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Abstract

We study deformations of maximally supersymmetric gauge theories by higher di-

mensional operators in various spacetime dimensions. We classify infinitesimal defor-

mations that preserve all 16 supersymmetries, while allowing the possibility of breaking

either Lorentz or R-symmetry, using an on-shell algebraic method developed by Mov-

shev and Schwarz. We also consider the problem of extending the deformation beyond

the first order.
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1 Introduction

It has long been recognized that supersymmetry puts highly nontrivial constraints on the

structure of quantum field theories that [1, 2, 3, 4], on one hand allows for exact solutions of

certain physically relevant observables [5, 6], and on the other hand retains rich and complex

dynamics, including those that are responsible for holographic duality with gravity [7]. It is

often asserted that the greater the number of supercharges, the simpler the quantum field

theory would be, and the maximally supersymmetric Yang-Mills theory (MSYM) would be

the simplest of them all, thereby dubbed “the harmonic oscillator of the 21st century” [8].

It might then seem odd that no simple1 off-shell superspace formulation exists that makes

all 16 supersymmetries manifest [9], and it is not always easy to make non-renormalization

arguments that utilize the full power of maximal supersymmetry. Examples where such non-

renormalization theorems are desired include the derivative expansion of the effective theory

on the Coulomb branch moduli space of MSYM [10, 11, 12, 13, 14], and the constraints on

loop divergences and counter terms in MSYM in more than 4 dimensions [15, 16] (and the

analogous questions in supergravity with 32 supersymmetries [17, 18, 19]). In practice one

typically works either with component fields, where supersymmetries are realized on-shell,

or invokes arguments based on superspace formalism that makes 8 or fewer supersymmetries

manifest.2

Methods of dealing with maximally supersymmetric gauge theories with all 16 super-

symmetries manifest have been developed, both in the on-shell formulation based on the

associative algebra of super-gauge covariant derivatives and its deformations, by Movshev

and Schwarz [20, 21, 22, 23], and in the off-shell formulation based on pure spinor super-

space [24, 25, 26, 27, 28, 29, 30]. These methods will be heavily employed in our paper. As a

matter of terminology, in this paper we refer to all higher derivative gauge theories based on

Abelian or non-Abelian gauge groups as MSYM, or “deformed” MSYM. The most familiar

two-derivative super-Yang-Mills theory will be referred to as the “undeformed” MSYM. The

first question we would like to address in this paper is, what sort of higher derivative deforma-

tions of the Lagrangian are allowed by 16 supersymmetries. This is a subtle question in the

component field formulation of MSYM, because there the supersymmetry transformations

only close on-shell. It is generally necessary to deform the supersymmetry transformations

along with the Lagrangian, and it is insufficient to deform the Lagrangian only to first order

by an operator of given scaling dimension. See [31, 32, 33, 34, 35, 36, 37, 38, 39] for works

in this direction in the component field formulation.

In the case of single trace deformations in large N gauge theories that respect both

1By simple we mean one that requires introducing only finitely many auxiliary fields.
2Techniques based on on-shell scattering amplitudes have been particularly powerful and useful in 4

dimensions, though these are rather different from the approach taken in the present paper.
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Lorentz and R-symmetries, at the level of first order deformations, this problem was solved

by [22] in ten dimensions (deformations of classical 10D SYM) and by [23] in zero dimension

(IKKT matrix model), via the study of deformations of the associative algebra generated

by super-gauge covariant derivatives subject to the equations of motion (for superfields).

Identifying obstruction classes and proving their absence for the corresponding higher or-

der deformations are generally difficult. We will examine this problem, for MSYM in all

dimensions from zero to ten, and also consider deformations that break either Lorentz or

R-symmetries.3

At the level of first order (i.e., infinitesimal) single trace deformations, we present a

classification. Such infinitesimal deformations fall into three classes, which we refer as F-term

deformations, D-term deformations, and exceptional D-term deformations. If one demands

both Lorentz and R-symmetry invariance, then the only single trace F-term deformation is

the Born-Infeld deformation, roughly speaking the supersymmetric completion of TrF 4 term.

In the R-symmetry preserving, Lorentz violating case, the only F-term deformations are those

that correspond to noncommutative MSYM theories. In the Lorentz invariant, R-symmetry

violating case, the only F-term deformations transform in the symmetric traceless tensor

representations of the R-symmetry group SO(10− d), where d is the spacetime dimension,

with an exception in the zero dimension case, where there is an additional 5-form deformation

in the IKKT matrix model. All of the F-term deformations, at the infinitesimal level, can be

realized as a Lagrangian deformation by some number of supercharges acting on a half-BPS

operator [40], and have simple interpretations from the holographic duality perspective.

Interestingly, they are not always “half superspace integrals”, in that there can be fewer

than 8 supercharges acting on a half-BPS operator and still result in a fully supersymmetric

deformation. The D-term deformations are “full superspace integrals”, i.e., constructed from

all 16 supercharges acting on a non-BPS operator. These are generic in any MSYM theories.

The exceptional D-term deformations are not quite full superspace integrals, in that they

can be obtained by taking all 16 supercharges acting on a gauge-non-invariant expression

constructed out of the vector potentials and not just the field strengths. These appear only

in spacetime dimension 8 and higher.

This on-shell algebraic approach has in principle the advantage that it formulates the

problem of finding higher order deformations (or identifying the obstructions) systematically

as a cohomology problem. In practice, however, it can be very difficult to compute the

relevant obstruction classes, due to the non-explicit nature of theorems that relate certain

Hochschild cohomology of interest to the cohomology of a pure spinor complex. In simple

cases such as the noncommutative deformations and the 5-form deformation of IKKT matrix

3We have in mind the application to for instance the study of Coulomb branch effective actions, though

in this example the deformations of interest are not of the single trace type (they are non-polynomial).
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model, we can find higher order on-shell deformations by direct computation, but this is

hard to do for the Born-Infeld deformation. In a companion paper, we will solve the formal

deformation problem for the Born-Infeld term in the off-shell approach based on pure spinor

superspace.

In section 2 we review the construction of the associative algebra that captures the

equations of motion of MSYM theories, and the reformulation of the deformation problem

in terms of certain cohomology groups. We leave many important but technical details to

the Appendices, while presenting the result of the classification of infinitesimal deformations

in section 3. We discuss the higher order deformations in the on-shell approach in section 4,

and conclude in section 5.

2 The Super-Yang-Mills algebra and its deformations

2.1 Algebraization of the problem

We begin with the on-shell superfield formalism of MSYM, and will soon reformulate defor-

mations of the SYM equation of motion in terms of suitable deformations of the associative

algebra generated by super-gauge covariant derivatives. For the moment we will adopt 10-

dimensional notation, and write the Yang-Mills superfield as Aα(x, θ), where xm are the

bosonic spacetime coordinates and θα fermionic coordinates. We use upper spinor indices

to denote the chiral spinor representation of Spin(10)4 and lower indices for the anti-chiral

spinor. The gamma matrices acting on chiral or anti-chiral spinors are denoted Γm
αβ or

(Γm)αβ . Γm1···mk denote the antisymmetrized product of gamma matrices as usual. Note

that while Γm and Γmnpqr are symmetric matrices, Γmnp is anti-symmetric. Denote by dα the

ordinary super-derivative

dα =
∂

∂θα
+

1

2
(Γmθ)α

∂

∂xm
, (2.1)

and by Dα the the gauge covariant super-derivative,

Dα = dα + Aα. (2.2)

The undeformed SYM equation of motion is equivalent to the quadratic relation on Dα,

(Γmnpqr)αβ{Dα, Dβ} = 0. (2.3)

This is equivalent to the statement that

{Dα, Dβ} = Γm
αβDm, (2.4)

4For simplicity, we will be working in the Euclidean signature.
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for some operator Dm (which may be defined as the gauge covariant bosonic derivative).

We now view (2.3) as the defining relation on the generators Dα of a graded Lie super-

algebra L. Dα are the only level 1 elements of L. This is appropriate for U(N) gauge

theory in the N → ∞ limit, as there are no further independent relations. The level 2, 3, 4

components of L are spanned by

Dn ≡
1

16
Γαβ
n {Dα, Dβ}, χα ≡

1

10
Γαβ
n [Dβ, Dn], Fmn ≡ [Dm, Dn]. (2.5)

When Dα is expressed in terms of a superfield Aα(x, θ), Dm, χ
α, Fmn have the interpretation

as the bosonic super-covariant derivative, the gaugino, and the field strength superfields. It

is easy to show that

{Dα, Dn} = Γn
αβχ

β , {Dα, χ
β} =

1

4
(Γmn)α

βFmn. (2.6)

and thus χα and Fmn are indeed the only independent elements of L at level 3 and 4. It also

follows from their definition and the defining relation on Dα’s that Dm, χ
α, Fmn obey

Γn
αβ[Dn, χ

β] = 0,

[Dm, Fmn] + Γn
αβ{χ

α, χβ} = 0,
(2.7)

which takes exactly the same form as the equations of motion of MSYM in component fields,

derived from the Lagrangian

LSYM = tr

(
1

4
[Dm, Dn][Dm, Dn] + Γn

αβχ
α[Dn, χ

β]

)
. (2.8)

Later we will consider deformations of MSYM equations of motion. Instead of working

with the Lagrangian or the component field form of the equations, we will think of these

deformations as deforming the algebraic relation of Dα’s, to be described more precisely

below.

Denote by Li the level i component of L. We can split L according to its grading,

L =

∞⊕

i=1

Li. (2.9)

It will be useful to define the following graded Lie subalgebras of L,

YMd ≡ 〈Φd+1, · · · ,Φ10〉 ⊕
∞⊕

i=3

Li, (2.10)

where we wrote Φm ≡ Dm for m = d + 1, · · · , 10, corresponding to the scalar fields in the

reduction of 10D SYM to d dimensions. In the notation of [23],

YM ≡ YM0 =

∞⊕

i=2

Li, TYM ≡ YM10 =

∞⊕

i=3

Li. (2.11)
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YM may also be defined as the Lie algebra generated by the level 2 even elements Dn and

the level 3 odd elements χα, with the relations (2.7). This is because (anti-)commutators of

level 3 and higher elements with Dα can always be rewritten as commutators with Dm. Note

that TYM is in fact a free Lie algebra generated by Dm-derivatives of χ
α and Fmn. We will

often make use of the universal enveloping algebras of L and YMd, which will be denoted

by U(L) and U(YMd) respectively.

For U(N) gauge theory in the N → ∞ limit, the classical equations of motion are

completely encoded in the relations of U(YM). There is a one-to-one correspondence be-

tween consistent deformations of the MSYM equations of motion in d spacetime dimensions

and deformations of the Lie bracket of YM that take value in a correspondingly deformed

version of the associative algebra U(YMd), that is compatible with the Jacobi identity of

the Lie bracket. At the infinitesimal level, this is classified by the Lie algebra cohomology

H2(YM,U(YMd)).
5 Some basic notions and results of the deformation theory of Lie algebras

and associative algebras are reviewed in Appendix A.

We are interested in supersymmetric deformations. It is explained in Section 2.3 that the

infinitesimal (i.e. first order) deformations of superfield equations of motion are classified by

the cohomology group H2(L, U(YMd)). They would induce supersymmetric deformations

on the equations of motion of component fields, which are classified by the image of

i∗ : H2(L, U(YMd)) → H2(YM,U(YMd)). (2.12)

Here i∗ is the map induced by the inclusion i : YM →֒ L, with YM viewed as an ideal of L,

and is analyzed in Appendix C.

Once we have identified an infinitesimal supersymmetric deformation as a cohomology

class in H2(L, U(YMd)), we may ask whether it can be extended to a formal deformation to

all orders. There is a systematic procedure of identifying the obstruction class at every order,

which lies in H3(L, U(YMd)), via Gerstenhaber brackets [41]. If the n-th order obstruction

class is trivial in H3(L, U(YMd)), then there is a coboundary representative that can be

used to determine the n-th order deformation of the Lie bracket on L. Note that the higher

order deformations generally do not correspond to cohomology classes in H2(L, U(YMd)).

This construction is a slight generalization of the formal deformation theory of an associative

algebra, which is reviewed in Appendix A.4.

5For the infinitesimal deformations, the associative algebra structure on U(YMd) is not needed, and

it suffices to regard U(YMd) as a YM -module, which is isomorphic to Sym(YMd), the direct sum of all

symmetric tensor powers of YMd.
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2.2 Identifying all infinitesimal deformations

In order to classify infinitesimal supersymmetric deformations, we need to identify elements

of the the cohomology H2(L, U(YMd)) = H2(L, Sym(YMd)).
6 In this subsection, we describe

the logic in this computation, leaving many details to the appendices. A key result of [44,

23], proven based on quadratic duality of Koszul algebras, is the isomorphism (reviewed in

Appendix B.3)

H∗(L, Sym(YMd)) ≃ H∗(Sym(YMd)⊗ S, Q = λαDα). (2.13)

Here S is the ring of polynomials in pure spinor variables λα. Namely, λα is a complex spinor

variable subject to the quadratic constraint λαΓm
αβλ

β = 0. Sym(YMd) ⊗ S is decomposed

into a cochain complex according to the grading, with the coboundary operator given by

d = λαDα, where λα acts on S by multiplication and Dα acts on Sym(YMd) by (anti-

)commutators.

It is easy to understand how to go between a cohomology class in H2(Sym(YMd)⊗S) and

an infinitesimal deformation of the superfield equations of motion. The former is represented

by a cocycle of the form λαλβOαβ , Oαβ ∈ Sym(YMd). The corresponding deformation of

the MSYM equation of motion is

{Dα, Dβ} = Γm
αβDm + ǫOαβ +O(ǫ2). (2.14)

Indeed the cocycle condition on Oαβ simply follows from the Jacobi identity on the nested

commutator of Dα’s to first order in ǫ.

The cohomology groups on the RHS of (2.13) is then computed by geometric representa-

tion theory techniques. First, one “lifts” the cochain complex of vector spaces Sym(YMd)⊗S

to a cochain complex of vector bundles over the projective pure spinor space Q (see Ap-

pendix D), replacing the degree k component Sk by the line bundle O(k) over Q. This

complex of vector bundles may be expressed as a direct sum of symmetric tensor powers,

Sym(YMd), where YMd is the complex
⊕

k YMd ⊗ O(k). The differential Q = λαDα

naturally lifts to a coboundary operator acting on the sections of the bundle Sym(YMd),

Q : Ωa(Sym(YMd)⊗O(k)) → Ωa(Sym(YMd)⊗O(k + 1)), (2.15)

simply by regarding λα as a section of O(1). Together with the Dolbeault operator ∂̄ : Ωa →

Ωa+1, one obtains a double complex of sections of vector bundles over Q.

The idea here is that the cohomology groups in (2.13) are related to the hypercohomology

of this complex of vectors bundles, namely the cohomology of the diagonal differential ∂̄+Q

6By Poincaré-Birkhoff-Witt theorem [42, 43], we can replace U(YMd) by the direct sum of all symmetric

tensor powers of YMd. Each symmetric power is independently an L-module.
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on the above-mentioned double complex. The latter is computable thanks to the fact that,

on a given fiber over Q, the cohomology of Q = λαDα (now λα regarded as a fixed pure

spinor) is very simple. Furthermore, there is a quasi-isomorphism between YMd and a two-

term complex ((L2)d → W) ⊗ O(2) of vector bundles over Q. This allows us to collapse

the complex of vector bundles to a two-term complex, whose hypercohomology can then be

deduced using spectral sequence techniques and Borel-Weil-Bott theorem. The details of

this computation are explained in Appendix G.

The relation between (2.13) and the hypercohomology is understood through a spectral

sequence argument sketched below. If we first take the cohomology of the double complex

with respect to ∂̄, and use the fact that the only non-vanishing Dolbeault cohomology groups

of the line bundle O(k) → Q are

H0(Q,O(k)) ≃ Sk (k ≥ 0), H10(Q,O(k)) ≃ S∗
−8−k (k ≤ −8), (2.16)

then the differential Q of the double complex induces a coboundary operator on the ∂̄-

cohomology, which is closely related to the complex Sym(YMd) ⊗ S. More precisely, the

cohomology of Q = λαDα in the complex Sym(YMd) ⊗ S as well as the dual complex

Sym(YMd) ⊗ S∗ appear on the second page of a spectral sequence that converges to the

hypercohomology of Sym(YMd). Inspection of this spectral sequence results in a long exact

sequence

· · · → H1(L, Sym(YMd))ℓ−8 →
δ H2(L, Sym(YMd))ℓ → H2(Q, Sym(YMd))ℓ

→ι H0(L, Sym(YM))ℓ−8 → H3(L, Sym(YM))ℓ → · · ·
(2.17)

HereH∗(Q, Sym(YMd)) stands for the hypercohomology of the double complex Ω∗(Sym(YMd)).

The subscript ℓ indicates the grading. Details of this derivation can be found in Appendix E.

The cohomology group of interest is H2(L, Sym(YMd)) (recall that its image under i∗

in H2(YM, Sym(YMd)) classifies fully supersymmetric deformations). The cokernel of δ in

(2.17) can be identified within the hypercohomology H2(Q, Sym(YMd)), which is computed

explicitly in Appendix G. Loosely speaking, δ plays the role of an integration over the full

superspace. The elements in the cokernel of δ, or equivalently the kernel of ι, will be identified

as F-term deformations.

The image of δ in H2(L, Sym(YMd)), on the other hand, fits in the following commutative
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diagram,

H1(Q, Sym(YMd))ℓ
ι✲ H1(L, Sym(YMd))ℓ−8

δ✲ H2(L, Sym(YMd))ℓ ✲ H2(Q, Sym(YMd))ℓ

H1(YM, Sym(YMd))ℓ−8

A1✲

i∗

✲

H1(YM, Sym(YMd))ℓ+8

P
∼=
✲ H2(YM, Sym(YMd))ℓ

i∗

❄

H0(YM, Sym(YMd))ℓ−8

BYM

✻

A0✲ H0(YM, Sym(YMd))ℓ+8

BYM

✻

(2.18)

Here i∗ and i∗ are respectively the maps on the Lie algebra homology and cohomology induced

by the inclusion YM →֒ L. Recall that it is really the image of i∗ that gives nontrivial super-

symmetric deformations. The map BYM : H0(YM, Sym(YMd)) → H1(YM, Sym(YMd)) is

the Connes differential [45], which amounts to varying a deformation term in the Lagrangian.7

The map A0 : H0(YM, Sym(YMd)) → H0(YM, Sym(YMd)) amounts to performing a full su-

perspace integral. Namely, it takes tr(G) ∈ H0(YM, Sym(YMd)) to ǫ
α1···α16Dα1

· · ·Dα16
tr(G).

The map A1 may be defined in a similar manner on representatives of H1(YM, Sym(YMd)).

The map P : H1(YM, Sym(YMd)) → H2(YM, Sym(YMd)) is a Poincaré isomorphism, whose

existence is a nontrivial property of the Lie super-algebra YM , and is proven by [21] and

reviewed in Appendix B.4. It amounts to converting a D-term deformation in the equations

of motion for component fields to a deformation of the superfield equations.

Now the image of δ that comes from Im(i∗ ◦BYM) ⊂ H1(L, U(YMd)) are identified with

the D-term deformations, whereas the image of δ coming from the cokernel of i∗ ◦BYM will

be referred to as exceptional D-term deformations. The exceptional D-term deformations

can be studied via the following commutative diagram,

H0(L, Sym(YMd))ℓ
BL ✲ H1(L, Sym(YMd))ℓ ✛ ι

H1(Q, Sym(YMd))ℓ

H0(YM, Sym(YMd))ℓ

i∗

✻

BYM✲ H1(YM, Sym(YMd))ℓ

i∗

✻

(2.19)

where BL : H0(L, Sym(YMd)) → H1(L, Sym(YMd)) is the Connes differential. Since the left

i∗ is obviously surjective, it follows that the cokernel of i∗ ◦BYM is the same as the cokernel

7 An alternative definition of the Connes differential BY M : H0(YM, Sym(YMd)) → H1(YM, Sym(YMd))

without reference to cyclic homology can be found in Appendix F. The Connes differential on higher homology

groups is not needed.
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of BL. Hence, the exceptional D-term deformations are classified by coker(BL) modulo the

image of ι. The cokernel of BL can be studied using the spectral sequence

Ei,j
1 = Hi−j(L, Sym

j(YMd)) ⇒ Hi+j(L/YMd,C) = Hi+j(susyd,C), (2.20)

where susyd = L/YMd is the supersymmetry algebra in d spacetime dimensions. The

differential d0 on the zeroth page is given by the boundary map for Lie algebra homology

d : Λi−jL⊗ Symj(YMd) → Λi−j−1L⊗ Symj(YMd). The differential d1 on the first page is a

map induced by the inclusion YMd →֒ L; in other words, d1 is the Connes differential BL.

As is proven in [22], the spectral sequence (2.20) stabilizes on the second page (elucidated

in Appendix F); furthermore, the image of ι inside Ei,j
1 stabilizes on the first page. Hence,

the cokernel of BL is identical to the SUSY homology Hi+j(susyd,C), and the exceptional

D-term deformations are classified by Hi+j(susyd,C) modulo the image of ι. The homology

of susyd is computed in [46, 47, 48, 49], and the results are summarized in Appendix F.

2.3 Formal deformations

Starting with an infinitesimal deformation, one can try to construct an all-order formal

deformation of the MSYM superfield equations of motion. Such a deformation consists of

the following data. We have a formal deformation of the Lie bracket of L taking value in

N = U(YMd), a deformation of the representation L → End(N), and a deformation of

the associative algebra multiplication map N ⊗ N → N , that obey a set of compatibility

conditions.

Generally, given a Lie algebra G8, a Lie-ideal H, and N = U(H) ⊂ U(G) a G-module by

adjoint action, a formal deformation of the Lie bracket together with that of the representa-

tion N is described by a skew-symmetric bilinear map

ϕt =
∞∑

n=1

tnϕn : Λ2G → N, (2.21)

together with a representation map

ρt =
∞∑

n=0

tnρn : G ⊗N → N, (2.22)

with ρ0(a, x) = [a, x] the undeformed adjoint action of G on N , and a multiplication map

mt =
∞∑

n=0

tnmn : N ⊗N → N, (2.23)

8The generalization to Lie superalgebras is straightforward.
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where m0(x, y) = xy is the undeformed product in N . They obey the compatibility condi-

tions (here we omit the appropriate signs in dealing with graded Lie super-algebras)

ρt(a, b) = [a, b] + ϕt(a ∧ b), a ∈ G, b ∈ H = G ∩N,

mt(a, x)−mt(x, a) = ρt(a, x), a ∈ H, x ∈ N,
(2.24)

and the associativity identities (or Jacobi identities)

ϕt(a ∧ [b, c]) + ρt(a, ϕt(b ∧ c)) + (cyclic permutations) = 0,

ρt(a, ρt(b, x))− ρt(b, ρt(a, x)) = ρt([a, b], x) + ρt(ϕt(a ∧ b), x),

ρt(a,mt(x, y)) = mt(ρt(a, x), y) +mt(x, ρt(a, y)),

mt(mt(x, y), z) = mt(x,mt(y, z)).

(2.25)

If N is U(G), ϕt and ρt would be just given in terms of restrictions ofmt, and we would be just

talking about formal deformations of the associative algebra U(G). When N is not the same

as U(G), we have here a more general notion of a formal deformation, described by the triple

(ϕt, ρt, mt). Two deformations (ϕt, ρt, mt) and (ϕ̃t, ρ̃t, m̃t) are equivalent if they are related

by a pair of “formal isomorphism maps” a 7→ a + f t(a), f t =
∑∞

n=1 t
nfn ∈ Hom(G, N), and

ht =
∑∞

n=0 t
nhn ∈ End(N), with h0 = Id, satisfying the compatibility condition fn(b) = hn(b)

for b ∈ H = G ∩N .

The equivalence relations on the deformations are

ht(ϕ̃t(a ∧ b)) + f t([a, b])

= ϕt(a ∧ b) + ρt(a, f t(b))− ρt(b, f t(a)) +mt(f t(a), f t(b))−mt(f t(b), f t(a)),

ht(ρ̃t(a, x)) = ρt(a, ht(x)) +mt(f t(a), ht(x))−mt(ht(x), f t(a)),

ht(m̃t(x, y)) = mt(ht(x), ht(y)).

(2.26)

At the first order in t, (2.25) reduces to the following conditions on ϕ1, ρ1, m1:

ϕ1(a ∧ [b, c]) + [a, ϕ1(b ∧ c)] + (cyclic permutations) = 0,

[a, ρ1(b, x)] + ρ1(a, [b, x])− [b, ρ1(a, x)]− ρ1(b, [a, x]) = ρ1([a, b], x) + [ϕ1(a ∧ b), x],

[a,m1(x, y)] + ρ1(a, xy) = ρ1(a, x)y +m1([a, x], y) + xρ1(a, y) +m1(x, [a, y]),

m1(x, y)z +m1(xy, z) = xm1(y, z) +m1(x, yz).

(2.27)

The first equation is the cocycle condition on ϕ1 ∈ Hom(Λ2G, N), which defines a cohomology

class in H2(G, N). The equivalence relations (2.26) on the other hand reduces at first order

in t to the following trivial deformations

δϕ1(a ∧ b) = [a, f1(b)]− [b, f1(a)]− f1([a, b]),

δρ1(a, x) = [a, h1(x)]− h1([a, x]) + f1(a)x− xf1(a),

δm1(x, y) = h1(x)y + xh1(y)− h1(xy).

(2.28)
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The underlying algebraic structure of the deformation can be understood in terms of the

Lie-Hochschild cohomology [23] with respect to an L∞ action of Lie algebras. Let us begin

with the Hochschild cochain complex Ĉn(N,N). There is a natural G-action, defined on

m ∈ Ĉn(N,N) as

(g ·m)(x1, · · · , xn) = [g,m(x1, · · · , xn)]−
n∑

i=1

m(x1, · · · , [g, xi], · · · , xn). (2.29)

There is a different action by H on Ĉn+1(N,N),

(ℓh ·m)(x1, · · · , xn) =

n∑

i=0

(−1)im(x1, · · · , xi, h, xi+1, · · · , xn). (2.30)

It is straightforward to verify that

(h ·m) = dH(ℓh ·m) + ℓh · dHm ≡ {dH , ℓh} ·m,

ℓh1
· (ℓh2

·m) + ℓh2
· (ℓh1

·m) = 0,

g · (ℓh ·m)− ℓh · (g ·m) = ℓ[g,h] ·m,

g · dHm− dH(g ·m) = 0,

(2.31)

where dH is the Hochschild differential. The action by G induces an L∞-action by G/H on

Ĉn(N,N) as a differential graded module. Note that for our application (G = L, H = YMd,

G/H = susyd), the extension H → G → G/H splits, i.e., there exists a map i : G/H → G.

Given {qα} a basis of G/H with Lie bracket [qα, qβ] = f γ
αβqγ , where f

γ
αβ are structure constants

of G/H, and i(qα) = gα ∈ G, we will define the action of qα on Ĉ(N,N) to be the same as

that of gα. Such an action by qα does not preserve the Lie algebra structure of G/H, but is

rather an L∞ action, namely

qα · (qβ ·m)− qβ · (qα ·m) = f γ
αβqγ ·m+ {dH , ℓqαβ

} ·m, (2.32)

for some qαβ ∈ H (see example below). Now consider the complex
⊕

p+q=nΛ
p[tα]⊗ Ĉq(N,N)

equipped with the differential

dH − q̂ +
1

2
fα
βγt

βtγ
∂

∂tα
, (2.33)

where q̂ = q̂αt
α + 1

2
q̂αβt

αtβ. The tα’s are ghost variables dual to qα, with opposite statistics

(tα is odd if qα is even and vice versa). The hat notation emphasizes the L∞ action, namely

q̂α acts by qα · , and q̂αβ acts as ℓqαβ
. One can verify that this differential is indeed nilpotent.

The nilpotency condition takes the form of a Maurer-Cartan equation

1

2
fα
βγt

βtγ
∂

∂tα
q̂ + {dH , q̂} −

1

2
{q̂, q̂} = 0. (2.34)
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For example, in the application to the IKKT matrix model in zero dimension, G = L,

H = YM , G/H = susy0, and i : susy0
∼

−→ L1. The generators qα = Dα are odd, and so

the commutators above are to be replaced by the appropriate anti-commutators. We have

2D(α · (Dβ) ·m) = Γi
αβ{dH , ℓDi

} ·m (2.35)

on a Hochschild cochain m, and so qαβ = Γi
αβDi.

The purpose of introducing this L∞ machinery is so that the first order deformations

(2.27) modulo (2.28) can be rephrased as the degree n = 2 component of the Lie-Hochschild

cohomology HHn
L∞,H(G, Ĉ(N,N)) defined on the complex
⊕

p+q=n

HomH(Λ
pG, Ĉq(N,N)) ≃

⊕

p+q=n

(
Λp[ηI ]⊗ Ĉq(N,N)

)
H

(2.36)

with the differential dH − q̂Iη
I + 1

2
f I
JKη

JηK∂ηI , where η
I are ghost variables dual to the basis

{gI} of G, f I
JK are the structure constants of G, and q̂I acts by gI · as defined in (2.29). A

subset of these, {ga}, generate the ideal H. The subscript H indicates that the cochain f in

(2.36) are subject to the H-invariance condition9

(
xa ∂

∂ηa
+ ℓh

)
f = 0, (2.38)

for all h = xaga ∈ H, which ensures the compatibility condition (2.24) between various

deformation maps.

On the other hand, the Lie algebra cohomology Hn(G, N), defined in terms of Chevalley-

Eilenberg cochain complex, can be reformulated via the Hochschild-Serre spectral sequence as

the Lie-Hochschild cohomology with respect to the L∞ action of G/H, namely HHn
L∞

(G/H, Ĉ(N,N))

defined from the complex
⊕

p+q=n

Hom(Λp(G/H), Ĉq(N,N)) ≃
⊕

p+q=n

Λp[tα]⊗ Ĉq(N,N) (2.39)

with the differential (2.33). The two cochain complexes (2.36) and (2.39) are isomor-

phic,10 which implies that the inequivalent triples (ϕ1, ρ1, m1) are indeed classified by [ϕ1] ∈

H2(G, N) alone. The obstruction class to second order deformation is given in terms of the

Gerstenhaber bracket of (ϕ1, ρ1, m1) with itself, which lies in H3(G, N). In our case, G = L,

N = U(YMd), we will reformulate this construction explicitly in terms of pure spinor vari-

ables and discuss some examples in section 4.

9The H-invariance condition is preserved by the differential,

{(dH − q̂Iη
I +

1

2
f I
JKηJηK∂ηI ), (xa∂ηa + ℓh)} = −f b

Iaη
Ixa

(
∂ηb + ℓgb

)
. (2.37)

10 The differential on the complex (2.36) when restricting to ηa = 0 becomes the differential on the complex

(2.39).
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3 A classification of infinitesimal deformations

Now we summarize the results of our classification of the F-term11 and exceptional D-term

deformations. The details of the computation that led to this classification are explained in

Appendix H. First we describe the deformations that are invariant under both Lorentz and

R-symmetries, in every spacetime dimension from 0 to 10. Then we describe the (still fully

supersymmetric) deformations that are Lorentz invariant but not R-symmetry singlets, and

the ones that are R-symmetry invariant but not Lorentz singlets.

3.1 SO(d)× SO(10− d) invariant deformations

3.1.1 F-term deformations

The only F-term deformation that preserves the full SO(d)× SO(10− d) symmetry corre-

sponds to a cohomology class in H2(L, Sym3(YMd))8. In the complex Sym(YMd) ⊗ S of

(2.13), this class can be represented by

(λΓmχ) ◦ (λΓnχ) ◦ Fmn, (3.1)

where ◦ denotes the symmetric product. This is the well-known Born-Infeld deformation.

3.1.2 Exceptional D-term deformations

There are two exceptional D-term deformations that preserve SO(10) in 10 dimensions, and

one exceptional D-term deformation that preserves SO(8)× SO(2) in 8 dimensions.

The first exceptional D-term deformation in 10 spacetime dimensions corresponds to a

class in H1(L, Sym
1(YM10))4, represented by the cycle

Dα ⊗ χα. (3.2)

(3.2) maps to a nontrivial class in H1(L, Sym
1(YM)) under the map induced by the inclusion

YM10 ⊂ YM , and it can be pulled back to a class

4

5
〈Dm ◦Dm〉 (3.3)

11 Our classification of F-term deformations is based on several assumptions used in computing the hy-

percohomology in Appendix G. Additional F-term deformaitons may exist if some of the assumptions fail.

Our classification of exceptional D-terms is complete.
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in H0(L, Sym
2(YM))4 under BYM . By the commutativity of the diagram (2.18) at d = 0,

the Lagrangian density of this deformation is given by

A0tr (Dm ◦Dm) = ǫα1···α16Dα1
· · ·Dα16

tr (Dm ◦Dm). (3.4)

In the language of the component field Lagrangian, this deformation corresponds to a dimen-

sion 10 operator. Interestingly, its reduction to lower spacetime dimensions (in which case

it becomes an ordinary D-term) appears to be the counterterm responsible for the 2-loop

divergence in 7-dimensional MSYM, the 3-loop divergence of 6-dimensional MSYM, and the

6-loop divergence of the 5-dimensional MSYM.

The second exceptional D-term deformations in 10 dimensions corresponds to a class in

H1(L, Sym
3(YM10))12, represented by the following cycle

14Dα ⊗ χα ◦ Fmn ◦ F
mn −Dα ⊗ (Γmnpqχ)α ◦ Fmn ◦ Fpq, (3.5)

which is mapped to a nontrivial class in H1(L, Sym
3(YM))12 and can be further pulled back

to a class

〈2Dp ◦D
p ◦ Fmn ◦ F

mn − 3Dp ◦ Fmn ◦ χ
α ◦ (Γmnpχ)α〉 (3.6)

in H0(L, Sym
4(YM)12. The Lagrangian density is given by

ǫα1···α16Dα1
· · ·Dα16

tr (2Dp ◦D
p ◦ Fmn ◦ F

mn − 3Dp ◦ Fmn ◦ χ
α ◦ (Γmnpχ)α). (3.7)

In the component field Lagrangian this corresponds to a dimension 14 operator.

The exceptional D-term deformation in 8 spacetime dimensions corresponds to a class in

H1(L, Sym
2(YM8))8, represented by the cycle

14Dα ⊗ χα ◦ F9,10 −Dα ⊗ (Γ9,10,µνχ)
α ◦ Fµν . (3.8)

This class maps to a nontrivial class in H1(L, Sym
2(YM))8 under the the map induced by

the inclusion YM8 ⊂ YM , and it can further be pulled back to a class

〈Dp ◦ χ
α ◦ (Γ9,10,pχ)α〉 (3.9)

in H0(L, Sym
3(YM))8. The Lagrangian density of this deformation is then given by

ǫα1···α16Dα1
· · ·Dα16

tr (Dµ ◦ χ
α ◦ (Γ9,10,µχ)α). (3.10)

In the component field Lagrangian this corresponds to a dimension 12 operator.

3.2 Lorentz invariant deformations

In this subsection, we list all the fully supersymmetric single trace deformations of d-

dimensional MSYM that preserve the SO(d) Lorentz symmetry, but break the SO(10− d)

R-symmetry.
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3.2.1 F-term deformations

There is an F-term deformation in each symmetric k-tensor representation of SO(10 −

d) R-symmetry. It corresponds to a class in H2(L, Symk+3(YMd))2k+8. In the complex

Sym(YMd)⊗ S in (2.13), this class can be represented by the cocycle

(λΓmχ) ◦ (λΓnχ) ◦ (χ ◦ Γmn(i1χ) ◦Di2 ◦ · · · ◦Dik), k ≥ 1. (3.11)

In the component field language, they correspond to Lagrangian deformations by 8 super-

charges acting on a half BPS operator. In this sense they can be thought of as half superspace

integrals, just like the Born-Infeld deformation.

There is an extra F-term deformation in 0-dimensional MSYM (i.e. IKKT matrix model)

in the self-dual 5-form representation of the SO(10) R-symmetry. It corresponds to a class

in H2(L, Sym2(YM))2. In the complex Sym(YM)⊗S in (2.13), this class can be represented

by the cocycle

(λΓmnpqrλ)Ds ◦Ds − 10D[m ◦ (λΓnpqr]sλ)Ds. (3.12)

In the component field Lagrangian, it corresponds to 4 supercharges acting on a half BPS

operator, of the form

(Γ[ab
m)αβ(Γcd

n)γδDαDβDγDδ tr(Φe] ◦ Φm ◦ Φn)
′

∼ tr
(
Φ[a ◦ [Φb,Φc] ◦ [Φd,Φe]] + · · ·

)
.

(3.13)

The prime in the first line indicates that the traces on the vector indices of the three Φ’s

are removed. This deformation arises in the world volume theory of multi-D-instantons in

type IIB string theory on AdS5 × S5, with the AdS5 × S5 viewed as a deformation from flat

spacetime.

3.2.2 Exceptional D-term deformations

There is no Lorentz symmetry preserving, but R-symmetry breaking exceptional D-term

deformation.

3.3 R-symmetry invariant deformations

In this subsection, we list all the fully supersymmetric single trace deformations that preserve

SO(10− d) R-symmetry, while breaking SO(d) Lorentz symmetry.
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3.3.1 F-term deformations

There is a class of F-term deformations in every spacetime dimension d, that transforms in

the anti-symmetric 2-form representation of the SO(d) Lorentz symmetry. It corresponds to

a class in H2(L, Sym2(YMd))4. In the complex Sym(YMd) ⊗ S in (2.13), this class can be

represented by the cocycle

(λΓiχ) ◦ (λΓjχ). (3.14)

This is the usual noncommutative deformation of MSYM theories.

3.3.2 Exceptional D-term deformations

R-symmetry invariant exceptional D-term deformations exist in spacetime dimension 8, 9

and 10. The one in 8 spacetime dimensions is an SO(8) × SO(2) singlet, and has been

already discussed in Section 3.1.2.

In 9 spacetime dimensions, there is an exceptional D-term deformation in the vector

representation of SO(9). It corresponds to a class in H1(L, Sym
2(YM9))8, and can be repre-

sented by the cycle

14Dα ⊗ χα ◦ Fi,10 −Dα ⊗ (Γi,10,pqχ)
α ◦ Fpq. (3.15)

In 10 spacetime dimensions, there is an exceptional D-term deformation in the anti-

symmetric 2-form representation, and an exceptional D-term deformation in the self-dual

5-form representation. The exceptional D-term deformation in the 2-form representation

corresponds to a class in H1(L, Sym
2(YM10))8, and can be represented by the cycle

14Dα ⊗ χα ◦ Fmn −Dα ⊗ (Γmnpqχ)
α ◦ Fpq. (3.16)

The Lorentz 5-form deformation corresponds to a class in H1(L, Sym
4(YM10))14.

4 Higher order deformations

In the on-shell formulation, it is a very nontrivial problem to extend the infinitesimal su-

persymmetric deformations beyond the first order. A priori, there can be obstructions that

correspond to cohomology classes in H3(L, U(YMd)), as we have seen in section 2.3. While

such obstructions can in principle be computed as Gerstenhaber brackets, and the higher or-

der deformation can be determined when the obstruction class vanishes, in practice a direct

computation is very difficult, partly due to the complicated form of the inverse Cartan-

Eilenberg map.
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One way to compute the obstruction classes and higher order deformations is to enlarge

the L-module U(YMd), or the complex U(YMd) ⊗ S, in such way that the cohomology

class representing the infinitesimal deformation is trivialized. One can then absorb the

deformation by a redefinition of the generators of L in the enlarged module. This allows

for a construction of all order deformations in the enlarged module. One then tries to show

that these higher order deformations are cohomologically equivalent to ones that lie in the

original complex U(YMd)⊗ S.

In this section we describe some limited progress along this line. The structure we

uncover here seems closely related to the non-minimal extension of the pure spinor formalism.

Ultimately, the best way to determine the higher order deformation is based on the off-shell

formulation (where the non-minimal pure spinor superspace is employed), which will be the

subject of a companion paper.

4.1 Obstruction classes and the non-minimal pure spinor formal-

ism

Let us begin with the deformed product on the generators of U(L),

λαλβDα ⋆ Dβ = ǫOλ +O(ǫ2), (4.1)

where Oλ ≡ λαλβOαβ , Oαβ ∈ U(YMd). Associativity at first order in ǫ demands that Oλ

obeys the cocycle condition on U(YMd)⊗ S,

[Q,Oλ] = 0. (4.2)

The question is to extend the deformation to higher orders in ǫ while maintaining the asso-

ciativity of ⋆, by adding operators on the RHS that take value in U(YMd).

In some simple cases, such as the noncommutative deformation, Oλ will become exact

once we extend the module from N = U(YMd) to U(YM), or to U(L). Generally this is

not enough: the cocycle Oλ may not be exact in U(L) ⊗ S either, as is the case for the

Born-Infeld deformation. The idea is to further enlarge the module N ⊗ S ⊂ U(L) ⊗ S to

some N so as to trivialize Q-cohomology, so that Oλ becomes an exact element in N . This

can be achieved by introducing non-minimal pure spinor variables λα, and taking

N = U(L)⊗ Sλ,λ, (4.3)

where Sλ,λ is the ring of polynomials in the pure spinors λα, λα, as well as (λλ)
−1. We will

see later that for the Born-Infeld deformation, Oλ is indeed exact in N . For now let us

assume this is the case, and write

Oλ = {Q,R} (4.4)
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for some R = λαRα in N . There is an ambiguity of shifting R by a Q-exact element,

δR = [Q,Ω], Ω ∈ N . (4.5)

Now consider a redefinition of generators,

D̃α = Dα − ǫRα, (4.6)

so that the D̃α’s under the deformed ⋆ product obey the same quadratic relation as Dα’s

under the undeformed product, up to O(ǫ2) corrections. Namely, it follows from (4.1) and

(4.6) that

λαλβD̃α ⋆ D̃β = O(ǫ2). (4.7)

This suggests that we construct the higher order deformation of the ⋆ product by demanding

that D̃α’s under ⋆ product obey exactly the same relations as Dα’s did under the original

undeformed relation of U(L). Namely, we insist on

λαλβD̃α ⋆ D̃β = 0, (4.8)

and that Dα is related by

Dα = D̃α + ǫR̃α. (4.9)

Now we will view R̃α as an expression built out of ⋆ products of D̃β. By virtue of (4.8), the

level 2 and higher elements in the Lie algebra generated by D̃α under ⋆-commutator can be

exactly identified as the Lie algebra YM . By doing so, we have then completely specified

⋆ as a deformed product on U(L) ⊗ Sλ,λ. Note that Q ⋆ Q is generally not an element of

U(YM)⊗ S, and we haven’t yet found a true deformation of U(L). What we have is

λαλβDα ⋆ Dβ = ǫÕλ + ǫ2R̃ ⋆ R̃, (4.10)

where Õλ = {λαD̃α, R̃}⋆. A key point is that Õλ is an element of U(YM)⊗S2 (the subscript

stands for the degree in λ), and is independent of the non-minimal variable λ. Since R̃ =

λαR̃α is built out of D̃α, R̃⋆R̃ can be computed by applying the relations on D̃α under ⋆ that

take the same form as the relations as obeyed by Dα under the original undeformed product

in U(L). The question is whether R̃ ⋆ R̃ is also in U(YM) ⊗ S2. If this is true, then we

already have an all-order deformation of the superfield equation of motion, as desired. But

this won’t be the case in general. If the second order deformation is indeed unobstructed,

we can only expect that, after some appropriate shift δR = [Q,Ω], we can find an R such

that [
Õλ, R̃

]
⋆
=

[
λαD̃α, R̃ ⋆ R̃

]
⋆
=

[
λαD̃α, Õ

(2)
λ

]
⋆
, (4.11)
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where Õ(2)
λ ∈ U(YM) ⊗ S2. In other words, R̃ ⋆ R̃ is cohomologous to Õ(2) which is in-

dependent of λ. If the cohomology of
[
λαD̃α, ·

]
⋆
is trivial, then we would be able to find

R(2) = λαR̃
(2)
α in N such that

R̃ ⋆ R̃ = Õ(2)
λ −

{
λαD̃α, R̃

(2)
}
⋆
. (4.12)

This leads to

λαλβ(D̃α + ǫR̃α + ǫ2R̃(2)
α ) ⋆ (D̃β + ǫR̃β + ǫ2R̃

(2)
β ) = ǫÕλ + ǫ2Õ(2)

λ +O(ǫ3). (4.13)

We are then instructed to correct the relation (4.9) by adding an order ǫ2 term,

Dα = D̃α + ǫR̃α + ǫ2R̃(2)
α , (4.14)

while still insisting on D̃α themselves obey the same relations under ⋆. This amounts to

correcting the ⋆ product of Dα at order ǫ2, to

λαλβDα ⋆ Dβ = ǫÕλ + ǫ2Õ
(2)
λ + ǫ3

{
R,R(2)

}
⋆
+O(ǫ4). (4.15)

We then carry on the same procedure, and ask if we can find a λαD̃α-exact shift of R̃
(2) such

that [
λαD̃α, {R̃, R̃

(2)}⋆
]
⋆
=

[
λαD̃α, Õ

(3)
λ

]
⋆
, (4.16)

for some Õ(3)
λ ∈ U(YM)⊗ S2. If so, we seek R̃(3) = λαR̃

(3)
α ∈ N , that obeys

{R̃λ, R̃
(2)
λ }⋆ = Õ(3)

λ −
{
λαD̃α, R̃

(3)
}

⋆
, (4.17)

and so on and so forth.

For the computation of these higher order deformations, we might as well drop all ∼

scripts and at the same time replace ⋆ by the original undeformed product of U(L) or its

non-minimal extension N = U(L)⊗ Sλ,λ.

To summarize, in order to show that there is no obstruction, and to construct the next

order deformations, we need to first write Oλ in the form {Q,R} for some R = λαRα ∈ N ,

then find an O(2)
λ ∈ U(YM)⊗ S2, namely one that is independent of λ, such that

[
Q, (R + [Q,Ω])2

]
= [Oλ, R + [Q,Ω]] =

[
Q,O(2)

λ

]
. (4.18)

The freedom of shifting R by [Q,Ω] amounts to shifting O(2)
λ by

O(2)
λ → O(2)

λ + [Oλ,Ω]. (4.19)

Next, we try to find R(2) = λαR
(2)
α in N , such that

R · R = O(2)
λ +

{
Q,R(2)

}
, (4.20)

and so forth. We now give a few examples of such computations.
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4.2 Examples of second order deformations

4.2.1 Noncommutative deformation

As already seen, the noncommutative deformation of MSYM at the first order is represented

by the cocycle in Sym(YMd)⊗ S,

ONC
λ = ωmn(λΓmχ) ◦ (λΓnχ). (4.21)

Here m,n are along the d spacetime directions. Now if we regard ONC
λ as an element of

Sym(YM)⊗ S, it becomes Q-exact, with ONC
λ = {Q,R}, and

R = ωmnDm ◦ (λΓnχ). (4.22)

Indeed while ONC
αβ is an element of Sym(YMd), Rα lies in Sym(YM) due to the Dm factor

in the symmetrized product.

To compute R2, and express the result in terms of symmetrized products, we can make

use of Baker-Campbell-Hausdorff formula, and in particular

exp(ln(eXeY ))− exp(ln(eY eX))
∣∣
X2Y 2

= X ◦ Y ◦ [X, Y ]−
1

24
[X, [Y, [X, Y ]]]−

1

24
[Y, [X, [X, Y ]]].

(4.23)

Any factor that involves a commutator appearing in R2 already lies in YMd. All we need to

worry about is the term X ◦ Y ◦ [X, Y ] which is a priori an element of Sym3(YM) but not

Sym3(YMd). A simple computation gives

R2 = ωmnωpq

[
Dm ◦Dp ◦ {λΓnχ, λΓqχ}+ 2Dm ◦ (λΓpχ) ◦ (λΓnDqχ) + (λΓmχ) ◦ (λΓpχ) ◦ [Dn, Dq]

]

+O(2)
λ

= Q

[
ωmnωpq(Dm ◦Dp ◦ [Dn, λΓqχ] +Dm ◦ (λΓpχ) ◦ [Dn, Dq])

]
+O(2)

λ ,

(4.24)

where O(2)
λ ∈ Sym3(YMd). From this we can also read off R̃

(2)
λ ,

R̃
(2)
λ = ωmnωpq(Dm ◦Dp ◦ [Dn, λΓqχ] +Dm ◦ (λΓpχ) ◦ [Dn, Dq]). (4.25)

4.2.2 5-form deformation

As stated earlier in our classification, the 0-dimension MSYM has an F-term deformation

that transforms in the self-dual 5-form representation of the SO(10) R-symmetry, represented
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by the cocycle in Sym(YM)⊗ S:

OSD =
1

16 · 5!
ωαβ(Γabcde)αβ

[
(λΓabcdeλ)D

2 − 10D[a ◦ (λΓbcde]fλ)D
f
]

= −ωαβQDα ◦QDβ ,
(4.26)

where ω(αβ) transforms in the representation [00002] of Spin(10). While Oabcde represents a

nontrivial cohomology class in H2(Sym(YM)⊗S), it becomes becomes Q-exact in Sym(L)⊗

S. We have OSD = {Q,R}, with

R = ωαβDα ◦QDβ. (4.27)

We can then compute

R2 = −ωαβωγδ

[
Dα ◦Dγ ◦ [QDβ, QDδ]− 2Dα ◦QDγ ◦ [QDβ , Dδ] +QDα ◦QDγ ◦ {Dβ, Dδ}

]

+O(2)
λ

= −Q

[
ωαβωγδ

(
Dα ◦Dγ ◦ [Dβ, QDδ] +Dα ◦QDγ ◦ {Dβ, Dδ}

)]
+O(2)

λ ,

(4.28)

and find

R̃
(2)
λ = −ωαβωγδ

(
Dα ◦Dγ ◦ [Dβ , QDδ] +Dα ◦QDγ ◦ {Dβ, Dδ}

)
. (4.29)

4.2.3 Born-Infeld deformation

The first order Born-Infeld deformation is represented by the cocycle

Oλ = (λΓmχ) ◦ (λΓnχ) ◦ Fmn = QDm ◦QDn ◦ Fmn. (4.30)

In order to trivialize the cohomology of Oλ, extending Sym(YM) to Sym(L) is not enough.

We need to consider the module N = Sym(L) ⊗ Sλ,λ, by allowing dependence on the non-

minimal pure spinor variable λα, as well as (λλ)−1. Using pure spinor identities, one can

verify that

R =
1

2
(λλ)−1(λΓmχ) ◦ (λΓnχ) ◦ (λΓmnχ) (4.31)

obeys {Q,R} = Oλ. Keep in mind that, in order to find the second order deformation, we

may need to further shift

R → R + [Q,Ω], (4.32)

for some Ω of homogeneous degree zero in λ and λ.

In principle, we would like to compute R · R (keep in mind that R is odd and R2 is a

nontrivial anti-commutator), and express the result in the form of a symmetrized product.
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Since R is the symmetrized product of three χ’s, we can apply the following special case of

Baker-Campbell-Hausdorff formula,

exp(ln(eXeY ))− exp(ln(eY eX))
∣∣
X3Y 3

=
1

4
X ◦X ◦ Y ◦ Y ◦ [X, Y ] +

1

24
[X, Y ] ◦ [X, Y ] ◦ [X, Y ] +

1

12
X ◦ [X, Y ] ◦ [Y, [Y,X ]]

+
1

12
Y ◦ [X, Y ] ◦ [X, [X, Y ]] +

1

24
X ◦ Y ◦

(
[X, [Y, [Y,X ]]]− [Y, [X, [X, Y ]]]

)

−
1

180
[X, [Y, [X, [Y, [Y,X ]]]]] +

1

180
[Y, [X, [Y, [X, [X, Y ]]]]]

+
1

720
[X, [X, [Y, [Y, [Y,X ]]]]]−

1

720
[Y, [Y, [X, [X, [X, Y ]]]]]

−
1

720
[X, [Y, [Y, [X, [X, Y ]]]]] +

1

720
[Y, [X, [X, [Y, [Y,X ]]]]].

(4.33)

In the end, we would like to write R2 in the form

R · R = O
(2)
λ + {Q,R(2)}+ [Oλ,Ω], (4.34)

where O(2)
λ ∈ U(YM) ⊗ S2 is independent of λ, and Ω, R(2) are elements of N that depend

λ. While this should be possible, we have not carried out this computation explicitly. In the

on-shell approach considered in this paper, proving the absence of obstruction and finding

higher order deformations is generally quite difficult. This question is best addressed in the

off-shell formulation, which we consider in the next paper.

5 Discussion

All of the F-term deformations listed in our classification are equivalent to Lagrangian de-

formations by a supersymmetry descendant of a half BPS operator in MSYM, though not

necessarily a half superspace integral (Q8-descendant). Presumably the same classification

result can also be obtained by directly inspecting the operator spectrum. Our approach,

following Movshev and Schwarz, does have the advantage of making all supersymmetries

manifest, and allows for writing down the full supersymmetric completion of these terms

easily in the superfield formalism.

Potentially, an immediate application of our classification is to the study of SYM theo-

ries using supersymmetric localization. It is believed that the six-dimensional AN−1 (2, 0)

superconformal field theory [50, 51], when compactified on the circle, is a UV completion

of the five-dimensional MSYM theory [52, 53]. In some particular renormalization scheme,

this 5D theory should be described by the MSYM Lagrangian together with infinitely many

higher derivative operators. While it is attempting to conjecture that this higher derivative
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operators are somehow absent, this possibility appears to be ruled out since the 5D MSYM

is after all not perturbatively UV finite [54]. It is then an interesting question what these

higher derivative terms are exactly. As we have seen, the only single trace deformations that

are invariant under Lorentz and R-symmetry are the Born-Infeld deformation and D-terms.

The Born-Infeld deformation is the only one that could affect the computation of e.g. the

supersymmetric S5 partition function, which computes the superconformal index of the 6D

theory. We are not aware of an argument that rules out the presence of this term in the 5D

theory, though it is likely that it is in fact absent.

Another nontrivial example of a UV completion of MSYM occurs in six-dimensions,

namely the AN−1 (1, 1) little string theory [55, 56], whose low energy limit is the 6D MSYM.

In this case, a successful matching of the F 4 term in the Coulomb branch effective action

[57, 58], between that of (the undeformed) 6D MSYM, and of the double scaled little string

theory [59, 60] indicates that the TrF 4 term is absent in derivative expansion of the 6D non-

Abelian gauge theory in question (at the origin of the Coulomb branch). The possible higher

derivative terms must all be D-terms, and it would be interesting to determine them, say by

comparing with the double scaled little string theory (though the latter is really approaching

the problem from large distances on the Coulomb branch).

The algebraic approach adopted in this paper, in principle, also formulates the problem of

finding higher order deformations in a systematic way. Unfortunately, in practice the latter

still appears to be a very difficult problem in the deformation theory of associative algebras.

In some simple cases, such as the noncommutative deformation and the 5-form deformation

in zero dimension, the second order deformation can be found by explicit computation. In

some other cases, such as the Born-Infeld deformation, it is possible to prove by inspecting

elements of the obstruction cohomology group H3(L, U(YMd)) that there are no candidate

obstruction class of the appropriate degree, and thus the deformation can be extended to

second order (or α′4 in the language of open string effective action). This would not be

the case for the higher order obstruction classes however, and a direct computation of the

potential obstruction class is quite hard, partly due to the complicated explicit form of

isomorphism H∗(U(YMd) ⊗ S) → H∗(L, U(YMd)) at th level of cochains. The off-shell

formulation of the problem, which will be discussed in our next paper, offers a solution

to this problem. We will see there that the (non-Abelian) Born-Infeld deformation can

be extended to all orders, based on a BV action written in the non-minimal pure spinor

superspace. In principle, the on-shell equation in the superfields can be recovered from it,

by eliminating the auxiliary fields.

In this paper we have limited ourselves to single trace deformations. For finite rank gauge

groups, or for Abelian theories, the algebraic approach is still possible, if one replaces YMd

by its quotient by an ideal generated by relations among products of finite size matrices. The
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complex U(YMd)⊗S will now be lifted to a more complicated complex of vector bundles, and

the computation of the hypercohomology involved will be more complicated. More generally

one would also like to consider non-polynomial deformations in the fields, as is the case in

the derivative expansion of the low energy effective action near the Coulomb branch moduli

space of the quantum MSYM theory, where little is known about the constraint from 16

supersymmetries beyond eight-derivative order [12, 13, 14]. This is a problem we would like

to visit in the future.

An appealing prospective of the on-shell algebraic approach is possibly a classification of

higher derivative deformations of maximal supergravity [61, 62, 63], in various dimensions

(up to 11). In this case, while one can still consider the associative algebra generated by

super-gauge covariant derivatives [64, 65, 66], the relations are not merely quadratic in the

generators, and so the machinery of this paper cannot be applied directly. It would be

interesting to see whether the cohomology problem of finding nontrivial higher derivative

deformations in supergravity can be solved systematically in a purely algebraic approach.
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A Cohomology and deformations

In this appendix, we recap the notions of Lie algebra cohomology and Hochschild cohomol-

ogy, and their relation to deformations of an associative algebra, which are standard but

perhaps unfamiliar to physicists12. Everything introduced here for Lie algebras can be easily

generalized for Lie super-algebras.

12See [67, 68] for more detailed discussions.
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A.1 Lie algebra (co)homology

Let G be a Lie algebra and N a G-module. An N -valued p-cochain is a skew-symmetric p-

linear map c : G∧
p
· · · ∧G → N. The (abelian) group of all p-cochains is denoted by Cp(G, N),

i.e., Cp(G, N) = Hom(ΛpG, N). The Lie algebra cohomology H∗(G, N) is defined as the

cohomology of the complex C∗(G, N) equipped with the coboundary map d : Cp−1(G, N) →

Cp(G, N) that is defined as follows. For c ∈ Cp(G, N),

dc(x1, · · · , xp) =

p∑

i=1

(−1)ixi · c(x1, · · · , x̂i, · · · , xp).

+
∑

1≤i<j≤p

(−1)i+j−1c([xi, xj], x1, · · · , x̂i, · · · , x̂j, · · · , xp).
(A.1)

Similarly, the Lie algebra homology H∗(G, N) is the homology of the chain complex

C∗(G, N) ≡ Λ∗G ⊗ N with respect to the boundary map d : Cp(G, N) → Cp−1(G, N) de-

fined as

d(x1 ∧ · · · ∧ xp ⊗m) =

p∑

i=1

(−1)ix1 ∧ · · · ∧ x̂i ∧ · · · ∧ xp ⊗ xk ·m

+
∑

1≤i<j≤p

(−1)i+j[xi, xj] ∧ x1 ∧ · · · x̂i ∧ · · · x̂j · · ·xp ⊗m.
(A.2)

A.2 Derivations and infinitesimal deformations

The following Lie algebra cohomology groups have simple interpretations.

• H1(G,G) as outer derivations.

A derivation of a Lie algebra G is a linear map f : G → G that is compatible with the

Lie bracket, i.e.,

f([a, b])− [f(a), b]− [a, f(b)] = 0, ∀a, b ∈ G. (A.3)

This condition is the same as the Lie algebra cocycle condition df(a, b) = 0 if we tregard

G as a G-module by action of the Lie bracket. An inner derivation of G is a linear map

gx : G → G such that gx : a 7→ [x, a] for a fixed x ∈ G. This may be re-expressed as

the coboundary condition gx = dx. The cohomology classes in H1(G,G) are called the

outer derivations of G.

• H2(G,G) as infinitesimal deformations of G.
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The Lie bracket is a bilinear map m : G∧G → G. Consider an infinitesimal deformation

of the Lie bracket fromm to m+δm. In order to preserve the Jacobi identity, we require

(m+ δm)((m+ δm)(a, b), c) + (cyclic permutations) = 0. (A.4)

At linear level in δm, this condition becomes

δm([a, b], c)− [c, δm(a, b)] + (cyclic permutations) ≡ d(δm)(a, b, c) = 0. (A.5)

Hence consistent deformations of G correspond to 2-cocycles of the Lie algebra cohomol-

ogy with coefficients in G. Trivial deformations δm are infinitesimal homomorphisms

δf : G → G such that

(m+ δm)(a + δf(a), b+ δf(b)) = [a, b] + δf([a, b]). (A.6)

At linear level in δm and δf , this condition becomes

δm(a, b) = δf([a, b])− [δf(a), b]− [a, δf(b)] ≡ d(δf)(a, b). (A.7)

Hence trivial deformations of G correspond to 2-coboundaries. We conclude that non-

trivial infinitesimal deformations of G are classified by H2(G,G).

A.3 Hochschild cohomology

The analog of Lie algebra cohomology but for an associative algebra is the Hochschild coho-

mology. For A an associative algebra and N an A-bimodule, we have a (Hochschild) complex

Ĉ∗(A,N) = Hom(⊗∗A,N) that is equipped with the differential

dc(x1, · · · , xp+1) = x1 · c(x2, · · · , xp+1) + (−1)p+1c(x1, · · · , xp) · xp+1

+
∑

1≤i≤p

(−1)ic(x1, · · · , xixi+1, · · · , xp+1).
(A.8)

The Hochschild cohomology HH∗(A,N) is the cohomology of the above complex. Outer

derivations and infinitesimal deformations of A are classified by HH1(A,A) and HH2(A,A)

(or HH2(A,N)).

When A is the universal enveloping algebra U(G) of some Lie algebra G (isomorphic to⊕
j Sym

j(G) by the Poincaré-Birkhoff-Witt theorem), there is the Cartan-Eilenberg isomor-

phism HH∗(A,N) ∼= H∗(G, N) [68].
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A.4 Formal deformations

A formal deformation of an associative algebra A is a multiplication map mt : A⊗ A → A

expressed as a formal power series mt(a, b) =
∑∞

n=0mn(a, b)t
n, where m0(a, b) ≡ ab is the

undeformed multiplication map. Associativity requires

0 = mt(mt(a, b), c)−mt(a,mt(b, c))

=
∞∑

i,j=0

ti+j (mi(mj(a, b), c)−mi(a,mj(b, c))) .
(A.9)

It follows that
mn(ab, c)−mn(a, bc) +mn(a, b)c− amn(b, c)

= −
n−1∑

i=1

(mi(mj(a, b), c)−mi(a,mj(b, c)))
(A.10)

Let us denote that right hand side by fn(a, b, c). Since the left hand side takes the form of a

coboundary, i.e., dmn(a, b, c), if mn were to exist, we need fn to be a coboundary as well. In

fact, from the definition of fn, one can show that it is always a cocycle, and so the precise

requirement is that fn represents a trivial class in HH3(A,A).

B Algebraic notions

In this section we recall a number of algebraic notions relevant to the on-shell formulation of

MSYM theories, and basic properties of some of the Lie algebra cohomology groups (these

results are due to [20, 21, 22, 23]).

B.1 Some quadratic algebras

A quadratic algebra is a graded associative algebra generated by level-1 elements satisfying

quadratic (level-2) constraints. Below are some examples relevant to this paper13:

• S is the algebra of polynomial functions over the space C of pure spinors, i.e., polyno-

mials in λα subject to

Γm
αβλ

αλβ = 0. (B.1)

S can be written as a direct sum
⊕

k≥0 Sk, where each Sk is the space of degree-

k homogeneous polynomials in λα. We can equivalently say that Sk is the space of

holomorphic sections of the line bundle O(k) over the projective pure spinor space Q.

13See [44] for more details.
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• B0 is the reduced Berkovits algebra, generated by pure spinors λα and fermionic spinors

θα. B0 can be regarded as a complex B0 =
⊕

k≥0(B0)k equipped with a nilpotent

differential λα∂θα : (B0)k → (B0)k+1, where k is the degree of λα. There is an odd

pairing between (B0)k and (B0)3−k given by

T(αβγ)α1···α5
λαλβλγθα1 · · · θα5 7→ 1, (B.2)

where T(αβγ)α1 ···α5
is the unique invariant symbol of SO(10) in the above tensor product.

B.2 Some Lie algebras

We introduce some Lie super-algebras, including L, YM and YMd.

• L is the Lie algebra generated by level-1 elements Dα satisfying

Γαβ
mnpqr{Dα, Dβ} = 0. (B.3)

L is graded by the level
⊕

i≥1 L
i. Its universal enveloping algebra U(L) is a quadratic

algebra.

• YM is the Lie algebra generated by Dm and χα subject to the MSYM equations of

motion
Γn
αβ[Dn, χ

β] = 0,

[Dm, [Dm, Dn]] + Γn
αβ{χ

α, χβ} = 0.
(B.4)

It is isomorphic to
⊕

i≥2 L
i via

Dm 7→
1

16
Γαβ
m {Dα, Dβ}, χα 7→

1

10
Γαβ
m [Dβ , Dm]. (B.5)

We assign a grading for YM according to the grading of L.

• YMd is defined as the Lie subalgebra (L2)d
⊕

i≥3 L
i, where (L2)d ≡ 〈Dd+1, . . . , D10〉

at level-2 can be regarded as the scalars in the d-dimensional MSYM theory. Clearly,

YM0
∼= YM . In [22, 23], YM10 is called TYM .

• S is the abelian Lie algebra generated by commuting spinors wα.

• H is defined as L ⊕ S. It comes with a nilpotent differential wα∂Dα
: L → S that

replaces Dα by wα and acts trivially on Ln for n ≥ 2.
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B.3 Koszul duality

Consider two quadratic super-algebras A and A! with level-1 generators zi and xi, respec-

tively, satisfying the constraints

rmij z
izj = 0, sijn x

ixj = 0. (B.6)

Suppose there is an odd pairing (parity reversed) between zi and xi, and the constraints

satisfy ∑

i,j

(−1)P (zi)P (xj)rmij s
ij
n = 0, (B.7)

where P is the parity. Then we say that A and A! are Koszul duals. For example, the

quadratic dual of S is the universal enveloping algebra U(L), and the quadratic dual of B0,

denoted by B!
0, is the universal enveloping algebra U(H).

The Koszul complex of A is defined as

K∗(A) = A⊗ (A!)∗, (B.8)

graded by the grading of A. (A!)∗ is the vector space dual of A!. We define a right A! action

(A!)∗ → (A!)∗, ϕ 7→ ϕx by (ϕx)(y) ≡ ϕ(xy), where x, y ∈ A! and ϕ ∈ (A!)∗. Then the

Koszul complex is an A⊗A!-module equipped with the differential zi⊗xi, which is nilpotent

by orthogonality of the quadratic constraints on A and A!. If the Koszul complex is acyclic,

then the algebra A called a Koszul algebra.

Now suppose A is a Koszul algebra whose dual A! is the universal enveloping algebra of

some Lie algebra G. From Koszul duality theory [44], there are isomorphisms

Hi(G, N) ∼= Hi(A⊗N, zi ⊗ xi),

Hi(G, N) ∼= H−i(A∗ ⊗N, zi ⊗ xi),
(B.9)

where N is any G-module. For example, we have14

Hi(L,N) ∼= Hi(S ⊗N, λαDα), (B.10)

and15

Hi(L,N) ∼= H−i(S∗ ⊗N, λαDα). (B.11)

14 More explicitly, the isomorphism is induced by a map on the space of cochains Cp(L,N) → Sp⊗N, c 7→

λα1 · · ·λαp c(Dα1
∧ · · · ∧Dαp

).
15 The λα action on S∗ ⊗ N is implemented by first writing the chains in (S∗)n ⊗ N in the form

λ̄α1
· · · λ̄αn

⊗ Gα1···αn , such that Gα1···αn is projected onto the representation [0, 0, 0, 0, n], and then tak-

ing the λ̄α derivative.
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B.4 Poincaré isomorphism

We first establish the isomorphism

Hj(YM,N) ∼= Hj(B0 ⊗N, λαDα + λα∂θα). (B.12)

Let N be an H-module on which the action of wα is trivial. Consider the double complex⊕
i≤j E

i,j
0 =

⊕
i≤j Λ

j−i(L)⊗ Λi(S)⊗N :

Λ0(L)⊗ Λ2(S) ✛dH

Λ0(L)⊗ Λ1(S) ✛dH Λ1(L)⊗ Λ1(S)

wα∂Dα

✻

✛dH

Λ0(L)⊗ Λ0(S) ✛dH Λ1(L)⊗ Λ0(S)

wα∂Dα

✻

✛dH Λ2(L)⊗ Λ0(S)

wα∂Dα

✻

✛dH

(B.13)

where dH is the Lie algebra boundary map (N is omitted in the diagram).16 Consider the

spectral sequence with d0 = wα∂Dα
and d1 = dH . On the first page, the complex collapses

to the bottom row17

Ei,j
1 = (Λj(YM)⊗N)δi0. (B.14)

The spectral sequence then stabilizes on the second page

Ei,j
2 = Hj(YM,N)δi0. (B.15)

Hence we obtain an isomorphism of homology Hj(YM,N) ∼= Hj(H,N, dH + wα∂Dα
).

A similar analysis gives an isomorphism of cohomology, Hj(YM,N) ∼= Hj(H,N, dH+QH).

Here, dH denotes the Lie algebra coboundary map, and QH : Ci+j(Λi(L) ⊗ Λj(S), N) →

Ci+j(Λi+1(L)⊗Λj−1(S), N) is a map induced by wα∂Dα
, c 7→ c◦ (wα∂Dα

). By Koszul duality

U(H) = B!
0, there are further isomorphisms18

Hi(YM,N) ∼= Hi(H,N, dH +QH) ∼= Hi(B0 ⊗N, λαDα + λα∂θα),

Hi(YM,N) ∼= Hi(H,N, dH + wα∂Dα
) ∼= H−i(B∗

0 ⊗N, λαDα + λα∂θα).
(B.17)

16 Elements of Λi(L1)⊗Λj(S) can be regarded as polynomials in even variables Dα and odd variables wα.

Then d = wα∂Dα
acts as an exterior derivative on the linear space spanned by Dα (wα = dDα).

17 This can be phrased as the statement that the inclusion from YM , regarded as a one-term complex

with trivial differntial, to (H,wα∂Dα
) is a quasi-isomorphism.

18 The isomorphism H∗(H,N, dH +QH) ∼= H∗(B0 ⊗N, λαDα + λα∂θα) is induced by a map on the space

of cochains Ci+j(Λi(L)⊗ Λj(S), N) → (B0)i ⊗N, c 7→ λα1 · · ·λαiθβ1 · · · θβj c(Dα1
· · ·Dαi

wβ1
· · ·wBj

). The

32



The odd pairing (B.2) on the Berkovits algebra B0 gives an isomorphism between Hi(B0⊗

N, λαDα+λα∂θα) and H3−i(B∗
0 ⊗N, λαDα+λα∂θα). The isomorphisms (B.17), thereby, give

Poincaré isomorphism

P : Hi(YM,N)
∼

−→ H3−i(YM,N). (B.18)

B.5 H0 and H1

The cohomology groups Hn(G, Symj(YMd))ℓ for G = L, YM and n = 0, 1 can be explicitly

computed. Given the isomophisms

Hn(L, Symj(YMd))ℓ ∼= Hn(S ⊗ Symj(YMd), λ
αDα)ℓ,

Hn(YM, Symj(YMd))ℓ ∼= Hn(B0 ⊗ Symj(YMd), λ
αDα + λα∂θα)ℓ,

(B.19)

we will present the representatives of the cohomology classes both as elements of the Lie

algebra cochains, and as elements in S ⊗ Symj(YMd) or B0 ⊗ Symj(YMd). The results

are summarized in Tables 1-4. We write m,n for SO(10) indices, µ for SO(d), and a, b for

SO(10− d).

(n, j, ℓ)

(0, 0, 0) 0 7→ x for x ∈ C 1

(1, 0,−1) Dα 7→ 1, otherwise y 7→ 0 λα

(1, 1, 1) y 7→ [Dα, y] (Γmλ)αDm

Table 1: Representatives of classes in Hn(L, Symj(YM))ℓ for n = 0, 1.

(n, j, ℓ)

(0, 0, 0) 0 7→ x for x ∈ C 1

(1, 0,−1) Dα 7→ 1, otherwise y 7→ 0 λα

(1, 1, 2) y 7→ [Dµ, y] λΓµχ

Table 2: Representatives of classes in Hn(L, Symj(YMd))ℓ for n = 0, 1 and d ≥ 1.

differential QH acting on C∗(H,N) becomes λα∂θα acting on B0 ⊗N following from

λα1 · · ·λαi+1θβ1 · · · θβj−1 c(wα∂Dα
(Dα1

· · ·Dαi+1
wβ1

· · ·wβj−1
))

= λα∂θα

(
λα1 · · ·λαiθβ1 · · · θβjc(Dα1

· · ·Dαi
wβ1

· · ·wβj
)
)
.

(B.16)

The isomorphism H∗(H,N, dH +QH) ∼= H∗(B
∗
0 ⊗N, λαDα + λα∂θα) follows from similar reasoning.
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(n, j, ℓ)

(0, 0, 0) 0 7→ x for x ∈ C 1

(1, 0,−2) Dm 7→ 1, otherwise y 7→ 0 λΓmθ

(1, 0,−3) χα 7→ 1, otherwise y 7→ 0 (θΓmnpθ)(Γmnpλ)α
(1, 1, 0) y 7→ deg(y)y (λΓmθ)Dm

(1, 1, 0) y 7→ Λmny (θΓmnpθ)(λΓ
pχ) + 4(λΓ(mθ)Dn)

(1, 1, 1) y 7→ [Dα, y] (Γmλ)αDm

Table 3: Representatives of classes in Hn(YM, Symj(YM))ℓ for n = 0, 1. Λmn are the

generators of SO(10) rotations.

(n, j, ℓ)

(0, 0, 0) 0 7→ x for x ∈ C 1

(1, 0,−2) Dm 7→ 1, otherwise y 7→ 0 λΓmθ

(1, 0,−3) χα 7→ 1, otherwise y 7→ 0 (θΓmnpθ)(Γmnpλ)α
(1, 1, 0) y 7→ Λaby (θΓabpθ)(λΓpχ) + 4(λΓ(aθ)Db)

(1, 1, 1) y 7→ [Dα, y] (λΓmχ)(Γ
mθ)α

(1, 1, 2) y 7→ [Dµ, y] λΓµχ

Table 4: Representatives of classes in Hn(YM, Symj(YMd))ℓ for n = 0, 1 and d ≥ 1. Λab are

the generators of SO(10− d) rotations.

C Kernel of i∗ : H2(L,U(YMd)) → H2(YM,U(YMd))

The kernel of i∗ : H2(L, U(YMd)) → H2(YM,U(YMd)) can be studied via the Hochschild-

Serre spectral sequence

Ei,j
2 ≡ Hi(L/YM,Hj(YM,U(YMd))) ⇒ Hi+j(L, U(YMd)). (C.1)

At the infinity page, H2(L, U(YMd)) is isomorphic to the direct sum E0,2
∞ ⊕ E1,1

∞ ⊕ E2,0
∞ . We

argue that the space E0,2
∞ is isomorphic to the image of the map i∗, and E1,1

∞ ⊕ E2,0
∞ is the

isomorphic to the kernel of i∗.

The inclusion i : YM →֒ L induces a map from the spectral sequence (C.1) to the spectral

sequence

Ẽi,j
2 ≡ Hi(YM/YM,Hj(YM,U(YMd))) ⇒ Hi+j(YM,U(YMd)). (C.2)
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Since Ẽ1,1
∞ ⊕ Ẽ2,0

∞ is trivial due to the triviality of Ẽ1,1
2 ⊕ Ẽ2,0

2 , E1,1
∞ ⊕E2,0

∞ should be inside the

kernel of i∗. Furthermore, since the map

E0,2
2 = H0(L/YM,H2(YM,U(YMd))) → H0(YM/YM,H2(YM,U(YMd))) (C.3)

is an injection, the space E0,2
∞ ⊂ E0,2

2 should also map injectively into H2(YM,U(YMd)).

Therefore, E0,2
∞ is isomorphic to the image of i∗. The kernel of i∗ is then isomorphic to

E1,1
∞ ⊕ E2,0

∞ .

In 0 dimension, from our knowledge of the cohomology groups in Table 3, we know that

the classes inside the kernel of i∗ must have dimension −2,−1 or 0, and symmetric power 0

or 1. For even grading, the only two possibilities are λΓmnpqrλ and (λΓmnpqrλ)Dr, expressed

in terms of cochains in the complex S ⊗ U(YM). They are trivial inside H2(YM,U(YM))

by λΓmnpqrλ = Q(λΓmnpqrθ) and λΓmnpqiλDi = Q(λΓmnpqrθDr + 4λΓ[mnpθDq]), where Q =

λα(Dα + ∂θα) is the differential of the complex B0 ⊗ U(YM). We conclude that λΓmnpqrλ

and (λΓmnpqrλ)Dr are the only even classes inside the kernel of i∗.

Our analysis can be generalized to dimensions d ≥ 1. The kernel of i∗ in higher dimensions

are λΓmnpqrλ for all d, (λΓ1abcdλ)Da for d = 1, (λΓ12abcλ)Da for d = 2, (λΓ123abλ)Da for d = 3,

and (λΓ1234aλ)Da for d = 4.

D Bundles over the projective pure spinor space Q and

a quasi-isomorphism

Let C be the space of pure spinors. The projective pure spinor space (isotropic Grassmannian)

Q is the compact space obtained from the projectivization of C −{0}. It can be represented

as Spin(10,C)/P , where P ⊃ GL(5,C) is the stabilizer of an arbitrarily chosen point on

Q. Under SO(10,C) → GL(5,C), the vector 10 decomposes into 5 ⊕ 5, which we denote

by W ⊕W ∗. W and W ∗ have charges 2
5
and −2

5
, respectively, with respect to the diagonal

U(1) ⊂ GL(5,C) ⊂ P . While W ∗ is a representation of P , W is not.19 For each integer n,

there is a one-dimensional representation µn of P with charge n. We have detW ∗ = Λ5W ∗ ∼=

µ−2 and detW = Λ5W ∼= µ2.

The representations W ∗ and µn naturally induce vector bundles over Q with structure

group P via

W∗ =
W ∗ × Spin(10,C)

P
, O(n) =

µn × Spin(10,C)

P
, (D.1)

19 The generators of the Lie algebra so(10,C) decompose into adj+10+10, or W ⊗W ∗⊕Λ2W ⊕Λ2W ∗.

The Lie algebra of P is W ⊗W ∗ ⊕ Λ2W ∗. The part W ⊗W ∗ maps W → W and W ∗ → W ∗, while Λ2W ∗

acts trivially on W ∗ and maps W → W ∗. Due to this last action, W is not a representation of P .
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where P simultaneously acts on the representation W ∗ (resp. µn) and Spin(10,C) by,

p · (g, r) = (gp, ρ(p)−1r), for p ∈ P, g ∈ Spin(10,C), r ∈ R, (D.2)

and (ρ, R) corresponds to the representation W ∗ (resp. µn).

Let V be the vector representation 10 of SO(10,C), and denote the trivial bundle V ⊗Q

by V. Then W is defined as the quotient bundle V/W∗.

The bundles W∗ and W also have a more geometric description. Take the trivial bundle

V. Given a point λ ∈ Q, labelled by a pure spinor λ up to rescaling, we defineW ∗(λ) to be the

subspace of V that annihilates λ, i.e., spanned by vectors vm that obey vmΓ
m
αβλ

β = 0. There

are 11 independent spinors µ tangent to the pure spinor space at λ, such that µΓmλ = 0, so

there are only 5 independent constraints on vm. The subspace W ∗(λ) is thus 5-dimensional,

and defines a rank-5 vector bundle over Q, which is what we call W∗. Similarly, W can be

defined as the fibration of (V/W ∗(λ)).

Let us introduce another type of bundles over Q. Given a graded L-module N =
⊕

n Nn,

let us define a complex

(NP )ℓ ≡
⊕

n

Nn+ℓ ⊗ µn, (D.3)

equipped with the differential Q = λαDα. This complex can be lifted to a complex of vector

bundles over Q
Nℓ ≡

⊕

n

Nn+ℓ ⊗O(n), (D.4)

where Nn+ℓ are trivial bundles, and the differential Q lifts to a differential on Nℓ by regarding

λα as a section of O(1) that acts on sections of Nℓ.

In this paper, we will be considering Nℓ = Symj(YMd)ℓ and Nℓ = Symj(YMd)ℓ.

A quasi-isomorphism

The complex YMP ⊗ µ−2 decomposes with respect to representations of P as

L2 ⊗ µ0 → W ⊕W ∗,

L3 ⊗ µ1 → W ⊕ Λ2W ∗ ⊗ µ2 ⊕ µ2,

L4 ⊗ µ2 → W ⊗W ∗ ⊗ µ2 ⊕ Λ2W ⊗ µ2 ⊕ Λ2W ∗ ⊗ µ2,

· · ·

(D.5)

In [23] it is shown that W ∗ →֒ L2 ⊗ µ0 ⊂ (YMP ⊗ µ−2, Q) is in fact a quasi-isomorphism.
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Namely, Q acts by 20

L2 ⊗ µ0 → L3 ⊗ µ1 : W 7→ W, W ∗ 7→ 0

L3 ⊗ µ1 → L4 ⊗ µ2 : W 7→ 0, Λ2W ∗ ⊗ µ2 7→ Λ2W ∗ ⊗ µ2,

µ2 7→ µ2 ⊂ W ⊗W ∗ ⊗ µ2,

· · ·

(D.6)

For (YMd)P , the difference from YMP is that (L2)d, unlike L2, is not a representation of

P . However, (L2)d → W is still the only map that can give rise to nontrivial cohomology.

Thus ((L2)d → W ) →֒ (YMd)P ⊗ µ−2, where both are equipped with the differential Q, is a

quasi-isomorphism. It lifts to a quasi-isomorphism of bundles

((L2)d → W)⊗O(2) →֒ YMd. (D.7)

By Künneth theorem, we can generalize this to quasi-isomorphisms of tensor products of

bundles.

E A long exact sequence

The purpose of this section is to review the following long exact sequence derived in [22, 23]

· · · → Hi(Q, Symj(YMd))ℓ
ι2−i
→ H2−i(L, Sym

j(YMd))ℓ−8
δi+1

→ Hi+1(L, Symj(YMd))ℓ

→ Hi+1(Q, Symj(YMd))ℓ
ι3−i
→ · · ·

(E.1)

In the following, we will set

Nℓ ≡ Symj(YMd)ℓ, Nℓ ≡ Symj(YMd)ℓ, (E.2)

and abbreviate ⊗O(n) as (n).

Let us consider the double complex
⊕

n,aE
n,a
0 =

⊕
n,aΩ

a(Nℓ+n(n)) of a-forms valued in

20 Consider the first map. Given an element vmDm ∈ L2 ∼= V , the Q action on it gives vm(λΓmχ). The

condition vmΓm
αβλ

β = 0 precisely defines the subspace W ∗ ⊂ V , and therefore W ∗ 7→ 0.
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Nℓ+n(n)

✲ Ω2(Nℓ+n(n))

✻
Q✲ Ω2(Nℓ+n+1(n + 1))

✻
Q✲ Ω2(Nℓ+n+2(n + 2))

✻

✲

✲ Ω1(Nℓ+n(n))

∂̄

✻

Q✲ Ω1(Nℓ+n+1(n + 1))

∂̄

✻

Q✲ Ω1(Nℓ+n+2(n + 2))

∂̄

✻

✲

✲ Ω0(Nℓ+n(n))

∂̄

✻

Q✲ Ω0(Nℓ+n+1(n + 1))

∂̄

✻

Q✲ Ω0(Nℓ+n+2(n + 2))

∂̄

✻

✲

(E.3)

The vertical map is the Dolbeault operator ∂̄ : Ωa(Nℓ+n(n)) → Ωa+1(Nℓ+n(n)), and the

horizontal map is Q ≡ λαDα : Ωa(Nℓ+n(n)) → Ωa(Nℓ+n+1(n + 1)), where λα is regarded

as a section of O(1). The hypercohomology is defined as the cohomology with respect to

∂̄ +Q and is denoted by H∗(Q,N )ℓ; the m-th hypercohomology group is the direct sum of

all (∂̄ +Q)-cohomology classes with n+ a = m.

Now let us consider the spectral sequence for this double complex with d0 = ∂̄ and

d1 = Q. Because Nℓ is a trivial bundle, on the first page we have En,a
1 = Ha(Q, Nℓ+n(n)) =

Nℓ+n⊗Ha(Q,O(n)). The Dolbeault cohomology of O(n) can be computed using Borel-Weil-

Bott theory. The only non-vanishing groups are

H0(Q,O(n)) = [0, 0, 0, 0, n] ≡ Sn, n ≥ 0,

H10(Q,O(n)) = [0, 0, 0,−8− n, 0] ≡ S∗
−8−n, n ≤ −8.

(E.4)

The first page becomes

N0 ⊗ S∗
ℓ−8

d1✲ · · ·
d1✲ Nℓ−8 ⊗ S∗

0

Nℓ ⊗ S0

d1✲ Nℓ+1 ⊗ S1

d1✲ · · ·

(E.5)

where Nℓ ⊗S0 and Nℓ−8 ⊗S∗
0 are located at (k, a) = (0, 0) and (−8, 10), respectively. Let us

define
(Nc)ℓ ≡

⊕

n≥0

Nℓ+n ⊗ Sn,

(Nh)ℓ ≡
⊕

−ℓ≤n≤0

Nℓ+n ⊗ S∗
−n.

(E.6)
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Since the d2, . . . , d10 maps act trivially, we go directly to the eleventh page

· · · H−3(Nh)ℓ−8 · · · H0(Nh)ℓ−8

H0(Nc)ℓ

d (0)
11

✲
· · · H3(Nc)ℓ

d (3)
11

✲
· · ·

(E.7)

where the only nontrivial d11 maps are d
(i)
11 for i = 0, . . . , 3. The spectral sequence stabilizes

on the twelfth page, therefore

Hm(Q,N )ℓ = coker d
(m)
11 ⊕ ker d

(m+1)
11 , m = −1, . . . , 3. (E.8)

This can be recast into a long exact sequence

· · · → Hi(Q,N )ℓ → Hi−2(Nh)ℓ−8 → Hi+1(Nc)ℓ → Hi+1(Q,N )ℓ → · · · (E.9)

Finally, Koszul duality between U(L) and S gives the isomorphisms

Hi(L,N)ℓ ∼= Hi(Nc)ℓ, Hi(L,N)ℓ ∼= H−i(Nh)ℓ. (E.10)

The derivation is now complete.

A corollary: For ℓ > 2, ι1 is an injection and ιi is an isomorphism for i ≤ 0.

This follows from the long exact sequence (E.1) together with our explicit knowledge of

H0(L, Symj(YMd))ℓ and H1(L, Symj(YMd))ℓ (Tables 1 and 2).

Another corollary: For 2j − ℓ > −8, Hi(L, Symj(YMd))ℓ → Hi(Q, Symj(YMd))ℓ is an

isomorphism.

This follows from the fact that H∗(L, Sym
j(YMd))ℓ−8<2j

∼= 0.

F SUSY homology and exceptional D-terms

In this section, following [22, 23], we show that exceptional D-terms, coming from classes in

the cokernel of BL : H0(L, Sym
j+1(YMd))

BY M→ BL : H1(L, Sym
j(YMd)), lie inside the SUSY

homology.
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Consider the double complex
⊕

i≥j E
i,j
0 =

⊕
i≤j Λ

i−j(L)⊗ Symj(YMd):

Λ0(L)⊗ Sym2(YMd) ✛dL

Λ0(L)⊗ Sym1(YMd) ✛dL Λ1(L)⊗ Sym1(YMd)

ddR

❄
✛dL

Λ0(L)⊗ Sym0(YMd) ✛dL Λ1(L)⊗ Sym0(YMd)

ddR

❄
✛dL Λ2(L)⊗ Sym0(YMd)

ddR

❄
✛dL

(F.1)

The horizontal map dL is the Lie algebra differential (defined in (A.2)), and the vertical map

ddR is the de Rham map induced by the inclusion YMd →֒ L.

The spectral sequence with d0 = ddR and d1 = dL stabilizes already on the second page

(due to the same reasons as for (B.13)), which is given by

Ei,j
2 = Hi(susyd)δ

j
0. (F.2)

On the other hand, the first page of the spectral sequence with the opposite choice d0 = dL
and d1 = ddR is given by Ei,j

1 = Hi−j(L, Sym
j(YMd)):

H0(L, Sym
3(YMd))

H0(L, Sym
2(YMd)) H1(L, Sym

2(YMd))

d1

❄

H0(L, Sym
1(YMd)) H1(L, Sym

1(YMd))

d1

❄
H2(L, Sym

1(YMd))

d1

❄

H0(L, Sym
0(YMd)) H1(L, Sym

0(YMd))

d1

❄
H2(L, Sym

0(YMd))

d1

❄
H3(L, Sym

0(YMd))

d1

❄

d
2

✲

(F.3)
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The Connes differential

The de Rham map ddR : H0(L, Sym
j+1(YMd)) → H1(L, Sym

j(YMd)) can be identified

with the Connes differential BL. For our purpose, we can simply take this as the defini-

tion of BL. One can similarly define the de Rham map ddR : H0(YM, Symj+1(YMd)) →

H1(YM, Symj(YMd)) and identify it with the Connes differential BYM .21

To proceed we collect a few ingredients. First is the fact that ιi≤0 are isomorphisms, as

explained at the end of Appendix E.22 Another key is that the image of ιi≤0 survives to the

infinity page of the spectral sequence which we shall elucidate below. It then follows that

the d≥2 maps are trivial, and the spectral sequence stabilizes at the second page.

Survival of im ιi≤0

The inclusion YMd →֒ L also induces the de Rham map on the Lie algebra cohomology,

which fits into the commutative diagram

H2−i(Q, Symj(YMd))ℓ
ιi ✲ Hi(L, Sym

j(YMd))
δ✲ H3−i(L, Symj(YMd))

H1−i(Q, Symj−1(YMd))ℓ
ιi+1✲ Hi+1(L, Sym

j−1(YMd))

ddR

❄ δ✲ H2−i(L, Symj−1(YMd))

ddR

❄

(F.4)

The commutativity of the diagram implies that the image of ddR ◦ ιi is inside the image of

ιi+1.

Starting with a cycle a0 ∈ Λi(L)⊗ Symj(YMd) representing a nontrivial class [a0] in the

image of ιi, ddR(a0) is a cycle that represents a class in the image of ιi+1 in Hi+1(L, Sym
j−1(YMd)).

From the representation content of the hypercohomology, [ddR(a0)] should be a trivial class;

hence, there exists a1 ∈ Λi+2(L)⊗ Symj−1(YMd), such that dL(a1) = ddR(a0). Iterating this

procedure, we obtain a finite sequence (a0, a1, · · · , an), where ak ∈ Λi+2k(L)⊗Symj−k(YMd)

and ddR(an) = 0. From this sequence, we construct a cycle D = a0 − a1 + a2 + · · · +

(−1)jan of the diagonal homology Hi+2j(Λ(L)⊗ Sym(YMd), dL + ddR), which is isomorphic

to Hi+2j(susyd).

Next, we show that the cycle D is nontrivial. The pairing between C∗(L,C) and C∗(L,C)

gives rise to a natural action of Ck(L,C) on Ci(L, U(YMd)) that is compatible with dL and

21 If we vary the Lagrangian with respect to a component field X , we get δX δL
δX

, where δX ∈ YM and
δL
δX

∈ U(YMd). Therefore, BY M can be regarded as varying the Lagrangian to obtain the equations of

motion for component fields.
22 Note that ℓ ≥ 8; otherwise Hℓ−8 is trivial.
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commutes with ddR, thus inducing an action of Hk(L,C) on Hi(L, U(YMd)). This is most

obvious in terms of the deformation complex Sym(YMd) ⊗ S∗, where the generators of

Hi(L,C) which are degree i monomials in λα, acts on the chains by multiplication defined

by 〈λα, λ̄β〉 = δαβ . A crucial property of this multiplicative action is that at each degree

i, the generators of Hi(L,C) have no common kernel. We can choose a generator f(λ) of

Hi(L,C) that maps [a0] nontrivially to [a′0] in H0(L, U(YMd)), and again lift [a′0] to a cocycle

of H∗(susyd) represented by D′ = a′0 − a′1 + a′2 + · · ·+ (−1)ma′m, which is nontrivial due to

the triangular shape of the double complex. Since the multiplicative action commutes with

the differentials of the spectral sequence, D and D′ are related by a′k = f(λ) · ak and m = n.

Therefore, the nontriviality of D in H∗(susyd) is demanded by that of D′.

The cokernel of BL modded out by the image of ι1 precisely classifies the exceptional

D-term deformations. From the preceeding discussion, and the fact that the diagonal coho-

mology for the two different choices of d0 and d1 are the same, we conclude that

H1+2j(susyd,C)ℓ
∼= (cokerBL/im ι1)

⊕

i+2j′=1+2j

H2−i(Q, Symj′(YMd))ℓ. (F.5)

Thus knowledge of Hn(susyd,C)ℓ for odd n and even ℓ (odd ℓ violates the boson/fermion

Z2-grading), and Hn(Q, Symj(YMd))ℓ for n odd and ≤ 1 is all that is needed to classify

exceptional D-term deformations.

List of SUSY (co)homology in general dimensions

The susyd cohomology groups were computed in [46]. We list the results in Table 5,

organized by whether a representation is Lorentz or R-symmetry invariant, or both. The

susyd homology groups can be obtained via the isomorphism

Hℓ,n ≡ Hn(susy,C)ℓ ∼= Hℓ−n(susy,C)ℓ ≡ Hℓ−n,ℓ. (F.6)

This isomorphism exchanges the chiral and antichiral representations.

Our convention for the SO(d) Dynkin labels is as follows. In d ≥ 5, the leftmost label

is the vector. In d = 6, 8, 10, the rightmost is the chiral spinor (eg., Dα), and the second

rightmost is the antichiral spinor (eg., χα). In d = 4, the left is the chiral spinor, and the

right is the antichiral. In d = 2, the label is the U(1) charge.
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d Lorentz + R Lorentz − R R − Lorentz

all H0,0

10 H4,1 Hk,0 = [0, 0, 0, 0, k]

H12,5 Hk,1 = [0, 0, 0, 1, k − 3]

Hk,2 = [0, 0, 1, 0, k − 6]

Hk,3 = [0, 1, 0, 0, k − 8]

Hk,4 = [1, 0, 0, 0, k − 10]

Hk,5 = [0, 0, 0, 0, k − 12]

9 H2,0 Hk,0 = [0, 0, 0, k]

H10,4 Hk,1 = [0, 0, 1, k − 4]

Hk,2 = [0, 1, 0, k − 6]

Hk,3 = [1, 0, 0, k − 8]

Hk,4 = [0, 0, 0, k − 10]

8 H8,3 H2k,0 = [±2k] H2k,0 = [0, 0, k, k]

H2k,1 = [0, 1, k − 2, k − 2]

H2k,2 = [1, 0, k − 3, k − 3]

H2k,3 = [0, 0, k − 4, k − 4]

7 H6,2 H2k,0 = [±2k] H2k,0 = [0, k, 0]

H2k,1 = [1, k − 2, 0]

H2k,2 = [0, k − 3, 0]

6 H4,1 H2k,0 = [k, k] H2k,0 = [k, 0, 0]

H2k,1 = [k − 2, 0, 0]

5 H2k,0 H2k,0 = 2[k, 0]

4 H2k,0 = (k + 1)[0, k, k]

3 H2k,0 =
⊕k

i=0[i, k − i, 0]

2 H2k,0 =
⊕k

i=0[i, 0, k − i, k − i]

1 Hk,0 =
⊕[k/2]

i=0 [i, 0, 0, k − 2i]

0 Hk,0 =
⊕[k/2]

i=0 [i, 0, 0, k − 2i, 0]

Table 5: Classes in Hℓ,n ≡ Hn(susy,C)ℓ (this is the notation used in [46]). The numbers in

brackets are Dynkin labels of the corresponding SO(10− d) or SO(d) irrep.

G Computation of hypercohomology

To classify F-term deformations, we need to know H2(Q, Symj(YMd))ℓ; to classify excep-

tional D-term deformations, we need to know Hm(Q, Symj(YMd))ℓ for m odd and ≤ 1. In

this section, we describe the machinery for explicit computation of these hypercohomology
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groups, and present explicit results for classes that preserve Lorentz or R-symmetry, or both.

We make use of the quasi-isomorphism (D.7)

((L2)d → W)⊗O(2) →֒ YMd, (G.1)

which induces a quasi-isomorphism from the double complex

⊕

k,a

E2j−ℓ+k,a
0 =

⊕

k,a

Ωa(Symj−k(L2)d ⊗ ΛkW(2j − ℓ)) (G.2)

to the double complex 23

⊕

m,a

Em,a
0 =

⊕

m,a

Ωa(Symj(YMd)ℓ+m(m)) (G.3)

of Appendix E. As in Appendix E, ⊗O(2j − ℓ) is abbreviated as (2j− ℓ). Let us now define

n ≡ 2j−ℓ. The symbol n will be reserved for this defition throughout the rest of this section.

Consider the spectral sequence of this latter complex with d0 = ∂̄ and d1 = Q. Since

(L2)d is a trivial bundle, on the first page we just have

En+k,a
1 = Symj−k(L2)d ⊗Ha(Q,ΛkW(n)). (G.4)

The hypercohomology, which is the same for the two quasi-isomorphic complexes, is related

to the infinity page of this spectral sequence by

H2j−ℓ+m(Q, Symj(YMd))ℓ ∼=
⊕

k+a=m

E2j−ℓ+k,a
∞ . (G.5)

The Dolbeault cohomology groups Ha(Q,ΛjW(n)) can be computed using Borel-Weil-Bott

23 The bundle W is embedded into L3 ⊗ O(1), so m, the degree of the line bundle in Symj−k(L2)d ⊗

ΛkW(2j − ℓ), is 0 + k + (2j − ℓ).
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theory. The non-vanishing ones are

H0(Q,Λ0W(n)) = [0, 0, 0, 0, n], n ≥ 0,

H10(Q,Λ0W(n)) = [0, 0, 0,−8− n, 0], n ≤ −8,

H0(Q,Λ1W(n)) = [1, 0, 0, 0, n], n ≥ 0,

H10(Q,Λ1W(n)) = [0, 0, 0,−9− n, 1], n ≤ −9,

H0(Q,Λ2W(n)) = [0, 1, 0, 0, n], n ≥ 0,

H9(Q,Λ2W(−8)) = [0, 0, 0, 0, 0],

H10(Q,Λ2W(n)) = [0, 0, 1,−10− n, 0], n ≤ −10,

H0(Q,Λ3W(n)) = [0, 0, 1, 0, n], n ≥ 0,

H1(Q,Λ3W(−2)) = [0, 0, 0, 0, 0],

H10(Q,Λ3W(n)) = [0, 1, 0,−10− n, 0], n ≤ −10,

H0(Q,Λ4W(n)) = [0, 0, 0, 1, n+ 1], n ≥ −1,

H10(Q,Λ4W(n)) = [1, 0, 0,−10− n, 0], n ≤ −10,

H0(Q,Λ5W(n)) = [0, 0, 0, 0, n+ 2], n ≥ −2,

H10(Q,Λ5W(n)) = [0, 0, 0,−10− n, 0], n ≤ −10.

(G.6)

We see that En+k,a
1 6= 0 only for 0 ≤ k ≤ 5, a = 0, 10, and for (n, k, a) = (−2, 3, 1), (−8, 2, 9).

The following is a schematic diagram of the first page:

En+5,0
1 · · · En+5,10

1

En+4,0
1

d1
✻

· · · En+4,10
1

d1
✻

En+3,0
1

d1
✻

E1,1
1 (n = −2)

✛

d
2

· · · En+3,10
1

d1
✻

En+2,0
1

d1
✻

· · · E−6,9
1 (n = −8) En+2,10

1

d1
✻

En+1,0
1

d1
✻

· · · En+1,10
1

d1
✻

En,0
1

d1
✻

· · · En,10
1

d1
✻

✛

d
2

(G.7)

The spectral sequence stabilizes on the third page for n = −2,−8, and on the second page

otherwise.
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For n = −2,−8, the d1 map is trivial, so the second page is identical to the first page.

For n = −2, all chains on the second page are trivial except for

E1,1
2 = Symj−3(L2)d → E3,0

2 = Symj−5(L2)d, (G.8)

and for n = −8, all are trivial but for

E−8,10
2 = Symj(L2)d → E−6,9

2 = Symj−2(L2)d. (G.9)

We will assume that the d2 map is surjective in both cases. Then we are left with

E1,1
3 = (Symj−3(L2)d)traceless j ≥ 3, (n, k, a) = (−2, 3, 1),

E−8,10
3 = (Symj(L2)d)traceless j ≥ 0, (n, k, a) = (−8, 0, 10).

(G.10)

If this assumption fails, then there are additional classes in H2 and H3.

Next consider n 6= −2,−8. The second page is given by theQ-cohomology of the following

chain complexes

0 → Symj(L2)d ⊗ [0, 0, 0, 0, n] → Symj−1(L2)d ⊗ [1, 0, 0, 0, n]

→ Symj−2(L2)d ⊗ [0, 1, 0, 0, n] → Symj−3(L2)d ⊗ [0, 0, 1, 0, n]

→ Symj−4(L2)d ⊗ [0, 0, 0, 1, n+ 1] → Symj−5(L2)d ⊗ [0, 0, 0, 0, n+ 2] → 0

(G.11)

and

0 → Symj(L2)d ⊗ [0, 0, 0,−8− n, 0] → Symj−1(L2)d ⊗ [0, 0, 0,−9− n, 1]

→ Symj−2(L2)d ⊗ [0, 0, 1,−10− n, 0] → Symj−3(L2)d ⊗ [0, 1, 0,−10− n, 0]

→ Symj−4(L2)d ⊗ [1, 0, 0,−10− n, 0] → Symj−5(L2)d ⊗ [0, 0, 0,−10− n, 0] → 0.

(G.12)

Here a cochain vanishes if the number of copies of (L2)d in the symmetric tensor product is

negative or a Dynkin label is negative. Even without knowing how Q acts, the mere fact

that Q is SO(10) equivariant can already lead us to conclude that certain representations

must be in the Q-cohomology. Consider the following scenerios:

1. If an irrep r appears in the chain complex as 0 → r → 0, then r must be in the

Q-cohomology.

2. If r appears as 0 → r → 3r → r → 0, then we know that at least one copy of r is in the

Q-cohomology located at the middle. We will assume that this copy of r is all there is

in the Q-cohomology.

3. For 0 → r → r → r → 0, we know that there must be one copy of r in the Q-

cohomology, but we do not know whether it is located on the left or on the right.

Further analysis is required.
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We restrict our attention to classes that preserve Lorentz or R-symmetry, and compute

the Q-cohomology up to j = 10. For the a = 0 chain complex (G.11), we consider n ranging

from −2 to 2j + 2; for a = 10 (G.12), we consider n from −2j − 12 to −8. We assume that

no Q-cohomology appears outside our range of consideration.

Scenerio 3 only appears in 2D, and only for representations that preserve Lorentz and

break R-symmetry. They are listed below, labelled by their (j, n, a) values and representation

of SO(8).

• (3, 2, 0) in [0, 1, 0, 0]. The chain complex restricted to this representation is

r → r → r → 0 → 0 → 0. (G.13)

A Q-cohomology class at k = 0 will be in H2, while one at k = 2 will be in H4.

Since n = 2j − ℓ = 2 > −8, there is an isomorphism H∗ ∼= H∗, and therefore we can

determine which hypercohomology group contains r by directly studying H∗. Consider

H2(Sym3(YM2))4 ∼= H2(N3
c )4, where N j ≡ Symj(YM2). Classes in H2(N3

c )4 take the

form λ2D3, and there is only 1 copy of [0, 1, 0, 0] in this tensor product, which is

(λΓ01mnpλ)Dp ◦D
2. (G.14)

This expression is not Q-closed, so we conclude that r is in H4 not H2.

• (4, 2, 0) in [0, 0, 1, 1]. Similar to the previous case, classes in H2(N4
c )6 takes the form

λ2D4, and there are 2 copies of [0, 0, 1, 1] in this tensor product, which are

(λΓ01mnpλ)D2 ◦D2, (λΓ01q[mnλ)Dp] ◦Dq ◦D
2. (G.15)

No combination of the two is Q-closed, so we conclude that r is in H4 not H2.

• (j ≥ 5, 0, 0) in [j− 5, 0, 1, 1]. They appear in the chain complex

0 → 0 → r → 2r → 3r → r (G.16)

Again there must be one copy of r in either H2 or H4. We will assume that it is in H4.

Validity of assumptions

Because of the number of assumptions introduced above, the hypercohomology classes we

find will naively be a subset of all the hypercohomology classes. However, there are reasons

to believe that such is not the case. First, in 0D there is an alternative way of computing

the hypercohomology, which makes use of the quasi-isomorphism W∗ ⊗ O(2) →֒ YM, and
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gives definite results. The results there coincide with the results we obtain. Second, consider

(F.5)

H1+2j(susyd,C)ℓ
∼= (cokerBL/im ι1)

⊕

i+2j′=1+2j

H2−i(Q, Symj′(YMd))ℓ. (G.17)

In Section H, we will see that, our results for the right hand side already saturates the left

hand side, so there is no room for missing classes in Hn for n odd and ≤ 1. Our classification

of exceptional D-terms is therefore rigorous.

Results

We now present the results, organized by whether the hypercohomology classes pre-

serve Lorentz or R-symmetry, or both. The LiE program [69] is used to facilitate this

computation. The classes in H2(Q, Symj(YMd))ℓ are listed in Table 6. The classes in

H1−2i(Q, Symj(YMd))ℓ for i ≥ 0, ℓ ≥ 8 in d ≥ 6 are listed in Table 7. The rest are not

needed for the purpose of classification.
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d Lorentz + R Lorentz − R R − Lorentz

all (3,−2, 3, 1) (2, 0, 2, 0) 2-form

(0,−8, 0, 10) singlet in d = 2

d ≤ 8 (j ≥ 4,−2, 3, 1) (Symj−3(L2)d)traceless
(j ≥ 1,−8, 0, 10) (Symj(L2)d)traceless

10 (0, 2, 0, 0) [00002]

(1, 1, 1, 0) [10001]

(1,−9, 1, 10) [00001]

(2,−10, 2, 10) [00100]

(3,−11, 3, 10) [01010]

(4,−12, 4, 10) [10020]

(5,−13, 5, 10) [00030]

9 (0, 2, 0, 0) [0002]

(1, 1, 1, 0) [1001]

(2,−10, 2, 10) [0100]

(3,−11, 3, 10) [1001]

(4,−12, 4, 10) [0002]

8 (2,−10, 2, 10) [1000]

7 (2,−10, 2, 10)

5 (0, 2, 0, 0)

4 (1, 2, 0, 0) (0, 2, 0, 0) [100]

3 (0, 2, 0, 0) [010]

(1, 2, 0, 0) [100]

2 (2, 0, 2, 0) (0, 2, 0, 0) [0011]

(1, 2, 0, 0) [0100]

1 (0, 2, 0, 0) [0002]

(1, 2, 0, 0) [0010]

(2, 1, 1, 0) [0001]

0 (0, 2, 0, 0) [00002]

(1, 2, 0, 0) [00011]

(2, 2, 0, 0) [00020]

Table 6: Classes inH2(Q, Symj(YMd))ℓ. The numbers in parantheses are (j, n = 2j−ℓ, k, a),

and the numbers in brackets are Dynkin labels of the corresponding SO(10 − d) or SO(d)

irreps.
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d Lorentz + R R − Lorentz

10 (0,−9− 2i, 0, 10) [000, 1 + 2i, 0]

(1,−10− 2i, 1, 10) [000, 1 + 2i, 1]

(2,−11− 2i, 2, 10) [001, 1 + 2i, 0]

(3,−12− 2i, 3, 10) [010, 2 + 2i, 0]

(4,−13− 2i, 4, 10) [100, 3 + 2i, 0]

(5,−14− 2i, 5, 10) [000, 4 + 2i, 0]

9 (0,−9− 2i, 0, 10) [000, 1 + 2i]

(1,−10− 2i, 1, 10) [001, 2i]

(2,−11− 2i, 2, 10) [010, 1 + 2i]

(3,−12− 2i, 3, 10) [100, 2 + 2i]

(4,−13− 2i, 4, 10) [000, 3 + 2i]

8 (1,−10− 2i, 1, 10) [01, i, i]

(3,−12− 2i, 3, 10) [00, 1 + i, 1 + i]

7 (1,−10− 2i, 1, 10) [1, i, 0]

6 (1,−10, 1, 10) (1,−10− 2i, 1, 10) [i ≥ 1, 0, 0]

Table 7: Classes in H1−2i(Q, Symj(YMd))ℓ for i ≥ 0, ℓ ≥ 8 in d ≥ 6. The numbers in the

parantheses are (j, n = 2j − ℓ, k, a), and the numbers in brackets are Dynkin labels of the

corresponding SO(10− d) or SO(d) irreps.

H More details on the classification of infinitesimal de-

formations

Throughout this section we adopt the shorthand notation N j = Symj(YMd) and N j =

Symj(YMd).

H.1 F-term deformations

As explained in Section 2.2, F-term deformations are identified with classes in the cokernel

of δ in H2(Q,N j)ℓ that are not annihilated by i∗. Since classes in the cokernel of δ are

in one-to-one correspondence with the classes in H2(Q,N j)ℓ that are annihilated by ι, to

classify the F-term deformations, we examine each class in H2(Q,N j)ℓ as listed in Table 6

(we identify them by their (j, n, k, a) values), and determine whether it gives rise to an F-

term deformation. The classes that do are highlighted in boxes, for which we construct the

corresponding representative in H2(Nc)ℓ.
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We omit classes with j = 0 or ℓ odd (n odd in Table 6), because the former are annihilated

by i∗ (see Appendix C) and the latter do not respect the boson/fermion Z2 grading. We also

note that a class in H2(Q, N)ℓ with n = 2j − ℓ > −8 must have a preimage in H2(L,N j)ℓ
since H0(L,N)ℓ−8<2j

∼= 0.

H.1.1 Lorentz and R-symmetry invariant deformations

• (3,−2, 3, 1) in all dimensions. These classes correspond to

〈(λΓmχ) ◦ (λΓnχ) ◦ Fmn〉 = 〈QDm ◦QDn ◦ Fmn〉 (H.1)

in H2(N3
c )8, giving rise to the δL16 deformation in [23], which is the supersymmetric

completion of the trF 4 deformation.

• (0,−8, 0, 10) in all dimensions. These classes sit in

· · · → H2(N0
c )8

∼= 0 → H2(Q,N 0)8
ι2→ H0(L,N

0)0 ∼= C → · · · (H.2)

Here N0 = C. The only possible element in H2(N0
c )ℓ is 〈λαλβ〉 with ℓ = −2, so

H2(N0
c )8

∼= 0. Therefore these classes do not give rise to F-term deformations.

• (2,−10, 2, 10) in 7D. We will consider this class when we discuss the (2,−10, 2, 10)

classes in d ≥ 8. This class does not give rise to a deformation.

• (1, 2, 0, 0) in 4D. This class corresponds to 〈λΓ1234aλDa〉 ∈ H2(N1
c ). It is annihilated

by i∗.

H.1.2 Lorentz invariant but R-symmetry breaking deformations

• (j ≥ 4,−2, 3, 1) in d ≤ 8. These classes correspond to the traceless part of

〈(λΓmχ) ◦ (λΓnχ) ◦ (χ ◦ Γmn(a1χ) ◦Da2 ◦ · · · ◦Daj′ )
〉

= 〈QDm ◦QDn ◦ (χ ◦ Γmn(a1χ) ◦Da2 ◦ · · · ◦Daj′ )
〉

(H.3)

in H2(N j
c )2j+2, where j′ = j − 3.

• (j ≥ 1,−8, 0, 10) in d ≤ 8. These classes are in the j-symmetric traceless representa-

tions of SO(10− d) and sit in

· · · → H2(N j
c )2j+8 → H2(Q,N j)2j+8

ι2→ H0(L,N
j)2j

δ3→ H3(L,N j)2j+8 → · · · (H.4)

The R-symmetry breaking part of H0(L,N
j)2j is generated by 〈Da1 ◦ · · · ◦Daj〉, which

is in the j-symmetric tensor representation of SO(10− d). We claim that the traceless
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component of 〈Da1 ◦ · · · ◦Daj〉, which we denote by O(a1···aj), is annihilated by δ3. This

would mean that the symmetric traceless classes we found inH2 map nontrivially under

ι2, and have no preimage in H2. Consider the diagram

H0(L,N
j)2j

δ3 ✲ H3(L,N j)2j+8

H0(YM,N j)2j

i∗

✻

A0✲ H0(YM,N j)2j
P
∼=
✲ H3(YM,N j)2j+8

i∗

❄

(H.5)

Since i∗ here is surjective, we can pull O(a1···aj) down to H0(YM,N j)2j . Then under

A0, it maps to a sum of commutators of U(YMd) elements,24 i.e., maps to a trivial

representative in H0(YM,N j)2j . By the commutative property of the diagram, O(a1···aj)

must be annihilated by i∗ ◦ δ3. Another check for the claim is the following. If O(a1···aj)

is indeed in the image of ι2, then following the lines of reasoning that led to (F.5), we

know that there must be a j-symmetric traceless representation inside H2j(susyd,C)2j.

This is consistent with Table 5.

• (1, 2, 0, 0) in d ≤ 3. Similar to the (1, 2, 0, 0) class in 4D, these classes are annihilated

by i∗.

• (2, 2, 0, 0) in 0D. This class corresponds to

〈(λΓabcdeλ)D2 − 10D[a ◦ (λΓbcde]fλ)Df〉 = −〈(Γabcde)αβQDα ◦QDβ〉 (H.6)

in H2(N2
c )2.

H.1.3 Lorentz-breaking but R-symmetry invariant deformations

• (2, 0, 2, 0) in all dimensions. These correspond to

〈(λΓmnpqrλ)(χ ◦ Γpqrχ)〉 = 〈λΓmχ ◦ λΓnχ = QDm ◦QDn〉 (H.7)

in H2(N2
c )4, giving noncommutative Yang-Mills deformations.

• (2,−10, 2, 10) in d ≥ 8. Let us include the class in d = 7 in this discussion. These

classes sit in

· · · → H2(L,N2)14 → H2(Q,N 2)14
ι2→ H0(L,N

2)6 → · · · (H.8)

24 This is equivalent to the statement that trO(a1···aj), which is a BPS operator in MSYM, is annihilated

by the successive action of 16 supercharges.
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We now argue that these classes are not annilated by ι. In 10D this follows from

Lemma 58 in [22]. In 7 ≤ d ≤ 9, consider the commutative diagram

H2(Q, Sym2(T YM))14
ι
(10)
2 ✲ H0(L, Sym

2TYM)6

H2(Q, Sym2(YMd))14

dr
❄ ι

(d)
2 ✲ H0(L, Sym

2YMd)6

DR
❄

(H.9)

where DR (dimensional reduction) is the induced map of the inclusion TYM ⊂ YMd.

In 10D, H0(L, Sym
2TYM)6 is generated by 〈χ◦Γmnpχ〉. Under DR, one can show that

its projection to the (d − 7)-form representation of SO(10− d) survives while the rest

are annihilated. By the commutative property of the diagram and the fact that there

is only one (d − 7)-form in H2(Q, (Sym2YMd)14), these classes in 7 ≤ d ≤ 9 are also

not annihlated by ι.

• (4,−12, 4, 10) in d ≥ 9. These classes sit in

· · · → H2(L,N4)20 → H2(Q,N 4)20
ι2→ H0(L,N

4)12 → · · · (H.10)

By the same argument as in the previous case, these do not give rise to F-term defor-

mations.

H.2 Exceptional D-term deformations

As explained in Section, exceptional D-term deformations are identified with classes in

the cokernel of i∗ that do not lie in the image of ι. According to the discussion in Ap-

pendix F, in order to classify the exceptional D-term deformations, we simply take all

the classes in Hn,ℓ(susyd,C) with odd n and even ℓ, and subtract by the classes inside⊕
i+2j=nH

2−i(Q, SymjYMd)ℓ+8. The SUSY cohomology groups are listed in Table 5. The

homology groups can be obtained via the isomorphism

Hℓ,n ≡ Hn(susy,C)ℓ ∼= Hℓ−n(susy,C)ℓ ≡ Hℓ−n,ℓ, (H.11)

which exchanges the chiral and antichiral spinor representations. Below we list the deforma-

tions found from the above procedure.

H.2.1 Lorentz and R-symmetry invariant deformations

• H3,4 and H7,12 in 10D. These are the δL20 and δL28 deformations in [23].

• H5,8 in 8D. This is the SO(8)×SO(2) invariant obtained from dimensional reducing

the Lorentz-breaking H5,8 class in 10D.
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H.2.2 Lorentz invariant but R-symmetry breaking deformations

All these classes have even n and do not give rise to physical deformations.

H.2.3 Lorentz-breaking but R-symmetry invariant deformations

• H5,8 = [0, 1, 0, 0, 0] in 10D and H5,8 = [1, 0, 0, 0] in 9D. In 10D, this 2-form corre-

sponds to

〈14Dα ⊗ χα ◦ Fmn −Dα ⊗ (Γmnpqχ)
α ◦ Fpq〉 (H.12)

in H1(L, Sym
2(YM10))8. The 9D class is just obtained from the 10D class by dimen-

sional reduction.

• H9,14 = [0, 0, 0, 2, 0] in 10D. The corresponding class inH1(L, Sym
4(YM10))14 should

be of the form

〈Dγ ⊗ χ3 ◦ F 〉 (H.13)

There are four copies of [00020] in Dγ ⊗ χ3 ◦ F . A linear combination of them makes

Oαβ nontrivial in the Q-cohomology.
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