(y) have the expansions:

A(y) =
∞∑

n=0

Aα1···αny
α1 · · · yαn, and B(y) =

∞∑

n=0

Bα1···αny
α1 · · · yαn. (2.185)
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(2.184) follows from writing the (m-th) ∗ (n-th) term as

(Aα1···αmy
α1 · · · yαm) ∗

(
Bβ1···βny

β1 · · · yβn
)

= (−1)mAα1···αm(yα1 +
∂

∂yα1
) · · · (yαm +

∂

∂yαm
)Bβ1···βny

β1 · · · yβn

=
∑

p≤m,n

n!m!

(m− p)!(n− p)!p!
Aα1···αp(αp+1···αmB

α1···αp
βp+1···βn)y

αp+1 · · · yαmyβp+1 · · · yβn.

(2.186)

2.B.2 Derivation of U 0,µ and U 2
µ|αβ

The purpose of this subsection is to compute the RHS of (2.70).

By using the star-product relation (2.184), we obtain

[Ωeven, C(1)
mat]∗

=
∞∑

n=0

(
n∑

m=0

∞∑

p=0

(m+ p)!(x−m+ p)!

p!m!(n−m)!
(1− (−)p)Ωeven

α1···αp(β1···βmC
(1)
mat

α1···αp
βm+1···βn)

)
yβ1 · · · yβn,

{Ωodd, C(1)
mat}∗

=
∞∑

n=0

(
n∑

m=0

∞∑

p=0

(m+ p)!(n−m+ p)!

p!m!(n−m)!
(1 + (−)p)Ωodd

α1···αp(β1···βmC
(1)
mat

α1···αp
βm+1···βn)

)
yβ1 · · · yβn.

(2.187)

The U0
µ and U2

µ|α1α2
are coefficients of the components in −[Ωeven, C(1)

mat]∗ + ψ1{Ωodd, C(1)
mat}∗,

which are independent and quadratic in y. They can be written as

U (0)
µ =ψ1

∞∑

p=0

p!(1 + (−)p)Ωodd
µ|α1···αp

C(1)
mat

α1···αp , (2.188)

and

U (2)
µ|αβ = −

∞∑

p=0

(p+ 1)(p+ 1)!(1− (−)p)Ωeven
µ|α1···αp(αC

(1)
mat

α1···αp
β)

+ ψ1

∞∑

p=0

(p+ 2)!

2
(1 + (−)p)Ωodd

µ|α1···αp
C(1)

mat
α1···αp

αβ + ψ1

∞∑

p=0

(p+ 2)!

2
(1 + (−)p)Ωodd

µ|α1···αpαβC
(1)
mat

α1···αp .

(2.189)
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We first compute ∇µU (0)
µ :

∇µU (0)
µ =− 32ψ1

∞∑

p=0

p!(1 + (−)p)
(
∇αβΩodd

αβ|α1···αp
C(1)

mat
α1···αp + Ωodd

αβ|α1···αp
∇αβC(1)

mat
α1···αp

)

=− 32ψ1

∞∑

p=0

p!(1 + (−)p)
(
∇αβχp,+,odd

αβα1···αp
C(1)

mat
α1···αp +∇α1α2χ

p,−,odd
α3···αp

C(1)
mat

α1···αp

+χp,+,odd
αβα1···αp

∇αβC(1)
mat

α1···αp + χp,−,odd
α3···αp

∇α1α2C
(1)
mat

α1···αp

)

=32ψ1

∞∑

p=0

(1 + (−)p)
[
C(1),p

mat (∂y)

(
∇−χp,+

odd(y)

(p+ 2)(p+ 1)
+∇+χp,−

odd(y)

)

+
(∇+C(1),p

mat )(∂y)χ
p,+
odd(y)

(p+ 2)(p+ 1)
+ (∇−C(1),p

mat )(∂y)χ
p,−
odd(y)

]
,

(2.190)

where we have assumed the gauge condition χp,0
odd = 0. Using (2.103) to express ∇±C(1),p

mat in

terms of C(1),p±2
mat , we have

∇µU (0)
µ =32ψ1

∞∑

p=0

(1 + (−)p)
[
C(1),p

mat (∂y)

(
∇−χp,+

odd(y)

(p+ 2)(p+ 1)
+∇+χp,−

odd(y)

)

+ψ1
C(1),p+2

mat (∂y)χ
p,+
odd(y)

16
+ ψ1

p(p+ 1)

16
C(1),p−2

mat (∂y)χ
p,−
odd(y)

]
.

(2.191)

Next, we compute (eµ0 )
αβU (2)

µ|αβ :

(eµ0)
αβU (2)

µ|αβ =
∞∑

p=0

(p+ 3)(p+ 1)!

2
(1− (−)p)χp+1,0,even

α1···αpβ
C(1)

mat
α1···αpβ

+ ψ1

∞∑

p=0

(p+ 2)!

2
(1 + (−)p)χp+1,+,odd

α1···αpαβ C
(1)
mat

α1···αpαβ

+ ψ1

∞∑

p=0

(p+ 3)(p+ 2)p!

2
(1 + (−)p)χp,−,odd

α1···αp
C(1)

mat
α1···αp

=
∞∑

p=0

(p+ 3)(1− (−)p)
2

C(1),p+1
mat (∂y)χ

p+1,0
even (y) + ψ1

∞∑

p=0

(1 + (−)p)
2

C(1),p+2
mat (∂y)χ

p,+
odd(y)

+ ψ1

∞∑

p=0

(p+ 3)(p+ 2)(1 + (−)p)
2

C(1),p
mat (∂y)χ

p+2,−
odd (y),

(2.192)
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where we have assumed the gauge χp,0
odd = 0. Using (2.138) to express χp+1,0

even in terms of

χp+1,+
odd and χp+1,−

odd , we have

(eµ0)
αβU (2)

µ|αβ =
∞∑

p=0

(1− (−)p)C(1),p+1
mat (∂y)

[
4(p+ 1)

(p+ 3)(p+ 2)
∇−χp+1,+

odd (y)− 4(p+ 3)∇+χp+1,−
odd (y)

]

+ ψ1

∞∑

p=0

(1 + (−)p)
2

C(1),p+2
mat (∂y)χ

p,+
odd(y) + ψ1

∞∑

p=0

(p+ 3)(p+ 2)(1 + (−)p)
2

C(1),p
mat (∂y)χ

p+2,−
odd (y),

(2.193)

Adding the two terms (2.191) and (2.193), we obtain

∇µU (0)
µ + 4ψ1(e

µ
0)
αβU (2)

µ|αβ

= 4
∞∑

p=0

(1 + (−)p)
[
C(1),p+2

mat (∂y)χ
p,+
odd(y) + (p+ 1)pC(1),p−2

mat (∂y)χ
p,−
odd(y)

]

+ 16ψ1

∞∑

p=2

(1 + (−)p)C(1),p
mat (∂y)

[
1

(p+ 1)
∇−χp,+

odd(y)− p∇+χp,−
odd(y)

]
.

(2.194)

2.B.3 Computation of the three point function

In this subsection, we compute the three point function of a higher spin current with

two scalars by explicitly evaluating the integral (2.75).

To begin with, let us turn on boundary sources only for the Ceven component of the

scalars in (2.75). It is convenient to decompose Ξs as Ξs = Ξ+
s + Ξ0

s + Ξ−
s , with Ξ±/0

s being

the homogeneous polynomials in y of degree 2s, 2s− 2, and 2s− 4, respectively. The action

(2.75) splits into three terms. The terms with Ξ±
s have already been of the form (2.73). For
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the term with Ξ0
s, we need to perform an integration by part:

∫
dx2

(
dz

z3

)
Ξ0
s(∂y)δC

(1),0
mat C

(1),2s−2
mat

=

∫
dx2

(
dz

z3

)
32ψ1

(
1

(2s− 1)
∇−χ(s),+

odd (∂y)− (2s− 2)∇+χ(s),−
odd (∂y)

)
δC(1),0

mat C
(1),2s−2
mat

=

∫
dx2

(
dz

z3

)[
− 4

1

(2s− 1)
χ(s),+
odd (∂y)δC

(1),2
mat C

(1),2s−2
mat − 4sχ(s),+

odd (∂y)δC
(1),0
mat C

(1),2s
mat

+ 4(2smat − 2)χ(s),−
odd (∂y)δC

(1),2
mat (∂y)C

(1),2s−2
mat + 2(2s− 2)2(2s− 1)χ(s),−

odd (∂y)δC
(1),0
mat C

(1),2s−4
mat

]
,

(2.195)

where we have used (2.103) to express ∇±C(1),p
mat in terms of C(1),p±2

mat . The variation of the
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action δS is then given by

δS =

∫
d2x

(
dz

z3

)[
χ(s),+
odd (∂y)

(
(8− 4s)δC(1),0

mat C
(1),2s
mat − 4

1

(2s− 1)
δC(1),2

mat C
(1),2s−2
mat

)

+ 4χ(s),−
odd (∂y)

(
(2s− 2)δC(1),2

mat (∂y)C
(1),2s−2
mat + 2(s− 1)(s+ 1)(2s− 1)δC()1,0

mat C
(1),2s−4
mat

)]

= −
∫

d2x

(
dz

z3

)[
∇+λ(∂y)

(
(8− 4s)δC(1),0

mat C
(1),2s
mat − 4

1

(2s− 1)
δC(1),2

mat C
(1),2s−2
mat

)

− 4∇−λ(∂y)

(
1

(2s− 1)
δC(1),2

mat (∂y)C
(1),2s−2
mat + (s+ 1)δC(1),0

mat C
(1),2s−4
mat

)]

= −
∫

d2xdz∂z

[
1

z2
λ(∂y)∂y1∂y2

(
(2− s)δC(1),0

mat C
(1),2s
mat −

1

(2s− 1)
δC(1),2

mat C
(1),2s−2
mat

)

− 1

z2
(∂y1∂y2λ) (∂y)

(
1

2s− 1
δC(1),2

mat (∂y)C
(1),2s−2
mat + (s+ 1)δC(1),0

mat C
(1),2s−4
mat

)]

= lim
z→0

∫
d2x

1

z2

[
λ(∂y)∂y1∂y2

(
(2− s)δC(1),0

mat C
(1),2s
mat −

1

(2s− 1)
δC(1),2

mat C
(1),2s−2
mat

)

+ (∂y1∂y2λ) (∂y)

(
1

2s− 1
δC(1),2

mat (∂y)C
(1),2s−2
mat + (s+ 1)δC(1),0

mat C
(1),2s−4
mat

)]

= 4 lim
z→0

∫
d2x

2s−1∑

r=1

zr−s−2

(x− − x−
3 )

r

[

(∂y2)
2s−r(−∂y1)r

(
(2− s)δC(1),0

mat C
(1),2s
mat −

1

(2s− 1)
δC(1),2

mat C
(1),2s−2
mat

)

− (2s− r − 1)(r − 1)(∂y2)
2s−r−2(−∂y1)r−2

(
1

2s− 1
δC(1),2

mat (∂y)C
(1),2s−2
mat + (s+ 1)δC(1),0

mat C
(1),2s−4
mat

)]

≡ δS1 + δS2 + δS3 + δS4,

(2.196)

where we substituted the boundary to bulk propagator for χ(s),+
odd and χ(s),−

odd in the “pure

gauge” form, and we also performed the similar step as illustrated in (2.74), and we used

(2.103) again to express ∇±C(1),p
mat in terms of C(1),p±2

mat . For the convenience of the later

computation, we have split δS into four terms δS = δS1+ δS2+ δS3+ δS4. We will compute

these four terms one by one in the following. The next step is to substitute the boundary-
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to-bulk propagator for the master field C(1)
mat. We first expand C(1)

mat as

C(1)
mat(y) =

(
1 + ψ1

1 + ψ̃1

2
yΣy

)
e
ψ1
2 yΣyK1+

ψ̃1
2

=
∞∑

s=0

1

s!

(
1 + s(1 + ψ̃1)

)(ψ1

2

)s

(yΣy)sK1+
ψ̃1
2

=
∞∑

s=0

ψs
1

s!

(
1 + s(1 + ψ̃1)

)[(
z − x+x−

z

)
y1y2 − (y1)2x− + (y2)2x+

]s
K1+

ψ̃1
2 +s

=
∞∑

s=0

ψs
1

s!

(
1 + s(1 + ψ̃1)

) s∑

u=0

u∑

w=0

u−w∑

v=0

s!

(s− u)!(u− w − v)!w!v!

× zu−w−2v(−x−)w+v(x+)s−u+v(y1)u+w(y2)2s−u−wK1+
ψ̃1
2 +s.

(2.197)

In particular, the piece of homogeneous degree 2s is given by

C(1),2s
mat (y) =

ψs
1

s!

(
1 + s(1 + ψ̃1)

) s∑

u=0

u∑

w=0

u−w∑

v=0

s!

(s− u)!(u− w − v)!w!v!

× zu−w−2v(−x−)w+v(x+)s−u+v(y1)u+w(y2)2s−u−wK1+
ψ̃1
2 +s.

(2.198)

where K = z
z2+x2 is the scalar boundary-to-bulk propagator. Near the boundary, K1+

ψ̃1
2 +s

has the following expansion

K1+
ψ̃1
2 +s → π

s∑

q=0

Γ(s− q + ψ̃1

2 )

q!Γ(1 + s + ψ̃1

2 )
z2q+1− ψ̃1

2 −s(∂x+∂x−)qδ2(x) + z1+
ψ̃1
2 +s 1

x2+ψ̃1+2s
+ · · · ,

(2.199)

where we keep only the leading analytic term and the first s contact terms. The subleading

terms will not contribute to the three point function.
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Let us first compute δS1.

δS1

= 4 lim
z→0

∫
d2x0

2s−1∑

r=1

(2− s)
1

(x−
03)

r
zr−s−2(∂y2)

2s−r(−∂y1)rδC(1),0
mat (x01)C

(1),2s
mat (x02|y)

= 4 lim
z→0

∫
d2x0

2s−1∑

r=1

ψs
1

(
1 + s(1 + ψ̃1)

) s∑

u=0

2u−r∑

v=0

(2− s)r!(2s− r)!(−1)−u+v

(s− u)!(r − u)!(2u− r − v)!v!

× z2u−2v−s−2(x−
02)

r−u+v(x+
02)

s−u+v 1

(x−
03)

r
K

1+
ψ̃1
2

01 K
1+

ψ̃1
2 +s

02

= 4

∫
d2x0

2s−1∑

r=1

ψs
1

(
1 + s(1 + ψ̃1)

) s∑

u=0

2u−r∑

v=0

(2− s)r!(2s− r)!(−1)−u+v

(s− u)!(r − u)!(2u− r − v)!v!

×
[
π

3
2

Γ(12 ψ̃1)

Γ(12)Γ(1 +
ψ̃1

2 )
δ2(x01)

1

x2+ψ̃1+2s
02

(x−
02)

r(x+
02)

sδu,v
1

(x−
03)

r

+ δv,u+q−sπ
s∑

q=0

Γ(s− q + ψ̃1

2 )

Γ(1 + s + ψ̃1

2 )
δ2(x02)

q∑

n=0

q!(q + r − s)!

(q − n)!n!(r − s+ n)!
(x−

02)
r−s+n∂n

x−
0

(
1

(x−
03)

r

1

x2+ψ̃1
01

)]
,

(2.200)

where we have substituted the boundary-to-bulk propagator for δC(1),0
mat (x01) and C(1),2s

mat (x02|y),

and the Kij stands for K
∣∣
x→xij

, and we have substituted the expansion (2.199) for Kij . In-

tegrating out the delta functions gives

δS1 = 4
2s−1∑

r=1

(2− s)ψs
1

(
1 + s(1 + ψ̃1)

) [
2πψ̃1

(2s− r)!

(s− r)!

1

x2+ψ̃1
12 (x−

12)
s−r(x−

13)
r

+
s∑

u=0

s∑

q=0

r!(2s− r)!Γ(s− q + ψ̃1

2 )q!(−1)
q−s

(s− u)!(r − u)!(u− r − q + s)!(u+ q − s)!Γ(1 + s + ψ̃1

2 )(s− r)!
π∂s−r

x−
2

(
1

(x−
23)

rx2+ψ̃1
21

)]
.

(2.201)

Similarly, let us compute δS2 and δS3 as follows. Substituting the boundary-to-bulk
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propagator for the master field C(1)
mat, we have

δS2 = −4 lim
z→0

∫
d2x0

2s−1∑

r=1

zr−s−2

(2s− 1)

1

(x−
03)

r
(∂y2)

2s−r(−∂y1)rδC(1),2
mat (x01)C

(1),2s−2
mat (x02|y)

= −4 lim
z→0

∫
d2x0

2s−1∑

r=1

1

(2s− 1)

1

(x−
03)

r
ψs
1

(
1 + (s− 1)(1 + ψ̃1)

)
(2 + ψ̃1)K

2+
ψ̃1
2

01 K
ψ̃1
2 +s

02

×
[ s−1∑

u=0

2u−r+1∑

v=0

r!(2s− r)!(−1)r

(s− u− 1)!(2u− r + 1− v)!(r − u− 1)!v!

×
(
z − x+

01x
−
01

z

)
z2u−2v−s−1(−x−

02)
r−u+v−1(x+

02)
s−u+v−1

+
s−1∑

u=0

2u−r+2∑

v=0

r!(2s− r)!(−1)r

(s− u− 1)!(2u− r + 2− v)!(r − u− 2)!v!
(−x−

01)z
2u−2v−s(−x−

02)
r−u+v−2(x+

02)
s−u+v−1

+
s−1∑

u=0

2u−r∑

v=0

r!(2s− r)!(−1)r
(s− u− 1)!(2u− r − v)!(r − u)!v!

(x+
01)z

2u−2v−s−2(−x−
02)

r−u+v(x+
02)

s−u+v−1

]
,

(2.202)

and

δS3 = −4 lim
z→0

∫
d2x0

2s−1∑

r=1

zr−s−2

(2s− 1)

1

(x−
03)

r
(2s− r − 1)(r − 1)

× (∂y2)
2s−r−2(−∂y1)r−2δC(1),2

mat (x01|∂y)C(1),2s−2
mat (x02|y)

= −4 lim
z→0

∫
d2x0

2s−1∑

r=1

1

(2s− 1)

1

(x−
03)

r
(2s− r − 1)(r − 1)ψs

1

(
1 + (s− 1)(1 + ψ̃1)

)
(2 + ψ̃1)

×K
2+

ψ̃1
2

01 K
ψ̃1
2 +s

02

[ s−1∑

u=0

2u−r+1∑

v=0

(r − 1)!(2s− r − 1)!(−1)r−1

(s− u− 1)!(2u− r + 1− v)!(r − u− 1)!v!

×
(
z − x+

01x
−
01

z

)
z2u−2v−s−1(−x−

02)
r−u+v−1(x+

02)
s−u+v−1

+
s−1∑

u=0

2u−r+2∑

v=0

(r − 2)!(2s− r)!(−1)r−1

(s− u− 1)!(2u− r + 2− v)!(r − u− 2)!v!
(x−

01)z
2u−2v−s(−x−

02)
r−u+v−2(x+

02)
s−u+v−1

+
s−1∑

u=0

2u−r∑

v=0

r!(2s− r − 2)!

(s− u− 1)!(2u− r − v)!(r − u)!v!
(−1)r(x+

01)z
2u−2v−s−2(−x−

02)
r−u+v(x+

02)
s−u−1+v

]
.

(2.203)

70



Chapter 2: Higher Spin Gravity with Matter in AdS3 and Its CFT Dual

These two terms can be combined as

δS2 + δS3

= −4 lim
z→0

∫
d2x0

2s−1∑

r=1

ψs
1

(
1 + (s− 1)(1 + ψ̃1)

)
(2 + ψ̃1)K

2+
ψ̃1
2

01 K
ψ̃1
2 +s

02

1

(x−
03)

r

×
[ s−1∑

u=0

2u−r+1∑

v=0

(r − 1)!(2s− r − 1)!(−1)r

(s− u− 1)!(2u− r + 1− v)!(r − u− 1)!v!

×
(
z − x+

1 x
−
1

z

)
z2u−2v−s−1(−x−

02)
r−u+v−1(x+

02)
s−u+v−1

+
s−1∑

u=0

2u−r+2∑

v=0

(r − 1)!(2s− r)!(−1)r

(s− u− 1)!(2u− r + 2− v)!(r − u− 2)!v!
(−x−

01)z
2u−2v−s(−x−

02)
r−u+v−2(x+

02)
s−u+v−1

+
s−1∑

u=0

2u−r∑

v=0

r!(2s− r − 1)!(−1)r

(s− u− 1)!(2u− r − v)!(r − u)!v!
(x+

01)z
2u−2v−s−2(−x−

02)
r−u+v(x+

02)
s−u+v−1

]

≡ U1 + U2 + U3,

(2.204)
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where we have split δS2 + δS3 into three terms U1, U2, U3. These are computed as follows.

U1 = −4
∫

d2x0

2s−1∑

r=1

ψs
1

(
1 + (s− 1)(1 + ψ̃1)

)
(2 + ψ̃1)

×
s−1∑

u=0

[
− 2π

2 + ψ̃1

δ2(x01)
1

xψ̃1+2
02

1

(x−
02)

s−r

1

(x−
03)

r

(r − 1)!(2s− r − 1)!

(s− u− 1)!(u− r + 1)!(r − u− 1)!u!

+
4π

2ψ̃1 + 1
δ2(x01)

1

xψ̃1+2
02

1

(x−
02)

s−r

1

(x−
03)

r

(r − 1)!(2s− r − 1)!

(s− u− 1)!(u− r + 1)!(r − u− 1)!u!

+
s−1∑

q=0

(r − 1)!(2s− r − 1)!Γ(s− 1− q + ψ̃1

2 )q!(−1)
s+q+1

(s− u− 1)!(u− r − q + s)!(r − u− 1)!(q + u− s+ 1)!Γ(s+ ψ̃1

2 )(s− r)!

× πδ2(x02)∂
s−r
x−
0

(
1

x2+ψ̃1
01

1

(x−
03)

r

)]

= −4
2s−1∑

r=1

ψs
1

(
1 + (s− 1)(1 + ψ̃1)

)
(2 + ψ̃1)

[
10ψ̃1 − 8

3
π
(2s− r − 1)!

(s− r)!

1

xψ̃1+2
12 (x−

12)
s−r(x−

13)
r

+
s−1∑

u=0

s−1∑

q=0

(r − 1)!(2s− r − 1)!Γ(s− 1− q + ψ̃1

2 )q!(−1)
s+q+1

(s− u− 1)!(u− r − q + s)!(r − u− 1)!(q + u− s+ 1)!Γ(s+ ψ̃1

2 )(s− r)!

× π∂s−r
x−
2

(
1

x2+ψ̃1
21 (x−

23)
r

)]
,

(2.205)

U2 = −4 lim
z→0

∫
d2x0

2s−1∑

r=1

ψs
1

(
1 + (s− 1)(1 + ψ̃1)

)
(2 + ψ̃1)

1

(x−
03)

r

×
s−1∑

u=0

2u−r+2∑

v=0

(r − 1)!(2s− r)!

(s− u− 1)!(2u− r + 2− v)!(r − u− 2)!v!
(−1)r(−x−

01)(−x−
02)

r−u+v−2(x+
02)

s−u+v−1

×
[
π

1∑

q=0

Γ(1− q + ψ̃1

2 )

q!Γ(2 + ψ̃1

2 )
(∂x+

0
∂x−

0
)qδ2(x01)

1

xψ̃1+2s
02

z2u−2v+2q

1

x2+ψ̃1+4
01

π
s−1∑

q=0

Γ(s− 1− q + ψ̃1

2 )

q!Γ(s+ ψ̃1

2 )
z2u−2v+2q+4−2s(∂x+

0
∂x−

0
)qδ2(x02)

]
,

= 0,

(2.206)
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and

U3 = −4
2s−1∑

r=1

ψs
1

(
1 + (s− 1)(1 + ψ̃1)

)
(2 + ψ̃1)

[
4π

1 + 2ψ̃1

(2s− r − 1)!

(s− r − 1)!
∂x−

1

(
1

x2+ψ̃1
12 (x−

12)
s−r−1(x−

13)
r

)

+
s−1∑

q=0

s−1∑

u=0

Γ(s− 1− q + ψ̃1

2 )r!(2s− r − 1)!q!π(−1)1+s+q

Γ(s+ ψ̃1

2 )(s− u− 1)!(u− r − q + s− 1)!(r − u)!(q + 1 + u− s)!(s− r − 1)!

×∂s−r−1
x−
2

(
1

x2+ψ̃1
21 (x−

21)(x
−
23)

r

)]
.

(2.207)

where we have substituted the expansion (2.199) and taken the z → 0 limit. Finally, let us

compute δS4:

δS4 = −4 lim
z→0

∫
d2x0

2s−1∑

r=1

(2s− r − 1)(r − 1)
1

(x−
03)

r
zr−s−2(s+ 1)

× (∂y2)
2s−r−2(−∂y1)r−2δC(1),0

mat (x01)C
(1),2s−4
mat (x02|y)

= −4 lim
z→0

∫
d2x0

2s−1∑

r=1

(−1)r−2 1

(x−
03)

r
K

1+
ψ̃1
2

01 K
ψ̃1
2 +s−1

02

ψs
1

(s− 2)!

(
1 + (s− 2)(1 + ψ̃1)

)

×
s−2∑

u=0

2u−r+2∑

v=0

(s− 2)!(r − 1)!(2s− r − 1)!

(s− u− 2)!(2u− r + 2− v)!(r − u− 2)!v!
z2u−2v−s(−x−

02)
r−u+v−2(x+

02)
s−u+v−2.

(2.208)

After substituting the boundary to bulk propagators and taking the z → 0 limit, we obtain

δS4 = −4
2s−1∑

r=1

(s+ 1)ψs
1

(
1 + (s− 2)(1 + ψ̃1)

)

×
[
π

Γ( ψ̃1

2 )

Γ(1 + ψ̃1

2 )

1

xψ̃1+2s−2
12

(r − 1)(2s− r − 1)!

(s− r)!

(x−
12)

r−2(x+
12)

s−2

(x−
13)

r

+ π
s−2∑

q=0

s−2∑

u=0

Γ(s− 2− q + ψ̃1

2 )(r − 1)!(2s− r − 1)!q!

Γ(s− 1 + ψ̃1

2 )(s− u− 2)!(u− r − q + s)!(r − u− 2)!(q + u− s+ 2)!(s− r)!

× (−1)q−s∂s−r
x−
2

(
1

x2+ψ̃1
21

1

(x−
23)

r

)]
.

(2.209)

The three point function is proportional to δS = δS1 + U1 +U3 + δS4. One can simplify
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the above expressions and compute the full three point function directly, but since we are

only interested in the overall coefficient whereas the position dependence is completely fixed

by the conformal symmetry, we can take the limit in which one of the two scalar operators

collides with the higher spin current, and extract the overall coefficient.

Let us define the variables y±1 = x±
1 − x±

3 and y±2 = x±
2 − x±

3 , and consider the limit

y1 ≪ y2. The various pieces of contributions are given in this limit by

δS1 →4(2− s)ψs
1

(
1 + s(1 + ψ̃1)

)
2πψ̃1s!

1

y2+ψ̃1
2

1

(y−1 )
s
,

U1 →− 4ψs
1

(
1 + (s− 1)(1 + ψ̃1)

)
(2 + ψ̃1)

10ψ̃1 − 8

3
π(s− 1)!

1

yψ̃1+2
2

1

(y−1 )
s
,

U3 →− 4ψs
1

(
1 + (s− 1)(1 + ψ̃1)

)
(2 + ψ̃1)

4π

1 + 2ψ̃1

s!
1

y2+ψ̃1
2

−s+ 1

(y−1 )
s
,

δS4 →− 4(s+ 1)ψs
1

(
1 + (s− 2)(1 + ψ̃1)

)
π

Γ( ψ̃1

2 )

Γ(1 + ψ̃1

2 )
(s− 1)(s− 1)!

1

(y−1 )
s

1

yψ̃1+2
2

.

(2.210)

Summing these four terms, and recovering the full position dependence using the conformal

symmetry, we obtain the three point function of one higher spin current and two scalar

operators:

〈(
O +O

)
(x1)

(
O +O

)
(x2)J

s(x3)
〉
= 8π(s+ ψ̃1(s− 1))(1 + (−)s)Γ(s) 1

|x12|2+ψ̃1

(
x−
12

x−
13x

−
23

)s

.

(2.211)

Note that since we have turned on the sources for Ceven so far, the dual scalar operator is

O+O. The three point function involving an insertion of O−O, dual to the bulk field Codd,

can be computed analogously by turning on a source for Codd. Note that Codd is a purely

imaginary field; in other words, if we write Codd = iϕ, then ϕ is a real field with the “right
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sign” kinetic term. A computation similar to the above gives

〈(
O −O

)
(x1)

(
O +O

)
(x2)J

s(x3)
〉
= 8π(s+ ψ̃1(s− 1))(1− (−)s)Γ(s) 1

|x12|2+ψ̃1

(
x−
12

x−
13x

−
23

)s

.

(2.212)

Adding (2.211) and (2.212), we obtain

〈
O(x1)O(x2)J

s(x3)
〉
= −4π(s+ ψ̃1(s− 1))Γ(s)

1

|x12|2+ψ̃1

(
x−
12

x−
13x

−
23

)s

. (2.213)

2.C The deformed vacuum solution

In this section, we discuss the formulation of the three dimensional Vasiliev system as

originally written in [22], which amounts to an extension of the equations (2.6) by introducing

two additional auxiliary variables k and ρ, as described below, and the 1-parameter family

of “deformed” vacuum solutions. The deformed vacuum solution of the system (2.6) can be

obtain by a simple projection on the extended system. We will also present the boundary

to bulk propagator for the B master field, which contains the bulk “matter” scalar field, in

the deformed vacua, by solving the linearized equations.

To describe the deformed vacuum, it is useful to introduce two additional auxiliary

variables k and ρ. They obey the following (anti-)commutation relations with one another

and with the twistor variables (y, z):

k2 = ρ2 = 1, {k, ρ} = {k, yα} = {k, zα} = 0, [ρ, yα] = [ρ, zα] = 0. (2.214)

It will be also convenient to define the variable

wα = (zα + yα)

∫ 1

0

dt tetzy. (2.215)

75



Chapter 2: Higher Spin Gravity with Matter in AdS3 and Its CFT Dual

It is straightforward to show that wα satisfy the following star commutation relations:

[wα, wβ]∗ = 0,

[wα, yβ]∗ + [yα, wβ]∗ = 2ϵαβK,

[wα, zβ]∗ + [zα, wβ]∗ = −2ϵαβK,

{wα, zβ}∗ ∗K − {yα, wβ}∗ = 0.

(2.216)

Next, let us define

z̃α(ν) = zα + νwαk,

ỹα(ν) = yα + νwα ∗Kk.

(2.217)

Using the relations (2.216), it is easy to show that

[ỹα, ỹβ]∗ = 2ϵαβ(1 + νk),

[ρz̃α, ρz̃β]∗ = −2ϵαβ (1 + νKk) ,

[ρz̃α, ỹβ]∗ = 0.

(2.218)

Under the star algebra, ỹα generate the (deformed) three dimensional higher spin algebra

hs(λ) with λ = 1
2(1 + νk). Later we will make the projection onto the eigenspace of k = 1

or k = −1, in which case λ = 1
2(1 + ν) or λ = 1

2(1 − ν). The higher spin algebra hs(λ)

is an associative algebra, whose general element can be represented by an even analytic

star-function in ỹα. In particular, it has an sl(2)-subalgebra whose generator can be written

as Tαβ = ỹ(α ∗ ỹβ).

The deformed vacuum solution is given by

B =
1

4
ν, Sα =

1

2
ρ(z̃α − zα),

W = W0 = w0 + ψ1e0 =
(
wαβ

0 (x) + ψ1e
αβ
0 (x)

)
Tαβ.

(2.219)
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They satisfy the (k, ρ)-extended Vasiliev equations:10

dxW +W ∗W = 0,

dxS + dzW + {W,S}∗ = 0,

dzS + S ∗ S = B ∗Kkdz2,

dzB + [S,B]∗ = 0,

dxB + [W,B]∗ = 0,

(2.220)

We can go back to the system (2.6) by simply multiplying a projector 1
2(1 + k) on the left

of every equation. Given any solution of the extended Vasiliev equations, by acting on it

with the projector we obtain a solution of the equations (2.6). It follows that the deformed

vacuum solution of (2.6) is

B =
1

4
ν, Sα =

1

2
(z̃α(−ν)− zα) ,

W =
(
wαβ

0 (x) + ψ1e
αβ
0 (x)

)
ỹα(ν) ∗ ỹβ(−ν).

(2.221)

Next, we will solve the linearize equation on the deformed vacua, and derive the boundary

to bulk propagator for B (the scalar and corresponding auxiliary fields). For simplicity of the

notation, we will work in the extended Vasiliev system. The boundary to bulk propagator

for fields in the system (2.6) can be obtained simply by applying the projector 1
2(1+k). The

linearized equations for B are
[
ρz̃α, B

(1)
]
∗ = 0,

D0B
(1) = 0.

(2.222)

where D0 is defined by D0 ≡ d + [W0, ·]. The first equation of (2.222) immediately implies

B(1)(x|y, z,ψ) = B(1)
∗ (x|ỹ,ψ), where the subscript ∗ of a function means that it is a star-

function.

10Note that the form of these equations differs from the system (2.6) only in the RHS of the third equation.
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Decomposing B(1)
∗ (x|ỹ,ψ) as B(1)

∗ (x|ỹ,ψ) = C(1)
aux∗(x|ỹ,ψ1)+ψ2C

(1)
mat∗(x|ỹ,ψ1), the second

equation of (2.222) gives

dC(1)
aux∗ + [w0, C

(1)
aux∗]∗ + ψ1[e0, C

(1)
aux∗]∗ = 0,

dC(1)
mat∗ + [w0, C

(1)
mat∗]∗ − ψ1{e0, C(1)

mat∗}∗ = 0.

(2.223)

As in the case of equations in the undeformed vacuum analyzed in Section 2.3.1 and Ap-

pendix 2.A.1, the equation for C(1)
aux∗ is over-constraining, and eliminates all dynamical de-

grees of freedom of C(1)
aux∗. We will simply set C(1)

aux∗ = 0, and only study the equation of the

“matter” component C(1)
mat∗ in the following. Let us expand C(1)

mat∗ in the form

C(1)
mat∗(ỹ) =

∞∑

n=0

C(1)
mat∗,α1···αn ỹ

(α1 ∗ · · · ∗ ỹαn). (2.224)

To compute the (anti-)commutators in (2.223), let us first consider the star product of ỹα

with ỹ(α1 ∗ · · · ∗ ỹαn):

ỹα ∗ ỹ(α1 ∗ · · · ∗ ỹαn)

= ỹ(α ∗ ỹα1 ∗ · · · ∗ ỹαn) +
1

n + 1

n∑

i=1

(n− i+ 1)ỹ(α1 ∗ · · · ∗ [ỹα, ỹαi]∗ ∗ · · · ∗ ỹαn)

= ỹ(α ∗ ỹα1 ∗ · · · ∗ ỹαn) +
1

n + 1

n∑

i=1

(n− i+ 1)(1 + (−)i−1νk)2ϵα(αi ỹα1 ∗ · · · ∗ /̃y/αi ∗ · · · ∗ ỹαn).

(2.225)

Contracting the above with eαCα1···αn (here and in what follows, e and C are used to denote

arbitrary totally symmetric tensors), we obtain

eαỹ
α ∗ Cα1···αn ỹ

α1 ∗ · · · ∗ ỹαn

= e(αCα1···αn)ỹ
α ∗ ỹα1 ∗ · · · ∗ ỹαn − a(n, νk)eαCαα1···αn−1 ỹ

α1 ∗ · · · ∗ ỹαn−1 ,

(2.226)

where

a(n, νk) = 2
n∑

i=1

1

(n+ 1)
(n− i+ 1)(1 + (−)i−1νk). (2.227)
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Applying a similar operation, staring ỹ(α ∗ ỹβ) with ỹ(α1 ∗ · · · ∗ ỹαn) and contracting with

eβαCα1···αn , we get

eβαỹ
β ∗ ỹα ∗ Cα1···αn ỹ

α1 ∗ · · · ∗ ỹαn = e(βαCα1···αn)ỹ
β ∗ ỹα ∗ ỹα1 ∗ · · · ∗ ỹαn

− n

n+ 1
a(n + 1, νk)eβ(αCβα1···αn−1)ỹ

α ∗ ỹα1 ∗ · · · ∗ ỹαn−1

− a(n,−νk)e(βαCαα1···αn−1)ỹ
β ∗ ỹα1 ∗ · · · ∗ ỹαn−1

+ a(n,−νk)a(n − 1, νk)eαβCαβα1···αn−2 ỹ
α1 ∗ · · · ∗ ỹαn−2 .

(2.228)

Now, starring ỹα with ỹ(α1 ∗ · · · ∗ ỹαn) from the right side,

ỹ(α1 ∗ · · · ∗ ỹαn) ∗ ỹα

= ỹ(α ∗ ỹα1 ∗ · · · ∗ ỹαn) +
1

n+ 1

n∑

i=1

(−i)ỹ(α1 ∗ · · · ∗ [ỹα, ỹαi]∗ ∗ · · · ∗ ỹαn)

= ỹ(α ∗ ỹα1 ∗ · · · ∗ ỹαn) +
1

n+ 1

n∑

i=1

(−i)(1 + (−)i−1νk)2ϵα(αi ỹα1 ∗ · · · ∗ ỹ ̸αi ∗ · · · ∗ ỹαn).

(2.229)

Contracting this formula with eαCα1···αn , we have

Cα1···αn ỹ
α1 ∗ · · · ∗ ỹαn ∗ eαỹα

= e(αCα1···αn)ỹ
α ∗ ỹα1 ∗ · · · ∗ ỹαn − b(n, νk)eαCαα1···αn−1 ỹ

α1 ∗ · · · ∗ ỹαn−1 ,

(2.230)

where

b(n, νk) = 2
n∑

i=1

1

(n+ 1)
(−i)(1 + (−)i−1νk). (2.231)

Performing a similar operation with ỹ(α ∗ ỹβ), we obtain

Cα1···αn ỹ
α1 ∗ · · · ∗ ỹαn ∗ eβαỹβ ∗ ỹα = e(βαCα1···αn)ỹ

β ∗ ỹα ∗ ỹα1 ∗ · · · ∗ ỹαn

− n

n+ 1
b(n + 1, νk)eβ(αCβα1···αn−1)ỹ

α ∗ ỹα1 ∗ · · · ∗ ỹαn−1

− b(n, νk)e(β
αCαα1···αn−1)ỹ

β ∗ ỹα1 ∗ · · · ∗ ỹαn−1

+ b(n, νk)b(n − 1, νk)eαβCαβα1···αn−2 ỹ
α1 ∗ · · · ∗ ỹαn−2 .

(2.232)
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Adding (2.228) and (2.232), we obtain the anticommutator:

{eβαỹβ ∗ ỹα, Cα1···αn ỹ
α1 ∗ · · · ∗ ỹαn}∗ = 2e(βαCα1···αn)ỹ

β ∗ ỹα ∗ ỹα1 ∗ · · · ∗ ỹαn

+ f(n, νk)eβ (αCβα1···αn−1)ỹ
α ∗ ỹα1 ∗ · · · ∗ ỹαn−1 + g(n, νk)eαβCαβα1···αn−2 ỹ

α1 ∗ · · · ∗ ỹαn−2 ,

(2.233)

where

f(n, νk) = − n

n + 1
a(n+ 1, νk)− a(n,−νk)− n

n+ 1
b(n + 1, νk)− b(n, νk),

g(n, νk) = a(n,−νk)a(n − 1, νk) + b(n, νk)b(n− 1, νk).

(2.234)

If n is even, f(n, νk) and g(n, νk) can be further simplified to

f(2j, νk) = 0,

g(2j, νk) = 4j
(1 + 2j − νk)(−1 + 2j + νk)

1 + 2j
.

(2.235)

Subtracting (2.228) from (2.232), we obtain the commutator:

[
wβαỹ

β ∗ ỹα, Cα1···αn ỹ
α1 ∗ · · · ∗ ỹαn

]
∗ = −4nw

β
(αCβα1···αn−1)ỹ

α ∗ ỹα1 ∗ · · · ∗ ỹαn−1 . (2.236)

The linearized equation (2.223) for the matter field, therefore, can be written as

∂µC
(1),n
mat α1···αn − 4n(w0µ)(α1

βC(1),n
mat βα2···αn) − 2ψ1(e0µ)(α1α2C

(1),n−2
mat α3···αn)

− g(n+ 2, νk)ψ1(e0µ)
αβC(1),n+2

mat αβα1···αn = 0.

(2.237)

After contracting with (eµ0 )αβ, this equation is written as

∇αβC
(1),n
mat α1···αn +

1

16
ψ1ϵ(α(α1ϵβ)α2C

(1),n−2
mat α3···αn) +

1

32
g(n+ 2, νk)ψ1C

(1),n+2
mat αβα1···αn = 0.

(2.238)

We follow the same procedure used in analyzing the undeformed vacuum, decomposing the

above equation according to the action of permutation group on the indices. Contracting

(2.238) with ϵαα1 gives

∇α
βC

(1),n
mat αα2···αn −

n + 1

16n
ψ1ϵβ(α2C

(1),n−2
mat α3···αn) = 0. (2.239)
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Further contracting (2.239) with ϵβα2 gives

∇αβC(1),n
mat αβα3···αn +

n+ 1

16(n− 1)
ψ1C

(1),n−2
mat α3···αn = 0. (2.240)

As in the analysis of undeformed vacuum, now contracting the indices of the equations

(2.238), (2.239), and (2.240) with the yα’s, we obtain

∇+C(1),n
mat (y)−

1

32
g(n+ 2, νk)ψ1C

(1),n+2
mat (y) = 0,

∇0C(1),n
mat (y) = 0,

∇−C(1),n
mat (y)−

1

16
(n+ 1)nψ1C

(1),n−2
mat (y) = 0,

(2.241)

where

C(1),n
mat (y) ≡ C(1),n

mat α1···αny
α1 · · · yαn . (2.242)

Iterating the first equation of (2.241), we obtain

C(1),2s
mat (y) =

(
s∏

j=1

1

g(2j, νk)

)
(32ψ1∇+)sC(1),0

mat . (2.243)

Since C(1)
mat(y) is restricted to be even in yα, it is entirely determined by the bottom compo-

nent C(1),0
mat via the above relation. After some simple manipulations of (2.241) using (2.106),

we derive the second order form linearized equation

!AdSC
(1),n
mat = −1

8

(
4n+ 8 +

n+ 1

n
g(n, νk)

)
C(1),n

mat . (2.244)

For n = 0, the equation is just the usual Klein-Gordon equation on AdS3, and can be

rewritten in a more familiar form:

(
∇µ∂µ −m2

)
C(1),0

mat = 0, m2 = −1
4
(3− νk)(1 + νk). (2.245)

Depending on the choice of AdS boundary condition, this scalar field is dual to an operator

of dimension

∆± = 1± 1− νk
2

=
1 + νk

2
or

3− νk
2

. (2.246)
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It is convenient to package the choice of boundary condition into a variable ψ̃1, obeying

ψ̃2
1 = 1, so that the scaling dimension of the dual operator can be written as

∆ = 1 + ψ̃1

(
1− νk

2

)
. (2.247)

The boundary to bulk propagator for the scalar field is a solution of (2.245), which up to

normalization is given by

C(1),0
mat = K∆, where K =

z

x⃗2 + z2
. (2.248)

Here (x⃗, z) are Poincaré coordinates of the AdS3 (not to be confused with the twistor variable

zα). Using (2.109) and (2.243), we obtain

C(1)
mat(y) =

∞∑

s=0

C(1),2s
mat (y)

=
∞∑

s=0

(
s∏

j=1

∆+ j − 1

g(2j, νk)

)
(4ψ1)

s(yΣy)sK∆

=
∞∑

s=0

(
s∏

j=1

(∆ + j − 1)(1 + 2j)

j(1 + 2j − νk)(−1 + 2j + νk)

)

ψs
1(yΣy)

sK∆

= 1F1

(
3

2
, 1− ψ̃1

(
1− νk

2

)
,
1

2
ψ1yΣy

)
K1+ψ̃1( 1−νk

2 ).

(2.249)

In the actual master field, the above expression should be understood as a star-function,

with y replaced by ỹ. More concretely, we can transform the ordinary function C(1)
mat(y) to

the star-function C(1)
mat∗(ỹ) via the formula

C(1)
mat∗(ỹ) =

1

(2π)2

∫
d2yd2uC(1)

mat(y)e
iuy exp∗(−iuỹ). (2.250)
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Chapter 3

Correlators in WN Minimal Model

Revisited

3.1 Introduction

The AdS/CFT correspondence [1, 2, 3] is one of the most important insights that came

out of the study of string theory. While it is often said that both strings and the holographic

dimension emerge from the large N and strong ’t Hooft coupling limit of a gauge theory,

there are really two separate dualities in play here. Firstly, a large N CFT, regardless of

whether the ’t Hooft coupling is weak or strong, is holographically dual to some theory of

gravity together with higher spin fields in AdS, whose coupling is controlled by 1/N [19].

It often happens that, then, as a ’t Hooft coupling parameter varies from weak to strong,

the bulk theory interpolates between a higher spin gauge theory and a string theory (where

the AdS radius becomes finite or large in string units). The duality as two separate stories:

holography from large N , and the emergence of strings out of bound states of higher spin
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fields, has become particularly evident in [21].

The holographic dualities between higher spin gauge theories in AdS and vector model

CFTs [19, 20, 4, 21] are a nice class of examples in that they avoid the complication of the

second story mentioned above.1 Both sides of the duality can be studied order by order

in the 1/N expansion. The AdS3/CFT2 version of this duality, proposed by Gaberdiel and

Gopakumar [4], relates a higher spin gauge theory coupled to scalar matter fields in AdS3

[22] and the WN minimal model in two dimensions [31].2 While it was proposed in [4]

that the bulk theory is Vasiliev’s system in AdS3, it was pointed out in [10] and in [12]

that Vasiliev’s system should be dual only perturbatively in 1/N to a subsector of the WN

minimal model, while the full non-perturbative duality requires adding new perturbative

states in the bulk.3

One of the key observations of [4] is that theWN,k minimal model has a ’t Hooft-like limit,

where N is taken to be large while the “’t Hooft coupling” λ = N
k+N is held finite. The basic

evidence is that the spectrum of operators organize into that of “basic primaries”, which

are dual to elementary particles in the bulk, and the composite operators which are dual

to bound states of elementary particles. It was not obvious, however, that the correlation

functions obey large N factorization, as for single trace operators in large N gauge theories.

This will be demonstrated in the current paper. In particular, we will understand which

operators are the fundamental particles, and which ones are their bound states, by extracting

1See [33, 34, 35, 36, 23, 37] for recent nontrivial checks and progress toward deriving the duality with
vector models.

2For works leading up to this duality, and explorations on its consequences, see [5, 6, 7, 38, 39, 30, 24,
10, 12, 40, 41, 42].

3See [42] however for intriguing candidates for some new bulk states in higher spin gauge theories in
AdS3.
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such information from the 1/N expansion of exact correlation functions in the WN minimal

model.

Our main findings are summarized as follows.

1. We derive all sphere three point functions of primaries in the WN minimal model

of the following form: one of the primaries is labelled by a pair of SU(N) representations

(Λ+,Λ−), both of which are symmetric products of the fundamental (or anti-fundamental)

representation f (or f̄), and the other two primaries are completely general.4 We see the

explicit large N factorization in these three point functions. For example, denote by φ the

primary (f , 0) (on both left and right moving sector). The large N factorization leads to the

identification

(A, 0) ∼ 1√
2
φ2,

(S, 0) ∼ 1√
2∆(f ,0)

(φ∂∂̄φ− ∂φ∂̄φ),
(3.1)

where A and S are the anti-symmetric and symmetric tensor product representation of f ,

and ∆(f ,0) = 1 + λ is the scaling dimension of φ at large N . This large N factorization is

a simple check of the duality, in verifying that (A, 0) and (S, 0) are indeed bound states of

two elementary scalar particles in the bulk, and behave as two free particles in the infinite

N limit.

A less obvious example concerns the “light” primary (f , f), which we denote by ω. Its

scaling dimension ∆(f ,f) vanishes in the infinite N limit, and is given by ∆(f ,f) = λ2/N at

order 1/N . Two candidates for the lowest bound state of two ω’s are (A,A) and (S, S),

4The technique used in this paper allows us to go beyond this set using four point functions, but we will
not present those results here.
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both of which have scaling dimension 2∆(f ,f) at order 1/N . We will find that

(A,A) + (S, S)√
2

∼ 1√
2
ω2 (3.2)

is the bound state of two ω’s, while 1√
2
((A,A) − (S, S)) is a new elementary light particle

in the bulk. This shows that the elementary light particles in the bulk also interact weakly

in the large N limit.

A word of caution is that even in the infinite N limit, the space of states is not the

freely generated Fock space of single particle primary states and their descendants. As

observed in [12], for instance, the level (1, 1) descendant of ω, namely 1
∆(f,f)

∂∂̄ω, should be

identified with the the two-particle state (or “double trace operator”) φ φ̃, where φ̃ is the

other basic primary (0, f). We will see that this identification is consistent with the large N

factorization of composite operators made out of ω, φ, and φ̃. This suggests that the Hilbert

space at infinite N is a quotient of the freely generated Fock space, with identifications such

as 1
∆(f,f)

∂∂̄ω ∼ φφ̃. This peculiar feature is closed tied to the presence of light states. The

large N factorization in the WN minimal model holds only up to such identifications.

2. We compute the sphere four-point function of (f , 0), (̄f , 0), with a general primary

(Λ+,Λ−) and its charge conjugate, which generalizes the four-point functions considered in

[12]. This result is not new and is in fact contained in [43]. In [43], the sphere four-point

function was obtained by solving the differential equation due to a null state, which we

will review. The method gives the answer for general N , but is not easy to generalize to

correlators on a Riemann surface of nonzero genus. We will then consider an alternative

method, using contour integrals of screening charges. This second method requires knowing

which contours correspond to which conformal blocks; they will be analyzed in detail through

the investigation of monodromies. While this approach appears rather cumbersome due to
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the complexity of the contour integral, it allows for a straightforward generalization to the

computation of torus two-point functions.5

3. We derive a contour integral expression for the torus two-point function of the basic

primaries (f , 0) and (̄f , 0). Since the result is exact, it can be analytically continued to

Lorentzian signature, yielding the Lorentzian thermal two-point function on the circle. The

latter is a useful probe of the dual bulk geometry. In a theory of ordinary gravity in AdS3,

at temperatures above the Hawking-Page transition, the dominant phase is the BTZ black

hole. The thermal two-point function on the boundary should see the thermalization of

the black hole reflected in an exponential decay behavior of the correlator, for a very long

time before Poincaré recurrence kicks in.6 While the BTZ black hole clearly exists in any

higher spin gravity theory in AdS3, it is unclear whether the BTZ black hole will be the

dominant phase at any temperature at all, as there can be competing higher spin black

hole solutions (see [40, 41, 42]). Nonetheless, the question of whether thermalization occurs

at the level of two-point functions can be answered definitively using the exact torus two-

point function. So far, it appears to be difficult to extract the large N behavior from our

exact contour integral expression, which we leave to future work. In the N = 2 case, i.e.

Virasoro minimal model, where the contour integral involved is a relatively simple one, we

computed numerically certain thermal two-point functions at integer values of times, as a

demonstration in principle.

5Our method is a direct generalization of [44], where the torus two-point function in the Virasoro minimal
model was derived.

6In the WN minimal model, all scaling dimensions are integer multiples of 1
N(N+k)(N+k+1) ∼

λ2

N3 , and

hence Poincaré recurrence must already occur at no later than time scale N3. In fact, we will see that the
Poincare recurrence in the two-point function under consideration occurs at an even shorter time N(k+N).
But if the BTZ black hole dominates the bulk in some temperature of order 1, we should expect to see
thermalization at time scale of order 1 (and ≪ N2).
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In Section 3.2, we will summarize the definitions and convention for WN minimal model

which will be used throughout this paper. Section 3.3 describes the strategy of the compu-

tation, namely using the Coulomb gas formalism. In Section 3.4, 3.5, 3.6 we present a class

of sphere three, four-point, and torus two-point functions, make various checks of the result,

and discuss the implications. We conclude in Section 3.7.

3.2 Definitions and conventions for the WN minimal

model

The WN minimal model can be realized as the coset model

SU(N)k ⊕ SU(N)1
SU(N)k+1

. (3.3)

A priori, through the coset construction, the WN primaries are labeled by a triple of rep-

resentations of SU(N) current algebra (ρ, µ; ν) (at level k, 1, and k + 1 respectively.) By

a slight abuse of notation, we will also denote by ρ, µ, ν the corresponding highest weight

vectors. The three representations are subject to the constraint that ρ + µ − ν lies in the

root lattice of SU(N). Each representation is subject to the condition that the sum of N−1

Dynkin labels is less than or equal to the affine level. This condition determines µ uniquely,

given ρ and ν. We will therefore label the primaries by the pair of the representations

(ρ; ν) ≡ (Λ+,Λ−) from now on.

Let αi, i = 1, · · · , N − 1, be the simple roots of SU(N). They have inner product

αi ·αj = Aij, where Aij is the Cartan matrix. In particular, α2
i = 2. Let ωi, i = 1, · · · , N−1,

be the fundamental weights. They obey ωi · αj = δij . We write F ij = ωi · ωj = (A−1)ij. The
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highest weight λ of some representation Λ takes the form

λ =
N−1∑

i=1

λiω
i, (3.4)

where (λ1, · · · ,λN−1) ∈ Z
N−1
≥0 are the Dynkin labels.

The Weyl vector is

ρ =
N−1∑

i=1

ωi, (3.5)

i.e. it has Dynkin label (1, 1, · · · , 1).

Given a root α, the simple Weyl reflection with respect to α acts on a weight λ by

sα(λ) = λ− (α · λ)α. (3.6)

A general Weyl group element w can be written as w = sα1 · · · sαm . We will use the notation

w(λ) for the Weyl reflection of λ by w. The shifted Weyl reflection w · λ is defined by

w · λ = w(λ+ ρ)− ρ. (3.7)

Now let us discuss the WN character of a primary (Λ+,Λ−). Throughout this paper, we

use the notation p = k +N and p′ = k +N + 1. The central charge is

c = N − 1− N(N2 − 1)

pp′
. (3.8)

Note that ρ2 = 1
12N(N2 − 1). The conformal dimension of the primary is

h(Λ+,Λ−) =
1

2pp′
(
|p′Λ+ − pΛ− + ρ|2 − ρ2

)
. (3.9)

The character of (Λ+,Λ−) can be written as a sum over affine Weyl group elements,

χN
(Λ+,Λ−)(τ) =

1

η(τ)N−1

∑

ŵ∈Ŵ

ϵ(ŵ)q
1

2pp′
|p′ŵ(Λ++ρ)−p(Λ−+ρ)|2 , (3.10)
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where Ŵ is given by the semi-direct product of W with translations by p times the root

lattice, namely an element ŵ ∈ Ŵ acts on a weight vector λ by

ŵ(λ) = w(λ) + pniαi, w ∈ W, ni ∈ Z. (3.11)

ϵ(ŵ) = ϵ(w) is the signature of ŵ.

Let us illustrate this formula with the N = 2 example, i.e. Virasoro minimal model.

Write Λ+ = (r − 1)ω1, 1 ≤ r ≤ p− 1 = k + 1, and Λ− = (s− 1)ω1, 1 ≤ s ≤ p = k + 2. The

Weyl group Z2 contains the reflection w(λ) = −λ. We have ŵ(Λ+ + ρ) = −rω1 + pnα1 =

(−r + 2pn)ω1. So

hr,s =
(p′r − ps)2 − 1

4pp′
, (3.12)

and

χr,s(τ) =
1

η(τ)

∑

n∈Z

[
q

1
4pp′

(p′(r+2pn)−ps)2 − q
1

4pp′
(p′(−r+2pn)−ps)2

]

=
q

1
4pp′

(p′r−ps)2

η(τ)

∑

n∈Z

[
qn(pp

′n+p′r−ps) − q(pn−r)(p′n−s)
] (3.13)

The term corresponding to (w, n = 0) comes from the null state at level rs.

3.3 Coulomb gas formalism

The idea of Coulomb gas formalism is to represent operators in the WN minimal model

by vertex operators constructed out of N − 1 free bosons. This allows for the construction

of all WN currents as well as the primaries of the correct scaling dimensions. However, the

free boson correlators by themselves do not obey the correct fusion rules of the WN minimal

model. To obtain the correct correlation functions, suitable screening operators must be

inserted, and integrated along contours in a conformally invariant manner. More precisely,
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one obtains in this way the WN conformal blocks. One then needs to sums up the conformal

blocks with coefficients determined by monodromies, etc. This strategy is explained below.

3.3.1 Rewriting free boson characters

Let us begin with the following character of N − 1 free bosons, twisted by an SU(N)

weight vector λ,

K̃N
λ (τ) =

1

η(τ)N−1

∑

α∈Λroot

q
1

2pp′
|λ+pp′α|2

=
1

η(τ)N−1

∑

(n1,··· ,nN−1)∈ZN−1

q
1

2pp′
|λ+pp′njαj |2.

(3.14)

Define the lattice

Γx =
√
xΛroot, (3.15)

and its dual lattice

Γ∗
x =

1√
x
Λweight. (3.16)

We may then write

KN
u (τ) =

1

η(τ)N−1

∑

n∈Γpp′

q
1
2 (u+n)2

(3.17)

for u ∈ Γ∗
pp′. In fact, u may be defined in the quotient of lattices,

u ∈ Γ∗
pp′/Γpp′. (3.18)

Note that the number of elements in Γ∗
pp′/Γpp′ is

det(pp′Aij) = N(pp′)N−1. (3.19)

It is useful to consider the decomposition

u = λ + λ′, λ ∈ Γ∗
p
p′
/Γpp′, λ

′ ∈ Γ∗
p′

p

/Γpp′. (3.20)
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This decomposition is well defined up to the identification

(λ,λ′) ∼ (λ+ t,λ′ − t), t ∈ Γ∗
1

pp′
/Γpp′ = (Γ∗

p
p′
∩ Γ∗

p′

p

)/Γpp′. (3.21)

Consider the action of a simple Weyl reflection on v ∈ Γ∗
x,

wα(v) = v − (α · v)α, (3.22)

where α is a root. Since (α · v)α ∈ x− 1
2Λroot = Γ 1

x
, the Weyl action is trivial on Γ∗

x/Γ 1
x
.

In particular, the Weyl action on u is trivial on Γ∗
1

pp′
/Γpp′, and is well defined on λ and

λ′ separately. Therefore, one can define the double Weyl action by W × W on λ and λ′

independently. This will be important in describing WN primaries.

Now consider N − 1 free bosons compactified on the Narain lattice ΓN−1,N−1, which is

even, self-dual, of signature (N − 1, N − 1), defined as7

ΓN−1,N−1 = {(v, v̄)|v, v̄ ∈ Γ∗
pp′, v − v̄ ∈ Γpp′}. (3.24)

The free boson partition function can be decomposed in terms of the characters as

Zbos
ΓN−1,N−1(τ, τ̄) =

∑

u∈Γ∗
pp′

/Γpp′

|KN
u (τ)|2. (3.25)

7To see that ΓN−1,N−1 is even, note that

(v, v̄) · (v, v̄) = v2 − v̄2 = v2 − (v + n)2 = −2v · n− n2, (3.23)

where n ∈ Γpp′ , and the RHS is an even integer. To see that it is self-dual, take a basis (vi, vi) and (vi, 0),
i = 1, · · · , N − 1, where vi ∈ Γpp′ and vi ∈ Γ∗

pp′ are dual basis for the respective lattices. This basis is

unimodular.
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3.3.2 WN characters and partition function

Consider a WN primary (Λ+,Λ−). Using the decomposition u = λ+ λ′ described in the

previous subsection, we may rewrite the WN character

χN
(Λ+,Λ−)(τ) =

1

η(τ)N−1

∑

ŵ∈Ŵ

ϵ(ŵ)q
1

2pp′
|p′ŵ(Λ++ρ)−p(Λ−+ρ)|2

(3.26)

in the form χN
λ+λ′(τ), where

λ =

√
p′

p
(Λ+ + ρ) ∈ Γ∗

p
p′
, λ′ = −

√
p

p′
(Λ− + ρ) ∈ Γ∗

p′

p

. (3.27)

In other words, we write

χN
λ+λ′(τ) =

1

η(τ)N−1

∑

w∈W,n∈Γpp′

ϵ(w)q
1
2 |w(λ)+λ′+n|2

=
∑

w∈W

ϵ(w)KN
w(λ)+λ′(τ).

(3.28)

The rationale for the alternating sum in the above formula is the following. The dimension

of the free boson vertex operator ei(u−Q)·X corresponding to the character KN
u , with linear

dilaton (as will be described in the next subsection), is

hu =
1

2
u2 − 1

2
Q2. (3.29)

Let w be a simple Weyl reflection, by a root αw. A simple computation shows that

hw(λ)+λ′ = hλ+λ′ + (αw · λ)(−αw · λ′). (3.30)

If we restrict λ and −λ′ to sit in the identity Weyl chamber of Γ∗
p
p′

and Γ∗
p′

p

, then (αw ·

λ)(−αw · λ′) is always a nonnegative integer. It is possible to subtract off the character

KN
w(λ)+λ′ to make the theory “smaller”. The alternating sum in (3.28) does this in a Weyl

invariant manner8, and gives the character χN
λ+λ′(τ) of the WN minimal model.

8For w not a simple Weyl reflection, one can show that hw(λ)+λ′ − hλ+λ′ is still a nonnegative integer,
when λ and −λ′ sit in the identity Weyl chamber of Γ∗

p

p′
and Γ∗

p′

p

.
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Note that χN
λ+λ′(τ) vanishes identically whenever (λ,λ′) is fixed by the action of a sub-

group of the double Weyl group W ×W . The set of inequivalent characters are thus pa-

rameterized by

E = (Γ∗
pp′/Γpp′ − {fixed points})/W ×W. (3.31)

This is also the set of inequivalent WN primaries. The partition function of the WN minimal

model is given by the diagonal modular invariant

ZN
p,p′(τ, τ̄ ) =

∑

(Λ+,Λ−)

|χN
(Λ+,Λ−)(τ)|2

=
1

N(N !)2

∑

λ∈Γ∗
p
p′

/Γpp′ , λ
′∈Γ∗

p′
p

/Γpp′

|χN
λ+λ′(τ)|2

=
1

(N !)2

∑

u∈Γ∗
pp′

/Γpp′

|χN
u (τ)|2,

(3.32)

where the first sum is only over inequivalent (Λ+,Λ−) under shifted Weyl reflections. The

decomposition u = λ+λ′ is understood in going between the last two lines (λ,λ′ are defined

up to a shift by t ∈ Γ∗
1

pp′
/Γpp′).

Let us illustrate again with the N = 2 example. In this case, Γpp′ =
√
2pp′ Z, Γ∗

pp′ =

1√
2pp′

Z. We have

λ ∈

√
p′

2p
Z, λ′ ∈

√
p

2p′
Z, t ∈

√
pp′

2
Z, (3.33)

and

Γ∗
pp′

Γpp′
≃ Z2p × Z2p′

Z2
(3.34)

W ≃ Z2 acts on Γx by reflection. The set of inequivalent characters is

E ≃
Z×
p × Z

×
p′

Z2
, (3.35)
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where the Z2 identification on Z×
p × Z

×
p′ is

(r, s)→ (r + p, s+ p′) ∼ (p− r, p′ − s). (3.36)

Returning to the general WN characters, the modular transformation on χN
u (τ) takes the

form

χN
u (−1/τ) =

∑

ũ∈Γ∗
pp′

/Γpp′

S̃u,ũχ
N
ũ (τ), S̃u,ũ =

1√
N(pp′)N−1

e−2πiu·ũ. (3.37)

The RHS is not yet written as a sum over independent characters. After doing so, we have

χN
u (−1/τ) =

∑

ũ∈
(
Γ∗
pp′

/Γpp′−fixed
)
/W×W

Su,ũχ
N
ũ (τ), (3.38)

where

Su,ũ =
∑

(w,w′)∈W×W

ϵ(w)ϵ(w′)Su,w(λ̃)+w′(λ̃′). (3.39)

3.3.3 Coulomb gas representation of vertex operators and screen-

ing charge

We have seen that the partition function of the WN minimal model may be obtained

from that of the free bosons on the lattice ΓN−1,N−1 by twisting by ϵ(w) in a sum over action

by Weyl group elements w ∈ W . The free boson vertex operators corresponding to lattice

vectors of ΓN−1,N−1 take the form

eiv·X+iβ·XL , (3.40)

where v ∈ Γ∗
pp′, and β ∈ Γpp′. The lowest weight states appearing in the characters |KN

u |2

are of the form eiv·X .
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Given a WN primary labeled by (Λ+,Λ−), we associate it with the free boson vertex

operator eiv·X , with the identification

v =

√
p′

p
Λ+ −

√
p

p′
Λ−. (3.41)

In order to match the conformal dimensions, we need to turn on a linear dilaton background

charge Q = 2v0ρ, where v0 = 1
2

(√
p
p′ −

√
p′

p

)
= − 1

2
√
pp′

. The conformal weight of eiv·X in

the linear dilaton CFT is then

hv−Q =
1

2
(v −Q)2 − 1

2
Q2 =

1

2
v2 −Q · v. (3.42)

Using

u = v −Q =

√
p′

p
(Λ+ + ρ)−

√
p

p′
(Λ− + ρ),

Q2 =
1

pp′
ρ2 =

1

12pp′
N(N2 − 1),

(3.43)

we see that indeed

hv−Q = h(Λ+,Λ−). (3.44)

We will denote by Ov a primary of the WN algebra and by Vv the corresponding free

chiral boson vertex operator eiv·XL . On a genus g Riemann surface, correlators of the linear

dilaton CFT are nontrivial only if the total charge is (2 − 2g)Q. For instance, the non-

vanishing sphere two-point functions must involve a pair of operators Vv and V2Q−v, of equal

conformal weights and total charge 2Q. On the other hand, the fusion rule in the WN

minimal model is such that the correlation function ⟨Ov1 · · ·Ovn⟩ is nonvanishing only if

∑n
i=1 vi ∈ Γ p′

p

+ Γ p
p′
= Γ 1

pp′
.

For each simple root αi, we have

√
p

p′
αi ∈ Γ p

p′
,

√
p′

p
αi ∈ Γ p′

p

. (3.45)
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The vertex operators

V +
i = V√ p

p′
αi
, V −

i = V
−
√

p′

p
αi
. (3.46)

have conformal weight 1, and can be used as screening operators. By inserting screening

charges, the contour integrals of these screening operators, we can obtain all correlators of

WN primaries that obey the fusion rule. We can also absorb the background charge with

screening charges. This relies on the fact

ρ =
1

2

∑

α∈∆+

α, (3.47)

where ∆+ is the set of all positive roots. So we can write

2Q = 4v0ρ =
∑

α∈∆+

(√
p

p′
α−

√
p′

p
α

)

. (3.48)

which may be further written as a sum of non-negative integer multiples of
√

p
p′αi and

−
√

p′

p αi, which are the screening operators.

As an example, consider Ov and its charge conjugate operator Ov. If Vv is the Coulomb

gas representation of Ov, then V2Q−v has the correct dimension and charge (modulo root

lattice) to represent Ov. Alternatively, one may take Vv, which differs from V2Q−v by some

screening charges. There is a Weyl reflection w0 (the longest Weyl group element) such that

w0(v) = −v, w0(ρ) = −ρ. (3.49)

The shifted Weyl transformation by w0 acts as

w0 · v =

√
p′

p
(w0(Λ+ + ρ)− ρ)−

√
p

p′
(w0(Λ− + ρ)− ρ)

= 2Q− v.

(3.50)

So indeed v and 2Q−v are identified by Weyl reflection and represent the same WN primary.
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3.4 Sphere three-point function

On the sphere, WN conformal blocks can also be computed directly from affine Toda

theory, by taking the residue of affine Toda conformal blocks as the vertex operators approach

those of the WN minimal model [43]. This spares us the messy screening integrals in the

Coulomb gas approach, and allows for easy extraction of explicit three-point functions. Our

computation closely follows that of [43].

3.4.1 Two point function and normalization

The two and three point functions in WN minimal model can be obtained from those of

the affine Toda theory, as follows. The affine Toda theory is given by the N −1 bosons with

linear dilaton described in the previous section, with an additional potential

µ
N−1∑

i=1

ebαi·X (3.51)

added to the Lagrangian. Following the convention of [43], the background charge Q is

related to b by Q = (b+ b−1)ρ, where ρ is the Weyl vector. Note that Q will be related to Q

in the previous section by Q = iQ. Normally, one considers the affine Toda theory with real

b and Q. To obtain correlators of WN minimal model, analytic continuation on b as well as

a residue procedure will be applied, as we will describe later.

The primary operators in the affine Toda theory are given by

Vv = ev·X . (3.52)

Vv and Vw·v represent the same operator (recall that w · v is the shift Weyl transformation

of v by w ∈ W ), but generally come with different normalizations. They are related by

Vv = Rw(v)Vw·v, (3.53)
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where Rw(v) is the reflection amplitude computed in [45]:

Rw(v) =
A(w · v)
A(v)

=
A(w(v−Q) +Q)

A(v)
, (3.54)

and

A(v) =
[
πµγ(b2)

] (v−Q,ρ)
b

∏

i>j

Γ(1− b(v −Q,hj − hi))Γ(−b−1(v−Q,hj − hi))

=

[
πµ

−1
γ(−b2)

b−4

] (v−Q,ρ)
b ∏

i>j

Γ(1− bPij)Γ(−b−1Pij),

(3.55)

where Pij ≡ (Q − v) · (hi − hj). In particular, applying this for the longest Weyl group

element w0, we obtain the relation

Vv̄ =
A(2Q− v)

A(v)
V2Q−v, (3.56)

where v̄ is the conjugate of v. Notice that the function A(v) has the property A(v) = A(v̄).

The operators Vv are such that the two point function between Vv and V2Q−v is canonically

normalized,

⟨Vv(x)V2Q−v(0)⟩ =
1

|x|2∆v

. (3.57)

It follows that that two point function of Vv and its charge conjugate is

⟨Vv(x)Vv̄(0)⟩ =
A(2Q− v)

A(v)

1

|x|2∆v

. (3.58)

In the WN minimal model, by (3.74), we have a similar relation (by a slight abuse of

notation, we now denote by Vv the primary operator in theWN minimal model that descends

from the corresponding exponential operator in the free boson theory)

Vv = Rw(v)Vw·v, (3.59)
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where

Rw(v) =
A(w · v)
A(v)

=
A(w(v −Q) +Q)

A(v)
, (3.60)

and

A(v) =

[

πµ
−1
γ(p

′

p )

(
p

p′

)2
]−√ p

p′
(v−Q,ρ)∏

i>j

Γ(1 +

√
p′

p
Pij)Γ(−

√
p

p′
Pij), (3.61)

where Pij = (v−Q) · (hi−hj). The two point function between Vv and its charge conjugate

is then

⟨Vv(x)Vv̄(0)⟩unnorm =
A(2Q− v)

A(v)

1

|x|2∆v
. (3.62)

In computing this in the Coulomb gas formalism, appropriated screening charges are in-

serted, to saturate the background charge. Consequently, the vacuum isn’t canonically

normalized. In fact, we have

⟨1⟩unnorm =
A(2Q)

A(0)
. (3.63)

The normalized correlators are related by

⟨V1 · · ·Vn⟩ =
⟨V1 · · ·Vn⟩unnorm

⟨1⟩unnorm =
A(0)

A(2Q)
⟨V1 · · ·Vn⟩unnorm. (3.64)

Here again the “unnormalized” n-point function is understood to be computed with appro-

priated screening charges inserted. Next, we define the normalized operators Ṽv by

Ṽv =

√
A(v)A(2Q)

A(2Q− v)A(0)
Vv ≡ B(v)Vv, (3.65)

and then we have
〈
Ṽv(x)Ṽv̄(0)

〉
=

1

|x|2∆v
. (3.66)
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3.4.2 Extracting correlation functions from affine Toda theory

Let us proceed to the three point functions in the WN minimal model:

⟨Vv1Vv2Vv3⟩
unnorm =

CWN
(v1, v2, v3)

|x12|∆1+∆2−∆3 |x23|∆2+∆3−∆1 |x13|∆1+∆3−∆2
. (3.67)

where ∆i denotes the total scaling dimension of Vvi . The normalized three point functions

of the normalized operators Ṽvi are given by

〈
Ṽv1 Ṽv2 Ṽv3

〉
= B (v1)B (v2)B (v3)

−1 ⟨Vv1Vv2V2Q−v̄3⟩
unnorm, (3.68)

and the structure constants, with two-point functions normalized to unity, are

Cnor(v1, v2, v3) = B (v1)B (v2)B (v3)
−1CWN

(v1, v2, 2Q− v̄3). (3.69)

Nontrivial data are contained in the structure constants CWN
(v1, v2, v3), which we now com-

pute.

In the affine Toda theory, the three point functions of the operators (3.52) are of the

form

⟨Vv1Vv2Vv3⟩ =
CToda(v1,v2,v3)

|x12|∆1+∆2−∆3|x23|∆2+∆3−∆1 |x13|∆1+∆3−∆2
. (3.70)

The structure constants CToda(v1,v2,v3) are computed in [43]. They have poles when the

relation

v1 + v2 + v3 + b
N−1∑

k=1

skαk +
1

b

N−1∑

k=1

s′kαk = 2Q (3.71)

is obeyed, where sk and s′k are nonnegative integers. The pole structure is as follows. For

general vi’s, define a charge vector ϵ =
∑
ϵiαi through the following equation

v1 + v2 + v3 + b
N−1∑

k=1

skαk +
1

b

N−1∑

k=1

s′kαk + ϵ = 2Q. (3.72)
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The relation (3.71) is obeyed when ϵi = 0, i = 1, · · · , N − 1. This is an order N − 1 pole

of the structure constant CToda(v1,v2,v3), understood as a function of ϵ. The WN minimal

model structure constant, CWN
(v1, v2, v3), is computed by taking N −1 successive residues,9

resϵ1→0resϵ2→ϵ1 · · · resϵN−1→ϵN−2CToda(v1,v2,v3), (3.73)

and then analytically continuing to the following imaginary values of b and vi,

b = −i

√
p′

p
, vj = ivj . (3.74)

The relation (3.71) is always satisfied by the vi’s obeying the WN fusion rules in some

Weyl chamber. The overall normalization of the three point function can be then fixed by

requiring

CWN
(0, 0, 2Q) = 1. (3.75)

In [43], by bootstrapping the sphere four point function, the following class of three point

function coefficients were computed in the affine Toda theory:

CToda(v1,v2,κω
N−1)

=
[
πµγ(b2)b2−2b2

] (2Q−
∑

vi,ρ)
b

(Υ(b))N Υ(κ)
∏

α∈∆+

Υ
(
(Q− v1) · α

)
Υ
(
(Q− v2) · α

)

N−1∏
i,j=1

Υ
(

κ

N + (v1 −Q) · hi + (v2 −Q) · hj

) ,
(3.76)

where κ is a real number, ωN−1 is the fundamental weight vector associated to the anti-

fundamental representation, and the hk’s are charge vectors defined as

hk = ω1 −
k−1∑

i=1

αi, (3.77)

9The residue (3.73) can also be computed using a Coulomb gas integral. See (1.24) of [43].
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where ω1 is the first fundamental weight, associated with the fundamental representation.

The function Υ is defined by

logΥ(x) =

∫ ∞

0

dt

t

[(
Q
2
− x

)2

e−t −
sinh2

(Q
2 − x

)
t
2

sinh bt
2 sinh t

2b

]

. (3.78)

It obeys the identities,

Υ(x+ b) = γ(bx)b1−2bxΥ(x),

Υ(x+ 1/b) = γ(x/b)b2x/b−1Υ(x),

Υ(x) = Υ(b+ 1/b− x),

(3.79)

and has zeros at x = −nb −m/b and at x = (1 + n)b+ (1 +m)/b, for nonnegative integers

n,m.

The procedure of computing CWN
(v1, v2, v3) from the residue of (3.76), when v3 is pro-

portional to ωN−1, is carried out in Appendix 3.A. The result is

CWN

(
v1, v2,

(√
p′

p
n−

√
p

p′
m

)
ωN−1

)

=

(
p′

p

)∑N−2
j=1 (sjs′j+1−sj+1s′j)

[
−µπ
γ(p

′

p )

]N−1∑

k=1
sk [
−µ′π

γ( p
p′ )

]N−1∑

k=1
s′k

⎛

⎜⎝
s′N−1−1∏

k=0

sN−1−1∏

l=0

−1
(√

p′

p (n− l)−
√

p
p′ (m− k)

)2

⎞

⎟⎠

×
[
sN−1−1∏

l=0

γ(1 +m− p′

p
(n− l))

]⎡

⎣
s′N−1−1∏

k=0

γ(1 + n− p

p′
(m− k))

⎤

⎦
N−1∏

j=1

R
sj,j−1,s′j,j−1

j,0 ,

(3.80)
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where R
sj,j−1,s′j,j−1

j,0 is the ϵ = 0 value of

R
sj,j−1,s′j,j−1

j,ϵ =

⎛

⎜⎝
s′j,j−1∏

k=1

sj,j−1∏

l=1

−1

(ϵ · hj +
√

p
p′k −

√
p′

p l)
2

N∏

i=j+1

1

(P 1
ij −

√
p
p′k +

√
p′

p l)
2

1

(P 2
ij −

√
p
p′k +

√
p′

p l)
2

⎞

⎟⎠

×
[sj,j−1∏

l=1

γ(ϵ · hj +
p′

p
l)

N∏

i=j+1

γ(

√
p′

p
P 1
ij +

p′

p
l)γ(

√
p′

p
P 2
ij +

p′

p
l)

]

×

⎡

⎣
s′j,j−1∏

k=1

γ(ϵ · hj +
p

p′
k)

N∏

i=j+1

γ(−
√

p

p′
P 1
ij +

p

p′
k)γ(−

√
p

p′
P 2
ij +

p

p′
k)

⎤

⎦ .

(3.81)

P 1
ij and P 2

ij are defined as P r
ij = (vr − Q) · (hi − hj), r = 1, 2, and the function γ(x) is

defined as γ(x) = Γ(x)/Γ(1 − x). µ′ is the dual cosmological constant, which is related to

the cosmological constant µ by

µ′ =
1

πγ
(
− p

p′

)
[
πµγ

(
−p

′

p

)]− p
p′

. (3.82)

In the special case of s′i = 0 for all i = 1, · · · , N − 1, the expressions simplify:

CWN

(

v1, v2,

(√
p′

p
n−

√
p

p′
m

)

ωN−1

)

=

[
−µπ
γ(p

′

p )

]N−1∑

k=1
sk [sN−1−1∏

l=0

γ(1 +m− p′

p
(n− l))

]
N−1∏

j=1

R
sj,j−1,0
j,0 ,

(3.83)

and

R
sj,j−1,0
j,0 =

[sj,j−1∏

l=1

γ(
p′

p
l)

N∏

i=j+1

γ(

√
p′

p
P 1
ij +

p′

p
l)γ(

√
p′

p
P 2
ij +

p′

p
l)

]

. (3.84)

3.4.3 Large N factorization

In this section, we compute three point functions of WN primaries (f , 0), (f , f), and/or

their charge conjugates, with the primary (Λ+,Λ−) where Λ± are the symmetric or anti-

symmetric tensor products of f or f̄ . While the former are thought to be dual to elementary
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scalar fields in the bulk AdS3 theory, the latter are expected to be composite particles, or

bound states, of the former. If this interpretation is correct, then the three point functions

in the large N limit must factorize into products of two-point functions, as the bound states

become unbound at zero bulk coupling. We will see that this is indeed the case. Our method

can be carried out more generally to identify all elementary particles and their bound states

in the bulk at large N , including the light states.

Massive scalars and their bound states

To begin with, let us consider the three point function of (̄f , 0), (̄f , 0), and (A, 0), where

A is the antisymmetric tensor product of two f ’s. Note that in the large N limit, (f , 0) has

scaling dimension ∆(f ,0) = 1 + λ, while (A, 0) has twice the dimension, and is expected to

be the lowest bound state of two (f , 0)’s. The charge vectors are

v1 = v2 =

√
p′

p
ωN−1, v3 =

√
p′

p
ω2. (3.85)

The structure constant, extracted using affine Toda theory, is

CWN

(√
p′

p
ωN−1,

√
p′

p
ωN−1, 2Q−

√
p′

p
ωN−2

)
=

[
−µπ
γ(p

′

p )

]
γ

(
1− p′

p

)
γ

(
2
p′

p
− 1

)
.

(3.86)

By (3.69), the normalized structure constant are computed to be

Cnor =
√
2

[
−
(1− 1

N )Γ(−λ)Γ(2λN )Γ(λ− λ
N )Γ(−1− λ

N )

(1 + λ
N )3Γ(λ)Γ(−λ+ λ

N )Γ(−2λ
N )Γ( λN )

] 1
2

=
√
2− 2 + 4λ+ πλ cotπλ+ 2λ(γ + ψ(λ))√

2N
+O(

1

N2
),

(3.87)

where γ is the Euler-Mascheroni constant, and the ψ(λ) is the digamma function.

In the infinite N limit, the bulk theory is expected to become free. If we denote (f , 0)

by φ, the OPE of φ should behave like that of a free field of dimension ∆(f ,0). Given the
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two-point function

〈
φ(x)φ̄(0)

〉
=

1

|x|2∆(f,0)
, (3.88)

the product of two φ’s, normalized as 1√
2
φ2, has the two point function 1/|x|4∆(f,0). With

the identification

(A, 0) ∼ 1√
2
φ2, (3.89)

i.e. (A, 0) as a bound state of two φ’s that becomes free in the large N limit, the three-point

function coefficient is indeed
√
2, agreeing with the free correlator ⟨φ̄(x1)φ̄(x2)

1√
2
: φ2(x3) :⟩.

(A, 0)

(f̄ , 0)

(f̄ , 0)

The next example we consider is the three point function of two (̄f , 0)’s and (S, 0), where

S is the symmetric tensor product of two f ’s. In the large N limit, (S, 0) has dimension

2∆(f ,0) + 2, and may be expected to be an excited resonance of two (f , 0)’s. The charge

vectors of the three primaries are

v1 = v2 =

√
p′

p
ωN−1, v3 =

√
p′

p
2ω1. (3.90)

The structure constant computed from Coulomb integral is very simple:

CWN

(√
p′

p
ωN−1,

√
p′

p
ωN−1, 2Q−

√
p′

p
2ωN−1

)

= 1, (3.91)

and the normalized structure constant is

Cnor =

[
2Γ(−λ)Γ( λN )Γ(−2− 2λ

N )Γ(2 + λ+ λ
N )

NΓ(λ)Γ(−1 − λ
N )Γ(2 + 2λ

N )Γ(−1 − λ− λ
N )

] 1
2

=
1 + λ√

2
+
λ(1 + λ)(−4 + 2γ + ψ(−1− λ) + ψ(2 + λ))

2
√
2N

+O(
1

N2
).

(3.92)
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Let us compare (S, 0) with the primary that appears in the OPE of two free fields φ’s at

level (1, 1), with normalized two-point function,

1√
2∆(f ,0)

(φ∂∂̄φ− ∂φ∂̄φ). (3.93)

The structure constant of (3.93) with two φ̄’s is ∆(f ,0)/
√
2, precisely agreeing with (3.92) in

the large N limit, as ∆(f ,0) = 1 + λ. This leads us to identify

(S, 0) ∼ 1√
2∆(f ,0)

(φ∂∂̄φ− ∂φ∂̄φ). (3.94)

Next, we consider the three point function of (f , 0), (f̄ , 0), and (adj, 0), where adj is the

adjoint representation of SU(N). A similar computation gives10

Cnor((f , 0), (f̄ , 0), (adj, 0)) =

[
(1− 1

N )Γ(−λ)Γ(λ− λ
N )

(1 + λ
N )2Γ(λ)Γ(−λ+ λ

N )

] 1
2

= 1−
1 + λ+ 1

2πλ cotπλ− λψ(λ)
N

+O(
1

N2
).

(3.95)

This allows us to identify

(adj, 0) ∼ φφ̄, (3.96)

in large N limit.

As a simple check of our identification, we can compute the three point function of

(A, 0), (S, 0), and (adj, 0), which is expected to factorize into three two-point functions (i.e.

∼ ⟨φφ̄⟩3) in the large N limit. Indeed, with the three charge vectors

v1 =

√
p′

p
ω2, v2 =

√
p′

p
2ωN−1, v3 =

√
p′

p
(ω1 + ωN−1), (3.97)

10Here and from now on, we write Cnor(v1, v2, v3) in terms of the three pairs of representations rather
than charge vectors.
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we have

CWN

(√
p′

p
ω2,

√
p′

p
2ωN−1, 2Q−

√
p′

p
(ω1 + ωN−1)

)

=

[
−µπ
γ(p

′

p )

]N−2

γ(1− 2
p′

p
)γ(

p′

p
)

[
N∏

i=3

γ

((
p′

p
− 1

)
(2− i)

)
γ

(
p′

p
(δi,N − 1 + i) + (2− i)

)]
,

(3.98)

and for the normalized structure constant,

Cnor((A, 0), (S, 0), (adj, 0)) =

[
N4(1 + λ)3Γ(1 + λ)Γ

(
−1 + λ+ λ

N

)

(N + λ)2(N + 2λ)2Γ(−1 − λ)Γ
(
2 + λ+ λ

N

)
] 1

2

= (1 + λ)− λ(1 + λ)(6 + ψ(−1− λ) + ψ(2 + λ))

2N
+O(

1

N2
),

(3.99)

which is indeed reproduced in the large N limit by the three point function of free field

products 1√
2
φφ, 1√

2∆(f,0)
(φ̄∂∂̄φ̄− ∂φ̄∂̄φ̄), and φφ̄.

(adj, 0)

(A, 0)

(S̄, 0)

Light states

The bound states of basic primaries discussed so far can be easily guessed by comparison

the scaling dimensions in the large N limit. This is less obvious with the light states, which

are labeled by a pair of identical representations, i.e. of the form (R,R).

To begin with, consider the light state (f , f), whose dimension in the large N limit is

∆(f ,f) = λ2/N . The OPE of two (f , f)’s contains (A,A) and (S, S), whose dimensions in the

large N limit are both 2∆(f ,f), as well as (A, S) and (S,A), whose dimensions are 2∆(f ,f)+2.

A linear combination of (A,A) and (S, S) is thus expected to be the lowest bound state
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of two (f , f)’s. This linear combination can be determined by inspecting the three-point

functions of two (f̄ , f̄)’s with (A,A) and (S, S).

The normalized structure constant of two (f̄ , f̄)’s with (A,A) is computed to be

Cnor((f̄ , f̄), (f̄ , f̄), (A,A)) =

[
(N + λ)Γ (1− λ)Γ

(
2λ
N

)
Γ
(
3λ
N

)2
Γ
( −3λ
N+λ

)2
Γ
( −2λ
N+λ

)

NΓ
(−3λ

N

)2
Γ
(−2λ

N

)
Γ (1 + λ)Γ

( −N
N+λ

)
Γ
(

2λ
N+λ

)

×
Γ
( −λ
N+λ

)
Γ
(

Nλ
N+λ

)
Γ
(
N+λ
N

)
Γ
(
1 + λ− λ

N

)
Γ
(
N+2λ−Nλ

N+λ

)

Γ
(

3λ
N+λ

)2
Γ
(−Nλ
N+λ

)
Γ
(

N(1+λ)
N+λ

)
Γ
(
N+λ−Nλ

N

)
Γ
(
N−λ
N

)

⎤

⎦

1
2

= 1 +
λ2(−π cotπλ+ π2λ cot2 πλ− 18γ − 2ψ(λ)− 2λψ(1)(λ))

2N2
+O(

1

N3
),

(3.100)

and with (S, S),

Cnor((f̄ , f̄), (f̄ , f̄), (S, S))

=

⎡

⎣2
− 4λ2

N2+Nλ (N + 1)2Γ (1− λ)Γ
(
λ+Nλ

N

)
Γ
(−λ−Nλ

N+λ

)
Γ
(

N+3λ
2N+2λ

)
Γ
(
1
2 −

λ
N

)
Γ
(
N+λ+Nλ

N+λ

)

N2Γ (λ)Γ
(

N−λ
2(N+λ)

)
Γ
(−Nλ
N+λ

)
Γ
(
1
2 +

λ
N

)
Γ
(
N+2λ+Nλ

N+λ

)
Γ
(
N−λ−Nλ

N

)

⎤

⎦

1
2

= 1 +
λ2(π cotπλ− π2λ csc2 πλ+ 2(γ + ψ(λ) + λψ(1)(λ)))

2N2
+O(

1

N3
),

(3.101)

where ψ(1)(λ) is the trigamma function. We will denote the operator (f , f) by ω, and the

lowest nontrivial operator in the OPE of two such light operators by ω2. Anticipating large

N factorization, if ω were a free field, then the product operator with correctly normalized

two-point function is 1√
2
ω2. The structure constant fusing two ω’s into their bound state

1√
2
ω2 is therefore

√
2 in the free limit. This is indeed the case: the three point function

coefficient of two (f̄ , f̄)’s and the linear combination 1√
2
((S, S) + (A,A)) is

Cnor =
√
2− 4

√
2γλ2

N2
+O(

1

N3
). (3.102)

This leads to the identification

(S, S) + (A,A)√
2

∼ 1√
2
ω2. (3.103)
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The other linear combination

(S, S)− (A,A)√
2

(3.104)

is orthogonal to ω2 and has vanishing three point function with two (f̄ , f̄)’s in the large N

limit. It is therefore a new elementary light particle.

To identify the first excited composite state of two (f , f)’s as a linear combination of

(A, S) with (S,A), we compute the structure constants

Cnor((f̄ , f̄), (f̄ , f̄), (A, S)) =

⎡

⎣π
2(N − 1)(N + λ)6 csc 2πλ

N csc Nπλ
N+λΓ(1− λ)Γ

(
N

N+λ

)
Γ
(−N−λ

N

)

N6Γ (λ)Γ
(
λ
N

)
Γ
( −N
N+λ

)
Γ
( −2λ
N+λ

)
Γ
(−Nλ
N+λ

)2
Γ
(

(1+N)λ
N+λ

)

×
Γ
(
N+3λ
N+λ

)
Γ
(
N−λ+Nλ

N

)
Γ
(
N−Nλ
N+λ

)

Γ
(
1− λ+ λ

N

)
Γ
(
3N−2λ

N

)2

] 1
2

=
λ2

2N
− λ2(1− 3λ+ πλ cotπλ+ 2λγ + 2λψ(λ))

2N3
+O(

1

N4
),

(3.105)

and

Cnor((f̄ , f̄), (f̄ , f̄), (S,A)) =

[
π2(N − 1)N6 csc πλ csc 2Nπ

N+λΓ
( −N
N+λ

)
Γ
(
N+λ
N

)
Γ
(
1− 2λ

N

)

(N + λ)6Γ (λ)2 Γ
(
2λ
N

)
Γ
(−λ−Nλ

N

)
Γ
( −λ
N+λ

)
Γ
(−Nλ
N+λ

)

×
Γ
(
1 + λ+ λ

N

)
Γ
(
N+2λ−Nλ

N+λ

)
Γ
(
N+λ+Nλ

N+λ

)

Γ
(

N(1+λ)
N+λ

)
Γ
(−N−λ

N

)
Γ
(
3N+5λ
N+λ

)2

⎤

⎦

1
2

=
λ2

2N
+
λ2(1− 5λ+ πλ cotπλ+ 2λγ + 2λψ(λ))

2N3
+O(

1

N4
).

(3.106)

Comparing its large N limit with the free field products leads to the identification of

1√
2
((A, S) + (S,A)) as the two-particle state,

(A, S) + (S,A)√
2

∼ 1√
2∆(f ,f)

(ω∂∂̄ω − ∂ω∂̄ω). (3.107)

Note that the RHS of (3.107) has the correctly normalized two-point function provided that

the dimension of ω is ∆(f ,f) = λ2/N . The orthogonal linear combination 1√
2
((A, S)− (S,A))
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has vanishing three point function with two (f̄ , f̄)’s at infinite N .

There is an important subtlety, pointed out in [12]: while 1
∆(f,f)

∂∂̄ω is a descendant of ω,

it is not truly an elementary particle. In fact, direct inspection of three-point functions at

large N shows that it should be identified with the bound state of φ = (f , 0) and φ̃ = (0, f),

i.e.

1

∆(f ,f)
∂∂̄ω ∼ φ φ̃. (3.108)

This is not in conflict with the statement that ω itself is an elementary particle, since in

the large N limit ∂∂̄ω (without the normalization factor 1/∆(f ,f)) becomes null. With the

identification (3.108), we can also express (3.107) as

(A, S) + (S,A)√
2

∼ 1√
2

(
ωφφ̃− 1

∆(f ,f)
∂ω∂̄ω

)
. (3.109)

In the next subsection, we will see a nontrivial consistency check of this identification.

Light states bound to massive scalars

So far we have seen that the massive elementary particles and the light particles interact

weakly among themselves at large N . One can also see that the bound state between a

massive scalar and a light state becomes free in the large N limit. We will consider the

example of (f , 0) and (f , f) fusing into (A, f) or (S, f). At infinite N , the operators (A, f)

and (S, f) have the same dimension as that of the basic primary (f , 0), namely ∆(f ,0) = 1+λ,

and the light state (f , f) has dimension zero. A linear combination of (A, f) and (S, f) should

be identified with the lowest bound state of (f , 0) and (f̄ , f̄). This is seen from the three
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point function coefficients

Cnor((f̄ , 0), (f̄ , f̄), (A, f)) =

⎡

⎣−
π(N − 1)2 csc 2πλ

N+λ csc
Nπλ
N+λ sin

Nπ
N+λΓ

(
λ−Nλ
N+λ

)
Γ
(
1 + λ

N+λ

)2

N2Γ
(−Nλ
N+λ

)2
Γ
(

N(1+λ)
N+λ

)
Γ
(
N+3λ
N+λ

)2

⎤

⎦

1
2

=
1√
2
+

λ

2
√
2N

(π cotπλ+ 2γ + 2ψ(λ)) +O(
1

N2
),

(3.110)

and

Cnor((f̄ , 0), (f̄ , f̄), (S, f)) =

⎡

⎣
2−1+ 4λ

N+λ (N + 1)Γ
(
N−Nλ
N+λ

)
Γ
(
N+λ+Nλ

N+λ

)
Γ
(

N+2λ
2(N+λ)

)

NΓ
(
N+2λ+Nλ

N+λ

)
Γ
(

−λ
2(N+λ)

)
Γ
(
N+λ−Nλ

N+λ

)

⎤

⎦

1
2

=
1√
2
− λ

2
√
2N

(π cotπλ+ 2γ + 2ψ(λ)) +O(
1

N2
).

(3.111)

By comparing with the free field product of the elementary massive scalar φ with the light

field ω, we can identify

(A, f) + (S, f)√
2

∼ φω. (3.112)

The orthogonal linear combination 1√
2
((A, f) − (S, f)) has vanishing three point function

with (f , 0) and (f , f) in the infinite N limit. This is a new elementary particle, with the

same mass as that of φ in the infinite N limit.11

One can further study the fusion of (0, f) with (A, f) into (A, S), and the fusion of (0, f)

with (S, f) into (S,A). The normalized structure constants for both three-point functions

are 1/
√
2 in the infinite N limit. In particular,

Cnor

(
(0, f̄),

(Ā, f̄) + (S̄, f̄)√
2

,
(A, S) + (S,A)√

2

)
=

1√
2
+O(

1

N
). (3.113)

11We thank S. Raju for emphasizing this point. Note that on dimensional grounds, if 1√
2
((A, f) − (S, f))

were a bound state, it could only be that of (f , 0) with a light state of the form (R,R), but by fusion rule
R must be f , and we already know that 1√

2
((A, f) − (S, f)) is orthogonal to the bound state of (f , 0) with

(f , f) in the large N limit.
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This is precisely consistent with the identifications

(0, f) ∼ φ̃,
(A, f) + (S, f)√

2
∼ φω,

(A, S) + (S,A)√
2

∼ 1√
2

(
ωφφ̃− 1

∆(f ,f)
∂ω∂̄ω

)
.

(3.114)

The leading O(N0) contribution to (3.113) comes from the free field contraction of

〈

φ̃ : φω :
: ωφφ̃ :√

2

〉

. (3.115)

This is shown in the following (bulk) picture

(A, S) + (S,A)

(0, f̄)

(Ā, f̄) + (S̄, f̄)

φ̃

φ

ω

As the last example of this section, let us also observe the following three-point function:

Cnor

(
(0, f̄),

(Ā, f̄)− (S̄, f̄)√
2

,
(A, S)− (S,A)√

2

)
=

1√
2
+O(

1

N
). (3.116)

As argued earlier, the operator 1√
2
((A, f)− (S, f)) is an elementary particle state; denote it

by Ψ. We have ∆Ψ = ∆(f ,0) in the large N limit. Analogously, 1√
2
((f , A)− (f , S)) = Ψ̃, with

∆Ψ̃ = ∆(0,f) at large N . There is a similar three-point function, fusing φ = (f , 0) and Ψ̃ into

1√
2
((S,A)− (A, S)). Combining this with (3.116), we conclude that 1√

2
((A, S)− (S,A)) is a

bound state of two elementary massive particles, namely

(A, S)− (S,A)√
2

∼ Ψφ̃− Ψ̃φ√
2

. (3.117)
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3.5 Sphere four-point function

In the section, we investigate the sphere four-point function in the WN minimal model,

of the primary operators (f , 0), (f̄ , 0), with a general primary (Λ+,Λ−) and its charge conju-

gate. The main purpose of this exercise is to set things up for the torus two-point function

in Section 3.6. We consider two different approaches in computing the sphere four-point

function: the Coulomb gas formalism, and null state differential equations. In Section 3.5.1

through 3.5.3, we illustrate the screening charge contour integral and its relation with con-

formal blocks in various channels, primarily in the N = 3 example, i.e. the W3 minimal

model. In this case, the conformal blocks are computed by a two-fold contour integral on a

sphere with four punches. More generally, the conformal blocks in the WN minimal model

are given by (N − 1)-fold contour integrals. The identification of the correct contour for

each conformal block, however, is not obvious for general N . In Section 3.5.4, we recall

the null state differential equations of [43], which applies to all WN minimal models. The

conformal blocks are given by the N linearly independently solutions of the null state differ-

ential equation. One observes that the N distinct t-channel conformal blocks (to be defined

below) are permuted under the action of the Weyl group. This motivates an identification

of the Coulomb gas screening integral contours for the t-channel conformal blocks for all val-

ues of N , which we describe in Section 3.5.5. The monodromy invariance of our four-point

functions is shown in Appendix 3.D.

3.5.1 Screening charges

Let us illustrate the screening charge integral in the W3 minimal model. Consider the

sphere four-point function of the primary operators (f , 0), (f̄ , 0), with a general primary
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(Λ+,Λ−) and its charge conjugate. The highest weight vectors of f and f̄ are the two

fundamental weights ω1 and ω2 of SU(3). In the Coulomb gas approach, we first replace the

four W3 primaries by the corresponding chiral boson vertex operators eivi·XL, i = 1, 2, 3, 4,

where the charge vectors vi are taken to be

v1 =

√
p′

p
ω1, v2 =

√
p′

p
ω2, v3 =

√
p′

p
Λ+ −

√
p

p′
Λ−, v4 = 2Q− v3. (3.118)

There is some freedom in choosing the charge vectors, since different charge vectors related

by the shifted Weyl transformations are identified with the same W -algebra primary. For

instance, here we have chosen v4 to be 2Q− v3 rather than v̄3 =
√

p′

p Λ̄+ −
√

p
p′ Λ̄−. Indeed

these two ways to represent the primary (Λ̄+, Λ̄−) are related by the longest Weyl reflection,

as explained at the end of Section 3.3. In terms of Dynkin labels, we write

ω1 = (1, 0), ω2 = (0, 1), Q = − 1√
pp′

(1, 1), Λ+ = (n+, m+), Λ− = (n−, m−),

(3.119)

where n±, m± are nonnegative integers that obey n+ +m+ ≤ k = p− 3, n−+m− ≤ k+1 =

p− 2. The two simple roots are α1 = (2,−1), α2 = (−1, 2). The corresponding simple Weyl

reflections s1, s2 act on the weight vector (n,m) by

s1(n,m) = (−n, n+m), s2(n,m) = (n+m,−m). (3.120)

To compute the sphere four point function of the WN primaries, we must insert screening

charges so that the total charge is 2Q. In our example, a total screening charge −v1 − v2 =

−
√

p′

p (α1 + α2) is inserted. This is done by inserting two screening operators, V −
1 and V −

2 ,

both of which have conformal weight 1. So we expect

⟨Ov1(x1)Ov2(x2)Ov3(x3)Ov4(x4)⟩ =
∫

C

ds1ds2⟨Vv1(x1)Vv2(x2)Vv3(x3)Vv4(x4)V
−
1 (s1)V

−
2 (s2)⟩,

(3.121)
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for some appropriate choice of the contour C for the (s1, s2)-integral. In fact, by choosing the

appropriate contour C, we can pick out the three independent conformal blocks in this case.

One may allow the contours to start and end on one of the xi’s where the vertex operator is

inserted, but we will demand the contours are closed on the four-punctured sphere.12 This

will allow for a straightforward generalization to the torus two-point function later.

Without loss of generality, we will choose x3 = 0, x4 = ∞, while keeping x1, x2 two

general points on the complex plane. Write V ′
v4(∞) = limx4→∞ x

2hv4
4 Vv4(x4). The correlation

function with screening operators is computed in the free boson theory (with linear dilaton)

as

⟨Vv1(x1)Vv2(x2)Vv3(0)V
′
v4(∞)V −

1 (s1)V
−
2 (s2)⟩

= xv1·v2
12 s

p′

p
α1·α2

12

2∏

i=1

xvi·v3
i s

−
√

p′

p
v3·αi

i

2∏

i,j=1

(xi − sj)
−
√

p′

p
vi·αj

= x
p′

p
( 23n++ 1

3m+)−( 23n−+ 1
3m−)

1 x
p′

p
( 13n++ 2

3m+)−( 13n−+ 2
3m−)

2 s
− p′

p
n++n−

1 s
− p′

p
m++m−

2

× x
p′

3p

12 s
− p′

p

12 (x1 − s1)
− p′

p (x2 − s2)
− p′

p .

(3.122)

Note that as a function in s1, (3.122) has branch points at s1 = 0,∞, x1, s2. As a function

in s2, it has branch points at s2 = 0,∞, x2, s1. The property that there are 4, rather than

5, branch points in each si, will be important in the construction of the contour C.

3.5.2 Integration contours

We will consider the following type of the two-dimensional integration contour C. First

integrate s2 along a contour C2(s1) which depends on s1, and then integrate s1 along a

contour C1. C2(s1) is chosen to avoid the four branch points s2 = 0,∞, x2, s1, and C1 is

12Strictly speaking, due to the branch cuts connecting the vertex operators Vvi , the contour C lies on a
covering Riemann surface of the punctured sphere.
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chosen to avoid the branch points 0,∞, x1, x2 (x2 will be a branch point in s1 after the

integration over s2). To ensure that one comes back to the same sheet by going once around

the contour, we demand that C1, C2 have no net winding number around any branch point.13

For C2(s1) to be well defined the entire time as s1 moves along C1, we also demand the

following property of C1: upon removal of the s1-branch point x1, C1 becomes contractible.

Since x1 is not a branch point of the s2-integrand, this makes it possible to choose C2(s1) to

avoid all branch points of s2 and comes back to itself as s1 goes around C1, ensuring that

the full contour integral is well defined.

Let us denote by L(z1, z2) the following contour that goes around two points z1, z2 on

the complex plane:

z1 z2

This contour is well defined when there are branch cuts coming out of z1 and z2, and the

monodromies around z1 and z2 commute. It is also nontrivial only when z1 and z2 are both

branch points. If we integrate (3.122) along a contour L(z1, z2) where z1, z2 are two of the

branch points of the integrand, the contour may be collapsed to a line interval connecting

z1 and z2, namely

z1 z2

in the following sense. Let gz1 and gz2 be the action by the monodromy around z1 and z2

13This is sufficient because the monodromies involved are abelian.
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respectively. Then we can write

∫

L(z1,z2)

· · · = (1− gz2 + gz1gz2 − g−1
z2 gz1gz2)

∫ z2

z1

· · · (3.123)

where an appropriate branch is chosen for the integral from z1 to z2 on the RHS.

The two-dimensional contour C will be constructed as follows: we first integrate s2 along

a contour C2(s1) of the form L(z1, z2), where z1, z2 are two out of the four branch points

0,∞, x2, s1, and then integrate s1 along a contour C1 that is of the form L(x1, z) (so that it

becomes contractible upon removal of x1). We must then investigate the transformation of

the contour integral under the monodromies associated with s- and t-channel Dehn twists:

Ts : x1 going around x2, and

Tt : x1 going around 0.

(3.124)

These are analyzed in detail in Appendix 3.B. We only describe the results below.

Among the following four L-contours for the s2-integral: L(x2,∞), L(0, s1), L(0,∞),

and L(x2, s1), only two are linearly independent. In fact, the basis (L(x2,∞), L(0, s1)) is

convenient for analyzing t-channel monodromies, whereas the basis (L(0,∞), L(x2, s1)) is

convenient for analyzing s-channel monodromies. The linear transformation between the

two basis is given by
⎛

⎜⎝
L(0,∞)

L(x2,∞)

⎞

⎟⎠ =

⎛

⎜⎝
1−gs1gx2
1−gs1

1−g0
1−gs1

−gs1
1−gx2
1−gs1

−1−g0gs1
1−gs1

⎞

⎟⎠

⎛

⎜⎝
L(0, s1)

L(s1, x2)

⎞

⎟⎠ . (3.125)

Using the basis for the s2-integral adapted to the t-channel, namely (L(x2,∞), L(0, s1)), we

may consider the following four candidates for the two-dimensional contour C,
∫

C(1)

=

∫

L(x1,x2)

ds1

∫

L(x2,∞)

ds2,

∫

C(2)

=

∫

L(x1,x2)

ds1

∫

L(0,s1)

ds2,

∫

C(3)

=

∫

L(0,x1)

ds1

∫

L(x2,∞)

ds2,

∫

C(4)

=

∫

L(0,x1)

ds1

∫

L(0,s1)

ds2.

(3.126)
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These contours are shown in the figures below:

0 x1
x2

∞
C(1)

0 x1
x2

∞
C(2)

0 x1
x2

∞
C(3)

0 x1
x2

∞
C(4)

The solid lines represents the interval onto which the s2-contour collapses (as opposed to

the contour itself), whereas the dashed lines represent the corresponding collapsing interval

of the s1-contour.

We will denote the integral of (3.122) along C(i) by Ji, i = 1, 2, 3, 4. The t-channel

monodromy Tt then acts on the basis vector (J1,J2,J3,J4) by the matrix

Mt = g0(x1)

⎛

⎜⎝
1 1− gx2(s1)

0 g0(s1)gx1(s1)

⎞

⎟⎠ , (3.127)

while the s-channel monodromy Ts acts by the matrix

Ms = gx2(x1)

⎛

⎜⎝
gx1(s1)gx2(s1) 0

gx1(s1)− gx1(s1)g0(s1) 1

⎞

⎟⎠ . (3.128)

In both (3.127) and (3.128), gx(z) denotes the 2 × 2 monodromy matrix that acts on the

s1-integrand (after having done the s2-integral) by taking the point z around x. The explicit

form of g0(x1), gx2(x1), g0(s1), gx1(s1), gx2(s1) are given in Appendix 3.B.

3.5.3 The conformal blocks for N = 3

While we have constructed four candidates for the two-dimensional contour C (out of

many possibilities), there are only three linearly independent conformal blocks for the four-

point function considered in Section 3.5.1. Indeed, only three out of the four Ji’s are linearly
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independent, as shown in Appendix 3.C. They are
⎛

⎜⎜⎜⎜⎜⎝

J̃2

J3

J4

⎞

⎟⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎜⎝

∫
L(x1,x2)

ds1
∫
L(s1,x2)

ds2 · · ·
∫
L(0,x1)

ds1
∫
L(x2,∞) ds2 · · ·

∫
L(0,x1)

ds1
∫
L(0,s1)

ds2 · · ·

⎞

⎟⎟⎟⎟⎟⎠
, (3.129)

where the integrand · · · is given by (3.122).

There are three s-channel conformal blocks, corresponding to fusing the (f , 0) and (f̄ , 0)

into (0, 0), (adj, 0), and (adj′, 0), where adj stands for the adjoint representation of SU(3),

and adj′ refers to a second adjoint W3-conformal block whose lowest weight channel is the

(W 3)−1 descendant of (adj, 0). We denote these conformal blocks by

F s = (F s(0),F s(adj),F s(adj′)) . (3.130)

The lowest conformal weights in these channels are (computed using (3.9))

h(f ,0) = h(f̄ ,0) =
N − 1

2N
(1 +

N + 1

N + k
) =

4p′

3p
− 1,

h(adj,0) = 1 +
N

N + k
=

3p′

p
− 2, h(adj′,0) =

3p′

p
− 1.

(3.131)

By comparing the s-channel monodromies, one finds that F s is expressed in terms of the

contour integrals via the linear transformation

F s = As

⎛

⎜⎜⎜⎜⎜⎝

J̃2

J3

J4

⎞

⎟⎟⎟⎟⎟⎠
, As =

⎛

⎜⎜⎜⎜⎜⎝

1 0 0

− ζ2−m+−n+ (1−ζ2+m+)(1−ζn+ )
(1−ζ)2(1+ζ)(1+ζ+ζ2) 1 0

− ζ3−2m+−n+ (1−ζm+ )(1−ζ1+m++n+ )
(1−ζ)2(1+ζ)(1+ζ+ζ2) 0 1

⎞

⎟⎟⎟⎟⎟⎠
, (3.132)

where ζ ≡ e2πip
′/p.

Similarly, in the t-channel, there are three conformal blocks, associated with three distinct

primaries (Λ+ + ω1,Λ−), (Λ+ − ω1 + ω2,Λ−), and (Λ+ − ω2,Λ−). The conformal blocks are
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denoted

F t =
(
F t(ω1),F t(−ω1 + ω2),F t(−ω2)

)
. (3.133)

The lowest conformal weights in the respective channels are

h(Λ++ω1,Λ−) = h(Λ+,Λ−) +
p′

p
(
2

3
n+ +

1

3
m+ +

4

3
)− 2

3
n− −

1

3
m− − 1,

h(Λ+−ω1+ω2,Λ−) = h(Λ+,Λ−) +
p′

p
(−1

3
n+ +

1

3
m+ +

1

3
) +

1

3
n− −

1

3
m−,

h(Λ+−ω2,Λ−) = h(Λ+,Λ−) +
p′

p
(−1

3
n+ −

2

3
m+ −

2

3
) +

1

3
n− +

2

3
m− + 1.

(3.134)

By comparing with the t-channel monodromy, we find that F t is expressed in terms of the

contour integrals as

F t = At

⎛

⎜⎜⎜⎜⎜⎝

J̃2

J3

J4

⎞

⎟⎟⎟⎟⎟⎠
, At =

⎛

⎜⎜⎜⎜⎜⎝

1 − (1−ζ)2(1+ζ)ζ−1+m++n+

(1−ζ1+m+ )(1−ζ1+n+ )
− (1−ζ)2(1+ζ)ζ−1+2m++n+

(1−ζ1+m+ )(1−ζ2+m++n+ )

0 1 0

0 0 1

⎞

⎟⎟⎟⎟⎟⎠
. (3.135)

Finally, the four point function is obtained by summing over either the s-channel or the

t-channel conformal blocks,

⟨Ov1(x1, x̄1)Ov2(x2, x̄2)Ov3(0)O′
v4(∞)⟩ = (F s)†MsF s = (F t)†MtF t. (3.136)

Here Ms and Mt are “mass” matrices, and obey

(As)†MsAs = (At)†MtAt. (3.137)

Mt is diagonal, while Ms is only block diagonal a priori, since there are two adjoint confor-

mal blocks in the s-channel. The mass matrices are computed explicitly in Appendix 3.C,

up to the overall normalization which can be fixed by the identity s-channel. In this way,

the four point function is entirely determined.
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3.5.4 Null state differential equations

In this section, we describe a different method of computing the sphere four-point func-

tion of the WN primaries (f , 0), (f , 0) with (Λ+,Λ−) and its charge conjugate, following [43].

Analogously to Section 3.5.1, now for general N , the four operator on the sphere are Ovi

with the charge vectors vi given by

v1 =

√
p′

p
ω1, v2 =

√
p′

p
ωN−1, v3 = v ≡

√
p′

p
Λ+ −

√
p

p′
Λ−, v4 = 2Q− v. (3.138)

To compare with the formulae in Section 3.3, we also write

u = λ+ λ′ = v −Q, (3.139)

where λ and λ′ lie in the lattices Γ∗
p/p′ and Γ∗

p′/p, and are defined modulo simultaneous shifts

by lattice vectors of Γpp′ with the opposite signs. As shown in [43], the primary states (f , 0)

and (f , 0) are complete degenerate. They obey a set of null state equations. For instance,

in the W3 minimal model, the vertex operators Ov1 gives rise to the null states
(
W−1 −

3w

2∆
L−1

)
Ov1 = 0,

(
W−2 −

12w

∆(5∆+ 1)
L2
−1 +

6w(∆+ 1)

∆(5∆+ 1)
L−2

)
Ov1 = 0,

(
W−3 −

16w

∆(∆− 1)(5∆+ 1)
L3
−1 +

12w

∆(5∆ + 1)
L−1L−2 +

3w(∆− 3)

2∆(5∆+ 1)
L−3

)
Ov1 = 0.

(3.140)

Here ∆ and w are the conformal weight and spin-3 charge of Ov1 . Explicitly, they are given

by

∆ =
4p′

3p
− 1, w2 = −2∆

2

27

5p′ − 3p

3p− 5p
. (3.141)

Similar relations hold for Ov2 . Using the null state equations, one finds that in the W3

minimal model the conformal blocks obey hypergeometric differential equation of (3, 2)-

type.
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The null state method applies straightforwardly to the WN minimal model with general

N , and the conformal blocks therein obey the following hypergeometric differential equation

of (N,N − 1)-type:

[
x

N∏

k=1

(
x
d

dx
+

p′

p
+

√
p′

p
P1,k

)
−

N∏

k=1

(
x
d

dx
+

√
p′

p
P1,k

)]
G(x) = 0, (3.142)

where x is the conformally invariant cross ratio of the four xi’s, and Pi,j are defined in terms

of the charge vectors as

Pk = u · hk, Pij = Pi − Pj . (3.143)

The vectors hk were defined in (3.77). The solutions to (3.142) are

Gk(x) = x
√

p′

p
Pk,1

NFN−1(µ⃗k; ̂⃗νk|x) ≡ x−
√

p′

p
P1Gk(x). (3.144)

where µ⃗k and ν⃗k are the following N -dimensional vectors:

µ⃗k =

√
p′

p
(Pk,1, · · · , Pk,N) +

p′

p
(1, · · · , 1),

ν⃗k =

√
p′

p
(Pk,1, · · · , Pk,N) + (1, · · · , 1),

(3.145)

and ̂⃗νk is the (N−1)-dimensional vector defined by dropping the k-th entry of ν⃗k. NFN−1(a1, · · · , aN ; b1, · · · ,

is the generalized hypergeometric function.

One observes that, the action of shifted Weyl transformations on v (or equivalently,

ordinary Weyl transformation on u) permutes the N t-channel conformal blocks. One may

define a Weyl group action on Pk as

w(Pk) = w(u) · hk = u · w−1(hk). (3.146)

The Weyl group acts as permutations on hk, and hence permutes Pk and Gk(x) as well.

Diagrammatically, the t-channel conformal blocks can be represented as
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u+
√

p′

p hk

u

√
p′

pw
1 −Q

−u

√
p′

pw
N−1 −Q

The shifted Weyl transformation on v permutes the diagrams with different internal lines.

In terms of the conformal blocks Gk(x) or Gk(x), the four-point function is given by

〈
Ov1(x1)Ov2(x2)Ov3(0)O′

v4(∞)
〉

= |x1 − x2|
2p′

Np |x1|2
√

p′

p
Q·h1|x2|−2

√
p′

p
Q·hN−2 p′

p G

(
x1

x2
,
x̄1

x̄2

)
.

(3.147)

where G(x, x̄) sums up the product of holomorphic and anti-holomorphic conformal blocks,

G(x, x̄) =
N∑

j=1

(Mu)jjGj(x)Gj(x̄). (3.148)

Mu is a diagonal “mass matrix”. We indicated here the explicit u-dependence of Mu,

though Gj(x) depend on u as well. Mu can be expressed in terms of the structure constants

(three point function coefficients) via

(Mu)jj = B

(√
p′

p
w1

)2

CWN

(√
p′

p
w1, u+Q,Q− u−

√
p′

p
hj

)

× CWN

(
Q + u+

√
p′

p
hj ,

√
p′

p
wN−1, Q− u

)

= γ

(
p′

p

)
γ

(
N

(
1− p′

p

)) N∏

i=1,i ̸=j

γ

(√
p′

p
Pij

)
γ

(
p′

p
−

√
p′

p
Pij

)
.

(3.149)

In deriving the last line, we used the results of B and CWN
computed in Section 3.4. Note

that, expectedly, the Weyl transformations on u also permutes the N diagonal entries of

Mu. For later use, we also define

C2
u ≡ (Mu)N,N = γ

(
p′

p

)
γ

(
N

(
1− p′

p

))N−1∏

i=1

γ

(√
p′

p
Pi,N

)

γ

(
p′

p
−

√
p′

p
Pi,N

)

.

(3.150)
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3.5.5 The contour for general N

Let us return to the Coulomb gas formalism, and we are now ready to present a contour

prescription for the four-point conformal blocks in WN minimal models with general N . It

may appear rather difficult to directly identify the N contours that give precisely the N

linearly independent conformal blocks. But once we find the contour that gives one of the

N t-channel conformal blocks, we can apply Weyl transformations on the charge vector u

and generate the remaining N − 1 t-channel conformal blocks.

The screening charge integral that computes the four point function, or rather, a con-

formal block, takes the form

Gu

(
x1

x2

)
=x

p′

p
−
√

p′

p
PN

2 x

√
p′

p
P1

1

∮
ds1 s

−
√

p′

p
(u+Q)·α1

1 (x1 − s1)
− p′

p

×
(

N−2∏

i=1

∮
dsi+1 s

−
√

p′

p
(u+Q)·αi+1

i+1 (si − si+1)
− p′

p

)
(x2 − sN−1)

− p′

p

(3.151)

where s1, s2, · · · , sN−1 are integrated along the following choice of contour:

N−1∏

i=1

∮
dsi =

∫

L(0,x1)

ds1

∫

L(0,s1)

ds2 · · ·
∫

L(0,sN−2)

dsN−1. (3.152)

Pictorially, this is represented as

0 s1 x1
x2

∞

s2

s3

where the various lines represent the collapsing intervals of the L-contours of s1, s2, s3, · · · .

In the N = 3 case, this is the last contour of (3.126), denoted by C(4) in Section 3.5.2.

The integral (3.151) can be computed by collapsing the prescribed contour to successive
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integrations over straight lines,

∫

L(0,x1)

ds1

∫

L(0,s1)

ds2 · · ·
∫

L(0,sN−2)

dsN−1 = Nu

∫ x1

0

ds1

∫ s1

0

ds2 · · ·
∫ sN−2

0

dsN−1,

(3.153)

where the factor Nu is obtained by taking the differences of line integrals related by mon-

odromies, similarly to the derivation in Appendix 3.B. The result is

Nu =
N−1∏

i=1

(1− gsi)(1− g0,i),

gsi = e−2πi p
′

p ,

g0,N−i = e−2πi
√

p′

p
u·
∑i−1

j=1 αN−j−2πi
√

p′

p
(u+Q)·αN−i = e2πi(−

√
p′

p
Pi,N+ p′

p
).

(3.154)

The integral expression Gu is related to the conformal block GN(x) derived in the previous

subsection as

Gu

(
x1

x2

)
=Nux

p′

p
−
√

p′

p
PN

2 x

√
p′

p
P1

1

∫ x1

0

ds1 s
−
√

p′

p
(u+Q)·α1

1 (x1 − s1)
− p′

p

×
(

N−2∏

i=1

∫ si

0

dsi+1 s
−
√

p′

p
(u+Q)·αi+1

i+1 (si − si+1)
− p′

p

)

(x2 − sN−1)
− p′

p

=Nu

∏N−1
k=1 Γ(

√
p′

p PN,k +
p′

p )

∏N−1
k=1 Γ(

√
p′

p PN,k + 1)
Γ(1− p′

p
)N−1GN

(
x1

x2

)

≡NuLuGN

(
x1

x2

)
,

(3.155)

i.e. they differ only by the normalization constant NuLu. Here we made use of the integral

representation of the generalized hypergeometric function:

NFN−1(a1, · · · , aN ; b1, · · · , bN−1|x)

=

(
N−1∏

k=1

Γ(bk)

Γ(ak)Γ(bk − ak)

)∫ 1

0

· · ·
∫ 1

0

N−1∏

k=1

ξak−1
k (1− ξk)bk−ak−1

(
1− x

N−1∏

k=1

ξk

)−aN

dξ1 · · ·dξN−1.

(3.156)
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Now we have obtained the N -th t-channel conformal block of Section 3.5.4. To produce the

other t-channel conformal blocks, we act the Weyl transformation on u, and obtain

Gi

(
x1

x2

)
= GN

(
x1

x2

) ∣∣∣∣
u→w(u)

= N−1
w(u)L

−1
w(u)Gw(u)

(
x1

x2

)
. (3.157)

In terms of the contour integral Gu(x), the four-point function (3.148) can be written as

G(x, x̄) =
1

(N − 1)!

∑

w∈W

|Cw(u)Gw(u)(x)|2, (3.158)

where we defined the normalization constant Cu as

Cu = CuL
−1
u N−1

u . (3.159)

A useful formula, derived using (3.150), is

C2
uL

−2
u =− Γ(1− p′

p
)2−2Nγ

(
p′

p

)
γ

(
N

(
1− p′

p

))N−1∏

k=1

csc π

√
p′

p
Pk,N sin π

(√
p′

p
Pk,N −

p′

p

)
.

(3.160)

The representation of the four-point function (3.158) is the main result of this section. It

may seen rather unnecessary given that we already know the relatively simple expression

for the conformal blocks as generalized hypergeometric functions. But as discussed in the

next section, our t-channel contour prescription allows for a straightforward generalization

to torus two-point functions.

3.6 Torus two-point function

3.6.1 Screening integral representation

We now consider the torus two-point function of a fundamental primary and an anti-

fundamental primary operator in the WN minimal model, Ov1 and Ov2 . The relevant
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genus one conformal blocks will be constructed using free bosons on the Narain lattice

ΓN−1,N−1, with insertions of vertex operators Vv1 and Vv2 , along with screening operators

V −
1 , V −

2 , . . . , V −
N−1. Note that the set of screening operators is the same as in the earlier

computation of sphere four point function, now the total charge being 0 on the torus (as

opposed to 2Q on the sphere).

Our starting point is the torus correlation function in the free boson theory with screening

operators insertions,

Zbos
ΓN−1,N−1⟨Vv1(z1)Vv2(z2)V

−
1 (t1) · · ·V −

N−1(tN−1)⟩τ

=
1

|η(τ)|2N−2

∣∣∣∣
θ1(z12|τ)
∂zθ1(0|τ)

∣∣∣∣
2v1·v2 ∣∣∣∣

θ1(z1 − t1|τ)
∂zθ1(0|τ)

∣∣∣∣
−2 p′

p
∣∣∣∣
θ1(z2 − tN−1|τ)

∂zθ1(0|τ)

∣∣∣∣
−2 p′

p
N−2∏

i=1

∣∣∣∣
θ1(ti,i+1|τ)
∂zθ1(0|τ)

∣∣∣∣
2 p′

p
αi·αi+1

×
∑

(v,v̄)∈ΓN−1,N−1

q
1
2v

2
q̄

1
2 v̄

2
exp

[

2πi

(

v · (v1z1 + v2z2 −

√
p′

p

N−1∑

i=1

αiti)

− v̄ · (v1z̄1 + v2z̄2 −

√
p′

p

N−1∑

i=1

αit̄i)

)]

=
∑

u∈Γ∗
pp′

/Γpp′

∣∣Gbos
u (z1, z2, t1, · · · , tN−1|τ)

∣∣2 .

(3.161)

Our convention is that the coordinate z on the torus of modulus τ is identified under

z ∼ z+1 ∼ z+ τ . The lattice ΓN−1,N−1 is defined as in (3.24). Gbos
u is a genus one character

of the free boson with N + 1 vertex operator insertions,

Gbos
u (z1, z2, t1, · · · , tN−1|τ)

=
1

η(τ)N−1

(
θ1(z12|τ)
∂zθ1(0|τ)

) p′

pN
(
θ1(z1 − t1|τ)
∂zθ1(0|τ)

)− p′

p
(
θ1(z2 − tN−1|τ)

∂zθ1(0|τ)

)− p′

p
N−2∏

i=1

(
θ1(ti,i+1|τ)
∂zθ1(0|τ)

)− p′

p

×
∑

n∈Γpp′

q
1
2 (u+n)2 exp

[

2πi

√
p′

p
((u+ n) · (ω1z1 + ωN−1z2 − αiti))

]

.

(3.162)
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Recall that in the formula for the WN minimal character (3.28), an alternating sum over

Weyl orbits is perfomed in order to cancel the contribution from null states in the conformal

family of u = λ+ λ′ at the level hw(λ)+λ′ − hλ+λ′ and higher. A similar procedure is applied

here to produce the correct minimal WN torus correlation function. A t-channel conformal

block for the torus two-point function can be represented by the following diagram:

λ+ λ′ +
√

p′

p hk

λ+ λ′

√
p′

p w
1 −Q

√
p′

p w
N−1 −Q

On the lower arc, there are null states at the level hλ+w(λ′) − hλ+λ′ that are included by the

free boson character. On the upper arc, there are null states at the level14 h
λ+w(λ′)+

√
p′

p
hk

−

h
λ+λ′+

√
p′

p
hk

. To cancel the contribution from these null states, we consider the alternating

sum:15

Gbos
λ+λ′(z1, z2, t1, · · · , tN−1|τ) =

∑

w∈W

ϵ(w)Gbos
λ+w(λ′)(z1, z2, t1, · · · , tN−1|τ). (3.163)

Next, we integrate the positions ti of the screening operators on an (N − 1)-dimensional

contour. Different appropriate contour choices may give different conformal blocks, say in

the t-channel or s-channel.

14Similar to (3.42), one can show that h
λ+w(λ′)+

√
p′

p hk

− h
λ+λ′+

√
p′

p hk

is always a nonnegative integer,

when λ+
√

p′

p hk and λ′ sit in the identity affine Weyl chamber of Γ∗
p

p′
and Γ∗

p′

p

.

15The reason that we are summing over the Weyl orbits of λ′ (rather than, say λ) has to do with the
inserted vertex operator being (f , 0) rather than (0, f). Also note that normalization factors involving the
structure constants, e.g. (3.160) are needed to obtain the full correlator. In fact, (3.160) is invariant under
the Weyl transformation acting on λ′, i.e. Cλ+w(λ′)L

−1
λ+w(λ′) = Cλ+λ′L−1

λ+λ′ . This is consistent with the WN

primaries being labelled by u = λ+ λ′ up to the double Weyl action.
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t-channel s-channel

As in the case of sphere four-point function, we will construct the integration contour by

composing one-dimensional contours with no net winding numbers, which ensures that the

integral is well defined despite the branch cuts in the integrand. To go from the four-

punctured sphere to the two-punctured torus, we can simply cut out holes around the

points 0 and ∞ on the complex plane, and glue the two boundaries of resulting annulus

to form the torus. The annulus coordinate x to the torus coordinate z are related by the

exponential map x = e2πiz. The L-contours introduced in Section 3.5.2 are closed contours

that avoids the branch cuts including 0 and ∞, and thus are readily extended to the case

of the torus under the exponential map. In particular, the part of the contour that winds

around 0 or ∞ now winds around cycles of the torus.

0 x =⇒

z

We will still use L(0, x) or L(∞, x) to denote the contour on the torus related by the

exponential map, with the understanding that when the L-contour winds around 0 or∞ on
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the plane, it now winds around the spatial cycle either above or below z = 1
2πi log x on the

torus.

Let us consider the following contour integral:

Gt
u(z1, z2|τ) =

∫

L(0,z1)

dt1

∫

L(0,t1)

dt2 · · ·
∫

L(0,tN−2)

dtN−1Gbos
u (z1, z2, t1, · · · , tN−1|τ), (3.164)

which, as in the case of sphere four-point function, is a conformal block in t-channel. The

contours L(0, z1), L(0, t1), · · · , L(0, tN−2), for t1, · · · , tN−1 integrals, are now contours on the

torus of the type shown in the right figure above. The positions of the two primaries, z1, z2

and the positions of the screening charges ti, are in cylinder coordinates. They are related

to x1, x2 and si described in Section 3.5.5, now annulus coordinates, by the conformal map

xi = e2πizi, si = e2πiti . (3.165)

Generally, it appears rather difficult to explicitly identify a set of contours that gives all

the conformal blocks in one channel. Instead, we use the trick described in Section 3.5.5,

starting from (3.164) and obtain the other N−1 t-channel contours by Weyl transformation

on u = λ+λ′. Note that in arriving at (3.164) we have already performed an alternating sum

on λ′, so the Weyl transformations that permute the different t-channel conformal blocks

really only act on λ.

The torus two-point function of the primaries (f , 0) and (f̄ , 0) is then given by

⟨Ov1(z1, z̄1)Ov2(z2, z̄2)⟩τ =
1

N !

∑

λ∈∆1, λ′∈∆2, w∈W

∣∣Cw(u)Gt
w(λ+λ′)(z1, z2|τ)

∣∣2, (3.166)

where ∆1 and ∆2 are the identity chambers of the shifted affine Weyl transformation in the

lattices Γ∗
p
p′
and Γ∗

p′

p

respectively. In summing λ and λ′ independently, we have overcounted,

as (λ,λ′) are identified under (3.21). This is compensated by including an extra factor of
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1/N , turning the factor 1
(N−1)! in (3.158) into 1

N ! in (3.166). The normalization factor Cu

was given in (3.159) and (3.160).

3.6.2 Monodromy and modular invariance

On the torus with two operators inserted at x1 and x2, besides the s-monodromy (x1

circling around x2), t-monodromy (x1 → x1 + 1 below x2), and u-monodromy (x1 → x1 + 1

above x2), there are also what we may call the “v-monodromy” which is x1 → x1 + τ on

the left of x2, and “w-monodromy” which is x1 → x1 + τ on the right of x2. Three of these

five monodromies are independent. The two-point function should be invariant under these

three monodromy transformations, as well as the modular transformations (T : τ → τ + 1

and S : τ → −1/τ).

The t-channel conformal blocks in (3.166) are trivially invariant under the t-monodromy

and T -modular transformation. The s- and u-monodromy, on the other hand, mix the

different t-channel conformal blocks. The invariance of the full two-point function can be

seen by expanding (3.166) in powers of q = e2πiτ with z1 − z2 fixed, where each term in the

expansion is a sphere four-point function of Ov1 ,Ov2 with a pair of conjugate WN primaries,

or their decedents. The s- and u-monodromy invariance then follow from those of the sphere

four-point functions.

The S-modular invariance is less obvious in terms of the t-channel conformal blocks. On

the other hand, it acts in a simple way on the s-channel conformal blocks, and in particular

leaves the identity channel invariant. The identity s-channel conformal block for the torus

two-point function can be constructed by an easy generalization of the J̃2 contour in the

N = 3 case for the sphere four-point function.
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3.6.3 Analytic continuation to Lorentzian signature

As a potential application of the exact torus two-point function, we wish to consider its

analytic continuation (with τ = iβ) to Lorentzian signature. The result is the Lorentzian

thermal two-point function ⟨Ov1(t)Ov2(0)⟩β of the WN minimal model on the circle (in our

convention of z-coordinate, of circumference 1), at temperature T = 1/β. This Lorentzian

two-point function measures the response of the system some time after the initial pertur-

bation (by one of the two operators), and its decay in time would indicate thermalization

of the perturbed system. Of course, since all operator scaling dimensions in the WN mini-

mal model are multiples of 1
Npp′ =

1
N(N+k)(N+k+1) , Poincaré recurrence must occur at time

t = Npp′ ∼ N3. In fact, we will see that it occurs at time t = Np in the two-point function

⟨Ov1(t)Ov2(0)⟩β. Nonetheless, the behavior of the two-point function at time of order N0 in

the large N limit should be a useful probe of the dual semi-classical bulk geometry.

For simplicity of notation, we will denote bothOv1 and Ov2 byO in most of the discussion

below, thinking ofO as a real operator. Starting with the Euclidean torus two-point function

⟨O(z, z̄)O(0, 0)⟩τ , we can write

z = x+ iy, z̄ = x− iy, (3.167)

and then at least locally make the Wick rotation y to −it. In other words, we would like to

make the replacement

z → x+ t, z̄ → x− t. (3.168)

The resulting two-point function has a singularity at x = ±t, when the two operators are

light-like separated (as null rays go around the cylinder periodically, the two operators are
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light-like separated also when x± t is an integer16). One must then specify how one wishes

to analytically continue from t < |x| to t > |x|. If we are interested in the time-ordered

two-point function at t > 0,

⟨T O(x, t)O(0)⟩β =
∑

n

e−βEn⟨n|T O(x, t)O(0)|n⟩

=
∑

n,m

e−(β−it)En−iEmt⟨n|O(x, 0)|m⟩⟨m|O(0)|n⟩,
(3.169)

then the correct prescription is to replace iy by t− iϵ, where ϵ is a small positive number.

Now consider the analytic continuation of the conformal block (3.164). We can set z2 = 0

and z1 = x+ iy, and applying our prescription, replacing z1 by x+ t− iϵ. Similarly, we will

analytically continue the complex conjugate, anti-holomorphic conformal block by sending

z̄1 → x− t+ iϵ.

We are interested in the behavior of the two point function at time t of order O(N0)

but parametrically large. For this purpose, we may consider simply integer values of t and

generic x. To obtain the values of the two-point function at integer time t = n, we can start

at (x, t = 0), and apply the t-monodromy which moves t→ t + 1 (with negative imaginary

part so that O(x, t) goes below the insertion of O(0)) n times. The t-monodromy on the

holomorphic conformal block is given by

Gt
λ+λ′(x+ t+ 1 + iϵ, 0|τ) = e

2πi

(√
p′

p
PN+ p′(N−1)

2pN

)

Gt
λ+λ′(x+ t + iϵ, 0|τ). (3.170)

The anti-holomorphic conformal block transforms with the same phase, due to the complex

conjugation and the inverse t-monodromy. The phase factor is simply due to the difference

of the conformal weight of the primary operators labeled by u = λ + λ′ and u +
√

p′

p hk in

16If there is thermalization behavior at late time, the two-point function should decay in the distribution
sense.
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the t-channel. The two-point function at t = n is then given by

⟨O(x, t = n)O(0)⟩β =
1

N !

∑

λ∈∆1, λ′∈∆2, w∈W

e
2πi

(
2
√

p′

p
w(PN )+ p′(N−1)

pN

)
∣∣Cw(u)Gt

w(λ+λ′)(x|iβ)
∣∣2.

(3.171)

Recall that w(PN) = w(u) · hN = u ·w−1(hN), and
√

p′

p w(PN) is always an integer multiple

of 1/(Np). So in fact the two-point function ⟨O(x, t)O(0)⟩β has time periodicity at most

Np (this is simply a consequence of the fusion rule).

Unfortunately, we do not yet know a way to extract the large N behavior of the analyt-

ically continued two-point function, or even simply the two-point function at integer times,

(3.171), for that matter. In the N = 2 case, i.e. Virasoro minimal models,17 the contour

integral is one-dimensional, and we have computed (3.171) numerically in Appendix 3.F.

3.7 Conclusion

We have given in Section 3.4 the explicit formulae for the coefficients of all three-point

functions of primaries in the WN minimal model, subject to the condition that one of the

primaries is of the form (⊗n
sym f̄ ,⊗m

symf̄), where ⊗n
sym f̄ is the n-th symmetric product tensor of

the anti-fundamental representation f̄ . This allows us to study the large N factorization and

identify the bound state structure of a large class of operators. Apart form the elementary

massive scalars (f , 0) = φ, (0, f) = φ̃, and the obvious elementary light state (f , f) = ω,

there are additional elementary light states e.g. 1√
2
((S, S) − (A,A)), as well as additional

elementary massive states e.g. 1√
2
((A, f)−(S, f)) = Ψ. On the other hand, we have identified

17The contour integral expression for the torus two-point function in the Virasoro minimal model has
been derived in [44]
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the following operators as composite particles:

(A, 0) ∼ 1√
2
φ2,

(S, 0) ∼ 1√
2∆(f ,0)

(φ∂∂̄φ− ∂φ∂̄φ),

(adj, 0) ∼ φφ̄,

(S, S) + (A,A)√
2

∼ 1√
2
ω2,

(A, f) + (S, f)√
2

∼ φω,

(A, S) + (S,A)√
2

∼ 1√
2∆(f ,f)

(ω∂∂̄ω − ∂ω∂̄ω)

∼ 1√
2

(
ωφφ̃− 1

∆(f ,f)
∂ω∂̄ω

)
,

(A, S)− (S,A)√
2

∼ Ψφ̃− Ψ̃φ√
2

.

(3.172)

We have also seen that the identification 1
∆(f,f)

∂∂̄ω ∼ φφ̃ of [12] is consistent with the large

N factorization of composite operators. It would be nice to have a systematic classification

of all elementary states/particles among the WN primaries and their bound state structure.

This should not be difficult using our approach.

The other main result of this paper is the exact torus two-point function of the basic

primaries (f , 0) and (f̄ , 0), expressed explicitly as an (N − 1)-fold contour integral. Direct

evaluation of the contour integral appears difficult, but nonetheless feasible numerically at

small N (as demonstrated in the N = 2 case in Appendix 3.F). As our formulae are written

for individual holomorphic conformal blocks, the analytic continuation to Lorentzian thermal

two-point function is entirely straightforward. It would be very interesting to understand

its large N behavior, say at time of order N0. We expect some sort of thermalization

behavior (as already shown in the N = 2 example at large k, in fact) reflected in the decay
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of the two-point function in time, and the precise nature of the decay contains information

about the dual bulk geometry. If the BTZ black hole dominates the thermodynamics at

some temperature (above the Hawking-Page transition temperature), then we expect to see

exponential decay of the thermal two-point function. To the best of our knowledge, such an

exponential decay of the two-point function has not been demonstrated directly in a CFT

with a semi-classical gravity dual (the closest being the long string CFT18 of [46, 47] and

in toy matrix quantum mechanics models [48, 49]). The WN minimal model, being exactly

solvable and has a weakly coupled gravity dual at large N (though seemingly very different

from ordinary semi-classical gravity), seems to be a good place to address this issue. To

extract the answer to this question from our result on the torus two-point function, however,

is left to future work.

18The long string picture a priori holds in the orbifold point, which is far from the semi-classical regime
in the bulk. One may expect that a similar qualitative picture holds for the deformed orbifold CFT in the
semi-classical gravity regime, but showing this appears to be a nontrivial problem.
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3.A The residues of Toda structure constants

Let us carry out the procedure of obtaining the structure constant CWN
(v1, v2, v3) in the

WN minimal model by taking the residues of correlators in the affine Toda theory. Firstly,

using (3.79), we derive the identities

Υ(x)

Υ(x+ nb+m/b)

= (−1)mn

(
m−1∏

i=0

n−1∏

j=0

1

(i/b+ x+ jb)2

)[
n−1∏

j=0

b−1+2bx+2jb2

γ(bx+ jb2)

][
m−1∏

j=0

b−2x/b−2j/b2+1

γ(x/b+ j/b2)

]
,

(3.173)

and

Υ(x)

Υ(x− nb−m/b)

= (−1)mn

(
m∏

i=1

n∏

j=1

1

(x− i
b − jb)2

)[
n∏

j=1

γ(bx− jb2)b1−2bx+2jb2

][
m∏

j=1

γ(x/b− j/b2)b−1+2x/b−2j/b2

]
.

(3.174)

Next, we factorize the denominator of (3.76) into four groups, and substitute in (3.72), and

set ϵ = 0 in the factors that remains nonzero when ϵ = 0. The factors in the denominator

of (3.76) with j > i become

Υ
(
κ

N
+ (v1 −Q) · hi + (v2 −Q) · hj

)

= Υ
(
b(si−1 − si) +

1

b
(s′i−1 − s′i) + (Q− v2) · (hi − hj)

)
,

(3.175)

and for j < i we have

Υ
(
κ

N
+ (v1 −Q) · hi + (v2 −Q) · hj

)

= Υ
(
b(sj−1 − sj) +

1

b
(s′j−1 − s′j) + (Q− v1) · (hj − hi)

)
.

(3.176)

The denominator factors with i = j = N become

Υ
(
κ

N
+ (v1 −Q) · hi + (v2 −Q) · hj

)

= Υ
(
κ + bsN−1 +

1

b
s′N−1

)
,

(3.177)
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and for i = j ̸= N , we have

Υ
(
κ

N
+ (v1 −Q) · hj + (v2 −Q) · hj + ϵ · hj

)

= Υ
(
b(sj−1 − sj) +

1

b
(s′j−1 − s′j) + ϵj − ϵj−1

)
,

(3.178)

where s0 = s′0 = ϵ0 = 0.

Now, it is clear that (3.178) are the only factors in the denominator that vanish at ϵ = 0,

and also they vanish only when sj ≥ sj−1 and s′j ≥ s′j−1, or sj < sj−1 and s′j < s′j−1. Let us

first assume sj ≥ sj−1 and s′j ≥ s′j−1. We have

Υ(b)

Υ
(
b(sj−1 − sj) +

1
b (s

′
j−1 − s′j) + ϵ · hj

) =
1

ϵ · hj
(−1)s′j,j−1sj,j−1

⎛

⎝
s′j,j−1∏

k=1

sj,j−1∏

l=1

1

(ϵ · hj +
k
b + lb)2

⎞

⎠

×
[sj,j−1∏

l=1

γ(ϵ · hj − lb2)

]⎡

⎣
s′j,j−1∏

k=1

γ(ϵ · hj − k/b2)

⎤

⎦ · bsj,j−1−b2(sj−1,j−1)sj,j−1−s′j,j−1+b2(s′j−1,j−1)s′j,j−1 ,

(3.179)

The prefactor 1
ϵ·hj

is the only divergent piece in the ϵ→ 0, and at this point we could take

ϵ → 0 on the remaining factor, but we will keep the formula with nonzero ϵ for later use.

There are also

Υ
(
(Q− v2) · (hj − hi)

)

Υ
(
b(sj−1 − sj) +

1
b (s

′
j−1 − s′j) + (Q− v2) · (hj − hi)

)

= (−1)sj,j−1s′j,j−1

⎛

⎝
s′j,j−1∏

k=1

sj,j−1∏

l=1

1

(P2
ji − k

b − lb)2

⎞

⎠×
[sj,j−1∏

l=1

γ(bP2
ji − lb2)

]⎡

⎣
s′j,j−1∏

k=1

γ(P2
ji/b− k/b2)

⎤

⎦

× bsj,j−1−b2(sj−1,j−1)sj,j−1−s′j,j−1+b2(s′j−1,j−1)s′j,j−1−2bP2
jisj,j−1+2P2

jis
′
j,j−1/b,

(3.180)
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and

Υ
(
(Q− v1) · (hj − hi)

)

Υ
(
b(sj−1 − sj) +

1
b (s

′
j−1 − s′j) + (Q− v1) · (hj − hi)

)

= (−1)sj,j−1s′j,j−1

⎛

⎝
s′j,j−1∏

k=1

sj,j−1∏

l=1

1

(P1
ji − k

b − lb)2

⎞

⎠×
[sj,j−1∏

l=1

γ(bP1
ji − lb2)

]⎡

⎣
s′j,j−1∏

k=1

γ(P1
ji/b− k/b2)

⎤

⎦

× bsj,j−1−b2(sj−1,j−1)sj,j−1−s′j,j−1+b2(s′j−1,j−1)s′j,j−1−2bP1
jisj,j−1+2P1

jis
′
j,j−1/b,

(3.181)

where we introduced the notation si,j ≡ si − sj and Pa
ij = (Q − va) · (hi − hj), a = 1, 2.

Combing the above three terms, we have

Υ(b)

Υ
(
bsj−1,j +

1
bs

′
j−1,j + ϵ · hj

)
N∏

i=j+1

Υ
(
P1

ji

)

Υ
(
bsj−1,j +

1
bs

′
j−1,j +P1

ji

)
Υ
(
P2

ji

)

Υ
(
bsj−1,j +

1
bs

′
j−1,j +P2

ji

)

=
1

ϵ · hj
(−1)s′j,j−1sj,j−1R

sj,j−1,s′j,j−1

j,ϵ bCj ,

(3.182)

where R
sj,j−1,s′j,j−1

j,ϵ is defined to be

R
sj,j−1,s′j,j−1

j,ϵ =

⎛

⎝
s′j,j−1∏

k=1

sj,j−1∏

l=1

1

(ϵ · hj +
k
b + lb)2

N∏

i=j+1

1

(P1
ji − k

b − lb)2
1

(P2
ji − k

b − lb)2

⎞

⎠

×
[sj,j−1∏

l=1

γ(ϵ · hj − lb2)
N∏

i=j+1

γ(bP1
ji − lb2)γ(bP2

ji − lb2)

]

×

⎡

⎣
s′j,j−1∏

k=1

γ(ϵ · hj − k/b2)
N∏

i=j+1

γ(P1
ji/b− k/b2)γ(P2

ji/b− k/b2)

⎤

⎦ .

(3.183)

The exponent Cj of b is given by

Cj = (2N − 2j + 1)(sj,j−1 − s′j,j−1) + 2(sj−1s
′
j − sjs

′
j−1) + b2

[
(2N − 2j + 1)sj,j−1 + s2j−1 − s2j

]

− 1

b2
[
(2N − 2j + 1)s′j,j−1 + s′2j−1 − s′2j

]
− 2bsj,j−1κ + 2

1

b
s′j,j−1κ,

(3.184)
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where we have used

N∑

i=j+1

(P1
ji +P2

ji) = κ + b(N − j)sj,j−1 + bsj +
1

b
(N − j)s′j,j−1 +

1

b
s′j. (3.185)

We also have

Υ(κ)

Υ(κ + bsN−1 + s′N−1/b)
= (−1)sN−1s′N−1

⎛

⎝
s′N−1−1∏

k=0

sN−1−1∏

l=0

1

(κ + k
b + lb)2

⎞

⎠

×
[
sN−1−1∏

l=0

γ(1− bκ − lb2)

]⎡

⎣
s′N−1−1∏

k=0

γ(1− κ/b− k/b2)

⎤

⎦

× b−sN−1+2bκsN−1+b2sN−1(sN−1−1)+s′N−1−2 1
b
κs′N−1−

1
b2

s′N−1(s
′
N−1−1).

(3.186)

Putting the above terms together, the total exponent of b is

N−1∑

j=1

Cj − sN−1 + 2bκsN−1 + b2sN−1(sN−1 − 1) + s′N−1 − 2
1

b
κs′N−1 −

1

b2
s′N−1(s

′
N−1 − 1)

= 2(1 + b2)
N−1∑

j=1

sj − 2(1 +
1

b2
)
N−1∑

j=1

s′j + 2
N−2∑

j=1

(sjs
′
j+1 − sj+1s

′
j).

(3.187)

Finally, we rewrite the prefactor of (3.76) in the form

[
µπγ(b2)b2−2b2

] (2Q−
∑

vi,ρ)
b

=

[
−µπ
γ(−b2)b

−2−2b2
]N−1∑

k=1
sk [ −µ′π

γ(− 1
b2 )

b
2
b2

+2

]N−1∑

k=1
s′k

. (3.188)

The residue of the three point function is then

resϵ1→0resϵ2→ϵ1 · · · resϵN−1→ϵN−2Ctoda(v1,v2,κωn−1)

= (ib)2
∑N−2

j=1 (sjs′j+1−sj+1s′j)

[
−µπ
γ(−b2)

]N−1∑

k=1
sk [ −µ′π

γ(− 1
b2 )

]N−1∑

k=1
s′k

⎛

⎝
s′N−1−1∏

k=0

sN−1−1∏

l=0

1

(κ + k
b + lb)2

⎞

⎠

×
[
sN−1−1∏

l=0

γ(1− bκ − lb2)

]⎡

⎣
s′N−1−1∏

k=0

γ(1− κ/b− k/b2)

⎤

⎦
N−1∏

j=1

R
sj,j−1,s′j,j−1

j,ϵ .

(3.189)
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The ϵ is the subscript of Rs,s′

j,ϵ is understand to be taken to zero in computing the residue,

but we will leave it in the formula as we will make use of it below.

In the case sj < sj−1 and s′j < s′j−1, we can apply the following identity:

Υ(x)

Υ(x− nb−m/b)
=

Υ(b+ 1/b− x)

Υ(b+ 1/b− x+ nb+m/b)
, (3.190)

and then the residue will be computed by the above formula with the replacement

ϵ→ b+ 1/b− ϵ, P1
ji → b+ 1/b−P1

ji, P2
ji → b+ 1/b−P2

ji, (3.191)

and then set ϵ to zero. Finally, we obtain the structure constants in the WN minimal model

by the analytic continuation (3.74).

3.B Monodromy of integration contours

In this appendix, we analyze the s and t channel monodromy action on the contour

integrals described in Section 3.5.2.

Let us begin by considering the s2-integral. The s2-integrand has branch points at

0, s1, x2,∞. There are relations among the L contours encircling a pair of the branch points.

For instance,
∫

L(0,∞)

= −
∫

L(0,{s1,x2})

=

∫ s1

0

+

∫ x2

s1

+gx2

∫ s1

x2

+gx2gs1

∫ 0

s1

+gx2gs1g0

∫ s1

0

+gx2gs1g0g
−1
s1

∫ x2

s1

+gx2gs1g0g
−1
s1 g

−1
x2

(∫ s1

x2

+

∫ 0

s1

)

= (1− gx2gs1 + gx2gs1g0 − gx2gs1g0g
−1
s1 g

−1
x2
)

∫ s1

0

+(1− gx2 + gx2gs1g0g
−1
s1 − gx2gs1g0g

−1
s1 g

−1
x2
)

∫ x2

s1

.

(3.192)

Now since all the g’s are commuting phase factors, we can write

∫

L(0,∞)

= (1− g0)(1− gs1gx2)

∫ s1

0

+(1− g0)(1− gx2)

∫ x2

s1

. (3.193)
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Naively, one may think that the integral over L(x2,∞) is given by the same expression with

0 and x2 exchanged. This is not correct, however, due to the choice of branch in the line

integrals. We have
∫

L(x2,∞)

= −
∫

L(x2,{s1,x0})

=

∫ s1

x2

+gs1

∫ 0

s1

+gs1g0

(∫ s1

0

+

∫ x2

s1

)
+ gs1g0gx2

(∫ s1

x2

+

∫ 0

s1

)
+ gs1g0gx2g

−1
0

∫ s1

0

+gs1g0gx2g
−1
0 g−1

s1

∫ x2

s1

= −(1− gs1g0)(1− gx2)

∫ x2

s1

−gs1(1− g0)(1− gx2)

∫ s1

0

.

(3.194)

Together with using the following relation between the L-contour and the “collapsed” line

integral, ∫

L(0,s1)

= (1− gs1)(1− g0)

∫ s1

0

,

∫

L(s1,x2)

= (1− gs1)(1− gx2)

∫ x2

s1

,

(3.195)

we derive the formula (3.125).

Now consider the two-dimensional contours (3.126). Let us denote by I(i) the contours

obtained from C(i) by collapsing L(z1, z2) into straight lines, and by Ji the integral of (3.122)

along I(i), and also by Ji the integral of (3.122) along C(i), i = 1, 2, 3, 4. Ji and Ji are related

via ⎛

⎜⎝
J1

J2

⎞

⎟⎠ = (1− gx2(s1))(1− gx1(s1))

⎛

⎜⎝
(1− gx2)(1− g∞)J1

(1− g0)(1− gs1)J2

⎞

⎟⎠ ,

⎛

⎜⎝
J3

J4

⎞

⎟⎠ = (1− g0(s1))(1− gx1(s1))

⎛

⎜⎝
(1− gx2)(1− g∞)J3

(1− g0)(1− gs1)J4

⎞

⎟⎠ .

(3.196)

Tt and Ts acts on (J1,J2,J3,J4) via the monodromy matrices (3.127) and (3.128). Define

ζ ≡ e2πi
p′

p . We find

g0(x1) = ζ
2
3n++ 1

3m+e−2πi( 23n−+ 1
3m−), gx2(x1) = ζ

1
3 , (3.197)
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and

g0(s1) =

⎛

⎜⎝
ζ−n+ 0

0 ζ−n+−m+−1

⎞

⎟⎠ , gx1(s1) = ζ−11, gx2(s1) = A−1

⎛

⎜⎝
1 0

0 ζ−2

⎞

⎟⎠A. (3.198)

The matrix A is the linear transformation of L-contours,
⎛

⎜⎝
L(0,∞)

L(s1, x2)

⎞

⎟⎠ = A

⎛

⎜⎝
L(x2,∞)

L(0, s1)

⎞

⎟⎠ , (3.199)

and from (3.125) we know

A = − 1

1− g0gs1

⎛

⎜⎝
1− g0 −1 + g0gx2gs1

1− gs1 gs1(1− gx2)

⎞

⎟⎠ . (3.200)

Using the monodromy phases of the s2-integrand,

g0 = ζ−m+, gs1 = gx2 = ζ−1, (3.201)

we find

A = − 1

1− ζ−m+−1

⎛

⎜⎝
1− ζ−m+ ζ−m+−2 − 1

1− ζ−1 ζ−1 − ζ−2

⎞

⎟⎠ . (3.202)

3.C Identifying the conformal blocks with contour in-

tegrals

It is useful to work in instead of (J1,J2,J3,J4), the basis
⎛

⎜⎝
J̃1

J̃2

⎞

⎟⎠ = A

⎛

⎜⎝
J1

J2

⎞

⎟⎠ =

∫

L(x1,x2)

ds1

⎛

⎜⎝

∫
L(0,∞) ds2 · · ·
∫
L(s1,x2)

ds2 · · ·

⎞

⎟⎠ ,

⎛

⎜⎝
J3

J4

⎞

⎟⎠ =

∫

L(0,x1)

ds1

⎛

⎜⎝

∫
L(x2,∞) ds2 · · ·
∫
L(0,s1)

ds2 · · ·

⎞

⎟⎠ .

(3.203)

144



Chapter 3: Correlators in WN Minimal Model Revisited

In fact, J̃1 vanishes identically, as a consequence of the relation

A(1− gx2(s1))(1− gx1(s1)) = −
ζ4−m+(1− ζ1+m+)

(1 + ζ)(1− ζ)3

⎛

⎜⎝
0 0

ζ 1

⎞

⎟⎠ . (3.204)

Acting on (J̃2,J3,J4), the monodromy matrices are of the form

M̃s = ζ
1
3

⎛

⎜⎜⎜⎜⎜⎝

ζ−3 0 0

(1−ζ2+m+ )(1−ζn+ )

ζ1+m++n+ (1−ζ2) 1 0

(1−ζm+ )(1−ζ1+m++n+ )

ζ2m++n+ (1−ζ2) 0 1

⎞

⎟⎟⎟⎟⎟⎠
,

M̃t = ζ
2
3n++ 1

3m+e−2πi( 23n−+ 1
3m−)

⎛

⎜⎜⎜⎜⎜⎝

1 (1−ζ)2(1+ζ)ζ−2+m+

1−ζm++1
(1−ζ)2(1+ζ)ζ−3+m+

1−ζm++1

0 ζ−1−n+ 0

0 0 ζ−2−n+−m+

⎞

⎟⎟⎟⎟⎟⎠
.

(3.205)

As described in Section 3.5.3, the four point function is obtained by summing over either

s or t channel conformal blocks (3.136). The mass matrices therein, Mt and Ms, are of the

form

Mt =

⎛

⎜⎜⎜⎜⎜⎝

a 0 0

0 b 0

0 0 c

⎞

⎟⎟⎟⎟⎟⎠
, Ms =

⎛

⎜⎜⎜⎜⎜⎝

d 0 0

0 ∗ ∗

0 ∗ ∗

⎞

⎟⎟⎟⎟⎟⎠
, (3.206)

and obey (3.137). (3.137) is solved with

a

c
=
ζ2−2m+−n+(1− ζm+)(1− ζ1+m+)(1− ζ1+n+)(1− ζ1+m++n+)(1− ζ2+m++n+)2

(1− ζ)4(1 + ζ)2(1− ζ2+n+)(1− ζ3+m++n+)
,

b

c
=
ζ−m+(1− ζm+)(1− ζ1+m++n+)(1− ζ2+m++n+)

(1− ζ2+m+)(1− ζn+)(1− ζ1+n+)
.

(3.207)

The overall normalization can be fix by the identity s-channel, which then fixes the entire

four point function. From this four point function one may also extract the coefficients of

the sphere 3-point functions, ⟨O(adj,0)OuOu⟩, ⟨O(adj′,0)OuOu⟩, etc., and reproduce some of

the results in Section 3.3.
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3.D Monodromy invariance of the sphere four-point

function

In this section, we show that the formula (3.148) for the four-point function is invariant

under the t- and u-monodromy transformations, i.e. circling x1 around 0 and∞. By (3.144),

the t-monodromy acting as a phase on the t-channel conformal blocks; hence, the the four-

point function (3.148) is trivially invariant. To exhibit the u-monodromy, let us apply the

following identity on the generalized hypergeometric function:

NFN−1(a1, · · · , aN ; b1, · · · , bN−1|x)

=

∏N−1
k=1 Γ(bk)∏N
k=1 Γ(ak)

N∑

k=1

Γ(ak)
∏N

j=1,j ̸=k Γ(aj − ak)
∏N−1

j=1 Γ(bj − ak)
(−x)−ak

× NFN−1(ak, ak − b1 + 1, · · · , ak − bN−1 + 1; 1− a1 + ak, · · · , 1− aN + ak|
1

x
).

(3.208)

Via this identity, the conformal block Gl(x) can be rewrited as

Gl(x) = x
√

p′

p
Pl

NFN−1(µ⃗l; ̂⃗νl|x)

=

∏N
i=1 Γ(

√
p′

p Pli + 1)

∏N
i=1 Γ(

√
p′

p Pli +
p′

p )

N∑

k=1

Γ(

√
p′

p
Plk +

p′

p
)Γ(1 +

√
p′

p
Pkl −

p′

p
)

×

∏N
j=1,j ̸=k Γ(

√
p′

p Pkj)

∏N
j=1 Γ(

√
p′

p Pkj + 1− p′

p )
e
iπ

(√
p′

p
Pkl− p′

p

)

Hk(x),

(3.209)

where Hk(x) are the u-channel conformal blocks, given by

Hk(x) = x
√

p′

p
Pk− p′

p
NFN−1(µ⃗

′
k;
̂⃗ν
′
k|
1

x
), (3.210)
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and µ⃗′
k, ν⃗

′
k are N -vectors defined as

µ⃗′
k =

√
p′

p
(P1,k, · · · , PN,k) +

p′

p
(1, · · · , 1),

ν⃗ ′k =

√
p′

p
(P1,k, · · · , PN,k) + (1, · · · , 1).

(3.211)

Again ̂⃗ν
′
k is given by ν⃗ ′k dropping the k-th entry. In terms of the u-channel conformal blocks

Hl(x), the four-point function can be written as

N∑

l=1

(Mu)ll|Gl(x)|2

= γ

(
p′

p

)
γ

(
N

(
1− p′

p

)) N∑

l=1

⎛

⎝
N∏

i=1,i ̸=l

Γ(
√

p′

p Pil)Γ(1−
√

p′

p Pil)

Γ(1− p′

p +
√

p′

p Pil)Γ(
p′

p −
√

p′

p Pil)

⎞

⎠ 1

Γ(p
′

p )
2

×
N∑

k1=1

N∑

k2=1

Γ(

√
p′

p
Plk1 +

p′

p
)Γ(1−

√
p′

p
Plk1 −

p′

p
)Γ(

√
p′

p
Plk2 +

p′

p
)Γ(1−

√
p′

p
Plk2 −

p′

p
)eiπ

√
p′

p
Pk1k2

×

∏N
j=1,j ̸=k1

Γ(
√

p′

p Pk1j)

∏N
j=1 Γ(

√
p′

p Pk1j + 1− p′

p )

∏N
j=1,j ̸=k2

Γ(
√

p′

p Pk2j)

∏N
j=1 Γ(

√
p′

p Pk2j + 1− p′

p )
Hk1(x)Hk2(x̄).

(3.212)

Using the following identity

N∑

l=1

⎛

⎝
N∏

i=1,i ̸=l

Γ(
√

p′

p Pil)Γ(1−
√

p′

p Pil)

Γ(1− p′

p +
√

p′

p Pil)Γ(
p′

p −
√

p′

p Pil)

⎞

⎠

× Γ(

√
p′

p
Plk1 +

p′

p
)Γ(1−

√
p′

p
Plk1 −

p′

p
)Γ(

√
p′

p
Plk2 +

p′

p
)Γ(1−

√
p′

p
Plk2 −

p′

p
)eiπ

√
p′

p
Pk1k2

= π2
N∑

l=1

⎛

⎝
N∏

i=1,i ̸=l

sin π(p
′

p −
√

p′

p Pil)

sin π(
√

p′

p Pil)

⎞

⎠ csc π(

√
p′

p
Plk1 +

p′

p
) csc π(

√
p′

p
Plk2 +

p′

p
)eiπ

√
p′

p
Pk1k2

∝ δk1,k2,

(3.213)
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(3.212) may be simplified to

N∑

l=1

(Mu)ll|Gl(x)|2

= γ

(
p′

p

)
γ

(
N

(
1− p′

p

)) N∑

k=1

N∑

l=1

⎛

⎝
N∏

i=1,i ̸=l

Γ(
√

p′

p Pil)Γ(1−
√

p′

p Pil)

Γ(1− p′

p +
√

p′

p Pil)Γ(
p′

p −
√

p′

p Pil)

⎞

⎠ 1

Γ(p
′

p )
2

× Γ(

√
p′

p
Plk +

p′

p
)2Γ(1−

√
p′

p
Plk −

p′

p
)2

⎛

⎝
N∏

j=1,j ̸=k

Γ(
√

p′

p Pkj)

Γ(
√

p′

p Pkj + 1− p′

p )

⎞

⎠

2

1

Γ(1− p′

p )
2

× |Hk(x)|2

= γ

(
p′

p

)
γ

(
N

(
1− p′

p

)) N∑

j=1

N∏

i=1,i ̸=j

Γ(
√

p′

p Pji)Γ(
p′

p −
√

p′

p Pji)

Γ(1− p′

p +
√

p′

p Pji)Γ(1−
√

p′

p Pji)
|Hj(x)|2

=
N∑

j=1

(M̃u)jj|Hj(x)|2,

(3.214)

where the u-channel mass matrix M̃u is given in terms of the structure constants as (here

the subscript u is the charge vector)

(M̃u)jj = B

(√
p′

p
w1

)2

CWN

(√
p′

p
w1, Q− u,Q+ u−

√
p′

p
hj

)

× CWN

(
Q− u+

√
p′

p
hj ,

√
p′

p
wN−1, u+Q

) (3.215)

The u-monodromy acts as a phase on the u-channel conformal blocks (3.210). The four-point

function (3.214) is invariant.
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3.E q-expansion of the torus two-point function

In this section, we study the q-expansion of the torus conformal block (3.164). Let us

start by expanding (3.162) as

Gbos
u (z1, z2|τ) =

∑

n∈Γpp′

q−
N−1
24 + 1

2 (u+n)2
[
Gbos,(0)

u+n (z1, z2) +Gbos,(1)
u+n (z1, z2)q +O(q2)

]
, (3.216)

where Gbos,(n)
u (z1, z2) are obtained from the q-expansion of the θ1 and η functions in (3.162).

For simplicity, here we will assume that N is sufficiently large, and examine only the first

few terms in the q expansion. For this purpose, we can ignore the sum over the lattice Γpp′

by setting n = 0, while restricting u ∈ Γ∗
pp′/Γpp′ to take the value in the equivalence class

that minimize u2, since the effects of nonzero n only come in of the order q∼N2
. Plugging

this formula into (3.163) and (3.164), we obtain

Gt
λ+λ′(z1, z2|τ) =

∑

w∈W

q−
N−1
24 + 1

2 (λ+w(λ′))2
[
G(0)
λ+w(λ′)(z1, z2) +G(1)

λ+w(λ′)(z1, z2)q +O(q2)
]
.

(3.217)

Next, we expand the product of theta functions in (3.162),

1

η(τ)N−1

(
θ1(z12|τ)
∂zθ1(0|τ)

) p′

pN
(
θ1(z1 − t1|τ)
∂zθ1(0|τ)

)− p′

p
(
θ1(z2 − tN−1|τ)

∂zθ1(0|τ)

)− p′

p
N−2∏

i=1

(
θ1(ti,i+1|τ)
∂zθ1(0|τ)

)− p′

p

= q−
N−1
24

(
i

4π

) p′

pN
− p′

p
N ( x12√

x1x2

) p′

pN
(
x1 − s1√

x1s1

)− p′

p
(
x2 − sN−1√

sN−1x2

)− p′

p
N−2∏

i=1

(
si,i+1√
sisi+1

)− p′

p

×
[
1 +

(
N − 1− p′

pN

x2
12

x1x2

)
q +

p′

p

(
N−1∑

k=1

s2k−1,k

sk−1sk
+

(x2 − sN−1)2

sN−1x2

)
q +O(q2)

]
,

(3.218)
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where s0 ≡ x1, and we have made a conformal transformation xi = e2πizi and si = e2πiti .

The zeroth order term in this expansion, after the contour integral, gives19

G(0)
u (z1, z2) =

(
i

4π

) p′

pN
− p′

p
N

(x2 − x1)
p′

Npx
p′(N−1)

2pN

1 x
p′(N−1)

2pN − p′

p

2 Gu

(
x1

x2

)
. (3.219)

The first order terms in the expansion (3.217) can be split into three terms,

G(1)
u (z1, z2) = G(1),1

u (z1, z2) +G(1),2
u (z1, z2) +G(1),3

u (z1, z2), (3.220)

coming from the three terms of order q in the second line of (3.218),

(
N − 1 +

p′

pN

x2
12

x1x2

)
,

p′

p

N−1∑

k=1

s2k−1,k

sk−1sk
,

p′

p

N−1∑

k=1

(x2 − sN−1)2

sN−1x2
. (3.221)

The first term is independent of si and its contribution is proportional to G(0)
u after doing

the contour integral. The second term of (3.220) is computed as

G(1),2
u (z1, z2) =

(
i

4π

) p′

pN
− p′

p
N p′

p

N−1∑

k=1

s2k−1,k

sk−1sk
(x2 − x1)

p′

Npx

√
p′

p
P1+

p′(N−1)
2pN

1 x
−
√

p′

p
PN+ p′(N−1)

2pN

2

×
∫ x1

0

ds1 s
−
√

p′

p
(u+Q)·α1

1 (x1 − s1)
− p′

p

×
(

N−2∏

i=1

∫ si

0

dsi+1 s
−
√

p′

p
(u+Q)·αi+1

i+1 (si − si+1)
− p′

p

)
(x2 − sN−1)

− p′

p

=

(
i

4π

) p′

pN
− p′

p
N

(x2 − x1)
p′

Npx

√
p′

p
PN+ p′(N−1)

2pN

1 x
−
√

p′

p
PN+ p′(N−1)

2pN − p′

p

2

× p′

p

N−1∑

k=1

∏N
i=1 Γ(

√
p′

p PN,i +
p′

p − δi,k)
∏N

i=1 Γ(
√

p′

p PN,i + 1 + δi,k)

Γ(1− p′

p )
N−1

Γ(p
′

p )
(1− p′

p
)(2− p′

p
)

× NFN−1(µ⃗N − δk; ̂⃗νN + δk|
x1

x2
),

(3.222)

19Here a conformal factor of the form xhf

1 xhf̄

2 , together with the factors in (3.147), is included in rewriting

G
(0)
u in terms of the sphere four-point conformal block Gu.
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where 1⃗ = (1, · · · , 1) and (δ⃗k)i = δk,i. The third term of (3.220) is given by

G(1),3
u (z1, z2) =

(
i

4π

) p′

pN
− p′

p
N p′

p

(sN−1 − x2)2

x2sN−1
(x2 − x1)

p′

Npx

√
p′

p
P1+

p′(N−1)
2pN

1 x
−
√

p′

p
PN+ p′(N−1)

2pN

2

×
∫ x1

0

ds1 s
−
√

p′

p
(u+Q)·α1

1 (x1 − s1)
− p′

p

(
N−2∏

i=1

∫ si

0

dsi+1 s
−
√

p′

p
(u+Q)·αi+1

i+1 (si − si+1)
− p′

p

)
(x2 − sN−1)

− p′

p

=

(
i

4π

) p′

pN
− p′

p
N

(x2 − x1)
p′

Npx

√
p′

p
PN+ p′(N−1)

2pN −1

1 x
−
√

p′

p
PN+ p′(N−1)

2pN − p′

p
+1

2

× p′

p

∏N
k=1 Γ(

√
p′

p PN,k +
p′

p − 1)

∏N−1
k=1 Γ(

√
p′

p PN,k)

Γ(1− p′

p )
N−1

Γ(p
′

p − 1)
NFN−1(µ⃗N − 1⃗− δ⃗N ; ̂⃗νN − 1⃗|x1

x2
).

(3.223)

Using the identity (3.208), G(1),2
u and G(1),3

u can be combined into

G(1),2
u +G(1),3

u

=

(
i

4π

) p′

pN
− p′

p
N

(x2 − x1)
p′

Npx
p′(N−1)

2pN

1 x
p′(N−1)

2pN − p′

p

2

p′

p
(1− p′

p
)(2− p′

p
)

N∑

k=1

∏N−1
i=1 Γ(

√
p′

p PN,i + 1)

∏N
i=1 Γ(

√
p′

p PN,i +
p′

p )

×
N∑

m=1

Γ(
√

p′

p PN,m + p′

p )Γ(
√

p′

p Pm,N + 1− p′

p )
∏N

j=1,j ̸=m Γ(
√

p′

p Pm,j + δm,k − δj,k)
∏N

j=1 Γ(
√

p′

p Pm,j + 1− p′

p + δj,k + δm,k)

× e
iπ

(√
p′

p
Pm,l− p′

p

)(
x1

x2

)√
p′

p
Pm− p′

p
+δm,k

NFN−1(µ⃗
′
m − δk,m1⃗− δ⃗k; ̂⃗ν

′
m − δk,m1⃗ + (1− δk,m)δ⃗k|

x2

x1
).

(3.224)

3.F Thermal two-point function in Virasoro minimal

models

In this appendix, we study numerically the torus two-point function of (f , 0) with (f̄ , 0),

and its analytic continuation to Lorentzian signature, in the N = 2 case, i.e. Virasoro

minimal model. The result was first derived in [44], and is a special case of our formulae for
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general N .

The formula in terms of summation over t channel conformal blocks in this case is

⟨Ov1(z1, z̄1)Ov2(z2, z̄2)⟩τ =
1

2

p−1∑

r=1

p′−1∑

s=1

[∣∣∣∣CrG
t
p′r−ps√

2pp′

(z1, z2|τ)
∣∣∣∣
2

+

∣∣∣∣C−rGt
−p′r+ps√

2pp′

(z1, z2|τ)
∣∣∣∣
2
]

=
p−1∑

r=1

p′−1∑

s=1

∣∣∣∣CrG
t
p′r−ps√

2pp′

(z1, z2|τ)
∣∣∣∣
2

.

(3.225)

The subscript of the conformal block Gt
u, u = p′r−ps√

2pp′
, is the charge associated with the

(r, s) primary in the t-channel, normalized such that the fundamental weight is 1√
2
. The

normalization factor Cr is given by

Cr =
1

Γ(1− p′

p )

[
−γ(p

′

p
)γ(2(1− p′

p
))
sin(π p′

p (r − 1))

sin(π p′

p r)

] 1
2

N−1
r . (3.226)

We will also write Gt
u as Gt

(r,s). It is obtained from the free boson correlator by the contour

integral

Gt
(r,s)(z1, z2|τ) =

∫

L(0,z1)

dtGbos
(r,s)(z1, z2, t|τ),

Gbos
(r,s)(z1, z2, t|τ) = Gbos

(r,s)(z1, z2, t|τ)−Gbos
(r,−s)(z1, z2, t|τ).

(3.227)

Gbos is given explicitly by

Gbos
(r,s)(z1, z2, t|τ) =

1

η(τ)

(
θ1(z12|τ)
∂zθ1(0|τ)

) p′

2p
(
θ1(z1 − t|τ)
∂zθ1(0|τ)

)− p′

p
(
θ1(z2 − t|τ)
∂zθ1(0|τ)

)− p′

p

×
∞∑

n=−∞

qpp
′(p

′r−ps
2pp′

+n)2 exp

[
2πi(

p′r − ps

2p
+ p′n)(z1 + z2 − 2t)

]
.

(3.228)

In the explicit evaluation of the two-point function below, we will restrict to the special case

τ = iβ, z1 = 0, z2 = 1/2, and compute

Gt
(r,s)

(
0,

1

2
|iβ
)
. (3.229)

152



Chapter 3: Correlators in WN Minimal Model Revisited

At positive integer values of time, t = m > 0, we have

⟨Ov1(0, m)Ov2(
1

2
, 0)⟩β =

p−1∑

r=1

p′−1∑

s=1

e2πim
p′

p
(−r+ 1

2 )

∣∣∣∣G
t
(r,s)(0,

1

2
|iβ)

∣∣∣∣
2

. (3.230)

The integral is evaluated numerically using the following contour, which is convenient when

the fractional powers of θ1(z|τ) in (3.228) is defined with a branch cut along the positive

real z axis.

z1

The results for minimal models up to k = 30 are plotted in Figures 3.1 and 3.2. At large

values of k, while the Poincare recurrence times is of order k, the two-point function is

already “thermalized” at t = 1.

We also plotted the two-point function at various temperatures, ranging from 0.05 to 20

(times the self-dual temperature), at integer times in the k = 4 Virasoro minimal model, in

Figure 3.3.
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1 2 3 4 5 6 7 8 9 10
time

0.2

0.4

0.6

0.8

1

Figure 3.1: The modulus of the two-point function ⟨O(0, t)O(0, 0)⟩β (nor-
malized to 1 at t = 0) at inverse temperature β = 0.3 is plotted at integer
values of time t = 0, 1, 2, · · · , 10. The results for Virasoro minimal mod-
els with k = 1, 2, · · · , 14 are shown in colors ranging from red to green
and then to blue. For each k, the values of the modulus of the two-point
function at integer times before Poincaré recurrence are connected with
straight lines, for the purpose of illustration only.
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time
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0.6

0.8

1

Figure 3.2: The modulus of the two-point function ⟨O(0, t)O(0, 0)⟩β (nor-
malized to 1 at t = 0) at inverse temperature β = 0.3 is plotted at in-
teger values of time t = 0, 1, 2, · · · , 40, in Virasoro minimal models of
k = 10, 20, 30 (shown in red, green, and blue).
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time
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1

Figure 3.3: Plots of the modulus of the two-point function
⟨O(0, t)O(0, 0)⟩β (normalized to 1 at t = 0) in the k = 4 Virasoro min-
imal model, at integer values of time t = 0, 1, · · · , 4 (connected with
fictitious straight lines for illustration only), at different values of the
temperature T = 1/β. T ranges from ∼ 0.05 to 20 (depicted in colors
ranging from blue to red), evenly spaced in logarithmic scale.
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A Semi-Local Holographic Minimal

Model

4.1 Summary of Section 3.4.3

In previous chapter, we computed the three-point functions of WN primaries ( , 0),

( , ), and/or their charge conjugates, with the primary (Λ+,Λ−) where Λ± are or .

This result allowed us to identify the primary operators (Λ+,Λ−), for Λ± being one- or two-

box representations, with the single-particles or multi-particle states in the bulk in large N

limit. The result can be summarized in the following table:

Λ+
Λ− 0

0 0 φ̃1 Lφ̃1 φ̃2
1

φ1 ω1
1√
2
(φ̃1ω1 + φ̃2)

1√
2
(φ̃1ω1 − φ̃2)

Lφ1
1√
2
(φ1ω1+φ2)

1
2(ω

2
1 +
√
2ω2)

1√
2
(Lω1− 1√

2
(φ1φ̃2−φ2φ̃1))

φ2
1

1√
2
(φ1ω1−φ2)

1√
2
(Lω1+

1√
2
(φ1φ̃2−φ2φ̃1))

1
2(ω

2
1 −
√
2ω2)
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where the φ1, φ̃1,ω1,φ2, φ̃2,ω2 are operators that dual to the elementary particles in the bulk:

φ1 = ( , 0), φ̃1 = (0, ), ω1 = ( , ),

φ2 =
1√
2
[( , )− ( , )] , φ̃2 =

1√
2
[( , )− ( , )] ,

ω2 =
1√
2
[( , )− ( , )] .

(4.1)

Two comments about this identification: first note that the expressions only make sense

in the large N limit since each term in the linear combination has different dimension in

the subleading order of 1/N . In the large N limit, we conjecture that each term in the

above linear combination has the same dimensions and higher spin charges. This conjecture

has been checked up to spin 5; see Appendix 4.A. Second, in the table, the products of

the operators are well-defined because one can check that the OPE’s of the them have no

singularity in the large N limit. The operator LO is defined as

LO =
1

2
√
2hO

(
O∂∂̄O − ∂O∂̄O

)
. (4.2)

Again, the products are well-defined since there is no singularity in the OPE. This table is

further subject to a relation [12]:

1

2hω1

∂∂̄ω1 = φ1φ̃1. (4.3)

The bulk physical meaning of this relation will be explain in detail in the Section 4.5.

In Section 4.2 and 4.3, we will present some new examples of single-trace operators and

operator relations involving light primaries at large N . In Section 4.4, we argue that the

operator relations that seemed to be in conflict with large N factorization should in fact

be interpreted as current non-conservation relations for currents that generate approximate

“hidden” symmetries in the large N limit. Further data on higher spin currents of this
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sort are presented in Section 4.5. In Section 4.6, we state our conjecture on the complete

spectrum of single-trace operators in the CFT at infinite N , or single-particle states in the

bulk. These include the infinite family of massive scalars φn, φ̃n, light scalars ωn, and the

hidden higher spin currents j(s)n , all of which are complex. Various checks based on partition

functions and characters are given by Section 4.7. In Section 4.8, we determine the gauge

generators associated with the hidden symmetry currents, and reveal the picture of semi-

local higher spin theory on AdS3×S1. We discuss the implication of our results in Section

4.9.

4.2 New single-trace operators/elementary particles

Let us extend this table to the the representation with three boxes. Before diving into the

computation of three-point functions, there are some principles can help us to determine

whether a primary operator OA can be dual to the two-particle state of two elementary

particles that are dual to OB and OC . First, the primary OA must appear in the OPE of

the primary OB and OC . Second, the dimension of the primary OA must be equal to the

sum of the dimension of OB and OC up to higher order corrections in 1/N . Following is

a table summarizing the dimension of the primary operator up to representation of three

boxes.
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Λ+
Λ− 0

0 0 1−λ
2 (1−λ)+1 1− λ 3

(
1−λ
2

)
+3 3

(
1−λ
2

)
+1 3

(
1−λ
2

)

1+λ
2

λ2

2N
1−λ
2

1−λ
2 (1−λ)+ 1 1− λ 1− λ

(1+ λ)+ 1 1+λ
2

λ2

N 1 1−λ
2

1−λ
2

1−λ
2 +1

1 + λ 1+λ
2 1 λ2

N
1−λ
2 + 2 1−λ

2
1−λ
2

3
(
1+λ
2

)
+3 (1+λ)+1 1+λ

2
1+λ
2 +2 3λ2

2N 1 3

3
(
1+λ
2

)
+1 1 + λ 1+λ

2
1+λ
2 1 3λ2

2N 1

3
(
1+λ
2

)
1 + λ 1+λ

2 + 1 1+λ
2 3 1 3λ2

2N

Let us first focus on the light states: ( , ), ( , ), ( , ). By the fusion rule and

the additivity of the dimension, two linear combinations of these three operators can be

identified with the multi-particle states ω3
1 and ω1ω2. Let us see this explicitly in terms of

structure constants. A formula of a large class of the structure constants is given in [50]. By

explicitly evaluating the formula, we find out that, in the large N limit, the OPE of ( , )

and ( , ) has no singularity, hence the product ( , )( , ) is well-defined, which in the

large N limit is

( , )( , ) = ( , ) + ( , ). (4.4)

Similarly, in the large N limit, we have

( , )( , ) = ( , ) + ( , ). (4.5)

Rewriting the equation in terms of ω1,ω2, we have

ω1ω2 = ( , )− ( , ),

ω3
1 = ( , ) + 2( , ) + ( . ).

(4.6)

There is one linear combination of ( , ), ( , ), ( , ), which cannot be expressed as

ω1ω2,ω3
1. This operator should be dual to a new light elementary particle. Hence, we define

ω3 =
1√
3

[
( , )− ( , ) + ( , )

]
, (4.7)
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which is orthonormal to ω1ω2,ω3
1 and is a new elementary light particle.

Next, let us look at the primaries with dimension 1−λ
2 and with three boxes represen-

tations. They are ( , ), ( , ), ( , ), ( , ). From the additivity of the dimension,

three linear combinations of these four operators can be dual to the multi-particle states

φ̃1ω2, φ̃1ω2
1, φ̃2ω1. Again, we can see this explicitly from the structure constants. From the

structure constant computation, we have the following products at large N :

(0, )( , ) =
1√
3
( , ) +

√
2

3
( , ),

(0, )( , ) =

√
2

3
( , ) +

1√
3
( , ),

( , )( , ) =

√
2

3
( , ) +

1

2
√
3
( , ) +

√
3

2
( , ),

( , )( , ) =

√
3

2
( , ) +

1

2
√
3
( , ) +

√
2

3
( , ).

(4.8)

Expressing them in terms of φ̃1, φ̃2,ω1,ω2, we obtain

φ̃1ω2 =
1√
6

[
( , ) +

√
2( , )−

√
2( , )− ( , )

]
,

1√
2
φ̃1ω

2
1 = φ̃1

( , ) + ( , )√
2

=
1√
6

[
( , ) +

√
2( , ) +

√
2( , ) + ( , )

]

=
1√
2
ω1

[( , ) + ( , )]√
2

=
1√
6

[
( , ) +

√
2( , ) +

√
2( , ) + ( , )

]
,

φ̃2ω1 =
1√
6

[√
2( , )− ( , ) + ( , )−

√
2( , )

]
.

(4.9)

There is one linear combination of ( , ), ( , ), ( , ), ( , ), which is linear inde-

pendent of φ̃1ω2, φ̃1ω2
1, φ̃2ω1, and should be dual to a new elementary particle in the bulk.

Hence, we can define

φ̃3 =
1√
6

[√
2( , )− ( , )− ( , ) +

√
2( , )

]
, (4.10)

160



Chapter 4: A Semi-Local Holographic Minimal Model

which is orthonormal to φ̃1ω2,
1√
2
φ̃1ω2

1, φ̃2ω1. Similarly, by exchanging the left and right

representations, we have

φ1ω2 =
1√
6

[
( , ) +

√
2( , )−

√
2( , )− ( , )

]
,

1√
2
φ1ω

2
1 =

1√
6

[
( , ) +

√
2( , ) +

√
2( , ) + ( , )

]
,

φ2ω1 =
1√
6

[√
2( , )− ( , ) + ( , )−

√
2( , )

]
,

(4.11)

and we define

φ3 =
1√
6

[√
2( , )− ( , )− ( , ) +

√
2( , )

]
. (4.12)

Next, let us focus on the primaries ( , ), ( , ). By the fusion rule and the additivity

of the dimension, it is not hard to see that they must be identified with the two linear

combinations of φ̃1φ̃2 and ω1φ̃2
1, which are dual to two- and three-particle states. Similarly,

the primaries ( , ), ( , ) are identified with the two linear combinations of φ1φ2 and

ω1φ2
1. All the other primaries: ( , ), ( , ), ( , ), ( , ), ( , ), ( , ), and

the primaries with left and right representations exchanged, are also dual to multi-particle

states. We will show this in Section 4.7.

4.3 Large N operator relations involving ω2 and ω3

There is a new relation involving the descendant of ω2, similar to the relation (4.3). By

the following two structure constants:

Cnor

(
(0, ), ( , ), ( , )

)
=

√
2

N
+O(

1

N2
),

Cnor

(
(0, ), ( , ), ( , )

)
=

√
2

N
+O(

1

N2
),

(4.13)
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we have the three-point functions:

〈
ω̄2(z)φ1(w)φ̃2(0)

〉
=
〈
ω̄2(z)φ2(w)φ̃1(0)

〉
=

1√
2N

1

|z − w|2λ|w|2|z|−2λ
, (4.14)

in the large N limit. Taking ∂∂̄ on ω̄2, we obtain:

〈
∂∂̄ω̄2(z)φ1(w)φ̃2(0)

〉
=
〈
∂∂̄ω̄2(z)φ2(w)φ̃1(0)

〉
=

λ2√
2N

(
1

|z − w|2(1+λ)

)(
1

|z|2(1−λ)

)
.

(4.15)

The two factors on the right hand side of (4.15) are precisely given by the two-point functions

of
〈
φ2φ̄2

〉
and

〈
φ̃1

¯̃φ1

〉
, or

〈
φ1φ̄1

〉
and

〈
φ̃2

¯̃φ2

〉
. Hence, this suggests the following relation in

the large N limit:

1

2hω2

∂∂̄ω2 =
1√
2
(φ1φ̃2 + φ̃1φ2). (4.16)

To make sure that there are no extra term on the left hand side, one can compute the two-

point function for the right hand side of (4.16) with its charge conjugate, and the two-point

function for the left hand side of (4.16) with its charge conjugate, and find that they agree.

Form the previous analysis on ω1,ω2, it suggests that there is also a relation involving

the descendant of ω3. We postulate such relation should be

1

2hω3

∂∂̄ω3 =
1√
3
(φ1φ̃3 + φ2φ̃2 + φ3φ̃1). (4.17)

We give an argument for this relation. In the large N limit, we have the following structure

constants

Cnor

(
(0, ), ( , ), ( , )

)
=

√
3

N
, Cnor

(
(0, ), ( , ), ( , )

)
=

√
3

N

Cnor

(
(0, ), ( , ), ( , )

)
=

√
3

2

1

N
, Cnor

(
(0, ), ( , ), ( , )

)
=

√
3

2

1

N
.

(4.18)

These structure constants give the three-point functions:

〈
ω̄3(z)φ1(w)φ̃3(0)

〉
=
〈
ω̄3(z)φ3(w)φ̃1(0)

〉
=

1√
3N

1

|z − w|2λ|w|2|z|−2λ
, (4.19)
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in the large N limit. Taking ∂∂̄ on ω̄2, the three-point function again factorizes as a product

of two two-point functions:

〈
∂∂̄ω̄3(z)φ1(w)φ̃3(0)

〉
=
〈
∂∂̄ω̄3(z)φ3(w)φ̃1(0)

〉
=

λ2√
3N

1

|z − w|2(1+λ)|z|2(1−λ) .
(4.20)

The three-point functions (4.20) imply the relation

1

2hω3

∂∂̄ω3 =
1√
3
(φ1φ̃3 + φ3φ̃1 + · · · ). (4.21)

By comparing the two-point functions of the left and right hand sides with their charge

conjugates, we know that the “· · ·” must take the form as a single term φnφ̃m with n,m ̸=

1, 3, and the only candidate is φ2φ̃2.

4.4 Hidden symmetries

In this section, we give physical interpretation of the relations (4.3), (4.16), (4.17), and

provide a bulk mechanism of producing such relations. The key observation is that the

dimension of ωn goes to zero in the large N limit. Therefore, it should effectively behave

like a free boson, whose derivative is a conversed current. Hence, we define the holomorphic

current (j(1)n )z = ∂ωn/
√
2hωn and also the antiholomorphic current (j(1)n )z̄ = ∂̄ωn/

√
2hωn ,

for n = 1, 2, 3, which has normalized two-point function with itself. For simplicity, we will

sometimes suppress the index by simply denoting (j(1)n )z as j(1)n in the following. However,

since the dimensions of ωn are not exactly equal to zero, the currents j(1)n are not exactly

conserved. The relations (4.3), (4.16), (4.17) are then naturally interpreted as current non-
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conservation equations1:

∂̄j(1)n =
λ√
N
(φ1φ̃n + φ2φ̃n−1 + · · ·+ φnφ̃1). (4.22)

The bulk interpretation of these current non-conservation equations is simple. Let us

illustrate this by considering the case of j(1)n . In this case the current non-conservation

equation is simply

∂̄j(1)1 =
λ√
N
φ1φ̃1. (4.23)

Following the AdS/CFT dictionary, the bulk dual of the current j(1)1 is a U(1) Chern-Simons

gauge field Aµ, and the bulk dual of the operators φ1, φ̃1 are two scalars Φ, Φ̃. These two

scalars have different but complementary dimensions, hence they have the same mass but

different boundary conditions. They can be minimally coupled to the gauge field Aµ. The

action of this system up to cubic order is

S =
kCS

4π

∫
AdA+ 2i

∫
d2xdz

√
gAµ

[
Φ̃∂µΦ− Φ∂µΦ̃

]
. (4.24)

Using this action, we can compute the three-point function of ∂̄j(1)1 with φ1, φ̃1. The bound-

ary to bulk propagator of the Chern-Simons gauge field takes a pure gauge form Aµ = ∂µΛ.

The cubic action, hence, can be written as

lim
z→0

2

z

∫
d2xΛ

[
Φ∂zΦ̃− Φ̃∂zΦ

]
. (4.25)

1The current non-conservations equation for theories in one higher dimension have been studied in [21,
51, 52].
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The three-point function is then given by

〈
j(1)1 (x⃗3)φ1(x1)φ̃1(x2)

〉

= lim
z→0

2

z

∫
d2xΛ(x− x3)

[
K1+λ(x− x1)∂zK1−λ(x− x2)−K1−λ(x− x2)∂zK1+λ(x− x1)

]

= −16πλ
∫

d2x
1

(x+ − x+
3 )

1

|x⃗− x⃗2|2(1−λ)
1

|x⃗− x⃗1|2(1+λ)
,

(4.26)

where K∆ and Λ are the boundary to bulk propagators for the scalar and gauge function:

K∆ =

(
z

z2 + |x⃗|2

)∆

, Λ =
4π

x+
. (4.27)

Taking the derivative ∂
∂x+

3
on the above expression, we obtain

〈
∂̄j(1)1 (x⃗3)φ1(x1)φ̃1(x2)

〉
= −16π2λ

∫
d2xδ2(x− x3)

1

|x⃗− x⃗2|2(1−λ)
1

|x⃗− x⃗1|2(1+λ)

= −16π2λ
1

|x⃗3 − x⃗2|2(1−λ)|x⃗3 − x⃗1|2(1+λ)
,

(4.28)

which factories into a product of two two-point functions of scalars with dimension ∆ =

1 + λ and 1 − λ. This matches exactly with what we expected from (4.23) provided the

identification of the Chern-Simons level kCS = N . In Section 4.8, we will show that every

(j(1)n )z gives a U(1) Chern-Simons gauge field, and combined with the gauge field dual to

(j(1)n )z̄, they form a U(1)∞ × U(1)∞ Chern-Simons gauge theory in the bulk.

4.5 Approximately conserved higher spin currents

The approximately conserved spin-1 current (j(1)n )z generates a tower of approximately

conserved higher spin currents (j(s)n )z, by the action ofWN generators on (j(1)n )z. For example,

165



Chapter 4: A Semi-Local Holographic Minimal Model

(j(1)1 )z has a level-one W -descendent

(j(2)1 )z =
1√

2(1− λ2)

(
W (3)

−1 −
3

2
iλL−1

)
(j(1)1 )z

=

√
N

2λ2(1− λ2)(W
(3)
−2 − iλ∂2)ω1,

(4.29)

which is also a Virasoro primary2. This is an approximately conserved stress tensor. The

current non-conservation equation of (j(1)1 )z then descends to the current non-conservation

equation of (j(2)1 )z:

∂̄(j(2)1 )z =
1√

2(1− λ2)

(
W (3)

−1 −
3

2
iλL−1

)
∂̄j(1)1

=
iλ√

2N(1− λ2)

[
(1− λ)∂φ1φ̃1 − (1 + λ)φ1∂φ̃1

]
,

(4.30)

where we have used the null-state equations in Appendix 4.C. In general, the approximately

conserved spin-1 current (j(1)1 )z has exactly one W -descendant Virasoro primary (j(s)1 )z at

each level s, which takes the form as

(j(s)1 )z =
√
N(a1W

(s+1)
−s + a2∂W

(s)
−s+1 + · · ·+ as∂

s)ω1, (4.31)

where ai are some constants depending on λ, and can be fixed by requiring (j(s)1 )z being

a Virasoro primary. The (j(s)1 )z’s are approximately conserved higher spin currents. They

satisfy the current non-conservation equations taking the form as

∂̄(j(s)1 )z =
1√
N
(b1∂

s−1φ1φ̃1 + b2∂
s−2φ1∂φ̃1 + · · ·+ bsφ1∂

s−1φ̃1), (4.32)

where bs are constants depending on λ, and can be fixed by requiring the left hand side of

(4.32) being a Virasoro primary. By same argument, there are also antiholomorphic higher

spin currents (j(s)1 )z̄. We expect that there are also approximately conserved holomorphic

2In Appendix 4.B, we fix the normalization of (j(1)1 )z and check that it is a Virasoro primary.
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and antiholomorphic higher spin currents (j(s)2 )z, (j
(s)
3 )z, and (j(s)2 )z̄, (j

(s)
3 )z̄ that take a the

similar form as (4.31).

4.6 The single particle spectrum

Now we state a conjecture on the complete spectrum of the single particle states in the

bulk. Throughout this paper, by a single-trace operator we mean an operator that obeys

the same large N factorization property as single-trace operators in large N gauge theories;

such an operator is dual to the state of one elementary particle in the bulk. The products

of single-trace operators are dual to multi-particle states. As we have seen in the previous

section, the primary operators that involve up to one box in the Young tableaux of Λ+ and

Λ− are all single-trace operators: they are φ1, φ̃1, and ω1. The primaries that involve up

to two boxes in the Young tableaux of Λ+ and Λ− are some suitable linear combination of

single-trace operators φ2, φ̃2, ω2, or products of two single-trace operators. We have also

seen some evidences that the primaries with up to three boxes in their representations are

linear combinations of single-trace operators φ3, φ̃3, ω3, or products of single-trace operators.

We conjecture that the primaries with up to n-box representations are linear combinations

of single-trace operators φn, φ̃n, ωn, or products of such single-trace operators φm, φ̃m,ωm

for m < n. Here φn is a linear combination of primaries of the form (Λ+,Λ−) that involve

(n, n − 1) boxes, φ̃n is a linear combination of primaries that involve (n− 1, n) boxes, and

ωn is a linear combination of light primaries of the form (Λ,Λ) where Λ involves n boxes.

A part of this conjecture is easy to prove: the statement that there is only one light

single-trace operator ωn for each n labeling the number of boxes in its corresponding SU(N)

representations follows easily from the fusion rule. First we note that generally, the light
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state of the form (Λ,Λ) have dimension B(Λ)λ2/N + O(N−2), where B(Λ) is the number

of boxes of the Young tableaux of the representation Λ, in the large N limit and fixed finite

B(Λ). We may write a partition function of the light states

Z(x) =
∑

(Λ,Λ)

xB(Λ) =
∞∏

n=1

1

1− xn
. (4.33)

Each single-trace operator of dimension nλ2/N is a linear combination of (Λ,Λ) with B(Λ) =

n. The dimension of the product of single-trace operators is additive at order 1/N . The

products of a single-trace operator is counted by the partition function 1/(1 − xn). By

comparing this with Z(x), we see that there is precisely one single-trace operator ωn for

each n.

The φn, φ̃n, ωn are all the single-trace operators that are dual to scalar fields in the bulk.

These are not all, however. There are other single-trace operators that are dual to spin-1,

spin-2, and higher spin gauge fields. As explained in the previous section, while ∂ωn is a

level-one descendent of ωn, the norm of ∂ωn goes to zero in the large N limit. Consequently,

the normalized operator (j(1)n )z ∼
√
N∂ωn behaves like a primary operator. Such operators

will be referred to as large N primary operators, and we include them in our list of single-

trace operators because they should be dual to elementary fields in the bulk as well. We

conjecture that j(1)n ’s are single-trace operators dual to the spin-1 Chern-Simons gauge field

in take bulk. This statement has passed some tests involving the three-point function of j(1)n

with two scalars. This is not the end of the story. As shown in the previous section, there are

large N primaries of higher spin s, denoted by j(s)n . These are single-trace operators dual to

additional elementary higher spin gauge fields in the bulk. Unlike the original WN currents,

however, the would-be higher spin symmetries generated by j(s)n are broken by the boundary

conditions on the charged scalars, leading to the current non-conservation relation. These
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hidden symmetries are recovered in the infinite N limit.

Let us summarize our conjecture on the single-particle spectrum. There are two families

of complex single-trace operators φn, φ̃n, which are dual to massive complex scalar fields (of

the same mass classically), one family of complex single-trace operators ωn, that are dual to

massless scalars in the bulk, and a family of approximately conserved higher spin single-trace

operators j(s)n for each positive integer spin s = 1, 2, 3, · · · , that are dual to Chern-Simons

spin-1 and higher spin gauge fields.

4.7 Large N partition functions

In this section, we check our proposed single particle spectrum against the partition

function of the WN minimal model in the large N limit.

Let us consider a single-trace operator O with nonzero left and right dimensions hO and

h̄O. O is dual to the ground state of a single elementary particle in the bulk. The SL(2,C)

descendent operators ∂m∂̄nO are dual to the excited states of that elementary particle. The

contribution of this single elementary particle to the partition function is given by

ZO =
qhO q̄h̄O

(1− q)(1− q̄)
. (4.34)

If a single-trace operator j has zero right (or left) conformal dimension, then ∂mj (or ∂̄mj)

are all its SL(2,C) dependents. The contribution of j to the partition function is then given

by

Zj =
qhj

1− q
(or

q̄h̄j

1− q̄
). (4.35)

If a single-trace operator ω has zero left and right conformal dimension, then it has no

SL(2,C) dependent. The contribution of ω to the partition function is given by Zω = 1.
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According to our conjecture, we have the single-trace operators {φn, φ̃n,ωn, (j
(s)
n )z, (j

(s)
n )z̄}.

Their contributions to the partition are given by

Zφn =
q

1+λ
2 q̄

1+λ
2

(1− q)(1− q̄)
, Zφ̃n =

q
1−λ
2 q̄

1−λ
2

(1− q)(1− q̄)
, (4.36)

and

Zωn = 1, Z
(j

(s)
n )z

=
qs

1− q
, Z

(j
(s)
n )z̄

= Z(jn)z =
q̄s

1− q̄
(4.37)

For simplicity, let us sum up the partition functions of the operators (j(s)n )z to a single

partition function Z(jn)z as

Z(jn)z =
∞∑

s=1

Z
(j

(s)
n )z

=
∞∑

s=1

qs

1− q
=

q

(1− q)2
, (4.38)

and similar for operators (j(s)n )z̄. The bulk theory also contain boundary higher spin gauge

fields. Their contribution to the partition function is given by

Zhs =
∞∏

s=2

∞∏

n=s

1

(1− qn)(1− q̄n)
. (4.39)

Next, let us consider the partition function for the WN minimal model in the large N

limit. Following from the diagonal modular invariance, the partition function in the large

N limit is given by the sum of the absolute value square of the characters:

ZWN
=

∑

(Λ+,Λ−)

|χ(Λ+,Λ−)|2. (4.40)

The characters χ(Λ+,Λ−), for Λ± being representations with one to three boxes in the Young

tableaux, in the large N limit are computed in the Appendix 4.D up to cubic order. The

following formulas in this section have all been checked up to this order. Let us start by

looking at the contribution of the identity operator to the partition function, which in the

large N limit gives the partition function of the boundary higher spin gauge fields:

lim
N→∞

|χ(0,0)|2 = Zhs. (4.41)
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The primary operators ( , 0) = φ1 and (0, ) = φ̃1 are dual to massive scalars. Their

contributions to the partition function indeed give the partition function of single massive

scalar (with boundary higher spin gauge fields)

lim
N→∞

|χ( ,0)|2 = ZhsZφ1,

lim
N→∞

|χ(0, )|2 = ZhsZφ̃1.

(4.42)

The primary operator ( , ) = ω1 is dual to a massless scalar. The WN -descendants j(s)1 of

( , ) are dual to spin-1, spin-2 and higher spin gauge fields. The other WN descendants

of ( , ) are dual to two-particle states, by the equation (4.32). We confirm this by the

following decomposition of the character,

lim
N→∞

|χ( , )|2 = Zhs(Zω1 + Z(j1)z + Z(j1)z + Zφ1Zφ̃1), (4.43)

where the last term is the contribution of the two-particle states of φ1 and φ̃1.

The identification of other primary operators are inevitable involving multi-particle

states. By Bose statistics, we can write a multi-particle partition function in terms of

the single-particle partition function (4.34) as

Zmulti
O (t) = exp

[
∞∑

m=1

ZO(qm, q̄m)

m
tm
]
. (4.44)

Suppose O = φn, then the partition function Zmulti
φn (t) can be expanded as

Zmulti
φn (t) =

∞∑

ℓ=0

tℓZφℓn, (4.45)

where Zφmn is the m-particle partition function. For instance, Zφ2n and Zφ3n are given by

Zφ2n =
q1+λq̄1+λ(1 + qq̄)

(1− q)2(1 + q)(1− q̄)2(1 + q̄)
,

Zφ3n =
q

3
2 (1+λ)q̄

3
2 (1+λ)(1 + qq̄ + q2q̄ + q̄2q + q2q̄2 + q3q̄3)

(1− q)3(1 + q)(1 + q + q2)(1− q̄)3(1 + q̄)(1 + q̄ + q̄2)
.

(4.46)
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For O = ωn, all the m-particle partition functions are identity:

Zωm
n
= 1. (4.47)

For O = j(s)n , the multi-particle partition function for j(s)n , s = 1, 2, · · · , can be computed

from

Zmulti
jn (t) =

∞∏

s=1

Zmulti

j(s)n
(t) = exp

[
∞∑

m=1

∞∑

s=1

χ∞
j
(s)
n

(qm)

m
tm
]
= exp

[
∞∑

m=1

χ∞
jn(q

m)

m
tm
]
. (4.48)

Expanding Zmulti
jn (t) in powers of t, we can write the Zmulti

jn (t) as

Zmulti
jn (t) = 1 + Z(jn)zt + Z(jn)2zt

2 + Z(jn)3z t
3 + · · · , (4.49)

where Z(jn)mz has the interpretation of the m-particle partition function. For instance,

Z(jn)2z =
q2(1 + q2)

(1− q)4(1 + q)2
,

Z(jn)3z =
q3(1 + q2 + 2q2 + q4 + q6)

(1− q)6(1 + q)2(1 + q + q2)2
.

(4.50)

Let us continue on the matching of boundary and bulk partition functions. Consider the

primary operators ( , 0) and ( , 0). They are dual to two-particle states. Their contribution

to the partition function matches with the two particle partition function:

lim
N→∞

(
|χ( ,0)|2 + |χ( ,0)|

2
)
= ZhsZφ21.

(4.51)

Now, consider the primary operators ( , 0), ( , 0), and ( , 0). They are dual to three-

particle states. Their contribution to the partition function matches with the three-particle

partition function:

lim
N→∞

(
|χ( ,0)|2 + |χ( ,0)|

2 + |χ
( ,0)

|2
)

= ZhsZφ31 . (4.52)
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Next, consider the primary operators ( , ) and ( , ). Their contribution to the partition

function also decomposes as the multi-particle partition functions:

lim
N→∞

(
|χ( , )|2 + |χ( , )|2

)
= Zhs

[
Zφ1

(
Zω1 + Z(j1)z + Z(j1)z̄

)
+ Zφ̃1Zφ21 + Zφ2

]
. (4.53)

For the primary operators ( , ), ( , ), ( , ), and ( , ), their contribution to the

partition function decomposes as

lim
N→∞

(
|χ( , )|2 + |χ( , )|

2 + |χ( , )|
2 + |χ( , )|

2
)

= Zhs

[
Zω2

1
+ Zω1(Z(j1)z + Z(j1)z) + (Z(j1)2z + Z(j1)2z) + |Z(j1)z |2 + Zω1Zφ1Zφ̃1

+ Zφ1Zφ̃1
(
Z(j1)z + Z(j1)z

)
+ Zφ21Zφ̃21 + Zω2 + (Z(j2)z + Z(j2)z) + Zφ2Zφ̃1 + Zφ1Zφ̃2

]
.

(4.54)

Now, let us go on to the representations with three boxes in the Young tableaux. For the

primary operators ( , ), ( , ), and ( , ), their contribution to the partition function

decomposes as

lim
N→∞

(
|χ( , )|2 + |χ( , )|

2 + |χ
( , )

|2
)

= Zhs

[
Zφ1Zφ2 +

(
Zω1 + Z(j1)z + Z(j1)z

)
Zφ21 + Zφ̃1Zφ31

]
.

(4.55)

For the primary operators ( , ), ( , ), ( , ), ( , ), ( , ), and ( , ), their

contribution to the partition function decomposes as

lim
N→∞

(
|χ( , )|2 + |χ( , )|

2 + |χ
( , )

|2 + |χ( , )|
2 + |χ( , )|

2 + |χ
( , )

|2
)

= Zhs

[ (
Zω2 + Z(j2)z + Z(j2)z

)
Zφ1 +

(
Zω1 + Z(j1)z + Z(j1)z

)
Zφ2 + Zφ21Zφ̃2 + Zφ1Zφ̃1Zφ2

+
(
Zω2

1
+ Zω1Z(j1)z + Zω1Z(j1)z + Z(j1)2z + Z(j1)2z + Z(j1)zZ(j1)z

)
Zφ1

+
(
Zω1 + Z(j1)z + Z(j1)z

)
Zφ21Zφ̃1 + Zφ31Zφ̃21 + Zφ3

]
.

(4.56)
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The contribution from the primary operators ( , ), ( , ), ( , ), ( , ),

( , ), ( , ), ( , ), ( , ), and ( , ), to the partition function decomposes as

lim
N→∞

(
|χ( , )|2 + |χ( , )|

2 + |χ
( , )

|2 + |χ( , )|
2

+ |χ( , )|
2 + |χ

( , )
|2 + |χ

( , )
|2 + |χ

( , )
|2 + |χ

( , )
|2
)

= Zhs

[
Zω3

1
+ Zω2

1

(
Z(j1)z + Z(j1)z

)
+ Zω1

(
Z(j1)2z + Z(j1)2z + Z(j1)zZ(j1)z

)

+
(
Z(j1)3z + Z(j1)3z + Z(j1)2zZ(j1)z + Z(j1)zZ(j1)2z

)

+
(
Zω2

1
+ Zω1

(
Z(j1)z + Z(j1)z

)
+
(
Z(j1)2z + Z(j1)2z + Z(j1)zZ(j1)z

))
Zφ1Zφ̃1

+
(
Zω1 +

(
Z(j1)z + Z(j1)z

))
Zφ21Zφ̃21 + Zφ31Zφ̃31 + Zω1Zω2

+ Zω1

(
Z(j2)z + Z(j2)z

)
+ Zω2

(
Z(j1)z + Z(j1)z

)
+
(
Z(j1)z + Z(j1)z

) (
Z(j2)z + Z(j2)z

)

+
(
Zω1 + Z(j1)z + Z(j1)z

) (
Zφ1Zφ̃2 + Zφ2Zφ̃1

)
+
(
Zω2 + Z(j2)z + Z(j2)z

)
Zφ1Zφ̃1

+ Zφ21Zφ̃1Zφ̃2 + Zφ1Zφ̃21Zφ2 + Zω1 + Z(j1)z + Z(j1)z + Zφ1Zφ̃3 + Zφ2Zφ̃2 + Zφ3Zφ̃1

]
.

(4.57)

4.8 Interactions and a semi-local bulk theory

The three-point functions3 involving the hidden symmetry currents amount to the fol-

lowing assignment of gauge generators Tn associated to the currents j(s)n (z), which act on

the states |φm⟩ and |φ̃m⟩. We use the ket notation here, rather than the primary fields

themselves, because while φm and φ̃m have different scaling dimensions at infinite N , they

are dual to scalar fields of the same mass that transform into one another under the hidden

3Some three-point functions are computed, and a general form of such three-point functions are postulated
in Appendix 4.E.
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gauge symmetries.

Tn|φm⟩ = |φn+m⟩, Tn|φ̄m⟩ = −|φ̄m−n⟩ (n < m) or − |φ̃n−m+1⟩ (n ≥ m),

Tn|φ̃m⟩ = −|φ̃n+m⟩, Tn| ¯̃φm⟩ = | ¯̃φm−n⟩ (n < m) or |φn−m+1⟩ (n ≥ m).

(4.58)

Let us define the fields ϕr and ϕ̃r for r ∈ Z+ 1
2 by

ϕr = φr+ 1
2
, ϕ−r =

¯̃φr+ 1
2
,

ϕ̃r = φ̃r+ 1
2
, ϕ̃−r = φ̄r+ 1

2
.

(4.59)

They are related by complex conjugation:

ϕ̄r = ϕ̃−r, ¯̃ϕr = ϕ−r. (4.60)

In terms of ϕr and ϕ̃r, the gauge generators act as

Tn|ϕr⟩ = |ϕr+n⟩, Tn|ϕ̃r⟩ = −|ϕ̃r+n⟩. (4.61)

We also have

T n|ϕr⟩ = −|ϕr−n⟩, T n|ϕ̃r⟩ = |ϕ̃r−n⟩. (4.62)

which suggests the definition T−n = −T n, or j(s)−n = −j̄(s)n . Now (4.61) is extended to all

n ∈ Z. The action of Tn can be diagonalized by the Fourier transform:

|ϕ(x)⟩ =
∑

r∈Z+1/2

eirx|ϕr⟩, |ϕ̃(x)⟩ =
∑

r∈Z+1/2

eirx|ϕ̃r⟩, T (x) =
∑

n∈Z

einxTn, (4.63)

where x is an auxiliary generating parameter. Here we also included the generator T0 which

assigns charge +1 to ϕ and charge −1 to ϕ̄. With this definition, |ϕ̄(x)⟩ = |ϕ̃(x)⟩, T (x) =

−T (x). We have

T (x)|ϕ(y)⟩ = δ(x− y)|ϕ(y)⟩. (4.64)

Here x, y are understood to be periodically valued with periodicity 2π.
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What is the interpretation of this result? We see that there is a circle worth of gauge

generators T (x), each of which corresponds to a tower of gauge fields in AdS3, of spin

s = 1, 2, 3, · · · ,∞. Furthermore, these gauge generators commute, indicating Vasiliev theory

with U(1)∞ “Chan-Paton factor”. At the level of bulk equation of motion, we expect

the infinite family of Vasiliev theories to decouple. They only interact through the AdS3

boundary conditions that mix the matter scalar fields. The boundary condition is such that

the “right moving” modes of ϕ(x) on the circle, namely ϕr with r > 0 (r = 1
2 ,

3
2 , · · · ) are

dual to operators of dimension ∆+ = 1 + λ, whereas ϕr with r < 0 are dual to operators

of dimension ∆− = 1− λ. As a consequence of this boundary condition, the corresponding

generating operator ϕ(x; z, z̄) in the CFT has two-point function

⟨ϕ(x; z, z̄)ϕ̄(y; 0)⟩ =
∑

r,s∈Z+1/2

eirx+isy⟨ϕr(z)ϕ̃s(0)⟩ =
(

1

|z|2+2λ
− 1

|z|2−2λ

)
i

2 sin x−y
2

(4.65)

in the large N limit.

Note that the spin-1 gauge field is included here. It is also natural to include the massless

scalar ωn, of spin s = 0. |ϕ(x)⟩ labels a complex massive scalar in AdS3, for each x. This

spectrum precisely fits into Vasiliev’s system in three dimensions. In earlier works, we did

not consider the spin-1 gauge field in Vasiliev theory, because it is governed by U(1)×U(1)

Chern-Simons action and would decouple from the higher spin gravity if it weren’t for the

matter scalar field. It is possible to choose the boundary condition on the spin-1 Chern-

Simons gauge field in AdS3 so that there is no dual spin-1 current in the boundary CFT.

This is presumably why the spin-1 current j(1)0 (z) is missing from the spectrum of WN

minimal model. But the spin-1 currents j(1)n (z) do exist in the infinite N limit. Usually, in

three-dimensional Vasiliev theory, there is no propagating massless scalar field either. There

is however, an auxiliary scalar field Caux [10], whose equation of motion at the linearized
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level takes the form ∇µCaux = 0. Classically, we could trade this equation with the massless

Klein-Gordon equation !Caux = 0, together with the ∆ = 0 boundary condition which

eliminates normalizable finite energy states of this field in AdS3. If this scalar field acquires

a small mass, of order 1/N due to quantum corrections, then the boundary condition would

allow for a normalizable state in AdS3 of very small energy/conformal weight. We believe

that this is the origin of the elementary light scalars ωn themselves, in the infinite family of

Vasiliev systems parameterized by the circle.

The identification of the single-trace operators, dual to elementary particles in the bulk,

makes sense a priori only in the infinite N limit. Non-perturbatively, or at finite N, k, the

infinite family φn, φ̃n,ωn, j
(s)
n should be cut off to a finite family. Due to the restrictions

on the unitary representations of SU(N) current algebra at level k or k + 1, we expect the

subscript n which counts the number of boxes in the Young tableau in the construction of the

single-trace primaries to be cut off at n ∼ k. This means that the circle that parameterize

a continuous family of Vasiliev theories in AdS3 should be rendered discrete, with spacing

∼ 2π/k.

4.9 Discussion

We have proposed that the holographic dual of WN minimal model in the ’t Hooft limit,

k,N → ∞, 0 < λ < 1, is a circle worth of Vasiliev theories in AdS3 that couple with one

another only through the boundary conditions on the matter scalars, which break all but

one single tower of higher spin symmetries. It would seem to be a natural question to ask

what is the CFT dual to the bulk theory with symmetry-preserving boundary conditions,

that assign say the same scaling dimension ∆+ to all matter scalars. If we are to flip the
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boundary condition on φ̃n, on the CFT side this corresponds to turning on the double trace

deformation by φ̃n
¯̃φn and flow to the critical point (IR in this case). This deformation

decreases the central charge c ≈ N(1−λ2) by an order N0 amount. It is unclear what is the

fixed point one ends up with by turning on double trace deformations φ̃n
¯̃φn for all n (which

should be cut off at ∼ k), if there is such a nontrivial critical point at all.

There has been an alternative proposal on the holographic dual of WN minimal model

[42, 53, 54], as Vasiliev theory based on hs[N ] ≃ sl(N) higher spin algebra, with families of

conical deficit solutions included to account for the primaries missing from the perturbative

spectrum of Vasiliev theory. On the face of it, this proposal involves an entirely different

limit, where N is held fixed, and an analytic continuation is performed in k so that the

central charge c is large. The resulting CFT is not unitary. Furthermore, it is unclear to us

that the analog of large N (or rather, large c) factorization holds in this limit, which would

be necessary for the holographic dual to be weakly coupled.

There is also an intriguing parallel between the ’t Hooft limit of WN minimal model

in two dimensions and Chern-Simons vector model in three dimensions. While the gauge

invariant local operators and their correlation functions on R3 or S3 in the three dimensional

Chern-Simons vector model are expected to be computed by the parity violating Vasiliev

theory in AdS4 to all order in 1/N , the duality in its naive form is not expected to hold for

the CFT on three-manifolds of nontrivial topology (e.g. when the spatial manifold is a torus

or a higher genus surface). This is because the topological degrees of freedom of the Chern-

Simons gauge fields cannot be captured by a semi-classical theory in the bulk with Newton’s

constant that scales like 1/N rather than 1/N2. In a similar manner, the WN minimal model

CFT on R2 or S2 in the large N admits a closed subsector, generated by the OPEs of the
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primary φ1 along with higher spin currents, that is conjectured to be perturbatively dual

to Vasiliev theory in AdS3. This duality makes sense only perturbatively in 1/N . The light

primaries which in a sense arise from twistor sectors must be included to ensure that the

CFT is modular invariant. Here we see that the bulk theory should be extended as well, to

an infinite family of Vasiliev theories. It would be interesting to understand the analogous

statement in the AdS4/CFT3 example, where the connection to ordinary string theory is

better understood [52] .
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4.A Higher spin charges

The higher spin charges of primary operators can be computed using the Coulomb gas

formalism reviewed in [31, 55, 50]. In Coulomb gas formalism, the higher spin currents W (s)

are functions of derivatives of the compact boson X , which can be constructed as follows.

Considering the order-N differential operator DN given by

(2iv0)
NDN =:

N∏

i=1

(2iv0∂ + hi · ∂X) : . (4.66)

A tower of quasi-primary spin-s current U (s) is given by the coefficients of the expansion of

DN in the variable v0,

DN = ∂N +
N∑

s=1

(2iv0)
−kU (s)∂N−s. (4.67)

For example, we have U (1) = 0 and U (2) = −1
2 : ∂X · ∂X : +2v0ρ · ∂2X , which is the stress

tensor. The primary spin-s current W (s) can be constructed by taking linear combinations

of derivatives of U (s), for example [56]:

W (2) = U (2),

W (3) = U (3) − N − 2

2
(2iv0)∂U

(2),

W (4) = U (4) − N − 3

2
(2iv0)∂U

(3) +
(N − 2)(N − 3)

10
(2iv0)

2∂2U (2)

− (N − 2)(N − 3)(5N + 7)

10N2(N2 − 1)
: (U (2))2 :,

W (5) = U (5) − N − 4

2
(2iv0)∂U

(4) +
3(N − 3)(N − 4)

28
(2iv0)

2∂2U (3)

− (N − 2)(N − 3)(N − 4)

84
(2iv0)

3∂3U (2)

+
(N − 3)(N − 4)(7N + 13)

14N(N2 − 1)

(
(N − 2)(2iv0) : U

(2)∂U (2) : −2 : U (3)U (2) :
)
.

(4.68)

The higher spin charges wk of the primary (Λ+,Λ−) are given by the eigenvalues of the

zero modes of the higher spin currents W (s). The eigenvalues of the zero modes of the
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quasi-primaries U (s) are given by

us(v) = (−i)s−1
∑

i1<···<is

s∏

j=1

(
v · hij + (s− j)v0

)
. (4.69)

where

v =

√
p′

p
Λ+ −

√
p

p′
Λ−, hs = ω1 −

s−1∑

i=1

αi. (4.70)

Plugging us into the formula (4.68), we obtain the higher spin charges ws.

The higher spin charges of φ1 and φ̃1 were computed in [11] in the large N limit. We

generalize their formula to φn and φ̃n,

ws(φn) =
is−2Γ(s)2Γ(λ+ s)

Γ(2s− 1)Γ(1 + λ)
,

ws(φ̃n) =
(−i)s−2Γ(s)2Γ(λ+ s)

Γ(2s− 1)Γ(1 + λ)
.

(4.71)

We check these two formulas up to n = 2, s = 5 using the above method.

We also propose that the higher spin charges of ωn are given by n times the higher spin

charges of ω1 in the large N limit. For example, the higher spin charges of ωn up to spin-5

are given by

w2(ωn) =
nλ2

2N
,

w3(ωn) = i
nλ3

6N
,

w4(ωn) = −
nλ2(1 + λ2)

20N
,

w5(ωn) = −i
nλ3(5 + λ2)

70N
.

(4.72)

The above formulas are checked up to n = 3.
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4.B An approximately conserved spin-2 current

The approximately conserved spin-2 field takes the form as

(j(2)1 )z = α

(
W (3)

−1 −
3

2
iλL−1

)
L−1ω1 = α(W (3)

−2 − iλ∂2)ω1, (4.73)

where α is a normalization constant. We check that this is a Virasoro primary operator:

L1(W
(3)
−2 − iλ∂2)ω1 =

[
4W (3)

−1 − 2iλL−1

]
ω1 = 0,

L2(W
(3)
−2 − iλ∂2)ω1 = (6w3 − 6ihλ)ω1 = 0,

(4.74)

where we have used the null-state equation for ω1:

W (3)
−1ω1 =

iλ

2
∂ω1. (4.75)

Let us compute the normalization constant α. Considering the three-point function
〈
W (z)ω̄1(z1)(W

(3)
−2 − iλ∂

since it is a three-point function of three conformal primaries, it takes the form as

〈
W (z)ω̄1(z1)(W

(3)
−2 − iλ∂2)ω1(z2)

〉
=

a1
(z − z1)(z − z2)5(z1 − z2)−1

. (4.76)

The structure constant a1 can be determined by performing contour integral
∮
z2
dz(z − z2)4

on the both hand side. On RHS, we obtain

∮

z2

dz
a1

(z − z1)(z − z2)(z1 − z2)−1
= −a1 (4.77)

On LHS, we have

〈
ω̄1(z1)W

(3)
2 (W (3)

−2 − iλ∂2)ω1(z2)
〉
=

〈
ω̄1(z1)

(
8W (4)

0 +
4

5
(λ2 − 4)L0 − 12iλW (3)

0

)
ω1(z2)

〉

= −2λ
2(1− λ2)
N

.

(4.78)

182



Chapter 4: A Semi-Local Holographic Minimal Model

Now, we perform a contour integral
∫
z1
dz on (4.76), we obtain

〈
W (3)

−2 ω̄1(z1)(W
(3)
−2 − iλ∂2)ω1(z2)

〉
=

∮

z1

dz
a1

(z − z1)(z − z2)5(z1 − z2)−1

=
a1

(z1 − z2)4
=

2λ2(1− λ2)
N

1

(z1 − z2)4
.

(4.79)

Using similar method, we obtain
〈
ω̄1(z1)W

(3)
−2ω1(z2)

〉
=

∮

z2

dz
b

(z − z1)3(z − z2)3(z1 − z2)−3

=
6b

(z2 − z1)5(z1 − z2)−3
=

iλ3

N

1

(z1 − z2)2
.

(4.80)

We have

〈
(W (3)

−2 + iλ∂2)ω̄1(z1)(W
(3)
−2 − iλ∂2)ω1(z2)

〉
=

2λ2(1− λ2)
N

1

(z1 − z2)4
. (4.81)

The normalization constant α is

α =

√
N

2λ2(1− λ2) .
(4.82)

4.C Null-state equations

The W∞[λ], in the c→∞ limit, and truncating to the generators W (s)
n , |n| < s, reduces

to the wedge algebra hs(λ), which is given by

[W (s)
m ,W (t)

n ] =
s+t−|s−t|−1∑

u=2,4,6,···

gstu (m,n;λ)W (s+t−u)
m+n , (4.83)

where the structure constant gstu (m,n;λ) is

gstu (m,n;λ) =
qu−2

2(u− 1)!
φst
u (λ)N

st(m,n), (4.84)

and

N st
u (λ) =

u−1∑

k=0

(−1)kΓ(u)Γ(s−m)Γ(s +m)Γ(t− n)Γ(t+ n)

Γ(1 + k)Γ(u− k)Γ(s−m− k)Γ(s+m+ k − u+ 1)Γ(t+ n− k)Γ(t− n + k − u+ 1)
,

(4.85)
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and

φst
u (λ) = 4F3

⎡

⎢⎣
1
2 + λ , 1

2 − λ , 2−u
2 , 1−u

2

3
2 − s , 3

2 − t , 1
2 + s+ t− u

∣∣∣∣∣1

⎤

⎥⎦ . (4.86)

q is an arbitrary constant controls the normalization of the higher spin generators. In our

convention, q = i/4. Using this commutator (4.83), we can derived a set of null-state

equations for φn, φ̃n and ωn.

Consider a primary operator O. The descendants of O can be separated into two classes.

The descendants in the first class are the operators take the form as a combination of W (s)
−n,

0 < n < s, acting on O. The rest of the descendants are in the second class. The descendants

in the first class have the norm of order one, and the descendants in the second class have

the norm of order N . The bulk dual of the descendants in the first class are single- or

multi-particle states without boundary higher spin gauge field excitation, and the bulk

dual descendants in the second class are the states with boundary higher spin gauge field

excitations. Now, let us focus on the primary ( , 0). The partition of ( , 0), after modding

out the contribution from the boundary higher spin gauge field, takes the form as

lim
N→∞

Z−1
hs |χ( ,0)|2 = Zφ1 =

q
1+λ
2 q̄

1+λ
2

(1− q)(1− q̄)

= q
1+λ
2 q̄

1+λ
2 (1 + q + q2 + · · · )(1 + q̄ + q̄2 + · · · ).

(4.87)

This means that at each level (m,n), there is only one independent descendent in the first

class. Therefore, the Gram matrices
⎛

⎜⎝
[Ln

1 , L
n
−1], [W

(s)
n , Ln

−1]

[Ln
1 ,W

(s)
−n ], [W

(s)
n ,W (s)

−n]

⎞

⎟⎠ , (4.88)

for 0 < n < s, are rank 1, and have a singular vector, which gives the null-state equation:

W (s)
−nφ1 =

is−2Γ(s)Γ(n+ s)Γ(s+ λ)

Γ(n+ 1)Γ(2s− 1)Γ(n+ λ+ 1)
∂nφ1. (4.89)
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Similarly, we have the null-state equation for φ̃1:

W (s)
−nφ̃1 =

(−i)s−2Γ(s)Γ(n+ s)Γ(s− λ)
Γ(n+ 1)Γ(2s− 1)Γ(n− λ+ 1)

∂nφ̃1. (4.90)

One can then express the operators W (s)
−nφ1,W

(s)
−nφ̃1 as ∂m∂̄nφ1, ∂̄nφ1 for 0 < n < s.

Next, let us consider the operator ( , ). After moving out the contribution of boundary

higher spin gauge fields, the partition function of ( , ) takes the form as

lim
N→∞

Z−1
hs |χ( , )|2 = (1 + q + 2q2 + 3q3 + 4q4 + · · · )(1 + q̄ + 2q̄2 + 3q̄3 + 4q̄4 + · · · ). (4.91)

At level one, there is one descendent in the first class. The Gram matrix
⎛

⎜⎝
[L1, L−1], [W

(s)
1 , L−1]

[L1,W
(s)
−1 ], [W

(s)
1 ,W (s)

−1 ]

⎞

⎟⎠ , (4.92)

is rank one, and gives the null-state equations:

W (s)
−1ω1 =

sws

2h
∂ω1. (4.93)

For s = 3, 4, 5, we have

W (3)
−1ω1 = i

λ

2
∂ω1,

W (4)
−1ω1 = −

1 + λ2

5
∂ω1,

W (5)
−1ω1 = −i

λ(5 + λ2)

14
∂ω1.

(4.94)

At level two, there are two descendants in the first class. The Gram matrix
⎛

⎜⎜⎜⎜⎜⎝

[L2
1, L

2
−1], [W

(3)
2 , L2

−1], [W
(s)
2 , L2

−1]

[L2
1,W

(3)
−2 ], [W

(3)
2 ,W (3)

−2 ], [W
(s)
2 ,W (3)

−2 ]

[L2
1,W

(s)
−2 ], [W

(3)
2 ,W (s)

−2 ], [W
(s)
2 ,W (s)

−2 ]

⎞

⎟⎟⎟⎟⎟⎠
, (4.95)

has one singular vector. For s = 4, this gives the null state equation

W (4)
−2ω1 = −

1

2
∂2ω1 + i

λ

2
W (3)

−2ω1. (4.96)
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In general, at level n, there are n independent descendants in the first class. They can

be written as ∂n−1j(1)1 , ∂n−2j(2)1 , · · · , and j(n)1 , or equivalently ∂nω1, ∂n−1W (3)
−2ω1, · · · , and

W (n+1)
−n ω1. All the other descendants are related to them by null state equations.

4.D WN characters

As reviewed in [31, 50], the characters of the primary operators in theWN minimal model

are given by the formula

χ(Λ+,Λ−) =
1

η(τ)N−1

∑

w∈W,n∈Γpp′

ϵ(w)q
1
2 |w(λ)+λ′+n|2+ c

24 (4.97)

where p = k +N , p′ = k +N + 1, W is the Weyl group, Γpp′ is
√
pp′ times the root lattice

Λroot, and λ, λ′ are

λ =

√
p′

p
(Λ+ + ρ), λ′ = −

√
p

p′
(Λ− + ρ). (4.98)

In the large N limit, the terms with nonzero n in the summation over the lattice Γpp′ are of

order O(qN), and can be ignored. By evaluating the formula (4.97), we obtain the following
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characters:

χ(0,0) = 1 + q2 + 2q3 + · · ·

χ( ,0) = qh( ,0)
(
1 + q + 2q2 + 4q3 + · · ·

)

χ( ,0) = qh( ,0)
(
1 + q + 3q2 + 5q3 + · · ·

)

χ( ,0) = qh( ,0)
(
1 + q + 3q2 + 5q3 + · · ·

)

χ
( ,0)

= q
h( ,0)

(
1 + q + 3q2 + 6q3 + · · ·

)

χ( ,0) = qh( ,0)
(
1 + 2q + 4q2 + 9q3 + · · ·

)

χ( ,0) = qh( ,0)
(
1 + q + 3q2 + 6q3 + · · ·

)

χ( , ) = qh( , )
(
1 + q + 3q2 + 6q3 + · · ·

)

χ( , ) = qh( , )
(
1 + q + 3q2 + 6q3 + · · ·

)

χ( , ) = qh( , )
(
1 + q + 4q2 + 8q3 + · · ·

)

χ( , ) = qh( , )
(
1 + q + 3q2 + 6q3 + · · ·

)

χ( , ) = qh( , )
(
1 + 2q + 6q2 + 14q3 + · · ·

)

χ
( , )

= q
h( , )

(
1 + q + 4q2 + 9q3 + · · ·

)

χ( , ) = qh( , )
(
1 + q + 3q2 + 6q3 + · · ·

)

χ( , ) = qh( , )
(
1 + 2q + 4q2 + 9q3 + · · ·

)

χ( , ) = qh( , )
(
1 + q + 3q2 + 6q3 + · · ·

)

χ( , ) = qh( , )
(
1 + 2q + 5q2 + 11q3 + · · ·

)

χ( , ) = qh( , )
(
1 + 2q + 5q2 + 12q3 + · · ·

)

χ
( , )

= q
h( , )

(
1 + 2q + 5q2 + 11q3 + · · ·

)

χ( , ) = qh( , )
(
1 + 2q + 5q2 + 11q3 + · · ·

)

(4.99)
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χ
( , )

= q
h( , )

(
1 + 2q + 5q2 + 10q3 + · · ·

)

χ( , ) = qh( , )
(
1 + q + 3q2 + 6q3 + · · ·

)

χ( , ) = qh( , )
(
1 + 2q + 5q2 + 10q3 + · · ·

)

χ( , ) = qh( , )
(
1 + 2q + 5q2 + 10q3 + · · ·

)

χ
( , )

= q
h( , )

(
1 + 2q + 6q2 + 12q3 + · · ·

)

χ( , ) = qh( , )
(
1 + 2q + 5q2 + 11q3 + · · ·

)

χ( , ) = qh( , )
(
1 + 2q + 5q2 + 11q3 + · · ·

)

χ
( , )

= q
h( , )

(
1 + 3q + 7q2 + 17q3 + · · ·

)

χ
( , )

= q
h( , )

(
1 + 2q + 6q2 + 13q3 + · · ·

)

χ( , ) = qh( , )
(
1 + 2q + 5q2 + 11q3 + · · ·

)

χ
( , )

= q
h( , )

(
1 + 3q + 7q2 + 17q3 + · · ·

)

χ
( , )

= q
h( , )

(
1 + 2q + 6q2 + 13q3 + · · ·

)

(4.100)

4.E Some three-point functions

In this section, we will compute several three-point functions involving the approximately

conserved spin-1 current (j(1)n )z in the large N limit. For simplicity, we will suppress the

index z in the following discussion. Let us first consider the three-point functions of the

form
〈
j(1)n φ̄m

¯̃φn−m+1

〉
. They are given by taking a derivative on the three-point function

〈
ωnφ̄m

¯̃φn−m+1

〉
. For example, by taking one derivative on

〈
ω1(z1)φ̄1(z2)

¯̃φ1(z3)
〉
=

1

N

1

|z12|2λ|z23|2|z13|−2λ
, (4.101)
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we obtian

〈
j(1)1 (z1)φ̄1(z2)

¯̃φ1(z3)
〉
=

1√
N

1

|z12|2λ|z23|2|z13|−2λ

(
1

z13
− 1

z12

)
. (4.102)

Similarly by taking a derivative on (4.14) and (4.19), we obtain

〈
j(1)2 (z1)φ̄1(z2)

¯̃φ2(z3)
〉
=
〈
j(1)2 (z1)φ̄2(z2)

¯̃φ1(z3)
〉
=
〈
j(1)3 (z1)φ̄1(z2)

¯̃φ3(z3)
〉
=
〈
j(1)3 (z1)φ̄3(z2)

¯̃φ1(z3)
〉

=
1√
N

1

|z12|2λ|z23|2|z13|−2λ

(
1

z13
− 1

z12

)
.

(4.103)

We postulate the general form of the three-point function to be

〈
j(1)n (z1)φ̄m(z2)

¯̃φn−m+1(z3)
〉
=

1√
N

1

|z12|2λ|z23|2|z13|−2λ

(
1

z13
− 1

z12

)
. (4.104)

Next, let us consider the three-point function of the form
〈
j(1)n φmφ̄n+m

〉
and

〈
j(1)n φ̃m

¯̃φn+m

〉
.

The computation of this three-point function is a bit subtle. Let us first show an example
〈
j(1)1 (z1)φ1(z2)φ̄2(z3)

〉
. To compute this three-point function, we consider the three-point

functions:

⟨ω1(z1)φ1(z2)( , )(z3)⟩ =
1√
2

1

|z23|2h( ,0)+2h( , )−2h( , )|z12|2h( ,0)+2h( , )−2h( , )|z13|2h( , )+2h( , )−2h( ,0)
,

〈
ω1(z1)φ1(z2)( , )(z3)

〉
=

1√
2

1

|z23|2h( ,0)+2h( , )−2h( , )|z12|2h( ,0)+2h( , )−2h( , )|z13|2h( , )+2h( , )−2h( ,0)
.

(4.105)

By taking the derivative ∂z1 and taking the large N limit, we obtain

⟨∂ω1(z1)φ1(z2)( , )(z3)⟩ =
1√
2

1

|z23|2(1−λ)

(
λ

N

1

z12
− λ+ λ2

N

1

z12

)
,

〈
∂ω1(z1)φ1(z2)( , )(z3)

〉
=

1√
2

1

|z23|2(1−λ)

(
− λ
N

1

z12
+
λ− λ2
N

1

z12

)
.

(4.106)

Taking the difference of these two three-point functions, we obtain

〈
j(1)1 (z1)φ1(z2)φ̄2(z3)

〉
=

1√
N

1

|z23|2(1+λ)

(
1

z12
− 1

z13

)
. (4.107)
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In a similar way, we also compute the three-point functions

〈
j(1)1 (z1)φ2(z2)φ̄3(z3)

〉
=
〈
j(1)2 (z1)φ1(z2)φ̄3(z3)

〉
=

1√
N

1

|z23|2(1+λ)

(
1

z12
− 1

z13

)
, (4.108)

and also

〈
j(1)1 (z1)φ̃1(z2)

¯̃φ2(z3)
〉
=
〈
j(1)1 (z1)φ̃2(z2)

¯̃φ3(z3)
〉
=
〈
j(1)2 (z1)φ̃1(z2)

¯̃φ3(z3)
〉

= − 1√
N

1

|z23|2(1−λ)

(
1

z12
− 1

z13

)
.

(4.109)

We postulate the general form of these kind of three-point functions to be

〈
j(1)n (z1)φm(z2)φ̄n+m(z3)

〉
=

1√
N

1

|z23|2(1+λ)

(
1

z12
− 1

z13

)
,

〈
j(1)n (z1)φ̃m(z2)

¯̃φn+m(z3)
〉
= − 1√

N

1

|z23|2(1−λ)

(
1

z12
− 1

z13

)
.

(4.110)
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AdS4 higher spin holography
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Chapter 5

ABJ Triality: from Higher Spin

Fields to Strings

5.1 Introduction and Summary

It has long been speculated that the tensionless limit of string theory is a theory of

higher spin gauge fields. One of the most important explicit and nontrivial construction

of interacting higher spin gauge theory is Vasiliev’s system in AdS4 [57, 58, 22]. It was

conjectured by Klebanov and Polyakov [19], and by Sezgin and Sundell [20, 59], that the

parity invariant A-type and B-type Vasiliev theories are dual to 2+1 dimensional bosonic

and fermionic O(N) or U(N) vector models in the singlet sector. Substantial evidence for

these conjectures has been provided by comparison of three-point functions [33, 34], and

analysis of higher spin symmetries [60, 23, 37, 51].

It was noted in [61, 21] that, at large N , the free O(N) and U(N) theories described

above each have a family of one parameter conformal deformations, corresponding to turning
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on a finite Chern-Simons level for the O(N) or U(N) gauge group. It was conjectured in

[21] that the bulk duals of the resultant Chern-Simons vector models is given by a one

parameter family of parity violating Vasiliev theories. In the bulk description parity is

broken by a nontrivial phase in function f in Vasiliev’s theory that controls bulk interactions.

This conjecture appeared to pass some nontrivial checks [21] but also faced some puzzling

challenges [21]. In this paper we will find significant additional evidence in support of the

proposal of [21] from the study of the bulk duals of supersymmetric vector Chern-Simons

theories.

The duality between Vasiliev theory and 3d Chern-Simons boundary field theories does

not rely on supersymmetry, and, indeed, most studies of this duality have been carried out

in the non-supersymmetric context. However it is possible to construct supersymmetric

analogues of the Type A and type B bosonic Vasiliev theories [58, 22, 59, 62, 63]. With

appropriate boundary conditions, these supersymmetric Vasiliev theories preserve all higher

spin symmetries and are conjectured to be dual to free boundary supersymmetric gauge

theories. In the spirit of [21] it is natural to attempt to construct bulk duals of the one pa-

rameter set of interacting supersymmetric Chern-Simons vector theories obtained by turning

on a finite level k for the Chern-Simons terms (recall that Chern Simons coupled gauge fields

are free only in the limit k →∞). Interacting supersymmetric Chern-Simons theories differ

from their free counterparts in three ways. First, as emphasized above, their Chern-Simons

level is taken to be finite. According to the conjecture of [21] this is accounted for by

turning on the appropriate phase in Vasiliev’s equations. Second the Lagrangian includes

potential terms of the schematic form φ6 and Yukawa terms of the schematic form φ2ψ2,

where φ and ψ are fundamental and antifundamental scalars and fermions in the field theory.
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These terms may be regarded as double and triple trace deformations of the field theory;

as is well known, the effect of such terms on the dual bulk theory may be accounted for

by an appropriate modification of boundary conditions [64]. Lastly, supersymmetric field

theories with N = 4 and N = 6 supersymmetry necessarily have two gauge groups with

matter in the bifundamental. Such theories may be obtained by from theories with a single

Chern-Simons coupled gauge group at level k and fundamental matter by gauging a global

symmetry with Chern-Simons level −k. In the dual bulk theory this gauging is implemented

by a modification of the boundary conditions of the bulk vector gauge field [65].

These elements together suggest that it should be possible to find one parameter families

of Vasiliev theories that preserve some supersymmetry upon turning on the parity violating

bulk phase, if and only if one also modifies the boundary conditions of all bulk scalars,

fermions and sometimes gauge fields in a coordinated way. In this paper we find that this is

indeed the case. We are able to formulate one parameter families of parity violating Vasiliev

theory (enhanced with Chan-Paton factors, see below) that preserve N = 0, 1, 2, 3, 4 or 6

supersymmetries depending on boundary conditions. In every case we identify conjectured

dual Chern-Simons vector models dual to our bulk constructions.1

The identification of parity violating Vasiliev theory with prescribed boundary condi-

tions as the dual of Chern-Simons vector models pass a number of highly nontrivial checks.

By considering of boundary conditions alone, we will be able to determine the exact relation

between the parity breaking phase θ0 of Vasiliev theory, and two and three point function

coefficients of Chern-Simons vector models at large N . These imply non-perturbative rela-

1A similar analysis of the breaking of higher spin symmetry by boundary conditions allows us to demon-
strate that all deformations of type A or type B Vasiliev theories break all higher spin symmetries other
than the conformal symmetry. We are also able to use this analysis to determine the functional form of the
double trace part of higher spin currents that contain a scalar field.
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tions among purely field theoretic quantities that are previously unknown (and presumably

possible to prove by generalizing the computation of correlators in Chern-Simons-scalar vec-

tor model of [66] using Schwinger-Dyson 2 equations to the supersymmetric theories). The

results also agree with the relation between θ0 and Chern-Simons ’t Hooft coupling λ = N/k

determined in [21] by explicit perturbative computations at one-loop and two-loop order.

From a physical viewpoint, the most interesting Vasiliev theory presented in this paper

is the N = 6 theory. It was already suggested in [21] that a supersymmetric version of

the parity breaking Vasiliev theory in AdS4 should be dual to the vector model limit of the

N = 6 ABJ theory, that is, a U(N)k × U(M)−k Chern-Simons-matter theory in the limit

of large N, k but finite M . Since the ABJ theory is also dual to type IIA string theory in

AdS4 × CP
3 with flat B-field, it was speculated that the Vasiliev theory must therefore be

a limit of this string theory. The concrete supersymmetric N = 6 Vasiliev system presented

in this paper allows us to turn the suggestion of [21] into a precise conjecture for a duality

between three distinct theories that are autonomously well defined at least in particular

limits.

The N = 6 Vasiliev theory, conjectured below to be dual to U(N)×U(M) ABJ theory

has many elements absent in more familiar bosonic Vasiliev systems. First theory is ‘super-

symmetric’ in the bulk. This means that all fields of the theory are functions of fermionic

variables ψi (i = 1 . . . 6) which obey Clifford algebra commutation relations {ψi,ψj} = 2δij

(all bulk fields are also functions of the physical spacetime variables xµ (µ = 1 . . . 4) as well

as Vasiliev’s twistor variables yα, zα, ȳα̇, z̄β̇ , as in bosonic Vasiliev theory). Next the star

product used in the bulk equations is the usual Vasiliev star product times matrix multi-

2See [21] for these equations in the Chern-Simons fermion model.
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plication in an auxiliary M ×M space. The physical effect of this maneuver is to endow

the bulk theory with a U(M) gauge symmetry under which all bulk fields transform in the

adjoint. Finally, for the reasons described above, interactions of the theory are also modi-

fied by a bulk phase, and bulk scalars, fermions and gauge fields obey nontrivial boundary

conditions that depend on this phase.

The triality between U(N)×U(M) ABJ theory, type IIA string theory on AdS4 ×CP
3,

and supersymmetric parity breaking Vasiliev theory may qualitatively be understood in the

following manner. The propagating degrees of freedom of ABJ theory consist of bifundamen-

tal fields that we denote by Ai and antibifundamental fields that we will call Bi. A basis for

the gauge singlet operators of the theory is given by the traces Tr(A1B1A2B2 . . . AmBm). As

is well known from the study of ABJ duality, these single trace operators are dual to single

string states. The basic ‘partons’ (the A and B fields) out of which this trace is composed

are held together in this string state by the ‘glue’ of U(N) and U(M) gauge interactions.

Let us now study the limit M ≪ N . In this limit the glue that joins B type fields

to A type fields (provided by the gauge group U(M)) is significantly weaker than the glue

that joins A fields to B fields (this glue is supplied by U(N) interactions). In this limit the

trace effectively breaks up into m weakly interacting particles A1B1, A2B2 ... AmBm. These

particles, which transform in the adjoint of U(M), are the dual to the U(M) adjoint fields of

the dual N = 6 Vasiliev theory. Indeed the spectrum of operators of field theory operators

of the form AB precisely matches the spectrum of bulk fields of the dual Vasiliev system.

If our picture is correct, the fields of Vasiliev’s theory must bind together to make up

fundamental IIA strings as M/N is increased. We now describe a qualitative way in which

this might happen. The bulk Vasiliev theory has gauge coupling g ∼ 1/
√
N , It follows that
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the bulk ’t Hooft coupling is λbulk = g2M ∼ M/N . In the limit M/N ≪ 1, the bulk Vasiliev

theory is effectively weakly coupled. As M/N increases, a class of multi-particle states of

higher spin fields acquire large binding energies due to interactions, and are mapped to the

single closed string states in type IIA string theory. Roughly speaking, the fundamental

string of string theory is simply the flux tube string of the non abelian bulk Vasiliev theory.

Note that although we claim a family of supersymmetric Vasiliev theory with Chan-

Paton factors and certain prescribed boundary conditions is equivalent to string theory on

AdS4, we are not suggesting that Vasiliev’s equations are the same as the corresponding

limit of closed string field equations. Not all single closed string states are mapped to single

higher spin particles; infact the only closed strings that are mapped to Vasiliev’s particles

are those dual to the operators of the form TrAB. Closed string field theory is the weakly

interacting theory of the ‘glueball’ bound states of the Vasiliev fields; it is not a weakly

interacting description of Vasiliev’s fields themselves.

Let us note a curious aspect of the conjectured duality between Vasiliev’s theory and

ABJ theory. The gauge groups U(N) and U(M) appear on an even footing in the ABJ

field theory. In the bulk Vasiliev description, however, the two gauge groups play a very

different role. The gauge group U(M) is manifest as a gauge symmetry in the bulk. However

U(N) symmetry is not manifest in the bulk (just as the U(N) symmetry is not manifest in

the bulk dual of N = 4 Yang Mills); the dynamics of this gauge group that leads to the

emergence of the background spacetime for Vasiliev theory. The deconfinement transition

for U(M) is simply a deconfinement transition of the adjoint bulk degrees of freedom, while

the deconfinement transition for U(N) is associated with the very different process of ‘black

hole formation’. If our proposal for the dual description is correct, the gauged Vasiliev
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theory must enjoy an N ↔ M symmetry, which, from the bulk viewpoint is a sort of level

– rank duality. Of course even a precise statement for the claim of such a level rank duality

only makes sense if Vasiliev theory is well defined ‘quantum mechanically’ (i.e. away from

small M
N ) at least in the large N limit.

We have noted above that Vasiliev’s theory should not be identified with closed string

field theory. There may, however, be a sense in which it might be thought of as an open

string field theory. We use the fact that there is an alternative way to engineer Chern-

Simons vector models using string theory [67], that is by adding Nf D6-branes wrapped on

AdS4 × RP
3 inside the AdS4 × CP

3, which preserves N = 3 supersymmetry and amounts

to adding fundamental hypermultiplets of the U(N)k Chern-Simons gauge group. In the

“minimal radius” limit where we send M to zero, with flat B-field flux 1
2πα

∫
CP1 B = N

k + 1
2 ,

the geometry is entirely supported by the Nf D6-branes [68].3 This type IIA open+closed

string theory is dual to N = 3 Chern-Simons vector model with Nf hypermultiplet flavors.

The duality suggests that the open+closed string field theory of the D6-branes reduces to

precisely a supersymmetric Vasiliev theory in the minimal radius limit. Note that unlike

the ABJ triality, here the open string fields on the D6-branes and the nonabelian higher

spin gauge fields in Vasiliev’s system both carry U(Nf ) Chan-Paton factors, and we expect

one-to-one correspondence between single open string states and single higher spin particle

states.

3We thank Daniel Jafferis for making this important suggestion and O. Aharony for related discussions.
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5.2 Vasiliev’s higher spin gauge theory in AdS4 and its

supersymmetric extension

The Vasiliev systems that we study in this paper are defined by a set of bulk equations

of motion together with boundary conditions on the bulk fields. In this section we review

the structure of the bulk equations. We turn to the consideration of boundary conditions

in the next section.

In this section we first present a detailed review of bulk equations of the ‘standard’

Vasiliev theory. We then describe nonabelian and supersymmetric extensions of these equa-

tions. Throughout this paper we work with the so-called non-minimal version of Vasiliev’s

equations, which describe the interactions of a field of each non-negative integer spin s in

AdS4. Under the AdS/CFT correspondence non-minimal Vasiliev equations are conjectured

to be dual to gauged U(N) Chern-Simons-matter boundary theories.4

There are exactly two ‘standard’ non-minimal Vasiliev theories that preserve parity sym-

metry. These are the type A/B theories, which are conjectured to be dual to bosonic/fermionic

SU(N) vector models, restricted to the SU(N)-singlet sector. Parity invariant Vasiliev the-

ories are particular examples of a larger class of generically parity violating Vasiliev theories.

These theories appear to be labeled by a real even function of one real variable. In Section

5.2.1 we present a review of these theories. It was conjectured in [21] that a class of these

parity violating theories are dual to SU(N) Chern-Simons vector models.

In Section 5.2.2 we then present a straightforward nonabelian extension of Vasiliev’s

4The non minimal equations admit a consistent truncation to the so-called minimal version of Vasiliev’s
equations; this truncation projects out the gauge fields for odd spins and are conjectured to supply the dual
to SO(N) Chern-Simons boundary theories.
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system, by introducing U(M) Chan-Paton factors into Vasiliev’s star product. The result of

this extension is to promote the bulk gauge field to a U(M) gauge field; all other bulk fields

transform in the adjoint of U(M). The local gauge transformation parameter of Vasiliev’s

theory is also promoted to a local M × M matrix field that transforms in the adjoint of

U(M). The nature of the boundary CFT dual to the non abelian Vasiliev theory depends

on boundary conditions. With ‘standard’ magnetic type boundary conditions for all gauge

fields (that set prescribed values for the field strengths restricted to the boundary) the

dual boundary CFT is obtained simply by coupling M copies of (otherwise non interacting)

matter multiplets to the same boundary Chern-Simons gauge field. The boundary theory

has a ‘flavour’ U(M) global symmetry that acts on the M identical matter multiplets.

In Section 5.2.3 we then introduce the so called n-extended supersymmetric Vasiliev

theory (generalizing the special cases studied earlier in [57, 58, 22, 59, 62]). The main idea

is to enhance Vasiliev’s fields to functions of n fermionic fields ψi (i = 1 . . . n; we assume n to

be even) which obey a Clifford algebra5. This extension promotes the usual Vasiliev’s fields to

2
n
2 × 2

n
2 dimensional matrices (or operators) that act on the 2

n
2 dimensional representation

of the Clifford algebra. The local Vasiliev gauge transformations are also promoted to

functions of ψi, and so 2
n
2 × 2

n
2 matrices or operators6. Half of the resultant fields (and

gauge transformations) are fermionic; the other half are bosonic.

5We emphasize that n should not be confused with the number of globally conserved supercharges 4N
(equivalently 4N is the number of supercharges in the superconformal algebra of the dual three-dimensional
CFT). n characterizes only the local structure of Vasiliev’s equations of motion. N on the other hand
depends on the choice of boundary condition for bulk fields of spin 0, 1/2 and 1. As we will see N ≤ 6 for
parity violating Vasiliev theories, as expected from the dual CFT3 (n, or course, can be arbitrarily large ).

6The bulk equations of motion for n extended supersymmetric Vasiliev theory is identical to those for n =
2 theory extended by U(2

n
2
−1) Chan Paton factors. However, the language of n extended supersymmetric

Vasiliev theory is more convenient when the boundary conditions of the problem break part of this U(2
n
2
−1)

symmetry, as will be the case later in this paper.
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5.2.1 The standard parity violating bosonic Vasiliev theory

In this section we present the ‘standard’ non minimal Vasiliev equations, allowing, how-

ever, for parity violation.

Coordinates

In Euclidean space the fields of Vasiliev’s theory are functions of a collection of bosonic

variables (x, Y, Z) = (xµ, yα, ȳα̇, zα, z̄α̇). xµ (µ = 1 . . . 4) are an arbitrary set of coordinates

on the four dimensional spacetime manifold. yα and zα are spinors under SU(2)L while

ȳα̇ and z̄α̇ are spinors under a separate SU(2)R. As we will see below, Vasiliev’s equations

enjoy invariance under local (in spacetime) SO(4) = SU(2)L × SU(2)R rotations of yα, zα,

ȳα̇ and z̄α̇. This local SO(4) rotational invariance, which, as we will see below is closely

related to the tangent space symmetry of the first order formulation of general relativity, is

only a small part of the much larger gauge symmetry of Vasiliev’s theory.

Star Product

Vasiliev’s equations are formulated in terms of a star product. This is just the usual

local product in coordinate space; whereas in auxiliary space it is given by

f(Y, Z) ∗ g(Y, Z)

= f(Y, Z) exp
[
ϵαβ
(←−
∂ yα +

←−
∂ zα

)(−→
∂ yβ −

−→
∂ zβ

)
+ ϵα̇β̇

(←−
∂ yα̇ +

←−
∂ zα̇

)(−→
∂ yβ̇ −

−→
∂ zβ̇

)]
g(Y, Z)

=

∫
d2ud2vd2ūd2v̄eu

αvα+ūα̇v̄α̇f(y + u, ȳ + ū, z + u, z̄ + ū)g(y + v, ȳ + v̄, z − v, z̄ − v̄).

(5.1)

In the last line, the integral representation of the star product is defined by the contour

for (uα, vα) along eπi/4R in the complex plane, and (ūα̇, v̄α̇) along the contour e−πi/4R. It
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is obvious from the first line of (5.1) that 1 ∗ f = f ∗ 1 = f ; this fact may be used to

set the normalization of the integration measure in the second line. The star product is

associative but non commutative; in fact it may be shown to be isomorphic to the usual

Moyal star product under an appropriate change of variables. In Appendix 5.A.1 we describe

our conventions for lowering spinor indices and present some simple identities involving the

star product.

Below we will make extensive use of the so called Kleinian operators K and K defined

as

K = ez
αyα, K = ez̄

α̇ȳα̇. (5.2)

They have the property (see Appendix 5.A.1 for a proof)

K ∗K = K ∗K = 1,

K ∗ f(y, z, ȳ, z̄) ∗K = f(−y,−z, ȳ, z̄), K ∗ f(y, z, ȳ, z̄) ∗K = f(y, z,−ȳ,−z̄).
(5.3)

Master fields

Vasiliev’s master fields consists of an x-space 1-form

W = Wµdx
µ,

a Z-space 1-form

S = Sαdz
α + Sα̇dz̄

α̇,

and a scalar B, all of which depend on spacetime as well as the internal twistor coordinates

which we denote collectively as (x, Y, Z) = (xµ, yα, ȳα̇, zα, z̄α̇). It is sometimes convenient to

write W and S together as a 1-form on (x, Z)-space

A = W + S = Wµdx
µ + Sαdz

α + Sα̇dz̄
α̇.
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A will be regarded as a gauge connection with respect to the ∗-algebra.

We also define

Ŝ = S − 1

2
zαdz

α − 1

2
z̄α̇dz̄

α̇,

Â = W + Ŝ = A− 1

2
zαdz

α − 1

2
z̄α̇dz̄

α̇ = Wµdx
µ + (−1

2
zα + Sα)dz

α + (−1
2
z̄α̇ + Sα̇)dz̄

α̇.

(5.4)

Let dx be the exterior derivative with respect to the spacetime coordinates xµ and denote

by dZ the exterior derivative with respect to the twistor variables (zα, z̄α̇). We will write

d = dx + dZ . We will also find it useful to define the field strength

F = dxÂ+ Â ⋆ Â

= (dxW +W ∗W ) +
(
dxŜ + {W, Ŝ}∗

)
+
(
Ŝ ∗ Ŝ

)
.

(5.5)

Note also that

Ŝ ∗ Ŝ = dzS + S ∗ S +
1

4

(
ϵαβdz

αdzβ + ϵα̇β̇dz̄
α̇dz̄β̇

)
. (5.6)

Gauge Transformations

Vasiliev’s master fields transform under a large set of gauge symmetries. We will see

later that the AdS4 vacuum solution partially Higgs or breaks this gauge symmetry group

down to a subgroup of large gauge transformations - either the higher spin symmetry group

or the conformal group depending on boundary conditions.

Infinitesimal gauge transformations are generated by an arbitrary real function ϵ(x, Y, Z).

By definition under gauge transformations

δÂ = dxϵ+ Â ∗ ϵ− ϵ ∗ Â,

δB = −ϵ ∗B +B ∗ π(ϵ).
(5.7)
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In other words the 1-form master field transforms as a gauge connection under the star

algebra while B transforms as a ‘twisted’ adjoint field. The operation π that appears in

(5.7) is defined as follows

π (y, z, dz, y, z, dz) = (−y,−z,−dz, y, z, dz)

Since ϵ does not involve differentials in (z, z̄), the action of π on ϵ is equivalent to conjugation

by K, namely π(ϵ) = K ∗ ϵ ∗K. (π acting on a 1-form in (zα, z̄α̇) acts by conjugation by K

together with flipping the sign of dz).

It follows from (5.7) that the field strength F ( and so each of the three brackets on the

RHS of the second line of (5.5)) transform in the adjoint. The same is true of B ∗K.

δF = [F , ϵ]∗,

δ(B ⋆K) = −ϵ ∗ (B ∗K) + (B ∗K) ∗ ϵ,
(5.8)

When expanded in components the first line of (5.7) implies that

δWµ = ∂µϵ+Wµ ∗ ϵ− ϵ ∗Wµ,

δŜα = Ŝα ∗ ϵ− ϵ ∗ Ŝα.
(5.9)

In terms of unhatted variables,

δA = dϵ+A ∗ ϵ− ϵ ∗A,

δSα =
∂ϵ

∂zα
+ Sα ∗ ϵ− ϵ ∗ Sα.

(5.10)

Truncation

The following truncation is imposed on the master fields and gauge transformation pa-

rameter ϵ. Define

R = KK.
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We require

[R,W ]∗ = {R, S}∗ = [R,B]∗ = [R, ϵ]∗ = 0. (5.11)

More explicitly, this is the statement that Wµ, B and ϵ are even functions of (Y, Z) whereas

Sα, Sα̇ are odd in (Y, Z),

Wµ(x, y, ȳ, z, z̄) = Wµ(x,−y,−ȳ,−z,−z̄),

Sα(x, y, ȳ, z, z̄) = −Sα(x,−y,−ȳ,−z,−z̄),

Sα̇(x, y, ȳ, z, z̄) = −Sα̇(x,−y,−ȳ,−z,−z̄),

B(x, y, ȳ, z, z̄) = B(x,−y,−ȳ,−z,−z̄).

ϵ(x, y, ȳ, z, z̄) = ϵ(x,−y,−ȳ,−z,−z̄).

(5.12)

A physical reason for the imposition of this truncation is the spin statistics theorem. As

the physical fields of Vasiliev’s theory are all commuting, they must also transform in the

vector (rather than spinor) conjugacy class of the SO(4) tangent group; the projection (5.12)

ensures that this is the case. One might expect from this remark that the consistency of

Vasiliev’s equations requires this truncation; we will see explicitly below that this is the

case.

Reality Conditions

It turns out that Vasiliev’s master fields admit two consistent projections that may be

used to reduce their number of degrees of freedom. These two projections are a generalized

reality projection (somewhat analogous to the Majorana condition for spinors) and a so

called ‘minimal’ truncation (very loosely analogous to a chirality truncation for spinors).

These two truncations are defined in terms of two natural operations defined on the master

field; complex conjugation and an operation defined by the symbol ι. In this subsection
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we first define these two operations, and then use them to define the generalized reality

projection. We will also briefly mention the minimal projection, even though we will not

use the later in this paper.

Vasiliev’s fields master fields admit a straightforward complex conjugation operation,

A → A∗, defined by complex conjugating each of the component fields of Vasiliev theory

and also the spinor variables Y, Z7

(yα)∗ = ȳα̇, (ȳα̇)
∗ = yα, (zα)∗ = z̄α̇, (z̄α̇)

∗ = zα. (5.13)

It is easily verified that

(M ∗N)∗ = M∗ ∗N∗ (5.14)

where M is an arbitrary p form and N and arbitrary q form. In other words complex

conjugation commutes with the star and wedge product, without reversing the order of

either of these products. Note also that the complex conjugation operation squares to the

identity.

We now turn to the definition of the operation ι; this operation is defined by

ι : (y, ȳ, z, z̄, dz, dz̄)→ (iy, iȳ,−iz,−iz̄,−idz,−idz̄), (5.15)

The signs in (5.15) are chosen8 to ensure

ι(f ∗ g) = ι(g) ∗ ι(f) (5.16)

(see (5.186) for a proof). In other words ι reverses the order of the ∗ product. Note however

that ι by definition does not affect the order of wedge products of forms. As a consequence

7As complex conjugation of SO(3, 1) interchanges left and right moving spinors, our definition of complex
conjugation (the analytic continuation of the Lorentzian notion) must also have this property.

8Changing the RHS of (5.15) by an overall sign makes no difference to fields that obey (5.12).
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ι picks up an extra minus sign when acting on the product of two one-forms

ι(C ∗D) = −ι(D) ∗ ι(C)

(see (5.187) for a proof; the same equation is true if C is a p form and D a q form provided

p and q are both odd; if at least one of p and q is even we have no minus sign).

We now define the generalized reality projection that we will require Vasiliev’s master

fields to obey throughout this paper (this projection defines the non-minimal Vasiliev theory

which we study through this paper). The projection is defined by the conditions

ι(W )∗ = −W, ι(S)∗ = −S, ι(B)∗ = K ∗B ∗K = K ∗B ∗K (5.17)

The equality of the two different expressions supplied for ι(B)∗ in (5.17) follows upon using

the fact B commutes with R = KK (see (5.11)).

It is easily verified that (5.17) implies that

ι (F)∗ = −F (5.18)

(see (5.192) for an expansion in components) and that

ι(B ∗K)∗ = B ∗K, ι(B ∗K)∗ = B ∗K. (5.19)

(5.17) may be thought of as a combination of two separate projections. The first is the

‘standard’ reality projection (see (5.188)). The second is the ‘minimal truncation’(5.189). As

discussed in Appendix 5.A.3, it is consistent to simultaneously impose invariance of Vasiliev’s

master field under both these projections. This operation defines the minimal Vasiliev theory

(dual to SO(N) Chern-Simons field theories). We will not study the minimal theory in this

paper.
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Equations of motion

Vasiliev’s gauge invariant equations of motion take the form

F = dxÂ+ Â ∗ Â = f∗(B ∗K)dz2 + f ∗(B ∗K)dz̄2,

dxB + Â ∗B −B ∗ π(Â) = 0.

(5.20)

where f(X) is a holomorphic function of X , f its complex conjugate, and f∗(X) the corre-

sponding ∗-function of X . Namely, f∗(X) is defined by replacing all products of X in the

Taylor series of f(X) by the corresponding star products.

Note that both sides of the first of (5.20) are gauge adjoints, while the second line of

that equation transforms in the twisted adjoint. In Appendix 5.A.4 we have demonstrated

that the second equation of (5.20) may be derived from the first (assuming that f(X) is a

non-degenerate function) using the Bianchi identity

dxF + [A,F ]∗ = 0 (5.21)

In Appendix 5.A.4 we have also expanded Vasiliev’s equations in components to clarify their

physical content. As elaborated in (5.193) and (5.194), it follows from (5.20) that the field

strength dW +W ∗W is flat and that the adjoint fields B ∗K, Sα and Sα̇ are covariantly

constant. In addition, various components of these adjoint fields commute or anticommute

with each other under the star product (see (5.203) for a listing). The fields Ŝα and Ŝβ,

however, fail to commute with each other; their commutation relations are given by

[Ŝα, Ŝβ]∗ = ϵαβf∗(B ∗K)

[Ŝα̇, Ŝβ̇]∗ = ϵα̇β̇ f̄∗(B ∗ K̄)

(5.22)

Using various formulae presented in the Appendix (see e.g. (5.190)) it is easily verified

that the Vasiliev equations, (expanded in the Appendix as (5.193) and (5.194)) map to
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themselves under the reality projection (5.17). The same is true of the minimal truncation

projection.

Equivalences from field redefinitions

Vasiliev’s equations are characterized by a single complex holomorphic function f . In

this subsection we address the following question: to what extent to different functions f

label different theories?

Any field redefinition that preserves the gauge and Lorentz transformation properties of

all fields, but changes the form of f clearly demonstrates an equivalence of the theories with

the corresponding choices of f . The most general field redefinitions consistent with gauge

and Lorentz transformations and the form of Vasiliev’s equations are

B → g∗(B ∗K) ∗K

Ŝz ≡ (−1
2
zα + Sα)dz

α → Ŝz ∗ h∗(B ∗K),

Ŝz̄ ≡ (−1
2
z̄α̇ + S̄α̇) ∗ dz̄α̇ → Ŝz̄ ∗ h̃∗(−B ∗K).

(5.23)

Several comments are in order. First note that the field redefinitions above obviously pre-

serve form structure and gauge transformations properties. In particular these redefinitions

preserve the fact that B ∗K, Sz and Sz transform in the adjoint representation of the gauge

group. Second the field redefinitions above are purely holomorphic (e.g. g∗ is a function

only of B ∗K but not of B ∗K). It is not difficult to convince oneself that this is necessary

in order to preserve the holomorphic form of Vasiliev’s equations. Finally we have chosen

to multiply the redefined functions Sz and Sz with functions from the right rather than the
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left. There is no lack of generality in this, however, as

Ŝz ∗ h∗(B ∗K) = h∗(−B ∗K) ∗ Ŝz, Ŝz ∗ h∗(B ∗K) = h∗(B ∗K) ∗ Ŝz,

Ŝz ∗ h∗(B ∗K) = h∗(B ∗K) ∗ Ŝz, Ŝz ∗ h∗(B ∗K) = h∗(−B ∗K) ∗ Ŝz,

(5.24)

((5.24) follows immediately from (5.203) derived in the Appendix). Finally, we have inserted

a minus sign into the argument of the function h̃ for future convenience.

The reality conditions (5.17) impose constraints on the functions g, h and h̃. It is

not difficult to verify that g is forced to be an odd real function g(X). g(X) is forced

to be odd because the complex conjugation operation turns K into K. When g is odd,

however, the truncation (5.11) may be used to turn K back into K. For instance, with

g∗(X) = g1X + g3X ∗X ∗X + · · · , the field redefinition is

B → g1B + g3B ∗K ∗B ∗K ∗B + · · · (5.25)

The RHS is still real because K ∗B ∗K = K ∗B ∗K (it would not be real if g(X) were not

odd).

In order to examine the constraints of (5.17) on the functions h and h̃ note that

ι(Sz ∗ h(B ∗K) + Sz ∗ h̃∗(−B ∗K))∗ = h(B ∗K) ∗ (−Sz) + h̃(−B ∗K) ∗ (−Sz)

= −
(
Sz ∗ h(−B ∗K) + Sz ∗ h̃(B ∗K)

) (5.26)

(where in the last step we have used (5.24)). It follows that the redefined function Ŝ obeys

the reality condition (5.17) if and only if

h̃ = h

where h is the complex conjugate of the function h.

The effect of the field redefinition of B is simply to permit a redefinition of the argument

of the function f in Vasiliev’s equations by an arbitrary odd real function. The effect of the
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field redefinition of Ŝ may be deduced as follows. The dxµ ∧ dxν component of Vasiliev’s

- the assertion that W is a flat connection (see (5.193)) - is clearly preserved by this field

redefinition. The dx∧dZ components of the equation asserts that Ŝz and Ŝz are covariantly

constant. As B ∗K and B ∗ K are also covariantly constant (see (5.194)) the redefinition

(5.23) clearly preserves this equation as well. However the dZ2 components of the equations

become

Ŝz ∗ h∗(B ∗K) ∗ Ŝz ∗ h∗(B ∗K) = f∗(B ∗K)dz2,
{
Ŝ ∗ h∗(B ∗K), Ŝz ∗ h∗(−B ∗K)

}

∗
= 0,

Ŝz ∗ h∗(−B ∗K) ∗ Ŝz ∗ h∗(−B ∗K) = f ∗(B ∗K)dz̄2.

(5.27)

Using (5.24) and the fact that B ∗ K commutes with B ∗ K (this is obvious as K and K

commute), these equations may be recast as

h∗(−B ∗K) ∗
(
Ŝz ∗ Ŝz

)
∗ h∗(B ∗K) = f∗(B ∗K)dz2,

h∗(−B ∗K) ∗
({

Ŝ, Ŝz

}

∗

)
∗ h∗(−B ∗K) = 0,

h∗(B ∗K) ∗
(
Ŝz ∗ Ŝz

)
∗ h∗(−B ∗K) = f∗(B ∗K)dz̄2.

(5.28)

(5.28) is precisely the dZ2 component of the Vasiliev equation (the third equation in (5.193)

) with the replacement

f∗(X)→ h∗(−X)−1 ∗ f∗(X) ∗ h∗(X)−1, (5.29)

or simply f(X)→ h(X)−1h(−X)−1f(X).

So we see that the theory is really defined by f(X) up to a change of variable X →

g(X) for some odd real function g(X) and multiplication by an invertible holomorphic even

function. Provided that the function f(X) admits a power series expansion aboutX = 0 and

that f(0) ̸= 0,9 in Appendix 5.A.6 we demonstrate that we can use these field redefinitions

9This condition can probably be weakened, but cannot be completely removed. For example if f(X) is
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to put f(X) in the form

f(X) =
1

4
+X exp(iθ(X)) (5.30)

where θ(X) = θ0 + θ2X2 + · · · is an arbitrary real even function.

Ignoring the special cases for which f(X) cannot be cast into the form (5.30), the function

θ(X) determines the general parity-violating Vasiliev theory.

The AdS solution

While Vasiliev’s system is formulated in terms of a set of background independent equa-

tions, the perturbation theory is defined by expanding around the AdS4 vacuum. In order to

study this solution it is useful to establish some conventions. Let ea0 and wab
0 (a, b = 1 . . . 4)

denote the usual vielbein and spin connection one-forms on any space (the index a transforms

under the vector representation of the tangent space SO(4)). We define the corresponding

bi-spinor objects

eαβ̇ =
1

4
eaσa

αβ̇
, wαβ =

1

16
wabσab

αβ , wα̇β̇ = − 1

16
wabσ̄ab

α̇β̇
. (5.31)

(see Appendix 5.A.7 for definitions of the σ matrices that appear in this equation.) Let e0

and ω0 be the vielbein and spin connection of Euclidean AdS4 with unit radius. It may be

shown that (see Appendix 5.A.8 for some details)

A = W0(x|Y ) ≡ e0(x|Y ) + ω0(x|Y )

= (e0)αβ̇y
αȳβ̇ + (ω0)αβy

αyβ + (ω0)α̇β̇ ȳ
α̇ȳβ̇, B = 0.

(5.32)

an odd function, it is easy to convince oneself that it cannot be cast into the form (5.30). In this paper we
will be interested in the Vasiliev duals to field theories. In the free limit, the dual Vasiliev theories to the
field theory in question are given by f(X) of the form (5.30) with θ = 0. It follows that, at least in a power
series in the field theory coupling, the Vasiliev duals to the corresponding field theories are defined by an
f(X) that can be put in the form (5.30).
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solves Vasiliev’s equations. We refer to this solution as the AdS4 vacuum (as we will see

below this preserves the SO(2, 4) invariance of AdS space).

In the sequel we will find it convenient to work with a specific choice of coordinates and

a specific choice of the vielbein field. For the metric on AdS space we work in Poincaré

coordinates; the metric written in Euclidean signature takes the form

ds2 =
dx⃗2 + dz2

z2
, (5.33)

We also define the vielbein one-form fields

ei0 = −
dxi

z
, e40 = −

dz

z
(5.34)

(a runs over the index i = 1 . . . 3 and a = 4). The corresponding spin connection one form

fields are given by

wab
0 =

dxi

4z

[
Tr (σizσab)− Tr (σ̄izσ̄ab)

]
(5.35)

Using (5.31) we have explicitly

ω0(x|Y ) = −1
8

dxi

z

(
yσizy + ȳσ̄izȳ

)
,

e0(x|Y ) = −1
4

dxµ

z
yσµȳ.

(5.36)

Here our convention for contracting spinor indices is yσµȳ = yα(σµ)αβ̇ ȳβ̇, etc (see Appendix

5.A.7).

Linearization around AdS

The linearization of Vasiliev’s equations around the AdS solution of the previous sub-

section, yields Fronsdal’s equations for the fields of all spins s = 1, 2, · · · ,∞ together with

the free minimally coupled equation for an m2 = −2 scalar field. The demonstration of this
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fact is rather involved; we will not review it here but instead refer the reader to [22, 69] for

details. In this subsubsection we content ourselves with reviewing a few structural features

of linearized solutions that will be of use to us in the sequel.

In the linearization of Vasiliev’s equations around AdS, it turns out that the the physical

degrees of freedom are contained entirely in the master fields restricted to Z ≡ (zα, z̄α̇) = 0.

The spin-s degrees of freedom are contained in

Ω(s−1+m,s−1−m) = Wµ(x, Y, Z = 0)|ys−1+mȳs−1−m ,

C(2s+n,n) = B(x, Y, Z = 0)|y2s+nȳn ,

C(n,2s+n) = B(x, Y, Z = 0)|ynȳ2s+n ,

(5.37)

for −(s − 1) ≤ m ≤ (s − 1) and n ≥ 0. In particular, W (x, Y, Z = 0)|ys−1ȳs−1 =

Ωαβ̇|α1···αs−1β̇1···β̇s−1
yα1 · · · yAs−1 ȳβ̇1 · · · ȳβ̇s−1dxαβ̇ contains the rank-s symmetric (double-)traceless

(metric-like) tensor gauge field10, and B|y2s , B|ȳ2s contain the self-dual and anti-self-dual

parts of the higher spin generalization of the Weyl curvature tensor (and involve up to s

spacetime derivatives on the symmetric tensor field). While the components of Wµ and B

listed above are sufficient to recover all information about the spin s fields, they are not

the only components of the Vasiliev field that are turned on in the linearized solution. The

linearized Vasiliev equations relate the components

· · ·← C(1,2s+1) ← C(0,2s) ← Ω(0,2s−2) · · ·← Ω(s−2,s) ← Ω(s−1,s−1) →

↪→ Ω(s,s−2) → · · ·Ω(2s−2,0) → C(2s,0) → C(2s+1,1) → · · ·
(5.38)

Starting from Ω(s−1,s−1), the arrows (to the left as well as to the right) are generated by the

action of derivatives. This may schematically be understood as follows. Ω(s−1,s−1) has s− 1

10In order to formulate Fronsdal type equations with higher spin gauge symmetry of the form δϕµ1···µs =
∇(µ1

ϵµ2···µs) + · · · , the spin-s gauge field is taken to be a rank-s symmetric double-traceless tensor field
ϕµ1···µs . The trace part can be gauged away, however, leaving a symmetric rank-s traceless tensor.
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symmetrized α type and s− 1 symmetrized α̇ type indices. Acting with the derivative ∂γβ̇ ,

symmetrizing γ with all the α type indices but contracting β̇ with one of the α̇ type indices

yields an object with s α type indices but only s − 2 α̇ type indices, taking us along the

right arrow from Ω(s−1,s−1) in (5.38). A similar operation, interchanging the role of dotted

and undotted indices takes us along to the left.

The equations for the metric-like fields ϕµ1···µs of the standard form (!−m2)ϕµ1···µs+· · · =

(nonlinear terms) can be extracted from Vasiliev’s equation by solving the auxiliary fields

in terms of the metric-like fields order by order.

Parity

We wish to study Vasiliev’s equations in an expansion around AdS space (with asymp-

totically AdS boundary conditions, as we will detail in the next section). Consider the

action of a parity operation. In the coordinates of (5.33) this operation acts as xi → −xi

(for i = 1 . . . 3). In order to fix the action of parity on the spinors yα, ȳα̇ and zα and z̄α̇

we adopt the choice of vielbein (5.34). With this choice the vielbeins are oriented along

the coordinate axes and the parity operator on spinors takes the standard flat space form

Γ5Γ1Γ2Γ3 = Γ4. Using the explicit form for Γ4 listed in (5.205), it follows that under parity

P(W (x⃗, z, dx⃗, dz|yα, zα, ȳα̇, z̄α̇)) = W (−x⃗, z,−dx⃗, dz|i(σz ȳ)α, i(σz z̄)α, i(σzy)α̇, i(σzz)α̇),

P(S(x⃗, z|yα, zα, ȳα̇, z̄α̇)) = S(−x⃗, z|i(σz ȳ)α, i(σz z̄)α, i(σzy)α̇, i(σzz)α̇),

P(B(x⃗, z|yα, zα, ȳα̇, z̄α̇)) = ±B(−x⃗, z|i(σz ȳ)α, i(σz z̄)α, i(σzy)α̇, i(σzz)α̇)
(5.39)

(while the parity transformation of the one-form fields W and S are fixed by the transforma-

tions of dxµ and dZ, the scalar B can be either parity odd or parity even). With the choice
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of conventions adapted in Appendix 5.A.7, iσz = −I. Consequently parity symmetry acts

on (Y, Z) by exchanging yα ↔ −ȳα̇, zα ↔ −z̄α̇, and so exchanges the two terms f∗(B∗K)dz2

and f∗(B ∗K)dz̄2 in the equation of motion.

When are Vasiliev’s equations invariant under parity transformations? As we have seen

above, B may be either parity even or odd. Thus we need either f(X) = f(X) or f(X) =

f(−X). Combined with (5.30), we have

fA(X) =
1

4
+X, ( A type) or fB(X) =

1

4
+ iX ( B type) (5.40)

They define the A-type and B-type Vasiliev theories, respectively.

Without imposing parity symmetry, however, the interactions of Vasiliev’s system is

governed by the function f(X), or the phase θ(X). If θ(X) is not 0 or π/2, parity symmetry

is violated. Parity symmetry is formally restored, however if we assign nontrivial parity

transformation on θ(X) (i.e. on the coupling parameters θ2n) as well; there are two ways of

doing this, with the scalar master field B being parity even or odd:

PA : B → B, θ(X)→ −θ(X), or

PB : B → −B, θ(X)→ π − θ(X).

(5.41)

This will be useful in constraining the dependence of correlation functions on the coupling

parameters θ2n.

The duals of free theories

The bulk scalar of Vasiliev’s theory turns out to have an effective mass m2 = −2 in units

of the AdS radius. Near the boundary z = 0 in the coordinates of (5.33) the equation of

motion the bulk scalar field S to take the form

S ≃ az + bz2 (5.42)
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while the bulk vector field takes the form

Aµ ≃ aµ + jµz (5.43)

In order to completely specify Vasiliev’s dynamical system we need to specify boundary

conditions for the bulk scalar and vector fields (the unique consistent boundary condition

of fields of higher spin is that they decay near the boundary like zs+1).) We postpone

a systematic study of boundary conditions to the next section. In this subsubsection we

specify the boundary conditions that define, respectively, the Vasiliev dual to the theory of

free bosons and free fermions.

The type A bosonic Vasiliev theory with b = 0 (for the unique bulk scalar) and aµ = 0 (for

the unique bulk vector field) is conjectured to be dual to the theory of a single fundamental

U(N) boson coupled to U(N) Chern-Simons theory at infinite level k. The primary single

trace operators of this theory have quantum numbers

∞∑

s=0

(s+ 1, s)

(the first label above refers to the scaling dimension of the operator, while the second label

its spin), exactly matching the linearized spectrum of type A Vasiliev theory. In Section

5.3.2 below we demonstrate that these are the only boundary conditions for the type A

theory that preserve higher spin symmetry, the necessary and sufficient condition for these

equations to be dual to the theory of free scalars [37].

The spectrum of primaries of a theory of free fermions subject to a U(N) singlet condition

is given by

(2, 0) +
∞∑

s=1

(s+ 1, s)
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This is exactly the spectrum of the type B Vasiliev theory with boundary conditions a =

aµ = 0. It is not difficult to convince oneself that these are the unique boundary conditions

for the type B theory that preserve conformal invariance; in Section 5.3.2 below that they

also preserve the full the higher spin symmetry algebra, demonstrating that this Vasiliev

system is dual to a theory of free fermions.

5.2.2 Nonabelian generalization

Vasiliev’s system in AdS4 admits an obvious generalization to non-abelian higher spin

fields, through the introduction of Chan-Paton factors, much like in open string field theory.

We simply replace the master fields W,S,B by M ×M matrix valued fields, and replace the

∗-algebra in the gauge transformations and equations of motion by its tensor product with

the algebra of M ×M complex matrices. In making this generalization we modify neither

the truncation (5.11) nor the reality condition (5.17) (except that the complex conjugation

in (5.17) is now defined with Hermitian conjugation on the M ×M matrices). We will refer

to this system as Vasiliev’s theory with U(M) Chan-Paton factors.

One consequence of this replacement is that the U(1) gauge field in the bulk turns into

a U(M) gauge field, and all other bulk fields are M ×M matrices that transform in the

adjoint of this gauge group.

It is natural to conjecture that the non-minimal bosonic Vasiliev theory with U(M)

Chan-Paton factors is then dual to SU(N) vector model with M flavors. Take the example

of A-type theory in AdS4 with ∆ = 1 boundary condition. The dual CFT is that of NM free

massless complex scalars φia, i = 1, · · · , N , a = 1, · · ·M , restricted to the SU(N)-singlet

sector. The conserved higher spin currents are single trace operators in the adjoint of the
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U(M) global flavor symmetry. The dual bulk theory has a coupling constant g ∼ 1/
√
N .

The bulk ’t Hooft coupling is then

λ = g2M ∼ M

N
. (5.44)

We thus expect the bulk theory to be weakly coupled when M/N ≪ 1. The latter will be

referred to as the “vector model limit” of quiver type theories.

At the classical level the non abelian generalization of Vasiliev’s theory has M2 different

massless spin s fields, and in particular M2 different massless gravitons. This might appear

to suggest that the dual field theory hasM2 exactly conserved stress tensors, in contradiction

with general field theory lore for interacting field theories. In fact this is not the case. In

Appendix 5.A.9 we argue that 1
N effects lift the scaling dimension of all but one of the M2

apparent stress tensors for every choice of boundary conditions except the one that is dual

to a theory of M2 decoupled free scalar or fermionic boundary fields.

5.2.3 Supersymmetric extension

Following [58, 22, 59, 62, 63], to construct Vasiliev’s system with extended supersym-

metry, we introduce Grassmannian auxiliary variables ψi, i = 1, · · · , n, that obey Clifford

algebra {ψi,ψj} = 2δij, and commute with all the twistor variables (Y, Z). By definition,

the ψi’s do not participate in the ∗-algebra. The master fields W,S,B, as well as the gauge

transformation parameter ϵ, are now all functions of ψi’s as well as of (xµ, yα, ȳα̇, zα, z̄α̇).

The operators ψi may be thought of as Γmatrices that act on an auxiliary 2
n
2 dimensional

‘spinor’ space (we assume from now on that n is even). Note that an arbitrary 2
n
2 × 2

n
2

dimensional matrix can be written as a linear sum of products of Γ matrices.11 Consequently

11This fact gives a map from the space of 2
n
2 × 2

n
2 dimensional matrices to constant forms on an n
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at this stage the extension of Vasiliev’s system to allow for all fields to be functions of ψi

is simply identical to the non abelian extension of the previous subsection, for the special

case M = 2
n
2 . The construction of this subsection differs from that of the previous one in

the truncation we apply on fields. The condition (5.11) continues to take the form

[R,W ]∗ = {R, S}∗ = [R,B]∗ = [R, ϵ]∗ = 0. (5.45)

but with R now defined as

R ≡ KKΓ (5.46)

and where

Γ ≡ i
n(n−1)

2 ψ1ψ2 · · ·ψn (5.47)

(note that Γ2 = 1 and that it is still true that R ∗R = 1).

While the modified truncation (5.45) looks formally similar to (5.11), it has one very

important difference. As with (5.11) it ensures that those operators that commute with Γ

(i.e. are even functions of ψi) are also even functions of the spinor variables Y, Z. However

odd functions of ψi, which anticommute with Γ, are now forced to be odd functions of Y, Z.

Such functions transform in spinorial representations of the internal tangent space SO(4).

Consequently, the new projection introduces bulk spinorial fields into Vasiliev’s theory, and

simultaneously ensures that such fields are always anticommuting, in agreement with the

spin statistics theorem.

The reality projection we impose on fields is almost unchanged compared to (5.17). We

dimensional space, where ψi is regarded as a basis one-form. Every 2
n
2 × 2

n
2 dimensional matrix can be

uniquely decomposed into the sum of a zero form a0I, a one form aiψi, a two form aijψiψj . . . an n form
anψ1ψ2...ψn. The number of basis forms is (1 + 1)n = 2n, precisely matching the number of independent
matrix elements.
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demand

ι(W )∗ = −W, ι(S)∗ = −S, ι(B)∗ = K ∗B ∗KΓ = ΓK ∗B ∗K. (5.48)

The operation ι and the complex conjugation on the master fields, A→ A∗, are defined in

the Section 5.2.1, in combination with ι : ψi → ψi but reverses the order of the product of

ψi’s, and ψi’s are real under complex conjugation. We require ι to reverse the order of ψi in

order to ensure that

ι(Γ)∗ = Γ−1 = Γ.

(the reversal in the order of ψi compensates for the sign picked up by the factor of i
n(n−1)

2

under complex conjugation in (5.47)). The only other modification in (5.48) compared to

(5.17) is in the factor on Γ in the action on B; this additional factor is necessary in order

for the two terms on the RHS of ι(B)∗ to be the same, after using the truncation equation

(5.45), given that R in this section has an additional factor of Γ as compared to the bosonic

theory.

Vasiliev’s equations take the form

F = dxÂ+ Â ∗ Â = f∗(B ∗K)dz2 + f∗(B ∗KΓ)dz̄2,

dxB + Â ∗B − B ∗ π(Â) = 0.

(5.49)

Compared to the bosonic theory, the only change in the first Vasiliev equation is the factor

of Γ in the argument of f ; this factor is needed in order to preserve the reality of Vasiliev

equations under the operation (5.48), as it follows from (5.48) that

ι(B ∗K)∗ = K ∗K ∗B ∗KΓ = B ∗KΓ.

The second Vasiliev equation is unchanged in form from the bosonic theory; however the

operator π is now taken to mean conjugation by ΓK together with dz̄ → −dz̄, or equivalently,
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by the truncation condition (5.45) on the fields, conjugation by K together with dz → −dz.

Note in particular that

π(S) = K ∗ Sz ∗K + ΓK ∗ Sz ∗ ΓK

= Sα̇(x|− y, ȳ,−z, z̄,ψ)dz̄α̇ + Sα(x|y,−ȳ, z,−z̄,−ψ)dzα

= S(x|y,−ȳ, z,−z̄,−ψ, dz,−dz̄).

(5.50)

As in the case of the bosonic theory, f(X) can generically be cast into the form f(X) =

1
4 +X exp(iθ(X)) by a field redefinition.

The expansion into components of the first of (5.49) is given by (5.193), with the last

line of that equation replaced by

Ŝ ∗ Ŝ = f(B ∗K)dz2 + f̄(B ∗KΓ)z̄2, (5.51)

The expansion in components of the second line of (5.49) is given by (5.194) with no modi-

fications.

As in the case of the bosonic theory, the second equation in (5.49) follows from the first

using the Bianchi identity for the field strength. The details of the derivation differ in only

minor ways from the bosonic derivation presented in Appendix 5.A.4.12

Parity acts as

P(W (x⃗, z, dx⃗, dz|yα, zα, ȳα̇, z̄α̇)) = W (−x⃗, z,−dx⃗, dz|i(σz ȳ)α, i(σz z̄)α, i(σzy)α̇, i(σzz)α̇),

P(S(x⃗, z|yα, zα, ȳα̇, z̄α̇)) = S(−x⃗, z|i(σz ȳ)α, i(σz z̄)α, i(σzy)α̇, i(σzz)α̇),

P(B(x⃗, z|yα, zα, ȳα̇, z̄α̇)) = B(−x⃗, z|i(σz ȳ)α, i(σz z̄)α, i(σzy)α̇, i(σzz)α̇)Γ.
(5.52)

12(5.196) holds unchanged, (5.197) holds with K → KΓ these two equations are equivalent by (5.45).
Equation (5.199) holds unchanged. (5.201) applies with K → KΓ. (5.202) holds unchanged.
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The factor of Γ in the last of (5.52) is needed in order that the theory with f(X) = 1
4 +X

is parity invariant.

5.2.4 The free dual of the parity preserving susy theory

In this subsection we consider the dual description of the parity preserving Vasiliev theory

with appropriate boundary conditions. The equations we study have f(X) = 1
4 +X . Let us

examine the bulk scalar fields which are given by the bottom component of the B master

field, namely Φ(x,ψ) = B(x|Y = Z = 0,ψ), which obeys the truncation condition ΓΦΓ = Φ,

i.e. Φ is even in the ψi’s. There are 2n−1 real scalars, half of which are parity even, the other

half parity odd. We impose boundary conditions to ensure that ∆ = 1 for the parity even

scalars and ∆ = 2 for the parity odd scalars (see the next sections for details). In other

words the fall off near the boundary is given by (5.42), with b = 0 for parity even scalars,

a = 0 for all parity odd scalars. The boundary fall off for all gauge fields is given by (5.43)

with aµ = 0.

The bulk theory has also m = 0 spin half bulk fermions, whose boundary conditions we

now specify. Recall (see e.g. [70]) that the AdS/CFT dictionary for such fermions identifies

the ‘source’ with the coefficient of the z
3
2 fall off of the parity even part of the bulk fermionic

field (the same information is also present in the z
5
2 fall off of the parity odd part of the

fermion field), while the ‘operator vev’ is identified with the coefficient of the z
3
2 of the parity

odd part of the bulk fermion field (the same information is also present in the z
5
2 fall off

of the parity even part of the fermion field). We impose the standard boundary conditions

that set all sources to zero, i.e. we demand that the leading O(z
3
2 ) fall off of the fermionic

field is entirely parity odd. We believe these boundary conditions preserve the fermionic
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higher spin symmetry (see Section 5.5.4 for a partial verification) and so yield the theory

dual to a free field theory.

The field content of this dual field theory is as follows; we have 2
n
2−1 complex scalars in

the fundamental representation and the same number of fundamental fermions (so that the

singlets constructed out of bilinears of scalars or fermions match with the bulk scalars). We

organize the fields in the boundary theory in the form

φiA, ψiḂα,

where i is the SU(N) index, A, Ḃ are chiral and anti-chiral spinor indices of an SO(n) global

symmetry, and α denotes the spacetime spinor index of ψiḂ. The 2
n−2+2n−2 SU(N) singlet

scalar operators, of dimension ∆ = 1 and ∆ = 2, are

φ̄iAφiB, ψ̄iȦψiḂ. (5.53)

They are dual to the bulk fields (projected to the parity even and parity odd components,

respectively)

Φ+ = Φ
1 + Γ

2
, Φ− = −iΦ1 − Γ

2
. (5.54)

The free CFT has U(2
n
2 −1)× U(2

n
2 −1) bosonic flavor symmetry that act on the scalars and

fermions separately, as well as 2n−2 complex fermionic symmetry currents

(Jαµ)
Ḃ
A = ψ̄iḂ

α

←→
∂ µφiA + · · · . (5.55)

The Vasiliev bulk dual of the U(2
n
2−1) × U(2

n
2−1) global symmetry is given by Vasiliev

gauge transformations with ϵ independent of x, Y or Z, but an arbitrary real even function

of ψi (i.e. an arbitrary even Hermitian operator built out of ψi). Operators of this nature

may be subdivided into parity even and parity odd Hermitian operators which mutually

224



Chapter 5: ABJ Triality: from Higher Spin Fields to Strings

commute. The 2n−2 parity even operators of this nature generate one factor of U(2
n
2 −1)

while the complementary parity even operators generate the second factor. The two central

U(1) elements are generated by I+Γ and I−Γ respectively; these operators clearly commute

with all even functions of ψi, and so commute with all other generators, establishing their

central nature.13 It is easily verified that parity even Vasiliev scalars transform are neutral

under the parity odd U(2
n
2−1) but transform in the adjoint of the parity even U(2

n
2 −1)

(the reverse statement is also true). On the other hand the parity even/odd spin half

fields of Vasiliev theory transform in the (fundamental, antifundamental) and (fundamental,

antifundamental), all in agreement with field theory expectations.

With the boundary conditions described in this section, the bulk theory may be equiva-

lently written as the n′ = 2 (i.e. minimally) extended supersymmetric Vasiliev theory with

U(2
n
2 −1) Chan-Paton factors and boundary conditions that preserved this symmetry. Our

main interest in the bulk dual of the free theory, however, is as the starting point for the

construction of the bulk dual of interacting theories. This will necessitate the introduction of

parity violating phases into the theory and simultaneously modifying boundary conditions.

The boundary conditions we will introduce break the U(2
n
2−1) global symmetry down to a

smaller subgroup. In every case of interest the subgroup in question will turn out to be a

subgroup of U(2
n
2
−1) that is also a subgroup of the SO(n)14 that rotates the ψi’s (here ψi are

13As an example let us consider the case n = 4 that is of particular interest to us below. The parity even
U(2) = U(1)× SU(2) is generated by

(1 + Γ), (1 + Γ)ψ4ψi

while the parity odd U(2) = U(1)× SU(2) is generated by

(1− Γ), (1 − Γ)ψ4ψi

(where i = 1 . . . 3).

14As we will see in the sequel, we will find it possible to choose boundary conditions to preserve up to
N = 6 supersymmetries together with a flavour symmetry group which is a subgroup of U(2

n
2
−1)×U(2

n
2
−1).
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the fermionic fields that enter Vasiliev’s construction, not the fermions of the dual boundary

theory). As the preserved symmetry algebras have a natural action on ψi, the language of

extended supersymmetry will prove considerably more useful for us in subsequent sections

than the language of the non abelian extension of the n = 2 theory, which we will never

adopt in the rest of this paper.

5.3 Higher Spin symmetry breaking by AdS4 bound-

ary conditions

In this technical section, we will demonstrate that higher spin bulk symmetries are broken

by nontrivial values of the phase function θ and by generic boundary conditions.

In this section we study mainly the bosonic Vasiliev theory. We demonstrate that higher

spin symmetry is broken by generic boundary conditions and generic values of the Vasiliev

phase. Higher spin symmetry is preserved only for the type A and type B Vasiliev theories

with boundary conditions described in Section 5.2.1. We will see this explicitly by showing

that, in every other case, the nonlinear (higher) spin-s gauge transformation on the bulk

scalar field, at the presence of a spin-s′ boundary source, violates the boundary condition

for the scalar field itself for every other choice of phase or boundary condition. We also

use this bulk analysis together with a Ward identity to compute the coefficient css′0 in the

schematic equation

∂µJ (s)
µ = css′0J

s′O + · · ·

where the RHS includes the contributions of descendants of Js′ and descendants of O. The

violation of the scalar boundary condition is directly related to a double trace term in the
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anomalous “conservation” law of the boundary spin-s current, via a Ward identity.

This section does not directly relate to the study of the bulk duals of supersymmetric

Chern Simons theories. Apart from the basic formalism for the study of symmetries in

Vasiliev theory (see Section 5.3.1 below) the only result of this subsection that we will use

later in the paper are the identifications (5.83) and (5.86) presented below. The reader who

is willing to take these results on faith, and who is uninterested in the bulk mechanism of

higher spin symmetry breaking, could skip directly from Section (5.3.1) to the next section.

5.3.1 Symmetries that preserve the AdS Solution

The asymptotic symmetry group of Vasiliev theory in AdS4 is generated by gauge pa-

rameters ϵ(x|Y, Z,ψi) that leave the AdS4 vacuum solution (5.32) invariant. S = 0 in the

solution (5.32) is preserved if and only if the gauge transformation parameter is indepen-

dent of Z, i.e it takes the form ϵ(x|Y,ψi). As B transforms homogeneously under gauge

transformations, B = 0 (in (5.32)) is preserved under arbitrary gauge transformations. The

nontrivial conditions on ϵ(x|Y,ψi) arise from requiring that W = W0 is preserved. For this

to be the case ϵ(x|Y,ψi) is required to obey the equation

D0ϵ(x|Y,ψi) ≡ dxϵ(x|Y,ψi) + [W0, ϵ(x|Y,ψi)]∗ = 0. (5.56)

As the gauge field W0 in the AdS4 vacuum obeys the equation dxW0 +W0 ∗W0 = 0, W0

is a flat connection and so may may be written in the “pure gauge” form.

W0 = L−1 ∗ dL, (5.57)

where L−1 is the ∗-inverse of L(x|Y ). We may formally move to the gauge in which W0 = 0;15

15Note that the formal gauge transformation by L is not a true gauge symmetry of the theory, as it
violates the AdS boundary condition. We regard it as merely a solution generating technique.
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W = 0 is preserved if and only if ϵ is independent of x. Transforming back to the original

gauge we conclude that the most general solution to (5.56) is given by ϵ(x|Y ) of the form

ϵ(x|Y,ψi) = L−1(x|Y ) ∗ ϵ0(Y,ψi) ∗ L(x|Y ). (5.58)

where ϵ0(Y ) is independent of x and is restricted, by the truncation condition, to be an even

function of y,ψi.16

The gauge function L(x|Y ) is not uniquely defined; it may be obtained by integrating the

flat connection W0 along a path from a base point x0 to x. We would then have L(x0|Y ) = 1

and ϵ0(Y ) = ϵ(x0|Y ). See [71, 33] for explicit formulae for L(x|Y ) in Poincaré coordinates.

We have used the explicit form of L(x|Y ) to obtain an explicit form for ϵ(x|Y ). We now

describe our final result, which may easily independently be verified to obey (5.56)

Let us define y± ≡ y±σz ȳ. The ∗-contraction between y± and y± is zero, and is nonzero

only between y± and y∓. Namely, we have

(y±)α ∗ (y±)β = (y±)α(y±)β ,

(y±)α ∗ (y∓)β = (y±)α(y∓)β + 2ϵαβ.

(5.59)

In Poincaré coordinates, W0 may be written in terms of y± as

W0 = −
dxi

8z
y+σ

izy+ +
dz

8z
y+y−. (5.60)

A generating function for solutions to (5.56) is given by

ϵ(x|Y ) = exp
[
z−

1
2Λ+(x⃗)y+ + z

1
2Λ−y−

]

= exp
[
Λ(x)y + Λ(x)ȳ

]
,

(5.61)

16This is obvious in the gauge in which W vanishes. In the gauge (5.58) it follows from the truncation
condition [ϵ, R]∗ = 0, and that the fact that [L(x|Y ), R]∗ = 0, we see that ϵ0(Y ).
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where Λ+(x⃗),Λ(x⃗), and Λ(x⃗) are given in terms of constant spinors Λ0 and Λ− by

Λ+(x⃗) = Λ0 + x⃗ · σ⃗σzΛ−,

Λ(x) = z−
1
2Λ+(x⃗) + z

1
2Λ−,

Λ(x) = −z− 1
2σzΛ+(x⃗) + z

1
2σzΛ−.

(5.62)

ϵ(x|Y ) as defined in (5.61) may directly be verified to obey the linear equation (5.56). (5.61)

is a generating function for solutions to that equation in the usual: upon expanding ϵ(x|Y )

in a power series in the arbitrary constant spinors Λ0 and Λ− the coefficients of different

powers in this Taylor expansion independently obey (5.56) (this follows immediately from

the linearity of (5.56)).

Notice that the various Taylor coefficients in (5.61) contains precisely all generating

parameters for the universal enveloping algebra of so(3, 2) (in the bosonic case) or its ap-

propriate supersymmetric extension (in the susy case).

Let us first describe the bosonic case. Recall that, on the boundary, the conserved

currents of the higher spin algebra may be obtained by dotting a spin s conserved current

with s−1 conformal killing vectors. Let us define the ‘spin s charges’ as the charges obtained

out of the spin s conserved current by this dotting process. The spin-s global symmetry

generating parameter, ϵ(s)(x|Y ), is then obtained from the terms in (5.61) of homogeneous

degree 2s− 2 in (y, ȳ) (or equivalently in Λ0 and Λ−).

As a special case consider the ‘spin two’ charges, i.e. the charges whose conserved

currents correspond to the stress tensor dotted with a single conformal killing vector, i.e the

conformal generators. These generators are quadratic in (y, ȳ). These generators may be

organized under the action of the boundary SU(2) (i.e. the diagonal action of SU(2)L and

SU(2)R) as 3 + 3 + 3 + 1, corresponding to 3d angular momentum generators, momenta,
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boosts and dilations, in perfect correspondence with generators of the three dimensional

conformal group so(3, 2).17 Indeed the set of quadratic Hamiltonians in Y , with product

defined by the star algebra, provides an oscillator construction of so(3, 2).

Let us now turn to the supersymmetric theory. The generators of the full n extended

superconformal algebra are given by terms that are quadratic in (y,ψi). Terms quadratic

in y are conformal generators. Terms quadratic in ψi but independent of y are SO(n) R

symmetry generators. Terms linear in both y and ψi (we denote these by ϵ(
3
2 )(x|Y )) are

supersymmetry and superconformal generators. More precisely the terms involving Λ0 are

Poincaré supersymmetry parameters, where the terms involving Λ− are special supersym-

metry generators (in radial quantization with respect to the origin x⃗ = 0).

In the sequel we will will make use of the following easily verified algebraic property of

the generating function ϵ(x|Y ) (5.61) under ∗ product,

ϵ(x|Y ) ∗ f(y, ȳ) = ϵ(x|Y )f(y + Λ, ȳ + Λ),

f(y, ȳ) ∗ ϵ(x|Y ) = ϵ(x|Y )f(y − Λ, ȳ − Λ).

(5.63)

5.3.2 Breaking of higher spin symmetries by boundary conditions

Any given Vasiliev theory is defined by its equations of motion together with boundary

conditions for all fields. Given any particular boundary conditions one may ask the following

question: which of the large gauge transformation described in the previous subsection pre-

serve these boundary conditions? In other words which if any of the gauge transformations

have the property that they return a normalizable state (i.e. a solution of Vasiliev’s theory

that obeys the prescribed boundary conditions) when acting on an arbitrary normalizable

17It may be checked that The Poincaré generators are obtained by simply setting Λ− to zero.
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state? Such gauge transformations are genuine global symmetries of the system.

In this paper we will study the exact action of the large gauge transformations of the

previous section on an arbitrary linearized solution of Vasiliev’s equations. The most general

such solution may be obtained by superposition of the linearized responses to arbitrary

boundary sources. Because of the linearity of the problem, it is adequate to study these

sources one at a time. Consequently we focus on the linearized solution created by a spin s

source at x = 0 on the boundary of AdS4. Such a source creates a response of the B field

everywhere in AdS4, and in particular in the neighborhood of the boundary at the point

x. We study the higher spin gauge transformations ϵ(s
′)(x|Y ) (for arbitrary s′) on the B

master field at this point. The response to this gauge variation contains fields of various

spins s′′. As we will see below the response for s′′ > 1 always respects the standard boundary

conditions for spin s′′ fields. However the same is not true of the response of the fields of

low spins, namely s′′ = 0, 12 , or 1. As we have seen in the previous section, for these fields it

is possible to choose different boundary conditions, some of which turn out to be violated

by the symmetry variation δB.

In the rest of this section we restrict our attention to the bosonic Vasiliev theory. The

variation δB under an asymptotic symmetry generated by ϵ(x|Y ) in (5.61) is given by (5.7).

Let B(s)(x|Y ) be the spin-s component of the linearized B(x|Y ) sourced by a current

J (s) on the boundary, i.e. the boundary to bulk propagator for the spin-s component of the

B master field with the source inserted at x⃗ = 0. B(s)(x|Y ) only contains terms of order

y2s+nȳn and ynȳ2s+n, n ≥ 0; as we have explained above, the coefficients of these terms are

spacetime derivatives of the basic spin s field. We will work in Poincaré coordinates (5.33),

with the spin-s source located at x⃗ = 0. Without loss of generality, it suffices to consider
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the polarization tensor for J (s), a three-dimensional symmetric traceless rank-s tensor, of

the form εα1···α2s = λα1 · · ·λα2s , for an arbitrary polarization spinor λ. The corresponding

boundary-to-bulk propagator is computed in [33]. Here we generalize it slightly to the parity

violating theory, by including the interaction phase eiθ0 , as

B(s)(x|Y ) =
zs+1

(x⃗2 + z2)2s+1
e−yΣȳ

[
eiθ0(λxσzy)2s + e−iθ0(λσzxσz ȳ)2s

]
, (5.64)

where Σ and x are defined as

Σ ≡ σz − 2z

x⃗2 + z2
x, x ≡ xµσµ = x⃗ · σ⃗ + zσz . (5.65)

18

Note that this formula is valid for spin s > 1, for the standard “magnetic” boundary

condition in the s = 1 case and for ∆ = 1 boundary condition in the s = 0 case. The

variation of B under the asymptotic symmetry generated by ϵ(x|Y ) is given by

δB = −ϵ ∗B(s) +B(s) ∗ π(ϵ)

= −ϵ(x|y, ȳ)B(x|y + Λ, ȳ + Λ) + ϵ(x|y,−ȳ)B(x|y − Λ, ȳ + Λ),

where we made use of the properties (5.63). Using the explicit expression of the boundary-

18In the special case s = 0 the terms in the square bracket reduce simply to 2 cos θ0. This observation
is presumably related to the fact, discussed by Maldacena and Zibhoedov [51], that the scalar and spin s
currents in the higher spin multiplets have different natural normalizations. In the sequel we will, indeed,
identify the factor of cos θ0 with the ratio of these normalizations.
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to-bulk propagator, this is

δB = − zs+1

(x⃗2 + z2)2s+1

{
eΛy+Λȳe−(y+Λ)Σ(ȳ+Λ)

[
eiθ0(λxσz(y + Λ))2s + e−iθ0(λσzxσz(ȳ + Λ))2s

]

−eΛy−Λȳe−(y−Λ)Σ(ȳ+Λ)
[
eiθ0(λxσz(y − Λ))2s + e−iθ0(λσzxσz(ȳ + Λ))2s

]}

= − zs+1

(x⃗2 + z2)2s+1
e−yΣȳ+z−

1
2 Λ+(1−σzΣ)y+z

1
2 Λ−(1+σzΣ)y

×
{
e(z

− 1
2 Λ++z

1
2Λ−)Σσz(z−

1
2 Λ+−z

1
2 Λ−)+z−

1
2Λ+(σz−Σ)ȳ−z

1
2Λ−(σz+Σ)ȳ

×
[
eiθ0(λxσz(y + z−

1
2Λ+ + z

1
2Λ−))

2s + e−iθ0(λσzxσz(ȳ − σz(z−
1
2Λ+ − z

1
2Λ−)))

2s
]

−e−(z−
1
2Λ++z

1
2Λ−)Σσz(z−

1
2 Λ+−z

1
2Λ−)−z−

1
2 Λ+(σz−Σ)ȳ+z

1
2Λ−(σz+Σ)ȳ

×
[
eiθ0(λxσz(y − z−

1
2Λ+ − z

1
2Λ−))

2s + e−iθ0(λσzxσz(ȳ − σz(z−
1
2Λ+ − z

1
2Λ−)))

2s
]}

.

(5.66)

Note that although the source is a spin-s current, there are nonzero variation of fields of

various spins in δB. The self-dual part of the higher spin Weyl tensor, in particular, is

obtained by restricting B(x|Y ) to ȳ = 0. The variation of the self-dual part of the Weyl

tensors of various spins are given by

δB|y=0 = −
zs+1

(x⃗2 + z2)2s+1
ez

− 1
2 Λ+(1−σzΣ)y+z

1
2 Λ−(1+σzΣ)y

×
{
e(z

− 1
2 Λ++z

1
2Λ−)Σσz(z−

1
2 Λ+−z

1
2 Λ−)

[
eiθ0(λxσz(y + z−

1
2Λ+ + z

1
2Λ−))

2s + e−iθ0(λσzx(z−
1
2Λ+ − z

1
2Λ−))

2s
]

−e−(z−
1
2Λ++z

1
2 Λ−)Σσz(z−

1
2 Λ+−z

1
2Λ−)

[
eiθ0(λxσz(y − z−

1
2Λ+ − z

1
2Λ−))

2s + e−iθ0(λσzx(z−
1
2Λ+ − z

1
2Λ−))

2s
]}

.

(5.67)

Now let us examine the behavior of δB near the boundary of AdS4. In the z → 0 limit,

the leading order terms in z are given by

δB|y=0 −→ − z

|x|4s+2
e
2z

1
2
(

1
|x|2

Λ+σzx+Λ−

)
y

×
{
e

2
x2

Λ+σzxΛ+−2Λ+Λ−

[
eiθ0(λxσz(z

1
2 y + Λ+))

2s + e−iθ0(λσzxΛ+)
2s
]

− e−
2
x2

Λ+σzxΛ++2Λ+Λ−

[
eiθ0(λxσz(z

1
2y − Λ+))

2s + e−iθ0(λσzxΛ+)
2s
]}

(5.68)
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The variation of the spin-s′′ Weyl tensor, δB(s′′), is extracted from terms of order y2s
′′
in

the above formula, which falls off like zs
′′+1 as z → 0. This is consistent with the boundary

condition for fields of spin s′′ > 1, independently of the phase θ0. As promised above, the

spin s′′ > 1 component of the response to an arbitrary gauge variation automatically obeys

the prescribed boundary conditions for such field and so appears to yield no restrictions on

allowed boundary conditions for the theory.

Anomalous higher spin symmetry variation of the scalar

The main difference between the scalar field and fields of arbitrary spin is that the

prescribed boundary conditions for scalars involve both the leading as well as the subleading

fall off of the scalar field. So while the leading fall off of the scalar field will never be faster

than z1 (in agreement with the general analysis above upon setting s′′ = 0), this is not

sufficient to ensure that the scalar field variation obeys its boundary conditions.

Let us examine the variation of the scalar field due to a higher spin gauge transformation,

at the presence of a spin-s source at x⃗ = 0 on the boundary. The spin s′′ = 0 component of

the symmetry variation δB is given by (5.67) with (y, ȳ) set to zero,

δB(0) = −2 z

(x⃗2 + z2)2s+1
sinh

[
(z−

1
2Λ+ + z

1
2Λ−)Σσ

z(z−
1
2Λ+ − z

1
2Λ−)

]

×
[
eiθ0(λxσz(Λ+ + zΛ−))

2s + e−iθ0(λσzx(Λ+ − zΛ−))
2s
]

=
4

(x⃗2 + z2)2s+1
sinh

[
2
x⃗2 − z2

x⃗2 + z2
(Λ+Λ−) + 2

Λ+x⃗ · σ⃗σzΛ+ − z2Λ−x⃗ · σ⃗σzΛ−

x⃗2 + z2

]

×
[
cos θ0(λx⃗ · σ⃗σzΛ+)

2sz + i sin θ0 · 2s(λ(Λ+ + x⃗ · σ⃗σzΛ−))(λx⃗ · σ⃗σzΛ+)
2s−1z2 +O(z3)

]
.

(5.69)

When expanded in a power series in Λ, the RHS of (5.69) has the schematic form

O(Λ2s+2)× (Taylor expansion in Λ4)
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Recall that the spin-s′ symmetry variation (see the previous subsection for a definition) is

extracted from terms of order 2s′−2 in Λ±. It follows that we find a scalar response to spin

s′ gauge transformations only for s′ = s+2, s+4, .... When this is the case (i.e. when s′− s

is positive and even)

δ(s′)B
(0) =

4

(x⃗2)2s+1

2s
′−s−1

(s′ − s− 1)!

(
Λ+Λ− +

1

x⃗2
Λ+x⃗ · σ⃗σzΛ+

)s′−s−1

×
[
cos θ0(λx⃗ · σ⃗σzΛ+)

2sz + i sin θ0 · 2s(λ(Λ+ + x⃗ · σ⃗σzΛ−))(λx⃗ · σ⃗σzΛ+)
2s−1z2 +O(z3)

]
.

(5.70)

Recall that Λ+ = Λ0 + x⃗ · σ⃗σzΛ−, and Λ0, Λ− are arbitrary constant spinors. For generic

parity violating phase θ0, and s′ > s > 0 with even s′ − s, terms of order z and z2 are both

nonzero, and so both ∆ = 1 and ∆ = 2 boundary conditions would be violated, leading to

the breaking of spin-s′ symmetry.

Note that the condition s′ > s > 0 and that s′−s is even means that the broken symmetry

has spin s′ > 2. In particular the s′ = 2 conformal symmetries are never broken.19

The exceptional cases are when either cos θ0 = 0 or sin θ0 = 0. These are precisely the

interaction phase of the parity invariant theories. In the A-type theory, θ0 = 0, we see that

δB(0,0) ∼ z + O(z3), and so ∆ = 1 boundary condition is preserved while ∆ = 2 boundary

condition would be violated. This is as expected: the A-type theory with ∆ = 1 boundary

condition is dual to the free U(N) or O(N) theory which has exact higher spin symmetry,

whereas the A-type theory with ∆ = 2 boundary condition is dual to the critical theory,

where the higher spin symmetry is broken at order 1/N . For the B-type theory, θ0 = π/2,

we see that δB(0,0) ∼ z2 +O(z3), and so the ∆ = 2 boundary condition is preserved, while

∆ = 1 boundary condition is violated. This is in agreement with the former case being dual

19Note that the extrapolation of this formula to the s = 0 case assumes ∆ = 1 boundary to bulk
propagator, and the variation δ(s′)B

(0) is always consistent with the ∆ = 1 boundary condition.

235



Chapter 5: ABJ Triality: from Higher Spin Fields to Strings

to free fermions, and the latter dual to critical Gross-Neveu model where the higher spin

symmetry is broken.

In summary, the only conditions under which any higher spin symmetries are preserved

are the type A theory with ∆ = 1 or the type B theory with ∆ = 2. These are precisely

the theories conjectured to be dual to the free boson and free fermion theory respectively,

in agreement with the results of [37].

Ward identity and current non-conservation relation

To quantify the breaking of higher spin symmetry, we now derive a sort of Ward identity

that relates the anomalous spin-s symmetry variation of the bulk fields, as seen above, to

the non-conservation relation of the three-dimensional spin-s′ current that generates the

corresponding global symmetry of the boundary CFT.

Let us first word the argument in boundary field theory language. Let us consider the

field theory quantity

⟨Js(0) · · · ⟩

where . . . denote arbitrary current insertions away from the point xµ, and ⟨ ⟩ denotes av-

eraging with the measure of the field theory path integral. On the path integral we now

perform the change of variables corresponding to a spin s′ ‘symmetry’. Let J (s′)
µ denote

the corresponding current. When J (s′)
µ is conserved this change of variables leaves the path

integral unchanged in the neighborhood of x (it acts on the insertions, but we ignore those

as they are well separated from x). When the current is not conserved, however, it changes

the action by ϵ ∂µJ (s′)
µ (y). Let us suppose that

∂µJ (s′)
µ (y) =

1

2

∑

s1,s2

J (s1)D(s′)
s1s2J

(s2) + · · · , (5.71)

236



Chapter 5: ABJ Triality: from Higher Spin Fields to Strings

where Ds
s1s2 is a differential operator, It follows that, in the large N limit, the change in the

path integral induced by this change of variables is given by

∫
d3y ⟨J (s1)(y) · · · ⟩D(s′)

s1s ⟨J
s(0)J (s)(y)⟩

(where we have used the fact that the insertion of canonically normalized double trace

operator contributes in the large N limit only under conditions of maximal factorization).

In other words the symmetry transformation amounts to an effective operator insertion of

J (s1). Specializing to the case s1 = 0 we conclude that, in the presence of a spin s source

J (s), a spin s′ symmetry transformation should turn on a non normalizable mode for the

scalar field given by

D(s′)
0s ⟨Js(0)J (s)(y)⟩. (5.72)

Before proceeding with our analysis, we pause to restate our derivation of (5.81) in bulk

rather than field theory language. Denote collectively by Φ all bulk fields, and by ϕ(s)
µ··· a

particular bulk field of some spin s. Consider the spin-s′ symmetry generated by gauge

parameter ϵ(x), under which ϕµ··· → ϕµ··· + δϵϕµ···. Let φ(x⃗) be the renormalized boundary

value of ϕ(x⃗, z), namely ϕ(x⃗, z)→ z∆φ(x⃗) as z → 0. Let us consider the expectation value

of φ(x⃗) at the presence of some boundary source jµ··· (of some other spin s) located away

from x⃗. The path integral is invariant under an infinitesimal field redefinition Φ→ Φ+ δϵΦ,

where δϵ takes the form of the asymptotic symmetry variation in the bulk, but vanishes

for z less than a small cutoff near the boundary, so as to preserve the prescribed boundary

condition, Φ(x⃗′, z)→ z3−∆j(x⃗′) +O(z∆). From this we can write

0 =

∫
DΦ

∣∣∣∣
Φ(x⃗′,z)→z3−∆j(x⃗′)+O(z∆)

δϵ
[
ϕ(s1)(x⃗, z) exp (−S[Φ])

]

=
〈
δϵϕ

(s1)(x⃗, z)
〉
j
−
〈
ϕ(s1)(x⃗, z) δϵS

〉
j
.

(5.73)
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The spin-s source j is subject to the transversality condition ∂i1j
i1···is
(s) = 0. Now δϵS should

reduce to a boundary term,

δϵS =

∫

∂AdS

dy ϵ ∂µJ (s′)
µ (y) =

1

2

∫

∂AdS

ϵ
∑

s1,s2

φ(s1)Ds′

s1s2φ
(s2) + · · · , (5.74)

where Ds
s1s2 is a differential operator, and Jµ is the boundary current associated with the

global symmetry generating parameter ϵ which is now a constant along the cutoff surface,

which is then taken to z → 0. On the RHS of (5.74), we omitted possible higher order terms

in the fields. From (5.73) we then obtain the relation

〈
δϵϕ

(s1)(x⃗, z)
〉
j
=

〈
ϕ(s1)(x⃗, z)

∫

∂AdS

dx⃗′ϵ φ(s1)(x⃗′)Ds
s1s2φ

(s2)(x⃗′)

〉

j

+ (higher order)

= ϵ

∫

∂AdS

dx⃗′ 〈ϕ(s1)(x⃗, z)φ(s1)(x⃗′)
〉
Ds

s1s2

〈
φ(s2)(x⃗′)

〉
j
+ (higher order).

(5.75)

Now specialize to the case s1 = 0, i.e. ϕ(s1) is the scalar field ϕ subject to the boundary

condition such that the dual operator has dimension ∆. The anomalous symmetry variation

shows up in terms of order z3−∆ in δϵϕ(x⃗, z). After integrating out x⃗′ using the two-point

function of ϕ and taking the limit z → 0, we obtain the relation

⟨δϵϕ(x⃗, z)⟩j
∣∣∣
z3−∆

= ϵDs
0s2

〈
φ(s2)(x⃗)

〉
j
+ (higher order), (5.76)

Keep in mind that j is the spin-s2 transverse boundary source, and ϵ is the spin-s global sym-

metry generating parameter. The differential operator Ds′
s1s2 appears in the spin-s′ current

non-conservation relation of the form

∂µJ (s)
µ··· =

1

2

∑

s1,s2

J (s1)
··· Ds

s1s2J
(s2)
··· + (total derivative) + (triple trace). (5.77)

In particular, the double trace term on the RHS that involves a scalar operator takes the

form

J (0)(x⃗)Ds
0s2J

(s2)(x⃗) + (total derivative). (5.78)
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Knowing the LHS of (5.76) from the gauge variation of Vasiliev’s bulk fields, and using that

fact that
〈
φ(s2)(x⃗)

〉
j
is given by the boundary two-point function of the spin-s2 current, we

can then derive Ds
0s2 using this Ward identity. In other words we have rederived (5.72).

(5.72) applies to arbitrary sources Js and also to arbitrary spin s′ symmetry transforma-

tions. Let us assume that our sources is of the form specified in the previous subsection; all

spinor indices on the source are dotted so with a constant spinor λ which is chosen so that

λσ⃗σzλ = ϵ⃗′.

In other words our source is uniformly polarized in the ϵ direction. Let us also choose the

spin s′ variation to be generated by the current Jµ
a1...a2s′−2

Λa1
0 . . .Λ

a2s′−2
0 with

Λ0σ⃗σzΛ0 = ϵ⃗

where ϵ⃗ is a constant vector. In other words we have chosen to specialize attention to

those symmetries generated by the spin s′ current contracted with s′ − 1 translations in

the direction ϵ rather than with a generic conformal killing vector. If we compare with the

asymptotic symmetry variation the bulk scalar derived earlier we must set Λ− to zero and

Λ+ = Λ0. It follows from the previous subsection that

δB(0) =
4

(x⃗2)2s2+1

1

(s− s2 − 1)!

(
2

x⃗2
Λ0x⃗ · σ⃗σzΛ0

)s−s2−1

×
[
cos θ0(λx⃗ · σ⃗σzΛ0)

2s2z + i sin θ0 · 2s2(λΛ0)(λx⃗ · σ⃗σzΛ0)
2s2−1z2 +O(z3)

]
.

(5.79)

In the ∆ = 1 case, the anomalous variation comes from the order z2 term in (5.79), giving

Ds
0s2

〈
φ(s2)(x⃗)

〉
j
= sin θ0Css2

(ε · x)s−s2(2x · εx · ε′ − x2ε · ε′)s2−1ϵµνρε′µενxρ
(x⃗2)s+s2+1

, (5.80)

Here Css2 is a numerical constant that depends only on s and s2.
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(5.80) gives a formula for the appropriate term in (5.71) when the operators that appear

in this equation have two point functions

⟨O(0)O(x)⟩ = α0

x2
,

⟨Js(0)Js(x)⟩ =
αsx2s

−
x4s+2

.

(5.81)

Note in particular that these two point functions are independent of the phase θ. Let us now

compare this relation to the results of Maldacena and Zhiboedov [51]. Those authors deter-

mined the non-conservation relation of currents of spin s, which in the lightcone direction

to take the form

∂µJ
(s)µ

−···− =
λ̃b√
1 + λ̃2b

∑

s′

ass′ ϵ−µνJ
(0)∂s−s′−1

− ∂µJ (s′)ν
−···− + · · · , (5.82)

where · · · stands for double trace terms involving two currents of nonzero spins, total deriva-

tives, and triple trace terms. Note that the first term we exhibited on the RHS of (5.82) is

not a primary by itself, but when combined with the total derivatives term in · · · becomes

a double trace primary operator in the large N limit. We have used the notation λ̃b of

[51] in the case of quasi-boson theory, but normalized the two-point function of J (0) to be

independent of λ̃b.

Indeed with (Ds
0s′J

(s′))−···− ∼ ϵ−µν∂
s−s′−1
− ∂µJ (s′)ν

−···−, and the identification

λ̃b = tan θ0, (5.83)

the structure of the divergence of the current agrees with (5.80) obtained from the gauge

transformation of bulk fields.

Similarly, in the ∆ = 2 case, the anomalous variation comes from the order z term in

(5.79). We have

Ds
0s2

〈
φ(s2)(x⃗)

〉
j
= cos θ0C̃ss2

(ε · x)s−s′(2x · εx · ε′ − x2ε · ε′)s′

(x⃗2)s+s′+1
. (5.84)
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This should be compared to the current non-conservation relation in the quasi-fermion the-

ory, of the form

∂µJ
(s)µ

−···− =
λ̃f√
1 + λ̃2f

∑

s′

ãss′J
(0)∂s−s′−1

− J (s′)
−···− + (total derivative) + · · · , (5.85)

Once again, this agrees with the structure of (5.84), with (Ds
0s′J

(s′))−···− ∼ ∂s−s′−1
− J (s′)

−···−,

and the identification

λ̃f = cot θ0. (5.86)

Following the argument of [51], the double trace terms involving a scalar operator in the

current non-conservation relation we derived from gauge transformation in Vasiliev theory

allows us to determine the violation of current conservation in the three-point function,

〈
(∂ · J (s)) J (s′)J (0)

〉
, and hence fix the normalization of the parity odd term in the s− s′− 0

three-point function.

Here we encounter a puzzle, however. By the Ward identity argument, we should also

see an anomalous variation under global higher spin symmetry of a field ϕ(s1) of spin s1 > 1.

This is not the case for our δϵB(s1) as computed in (5.67). Presumably the resolution to

this puzzle lies in the gauge ambiguity in extracting the correlators from the boundary

expectation value of Vasiliev’s master fields, which has not been properly understood thus

far. This gauge ambiguity may also explain why one seems to find vanishing parity odd

contribution to the three point function by naively applying the gauge function method of

[34].20

20We thank S. Giombi for discussions on this.
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Anomalous higher spin symmetry variation of spin-1 gauge fields

Since one can choose a family of mixed electric-magnetic boundary conditions on the

spin-1 gauge field in AdS4, such a boundary condition will generically be violated by the

nonlinear asymptotic higher spin symmetry transformation as well.

Let us consider the self-dual part of the spin-1 field strength, whose variation is given in

terms of δϵB(2,0)(x⃗, z|y), i.e. the terms in δϵB of order y2 and independent of ȳ. According to

(5.68), the leading order terms in z, namely order z2 terms, of δϵB(2,0)(x⃗, z) in the presence

of a spin-s boundary source at x⃗ = 0 is given by

δϵB
(2,0)(x⃗, z|y) −→ − z2

|x|4s+2

[
2

(
1

|x|2Λ+σ
zx+ Λ−

)
y

]2
sinh

[
2

x2
Λ+σ

zxΛ+ − 2Λ+Λ−

]

×
[
eiθ0(λxσzΛ+)

2s + e−iθ0(λσzxΛ+)
2s
]

− eiθ0
4sz2

|x|4s+2
·
[
2

(
1

|x|2Λ+σ
zx+ Λ−

)
y

]
cosh

[
2

x2
Λ+σ

zxΛ+ − 2Λ+Λ−

]
(λxσzy)(λxσzΛ+)

2s−1

− eiθ0
2s(2s− 1)z2

|x|4s+2
sinh

[
2

x2
Λ+σ

zxΛ+ − 2Λ+Λ−

]
(λxσzy)2(λxσzΛ+)

2s−2.

(5.87)

The anti-self-dual components, δϵB(0,2)(x⃗, z|ȳ), is related by complex conjugation. Note

that by the linearized Vasiliev equations with parity violating phase θ0, B(2,0) and B(0,2) are

related to the ordinary field strength Fµν of the vector gauge field by

B(2,0)(x|y) = eiθ0z2F+
µν(x)(σ

µν)αβy
αyβ,

B(0,2)(x|ȳ) = e−iθ0z2F−
µν(x)(σ

µν)α̇β̇ ȳ
α̇ȳβ̇.

(5.88)

The factor z2 here comes from the z-dependence of the vielbein in eµαγ̇e
ν
βδ̇
ϵγ̇δ̇. The two point

functions of the operators dual to the gauge field in the equation above are given by

⟨Jµ(0)Jν(x)⟩ = 1

π2g2
δµν − 2xµxν

x2

x4
, (5.89)
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where g is the bulk gauge coupling constant. The mixed boundary condition

Fij = iζϵijkFzi at z = 0

is equivalent to21

e−iρF+
zi

∣∣
z=0

= eiρF−
zi

∣∣
z=0

, where e2iρ ≡ 1 + iζ

1− iζ
. (5.90)

We see that precisely when θ0 = 0 or π/2, the standard magnetic boundary condition, i.e.

ρ = 0 (k =∞), is consistent with higher spin gauge symmetry. For generic θ0, however, there

is no choice of ρ for the boundary condition to be consistent with the higher spin symmetry

variation on δϵB(2,0) and δϵB(0,2). Therefore, we see again that the parity violating phase

breaks all higher spin symmetries. From this one can also derive the double trace term

involving a spin-1 current in the divergence of the spin-s current of the boundary theory,

using the method of the previous subsection.

5.4 Partial breaking of supersymmetry by boundary

conditions

In this very important section we now turn to supersymmetric Vasiliev theory. We

investigate the action of asymptotic supersymmetry transformations on bulk fields of spin

0, 1/2, and 1. As in the case of higher spin symmetries, we find that no supersymmetry

transformation preserves generic boundary conditions. In other words generic boundary

conditions on fields violate all supersymmetries. However we identify special classes of

21In order to see this let us, for instance, take the special case i = 1. The relation becomes eiρ(Fz1−F23) =

e−iρ(Fz1 + F23), so that F23 = e2iρ−1
e2iρ+1Fz1.
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boundary conditions that that preserve N = 1, 2, 3, 4 and 6 supersymmetries22 in the next

section. We go on present conjectures for CFT duals for these theories.

We emphasize that the boundary conditions presented in this section preserve super-

symmetry when acting on linearized solutions of Vasiliev’s theory. The study of arbitrary

linearize solutions is insufficient to completely determine the boundary conditions that pre-

serve supersymmetry as we now explain.

Consider a linearized solution of a bulk scalar dual to an operator of dimension unity.

The solution to such a scalar field decays at small z like O(z), and the boundary condition

on this scalar asserts the vanishing of the O(z2) term. However terms quadratic in O(z) are

of O(z2) at leading order, and so could potentially violate the boundary condition. It follows

that the linearized boundary conditions studied presented in this section are not exact, but

will be corrected at nonlinear order. Indeed we know one source of such corrections; the

boundary condition deformations dual to the triple trace deformations of the dual boundary

Chern Simons theory. We ignore all such nonlinear deformations in this section (see the

next section for some remarks).

5.4.1 Structure of Boundary Conditions

Consider the n-extended supersymmetric Vasiliev theory with parity violating phase θ0.

We already know that all higher spin symmetries are broken by any choice of boundary

condition on fields of low spins, as expected for any interacting CFT. We also expect that

any parity non-invariant CFT to have at most N = 6 supersymmetry, and the question is

22Theories with N = 5 supersymmetry involve SO and Sp gauge groups on the boundary. Such theories
presumably have bulk duals in terms of the ‘minimal’ Vasiliev theory, which we, however, never study in
this paper. We thank O. Aharony and S. Yokoyama for related discussions.
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whether the breaking of supersymmetries to N ≤ 6 in the n-extended Vasiliev theory can be

seen from the violating of boundary conditions by supersymmetry variations. The answer

will turn out to be yes. In fact, we will be able to identify boundary conditions that preserve

N = 0, 1, 2, 3, 4 and 6 supersymmetries, in precise agreement with the various N -extended

supersymmetric Chern-Simons vector models that differ from one another by double and

triple trace deformations.

To begin we shall describe a set of boundary condition assignments on all bulk fields of

spin 0, 1
2 , and 1, that will turn out to preserve various number of supersymmetries and global

flavor symmetries. The supersymmetry transformation of the bulk fields of spin 0, 1
2 , and 1

are derived explicitly in terms of the master field B(x|Y ) in Appendix 5.B. For convenience

we will speak of the n-extended parity violating supersymmetric Vasiliev theory with no

extra Chan-Paton factors, though our discussion can be straightforwardly generalized to

include U(M) Chan-Paton factors. The bulk theory together with the prescribed boundary

conditions are then conjectured to be holographically dual to supersymmetric Chern-Simons

vector models with various number of supersymmetries and superpotentials.

Scalars

Vasiliev’s theory contains 2n−2 parity even scalar fields and an equal number of parity

odd scalar fields. We expect the most general allowed boundary condition for these fields to

take the form (5.121) (with dabc set to zero, as we restrict attention to linear analysis in this

section). If we view the collection of scalar fields as a linear vector space of dimension 2n−1

then (5.121) asserts that the z component of scalars lies in a particular half dimensional

subspace of this vector space, while the z2 component of the scalars lies in a complementary
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half dimensional subspace (obtained from the first space by switching the role of parity

even and parity odd scalars). Now the Vasiliev master field B packs all 2n−1 scalars into a

single even function of ψi. In order to specify the boundary conditions on scalars, we must

specify the 2n−2 dimensional subspace (of the 2n−1 dimensional space of even functions of

ψi) that multiply z in the small z expansion of these fields. We must also choose out a half

dimensional subspace of functions that multiply z2 (as motivated above, this subspace will

always turn out to be complementary to the first).

How do we specify the subspaces of interest? The technique we adopt is the following.

We choose any convenient reference subspace S that has the property that S + ΓS is the

full space. Let γ be an arbitrary hermitian operator (built out of the ψi fields) that acts

on the subspace S - i.e. Γ is the exponential of a linear combination of projectors for the

basis states of S. An arbitrary real half dimensional subspace in the space of functions is

given by eiγS+Γe−iγS. The complementary subspace (obtained by flipping parity even and

parity odd functions) is given by eiγS − Γe−iγS. In other words the most general boundary

conditions for the scalar part of B takes the form

B(0)(x⃗, z) = (eiγ + Γe−iγ)f̃1(ψ)z + (eiγ − Γe−iγ)f̃2(ψ)z
2 +O(z3) (5.91)

where f1(ψ) and f2(ψ) represent any function - not necessarily the same - that lie within

the reference real half dimensional subspace on the space of functions of ψ, and γ is an

operator, to be specified, that acts on this subspace. It is not difficult to verify that (5.91)

is consistent with the reality of B. (5.91) may also be rewritten as

B(0)(x⃗, z) = z
(
(1 + Γ) cos γ f̃1 + (1− Γ)i sin γ f̃1

)

+ z2
(
(1− Γ) cos γ f̃2 + (1 + Γ)i sin γ f̃2

)
+O(z3),

(5.92)

a form that makes the connection with (5.121) more explicit.
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In the special case γ = 0, f̃1 and f̃2 can be arbitrary (i.e. the reference half dimensional

space can be chosen arbitrarily) and (5.91) simply asserts that parity odd scalars have

dimension 1 while parity even scalars have dimension 2.

Spin half fermions

Boundary conditions for spin half fermions are specified more simply than for their scalar

counterparts. The most general boundary condition relates the parity even part of any given

fermion (the ‘source’) to the parity odd piece of all other fermions (‘the vev’). The most

general real boundary condition of this form is that the spin- 12 part of B take the form

B( 12 )(x⃗, z|Y )
∣∣
O(y,ȳ)

= z
3
2
[
eiα(χy)− Γe−iα(χ̄ȳ)

]
+O(z

5
2 ), χ = σzχ̄. (5.93)

where χ is an arbitrary spinor and α is an arbitrary hermitian operator (i.e. function of ψi).

Reality of B( 12 ) imposes (χα)∗ = −iχ̄α̇.

In the limit α = 0 these boundary conditions simply assert that the z
3
2 fall off of the

fermion is entirely parity odd. Recall that according to the standard AdS/CFT rules, the

parity even component of the fermion field may be identified with the expectation value

of the boundary operator, while the parity odd part is an operator deformation. When α

(which in general is a linear operator that acts on χ, χ̄, which are functions of ψ) is nonzero,

the boundary conditions assert a linear relation between parity even and parity odd pieces,

of the sort dual to a fermion-fermion double trace operator.

Gauge Fields

The electric-magnetic mixed boundary condition on the spin-1 field is

B(1)(x⃗, z|Y )
∣∣
O(y2,ȳ2)

= z2
[
eiβ(yFy) + Γe−iβ(ȳF ȳ)

]
+O(z3), F = −σzFσz. (5.94)
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Here β is equal to θ0 for the magnetic boundary condition, corresponding to ungauged

flavor group in the boundary CFT (recall that eiθF is identified with the bulk Maxwell field

strength; see above). Once again β is, in general, an operator that acts on F, F . Reality of

B(1) gives (F α
β )

∗ = F̄ β̇
α̇

We will see that the N = 4 and N = 6 boundary conditions requires taking β to be a

nontrivial linear operator that acts on F, F , which amounts to gauging a flavor group with

a finite Chern-Simons level.

Now to characterize the boundary condition, we simply need to give the linear operators

α, γ, β which act on f̃1,2(ψ), χ(ψ), F (ψ), and a set of linear conditions on f̃1,2(ψ).

We now proceed to enumerate boundary conditions that preserve different degrees of

supersymmetry. In each case we also conjecture a field theory dual for the resultant Vasiliev

theory. For future use we present the Lagrangians of the corresponding field theories in

Appendix 5.D.

5.4.2 The N = 2 theory with two ! chiral multiplets

Let us start with n = 4 extended supersymmetric Vasiliev theory. The master fields

depend on the auxiliary Grassmannian variables ψ1,ψ2,ψ3,ψ4. With θ(X) = 0, α = 0 and

γ = 0 in the fermion and scalar boundary conditions, respectively, the dual CFT is the

free theory of 2 chiral multiplets (in N = 2 language) in the fundamental representation of

SU(N), with a total number of 16 supersymmetries. Now we will turn on nonzero θ0, and

describe a set of boundary conditions that preserve N = 2 supersymmetry (4 supercharges)

and SU(2) flavor symmetry. The boundary condition for the spin-1 field is the standard

magnetic one. The boundary condition for spin- 12 and spin-0 fields are given by (5.235),
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(5.236), (5.243), with

α = γ = θ0, [ψ1, f̃1] = [ψ1, f̃2] = 0 or P1,ψ2ψ3,ψ2ψ4,ψ3ψ4 f̃1,2 = f̃1,2. (5.95)

where Pψi,··· stands for the projection onto the subspace spanned by the monomials ψi, · · · ;

f̃1,2 are subject to the constraint that they commute with ψ1, or equivalently, f̃1,2 are spanned

by 1,ψ2ψ3,ψ2ψ4,ψ3ψ4. The 2 supersymmetry parameters are given by Λ+ = Λ0, Λ− = 0,

with

Λ0 = ηψ1 and ηψ1Γ, (5.96)

where Γ = ψ1ψ2ψ3ψ4. η is a constant Grassmannian spinor parameter that anti-commutes

with all ψi’s.

Clearly, with α = θ0, (5.234) obeys the fermion boundary condition (5.235), (5.236),

and (5.241) obeys the magnetic boundary condition on the spin-1 fields (5.226), (5.227).

(5.242) with α = γ obeys (5.243) with f̃1,2 of the form {ψ1,λ}, or {ψ1Γ,λ}, both of which

commute with ψ1. Finally, in the RHS of (5.246), all commutators of f̃1,2 vanish, leaving

the terms with anti-commutators only, which satisfy (5.267), (5.236) with γ = α. Clearly,

an SU(2) ≃ SO(3) flavor symmetry rotating ψ2,ψ3,ψ4 is preserved by this N = 2 boundary

condition.

It is natural to propose that the n = 4 extended parity violating Vasiliev theory with

this boundary condition is dual to N = 2 Chern-Simons vector model with 2 fundamental

chiral multiplets. There is no gauge invariant superpotential in this case, while there is

an SU(2) flavor symmetry23 rotating the two chiral multiplets, which is identified with the

23Note that the field theory is left invariant under a larger set of U(2) transformations, which rotates the
chiral multiplets into each other. However the diagonal U(1) in U(2) acts in the same way on all fundamental
fields, and so is part of the U(N) gauge symmetry. There is nonetheless a bulk gauge field - with ψ content
I -formally corresponding to this U(1) factor.

249



Chapter 5: ABJ Triality: from Higher Spin Fields to Strings

SO(3) symmetry of rotations in ψ1, ψ2 and ψ3 preserved by the boundary conditions listed

above.

Let us elaborate on, for instance, the scalar boundary conditions. There are a total of

eight scalars in the problem (the number of even functions of ψi). A basis for parity even

scalars is given by (1 + Γ) and (1 + Γ)ψ1ψi where i = 1 . . . 3. A basis for parity odd scalars

is given by (1 − Γ) and (1 − Γ)ψ1ψi. In each case the scalars transform in the 1 + 3 of

SU(2). Recall that the fundamental fields of the field theory (scalars as well as fermions)

transform in the 1
2 of the flavour symmetry SU(2); it follows that bilinears in these fields

also transform in the 1 + 3 of SU(2), establishing a natural map between bulk fields and

field theory operators.

The boundary conditions (5.95) assert that the coefficient of the O(z2) term of the parity

even scalars/vectors is equal to tan θ0 times the coefficient of the O(z2) of the corresponding

parity odd scalars/vectors. Similarly the coefficient of the O(z) term of the parity odd

scalars/vectors is equal to tan θ0 times the coefficient of the O(z) of the corresponding

parity even scalars/vectors. This is exactly the kind of boundary condition generated by a

double trace deformation that couples the dual dimension one and dimension two operators,

with equal couplings in the scalar and vector (of SU(2)) channels. We will elaborate on this

in much more detail in the next section.

5.4.3 A family of N = 1 theories with two ! chiral multiplets

If we keep only the supersymmetry generator given by

Λ0 = ηψ1, (5.97)
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then a one-parameter family of boundary conditions that preserve N = 1 supersymmetry is

given by

α = θ0P
S
1 + γPA

1 , β = θ0, [ψ1, f̃1] = [ψ1, f̃2] = 0, (5.98)

where P S
1 and PA

1 are the projection operators that projects an odd function of ψi’s onto

the subspaces spanned by

ψ1Γ,ψ2,ψ3,ψ4 (all anti− commute with ψ1) (5.99)

and

ψ1,ψ2Γ,ψ3Γ,ψ4Γ (all commute with ψ1) (5.100)

respectively. γ is now an arbitrary phase (independent of ψi).

This family of boundary conditions is dual to N = 1 deformations of the N = 2 theory

with two chiral flavors, by turning on an N = 1 (non-holomorphic) superpotential that

preserves the SU(2) flavor symmetry (corresponding to the bulk symmetry that rotates

ψ2,ψ3,ψ4).

The same theory can also be rewritten as the n = 2 extended supersymmetric Vasiliev

theory with M = 2 matrix extension. The spin-1, fermion, and scalar boundary conditions

are given by

α = θ0Pψ2 + γPψ1 , β = θ0, [ψ1, f̃1] = [ψ1, f̃2] = 0. (5.101)

It is natural to wonder about the relationship between the parameter γ above and the

field theory parameter ω (see (5.300)). General considerations leave this relationship unde-

termined; however we will present a conjecture for this relationship in the next section.
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5.4.4 The N = 2 theory with a ! chiral multiplet and a ! chiral

multiplet

Now let us describe a boundary condition that preserve the two supersymmetries gener-

ated by

Λ− = 0, Λ0 = ηψ1 and ηψ2. (5.102)

It is given by

β = θ0, α = θ0(1− Pψ3Γ,ψ4Γ), γ = θ0P1,ψ3ψ4 . (5.103)

where Pψi,··· stands for the projection onto the subspace spanned by the monomials ψi, · · · ,

as before; f̃1,2 are now subject to the constraint that they commute with either ψ1 or ψ2, i.e.

f̃1,2 are spanned by 1,ψ3ψ4, ψ1ψ3, ψ1ψ4, ψ2ψ3, ψ2ψ4. Note that when acting on the latter

four monomials, γ vanishes, and f̃1 and f̃2 may be replaced by 1+Γ
2 f̃1 and

1−Γ
2 f̃2. Therefore,

only half of the components of f̃1,2 are independent, as required. One can straightforwardly

verified that this set of boundary conditions preserve the two supersymmetries (5.102).

Clearly, the U(1) flavor symmetry that rotates ψ3,ψ4 is still preserved, but there is no

SU(2) flavor symmetry. We also have the U(1) R symmetry corresponding to rotations of

ψ1,ψ2.

The n = 4 Vasiliev theory with this boundary is then naturally proposed to be dual

to N = 2 Chern-Simons vector model with a fundamental and an anti-fundamental chiral

flavor, with U(1) × U(1) flavor symmetry 24 (corresponding to the components of the bulk

vector gauge field proportional to 1 and ψ3ψ4) besides the U(1) R-symmetry, which means

that the N = 2 superpotential vanishes, since a nonzero superpotential would break the

24One of these two U(1) factors is actually part of the gauge group and so acts trivially on all gauge
invariant operators.
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U(1)× U(1) flavor symmetry to a single U(1).

5.4.5 A family of N = 2 theories with a ! chiral multiplet and a

! chiral multiplet

The boundary condition in the above section is a special point inside a one-parameter

family of boundary conditions which preserved the same set of supersymmetries. It is given

by

β = θ0, α = θ0(1− Pψ3Γ,ψ4Γ) + α̃(Pψ3Γ − Pψ4Γ),

γ = θ0P1,ψ3ψ4 + α̃Pψ2ψ4,ψ1ψ4 ,

P1,ψ1ψ4,ψ2ψ4,ψ3ψ4 f̃1,2 = f̃1,2.

(5.104)

This one-parameter family of deformations is naturally identified with the superpotential

deformation of the N = 2 Chern-Simons vector model with a fundamental and an anti-

fundamental chiral flavor. This superpotential is marginal at infinite N ; at finite N there

are two inequivalent conformally invariant fixed points [72]. The α̃ = 0 point is the boundary

condition on the above section, describing the N = 2 theory with no superpotential, whereas

α̃ = ±θ0 give the N = 3 point, as will be discussed in the next subsection.

5.4.6 The N = 3 theory

The N = 3 boundary condition that preserve supersymmetry generated by the parame-

ters

Λ− = 0, Λ0 = ηψ1, ηψ2, and ηψ3, (5.105)
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is given by

β = θ0, α = θ0(1− Pψ1ψ2ψ3)− θ0Pψ1ψ2ψ3 , γ = θ0, P1,ψ1ψ4,ψ2ψ4,ψ3ψ4 f̃1,2 = f̃1,2. (5.106)

This boundary condition is dual to the N = 3 Chern-Simons vector model with a single

fundamental hypermultiplet, which may be obtained from the N = 2 theory with a fun-

damental and an anti-fundamental chiral multiplet by a turning on a superpotential. The

SO(3) symmetry of rotations in ψ1, ψ2 and ψ3 maps to the SO(3) R-symmetry of the model.

Notice that unlike the case studied in Section 5.4.2, α ̸= γ reflecting the fact that the SO(3)

R symmetry, unlike a flavor symmetry, acts differently on bosons and fermions.

5.4.7 The N = 4 theory

The N = 4 boundary condition that preserve supersymmetry generated by the parame-

ters

Λ− = 0, Λ0 = ηψi, i = 1, 2, 3, 4, (5.107)

is given by

β = θ0(1− PΓ), α = θ0Pψi
, γ = θ0P1. (5.108)

f̃1,2 are subject to the constraint

PΓf̃1,2 = 0. (5.109)

Note also that the components of f̃1,2 proportional to ψiψj are subject to the projection

1±Γ
2 also, as follows automatically from (5.91), (5.92). The boundary conditions above are

invariant under the SO(4) R symmetry of rotations in ψ1, ψ2, ψ3 and ψ4.

This boundary condition is dual to the N = 4 Chern-Simons quiver theory with gauge

group U(N)k × U(1)−k and a single bi-fundamental hypermultiplet. The latter can be
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obtained from the N = 3 U(N)k Chern-Simons vector model with one hypermultiplet flavor

by gauging the U(1) flavor current multiplet with another N = 3 Chern-Simons gauge field

at level −k [73].

5.4.8 An one parameter family of N = 3 theories

There is an one parameter family of boundary conditions that preserves the same super-

symmetry as in Section 5.4.6,

β = θ0(1− PΓ) + β̃PΓ, α = θ0Pψi
+ β̃(Pψ1Γ,ψ2Γ,ψ3Γ − Pψ4Γ),

γ = θ0P1 + β̃Pψ1ψ4,ψ2ψ4,ψ3ψ4 ,

P1,ψ1ψ4,ψ2ψ4,ψ3ψ4 f̃1,2 = f̃1,2.

(5.110)

The boundary condition in Section 5.4.6 is at β̃ = θ0. At β̃ = 0, the (5.110) coincides with

(5.108), and the N = 3 supersymmetry is enhanced to N = 4.

5.4.9 The N = 6 theory

To construct the bulk dual of the N = 6 ABJ vector model [74, 75], we need to double

the number of matter fields in the boundary field theory, and correspondingly quadruple the

number of bulk fields. This is achieved with the n = 6 extended supersymmetric Vasiliev

theory, which in the parity even case (dual to free CFT) can have up to 64 supersymmetries.

We are interested in the parity violating theory, with nonzero interaction phase θ0, with a set
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of boundary conditions that preserve N = 6 supersymmetries25 , generated by the parameters

Λ0 = ηψi, i = 1, 2, · · · , 6. (5.111)

Similarly to the N = 4 theory with one hypermultiplet, here we need to take the boundary

condition on the bulk spin-1 field to be

β = θ0(1− PΓ)− θ0PΓ. (5.112)

The spin-12 and spin-0 boundary conditions are given by

α = θ0(1− PψiΓ)− θ0PψiΓ, γ = θ0P1,ψiψj
, (5.113)

where PψiΓ for instance stands for the projection onto the subspace spanned by all ψiΓ’s,

i = 1, 2, · · · , 6. f̃1,2 are subject to the constraint

PΓ,ψiψjΓf̃1,2 = 0, (5.114)

which projects out half of the components of f̃1,2. Note that these boundary conditions

enjoy invariance under the SO(6) R symmetry rotations of the ψi coordinates.

By comparing the difference between β and θ0 with the Chern-Simons level of what would

be the flavor group of the N = 3 Chern-Simons vector model with two hypermultiplets, we

will be able to identify θ0 in terms of k below.

25One can show that there is no boundary condition for the n > 6 extended supersymmetric Vasiliev
theory that preserves N = n supersymmetries. We expect that there is no N > 6 boundary condition for
the parity violating Vasiliev theory, though we have not proven this in general.
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5.4.10 Another one parameter family of N = 3 theories

There is another one parameter family of boundary conditions that preserves the same

supersymmetry as in Section 5.4.6,

β = θ0(1− PΓ) + β̃PΓ,

α = θ0(Pψi,ψa + Pψiψjψa,ψiψaψb,ψ4ψ5ψ6 − PψaΓ) + β̃(PψiΓ − Pψ1ψ2ψ3),

γ = θ0P1,ψiψa,ψa,ψb
− β̃Pψiψj

,

P1,ψiψj ,ψiψa,ψaψb
f̃1,2 = f̃1,2,

(5.115)

where i, j = 1, 2, 3 and a, b = 4, 5, 6. At β̃ = −θ0, the (5.115) coincides with the boundary

condition in 5.4.9, and the N = 3 supersymmetry is enhanced to N = 6.

5.5 Deconstructing the supersymmetric boundary con-

ditions

5.5.1 The goal of this section

As we have explained early in this paper, the Vasiliev dual to free boundary superconfor-

mal Chern Simons theories is well known. In the previous section we have also conjectured

phase and boundary condition deformations of this Vasiliev theory that describe the bulk du-

als of several fixed lines of superconformal Chern Simons theories with known Lagrangians.

These interacting superconformal Chern Simons theories differ from their free counterparts

in three important respects.

• 1. The level k of the U(N) Chern-Simons theory is taken to infinity holding N
k = λ

fixed. The free theory is recovered on taking λ→ 0.
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• 2. The Lagrangian of the theory includes marginal triple trace interactions of the

schematic form (φ2)3 and double trace deformations of the form (φ2)(ψ2) and (φψ)2

(the brackets indicate the structure of color index contractions).

• 3. In some examples including the N = 6 ABJ theory we will also gauge a subgroup

of the global symmetry group of the theory with the aid of a new Chern-Simons gauge

field.

In this section we carefully compare the supersymmetric boundary conditions, deter-

mined in the previous section, with the Lagrangian of the conjectured field theory duals of

these systems. This analysis allows us to understand the separate contributions of each of

the three factors listed above to the boundary conditions of the previous section. It also

yields some information about the relationship between the bulk deformation parameters

and field theoretic quantities.

The analysis presented in this section was partly motivated by the following quantitative

goal. In the previous section we have presented two one parameter sets of N = 3 Vasiliev

boundary conditions (5.110) and (5.115) at any given fixed value of the Vasiliev phase θ0.

The first of these fixed lines interpolates to an N = 4 theory while the second which inter-

polates to a N = 6 theory. For each line of boundary conditions we have also conjectured

a one parameter set of dual boundary field theories. In order to complete the statement

of the duality between these systems we need to propose an identification of the parameter

that labels boundary conditions with the parameter that labels the dual field theories. The

analysis of this section was undertaken partly in order to establish this map. We have been

only partly successful in this respect. While we propose a tentative identification of param-

eters below, there is an unresolved puzzle in the analysis that leads to this identification;
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as a consequence we are not confident of this identification. We leave the resolution of this

puzzle to future work.

We begin this lengthy section with a review of well known effects of items (2) and (3)

listed above on the bulk dual systems. With these preliminaries out of the way we then

turn to the main topic of this section, namely the deconstruction of the supersymmetric

boundary conditions determined in the previous subsection.

5.5.2 Marginal multitrace deformations from gravity

As we have reviewed in the previous section, the supersymmetric Vasiliev theory contains

fields of every half integer spin, including scalars with m2 = −2, spin half fields with m = 0,

and massless vectors. It is well known that the only consistent boundary conditions for

the fields with spin s > 1 is that they decay near z = 0 like zs+1.26 On the other hand

consistency permits more interesting boundary conditions for fields of spin zero, spin half and

spin one. In this section we will review the subset of these boundary conditions that preserve

conformal invariance, together with their dual boundary interpretations. The discussion in

this subsection is an application of well known material (see for example the references

[64, 76, 77, 78, 79, 65] - we most closely follow the approach of the paper [77]).

scalars

The Vasiliev theories we study contain a set of scalar fields propagating in AdS4, all of

which have have m2 = −2 in AdS units. In the free theory the boundary conditions for

some of these scalars, Sa, are chosen so that the corresponding operator has dimension 1

26In other words the coefficient of the leading fall off is required to vanish.
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(these are the so called alternate boundary conditions) while the boundary conditions for

the remaining scalars, Fα, are chosen so that its dual operator has dimension 2 (these are

the so called regular boundary conditions). See Appendix 5.C.1 for a detailed discussion of

these boundary conditions and their dual bulk interpretation.

Let us suppose that the Lagrangian for these scalars at quadratic order takes the form27

∑

a

1

g2a

∫ √
g
(
∂µS̄a∂

µSa − 2S̄aSa

)
+
∑

α

1

g2α

∫ √
g
(
∂µF̄α∂

µFα − 2F̄αFα
)
. (5.116)

The redefinition

Sa = gasa, Fα = gαfα

sets all couplings to unity as in the discussion in Appendix 5.C.1.

As explained in detail in Appendix 5.C.1 the action and boundary conditions of bulk

scalars do not completely characterize the boundary dynamics of the system. For instance

in a theory with a single regular quantized scalar and one alternately quantized scalar

there exist a one parameter set of inequivalent boundary actions, each of which lead to

identical boundary conditions for (appropriately redefined) bulk fields. However there is

a distinguished ‘simplest’ set of boundary counterterms corresponding to any particular

boundary conditon (this is the undeformed or θ0 = 0 system described in Appendix 5.C.1).

This simple counterterm has the following distinguishing property; it yields vanishing two

point functions between any operator of dimension one and any other operator of dimension

two. Every other choice of counterterms yields correlators between these operators that

vanish at separated points but are have non-vanishing contact term contributions.

27Vasiliev’s theory is currently formulated in terms of equations of motion rather than an action. As
a consequence, the values of the coupling constants ga and gα, for the scalars that naturally appear in
Vasiliev’s equations, are undetermined by a linear analysis. The study of interactions would permit the
determination of the relative values of coupling constants, but we do not perform such a study in this paper.
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In this section we assume that the counterterm action corresponding to the scalar bound-

ary conditions above takes the simple (θ0 = 0) form referred to above. We will then deduce

the effect of a double and triple trace deformation on the boundary conditions of bulk fields.

The two point functions of the operators dual to sa and fα28 are given by29 [80]30

1

2π2

1

x2
(operators dual to sa),

1

2π2

2

x4
(operators dual to fα).

(5.117)

Later in this paper we will be interested in determining the Vasiliev dual to large N theories

deformed by double and triple trace scalar operators. The field theory deformations we

study are marginal in the large N limit and take the form

∫
d3x

(
π2

2k2
cabcσ

aσbσc +
2π

k
daασ

aφα
)

(5.118)

where σa is proportional to the operator dual to sa and φα is proportional to the operator

dual to fα (the factors in (5.118) have been inserted for future convenience). We will assume

that it is known from field theoretic analysis that

⟨σa(x)σb(0)⟩ = δab
2Nha

+

(4π)2x2
,

⟨φα(x)φβ(0)⟩ = δαβ
4Nhα−
(4π)2x4

,

(5.119)

28i.e. the two point functions for the operators for which coefficient of the z2 fall off of the field sa is a
source, and the operator for which the coefficient of the z fall off of the field fα is the source

29The general formula for the nontrivial prefactor is Γ(∆+1)(2∆−d)

π
d
2 Γ(∆−d/2)∆

.

30The Fourier transforms

G(k) =

∫
d3xeik.xG(x)

(appropriately regulated) evaluate to 1
|k| for the dimension one operator (alternate quantization), and to

−|k| for the dimension two operator (regular quantization). Note that these quantities are the negative
inverses of each other, in agreement with the general analysis of Appendix 5.C.1.

261



Chapter 5: ABJ Triality: from Higher Spin Fields to Strings

(the factors on the RHS have been inserted for later convenience; ha
+ and hα− are numbers).

It follows from a comparison of (5.119) and (5.117) that the operator dual to sa is 2√
Nha

+

σa

while the operator dual to fα is 2√
Nhα−

φα

Let us suppose that at small z,31

sa = s(1)a z + s(2)a z2 +O(z3), fα = f (1)
α z + f (2)

α z2 +O(z3). (5.120)

It follows from the analysis of 5.C.1 that the marginal deformation (5.118) induces the

boundary conditions

s(2)a =
πN
√

ha
+h

α
−

2k
daαf

(2)
α + 3

π2N
3
2

√
ha
+h

b
+h

c
+

16k2
cabcs

(1)
b s(1)c ,

f (1)
α = −

πN
√

ha
+h

α
−

2k
daαs

(1)
a .

(5.121)

If we denote the boundary expansion of the original bulk fields by

Sa = S(1)
a z + S(2)

a z2 +O(z3), Fα = F (1)
α z + F (2)

α z2 +O(z3), (5.122)

then

S(2)
a

ga
=
πN
√

ha
+h

α
−

2k
daα

F (2)
α

gα
+ 3

π2N
3
2

√
ha
+h

b
+h

c
+

16k2
cabc

S(1)
b

gb

S(1)
c

gc
,

F (1)
α

gα
= −

πN
√

ha
+h

α
−

2k
daα

S(1)
a

ga
.

(5.123)

In summary the boundary conditions (5.123) are the bulk dual of the field theory defor-

mation (5.118).

In the rest of this subsection we ignore triple trace deformations and focus our attention

entirely on the double trace deformations. As explained in Appendix 5.C.1, in this case the

modified boundary condition in (5.122) can be undone by a rotation in the space of scalar

31This expansion is in conformity with (5.255) because ζ = 1
2 for the m2 = −2 scalars of Vasiliev theory.
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fields. This is most easily seen in the special case that we have a single S type scalar and

a single F type scalar so that both the a and α indices run over a single value and can be

ignored. Let us define the rotated fields

S ′

ga
= cos θ

S

ga
+ sin θ

F

gα
,

F ′

gα
= cos θ

F

gα
− sin θ

S

ga
(5.124)

with

tan θ =
πN
√

ha
+h

α
−

2k
daα. (5.125)

Notice that the field redefinition (5.124) leaves the bulk action invariant. Moreover, it follows

from (5.123) that

(S ′)(2) = (F ′)(1) = 0.

In other words the rotated fields S ′ and F ′ obey the same bulk equations and same boundary

conditions in the presence of the double trace deformation as the unrotated fields S and F

obey in their absence.

At first sight this observation leads to the following paradox. A double trace deformation

by the parameter d may be thought of as the result of compounding two double trace

deformations of magnitude d1 and d2 respectively, such that d1 + d2 = d. As the system

after the deformation by d1 is apparently self similar to the system in its absence, it would

appear to follow that the rotation that results from the deformation with d1 + d2 is simply

the sum of the rotations corresponding to d1 and d2 respectively; in other words that the

rotation angle θ is linear in d. This conclusion is in manifest contradiction with (5.125).

The resolution of this contradiction lies in the fact that the systems with and without

the double trace deformations are not, infact, isomorphic. The reason for this is that the

boundary counterterm action does not take the simple θ = 0 form in terms of rotated fields
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in the system with the double trace deformation (see Appendix 5.C.1). In the theory with

double trace deformations there is, in particular, a nonzero contact term in the two point

functions of the two operators with distinct scaling dimensions; this contact term is absent

in the original system.

Spin half fermions

The Vasiliev theories we study include a collection of real fermions ψa
1 and ψ

a
2 propagating

in AdS4 space. It is sometimes useful to work with the complex fermions ψa = ψa
1+iψa

2√
2

and

ψ̄a = ψ1
a−iψ̄a

2√
2

. Let us suppose that the bulk action takes the form

∑

a

1

g2a

∫
ψ̄aDµΓ

µψa. (5.126)

Using the rules described for instance in [70], the two point function for the operator dual

to ψa is easily computed and we find the answer

1

g2a

x⃗ · σ⃗
π2x4

. (5.127)

The same result also applies to the two point functions of the operators dual to ψa
1 and ψa

2

independently.

In analogy with the bosonic case described in the previous subsection, the formula (5.127)

presumably applies only with the simplest choice of boundary counterterms [81, 82, 83, 84] -

the analogue of θ0 = 0 in Appendix 5.C.1- consistent with the boundary conditions described

in [70]. Though we will not perform the required careful analysis in this paper, it seems

likely that the fermionic analogue of Appendix 5.C.1 would find a one parameter set of

inequivalent boundary actions that lead to the same boundary conditions. From the bulk

viewpoint this ambiguity is likely related to the freedom associated with rotating a bulk
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spinor ψ1 into Γ5ψ2 (Γ5 is the bulk chirality matrix). We ignore this potential complication

in the rest of this subsection, and focus on the simple canonical case described in [70].

Let the field theory operator proportional to ψa be denoted by Ψa. Let us assume that

we know from field theory that

⟨Ψa(x)Ψ̄b(0)⟩ = δab
hψ2N(x⃗ · σ⃗)
(4π)2x4

. (5.128)

We will now describe the boundary conditions dual to a field theory double trace defor-

mation. Let the fermionic fields have the small z expansion

ψa
1 = z

3
2
(
ζa1+ + ζa1−

)
+O(z

5
2 ),

ψa
2 = z

3
2
(
ζa2+ + ζa2−

)
+O(z

5
2 ).

(5.129)

Above the subscripts + and − denote the eigenvalue of the corresponding fermions under

parity.

Using the procedure of the previous subsection, the bulk dual of the field theory double

trace deformation

π

4k

[
sab
(
Ψ̄a +Ψa

) (
Ψ̄b +Ψb

)
− tab

(
Ψ̄a −Ψa

) (
Ψ̄b −Ψb

)
+ uab

(
Ψ̄a +Ψa

)
i
(
Ψ̄b −Ψb

)]

is given by the modified boundary conditions

ζa1+
ga

=
Nπ
√

ha
ψh

b
ψ

8k

(
sab

ζb1−
gb

+
1

2
uab

ζb2−
gb

)
,

ζa2+
ga

=
Nπ
√

ha
ψh

b
ψ

8k

(
tab
ζb2−
gb

+
1

2
uba

ζb1−
gb

)
.

(5.130)

5.5.3 Gauging a global symmetry

As originally introduced by Witten [65], gauging a global symmetry with Chern-Simons

term in the boundary CFT is equivalent to changing the boundary condition of the bulk
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gauge field corresponding to the boundary current of the global symmetry. We will review

this relation in this subsection and in Appendix 5.B.

Let us start by considering a boundary CFT with U(1) global symmetry. The current

associated to this global symmetry is dual to a U(1) gauge field Aµ in the bulk. In the

Az = 0 radial gauge, the action for the gauge field Aµ is

1

4g2

∫
d3x⃗dz

z4
FµνF

µν =

∫
d3x⃗dz

(
1

2g2
∂zAi∂zAi +

1

4g2
FijFij

)
. (5.131)

Onshell the bulk action evaluates to

∫
d3x⃗

(
1

2g2
Ai∂zAi

)
. (5.132)

where the integral is taken over a surface of constant z for small z. The equations of motion

w.r.t. the boundary gauge field impose the electric boundary condition

1

g2
∂zAi

∣∣
z=0

= 0. (5.133)

Near z = 0, the most general solution to the gauge field equations of motion is

Ai = A1
i (x) + zA2

i (x).

The boundary condition (5.133) forces A2
i to vanish but allows Ai = A1

i , the value of the

gauge field on the cut off surface, to fluctuate freely at the boundary z = 0. The theory so

obtained is the conceptual equivalent of the ‘alternate’ quantized scalar theory described in

Appendix 5.C.1.

If we add a boundary U(1) Chern-Simons term to the bulk action 32 (in Euclidean

signature )

ik

4π

∫
d3x⃗ ϵijkAi∂jAk, (5.134)

32This is the same as adding a term in the bulk action proportional to
∫
F ∧ F as this term is the total

derivative of the Chern Simons term
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and allow arbitrary variation δAi at z = 0, the equation of motion of the boundary field Ai

generates the modified boundary condition

1

g2
∂zAi +

ik

2π
ϵijk∂jAk

∣∣
z=0

= 0, (5.135)

which is the electric-magnetic mixed boundary condition. By the AdS/CFT dictionary, this

is also equivalent to adding the term (5.134) into the boundary theory, where Ai is now

interpreted as the three dimensional gauge field coupled to the U(1) current.

This procedure can be straightforwardly generalized to U(M). Adding the U(M) Chern-

Simons action on the boundary

ik

4π

∫
d3x⃗ϵijktr

(
Ai∂jAk +

2

3
AiAjAk

)
. (5.136)

modifies the electric boundary condition to

1

g2
∂zAi +

ik

2π
ϵijk (∂jAk + AjAk)

∣∣
z=0

= 0. (5.137)

Note that this mixed boundary condition is still gauge invariant.

Of course ∂zAi is determined in terms of Ai by the equations of motion. As the equations

of motion are linear, the relation between these quantities is linear - but nonlocal- and takes

the form

∂zAi(q) = Gij(q)Aj(q).

The function Gij(q) has a simple physical interpretation; it is the two point function of the

current operator (with natural normalization) in the theory at k =∞ (at this value of k the

boundary condition (5.137) is simply the standard Dirichlet boundary condition). A simple

computation yields

⟨Ji(p)Jj(−q)⟩ =
1

2g2
Gij(q)δ

3(p− q) = − |p|
2g2

(
δij −

pipj
p2

)
(2π)3δ3(p− q). (5.138)
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Note that here we have normalized the current coupled to the Chern-Simons gauge field

according to the convention for nonabelian gauge group generators, Tr(tatb) = 1
2δ

ab for

generators ta, tb in the fundamental representation. This is also the normalization convention

we use to define the Chern-Simons level k (which differs by a factor of 2 from the natural

convention for U(1) gauge group).

Recall that (5.138) yeilds the two point functions of the ‘ungauged’ theory - i.e. the

theory with k =∞. Our analysis of the dual boundary theory to this ungauged system, we

find it convenient to work with currents normalized so that

⟨Ji(p)Jj(−q)⟩ = −
Ñ |p|
32

(
δij −

pipj
p2

)
(2π)3δ3(p− q). (5.139)

Our convention is such that in the free theory Ñ counts the total number of complex scalars

plus fermions (i.e. the two point function for the charge current for a free complex scalar is

equal to that of the free complex fermion and is given by (5.139) upon setting Ñ = 1, see

Appendix 5.F). In order that (5.138) and (5.139) match we must identify

g2 =
16

Ñ
,

so that the effective boundary conditions on gauge fields become

πÑ

8k
∂zAi + iϵijk∂jAk

∣∣
z=0

= 0. (5.140)

In summary, gauging of the global symmetry is affected by the boundary conditions (5.140).

Note that the boundary conditions (5.140) constrain only the boundary field strength Fij .

Holonomies around noncontractable cycles are unconstrained and must be integrated over.
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5.5.4 Deconstruction of boundary conditions: general remarks

The bulk dual of the finite Chern Simons coupling

With essential preliminaries taken care of we now turn to the main topic of this subsec-

tion, namely the deconstruction of the supersymmetric boundary conditions of the previous

section.

The Vasiliev dual of free susy theories was described in Section 5.2.4. What is the

Vasiliev dual to the free field theory deformed only by turning on a finite Chern Simons

t’Hooft coupling λ = N
k ? The deformation we study is unaccompanied by any potential

and Yukawa terms - in particular those needed to preserve supersymmetry - and so is not

supersymmetric. Consequently the comparisons between susy Lagrangians and boundary

conditions, presented later in this section, does not directly address the question raised here.

As we will see, however, the answer to this question is partly constrained by symmetries,

and receives indirect inputs from our analysis of susy theories below.

We first recall that it was conjectured in [21] that the bulk dual to turning on λ involves

a modification of the bulk Vasiliev equations by turning on an appropriate parity violating

phase, θ(X), as a function of λ. The results of the previous section clearly substantiate this

conjecture 33. It is possible, however, that in addition to turning on the phase, a nonzero

Chern Simons coupling also results in modified boundary conditions on bulk scalars and

fermions. We now proceed to investigate this possibility.

A consideration of symmetries greatly constrains possible modifications of boundary con-

ditions. Recall that the Vasiliev dual to free susy theories possesses a U(2
n
2 −1) × U(2

n
2 −1)

33As those results are valid only for the linearized theory, they unfortunately cannot distinguish between
a constant phase and a more complicated phase function; we return to this issue below.
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global symmetry. In the dual boundary theory the U(2
n
2−1) × U(2

n
2 −1) symmetry rotates

the fundamental bosons and fermions respectively, and is preserved by turning on a nonzero

Chern Simons coupling. A constant phase in Vasiliev’s equations also preserves this symme-

try. It follows that all accompanying boundary condition deformations must also preserve

this symmetry.

Parity even and odd bulk scalars respectively transform in the (adjoint + singlet, singlet)

and (singlet, adjoint+singlet) representations of the U(2
n
2−1)×U(2

n
2−1) symmetry. The only

conformally invariant modifications of boundary condition that preserve this symmetry are

those dual to the double trace coupling of the parity odd and parity even singlet scalars,

and that dual to the triple trace deformation of three parity even singlet scalars.

The conjectures of the previous section strongly constrain the double trace type de-

formation of boundary conditions induced by the Chern Simons coupling 34. Let us, for

instance, compare Lagrangian and boundary conditions of the fixed line of N = 1 theories

described in the previous subsection. The double trace scalar potential in these theories is

listed in (5.160) below and vanishes at ω = −1. On the other hand the rotation γ in the

scalar boundary conditions for the dual Vasiliev system is listed in (5.101), and vanishes

for the dual of ω = −1. In other words the Vasiliev dual to the Chern-Simons theory with

no scalar potential obeys boundary conditions such that all ‘parity even’ scalars continue

to have ∆ = 1 boundary conditions, while all ‘parity odd’ scalars continue to have ∆ = 2

boundary conditions. While the argument presented above holds only for n = 2, the result

continues to apply at n = 4 and n = 6 as well, as we will see in more detail in the detailed

34Our analysis of boundary conditions in the previous section was insensitive to triple trace type boundary
conditions, and so does not constrain the triple trace type modification.

270



Chapter 5: ABJ Triality: from Higher Spin Fields to Strings

comparisons below. 35

We turn now to the fermions. Bulk fermions transform in the (fundamental, antifun-

damental) and (antifundamental, fundamental) of the free symmetry algebra. There is, of

course, a natural double trace type singlet boundary condition deformation with this field

content (this deformation has the same effect on boundary conditions as a double trace field

theory term (φaψ̄b)(ψbφ̄a) where a and b are global symmetry indices and brackets denote the

structure of gauge contractions). Perhaps surprisingly, we will now argue that merely turn-

ing on the Chern Simons term does induce such a boundary condition deformation. More

precisely, it turns out that the bulk theory with trivial boundary conditions on fermions

corresponds to a quantum field theory with fermion double trace potential equal to

−6π
k
Ψ̄Ψ

for every single trace Fermionic operator.

We present a heuristic argument for this conclusion in Appendix 5.E by comparing the

Lagrangian and boundary conditions of the line of N = 1 theories with a single chiral

multiplet. However the most convincing argument for this conclusion is that it leads to

consistent results between the Lagrangian and boundary conditions in every case we study

in detail later in this section.

35For the case n = 4 consider, for instance, the N = 2 theory with two fundamental chiral multiplets. The
free theory has a U(2)× U(2) symmetry. The interacting theory preserves the diagonal SU(2) subgroup of
this symmetry (corresponding to rotations of the two chiral multiplets). The parity odd and even single trace
operators in this theory each transform in the 1 + 3 representations of this symmetry. The allowed double
trace deformations of this interacting theory couple the parity even 3 with the parity odd 3 and the parity
even scalar with the parity odd scalar. It so happens that these two terms appear with the same coefficient
in both the field field theory potential (5.299) and the corresponding Vasiliev boundary conditions (the fact
that these terms appear with the same coefficient in (5.95) is simply the fact that the singlet monomial I,
appears on the same footing as the triplet monomials ψ2ψ3,ψ3ψ4,ψ4ψ2 in the scalar boundary conditions).
These facts together demonstrate that the Chern Simons term (which could have acted only on the singlet
double trace term and so would have ‘split the degeneracy’ between singlets and triplets) has no double
trace type effect on scalar boundary conditions.
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In order to compensate for the shift described above, will find it useful, in our analysis

below, to compare Fermionic boundary conditions with a shifted field theory Lagrangian:

one in which we add by hand the double trace term 6π
k Ψ̄Ψ for every single trace fermionic

field. Bulk fermionic fields have trivial boundary conditions only when the double trace

deformations of the corresponding fermionic operators vanish in the shifted field theory

Lagrangian.

Special Points in moduli space for scalars

If we wish to specify the bulk dual for a 3d conformal field theory, it is insufficient to

specify the bulk action and the boundary conditions for bulk scalars (see Appendix 5.C.1).

In order to specify the correlators of the dual theory we must, in addition, specify the

precise nature of the boundary dynamics that gives rise the resultant boundary conditions.

Inequivalent boundary dynamics that lead to the same boundary conditions result in distinct

correlation functions; in particular to different counterterms in correlators.

Of the set of all boundary actions that lead to a particular boundary condition, one is

particularly simple (θ0 = 0 in Appendix 5.C.1); this choice of boundary counterterms en-

sures that correlators between dimension one and dimension two operators vanish identically

(including contact terms). Let us suppose that the dual of a particular quantum field theory

is governed by this simple boundary dynamics. Then the dual of this theory deformed by

a scalar double trace deformation cannot, in general, also be governed by the same simple

boundary dynamics (see Appendix 5.C.1).

In the moduli space of field theories obtained from one another by double trace deforma-

tions, it follows that there is a special point at which boundary scalar dynamics is governed
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by the simple θ0 = 0 rule. It certainly seems natural to conjecture that this special theory

is governed by a Lagrangian with no double trace terms, i.e. the pure Chern Simons theory

described in the previous subsection. As we will explain below, this assumption unfortu-

nately appears to clash with an at least equally natural assumption about the AdS/CFT

implementation of the boundary Chern Simons gauging of a global symmetry, as we review

below.

Identification of bulk and boundary Chern Simons terms

As we have explained in Section 5.5.3, it is very natural to simply identify the boundary

field theoretic Chern Simons term with a Chern Simons term for the boundary value of

bulk gauge fields. If we make this assumption then it follows that the boundary conditions

for bulk vector uniquely specify its boundary dynamics and the comparison of gauge field

structures between the bulk and the boundary establish a map between moduli spaces of

field theories and the Vasiliev dual. As we have mentioned in the previous subsubsection,

however, the results obtained in this manner clash with those obtained from the ‘natural’

identification of the specially simple field theory as far as scalar double trace operators

are concerned. As we explain, one way out of this conundrum is to abandon the ‘natural’

assumption of the previous subsection. However we do not propose a definitive resolution

to this clash in this paper, leaving this for future work.

In the rest of this section we present a detailed comparison between double trace deforma-

tions of the field theory Lagrangian and boundary conditions of the dual Vasiliev theory, for

the various theories we study, starting with those theories that allow a nontrivial matching

of gauge field terms.
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5.5.5 N = 3 fixed line with 1 hypermultiplet

In this section we present a detailed comparison of the Lagrangian 5.D.7 of a fixed line

of one hypermultiplet N = 3 theories with boundary conditions (5.110) of its conjectured

Vasiliev dual.

Boundary conditions for the vector

As described in the Section 5.5.3, the Chern-Simons gauging of the boundary global

current results in modifying the boundary conditions for the dual gauge field in the bulk.

The modified boundary condition are given by (5.140) which can also be written as

ϵijkFjk =
iπÑ

4k
Fzi. (5.141)

The form of boundary conditions for gauge field used in Section 5.4

B(1)(x⃗, z|Y )
∣∣
O(y2,ȳ2)

= z2
[
eiβ(yFy) + Γe−iβ(ȳF ȳ)

]
+O(z3) (5.142)

are equivalent to

ϵijkFjk = 2i tan(β − θ0)Fzi. (5.143)

Comparing (5.141) and (5.143) we get

tan(β − θ0) =
πÑ

8k
. (5.144)

From (5.110) we have

β = θ0 + (β̃ − θ0)PΓ,

where β̃ is the free parameter that parameterizes the fixed line of boundary conditions

(5.110). In particular case of vectors proportional to PΓβ = β̃. Comparing (5.141), (5.143)
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and (5.144) it follows that

tan(β̃ − θ0) =
k1
k2

tan θ0, (5.145)

where

tan θ0 =
πÑ

8k1
=
πNhA

2k1
. (5.146)

Here hA is the ratio of the two point function of current at the ungauged N = 3 point

(k2 = ∞) to the two point function in the free theory. (5.145) establishes a clear map

between the parameter β̃ that labels boundary conditions in (5.110) and the parameter k1
k2

that labels the fixed line of dual field theories.

Scalar double trace deformation

In this subsection we compare the scalar double trace operators in the field theory La-

grangian (5.D.7) with the boundary conditions for scalar fields (5.110) in the Vasiliev dual.

The scalar double trace deformation in the Lagrangian (5.D.7) is given by

Vs =
2π

k1
Φa

+Φ
b
−ηab +

2π

k2

(
Φ0

+Φ
0
− + Φa

+Φ
b
−ηab

)
,

= −2π
k1

Φ0
+Φ

0
− +

2π

k1

(
1 +

k1
k2

)
Φi

+Φ
i
−.

(5.147)

This potential interpolates between that of the N = 3 ungauged theory (k2 = ∞) and

N = 4 theory (k2 = −k1). The two point function of Φa
± are twice of those given in (5.346)

and thus matches with (5.119). The boundary conditions for scalar fields are described by

the rotation angle

γ = θ0P1 + β̃Pψ1ψ4,ψ2ψ4,ψ3ψ4 . (5.148)

The double trace term 2π
k1
(1 + k1

k2
)Φi

+Φ
i
− couples two SO(3) vectors. The rotation angle

that multiples Pψ1ψ4,ψ2ψ4,ψ3ψ4 in (5.123) is determined by the coefficient of this term. The
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precise relationship between these may be obtained as follows. Let us suppose that the

formula (5.123) applies starting from some as yet unknown point, β̃ = β̃0, in the moduli

space of theories. In other words we hypothesize that θ0 = 0 (in the language of Appendix

5.C.1) for the point in moduli space with β̃ = β̃0. Let us also suppose that k2 = (k2)0

corresponding field theory. It follows then from (5.123), (5.148) and (5.147) that (see below

for the numerical values of the proportionality constants)

tan(β̃ − β̃0) ∝
1

k2
− 1

(k2)0
.

Case: β̃0 = 0:

Purely from the viewpoint of the scalars it is natural to conjecture that β̃0 = 0 and

(k2)0 = −k1. This conjecture is motivated by the following observations. The contact term in

the two point function between Φi
+ and Φi

− vanishes in the field theory dual to bulk boundary

conditions governed by the parameter β̃0. At leading order in boundary perturbation theory

(i.e. at order 1/k) a naive computation yields a contact term proportional to the double

trace coupling of Φi
+ and Φi

−. Thus appears to imply that the special field theory have a

vanishing double trace term; this occurs at the N = 4 point and so β̃0 = 0. If we make this

assumption it then follows that that

tan β̃ = tan θ0

(
1 +

k1
k2

)
, with tan θ0 =

Nπ

2k1

√
h+h−, (5.149)

where h+ and h− is the ratio of two point function for Φ+ and Φ− respectively in the

interacting (N = 4 point) to free theory. Unfortunately (5.149) conflicts with (5.145), so

both relations cannot be simultaneously correct.

Case: β̃0 = θ0:
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The conflict with (5.151) vanishes if we instead assume that

β̃0 = θ0. (5.150)

This is dual to the ‘ungauged’ N = 3 theory and so it follows that and (k2)0 = ∞. Under

this assumption it follows that

tan(β̃ − θ0) = tan θ0

(
k1
k2

)
, with tan θ0 =

Nπ

2k1

√
h+h−, (5.151)

where h+ and h− is the ratio of two point function for Φ+ and Φ− respectively in the

interacting (‘ungauged’ N = 3 point) to free theory. Note that (5.151) perfectly matches

(5.146) if hA =
√

h+h−. It is plausible that supersymmetry enforces this relationship on

field theory operators, but we will not attempt to independently verify this relationship in

this paper.

Perhaps the simplest resolution of the clash betwen (5.149) and (5.145) is obtained by

setting β̃0 = θ0. Before accepting this suggestion we must understand why the contact term

in the scalar- scalar two point function vanishes at the N = 3 rather than at the N = 4

point (where the double trace term in the Lagrangian vanishes). As discussions relating to

contact terms are famously full of pitfalls; we postpone the detailed study of this question

to later work.

Coefficient of the scalar double trace deformation

The double trace term in (5.147) that couples two SO(3) scalars is 2π
k1
Φ0

+Φ
0
−. Note

that the coefficient of this term is independent of k2, which matches with the fact that the

coefficient of P1 in (5.148) is independent of β̃.

If we assume that β̃0 = θ0 for this term as well we once again find the second of (5.149),

where h+ and h− have the same meaning as in (5.149), except that the two point function in
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question is that of the scalar operator φ0. We conclude that φa and φ0 have equal values of

h+h−. If, instead, β̃ = 0 then a very similar equation holds; the only difference is that h+h−

would then compute ratios of the interacting and free two point functions at the N = 4

point.

Fermionic double trace deformation

The fermionic double trace deformation for this fixed line is given by

V3 =
2π

k1

(
1

2
Ψ̄aΨbδab − 2Ψ̄0Ψ0 − Ψ̄0Ψ̄0 −Ψ0Ψ0

)
+

2π

k2

(
Ψ̄aΨbηab +

1

2
Ψ̄aΨ̄bηab +

1

2
ΨaΨbηab

)
.

(5.152)

Adding δVf = 3π
k ψ̄

aψa in order to account the effect of finite Chern Simons level as described

earlier, we obtain the shifted potential

V3 + δVf =− π

k1
(Ψa − Ψ̄a)(Ψb − Ψ̄b)δab +

π

k1

(
1 +

k1
k2

)(
Ψ̄a +Ψa

)
ηab
(
Ψ̄b +Ψb

)
. (5.153)

The two point function of ⟨Ψ̄aΨb⟩ is twice of the that given in (5.346) because Ψa are

constructed out of field doublets and thus matches with (5.128).

The rest of the analysis closely mimics the study of scalar double trace deformations

presented in the previous subsection. We associate(in the boundary conditions) the pro-

jector P a
ψ with the real Lagrangian deformation [i(ψa − ψ̄a)]2 and PΓψa with the other real

Lagrangian deformation (ψa + ψ̄a)2. As for the scalar double trace deformations, (5.130)

yields results consistent with (5.145) if and only if we assume that (5.130) applies for defor-

mations about the special point β̃ = θ0. Given this assumption (5.110) and (5.130) matches

with the identification (5.151) with
√

h+h− = hψ and hψ interpreted as the ratio of ⟨Ψ̄aΨb⟩

at N = 3 point to the free theory.36

36If, on the other hand, (5.130) had applied for deformations around β̃ = 0 we would instead have found
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5.5.6 N = 3 fixed line with 2 hypermultiplets

In this section we compare the Lagrangian for the fixed line of two hypermultiplet theories

presented in (5.D.9) with the boundary conditions (5.115) of the conjectured Vasiliev duals.

The field theories under study interpolate between the ungauged N = 3 theory (k2 = ∞)

and the N = 6 theory (at k2 = −k1).

Vector field boundary conditions

The comparison here is very similar to that performed in the previous subsection, and

our presentation will be brief. Making the natural assumptions spelt out in the previous

section, the gauge field boundary conditions listed in (5.115) assert that

β = θ0 + (β̃ − θ0)PΓ.

Using (5.144) we find

tan(β̃ − θ0) =
k1
k2

tan 2θ0. (5.154)

with the identification

tan(2θ0) =
πÑ

8k1
=
πNhA

k1

where hA is interpreted as the ratio of the two point function of the flavor current in the

ungauged N = 3 theory to the free theory.

agreement with (5.149) with
√
h+h− = hψ, where hψ would have been interpreted as the ratio of ⟨Ψ̄aΨb⟩

at N = 4. Of course these results contradict (5.145).
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Scalar double trace deformation

The scalar double trace deformation for this case, in the notation defined in Appendix

5.D.9, is given by

Vs =
π

k1
ΦIi

+Φ
Jj
− η

IJηij −
2π

k2
ΦI0

+ΦJ0
− η

IJ

=
π

k1

(
ΦIi

+Φ
Jj
− η

IJηij + 2ΦI0
+ΦJ0

− η
IJ
)
− 2π

k1

(
1 +

k1
k2

)
ΦI0

+ ΦJ0
− η

IJ .

(5.155)

Due the fact that ΦIi
+ and Φ̄Ii

− are made of two field doublets, there free two point function are

four times of those given in (5.346) and thus twice of those given in (5.119). The boundary

conditions of the dual scalars listed in (5.D.9) is governed by

γ = θ0P1,ψiψa,ψaψb
− β̃Pψiψj

, P1,ψiψj ,ψiψa,ψaψb
f̃1,2 = f̃1,2. (5.156)

As in the previous section the coefficient of the double trace deformations (5.155) and the

boundary conditions of scalars in (5.156) are both respectively independent of k2 and β̃ in

every symmetry channel but one (i.e. (vector, scalar) under SU(2) × SU(2)). Comparing

coefficients in this special channel we find that (5.156) and (5.D.9) agree with (5.144)if and

only if we assume that (5.123) applies for deformations of β̃ away from the special point

β̃0 = θ at which point k2 =∞.

tan(β̃ − θ0) = tan 2θ0

(
k1
k2

)
with tan 2θ0 =

πN

k1

√
h+h−, (5.157)

with h± interpreted as the ratio of two point function in N = 3 ungauged point to free

theory.

On the other hand upon assuming β̃0 = 0 we find

tan(β̃ + θ0) = tan 2θ0

(
1 +

k1
k2

)
with tan 2θ0 =

πN

k1

√
h+h−, (5.158)
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with h± interpreted as the ratio of two point function in N = 6 point to free theory. This

is in contradiction with (5.154).

We now turn to the comparison of the double trace terms and boundary conditions in

all other channels (i.e. (scalar, scalar), (vector, vector) and (scalar, vector) under SO(3)×

SO(3). In each case if we assume that (5.123) applies starting from the special point β̃0 = θ0,

we find the second of (5.157) with with h± interpreted as the ratio of two point function

in N = 3 ungauged point to free theory for the appropriate scalar. This suggests that the

product h+h− is the same for scalars in all four symmetry channels; this product is also

equal to h2
A. It is possible that this equality is consequence of N = 3 supersymmetry of the

field theory; we leave the verification of this suggestion to future work.

Fermionic double trace deformation

The fermionic double trace deformation for this case, in the notation defined in Appendix

5.D.9, after compensating by a for the chern simons shift 37, is given by

Vf + δVf =
π

k1

(
Ψ̄IiΨJjδIJδij + Ψ̄IiΨJjηIJδij +

(
Ψ̄0iΨ̄0jηij +Ψ0iΨ0jηij

))

+
π

k2
(Ψ̄I0 +ΨI0)(Ψ̄J0 +ΨJ0)ηIJ .

=
π

k1

(
Ψ̄IiΨJjδIJδij + Ψ̄IiΨJjηIJδij +

(
Ψ̄0iΨ̄0jηij +Ψ0iΨ0jηij

)

− (Ψ̄I0 +ΨI0)(Ψ̄J0 +ΨJ0)ηIJ

)
+
π

k1

(
1 +

k1
k2

)
(Ψ̄I0 +ΨI0)(Ψ̄J0 +ΨJ0)ηIJ .

(5.159)

The two point function ⟨Ψ̄IiΨJj⟩ is twice of that given by (5.128).

37The compensating factor in this case is δVf = 3π
2k1

Ψ̄IiΨIi
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The bulk boundary conditions are generated by

α = θ0(Pψi,ψa + Pψiψjψa,ψiψaψb,ψ4ψ5ψ6 − PψaΓ) + β̃(PψiΓ − Pψ1ψ2ψ3).

Consistency requires us to assume that (5.130) applies for deviations away from β̃ = 0

(i.e. from the ungauged N = 3 theory). Applying (5.130) we recover (5.157) provided

hψ =
√

h+h− where hψ is the ratio the two point function ⟨Ψ̄IiΨJj⟩ at the ungauged N = 3

point to free theory.38

5.5.7 Fixed Line of N = 1 theories

We now turn to the comparison of the Lagrangian (5.300) of the large N fixed line of

N = 1 field theories with the boundary conditions (5.98) (a beta function is generated at

finite N , the zeros of this beta function are the two ends of the line we study below). We

restrict attention to the case M = 1. The field content of the theory is a single complex

scalar φ together with a single complex fermion ψ.

Scalar Double trace terms

The (scalar)(scalar) double trace potential in (5.300) is given by

2π(1 + ω)

k
φ̄φψ̄ψ. (5.160)

ω = −1 is the N = 1 theory with no superpotential while ω = 1 is the N = 2 theory. The

two point functions of the constituent single trace operators, φ̄φ and ψ̄ψ, are given, in the

free theory, by (5.346) (note that this corresponds to h+ = h− = 1
2 in (5.119)).

38If, instead, (5.130) had applied starting from β̃ = 0 we would have found consistency with (5.158)
provided hψ =

√
h+h− where hψ interpreted as the ratio the two point function ⟨Ψ̄IiΨJj⟩ at N = 6 point

to free theory. This result contradicts the gauge field matching and so cannot apparently cannot be correct.
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The n = 2 Vasiliev dual to this system is conjectured to have boundary conditions listed

in (5.101). Specifically the boundary conditions require B to take the form

B(x, z) = zf1(x) ((1 + Γ) cos γ + i(1− Γ) sin γ) + if2(x)z
2 ((1− Γ) cos γ + i(1 + Γ) sin γ)

(5.161)

where f1 and f2 are real constants and γ ranges from zero (for the N = 1 theory with no

superpotential) to γ = θ0 (for the N = 2 theory). Notice that the shift change in phase

between these two points is θ0, while the change in the coefficient of the corresponding

double trace term in the Lagrangian (5.160) is 4π
k .

In order to establish a map between the Lagrangian parameter ω and the boundary

condition parameter γ we need to know the location of the special point, γ0, in γ parameter

space from which (5.123) applies (this is the point with θ0 = 0 in the language of Appendix

5.C.1). Unlike the previous subsections, in this case we have no information from the gauge

field boundary conditions, so the best we can do is to make a guess. We consider two cases.

Case γ0 = θ0:

The results of the previous subsection suggest that γ0 = θ0 so that the special point in

the moduli space of Vasiliev theories is the N = 2 theory. If this is the case then

tan(θ0 − γ) = tan θ0
1− ω
2

where

tan θ0 =
πλ
√
h+h−

2
(5.162)

and h+ gives the ratio of the interacting and free two point functions of φ̄φ for the N = 2

theory.

Case γ0 = 0:
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Purely from the point of view of the scalar part of the Lagrangian, the most natural

assumption is γ0 = 0 in which case

tan γ = tan θ0
1 + ω

2

where

tan θ0 =
πλ
√
h+h−

2
(5.163)

and h+ gives the ratio of the interacting and free two point functions of φ̄φ for the N = 1

theory with no superpotential.

Fermion double trace terms

The (fermion)(fermion) double trace potential term after accounting for the shift de-

scribed in

Vf + δVf = Vf +
6π

k
ψ̄φφ̄ψ

=
π(ω + 1)

k
(ψ̄φ+ φ̄ψ)2 − 2π

k
(ψ̄φ− φ̄ψ)2.

(5.164)

Here ω = −1 corresponds to the undeformed N = 1 theory and ω = 1 corresponds to the

N = 2 theory. The two point function of the operator ψ̄φ and φ̄ψ are given in (5.346). Note

that this corresponds to hψ = 1
2 in (5.119). The boundary condition for fermions are given

by (5.235) with

α = θ0Pψ2 + γPψ1 .

As explained in the previous section, the coefficient of the Pψ2 in the boundary conditions is

associated with the coefficient of double trace deformation (i(ψ̄φ−φ̄ψ))2 while the coefficient

of Pψ1 is associated with the double trace deformation (ψ̄φ+ φ̄ψ)2. Note that this matches

with the fact that coefficient of the former are constant along the line while those of the

later change along the fixed line.
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Using the analysis of Section 5.5.2 we can get a more quantitative match. As in the

previous subsubsection it is natural to assume - and we conjecture - that If (5.130) applies

starting from the N = 2 point, at which the first term in (5.164) has coefficient 2π
k . With

this assumption

tan(θ0 − γ) = tan θ0
1− ω
2

, with tan θ0 =
πλhψ
2

, (5.165)

where hψ is the ratio of interacting to free two point function ⟨ψ̄φ φ̄ψ⟩ in N = 2 theory.

If, on the other hand (5.130) were to apply starting from the pure N = 1 point we would

find

tan γ = tan θ0
1 + ω

2
, with tan θ0 =

πλhψ
2

. (5.166)

where hψ is the ratio of interacting and free two point function ⟨ψ̄φ φ̄ψ⟩ in N = 1 theory

with no superpotential. The results of the previous two subsections appear to disfavor this

possibility over the one presented in the previous paragraph.

5.5.8 N = 2 theory with 2 chiral multiplets

In the final subsection of this section we turn to the comparison of the Lagrangian (5.D.1)

(with M = 2) of the N = 2 theory with 2 fundamental chiral multiplets with the boundary

conditions (5.95). The theory we study admits no marginal superpotential deformations,

and so appears as a fixed point rather than a fixed line at any given value of k1.

Scalar double trace deformation

The scalar double trace deformation in (5.D.1) is given by

Vs =
2π

k
Φa

+Φ
a
−, (5.167)
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where Φa
+ = φ̄iφj(σa)ji, Φ

a
− = ψ̄iψj(σa)ji and a runs over 0,1,2,3. In Appendix 5.F we have

computed the two point functions of the operators Φa
+ and Φa

− in free field theory; the result

is given by (5.346) with an extra factor of two to account for the fact that the operators

Φa
± are constructed out of field doublets. In other words the two point functions of Φa

±

exactly agree with those presented in (5.119) with h+ and h− interpreted as the ratio of

the two point functions of Φ± in the interacting theory and the free theory 39. With this

interpretation (5.123) predicts the boundary conditions of the bulk scalars with daα = 1

(both for the singlet of SU(2) as well as the triplet). Comparing these equations with the

actual boundary conditions

γ = θ0, P1,ψ2ψ3,ψ2ψ4,ψ3ψ4 f̃1,2 = f̃1,2,

we conclude that ga = gα both for singlet scalars as well as for SU(2) triplet scalars.

In order to make a quantitative comparison between the Lagrangian and boundary con-

ditions we need to make an assumption about which point in the moduli space of double

trace deformations (5.123) applies from. Given the results of the previous subsections it is

natural to guess that (5.123) applies for double trace deformations away from the N = 2 the-

ory. Assuming that the theory with no double trace deformation has trivial scalar boundary

conditions, we conclude that

tan θ0 =
πλ
√

h+h−

2
. (5.168)

where h± are the ratios of two point functions of the scalar operators in the N = 2 and free

theories. This equation must hold separately for singlet as well as SU(2) vector sector. It

39Here it is ambiguous what is the interacting theory i.e. what is the value of k in theory without the
double trace deformations, from where (5.123) applies
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seems very likely that h+ = h− = hs for all scalars in which case

tan θ0 =
πλhs

2
. (5.169)

fermion double trace deformation

The fermion double trace deformation in this case is given by

Vf =
π

k
Ψ̄aΨa, (5.170)

where Ψa = φ̄iψj(σa)ji, Ψ̄
a = ψ̄iφj(σa)ji and a runs over 0,1,2,3. In order to compare this

double trace potential with boundary conditions, however, we must remove the effect of the

Chern Simons term. In other words we should expect the fermion boundary conditions to

match with an effective fermion double trace potential given by

δS =
4π

k
Ψ̄aΨa.

(it is easily verified that a shift by −3π
k in the coefficient of Ψ̄aΨa is equivalent to a shift of

−6π
k in the coefficient of each fermion). The two point functions of these fields is given by

(see Appendix 5.F)

〈
Ψa(x)Ψ̄b(0)

〉
=

Nδabhψ
8π2

x⃗ · σ⃗
x4

,

where hψ is the ratio of the two point function in the interacting and free theories.

This matches onto the analysis leading up to (5.130) if we set s = t = 4 and u = 0. Here

we assume that (5.130) applies for deformations about the N = 2 point. In this application

of (5.130) all factors of ga relate to fields that are related by SO(4) invariance, and so must

be equal. Consequently factors of ga cancel from that equation. Comparing (5.130) with

s = t = 4 and u = 0 with the actual fermion boundary conditions, in this case

α = θ0,
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we recover the equation

tan θ0 =
πλhψ
2

. (5.171)

We see that (5.171) is consistent with (5.168) provided hψ =
√

h+h−, with hψ interpreted

as the ratio of the two point function in the N = 2 and free theories. It seems very likely

to us that in fact hψ = h+ = h− = hs.

5.6 The ABJ triality

Having established the supersymmetric Vasiliev theories with various boundary condi-

tions dual to Chern-Simons vector models, we will now use the relation between deformations

of the boundary conditions and double trace deformations in the boundary conformal field

theory to extract some nontrivial mapping of parameters. In the case of N = 6 theory,

the triality between ABJ vector model, Vasiliev theory, and type IIA string theory suggests

a bulk-bulk duality between Vasiliev theory and type IIA string field theory. We will see

that the parity breaking phase θ0 of Vasiliev theory can be identified with the flux of flat

Kalb-Ramond B-field in the string theory.

5.6.1 From N = 3 to N = 4 Chern-Simons vector models

Let us consider the N = 3 U(N)k Chern-Simons vector model with one hypermultiplets.

Upon gauging the diagonal U(1) flavor symmetry with another Chern-Simons gauge field at

level −k, one obtains the N = 4 U(N)k × U(1)−k theory. In Section 5.5.5, by comparing
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the boundary conditions, we have found the relation

tan θ0 =
πÑ

8k
=
πλhA

2
. (5.172)

By comparing the structure of three-point functions with the general results of [51], we

see that tan θ0 is identified with λ̃ of [51]. Therefore, by consideration of supersymmetry

breaking by AdS boundary conditions, we determine the relation between the parity breaking

phase θ0 of Vasiliev theory and the Chern-Simons level of the dual N = 3 or N = 4 vector

model to be

λ̃ =
πÑ

8k
. (5.173)

Recall that Ñ is defined as the coefficient of the two-point function of the U(1) flavor

current Ji in the N = 3 Chern-Simons vector model, normalized so that Ñ is 4 for each free

hypermultiplet. In notation similar to that of the previous section Ñ = 4NhA where hA is

the ratio of the two point function of the flavour currents in the interacting and free theory.

Consequently (5.173) may be rewritten as

λ̃ =
πλhA

2
. (5.174)

After gauging this current with U(1) Chern-Simons gauge field Ãµ at level −k, passing

to the N = 4 theory, the new U(1) current which may be written as Jnew = −k ∗ dÃ has

a different two-point function than Ji, as can be seen from Section 5.3.1. The two-point

function of Jnew also contains a parity odd contact term, as was pointed out in [65].

We would also like to determine the relation between θ0 and λ = N/k, which cannot

be fixed directly by the consideration of supersymmetry breaking by boundary conditions.

The two-loop result of [21] on the parity odd contribution to the three-point functions also

applies to correlators of singlet currents made out of fermion bilinears in supersymmetric
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Chern-Simons vector models, since the double trace and triple terms do not contribute to

the parity odd terms in the three-point function at this order. From this we learn that

θ0 =
π
2λ+O(λ3). Parity symmetry would be restored if we also send θ(X)→ −θ(X) under

parity, and in particular θ0 → −θ0. Further, in the supersymmetric Vasiliev theory, θ0 should

be regarded as a periodically valued parameter, with periodicity π/2. This is because the

shift θ0 → θ0 +
π
2 can be removed by the field redefinition A → ψ1Aψ1, B → −iψ1Bψ1,

where ψ1 is any one of the Grassmannian auxiliary variables. Note that the factor of i in the

transformation of the master field B is required to preserve the reality condition. Essentially,

θ0 → θ0 +
π
2 amounts to exchanging bosonic and fermionic fields in the bulk.

Giveon-Kutasov duality [85] states that the N = 2 U(N)k Chern-Simons theory with

Nf fundamental and Nf anti-fundamental chiral multiplets is equivalent to the IR fixed

point of the N = 2 U(Nf + k − N)k theory with the same number of fundamental and

anti-fundamental chiral multiplets, together with N2
f mesons in the adjoint of the U(Nf )

flavor group, and a cubic superpotential coupling the mesons to the fundamental and anti-

fundamental superfields. Specializing to the case Nf = 1 (or small compared to N, k), this

duality relates the “electric” theory: N = 2 U(N)k Chern-Simons vector model with Nf

pairs of !,! chiral multiplets at large N , to the “magnetic” theory obtained by replacing

λ → 1 − λ and rescaling the value of N , together with turning on a set of double trace

deformations and flowing to the critical point. In the holographic dual of this vector model,

the double trace deformation in the definition of the magnetic theory simply amounts to

changing the boundary condition on a set of bulk scalars and fermions. This indicates that

the bulk theory with parity breaking phase θ0(λ) should be equivalent to the theory with
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phase θ0(1− λ), suggesting that the identification

θ0 =
π

2
λ (5.175)

is in fact exact in the duality between Vasiliev theory and N = 2 Chern-Simons vector

models of the Giveon-Kutasov type. By turning on a further superpotential deformation,

this identification can be extended to the N = 3 theory as well. Together with (5.174),

(5.175) then implies that relation tan(π2λ) =
πÑ
8k = πλhA

2 in the N = 3 Chern-Simons vector

model in the planar limit. Note that in the k → ∞ limit where the theory becomes free,

this relation becomes the simply Ñ = 4N , which follows from our normalization convention

of the spin-1 flavor current.

A similar comparison between double trace deformations of scalar operators and the

change of scalar boundary condition in the bulk Vasiliev theory lead to the same identifi-

cation between θ0 and Ñ , k. Note that in the supersymmetric Chern-Simons vector model,

Ñ by our definition is the two-point function coefficient of a flavor current, which is related

to the two-point function coefficient of gauge invariant scalar operators by supersymmetry.

However, our Ñ is a priori normalized differently from that of Maldacena and Zhiboedov

[51], where Ñ was defined as the coefficient of two-point function of higher spin currents,

normalized by the corresponding higher spin charges.40

A high nontrivial check would be to prove the relations (5.174) and (5.175) directly in the

field theory using the Schwinger-Dyson equations considered in [21]. In the case of Chern-

Simons-scalar vector model, this computation is performed in [66]. It is found in [66] that the

relation θ0 = πλ/2 holds, whereas the scalar two-point function is precisely proportional to

40We thank Ofer Aharony for discussions on this point.
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k tan θ0 up to a numerical factor that depends on the number of matter fields,41 remarkably

coinciding with our finding in the supersymmetric theory by consideration of boundary

conditions and holography. We leave it to future work to establish these relations in the

supersymmetric theory using purely large N field theoretic technique.

5.6.2 ABJ theory and a triality

Now let us consider the N = 3 U(N)k Chern-Simons vector model with two hypermulti-

plets. Upon gauging the diagonal U(1) flavor symmetry with another Chern-Simons gauge

field at level −k, one obtains the N = 6 U(N)k × U(1)−k ABJ theory. By comparing the

boundary conditions, in Section 5.5.6, we have found the formula

tan(2θ0) =
πÑ

8k
= πλhA, (5.176)

where Ñ is the coefficient of the two-point function of the U(1) flavor current in the N = 6

theory, and hA, as usual, is the ratio of the flavor current two point function in the interacting

and free theory. Note that the factor of 2 in the argument of tan(2θ0) is precisely consistent

with the fact that in the k → ∞ limit, the U(1) flavor current which is made out of twice

as the N = 2 theory of one hypermultiplet considered in the previous subsection, so that Ñ

is enhanced by a factor of 2 (namely, Ñ = 8N in the free limit).

Now we can complete our dictionary of “ABJ triality”. We propose that the U(N)k ×

U(M)−k ABJ theory, in the limit of large N, k and fixed M , is dual to the n = 6 extended

supersymmetric Vasiliev theory with U(M) Chan-Paton factors, parity breaking phase θ0

that is identified with π
2λ, and the N = 6 boundary condition described in Section 5.4.9.

41[66] adopted the natural field theory normalization for the scalar operator, which would agree with our
normalization for the flavor current, and differ from the normalization of [51] by a factor cos2 θ0.
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The bulk ’t Hooft coupling can be identified as λbulk ∼M/N . In the strong coupling regime

where λbulk ∼ O(1), we expect a set of bound states of higher spin particles to turn into

single closed string states in type IIA string theory in AdS4 × CP
3 with flat Kalb-Ramond

BNS-field flux

1

2πα′

∫

CP1
BNS =

N −M

k
+

1

2
. (5.177)

In the limit N ≫M , we have the identification

θ0 =
π

2
λ =

1

4α′

∫

CP1
BNS −

π

4
. (5.178)

Note that this is consistent with BNS → −BNS under parity transformation. This suggests

that the RHS of Vasiliev’s equation of motion involving the B-master field should be related

to worldsheet instanton corrections in string theory (in the suitable small radius/tensionless

limit).

5.6.3 Vasiliev theory and open-closed string field theory

A direct way to engineerN = 3 Chern-Simons vector model in string theory was proposed

in [67]. Starting with the U(N)k × U(M)−k ABJ theory, one adds Nf fundamental N = 3

hypermultiplets of the U(N). In the bulk type IIA string theory dual, this amounts to adding

Nf D6-branes wrapping AdS4 × RP
3, which preserve N = 3 supersymmetry. The vector

model is then obtained by taking M = 0. The string theory dual would be the “minimal

radius” AdS4 × CP
3, supported by the Nf D6-branes and flat Kalb-Ramond B-field with

1

2πα′

∫

CP1
BNS =

N

k
+

1

2
. (5.179)

In this case, our proposed dual n = 4 Vasiliev theory in AdS4 with N = 3 boundary

condition carries U(Nf ) Chan-Paton factors, as does the open string field theory on the D6-

293



Chapter 5: ABJ Triality: from Higher Spin Fields to Strings

branes. This lead to the natural conjecture that the open-closed string field theory of the

D6-branes in the “minimal” AdS4 × CP
3 with flat B-field is the same as the n = 4 Vasiliev

theory, at the level of classical equations of motion. It would be fascinating to demonstrate

this directly from type IIA string field theory in AdS4 × CP
3, say using the pure spinor

formalism [86, 87, 88].

5.7 Conclusion

In this paper, we proposed the higher spin gauge theories in AdS4 described by supersym-

metric extensions of Vasiliev’s system and appropriate boundary conditions that are dual to

a large class of supersymmetric Chern-Simons vector models. The parity violating phase θ0

in Vasiliev theory plays the key role in identifying the boundary conditions that preserve or

break certain supersymmetries. In particular, our findings are consistent with the following

conjecture: starting with the duality between parity invariant Vasiliev theory and the dual

free supersymmetric U(N) vector model at large N , turning on Chern-Simons coupling for

the U(N) corresponds to turning on the parity violating phase θ0 in the bulk, and at the

same time induces a change of fermion boundary condition as described in Section 5.5.4.

We conjectured that the relation θ0 = π
2λ, where λ = N/k is the ’t Hooft coupling of the

boundary Chern-Simons theory, suggested by two-loop perturbative calculation in the field

theory and Giveon-Kutasov duality and ABJ self duality, is exact.

Turning on various scalar potential and scalar-fermion coupling in the Chern-Simons

vector model amounts to double trace and triple trace deformations, which are dual to

deformation of boundary conditions on spin 0 and spin 1/2 fields in the bulk theory. Gauging

a flavor symmetry of the boundary theory with Chern-Simons amounts to changing the
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boundary condition on the bulk spin-1 gauge field from the magnetic boundary condition to

a electric-magnetic mixed boundary condition. Consideration of supersymmetry breaking by

boundary conditions allowed us to identify precise relations between θ0, the Chern-Simons

level k, and two-point function coefficient Ñ in N = 3 Chern-Simons vector models.

While substantial evidence for the dualities proposed in this paper is provided by the

analysis of linear boundary conditions, we have not analyzed in detail the non-linear correc-

tions to the boundary conditions, which are responsible for the triple trace terms needed to

preserve supersymmetry. Furthermore, we have not nailed down the bulk theory completely,

due to the possible non-constant terms in the function θ(X) = θ0 + θ2X2 + θ4X4 + · · · that

controls bulk interactions and breaks parity. It seems that θ2, θ4 etc. cannot be removed

merely by field redefinition, and presumably contribute to five and higher point functions at

bulk tree level, and yet their presence would not affect the preservation of supersymmetry.

This non-uniqueness at higher order in the bulk equation of motion is puzzling, as we know

of no counterpart of it in the dual boundary CFT. Perhaps clues to resolving this puzzle can

be found by explicit computation of say the contribution of θ2 to the five-point function. It

is possible that a thorough analysis of the near boundary behavior of solutions to Vasiliev’s

equations (via a Graham Fefferman type analysis) could be useful in this regard.

We have also encountered another puzzle that applies to Vasiliev duals of all Chern

Simons field theories, not necessarily supersymmetric. Our analysis of the bulk Vasiliev

description of the breaking of higher spin symmetry correctly reproduced those double trace

terms in the divergence of higher spin currents that involve a scalar field on the RHS.

However we were unable to reproduce the terms bilinear in two higher spin currents. The

reason for this failure was very general; when acting on a state the higher spin symmetry
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generators never appear to violate the boundary conditions for any field except the scalar.

It would be reassuring to resolve this discrepancy.

The triality between ABJ theory, n = 6 Vasiliev theory with U(M) Chan-Paton factors,

and type IIA string theory on AdS4 × CP
3 suggests a concrete way of embedding Vasiliev

theory into string theory. In particular, the U(M) Vasiliev theory is controlled by its bulk

’t Hooft coupling λbulk = g2M ∼ M/N . We see clear indication from the dual field theory

that at strong λbulk, the nonabelian higher spin particles form color neutral bound states,

that are single closed string excitations. Vice versa, in the small radius limit and with

near critical amount of flat Kalb-Ramond B-field on CP
3, the type IIA strings should break

into multi-particle states of higher spin fields. The dual field theory mechanism for the

disintegration of the string is very general, and so should apply more generally to the dual

string theory description of any field theory with bifundamental matter, when the rank of

one of the gauge groups is taken to be much smaller than the other 42.

It has been argued that the vacuum of the ABJ model spontaneously breaks super-

symmetry for k < N −M [75]. Requiring the existence of a supersymmetric vacuum, the

maximum value of t’Hooft coupling in a theory with M ̸= N is N
kmin

= 1
1−M

N

. As the radius

of the dual AdS space in string units is proportional to a positive power of the t’Hooft

coupling, it follows that ABJ theories have a weakly curved string description only in the

limit M
N → 1. The recasting of ABJ theory as a Vasiliev theory suggests that it would be

interesting, purely within field theory, to study ABJ theory in a power expansion in M
N but

nonperturbatively in λ. At M
N = 0 this would require a generalization of the results of [37]

and [51] to the supersymmetric theory. It may then be possible to systematically correct

42We thank K. Narayan for discussions on this point.
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this solution in a power series in M
N . This would be fascinating to explore.

Perhaps the most surprising recipe in this web of dualities is that the full classical

equation of motion of the bulk higher spin gauge theory can be written down explicitly and

exactly, thanks to Vasiliev’s construction. One of the outstanding questions is how to derive

Vasiliev’s system directly from type IIA string field theory in AdS4×CP
3, or to learn about

the structure of the string field equations (in AdS) from Vasiliev’s equations. As already

mentioned, a promising approach is to consider the open-closed string field theory on D6-

branes wrapped on AdS4×RP
3, which should directly reduce to n = 4 Vasiliev theory in the

minimal radius limit. It would also be interesting to investigate whether - and in what guise

- the huge bulk gauge symmetry of Vasiliev’s description survives in the bulk string sigma

model description of the same system. We leave these questions to future investigation.
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5.A Details and explanations related to Section 5.2

5.A.1 Star product conventions and identities

It follows from the definition of the star product that

yα ∗ yβ = yαyβ + ϵαβ ; [yα, yβ]∗ = 2ϵαβ

zα ∗ zβ = zαzβ − ϵαβ; [zα, zβ ]∗ = −2ϵαβ

yα ∗ zβ = yαzβ − ϵαβ ; zα ∗ yβ = zαyβ + ϵαβ; [yα, zβ ]∗ = 0

(5.180)

Identical equations (with obvious modifications) apply to the bar variables. Spinor indices

are lowered using the ϵ tensor as follows

zα = zβϵβα, ϵ12 = −ϵ21 = ϵ12 = −ϵ21 = 1, ϵαγϵ
γβ = −δβα (5.181)

Note that for an arbitrary function f we have

zα ∗ f = zαf + ϵαβ(∂yβf − ∂zβf)

f ∗ zα = zαf + ϵαβ(∂yβf + ∂zβf)

(5.182)

Using (5.182) we the following (anti)commutator

[zα, f ]∗ = −2ϵαβ∂zβf

{zα, f}∗ = 2zαf + 2ϵαβ∂yβf

(5.183)

It follows from (5.180) that

[zα, f ]∗ = −2
∂f

∂zα
, [yα, f ]∗ = 2ϵαβ

∂f

∂yβ
, [yα, f ]∗ = 2

∂f

∂yα
(5.184)

Similar expression(with obvious modifications) are true for (anti)commutators with ȳ and

z̄. Substituting f = K into (5.182) and using ∂yαK = −zαK, one obtains

{zα, K}∗ = 0, i.e. K ∗ zα ∗K = −zα (5.185)
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In a similar manner we find

{yα, K}∗ = 0, i.e. K ∗ yα ∗K = −yα

On the other hand K clearly commutes with ȳα̇ and z̄α̇. The second line of (5.3) follows

immediately from these observations.

The first line of (5.3) is also easily verified.

5.A.2 Formulas relating to ι operation

We present a proof of (5.16)

ι(f ∗ g) =
(
f(Y, Z) exp

[
ϵαβ
(←−
∂ yα +

←−
∂ zα

)(−→
∂ yβ −

−→
∂ zβ

)

+ ϵα̇β̇
(←−
∂ ȳα̇ +

←−
∂ z̄α̇

)(−→
∂ ȳβ̇ −

−→
∂ z̄β̇

)]
g(Y, Z)

)

(Y,Z)→(Ỹ ,Z̃)

= f(Ỹ , Z̃) exp

[
− ϵαβ

(
←−
∂ yα −

←−
∂ zα

)(
−→
∂ yβ +

−→
∂ zβ

)

− ϵα̇β̇
(←−
∂ yα̇ −

←−
∂ zα̇

)(−→
∂ yβ̇ +

−→
∂ zβ̇

)]
g(Ỹ , Z̃)

= ι(g) ∗ ι(f)

(5.186)

where (Y, Z) = (y, ȳ, z, z̄) and (Ỹ , Z̃) = (iy, iȳ,−iz,−iz̄,−idz,−idz̄).

We now demonstrate that

ι(C ∗D) = −ι(D) ∗ ι(C)

if C and D are each one-forms.

ι(C ∗D) = ι
(
CM ∗DNdX

MdXN)
)
= ι(DN ) ∗ ι(CM)ι(dXM)ι(dXN)

= −ι(DN ) ∗ ι(CM )ι(dXN)ι(dXM) = −ι(D) ∗ ι(C)

(5.187)
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5.A.3 Different Projections on Vasiliev’s Master Field

One natural projection one might impose on the Vasiliev master field is to restrict to

real fields where reality is defined by

A = A∗ (5.188)

This projection preserves the reality of the field strength (i.e. F is real if A is). As we

will see below, however, the projection (5.188) does not have a natural extension to the

supersymmetric Vasiliev theory, and is not the one we will adopt in this paper.

The second ‘natural’ projection on Vasiliev’s master fields is given by

ι(W ) = −W, ι(S) = −S, ι(B) = K ∗B ∗K. (5.189)

Note that the various components of F transform homogeneously under this projection

ι (dxW +W ∗W ) = − (dxW +W ∗W ) ,

ι
(
dxŜ + {W, Ŝ}∗

)
= −

(
dxŜ + {W, Ŝ}∗

)
,

ι
(
Ŝ ∗ Ŝ

)
= −

(
Ŝ ∗ Ŝ

)
,

(5.190)

(the signs in (5.189) were chosen to ensure that all the quantities in (5.190) transform

homogeneously). Note also that

ι(B ∗K) = B ∗K, ι(B ∗ K̄) = B ∗ K̄. (5.191)

(we have used K ∗K = 1).

As we have explained in the main text, in this paper we impose the projection (5.17) on

all fields. (5.17) may be thought of as the product of the projections (5.188) and (5.189).

As we have mentioned in the main text F transforms homogeneously under this truncation
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(see (5.18)); in components

ι (dxW +W ∗W )∗ = − (dxW +W ∗W ) ,

ι
(
dxŜ + {W, Ŝ}∗

)∗
= −

(
dxŜ + {W, Ŝ}∗

)
,

ι
(
Ŝ ∗ Ŝ

)∗
= −

(
Ŝ ∗ Ŝ

)
.

(5.192)

5.A.4 More about Vasiliev’s equations

Expanded in components the first equation in (5.20) reads

dxW +W ∗W = 0,

dxŜ + {W, Ŝ}∗ = 0,

Ŝ ∗ Ŝ = f∗(B ∗K)dz2 + f̄∗(B ∗ K̄)dz̄2.

(5.193)

The second equation reads

dxB +W ∗B −B ∗ π(W ) = 0,

Ŝ ∗B −B ∗ π(Ŝ) = 0.

(5.194)

We will now demonstrate that the second equation in (5.20) follows from the first (i.e.

that (5.194) follows from (5.193)). Using (5.21) and the first of (5.20) we conclude that

dx
(
f∗(B ∗K)dz2 + f̄∗(B ∗ K̄)dz̄2

)
+ Â ∗

(
f∗(B ∗K)dz2 + f̄∗(B ∗ K̄)dz̄2

)
= 0. (5.195)

The components of (5.195) proportional to dxdz2 yield,

dxB ∗K + [W,B ∗K]∗ = 0 (5.196)

Multiplying this equation by K from the right and using K ∗W ∗K = π(W ) we find the

first of (5.194).
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The components of (5.195) proportional to dxdz̄2 yield

dxB ∗ K̄ + [W,B ∗ K̄]∗ = 0 (5.197)

Multiplying this equation by K̄ from the right and using K̄ ∗W ∗K̄ = K̄ ∗W ∗K̄ = π(W ) =

(the second step uses the truncation condition (5.11) on W ) we once again find the first of

(5.194).

The term in (5.195) proportional to dz2dz̄ and dzdz̄2 may be processed as follows. Let

Ŝ = Ŝz + Ŝz̄ (5.198)

where Ŝz is proportional to dz and Ŝz̄ is proportional to dz̄. The part of (5.195) proportional

to dz2dz̄ yields

[Sz̄, B ∗K]∗ = 0 (5.199)

Multiplying this equation with K from the right and using K ∗ Ŝz̄ ∗K = π(Ŝz̄) we find

Ŝz̄ ∗B −B ∗ π(Ŝz̄) = 0 (5.200)

Finally, the part of (5.195) proportional to dzdz̄2 yields

[Sz, B ∗ K̄]∗ = 0 (5.201)

Multiplying this equation with K̄ from the right and using

K̄ ∗ Ŝz ∗ K̄ = π̄(Ŝz) = π(Ŝz)

(where we have used (5.12)) we find

Ŝz ∗B −B ∗ π(Ŝz) = 0 (5.202)

Adding together (5.200) and (5.202) we find the second of (5.194)

The fact that z and z̄ each have only two components, mean that there are no terms in

(5.195) proportional to dz3 or dz̄3, so we have fully analyzed the content of (5.195).
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5.A.5 Onshell (Anti) Commutation of components of Vasiliev’s

Master Field

In this subsection we list some useful commutation and anticommutation relations be-

tween the adjoint fields Sz, Sz̄, B ∗K and B ∗K̄. The relations we list can be derived almost

immediately from Vasiliev’s equations; we list them for ready reference

[B ∗K,B ∗ K̄]∗ = 0

{Sz, Sz̄}∗ = 0

[Sz̄, B ∗K]∗ = 0

[Sz, B ∗ K̄]∗ = 0

{Sz̄, B ∗K}∗ = 0

{Sz, B ∗ K̄}∗ = 0

(5.203)

The derivation of these equations is straightforward. The first equation follows upon ex-

panding the commutator and noting that K ∗B ∗ K̄ = K̄ ∗B ∗K (this follows from (5.11)

together with the obvious fact that K and K̄ commute). The second equation in (5.203)

follows upon inserting the decomposition (5.198) into the third equation in (5.193). The

third and fourth equations in (5.203)are simply (5.199) and (5.201) rewritten.

The fifth equation in (5.203) may be derived from the third equation as follows

Sz̄ ∗B ∗K = B ∗K ∗ Sz̄

⇒ Sz̄ ∗B = B ∗K ∗ Sz̄ ∗K

⇒ Sz̄ ∗B = −B ∗ K̄ ∗ Sz̄ ∗ K̄

⇒ Sz̄ ∗B ∗ K̄ = −B ∗ K̄ ∗ Sz̄

(5.204)

In the third line of (5.204) we have used the truncation condition (5.11)
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The sixth equation in (5.203) is derived in a manner very similar to the fifth equation.

5.A.6 Canonical form of f(X) in Vasiliev’s equations

In this subsection we demonstrate that we can use the change of variables X → g(X) for

some odd real function g(X) together with multiplication by an invertible holomorphic even

function to put any function f(X) in the form (5.30), at least provided that the function

f(X) admits a power series expansion about X = 0 and that f(0) ̸= 0.

An arbitrary function f(X) may be decomposed into its even and odd parts

f(X) = fe(X) + fo(X)

If fe(X) in invertible then the freedom of multiplication with an even complex function may

be used to put f(X) in the form

f(X) = 1 + f̃o(X)

where f̃o(X) = fo(X)
fe(X) . Clearly f̃o(X) is an odd function that admits a power series expansion.

At least in the sense of a formal power series expansion of all functions, it is easy to convince

oneself that any such function may be written in the form g(X)eiθ(X) where g(X) is an a

real odd function and θ(X) is a real even function. We may now use the freedom of variable

redefinitions to work with the variable g(X) instead of X . This redefinition preserves the

even nature of θ(X) and casts f(X) in the form (5.30).
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5.A.7 Conventions for SO(4) spinors

Euclidean SO(4) Γ matrices may be chosen as

Γa =

⎛

⎜⎝
0 σa

σ̄a 0

⎞

⎟⎠ (5.205)

where a = 1 . . . 4 and

σa = (σi, iI), σ̄a = −σ2σT
a σ2 = (σi,−iI) (5.206)

(where i = 1 . . . 3 and σi are the usual Pauli matrices). In the text below we will often refer

to the fourth component of σµ as σz; in other words

σz = iI

(we adopt this cumbersome notation to provide easy passage to different conventions). The

chirality matrix Γ5 = Γ1Γ2Γ3Γ4 is given by

Γ5 =

⎛

⎜⎝
I 0

0 −I

⎞

⎟⎠ (5.207)

Γ matrices act on the spinors ⎛

⎜⎝
χα

ζ̄ β̇

⎞

⎟⎠

whereas the row spinors that multiply Γ from the left have the index structure

(
χα ζ̄β̇

)

As a consequence we assign the index structure (σa)αβ̇ and σ̄α̇β. It is easy to check that

[Γa,Γb] = 2

⎛

⎜⎝
σab 0

0 σ̄ab

⎞

⎟⎠ (5.208)
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where

σab =
1

2
(σaσ̄b − σbσ̄a), σ̄ab =

1

2
(σ̄aσb − σ̄bσa)

⇒ σij = iϵijkσ
k, σ̄ij = iϵijkσ̄

k, σi4 = −iσi, σ̄i4 = iσi

(5.209)

Clearly the index structure above is (σab) β
α and (σ̄ab)α̇β̇. Spinor indices are raised and lowered

according to the conventions

ψα = ϵαβψ
β, ψα = ψβϵ

βα, ϵ12 = ϵ12 = 1

The product of a chiral spinor yα and an antichiral spinor ȳβ̇ is a vector. By convention we

define the associated vector as

Vµ = yα(σµ)αβ̇ ȳ
β̇ (5.210)

The product of a chiral spinor y with itself is a self dual antisymmetric 2 tensor which we

take to be

Vab = yα(σab)
β
α yβ (5.211)

Similarly the product of an antichiral spinor with itself is an antiselfdual 2 tensor which we

take to be

Vab = ȳα̇(σ̄ab)
α̇
β̇
ȳβ̇ (5.212)

5.A.8 AdS4 solution

In this appendix we will show that

W0 = (e0)αβ̇y
αȳβ̇ + (ω0)αβy

αyβ + (ω0)α̇β̇ ȳ
α̇ȳβ̇ (5.213)

with the AdS4 values for the vielbein and spin connection, satisfies the Vasiliev equation

dxW0 +W0 ∗W0 = 0. (5.214)
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Substituting (5.213) in (5.214) and collecting terms quadratic in y and ȳ we get

yαȳα̇ : dxeαβ̇ + 4ω β
α ∧ eββ̇ − 4eαγ̇ ∧ ωγ̇β̇ = 0

yαyβ : dxω
β
α − 4ω γ

α ∧ w β
γ − eαα̇ ∧ eββ̇ϵ

α̇β̇ = 0

yα̇yβ̇ : dxω
α̇
β̇
+ 4ωα̇γ̇ ∧ ω

γ̇

β̇
− eαα̇ ∧ eββ̇ϵ

αβ = 0

(5.215)

Let us consider the Vasiliev gauge transformations generated by

ϵ(x|Y ) = C1ab (yσaby) + C2ab (ȳσ̄abȳ)

Under these the vielbein and spin connection changes by

δeαα̇ = −4C1ab(σab)
β
α eβα̇ − 4C2ab eαβ̇(σ̄ab)

β̇
α̇

δω β
α = dxC1ab(σab)

β
α − 8C1ab ω

γ
α (σab)

β
γ

δωα̇
β̇
= dxC2ab(σ̄ab)

α̇
β̇
+ 8C2ab ω

α̇
γ̇(σ̄ab)

γ̇

β̇

(5.216)

Notice that these are just the rotation of the vielbeins in the tangent space. The two

homogeneous terms in δe are just the rotation by under SU(2)L and SU(2)R of SO(4) that

acts on the tangent space. As expected under such rotation the spin connection transforms

inhomogeneously. Substituting (5.216) in (5.215) it is easily verified that (5.215) transforms

homogeneously.

In fact the first equation in (5.215) is just the torsion free condition while the second and

third equation expresses the selfdual and anti-selfdual part of curvature two form in term

of vielbeins. Substituting the AdS4 values of vielbeins and spin connection (5.36) one can

easily check that (5.215) are satisfied.

Converting (5.215) from bispinor notation to SO(4) vector notation using the following

conversion

eαβ̇ = 2ea(σa)αβ̇ , ω β
α =

1

16
ωab(σab)

β
α , ωα̇

β̇
= − 1

16
ωab(σab)

α̇
β̇
, (5.217)
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we get

Ta ≡ dxea + ωab ∧ eb = 0

Rab ≡ dxωab + ωac ∧ ωcb + 64ea ∧ eb = 0.

(5.218)

5.A.9 Exploration of various boundary conditions for scalars in

the non abelian theory

The same theory in AdS4 with∆ = 2 boundary condition on the U(M)-singlet bulk scalar

is dual to the critical point of the SU(N) vector model with M flavors and the double trace

deformation by (φ̄iaφia)2. Alternatively, this critical point may be defined by introducing a

Lagrangian multiplier α and adding the term

αφ̄iaφia (5.219)

to the Lagrangian of the vector model.43 As in the case of the M = 1 critical vector model,

higher spin symmetry is broken by 1/N effects. Note that the SU(M) part of the spin-2

current is also broken by 1/N effects, i.e. there are no interacting colored massless gravitons,

as expected. To see this explicitly from the boundary CFT, let us consider the spin-2 current

(J (2)
µν )

a
b =

1

2
φ̄ia←→∂ µ

←→
∂ νφib − 2∂(µφ̄

ia∂ν)φib + δµν∂
ρφ̄ia∂ρφib. (5.220)

Using the classical equation of motion

!φi = αφi, (5.221)

we have

∂µ(J (2)
µν )

a
b = (∂να)φ̄

iaφib − α∂ν(φ̄iaφib). (5.222)

43The critical point can be conveniently defined using dimensional regularization.
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While the SU(M)-singlet part of Jµν , being the stress-energy tensor, is conserved (φ̄iaφia is

set to zero by α-equation of motion), the SU(M) non-singlet part of Jµν is not conserved,

and acquires an anomalous dimension of order 1/N at the leading nontrivial order in the

1/N expansion. In the bulk, the colored gravitons become massive, and their longitudinal

components are supplied by the bound state of the singlet scalar and a colored spin-1 field.

One could also consider the theory in AdS4 with ∆ = 2 boundary condition on all bulk

scalars, that is, on both the singlet and adjoint of the SU(M) bulk gauge group. The dual

CFT is the critical point defined by turning on the double trace deformation φ̄iaφibφ̄jbφja

and flow to the IR, or by introducing the Lagrangian multiplier Λa
b, and the term

Λa
bφ̄iaφib (5.223)

in the CFT Lagrangian. Now the classical equations of motion

!φia = Λa
bφib, φ̄iaφib = 0, (5.224)

imply the divergence of the colored spin-2 currents

∂µ(J (2)
µν )

a
b = Λb

cφ̄ia←→∂ νφic − Λc
aφ̄ic←→∂ νφib = Λb

c(J (1)
ν )ac − Λc

a(J (1)
ν )cb. (5.225)

Once again, the SU(M) non-singlet spin-2 current is no longer conserved. In this case, the

colored gravitons in the bulk are massive because their longitudinal component are supplied

by the two-particle state of colored scalar and spin-1 fields.
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5.B Supersymmetry transformations on bulk fields of

spin 0, 1
2, and 1

We begin by rewriting the magnetic boundary condition on the spin-1 bulk fields in the

supersymmetric Vasiliev theory. With the magnetic boundary condition, the 2n−1 vector

gauge fields are dual to ungauged U(2
n
2−1)× U(2

n
2 −1) “R-symmetry” currents of boundary

CFT that rotate the bosonic and fermionic flavors separately. Supersymmetrizing Chern-

Simons coupling will generally break this flavor symmetry to a subgroup. We will see this

as the violation of magnetic boundary condition by the supersymmetry variation of the bulk

spin-1 fields. If we do not gauge the flavor symmetries of the Chern-Simons vector model,

then all bulk vector fields should be assigned the magnetic boundary condition. We will

see later that in this case only up to N = 3 supersymmetry can be preserved, whereas

by relaxing the magnetic boundary condition on some of the bulk vector fields, it will be

possible to preserve N = 4 or 6 supersymmetry.

In terms of Vasiliev’s master field B which contains the field strength, the general electric-

magnetic boundary condition may be expressed as

B
∣∣
O(y2,ȳ2)

→ z2
[
eiβ(yFy) + e−iβ(ȳF ȳ)Γ

]
, z → 0, (5.226)

where F ≡ Fµνσµν and its complex conjugate F are functions of ψi, and are constrained by

the linear relation

F = −σzFσz. (5.227)

With this choice of boundary condition, the boundary to bulk propagator for the spin-1
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components of the B master field is given by the standard one,

B(1) =
z2

(x⃗2 + z2)3
e−yΣȳ

[
eiβ(λxσzy)2 + e−iβ(λσzxσz ȳ)2Γ

]

≡ B̃(1)
[
eiβ(λxσzy)2 + e−iβ(λσzxσz ȳ)2Γ

]
.

(5.228)

It indeed obeys (5.227), with F and F given by

Fα
β = −(λx⃗ · σ⃗σz)α(λx⃗ · σ⃗σz)β,

F α̇
β̇ = −(λσzx⃗ · σ⃗σz)α̇(λσ

zx⃗ · σ⃗σz)β̇ = −(λx⃗ · σ⃗)α̇(λx⃗ · σ⃗)β̇,
(5.229)

and

(σzFσz)α
β = −(λx⃗ · σ⃗)α̇(λx⃗ · σ⃗)β̇(σz)α

α̇(σz)ββ̇ = (λx⃗ · σ⃗σz)α(λx⃗ · σ⃗σz)β = −Fαβ. (5.230)

In the next four subsections, we give the explicit formulae for the supersymmetry variation

δϵ (i.e. spin 3/2 gauge transformation of Vasiliev’s system) of bulk fields of spin 0, 1/2, 1,

sourced by boundary currents of spin 0, 1/2, 1.

5.B.1 δϵ: spin 1 → spin 1
2

Let us start with the B master field sourced by a spin-1 boundary current at x⃗ = 0,

i.e. the spin-1 boundary to bulk propagator B(1)(x|Y ), and consider its variation under

supersymmetry, which is generated by ϵ(x|Y ) of degree one in Y = (y, ȳ):

δϵB
(1)(x|Y ) =− ϵ ∗ eiβ(λxσzy)2B̃(1) + eiβ(λxσzy)2B̃(1) ∗ π(ϵ)

− ϵ ∗ e−iβ(λσzxσz ȳ)2ΓB̃(1) + e−iβ(λσzxσz ȳ)2ΓB̃(1) ∗ π(ϵ).
(5.231)
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Carrying out the ∗ products explicitly, we find

− ϵ ∗ (λxσzy)2B̃(1) + (λxσzy)2B̃(1) ∗ π(ϵ)

= −(Λy + Λȳ) ∗ (λxσzy)2B̃(1) + (λxσzy)2B̃(1) ∗ (−Λy + Λȳ)

= −{yα, (xσzy)β(xσ
zy)γB̃

(1)}∗{Λα,λβλγ}− [yα, (xσ
zy)β(xσ

zy)γB̃
(1)]∗[Λ

α,λβλγ ]

− [ȳα̇, (xσ
zy)β(xσ

zy)γB̃
(1)]∗{Λ

α̇
,λβλγ}− {ȳα̇, (xσzy)β(xσ

zy)γB̃
(1)}∗[Λ

α̇
,λβλγ ]

= −2{Λy,λβλγ}(xσzy)β(xσ
zy)γB̃

(1) − 2[Λ∂y,λ
βλγ](xσzy)β(xσ

zy)γB̃
(1)

− 2{Λ∂ȳ,λβλγ}(xσzy)β(xσ
zy)γB̃

(1) − 2[Λȳ,λβλγ](xσzy)β(xσ
zy)γB̃

(1)

= 2{ΛΣy − Λy, (λxσzy)2}B̃(1) + 2[ΛΣȳ − Λȳ, (λxσzy)2]B̃(1) − 4[(xσzΛ)β,λ
β(λxσzy)]B̃(1),

(5.232)

and

− ϵ ∗ (λσzxσz ȳ)2ΓB̃(1) + (λσzxσz ȳ)2ΓB̃(1) ∗ π(ϵ)

= −2{Λy,λβλγΓ}(σzxσz ȳ)β(σ
zxσz ȳ)γB̃

(1) − 2[Λ∂y,λ
βλγΓ](σzxσz ȳ)β(σ

zxσz ȳ)γB̃
(1)

− 2{Λ∂ȳ,λβλγΓ}(σzxσz ȳ)β(σ
zxσz ȳ)γB̃

(1) − 2[Λȳ,λβλγΓ](σzxσz ȳ)β(σ
zxσz ȳ)γB̃

(1)

= 2{ΛΣy − Λy, (λσzxσz ȳ)2Γ}B̃(1) + 2[ΛΣȳ − Λȳ, (λσzxσz ȳ)2Γ]B̃(1) − 4{(σzxσzΛ)β,λ
β(λσzxσz ȳ)Γ}B̃(1).

(5.233)

Note that the commutators and anti-commutators in above formula are due to the ψi-

dependence only, and do not involve ∗ product. δϵB(1) contains supersymmetry variation of

fields of spin 1/2 and 3/2. We will focus on the variation spin 1/2 fields, since they can be

subject to a family of different boundary conditions, corresponding to turning on fermionic

double trace deformations (i.e. (fermion singlet)2) in the boundary CFT. So we restrict to
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terms linear in (y, ȳ),

δB(1)
∣∣
O(y,ȳ)

= −4[(xσzΛ)β,λ
β(λxσzy)]B̃(1) − 4{(σzxσzΛ)β ,λ

β(λσzxσz ȳ)Γ}B̃(1)

→ −4eiβ z
3
2

(x⃗2 + z2)3
[(x⃗ · σ⃗σzΛ+)β,λ

β(λx⃗ · σ⃗σzy)] + 4e−iβ z
3
2

(x⃗2 + z2)3
[(x⃗ · σ⃗σzΛ+)β,λ

β(λx⃗ · σ⃗ȳ)]Γ

(5.234)

where in the second line we kept the leading terms, of order z
3
2 , in the z → 0 limit.

5.B.2 δϵ: spin 1
2 → spin 1

The general conformally invariant boundary condition on spin 1/2 fermions, in terms of

Vasiliev’s B master field, takes the form

B
∣∣
O(y,ȳ)

→ z
3
2
[
eiα(χy)− Γe−iα(χ̄ȳ)

]
, (5.235)

Here χ and its complex conjugate χ̄ are chiral and anti-chiral spinors that are odd functions

of the Grassmannian variables ψi. They are further constrained by the linear relation

χ = σzχ̄. (5.236)

α is generally a linear operator that acts on the vector space spanned by odd monomials in

the ψi’s, i.e. it assigns phase angles to fermions in the bulk R-symmetry multiplet. A choice

of the spin-1/2 fermion boundary condition is equivalent to a choice of the “phase angle”

operator α.

The fermion boundary to bulk propagator that satisfies the above boundary condition

is:

B( 12 ) =
z

3
2

(x⃗2 + z2)2
e−yΣȳ

[
eiα(λxσzy)− Γe−iα(λσzxσz ȳ)

]

≡
[
eiα(λxσzy)− Γe−iα(λσzxσz ȳ)

]
B̃( 12 ).

(5.237)
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Here the linear operator α is understood to act on λ only, the latter being an odd function

of ψi’s.

Next, we make super transformation on the fermion boundary to bulk propagator. The

supersymmetry transformation reads

δB( 1
2
) =− eiαϵ ∗ (λxσzy)B̃( 1

2
) + eiα(λxσzy)B̃( 1

2
) ∗ π(ϵ)

− e−iαϵ ∗ (λσzxσz ȳ)ΓB̃( 12 ) + e−iα(λσzxσz ȳ)ΓB̃( 12 ) ∗ π(ϵ),
(5.238)

where ϵ = Λy+ Λ̄ȳ, Λ is an odd supersymmetry parameter η multiplied by an odd function

of the ψi’s. η in particular anti-commutes with all ψi’s, and therefore anti-commutes with

λ which involves an odd number of ψi’s.

Carrying out the ∗ algebra, we have

− ϵ ∗ (λxσzy)B̃( 1
2
) + (λxσzy)B̃( 1

2
) ∗ π(ϵ)

= 2{ΛΣy − Λy, (λxσzy)}B̃( 12 ) + 2[ΛΣȳ − Λȳ, (λxσzy)]B̃( 12 ) − 2[(xσzΛ)β,λ
β]B̃( 12 ),

(5.239)

and

− ϵ ∗ (λσzxσz ȳ)ΓB̃( 12 ) + (λσzxσz ȳ)ΓB̃( 12 ) ∗ π(ϵ)

= 2{ΛΣy − Λy, (λσzxσz ȳ)Γ}B̃( 12 ) + 2[ΛΣȳ − Λȳ, (λσzxσz ȳ)Γ]B̃( 12 ) − 2{(σzxσzΛ)β,λ
βΓ}B̃( 12 ).

(5.240)

The supersymmetry variation of the spin-1 field strengths are extracted from O(y2, ȳ2)

terms in δB( 12 ), namely

δϵB
( 12 )(x|Y )

∣∣
O(y2,ȳ2)

= 2{ΛΣy − Λy, eiα(λxσzy)}B̃( 12 ) − 2[ΛΣȳ − Λȳ,Γe−iα(λσzxσz ȳ)]B̃( 12 )

→ −4 z2

(x⃗2 + z2)3
{Λ0x⃗ · σ⃗σzy, eiα(λσzx⃗ · σ⃗y)}− 4

z2

(x⃗2 + z2)3
[Λ0x⃗ · σ⃗ȳ,Γe−iα(λx⃗ · σ⃗ȳ)].

(5.241)

In the second line, we have taken the small z limit and kept the leading terms, of order z2.
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5.B.3 δϵ: spin 1
2 → spin 0

The supersymmetry variation of the scalar field due to a spin- 12 fermionic boundary

source is extracted from δϵB( 1
2
) of the previous subsection, restricted to y = ȳ = 0:

δϵB
( 12 )
∣∣
y,ȳ=0

(x⃗, z) = −2[(xσzΛ)β, e
iαλβ]B̃( 12 ) − 2Γ[(σzxσzΛ)β, e

−iαλβ]B̃( 12 )

+ 2z−
1
2Γ[(σzxΛ+)β, e

−iαλβ]B̃( 12 ) − 2z
1
2Γ[(σzxΛ−)β, e

−iαλβ]B̃( 12 )

= 2(eiα + Γe−iα)
z

(x⃗2 + z2)2
[(σzx⃗ · σ⃗Λ+)β,λ

β]− 2(eiα − Γe−iα)
z2

(x⃗2 + z2)2
[(Λ+)β ,λ

β]

− 2(eiα − Γe−iα)
z2

(x⃗2 + z2)2
[(x⃗ · σ⃗σzΛ−)β,λ

β] +O(z3).

(5.242)

In the last two lines, α as a linear operator is understood to act on λ only (and not on Λ±).

5.B.4 δϵ: spin 0 → spin 1
2

The general conformally invariant linear boundary condition on the bulk scalarsB(0)(x⃗, z) =

B(x⃗, z|y = ȳ = 0) may be expressed as

B(0)(x⃗, z) = (eiγ + Γe−iγ)f̃1z + (eiγ − Γe−iγ)f̃2z
2 +O(z3) (5.243)

in the limit z → 0. Here f̃1, f̃2 are real and even function in ψi, and are subject to a set

of linear relations that eliminate half of their degrees of freedom. The phase γ is generally

a linear operator acting on the space spanned by even monomials in the ψi’s (analogously

to α in the fermion boundary condition). We will determine our choice of γ and the linear

constraints on f̃1,2 later.

The boundary-to-bulk propagator for the scalar components of the B master field, sub-

ject to the above boundary condition, is now written as

B(0) = f1(ψ)B̃
(0)
∆=1 + f2(ψ)B̃

(0)
∆=2, (5.244)
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where

f1(ψ) = (eiγ + Γe−iγ)f̃1(ψ), f2(ψ) = (eiγ − Γe−iγ))f̃2(ψ). (5.245)

A straightforward calculation gives the supersymmetry variation of the spin-12 fermion due

to a scalar boundary source at x⃗ = 0,

δϵB̃
(0)(x⃗, z)

∣∣
O(y,ȳ)

→ −4 z
3
2

(x⃗2 + z2)2
{Λ0σ

zx⃗ · σ⃗y, f1}− 4
z

3
2

(x⃗2 + z2)2
[Λ0x⃗ · σ⃗ȳ, f1]

+ 2
z

3
2

(x⃗2 + z2)2
[Λ+σ

z ȳ, f2] + 2
z

3
2

(x⃗2 + z2)2
{Λ+y, f2}

= −4 z
3
2

(x⃗2 + z2)2

(
eiγ{Λ0σ

zx⃗ · σ⃗y, f̃1}− Γe−iγ [Λ0σ
zx⃗ · σ⃗y, f̃1] + eiγ [Λ0x⃗ · σ⃗ȳ, f̃1]− Γe−iγ{Λ0x⃗ · σ⃗ȳ, f̃1}

)

+ 2
z

3
2

(x⃗2 + z2)2

(
eiγ [Λ+σ

zȳ, f̃2] + Γe−iγ{Λ+σ
z ȳ, f̃2}+ eiγ{Λ+y, f̃2}+ Γe−iγ[Λ+y, f̃2]

)
.

(5.246)

We have taken the small z limit, and kept terms of order z
3
2 . Again, in the last two lines γ

as a linear operator should be understood as acting on f̃1,2(ψ) only and not on Λ.

5.C The bulk dual of double trace deformations and

Chern Simons Gauging

5.C.1 Alternate and Regular boundary conditions for scalars in

AdSd+1

In this section we review the AdS/CFT implementation alternate and regular boundary

conditions for scalars, in the presence of multitrace deformations. The material reviewed

here is well known (see e.g. [64, 76, 77, 78, 79, 65] - we most closely follow the approach of

the paper [77]); our brief review focuses on aspects we will have occasion to use in the main
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text of our paper.

Multi-trace deformations in large N field theories

In this brief subsection we will address the following question: how is the generating

function of correlators of a large N field theory modified by the addition of a multi-trace

deformation to the action of the theory?

Consider any large N field theory whose single trace operators are denoted by Oi. Let

W (J) denote the generating function of correlators44

⟨eJiOi⟩ = e−W [Ji]. (5.248)

Note that W [Ji] is of order N2 in a matrix type large N theory, while it is of order N in a

vector type large N theory. For formal purposed below we will find it useful to Legendre

transform W to define an effective action for the operators Oi

I[Oi] = W [Ji] +OiJi. (5.249)

I[Oi] is a function only of Oi (and not of Ji) in the following sense. The RHS of (5.249)

is viewed as an action for the dynamical variable Ji. The equation of motion for Ji follows

from varying this action and is

∂W

∂Ji
= −Oi. (5.250)

The RHS of (5.249) is evaluated with the onshell value of Ji.

44More precisely this equation should have read

⟨e
∫
ddxJi(x)O

i(x)⟩ = e−W [Ji(x)]. (5.247)

However for ease of readability, in all the formal discussions of this section we will use compact notation in
which we suppress the position dependence of operators and fields, and do not explicitly indicate integration.
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I[Oi] plays the role of the effective action for the trace operators Oi. In the large N limit

the dynamics of the operators Oi is generated by the classical dynamics of the action I(Oi).

Of course W [J i] may equally be thought of as the Legendre transform of I[Oi]

W [Ji] = I[Oi]−OiJi, (5.251)

where Oi is the function of J i obtained by solving the equation of motion

∂I

∂Oi
= Ji. (5.252)

Now let us suppose that the action S of the original large N field theory is deformed by

the addition of a multitrace term S → S + P (Oi) where P (Oi) is an arbitrary function of

Oi. The effective action for this deformed theory is simply given by Ĩ(Oi)

Ĩ(Oi) = I(Oi) + P (Oi). (5.253)

The generating function of correlators of the deformed theory is once again given by the

Legendre transform (5.251) with I[Oi] replaced by Ĩ[Oi].

Bulk dual to multi trace deformations in regular and alternate quantization

Consider a real scalar field propagating in AdSd+1 according to the action

S =
1

2

∫
dd+1x

√
g
(
∂µφ∂

µφ+m2φ2
)
. (5.254)

It is well known that these scalars admit two distinct conformally invariant boundary con-

ditions - sometimes referred to as alternate and standard quantization - in the mass range

−
(

d2

4 − 1
)
> m2 > −d2

4 . In this subsection we will review the very well known rules for

the computation of correlation functions for scalars with alternate and standard boundary

conditions.
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The action (5.254) is ambiguous as it generically receives divergent contributions from

the boundary, as we now explain. We use coordinates so that the metric of AdS space is

given by (5.33). Near z = 0 the general solution to the equation motion from (5.254) takes

the form

φ =
φ1z

d
2−ζ

2ζ
+ φ2z

d
2+ζ, (5.255)

where ζ is the positive root of the equation ζ2 = m2 + d2

4 . Let us cut of the action (5.254)

at a small value, zc of the coordinate z. Onshell (5.254) evaluates to

S = −1
2

∫
ddx

1

zd−1
c

φ ∂zφ, (5.256)

where the integral is evaluated over the boundary surface z = zc. It is easily verified that

the action S has a divergence proportional to z2ζc when evaluated on the generic solution

(5.255). To cure this divergence we supplement (5.254) with a diffeomorphically invariant

boundary action for the d dimensional boundary field φ(zc, x)

δS =
1

2

∫
ddx
√
g

(
d

2
− ζ
)
φ2 (5.257)

where, once again, the integral is taken over the boundary surface z = zc and g is the

induced metric on this boundary. It is easily verified that

S + δS = −1
2

∫
ddxφ1(x)φ2(x). (5.258)

Regularity in the interior of AdS relates φ2 to φ1. The relationship is clearly linear and so

takes the form

φ2(x) =

∫
ddxG(x− y)φ1(y). (5.259)

In the rest of this subsection we use abbreviated notation so that (5.258) is written as

S = −1
2φ1φ2 and (5.259) is written as φ2 = Gφ1. It follows that the onshell action is given
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by

S = −1
2
φ1Gφ1. (5.260)

In the case of alternate quantization the boundary action (5.260), thought of as a func-

tional of the dynamical field φ1 = limzc→0
φ

z
d
2−ζ
c

, is identified with the single trace effective

action I[O] defined in (5.249). The generator of correlators of this theory is obtained by

coupling φ1 =
φ

z
d
2−ζ
c

to a source J :

S = −1
2
φ1Gφ1 − Jφ1. (5.261)

The resulting equation of motion for φ1 yields

Gφ1 = −J. (5.262)

Integrating out φ1 we find the action

S = JG−1J.

It follows that the two point function of the dual operator is −G−1. It also follows from

(5.262) that

φ2 = −J.

in particular φ2 vanishes wherever J vanishes. Consequently, alternate quantization is asso-

ciated with the boundary condition φ2 = 0.

The multi trace deformation P (O) of the dual theory is implemented, in alternate quan-

tization, by adding the term P (φ1)to the boundary effective action (5.260), in perfect im-

itation of (5.253). Correlation functions of the deformed theory are obtained by the Leg-

endre transform of this augmented boundary action. The resultant equation of motion is
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Gφ1 + J − P ′(φ1) = 0 yields the bulk boundary conditions

φ2 + J − P ′(φ1) = 0.

In the case of regular quantization we supplement the action (5.260) with an additional

degree of freedom φ̃2 so that the full boundary action takes the form

S = −1
2
φ1Gφ1 + φ̃2φ1. (5.263)

The dynamical field φ1 is then integrated out using its equation of motion

Gφ1 = φ̃2. (5.264)

On shell, therefore φ̃2 = φ2. The resultant action

S =
1

2
φ̃2G

−1φ̃2 (5.265)

as a function of φ̃2 is identified with I(O) in (5.249). The generator of correlators of the

theory is obtained by coupling φ̃2 to a source J

S =
1

2
φ̃2G

−1φ̃2 − J φ̃2 ,

and then integrating this field out according to its equations of motion. This allows us, in

particular, to identify the two point function of the dual theory with G. Note also that the

resultant equation of motion, G−1φ̃2 = J implies

φ1 = J,

so that φ1 vanishes wherever J vanishes. In other words standard quantization is associated

with the boundary condition φ1 = 0. The multitrace deformation P (O) of the dual theory is

implemented, in standard quantization, by adding P (φ̃2) to the action (5.265). The resultant

boundary condition is

φ1 − J + P ′(φ2) = 0.
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Marginal multitrace deformation with two scalar field in opposite quantization

Consider two scalar fields in AdS4, φ and χ, with φ quantized with alternate quantization

and χ with regular quantization. In the compact notation defined in earlier subsection, the

generating function of correlation function of the dual field theory deformed by double trace

operator tan θ0O1O2 is

S = −1
2
Gφ2

1 −
1

2
Gχ2

1 + χ1χ̃2 − J1φ1 − J2χ̃2 + tan θ0χ̃2φ1. (5.266)

The action is linear in χ̃2; the equation of motion for this field immediately yields

J2 =
1

cos θ0
(sin θ0φ1 + cos θ0χ1). (5.267)

Using (5.267) to eliminate φ1 in favor of χ1, S simplifies to a function of φ1. The resultant

equation of motion yields

J1 = −
1

cos θ0
G(cos θ0φ1 − sin θ0χ1). (5.268)

Using Gφ1 = φ2 and Gχ1 = χ2, (5.268) may be rewritten as

J1 = −
1

cos θ0
(cos θ0φ2 − sin θ0χ2). (5.269)

Upon setting J1 = J2 = 0, (5.267) and (5.269) express the boundary conditions of the

trace deformed model. These boundary conditions may, most succinctly be expressed as

follows. Let us define new ’rotated’ bulk fields

φ′ = cos θ0φ− sin θ0χ, χ′ = sin θ0φ+ cos θ0χ.

Note that the rotated fields have same bulk action as the original fields. The boundary

conditions (5.267) and (5.269) reduce to

φ′
2 = 0, χ′

1 = 0.
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In summary dual to the double trace deformed field theory has the same action as well

as boundary conditions for φ′ and χ′ as the dual to the undeformed theory had for φ and χ.

Despite this fact, the double trace deformed theory is not field redefinition equivalent to the

original theory. This can be seen in many ways. Most simply, the full action (5.266) does

not have a simple rotational invariance, and does not take a simple form when re-expressed

in terms of φ′ and χ′. This lack of equivalence also shows itself up in the generator of two

point functions of the operators dual to φ′ and χ′. This generating function is obtained by

plugging (5.267) and (5.268) into (5.266); we find

−S = − cos2 θ0
J2
1

2G
+ cos2 θ0

J2
2G

2
+ sin θ0 cos θ0J1J2. (5.270)

The fact that θ0 does not disappear from (5.270) demonstrates the lack of equivalence of the

trace deformed model from the trace undeformed model (θ0 = 0). Note in particular that

the double trace deformed theory has a contact cross two point function

⟨Oφ(x)Oχ(y)⟩ = sin θ0 cos θ0δ(x− y),

which is absent in the trace undeformed theory. On the other hand the direct correlators

⟨Oφ(x)Oφ(y)⟩ and ⟨Oχ(x)Oχ(y)⟩ have the same spacetime structure in the deformed and

undeformed theories, but have different normalizations.

5.C.2 Gauging a U(1) symmetry

Let us begin with a three dimensional CFT with a U(1) global symmetry, generated by

the current Ji, where i is the three-dimensional vector index. This theory will be referred to

as CFT∞, as opposed to the theory obtained by gauging the U(1) with Chern-Simons gauge

field at level k, which we refer to as CFTk. Suppose CFT∞ is dual to a weakly coupled
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gravity theory in AdS4. The global U(1) current Ji of the boundary CFT is dual to a gauge

field Aµ in the bulk. The two-derivative part of the bulk action for the gauge field is

1

4

∫
d3x⃗dz

z4
FµνF

µν =

∫
d3x⃗dz

(
1

2
FziFzi +

1

4
FijFij

)
. (5.271)

Working in the radial gauge Az = 0, we have

Fzi = ∂zAi, Fij = ∂iAj − ∂jAi. (5.272)

Consider the linearized, i.e. free, equation of motion

(∂2z + ∂2j )Ai − ∂i∂jAj = 0, (5.273)

together with the constraint

∂z∂iAi = 0. (5.274)

Near the boundary, a solution to the equation of motion has two possible asymptotic be-

haviors, Ai ∼ z + O(z2), or Ai ∼ 1 +O(z2). Equivalently, they can be expressed in gauge

invariant form as the magnetic boundary condition

Fij |z=0 = 0, (5.275)

and the electric boundary condition

Fzi|z=0 = 0, (5.276)

respectively. With the magnetic boundary condition, Aµ is dual to a U(1) global current

in the boundary CFT, i.e. CFT∞. The family of CFTk, on the other hand, is dual to the

same bulk theory with the mixed boundary condition (still conformally invariant)

(
1

2
ϵijkFjk +

iα

k
Fzi

)∣∣∣∣
z=0

= 0. (5.277)
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Here α is a constant. It will be determined in terms of the two-point function of the current

Ji.

Let us now solve the bulk Green’s function with the mixed boundary condition. The bulk

linearized equation of motion with a point source at z = z0, after a Fourier transformation

in the boundary coordinates x⃗, is

(∂2z − p2)Ai + pipjAj = δ(z − z0)ξi. (5.278)

Due to the constraint (5.274), the source ξi is restricted by piξi = 0. The boundary condition

is
(
ϵijkpjAk +

α

k
∂zAi

)∣∣∣
z=0

= 0. (5.279)

Without loss of generality, let us consider the case p⃗ = (0, 0, p), and assume p = p3 > 0.

The Green equation is now written as

∂2zA3 = 0,

(∂2z − p2)Ai = δ(z − z0)ξi, i = 1, 2,

(5.280)

and the boundary condition as

∂zA3|z=0 = 0,
(
pϵijAj −

α

k
∂zAi

)∣∣∣
z=0

= 0, i = 1, 2. (5.281)

The z-independent part of A3 can be gauged away. We may then take the solution

A3 = 0,

Ai = θ(z − z0) [gi(p) + hi(p)] e
−p(z−z0) + θ(z0 − z)

[
gi(p)e

−p(z−z0) + hi(p)e
p(z−z0)

]
,

(5.282)

where gi(p) and hi(p) obey

− p(gi + hi)− (−pgi + phi) = ξi.

ϵij(gje
pz0 + hje

−pz0) +
α

k
(gie

pz0 − hie
−pz0) = 0.

(5.283)
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The solutions are

gi =
e−2pz0

2(1 + α2

k2 )p

[
(1− α2

k2
)ξi + 2

α

k
ϵijξj

]
, hi = −

ξi
2p

. (5.284)

The nontrivial components of Green’s function are thus given by

G33 = 0,

Gij =
1

2p

[

e−p(z+z0)
(1− α2

k2 )δij + 2αk ϵij

1 + α2

k2

]

− δij
2p

[
θ(z − z0)e

−p(z−z0) + θ(z0 − z)ep(z−z0)

]
.

(5.285)

In particular, we find the change of the bulk Green’s function due to the changing of the

boundary condition,

G(k)
ij −G(∞)

ij ≡ ∆ij(p, z, z0) =
α

kp

ϵij − α
k δij

1 + α2

k2

e−p(z+z0). (5.286)

The boundary to bulk propagator for k = ∞ can be obtained by taking z0 → 0 limit on

z−1
0 G(∞), giving

K33 = 0,

Kij = −e−pzδij.

(5.287)

We observe that∆ij factorizes into the product of two boundary to bulk propagators, K(p, z)

and K(p, z0), multiplied by

Mij(p) =
α

kp

ϵij − α
k δij

1 + α2

k2

. (5.288)

This is reminiscent of the change of scalar propagator due to boundary conditions [32, 23].

So far we worked in the special case p = p3. Restoring rotational invariance, (5.288) is

replaced by

Mij(p) =
α

k|p|
ϵijk

pk

|p| −
α
k (δij −

pipj
p2 )

1 + α2

k2

=
α/k

1 + α2/k2
ϵijk

pk

p2
− α2/k2

1 + α2/k2

δij − pipj
p2

|p|
.

(5.289)
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In the boundary CFT, the change of boundary condition amounts to coupling the U(1)

current J i to a boundary gauge field Ai at Chern-Simons level k. Mij(p) is proportional to

the two-point function of Ai in the Lorentz gauge ∂jAj = 0. Namely,

⟨Ai(p)Aj(−q)⟩ =
32

Ñ
Mij(p)(2π)

3δ3(p− q), (5.290)

where Ñ is the overall normalization factor in the two-point function of the current Ji,

⟨Ji(p)Jj(−q)⟩ = −
Ñ |p|
32

(
δij −

pipj
p2

)
(2π)3δ3(p− q). (5.291)

Our convention is such that in the free theory Ñ counts the total number of complex scalars

and fermions. Note that here we are normalizing the current coupled to the Chern-Simons

gauge field according to the convention for nonabelian gauge group generators, Tr(tatb) =

1
2δ

ab for generators ta, tb in the fundamental representation. This is also the normalization

convention we use to define the Chern-Simons level k (which differs by a factor of 2 from

the natural convention for U(1) gauge group).

To see this, note that the inverse of the matrix Mij in (5.288), restricted to directions

transverse to p⃗ = p3ê3, is

(M−1
⊥ )ij =

kp

α
ϵij + δijp. (5.292)

After restoring rotational invariance, this is

(M−1
⊥ )ij =

k

α
ϵijkp

k +

(
δij −

pipj
p2

)
|p| (5.293)

which for α = π
8 Ñ precisely matches 32Ñ−1 times the kinetic term of the Chern-Simons

gauge field plus the contribution to the self energy of Ai from ⟨Ji(p)Jj(−p)⟩CFT∞ .
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5.D Supersymmetric Chern-Simons vector models at

large N

In this appendix, we review the Lagrangian of Chern-Simons vector models with vari-

ous numbers of supersymmetries and/or superpotentials. The scalar potentials and scalar-

fermion coupling resulting from the coupling to auxiliary fields in the Chern-Simons gauge

multiplet and superpotentials can be expressed in terms of bosonic or fermionic singlets

under the U(N) Chern-Simons gauge group as double trace or triple trace terms. These

can be matched with the change of boundary conditions in the holographically dual Vasiliev

theories in AdS4, described in Section 5.4.

5.D.1 N = 2 theory with M ! chiral multiplets

The action of the N = 2 pure Chern-Simons theory in Lorentzian signature is

SN=2
CS =

k

4π

∫
Tr(A ∧ dA+

2

3
A3 − χ̄χ+ 2Dσ), (5.294)

where χ, χ̄ and D, σ are fermionic and bosonic auxiliary fields. The M chiral multiplets in

the fundamental representation couple to the gauge multiplet through the action

Sm =

∫ M∑

i=1

[
Dµφ̄

iDµφi + ψ̄i(/D + σ)ψi + φ̄i(σ2 −D)φi + ψ̄iχ̄φi + φ̄iχψi − F̄F
]
.

(5.295)

We will focus on the matter coupling

k

4π
Tr(−χ̄χ + 2Dσ) +

∫ M∑

i=1

[
ψ̄iσψi + φ̄i(σ2 −D)φi + ψ̄iχ̄φi + φ̄iχψi − F̄F

]
. (5.296)
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Integrating out the auxiliary fields, we obtain the scalar potential and scalar-fermion cou-

pling,

V =
4π2

k2
φ̄iφjφ̄

jφkφ̄
kφi +

4π

k
φ̄jφiψ̄

iψj +
2π

k
ψ̄iφjφ̄

jψi. (5.297)

For the purpose of comparing with vector models of other numbers of supersymmetries, it

is useful to consider the M = 2 case. Let us define bosonic and fermionic gauge invariant

bilinears in the matter fields,

Φa
+ = φ̄iφj(σ

a)ji, Φa
− = ψ̄iψj(σ

a)j i, Ψi
j = φ̄iψj , (5.298)

where σa = (1, σ1, σ2, σ3). The non-supersymmetric theory with two flavors and without

matter self-interaction V would have had SU(2)b × SU(2)f flavor symmetry acting on the

bosons and fermions separately. With respect to this symmetry, Φa
+, Φ

a
− and Ψi

j are in

the representation (1 ⊕ 3, 1), (1, 1 ⊕ 3) and (2, 2) respectively. Expressed in terms of the

bosonic and fermionic singlets, V can be written as

V =
π2

2k2
Φa

+Φ
b
+Φ

c
+Tr

(
σaσbσc

)
+

2π

k
Φa

+Φ
a
− +

2π

k
Ψ̄i

jΨ
j
i. (5.299)

Note that the (fermion singlet)2 terms is invariant under SU(2)b × SU(2)f , whereas the

(bosonic singlet)2 term and the scalar potential explicitly break SU(2)b × SU(2)f to the

diagonal flavor SU(2).

Indeed, the boundary conditions of the conjectured holographic dual described in Section

5.4.2 are such that the fermionic boundary condition (characterized by γ) is invariant under

the SO(4) ∼ SU(2)b × SU(2)f that rotates the four Grassmannian variables of supersym-

metric Vasiliev theory, while the scalar boundary condition only preserve an SU(2) ∼ SO(3)

subgroup.
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5.D.2 N = 1 theory with M ! chiral multiplets

The N = 2 theory in the previous section admits a one-parameter family of exactly

marginal deformations that preserves N = 1 supersymmetry. The matter coupling of this

N = 1 theory is given by

V =
4π2ω2

k2
φ̄iφjφ̄

jφkφ̄
kφi +

2π(1 + ω)

k
φ̄jφiψ̄

iψj +
2πω

k
ψ̄iφjφ̄

jψi

+
π(ω − 1)

k
(ψ̄iφjψ̄

jφi + φ̄iψjφ̄
jψi),

(5.300)

where ω is a real deformation parameter. The N = 2 theory is given by ω = 1.

5.D.3 The N = 2 theory with M ! chiral multiplets and M !

chiral multiplets

Now we turn to the N = 2 Chern-Simons vector model with an equal number M of

fundamental and anti-fundamental chiral multiplets. This model differs from the N = 2

theory with 2M fundamental chiral multiplets through the scalar-fermion coupling and scalar

potential only. The part of the Lagrangian that couples matter fields to the auxiliary fields

in the gauge multiplet is given by

k

4π
Tr(−χ̄χ + 2Dσ) +

M∑

i=1

[
ψ̄iσψi + φ̄i(σ2 −D)φi + ψ̄iχ̄φi + φ̄iχψi − F̄F

]

+
M∑

i=1

[
−ψ̃iσ ¯̃ψi + φ̃i(σ2 +D) ¯̃φi − ψ̃iχ ¯̃φi − φ̃iχ̄ ¯̃ψi − F̃ ¯̃F

]
.

(5.301)

Integrating out the auxiliary fields, we obtain

Vd =
4π2

k2
(φ̄kφiφ̄

iφjφ̄
jφk − φ̄k ¯̃φiφ̃

i ¯̃φjφ̃
jφk − φ̄k ¯̃φiφ̃

iφjφ̄
jφk + φ̃k ¯̃φiφ̃

i ¯̃φjφ̃
j ¯̃φk)

+
4π

k
(φ̄jφiψ̄

iψj − φ̄j ¯̃ψiφ̃
iψj − ψ̃jφiψ̄

i ¯̃φj + ψ̃i ¯̃ψjφ̃
j ¯̃φi)

+
2π

k
(ψ̄iφjφ̄

jψi − ψ̄i ¯̃φjφ̃
jψi − ψ̃iφjφ̄

j ¯̃ψi + ψ̃i ¯̃φjφ̃
j ¯̃ψi).

(5.302)
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5.D.4 The N = 3 theory with M hypermultiplets

The N = 3 Chern-Simons vector model with M hypermultiplets can be obtained from

the N = 2 theory described in the previous subsection by adding the superpotential [89, 72]

W = − k

8π
trϕ2 + Φ̃iϕΦi (5.303)

where ϕ is an auxiliary N = 2 chiral superfield. Integrating out ϕ, we obtain a quartic

superpotential

W =
2π

k
(Φ̃iΦj)(Φ̃

jΦi). (5.304)

After integrating over the superspace, we obtain

∫
d2θ W + c.c. =

2π

k

[
2φ̃iφj(φ̃

jFi + F̃ jφi + ψ̃jψi) + (ψ̃iφj + φ̃iψj)(ψ̃
jφi + φ̃jψi) + c.c.

]
.

(5.305)

Integrating out the auxiliary fields F, F̃ , the W -term potential is

Vw =
2π

k

[
2(φ̃iφj)(ψ̃

jψi) + (ψ̃iφj + φ̃iψj)(ψ̃
jφi + φ̃jψi) + c.c

]

+
16π2

k2
(φ̄j ¯̃φi)(φ̃

iφk)(φ̃
k ¯̃φj) +

16π2

k2
(φ̄j ¯̃φi)(φ̄

iφk)(φ̃
kφj).

(5.306)

The total potential is given by the D-term plus W -term potentials:

V = Vd + Vw. (5.307)

To make the SO(3) R-symmetry manifest, we rewrite the potential in terms of the SO(3)

doublets:

(φA
i ) =

⎛

⎜⎝
φi

¯̃φi

⎞

⎟⎠ , (ψA,i) =

⎛

⎜⎝
ψi

¯̃ψi

⎞

⎟⎠ . (5.308)
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The D-term and W -term potentials are

Vd =
4π2

k2

[
(φ̄1φ

1)(φ̄1φ
1)(φ̄1φ

1)− (φ̄1φ
2)(φ̄2φ

2)(φ̄2φ
1)− (φ̄1φ

2)(φ̄2φ
1)(φ̄1φ

1) + (φ̄2φ
2)(φ̄2φ

2)(φ̄2φ
2)
]

+
4π

k

[
(φ̄1φ

1)(ψ̄1ψ1)− (φ̄1ψ2)(φ̄2ψ1)− (ψ̄2φ1)(ψ̄1φ2) + (ψ̄2ψ2)(φ̄2φ
2)
]

+
2π

k

[
(ψ̄1φ1)(φ̄1ψ1)− (ψ̄1φ2)(φ̄2ψ1)− (ψ̄2φ1)(φ̄1ψ2) + (ψ̄2φ2)(φ̄2ψ2)

]
,

(5.309)

and

Vw =
2π

k

[
2(φ̄2φ

1)(ψ̄2ψ1) + (ψ̄2φ1 + φ̄2ψ1)(ψ̄
2φ1 + φ̄2ψ1) + c.c

]

+
16π2

k2
(φ̄1φ

2)(φ̄2φ
1)(φ̄2φ

2) +
16π2

k2
(φ̄1φ

2)(φ̄1φ
1)(φ̄2φ

1).

(5.310)

We have also suppressed the flavor indices. The total potential can be written in a SO(3)

R-symmetry manifest way:

V = V1 + V2 + V3, (5.311)

where V1 contains the double trace operator of the form (bosonic singlet)2,

V1 =
4π

k
(φ̄Aφ

B)(ψ̄AψB), (5.312)

V2 is the scalar potential in the form of a triple trace term,

V2 =
16π2

3k2
(φ̄Aφ

B)(φ̄Bφ
C)(φ̄Cφ

A)− 4π2

3k2
(φ̄Bφ

C)(φ̄Aφ
B)(φ̄Cφ

A), (5.313)

V3 is the double trace term of the form (fermionic singlet)2,

V3 =−
2π

k
(ψ̄AφB)(φ̄

BψA) +
4π

k
(ψ̄AφA)(φ̄

BψB) +
2π

k
(ψ̄AφA)(ψ̄

BφB) +
2π

k
(φ̄AψA)(φ̄

BψB),

(5.314)

where φA,ψA are defined as

φA = φBϵBA, ψA = ϵABψB, (5.315)
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and ϵAB, ϵAB are antisymmetric tensors with ϵ12 = ϵ12 = 1.

For reference in main text we will record the double trace part of the potential in SO(3)

vector notation. Let us define

Φa
+ = φ̄Aφ

B(σa) A
B ⇔ φ̄Aφ

B =
1

2
Φa

+(σ̄
a) B

A

Φa
− = ψ̄AψB(σ

a) B
A ⇔ ψ̄AψB =

1

2
Φa

−(σ̄
a) A

B

Ψa = φ̄AψB(ϵσ
a)AB ⇔ φ̄AψB = −1

2
Ψa(σaϵ)AB

Ψ̄a = −ψ̄AφB(σaϵ)AB ⇔ ψ̄AφB =
1

2
Ψ̄a(ϵσ̄a)AB

(5.316)

where

(σa) B
A = (σi, iI) B

A , (σ̄a) B
A = (ϵ(σa)T ϵ) B

A = (σa,−iI) B
A , ϵ12 = ϵ12 = 1.

Here σi are Pauli sigma matrices. The a,b indices runs over 1,2,3,0. A,B runs over 1,2.

Ψa and Ψ̄a transform under the as vectors of SO(4) which under SO(3) transform as sin-

glet(a=0) and a vector(a=1,2,3) while φA,ψA transform as doublets of SU(2).

V1 =
2π

k
Φa

+Φ
b
−ηab,

V3 =
2π

k

(
1

2
Ψ̄aΨbδab − 2Ψ̄0Ψ0 − Ψ̄0Ψ̄0 −Ψ0Ψ0

)
.

(5.317)

5.D.5 A family of N = 2 theories with a ! chiral multiplet and a

! chiral multiplet

If we deformed the superpotential in the above subsection as

W =
2πω

k
(Φ̃iΦj)(Φ̃

jΦi), (5.318)

the N = 3 supersymmetry is broken to N = 2. In this case, the potential is

V = V1 + V2 + V3, (5.319)
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where V1 contains the double trace operator of the form (bosonic singlet)2,

V1 =
4π

k

[
(φ̄1φ

1)(ψ̄1ψ1) + (φ̄2φ
2)(ψ̄2ψ2) + ω(φ̄2φ

1)(ψ̄2ψ1) + ω(φ̄1φ
2)(ψ̄1ψ2)

]
, (5.320)

V2 is the scalar potential in the form of a triple trace term,

V2 =
4π2

k2

[
(φ̄1φ

1)(φ̄1φ
1)(φ̄1φ

1)− (φ̄2φ
1)(φ̄1φ

2)(φ̄2φ
2)− (φ̄1φ

2)(φ̄2φ
1)(φ̄1φ

1) + (φ̄2φ
2)(φ̄2φ

2)(φ̄2φ
2)
]

+
16π2ω

k2
(φ̄1φ

2)(φ̄2φ
1)(φ̄2φ

2) +
16π2ω

k2
(φ̄1φ

2)(φ̄1φ
1)(φ̄2φ

1),

(5.321)

V3 is the double trace term of the form (fermionic singlet)2,

V3 =
2π

k

[
(ψ̄1φ1)(φ̄1ψ1)− (ψ̄1φ2)(φ̄2ψ1)− (ψ̄2φ1)(φ̄1ψ2) + (ψ̄2φ2)(φ̄2ψ2)

]

+
4π

k

[
−(φ̄1ψ2)(φ̄2ψ1)− (ψ̄2φ1)(ψ̄1φ2)

]
+

2πω

k

[
(ψ̄2φ1)(ψ̄2φ1) + 2(φ̄2ψ1)(ψ̄

2φ1) + (φ̄2ψ1)(φ̄2ψ1)

+(φ̄1ψ2)(φ̄1ψ2) + 2(ψ̄1φ2)(φ̄1ψ2) + (ψ̄1φ2)(ψ̄1φ2)
]
.

(5.322)

5.D.6 The N = 4 theory with one hypermultiplet

As shown by [73], N = 3 U(N)k Chern-Simons vector model with M hypermultiplets

can be deformed to an N = 4 quiver type Chern-Simons matter theory by gauging (a

subgroup of) the flavor group with another N = 3 Chern-Simons gauge multiplet, at the

opposite level −k. Here we will focus on the case where the entire U(M) is gauged, so

that the resulting N = 4 theory has U(N)k × U(M)−k Chern-Simons gauge group and a

single bifundamental hypermultiplet. This N = 4 theory will still be referred to as a vector

model, as we will be thinking of the ’t Hooft limit of taking N, k large and M kept finite. As

we have seen, turning on the finite Chern-Simons level for the flavor group U(M) amounts

to simply changing the boundary condition on the U(M) vector gauge fields in the bulk

Vasiliev theory.
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The part of the Lagrangian that couples matter fields to the auxiliary fields in the gauge

multiplet is given by

k

4π
Tr(−χ̄χ+ 2Dσ)− k

4π
Tr(− ¯̂χχ̂ + 2D̂σ̂)

+
[
ψ̄σψ + φ̄(σ2 −D)φ+ ψ̄χ̄φ+ φ̄χψ − σ̂ψ̄ψ +

(
σ̂2 + D̂

)
φ̄φ− ψ̄φ ¯̂χ− χ̂φ̄ψ − 2σ̂φ̄σφ− F̄F

]

+
[
−ψ̃σ ¯̃ψ + φ̃(σ2 +D) ¯̃φ− ψ̃χ ¯̃φ− φ̃χ̄ ¯̃ψ + σ̂ψ̃ ¯̃ψ +

(
σ̂2 − D̂

)
φ̃ ¯̃φ+ ¯̂χφ̃ ¯̃ψ + ψ̃ ¯̃φχ̂− 2σ̂φ̃σ ¯̃φ− F̃ ¯̃F

]
,

(5.323)

where we suppressed the both SU(N) and SU(M) indices. Integrating out the auxiliary

fields, we obtain the potential:

V =
2π

k
φ̄Aφ

Aψ̄BψB +
4π2

3k2
(φ̄Aφ

Bφ̄Bφ
Cφ̄Cφ

A + φ̄Aφ
Aφ̄Bφ

Bφ̄Cφ
C − 2φ̄Bφ

C φ̄Aφ
Bφ̄Cφ

A)

+
2π

k

(
−ψ̄AφBφ̄BψA + φ̄AψBφ̄AψB + ψ̄AφBψ̄AφB

)
.

(5.324)

The complex scalar φA and the fermion ψA transform as (2, 1) and (1, 2) under the SO(4) =

SU(2) × SU(2) R-symmetry. The potential (5.324) is manifestly invariant under the R-

symmetry.

For reference to main text we now record the double trace part of this potential in SO(4)

vector notation. Using the definitions (5.316), the (scalar singlet)2 part(V1) and (fermion

singlet)2 part(V3) are given by

V1 =−
2π

k
Φ0

+Φ
0
−,

V2 =−
π

k

(
Ψ̄aΨa + Ψ̄aΨ̄a +ΨaΨa

)
.

(5.325)

5.D.7 N = 3 U(Nk1)× U(M)k2 theories with one hypermultiplet

The N = 4 theory in the previous section sits in a discrete one parameter family of

N = 3 U(N)k1 ×U(M)k2 theories with one hypermultiplet. The potential can be written in
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an SO(3) R-symmetry manifest way:

V = V1 + V2 + V3, (5.326)

where V1 contains the double trace operator of the form (bosonic singlet)2,

V1 =
4π

k1
φ̄Aφ

Bψ̄AψB +
2π

k2

[
φ̄Aφ

Aψ̄Bψ
B + 2φ̄Aφ

Bψ̄AψB

]
, (5.327)

V2 is the scalar potential in the form of triple trace term. V3 is the double trace term of the

form (fermionic singlet)2,

V3 =
2π

k1

[
−ψ̄AφBφ̄

BψA + 2ψ̄AφAφ̄
BψB + ψ̄AφAψ̄

BφB + φ̄AψAφ̄
BψB

]

+
2π

k2

[
2ψ̄AφBφ̄AψB + ψ̄AφBψ̄

BφA + φ̄Aψ
Bφ̄Bψ

A
]
.

(5.328)

In the notation defined in (5.316) V1 and V3 becomes

V1 =
2π

k1
Φa

+Φ
b
−ηab +

2π

k2

(
Φ0

+Φ
0
− + Φa

+Φ
b
−ηab

)
,

V3 =
2π

k1

(
1

2
Ψ̄aΨbδab − 2Ψ̄0Ψ0 − Ψ̄0Ψ̄0 −Ψ0Ψ0

)
+

2π

k2

(
Ψ̄aΨbηab +

1

2
Ψ̄aΨ̄bηab +

1

2
ΨaΨbηab

)
.

(5.329)

5.D.8 The N = 6 theory

The above N = 4 theory can be generalized to a quiver N = 3 theory with ñ hy-

permultiplets by starting with the N = 3 U(N)k Chern-Simons vector model with ñM

hypermultiplets and only gauging the U(M) subgroup, of the U(ñM) flavor group, at level

−k with another N = 3 Chern-Simons gauge multiplet. The resulting theory has SU(ñ)

flavor symmetry. For generic value of ñ, the theory has N = 3 sypersymmetry, but for

ñ = 1, 2, the theory exhibits N = 4, 6 sypersymmetry, respectively. Let us focus on the
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ñ = 2 case. The part of the Lagrangian that couples matter fields to the auxiliary fields in

the gauge multiplet is given by

k

4π
Tr(−χ̄χ + 2Dσ)− k

4π
Tr(− ¯̂χχ̂ + 2D̂σ̂)

+
[
ψ̄aσψ

a + φ̄a(σ
2 −D)φa + ψ̄aχ̄φ

a + φ̄aχψ
a − σ̂ψ̄aψ

a

+
(
σ̂2 + D̂

)
φ̄aφ

a − ψ̄aφ
a ¯̂χ− χ̂φ̄aψ

a − 2σ̂φ̄aσφ
a − F̄aF

a
]

+
[
−ψ̃ȧσ

¯̃ψȧ + φ̃ȧ(σ
2 +D) ¯̃φȧ − ψ̃ȧχ

¯̃φȧ − φ̃ȧχ̄
¯̃ψȧ + σ̂ψ̃ȧ

¯̃ψȧ

+
(
σ̂2 − D̂

)
φ̃ȧ

¯̃φȧ + ¯̂χφ̃ȧ
¯̃ψȧ + ψ̃ȧ

¯̃φȧχ̂− 2σ̂φ̃ȧσ
¯̃φȧ − F̃ȧ

¯̃F ȧ
]
,

(5.330)

where a, ȧ = 1, 2 are the SU(2)× SU(2) indices. There is also an superpotential

W = −2π
k
Tr (Φ̃ȧΦbΦ̃ȧΦb). (5.331)

After integrating over the superspace, we obtain

∫
d2θ W + c.c. =− 2π

k

[
2φ̃ȧφb(φ̃ȧFb + F̃ȧφb + ψ̃ȧψb) + (ψ̃ȧφb + φ̃ȧψb)(ψ̃ȧφb + φ̃ȧψb) + c.c.

]
.

(5.332)

After integrating out all the auxiliary fields, the resulting potential can be written in a

SO(6) R-symmetry manifest way:

V = V1 + V2 + V3, (5.333)

where V1 contains the double trace operator of the form (bosonic singlet)2,

V1 =−
2π

k
(φ̄1aφ

1aψ̄2ḃψ2ḃ + φ̄1aφ
1aψ̄1bψ1b + φ̄2ȧφ

2ȧψ̄2ḃψ2ḃ + φ̄2ȧφ
2ȧψ̄1bψ1b)

+
4π

k
(φ̄2ȧφ

1bψ̄2ȧψ1b + φ̄1bφ
2ȧψ̄1bψ2ȧ + φ̄1aφ

1bψ̄1aψ1b + φ̄2ȧφ
2ḃψ̄2ȧψ2ḃ)

=− 2π

k
φ̄Aφ

Aψ̄BψB +
4π

k
φ̄Aφ

Bψ̄AψB

(5.334)
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where we have rewrite the potential in terms of the SO(3) doublets (5.308), and A,B =

(11, 12, 21, 22) are the SO(6) spinor indices. V2 is the scalar potential in the form of triple

trace term. V3 is the double trace term of the form (fermionic singlet)2,

V3 =
2π

k

(
ψ̄AφBφ̄BψA − 2ψ̄AφBφ̄AψB

)
+

2π

k
(ϵABCDψ̄

AφBψ̄CφD + ϵABCDφ̄AψBφ̄CψD)

(5.335)

where ϵ11,12,21,22 = ϵ11,12,21,22 = 1.

5.D.9 N = 3 U(N)k1 × U(M)k2 theories with two hypermultiplets

The N = 6 theory in the previous section sits in a discrete one parameter family of

N = 3 U(N)k1 × U(M)k2 theories with two hypermultiplets. The superpotential of these

theories are

W =
2π

k1
Tr (Φ̃aΦbΦ̃

bΦa) +
2π

k2
Tr (Φ̃aΦaΦ̃

bΦb), (5.336)

where a, b = 1, 2 are the SU(2) flavor indices. The potential can be written in an SO(3)

R-symmetry and SU(2) flavor symmetry manifest way:

V = V1 + V2 + V3, (5.337)

where V1 contains the double trace operator of the form (bosonic singlet)2,

V1 =
4π

k1
φ̄Aaφ

Bbψ̄A
b ψ

a
B +

2π

k2
(φ̄Aaφ

Aaψ̄Bbψ
Bb + 2φ̄Aaφ

Baψ̄A
b ψ

b
B) (5.338)

where we have rewrite the potential in terms of the SO(3) doublets (5.308), and A,B = 1, 2

are the SO(3)R spinor indices. V2 is the scalar potential in the form of triple trace term. V3
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is the double trace term of the form (fermionic singlet)2,

V3 =
2π

k1
(ψ̄AaφBbφ̄BbψAa − 2ψ̄AaφBbφ̄AbψBa) +

2π

k1
ϵABϵCDψ̄

A
a φ

Bbψ̄C
b φ

Da +
2π

k1
ϵABϵCDφ̄Aaψ

b
Bφ̄Cbψ

a
D

+
4π

k2
ψ̄A
a φ

Baφ̄Abψ
b
B +

2π

k2
ϵADϵCBψ̄

A
a φ

Baψ̄C
b φ

Db +
2π

k2
ϵADϵCBφ̄a

AψaBφ̄
b
CψDb.

(5.339)

Now we record the double trace parts of the potential in vector notation of SO(3)R ×

SU(2)flavor symmetry. Let us define

ΦIi
+ = φ̄Aaφ

Bb(σI)AB(σ
i)ab ⇔ φ̄Aaφ

Bb =
1

4
ΦIi

+(σ
I)BA(σ

i)ba

ΦIi
− = ψ̄A

a ψ
b
B(σ

I)BA(σ
i)ab ⇔ ψ̄A

a ψ
b
B =

1

4
ΦIi

−(σ
I)AB(σ

i)ba

ΨIi = φ̄Aaψ
b
B(σ

Iϵ)AB(σi)ab ⇔ φ̄Aaψ
b
B = −1

4
ΨIi(ϵσI)AB(σ̄

i)ba

Ψ̄Ii = −ψ̄A
a φ

Bb(ϵσ̄I)AB(σ̄
i)ab ⇔ ψ̄A

a φ
Bb = −1

4
Ψ̄Ii(σ̄Iϵ)AB(σ

i)ba

(5.340)

Here both set of indices I,J as well i,j run over 1,2,3,0. I,J are the vector indices of SO(3)R

while i,j are vector indices of SU(2)flavor . The 0 component corresponds to the singlet while

1,2,3 represents the vector part. In this notation the double trace potential part of the

becomes

V1 =
π

k1
ΦIi

+Φ
Jj
− η

IJηij −
2π

k2
ΦI0

+ ΦJ0
− η

IJ ,

V3 =
2π

k1

(
−1
4
Ψ̄IiΨJjδIJδij +

1

2
Ψ̄IiΨJjηIJδij +

1

2

(
Ψ̄0iΨ̄0jηij +Ψ0iΨ0jηij

))

+
2π

k2

(
Ψ̄I0ΨJ0ηIJ +

1

2
Ψ̄I0Ψ̄J0ηIJ +

1

2
ΨI0ΨJ0ηIJ

)
.

(5.341)

The double potentials for N = 6 theory is obtained from (5.341) on setting k2 = −k1 = −k.

5.E Argument for a Fermionic double trace shift

In this Appendix compare the boundary conditions and Lagrangian for the fixed line of

N = 1 theories to argue for the effective shift of fermionic boundary conditions induced by
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the Chern Simons term.

Let us use the notation φ̄ψ = Ψ and ψ̄φ = Ψ̄ for field theory single trace operators. We

know that a double trace deformation proportional to (Ψ+ Ψ̄)2 is dual to fermion boundary

condition (5.98) with α ∝ Pψ1 . On the other hand the double trace deformation (iΨ− iΨ̄)2

is dual to the fermion boundary condition with α ∝ Pψ2 . Now in the zero potential theory

(w = −1) the relevant terms in (5.300) are

−2π
k

(
ΨΨ+ Ψ̄Ψ̄+ΨΨ̄

)
,

while α = θ0Pψ2. At the N = 2 point, on the other hand, the fermion double trace term is

+
2π

k
ΨΨ̄

while α = θ0(Pψ1 + Pψ2). Subtracting these two data points we conclude that the double

trace deformation by

2π

k

(
Ψ+ Ψ̄

)2

is dual to a boundary condition deformation with α = θ0Pψ1 . By symmetry it must also be

that the double trace deformation by

−2π
k

(
Ψ− Ψ̄

)2

is dual to a boundary condition deformation with α = θ0Pψ2. Adding these together, it

follows that a double trace deformation by

8π

k
Ψ̄Ψ

is dual to the boundary condition deformation with α = θ0(Pψ1 + Pψ2). But the N = 2

theory with this boundary condition has a double trace potential equal only to

2π

k
Ψ̄Ψ.
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For consistency, it must be that the Chern Simons interaction itself induces a change in

fermion boundary conditions equal to that one would have obtained from a double trace

deformation

−6π
k
Ψ̄Ψ. (5.342)

5.F Two-point functions in free field theory

Consider the action for free SU(N) theory of a boson and a fermion in the fundamental

representation, in flat 3 dimensional euclidean space

S =

∫
d3x

(
∂µφ̄∂µφ+ ψ̄σµ∂µψ

)
(5.343)

where the SU(N) in indices are suppressed and will continue to be in what follows. The

Green’s functions for the scalar and fermions are given by

Gs(x) = ⟨φ̄(x)φ(0)⟩ =
1

4π|x|

Gf (x) = ⟨ψ̄(x)ψ(0)⟩ =
x.σ

4π|x|3

(5.344)

Let us define the ’Single Trace’ operators

Φ+ = φ̄φ, Φ− = ψ̄ψ, Ψ = φ̄ψ, Ψ̄ = ψ̄φ, Jµ
B = iφ̄∂µφ− ∂µφ̄φ, Jµ

F = iψ̄σµψ.

(5.345)
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In the free theory

⟨Φ+(x)Φ+(0)⟩ =
N

(4π)2x2
,

⟨Φ−(x)Φ−(0)⟩ =
2N

(4π)2x4
,

⟨Ψ(x)Ψ̄(0)⟩ = N(x.σ)

(4π)2x4

Jµ
B(x)JB(0)

ν =
N

8π2

δµν − 2xµxν

x2

x4

Jµ
F (x)JF (0)

ν =
N

8π2

δµν − 2xµxν

x2

x4

(5.346)
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