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1 Introduction and summary

Conformal field theories in six dimensions parent a plethora of conformal field theories in

lower dimensions through compactification. A primal example is the compactification of

N = (2, 0) theories on Riemann surfaces to class S theories in four dimensions [1, 2]. While

no argument exists for the necessity of supersymmetry, all known interacting conformal field

theories in six dimensions are in fact superconformal.1 It follows from representation theory

that these interacting theories have neither marginal nor relevant deformations [5–10].

Moreover, no known interacting theory admits a classical limit (hence essentially strongly

coupled), or arises in the infrared limit of renormalization group flows from a Lagrangian

theory. For these reasons, only a scarcity of tools exists for extracting physical quantities

in these theories.

The conformal bootstrap aims to extract physical observables in strongly coupled con-

formal field theories, using only the basic assumptions: unitarity, (super)conformal symme-

try, and the associativity of operator product expansions (OPEs) [11–14]. The past decade

has seen substantial developments of numerical bootstrap techniques — most notably the

linear functional method — in constraining conformal field theories [15–44]. In particular,

the bootstrap has been applied to N = (2, 0) superconformal symmetry in six dimensions,

and substantial evidence was found to support the conjecture that the bootstrap bound on

the central charge is saturated by the A1 theory, which arises in the infrared limit of the

worldvolume theory of two coinciding M5 branes [34]. For theories that saturate the boot-

strap bounds, the linear functional method determines the scaling dimensions and OPE

coefficients of all the operators that contribute to the correlators under analysis [20]. By

incorporating more and more correlators, the conformal bootstrap potentially solves these

theories completely.2

In this paper, we apply the conformal bootstrap to study yet another interesting class

of six-dimensional conformal field theories — the E-string theories — which arise in the

infrared limit of the worldvolume theory of M5 branes lying inside an “end-of-the-world”

M9 brane [45, 46]. These N = (1, 0) theories have tensionless string excitations charged

under an E8 flavor symmetry, and are related to various lower-dimensional conformal field

theories. For instance, upon compactification on a circle with the presence of E8 Wilson

lines, they reduce to Seiberg’s En theories in five dimensions [47–49]. Compactifying on

Riemann surfaces lands us on various N = 1 theories in four dimensions [50, 51].

There is a larger class of N = (1, 0) theories coming from F-theory constructions

that contains the E-string theories as a subclass [52–55]. In order to pinpoint specific

theories on the solution space of bootstrap, we need to know the values of certain physical

observables. One physical observable that has been computed in known six-dimensional

theories is the anomaly polynomial [56–62]. By superconformal symmetry, the anomaly

1A class of non-supersymmetric AdS7 vacua in the massive type IIA supergravity was recently proposed

as potential duals to non-supersymmetric 6d CFTs [3] (we thank Xi Yin for pointing this out to us).

However, it is unclear whether those vacua are stable. The proposal also violates the strong version of the

weak gravity conjecture [4].
2The mixed correlator bootstrap refines the constraints on the space of unitary conformal field theo-

ries [25, 38, 39, 43].
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polynomial uniquely fixes both the central charge CT and flavor central charge CJ , which

are in turn related to certain OPE coefficients [63–65]. The precise relation between CJ
and the ’t Hooft anomaly coefficients should appear in [66], and the relation for CT was

determined in [65, 67, 68].

Employing numerical bootstrap techniques, we analyze the four-point function of scalar

superconformal primaries in the E8 flavor current multiplets. Based on the results, we

propose the following conjecture:

Conjecture 1 The rank-one E-string theory has the minimal flavor central charge CJ =

150 among all unitary interacting superconformal field theories in six dimensions with an

E8 flavor group.

We emphasize to the reader that the true virtue of this conjecture is not that we can

compute CJ by bootstrap, but rather the fact that if the rank-one E-string theory indeed

saturates the bootstrap bound, then the entire OPEs between the flavor current multiplets

can be determined (up to signs) by the linear functional method. This would be invaluable

input towards a full solution of the rank-one E-string theory by the conformal bootstrap.

We shall comment on the possibility of solving the higher-rank E-string theories and thereby

probing the dual M-theory on AdS7 × S4/Z2.

The organization of this paper is as follows. Section 2 reviews the superconformal

representation theory of the N = (1, 0) algebra in six dimensions. In sections 3 and 4,

we write down the general form of the four-point function involving 1
2 -BPS scalars in fla-

vor current multiplets that solves the superconformal Ward identities, and determine the

superconformal blocks. Section 5 explains how to introduce non-abelian flavor symmetry.

In section 6, we relate the central charge CT and flavor central charge CJ to certain co-

efficients in the OPEs between flavor current multiplet scalars. In section 7, we review

the linear functional method which turns the problem of bounding OPE coefficients to a

problem in semidefinite programming. Section 8 presents the numerical bounds and their

physical implications. Section 9 discusses the future outlook.

2 Review of superconformal representation theory

The six-dimensional N = (1, 0) superconformal algebra is osp(8|2), which contains a

bosonic subalgebra so(2, 6) × su(2)R. There are sixteen fermonic generators: eight super-

charges QAα and eight superconformal supercharges SαA, where α = 1, · · · , 4 and A = 1, 2 are

the so(6) and su(2)R spinor indices, respectively. Superconformal primaries are operators

that are annihilated by all the superconformal supercharges SαA. A highest weight state of

osp(8∗|2) is a superconformal primary that is also a highest weight state of the maximal

compact subalgebra so(2)× so(6)× su(2)R. Representations of the superconformal algebra

are generated by successively acting the supercharges QAα and the lowering generators of

so(6) × su(2)R on the highest weight states. While some descendants of a highest weight

state can appear to have zero norm, in unitary theories, they must be decoupled, and the

shortened multiplets are referred to as short multiplets.
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Each superconformal multiplet can be labeled by the charges ∆, h1, h2, h3, JR of its

highest weight state under the Cartan generators of so(2)×so(6)×su(2)R, where h1, h2, h3

are the charges under the subgroup so(2)3 ⊂ so(6). All the charges are real for unitary

representations of the Lorentzian conformal algebra so(2, 6)× su(2)R. The short represen-

tations are classified into A,B, C,D types, satisfying the following relations [5, 6, 8, 9],

A : ∆ = 4JR +
c1

2
+ c2 +

3c3

2
+ 6,

B : ∆ = 4JR +
c1

2
+ c2 + 4, c3 = 0,

C : ∆ = 4JR +
c1

2
+ 2, c2 = c3 = 0,

D : ∆ = 4JR, c1 = c2 = c3 = 0,

(2.1)

where c1, c2 and c3 are the Dynkin labels of su(4) which is related to the h1, h2 and h3 by

h1 =
1

2
c1 + c2 +

1

2
c3, h2 =

1

2
c1 +

1

2
c3, h3 =

1

2
c1 −

1

2
c3. (2.2)

The D-type highest weight states are annihilated by the four supercharges with positive

R-charge, and are therefore 1
2 -BPS. The A-, B-, and C-type multiplets always contain

BPS operators, although their highest weight states are not BPS. The long representations

satisfy the inequality

L : ∆ > 4JR +
c1

2
+ c2 +

3c3

2
+ 6. (2.3)

Let us denote the multiplets by3

X [∆; c1, c2, c3; 2JR], X = L,A,B, C,D. (2.4)

Due to OPE selection rules, later we only have to consider multiplets whose supercon-

formal primaries are in the symmetric rank-` representation of so(6). We denote such

representations by

X [2JR]∆,` = X [∆; 0, `, 0; 2JR]. (2.5)

The ∆, ` subscripts for D-type multiplets and the ∆ subscript for B-type will be omitted

since their values are fixed by (2.1) and (2.5).

Important short multiplets. We give names to certain special short multiplets, some

of which contain conserved currents.

• Identity multiplet D[0]: this multiplet contains only the identity operator (vac-

uum state).

• Hypermultiplet D[1]: contains two complex scalars and one Weyl spinor.

• Flavor current multiplet D[2]: contains conserved currents transforming in the adjoint

of a flavor symmetry, and their supertners.

3We use 2JR since it is the Dynkin label of su(2)R.
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• Stress tensor multiplet B[0]0: contains the R-symmetry currents, the stress tensor

and their superpartners.

• Higher spin multiplet B[0]` for ` > 0: contains a spin-(` + 2) higher spin conserved

current and and their superpartners. These multiplets generally live in a decoupled

free subsector [69–71].

3 Four-point function of half-BPS operators

In this section, we consider the four-point function of the scalar superconformal primaries in

the 1
2 -BPS multiplet D[k], and review the constraints from superconformal symmetry [72].

The 1
2 -BPS condition implies that this four-point function uniquely fixes the entire set

of four-point functions of the (primary or descendant) operators in D[k].4 Although we

are interested in N = (1, 0) in six dimensions, the setup is the same for superconformal

field theories in other dimensions where the R-symmetry is su(2)R, namely, N = 1 in five

dimensions and N = 3 in three dimensions.5 Hence we keep the spacetime dimension

general and write it as d = 2(ε+ 1).

The scalar superconformal primaries form a spin- k2 representation of su(2)R, and their

weight is fixed by the BPS condition ∆ = εk. The scalars can be written as OA1···Ak(x),

which is a symmetric rank-k tensor of the fundamental representation of su(2)R, Ai = 1, 2.

We can contract the indices with auxiliary variables Y A to form an operator O(x, Y ) that

has homogenous degree (−εk, k). The four point function of O(x, Y ) is then a homogenous

degree (−4εk, 4k) function, and is polynomial in Y A. Therefore it must take the form

〈O(x1, Y1)O(x2, Y2)O(x3, Y3)O(x4, Y4)〉 =

(
(Y1 · Y2)(Y3 · Y4)

x2ε
12x

2ε
34

)k
G(u, v;w),

G(u, v;w) = G0(u, v) +G1(u, v)w−1 + · · ·+Gk(u, v)w−k,

(3.1)

where the cross ratios u, v, and w are defined as6

u =
x2

12x
2
34

x2
13x

2
24

, v =
x2

14x
2
23

x2
13x

2
24

, w =
(Y1 · Y2)(Y3 · Y4)

(Y1 · Y4)(Y2 · Y3)
,

x2
12 = (x1 − x2)2, Y1 · Y2 = Y A

1 Y
B

2 εBA.

(3.2)

As all four external scalars are identical, the invariance of (3.1) under (x1, Y1) ↔ (x3, Y3)

leads to the crossing symmetry constraint

G(u, v;w) =

(
uε

vεw

)k
G(v, u;w−1). (3.3)

4The superfield for a 1
2
-BPS multiplet only depends on four fermionic coordinates (half the number of

fermionic coordinates in full superspace). The four-point function of such superfields depends on sixteen

fermionic coordinates, which is the same as the number of fermionic generators in the superconformal

algebra. Hence the four-point function of the superfields can be obtained by supersymmetrizing the four-

point function of the superconformal primaries. There is no extra constraint coming from the crossing

symmetry of the four-point functions of superconformal descendants.
5Our setup does not apply to N = 2 in four dimensions. In particular, such a theory has a protected

subsector corresponding to a two-dimensional chiral algebra [29, 72].
6The variables Y Ai satisfy the identity (Y1 · Y2)(Y3 · Y4)− (Y1 · Y3)(Y2 · Y4) + (Y1 · Y4)(Y2 · Y3) = 0.
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Similarly, the invariance of (3.1) under (x1, Y1)↔ (x2, Y2) leads to the constraint

G(u, v;w) = G

(
u

v
,

1

v
;− w

w + 1

)
. (3.4)

The four-point function is further constrained by the superconformal Ward identities,

which we review in appendix B. They were solved in [72], and the solutions are parametrized

by k − 2 functions bn(u, v),

G(u, v;w) =

k−2∑
n=0

u(n+2)ε∆ε

[
(v + uw−1)(1 + w−1)− w−1

] (
1 + w−1

)n
bn(u, v), (3.5)

where the differential operator ∆ε is defined as

Dε = u
∂2

∂u2
+ v

∂2

∂v2
+ (u+ v − 1)

∂2

∂u∂v
+ (1 + ε)

(
∂

∂u
+

∂

∂v

)
,

∆ε = (Dε)
ε−1uε−1.

(3.6)

In even dimensions, ∆ε is a well-defined differential operator, and is invariant under

crossing. One approach to solving the crossing equation is to “factor out” (Dε)
ε−1 and write

down a crossing equation for bn(u, v) (while carefully taking care of the kernel of (Dε)
ε−1),

as was the approach of [34]. However, in odd dimensions, the differential operator (Dε)
ε−1 is

defined only formally on the functional space spanned by Jack polynomials with eigenvalues

given in (A.10), and this functional space does not map to itself under crossing u ↔ v.7

To make our setup easily generalizable to five and three dimensions, we will not study the

crossing equation for bn(u, v), but will instead analyze the crossing equation for G(u, v;w)

directly. See appendix C for the setup of the crossing equation for bn(u, v) in the special

case of ε = k = 2.

The rest of the paper specializes to the case of k = 2. Then G(u, v;w) is a second

degree polynomial in w−1. By matching the coefficients of the monomials in w, the crossing

equation (3.3) can be separated into three equations involving only u and v,

u−2εG2(u, v) = v−2εG0(v, u),

u−2εG1(u, v) = v−2εG1(v, u),

u−2εG0(u, v) = v−2εG2(v, u),

(3.7)

where Gi are defined in (3.1), and the third equation is trivially equivalent to the first

equation. In appendix B, we show that the second equation also follows from the first

equation as a consequence of the superconformal Ward identities (B.1). Moreover, the

superconformal Ward identities imply an identity (B.8) on the first equation, which is

important when we need to identify the independent constraints from the crossing equation

in order when applying the linear functional method.

7We thank Silviu S. Pufu for a discussion on the subtleties of the differential operator ∆ε.
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4 Superconformal blocks

The four point function can be expanded in superconformal blocks as

G(u, v;w) =
∑
X
λ2
XAX (u, v;w), (4.1)

where AX (u, v;w) is the superconformal block of the superconformal multiplet X . The

sum is over the superconformal multiplets allowed in the OPE of two D[2]. The selection

rule is

D[2]×D[2] =

2∑
j=0

D[4− 2j] +

2∑
j=1

∞∑
`=0

B[4− 2j]` +

∞∑
`=0

∑
∆>`+2ε(2−j)+6

L[0]∆,`, (4.2)

as we presently argue. First, a generalization of [73] shows (4.2) with the possible addition of

A[0]` and C[0].8 However, no consistent superconformal block satisfying the superconformal

Ward identities exists for A[0]` and C[0], thereby proving their absence (see footnote 11).

The constraint (3.4) imposes an additional selection rule `+ JR ∈ 2Z on the intermediate

primary operators.9 A superconformal block can be expanded in products of bosonic

conformal blocks G∆,` and su(2)R harmonics,

AX (u, v;w) =
∑

(2JR,∆,`)∈X

c2JR,∆,`PJR
(
1 + 2

w

)
G∆,`(u, v), (4.3)

where PJR(x) are Legendre polynomials. The summation
∑

(2JR,∆,`)∈X is over all primary

operators in the superconformal multiplet X that appear in the OPE, labeled by (2JR,∆, `).

It is a finite sum as there are only finitely many primary operators contained in each

superconformal multiplet. Bosonic conformal blocks are reviewed in appendix A.

The coefficients c2JR,∆,` are fixed by the superconformal Ward identities (B.1). The

superconformal block expansion (4.1) implies that the functions bn(u, v) parameterizing

solutions to the superconformal Ward identities (see (3.5)) have expansions

bn(u, v) =
∑
X
λ2
X b
X
n (u, v). (4.4)

Comparing (4.1) and (4.3) with (3.5) gives the relation

2∑
JR=0

PJR
(
1 + 2

w

)
AX2JR(u, v) = u2ε∆ε

[
(v + uw−1)(1 + w−1)− w−1

]
bX0 (u, v), (4.5)

where AX2JR(u, v) is defined as

AX2JR(u, v) =
∑

(∆,`)∈X|2JR

c2JR,∆,`G∆,`(u, v).
(4.6)

8Consider the three-point function of two superfields of D[2] with a generic superfield O in the harmonic

superspace. The bottom component of such three-point function takes the form of equation (3.3) in [73]

with the obvious modifications. By the arguments of [73], O must correspond to either a D- or B-type

multiplet if O has 2JR = 2, and a D-type if 2JR = 4.
9Note the the bosonic conformal blocks satisfy G∆,`(u, v) = (−1)`G∆,`(u/v, 1/v).
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The relation (4.5) can then be written as

AX0 (u, v) = u2ε∆ε

(
1

2
− 1

6
u+

1

2
v

)
bX (u, v),

AX2 (u, v) =
1

2
u2ε∆ε(v − 1)bX (u, v),

AX4 (u, v) =
1

6
u2ε∆εub

X (u, v),

(4.7)

where we abbreviate b0 as b since there is no other bn.

In the following subsections, we give explicit expressions for the superconformal blocks

by solving (4.7). The bosonic conformal blocks are normalized such that in the limit of

u = v � 1, the leading term in the u expansion is u∆. The superconformal blocks are

normalized such that in the same limit, the leading term is (−)JRu∆PJR
(
1 + 2

w

)
.

4.1 Long multiplets

Inside the superconformal multiplet L[0]∆,`, there is a unique conformal primary of dimen-

sion ∆+2, spin `, and transforming in the su(2)R representation with 2JR = 4 [8, 9]. Thus

we can solve for b using the last line of (4.7):

bL[0]∆,`(u, v) = 6c4,∆,`u
−1∆−1

ε u−2εG∆+2,`(u, v), (4.8)

where

c4,∆,` =
(∆ + `)(∆− `− 2ε)

6(∆ + `− 2ε+ 2)(∆− `− 4ε+ 2)
. (4.9)

Using the formulae in appendix D of [24], we obtain the explicit decomposition of the long

multiplet superconformal blocks into bosonic conformal blocks, as follows:

AL[0]∆,`
0 = G∆,`

+
(`− 1)`(∆− `)(∆− `− 2ε)(∆− `− 2ε+ 2)

16(`+ ε− 1)(`+ ε)(∆−`−4ε+ 2)(∆− `− 2ε+ 1)(∆−`−2ε+ 3)
G∆+2,`−2

+
(∆ + `)(∆ + `+ 2)(`+ 2ε)(`+ 2ε+ 1)(∆ + `+ 2ε)

16(∆ + `+ 1)(∆ + `+ 3)(`+ ε)(`+ ε+ 1)(∆ + `− 2ε+ 2)
G∆+2,`+2

+
(∆ + 1)(∆ + 2)(∆− 2ε+ 2)(∆− 2ε+ 3)(∆− `)(∆ + `)(∆ + `+ 2)

256(∆− ε+ 1)(∆− ε+ 2)2(∆− ε+ 3)(∆ + `+ 1)(∆+`+ 3)(∆−`−4ε+ 2)

× (∆− `− 2ε)(∆− `− 2ε+ 2)(∆ + `+ 2ε)

(∆− `− 2ε+ 1)(∆− `− 2ε+ 3)(∆ + `− 2ε+ 2)
G∆+4,`

+

(∆ + `)(∆− `− 2ε)

(
1− 3(ε−1)ε(∆2−2∆(ε−1)+`2+2(`+3)ε−2ε2−4)

2(∆−ε)(∆−ε+2)(`+ε−1)(`+ε+1)

)
12(∆ + `− 2ε+ 2)(∆− `− 4ε+ 2)

G∆+2,`,

(4.10)

– 8 –
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AL[0]∆,`
2 =− `(∆− `− 2ε)

2(`+ ε)(∆− `− 4ε+ 2)
G∆+1,`−1

− (∆ + `)(`+ 2ε)

2(`+ ε)(∆ + `− 2ε+ 2)
G∆+1,`+1

− (∆ + 1)`(∆− 2ε+ 2)(∆− `)
32(∆− ε+ 1)(∆− ε+ 2)(`+ ε)(∆− `− 4ε+ 2)

× (∆ + `)(∆− `− 2ε)(∆− `− 2ε+ 2)

(∆− `− 2ε+ 1)(∆− `− 2ε+ 3)(∆ + `− 2ε+ 2)
G∆+3,`−1

− (∆ + 1)(∆− 2ε+ 2)(∆ + `)(∆ + `+ 2)

32(∆− ε+ 1)(∆− ε+ 2)(∆ + `+ 1)(∆ + `+ 3)

× (`+ 2ε)(∆− `− 2ε)(∆ + `+ 2ε)G(∆ + 3, `+ 1)

(`+ ε)(∆− `− 4ε+ 2)(∆ + `− 2ε+ 2)
G∆+3,`+1,

AL[0]∆,`
4 =

(∆ + `)(∆− `− 2ε)

6(∆ + `− 2ε+ 2)(∆− `− 4ε+ 2)
G∆+2,`.

(4.11)

4.2 Short multiplets

The superconformal blocks for the short multiplets can be obtained by taking limits of the

superconformal block for L[0]∆,`, as follows:

AB[2]`(u, v;w) =
`+ ε+ 1

(`+ 1)(ε− 1)
lim

∆→`+4ε−1
(∆− `− 4ε+ 1)AL[0]∆,`+1(u, v;w),

AB[0]`(u, v;w) = lim
∆→`+2ε

(∆− `− 2ε)AL[0]∆,`(u, v;w),

AD[4](u, v;w) =
3ε

(ε− 1)(2ε− 1)
lim

∆→4ε−2
(∆− 4ε+ 2)AL[0]∆,0(u, v;w),

AD[2](u, v;w) =
1

(2ε− 1)
lim

∆→2ε−1
(∆− 2ε+ 1)AL[0]∆,−1(u, v;w),

(4.12)

where the first and third equations follow from the recombination rules at the unitary

bound.10 In the second and forth equations, we need to analytically continue the su-

perconformal block AL[0]∆,` to ∆ below the unitarity bound (2.3), so the limits should

be regarded as mere tricks to generate solutions to the superconformal Ward identities.

One can explicitly check that the superconformal blocks for short multiplets obtained this

way indeed have the correct decompositions into bosonic conformal blocks. One can also

show that given the content of each multiplet, (4.10) or (4.12) is the unique combination

of bosonic conformal blocks that solves the superconformal Ward identities. In fact, as

mentioned earlier, the lack of a solution for A`[0] and C[0] proves their absence in the

selection rule (4.2).11

10See (4.4) in [8] or (2.63) in [9].
11All the bosonic component fields in C[0] are R-symmetry neutral, hence the superconformal Ward

identities reduce to

∂χG(u, v;w)|w→χ = 0, ∂χ̄G(u, v;w)|w→χ̄ = 0, (4.13)
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The superconformal block for B[2]` is given by

AB[2]`
0 =

`ε

2(2ε+ 1)(`+ ε)
G`+4ε+1,`−1 +

(`+ 2ε)(`+ 4ε)

6(`+ ε)(`+ 3ε+ 1)
G`+4ε+1,`+1

+
ε(`+ 2ε)(`+ 2ε+ 1)2(`+ 2ε+ 2)(`+ 4ε)(`+ 4ε+ 1)

8(`+ 1)(2ε+ 1)(`+ 3ε+ 1)2(`+ 3ε+ 2)(2`+ 4ε+ 1)(2`+ 4ε+ 3)
G`+4ε+3,`+1,

AB[2]`
2 =− G`+4ε,` −

ε(`+ 2ε)(`+ 2ε+ 1)(`+ 4ε)

4(2ε+ 1)(`+ ε+ 1)(`+ 3ε)(`+ 3ε+ 1)
G`+4ε+2,`

− (`+ 2ε)(`+ 2ε+ 1)3(`+ 4ε)

4(`+ 1)(`+ ε+ 1)(`+ 3ε+ 1)(2`+ 4ε+ 1)(2`+ 4ε+ 3)
G`+4ε+2,`+2,

AB[2]`
4 =

`+ 2ε

3(`+ 1)
G`+4ε+1,`+1.

(4.16)

The superconformal block for B[0]` is given by

AB[0]`
0 = G`+2ε,` +

(`+ 2ε)2(`+ 2ε+ 1)

4(`+ 1)(2`+ 2ε+ 1)(2`+ 2ε+ 3)
G`+2ε+2,`+2,

AB[0]`
2 = − `+ 2ε

2(`+ 1)
G`+2ε+1,`+1.

(4.17)

The superconformal block for D[4] is given by

AD[4]
0 =

2ε2

3(4ε+ 1)(3ε+ 1)
G4ε+2,0,

AD[4]
2 = − 2ε

4ε+ 1
G4ε+1,1,

AD[4]
4 = G4ε,0.

(4.18)

The superconformal block for D[2] is given by

AD[2]
0 =

ε

2ε+ 1
G2ε+1,1,

AD[2]
2 = −G2ε,0.

(4.19)

The superconformal block for D[0] is given by

AD[0]
0 = 1. (4.20)

which cannot be satisfied by any non-vacuum block. The superconformal block for A[0]` must take the form

AA[0]`(ρ, θ;w) = a
[
G`+6,`(ρ, θ) +O(ρ`+7)

]
+ b

[
G`+7,`+1(ρ, θ) +O(ρ`+8)

]
P1(1 + 2

w
), (4.14)

where ρ and θ are defined by χ = ρeiθ and χ̄ = ρe−iθ. By

lim
θ→0

(∂χ + 2∂w)AA[0]`(ρ, θ;w)
∣∣∣
w→χ

=
1

2
[a(`+ 6) + 2b(`+ 3)] ρ`+5 +O(ρ`+6),

lim
θ→π

2

(∂χ + 2∂w)AA[0]`(ρ, θ;w)
∣∣∣
w→χ

=
3

2

[
a(`+ 4) + 2b(`+ 3)

(`+ 2)(`+ 4)
sin

π`

2
− ia(`+ 6) + 2b(`+ 1)

(`+ 1)(`+ 3)
cos

π`

2

]
ρ`+5 +O(ρ`+6),

(4.15)

it is clear that (4.14) cannot satisfy the superconformal Ward identities unless a = b = 0.
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A different derivation of the blocks using the superconformal Casimir equations appears

in [74].12

5 Flavor symmetry

We want to consider theories with non-abelian flavor symmetry. Since flavor currents are

contained in the D[2] multiplets, the superconformal primaries Oa(xi, Yi) transform in the

adjoint representation of the flavor symmetry group GF , where a is the adjoint index. The

four-point function of Oa(xi, Yi) takes the form

〈Oa(x1, Y1)Ob(x2, Y2)Oc(x3, Y3)Od(x4, Y4)〉 =
(Y1 · Y2)2(Y3 · Y4)2

x4ε
12x

4ε
34

Gabcd(u, v;w), (5.1)

and Gabcd(u, v;w) admits a decomposition into superconformal blocks as in section 4. The

operators that appear in the OPE of Oa(x1, Y1) and Ob(x2, Y2) transform in the tensor

product representation adj ⊗ adj, which can further be decomposed into irreducible rep-

resentations Ri. The decomposition of Gabcd(u, v;w) takes the form

Gabcd(u, v;w) =
∑

Ri∈adj⊗adj
P abcdi Gi(u, v;w),

Gi(u, v;w) =
∑
X
λ2
X ,iAX (u, v;w),

(5.2)

where P abcdi is the projection matrix that projects onto the contributions of operators in

the OPE that transform in the representation Ri. They satisfy [75]

P abcdi P dcefj = δijP
abef
i , P abbai = dim(Ri). (5.3)

The projection matrices of the trivial representation and the adjoint representation are

P abcd1 =
1

dim(GF )
δabδcd, P abcdadj =

1

ψ2h∨
fabef edc, (5.4)

where h∨ is the dual Coxeter number and ψ2 = 2 is the length squared of the longest root

of the flavor group.

The identity operator and the stress tensor multiplet B[0]0 can only transform in the

trivial representation 1 of the flavor group, while the flavor current multiplet D[2] can only

be in the adjoint representation adj. Their OPE coefficients satisfy

λ2
D[0],i = dim(GF )δi,1, λ2

B[0]0,i
= λ2

B[0]dim(GF )δi,1, λ2
D[2],i = λ2

D[2]δi,adj. (5.5)

In section 6, we will relate the coefficients λ2
B[0]0

and λ2
D[2] to the central charge CT and

flavor central charge CJ , which are in turn related to the anomaly coefficients and can be

determined through other methods.

12The paper [74] points out typos in (4.16) and (4.18) in the early versions of this paper. However, the

correct formulae for the blocks were used in the actual bootstrap implementation in all versions.
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GF h∨ adj ⊗S adj adj ⊗A adj F

SU(2) 2 1 + 5 3


1
3

5
3 1

1
3

1
6 −

1
2

1
3 −

5
6

1
2



E8 30 1 + 3875 + 27000 248 + 30380



1
248

125
8

3375
31 1 245

2
1

248 −
3
8

27
31

1
5 − 7

10
1

248
1
8

23
62 − 1

30 −
7
15

1
248

25
8 −225

62
1
2 0

1
248 −

5
56 −

90
217 0 1

2


Table 1. The decomposition of adj ⊗ adj into irreducible representations and the crossing matrices

for SU(2) and E8 flavor groups. The basis of representations in the crossing matrix are in the order

shown in columns adj ⊗S adj and then adj ⊗A adj.

Because all four external scalars are identical, the four-point function (5.1) is invariant

under (x1, Y1, a)↔ (x3, Y3, c), leading to the crossing symmetry constraint

Fi
jGj(u, v;w) =

u2ε

v2εw2
Gi(v, u;w−1), (5.6)

where the crossing matrix Fi
j is defined as

Fi
j =

1

dim(Ri)
P dabci P abcdj . (5.7)

Similarly, the invariance under (x1, Y1, a)↔ (x2, Y2, b) leads to the constraint

Gi(u, v;w) = (−1)|Ri|Gi

(
u

v
,

1

v
;− w

w + 1

)
, (5.8)

where |Ri| = 0 for Ri appearing in the symmetric tensor product of two adjoint repre-

sentations, and |Ri| = 1 for Ri appearing in the anti-symmetric tensor product. The

constraint (5.8) amounts to imposing the selection rule `+ JR + |Ri| ∈ 2Z on the interme-

diate primary operators.

We will be interested in the SU(2) and E8 flavor groups. The adj⊗adj decompositions

and crossing matrices are summarized in table 1.13

6 Central charges

In this section, we review the definitions of the central charge CT and the flavor central

charge CJ , and derive their relations to the OPE coefficients λ2
B[0]0

, λ2
D[2].

13We compute the crossing matrices following the methods explained in [75].

– 12 –



J
H
E
P
0
8
(
2
0
1
7
)
1
2
8

6.1 Central charge CT

Conformal symmetry fixes the two-point function of the stress tensor up to an overall

coefficient. Since the stress tensor has a canonical normalization, this coefficient is physical

and is referred to in the literature is as the central charge CT . More precisely [76],

〈Tµν(x)Tσρ(0)〉 =
CT
V 2

Ŝd−1

Iµν,σρ(x)

x2d
, (6.1)

where V
Ŝd−1 = 2π

d
2 /Γ

(
d
2

)
is the volume of a unit (d−1)-sphere, and the conformal structure

Iµν,σρ(x) is given by

Iµν,σρ(x) =
1

2
[Iµσ(x)Iνρ(x) + Iµρ(x)Iνσ(x)]− 1

d
δµνδσρ,

Iµν(x) = δµν − 2
xµxν
x2

.
(6.2)

In appendix D.1, we review how the contribution of the stress tensor multiplet to the four-

point function of identical scalars is fully determined by the value of CT . Assuming that

there is a unique flavor-singlet stress tensor multiplet B[0]0, the relation between the OPE

coefficient λB[0]0 and the central charge CT is

λ2
B[0]0

=
4(2ε+ 2)(2ε+ 3)

2ε+ 1

1

CT
. (6.3)

To later compare with numerical bounds, we present here the values of CT for six-

dimensional superconformal field theories of interest, by relating CT to a Weyl anomaly

coefficient. The Weyl anomaly in six-dimensional conformal field theories takes the

form [77–79]

A6d = (4π)3
〈
Tµµ
〉

= −aE6 + c1I1 + c2I2 + c3I3 + scheme dependent, (6.4)

where E6 is the Euler density and I1,2,3 are certain Weyl invariants. I3 is normalized as

I3 = Cµνσρ∇2Cµνσρ+ · · · , Cµνσρ being the Weyl tensor (see [79] for the precise definition of

I3). The a-coefficient appears in the stress tensor four-point function, c1 and c2 in the stress

tensor three-point function, and c3 in the stress tensor two-point function. The relation

between c3 and CT is

CT = 3024c3. (6.5)

In theories with supersymmetry, the Weyl anomaly coefficients are linearly related

to the ’t Hooft anomaly coefficients [63–65], which appear in the anomaly polynomial

involving gravitational and R-symmetry anomalies (see [65] for precise definitions and

normalizations)

I8 =
1

4!

(
αc2(R)2 + βc2(R)p1(T ) + γp1(T )2 + δp2(T )

)
. (6.6)

In [65], the authors proposed that the coefficients appearing in the linear relations can be

fixed by computing the values of α, β, γ, δ and a, c1, c2, c3 in free theories, e.g., the free
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hypermultiplet, the free tensor multiplet, and a class of non-unitary free theories. The

relation between c3 and α, β, γ, δ was determined up to an unfixed parameter ξ,

c3 =
1

9
α− 1

14
(5 + 3ξ)β +

1

21
(2− 3ξ)γ − 1

12
(2 + 3ξ)δ. (6.7)

The value of ξ can be further fixed by considering a superconformal vector multiplet V (1,0),

which has the same field content as the flavor current multiplet, but whose component

fields have higher-derivative kinetic terms. More explicitly, the multiplet consists of a

four-derivative vector, a three-derivative Weyl fermion, and three standard two-derivative

scalars. The anomaly coefficients are [65]

(α, β, γ, δ) =

(
−1,−1

2
,− 7

240
,

1

60

)
. (6.8)

Thus the constant ξ can be determined by

ξ =
CT (V (1,0))

324
− 26

45
. (6.9)

Since the theory is free, the CT of V (1,0) is simply the sum of that of its component

fields. The CT of a free scalar is known from [76],

CT =
6

5
(standard scalar), (6.10)

and that of a free four-derivative vector was computed in [80, 81] to be

CT = −90 (four-derivative vector). (6.11)

In [68], the authors computed the CT for a three-derivative Weyl fermion by studying the

partition function on S1 ×H5, and found

CT = −72

5
(three-derivative Weyl fermion). (6.12)

In appendix E, we verify this answer by explicitly constructing the stress tensor for the

three-derivative fermion and computing its two-point function. Thus

CT (V (1,0)) = 3× 6

5
− 72

5
− 90 = −504

5
, (6.13)

and they concluded that

ξ = −8

9
, (6.14)

which corroborates with what was first found in [67] via a different method.14 In [68], the

conformal anomaly coefficients for an infinite family of free, non-unitary, higher-derivative

N = (1, 0) superconformal multiplets were also computed, and indeed found to satisfy the

linear relation (6.7) with this value of ξ.

14We thank Matteo Beccaria, Arkady A. Tseytlin, and Yang Zhou for sharing this result before publica-

tion.
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There are various techniques for inferring the values of ’t Hooft anomaly coefficients

in superconformal field theories, even when the theory is strongly interacting and direct

handles are lacking. For instance, if a construction within string theory or M theory

exists, the ’t Hooft anomaly coefficients can be computed by anomaly inflow [56, 58].

Another approach is anomaly matching by going onto the tensor branch or the Higgs

branch [57, 59, 60, 62].

In the following, we present the values of CT for the free hypermultiplet and the E-

string theories.

Free hypermultiplet. The CT for each free scalar φ and each free Dirac spinor ψ are [76]

CφT =
(2ε+ 2)

(2ε+ 1)
, CψT = 2bεc(2ε+ 2). (6.15)

Thus the CT for a free hypermultiplet is

Chyper

T = 4CφT +
1

2
CψT =

84

5
. (6.16)

E-string theories. The rank-N E-string theory is realized by stacking N M5 branes

inside an end-of-the-world M9 brane [45, 46]. The flavor symmetry is E8 for rank-one and

E8×SU(2) for higher ranks. The ’t Hooft anomaly coefficients and the conformal anomaly

coefficient c3 are given by (including the free hypermultiplet describing the center-of-mass

degrees of freedom parallel to the M9 brane)

α = N(4N2 + 6N + 3), β = −N
2

(6N + 5), γ =
7N

8
, δ = −N

2
,

c3 =
4

9
N3 +

7

6
N2 +

11

12
N, CT = 84N(16N2 + 42N + 33).

(6.17)

The minimal central charge is achieved in the N = 1 case, which after decoupling the free

hypermultiplet is

CT = 7644− 84

5
=

38136

5
. (6.18)

6.2 Flavor central charge CJ

We can perform a similar analysis for the flavor currents Jaµ , which are canonically normal-

ized in the following way. In radial quantization, the non-abelian charge of a state on the

cylinder which corresponds to an operator inserted at the origin xµ = 0 is measured by

Qa =

∫
Sd−1

Jaµ(x)r̂µdS, (6.19)

where r̂µ = xµ/|x| is the radial unit vector, and the integral is over an Sd−1 surrounding the

origin. If we consider a state
∣∣Jbµ〉 that corresponds to the current Jbµ, then the non-abelian

charge of this state is given by the structure constants,

Qa
∣∣∣Jbµ〉 = fabc

∣∣Jcµ〉. (6.20)
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We can normalize the structure constants by

1

ψ2h∨
fabcf

dc
b = δad, (6.21)

where h∨ is the dual Coxeter number and ψ2 = 2 is the length squared of the longest root

of the flavor group. This then endows the currents with a normalization.

Conformal symmetry constrains the two point function of the flavor currents Jaµ up to

an overall coefficient, which is called the flavor central charge CJ [76],〈
Jaµ(x)Jbν(0)

〉
=

CJ
V 2

Ŝd−1

δabIµν(x)

x2(d−1)
. (6.22)

The contribution of the flavor current multiplet to the four-point function of identical

scalars is fully determined by the value of CJ . In appendix D.2, we derive the relation

between the OPE coefficient λD[2] and the central charge CJ ,

λ2
D[2] =

2(2ε+ 1)

2ε

ψ2h∨

CJ
. (6.23)

Similar to the central charge CT , the flavor central charge CJ can be linearly related

to ’t Hooft anomaly coefficients [66]. We list the values of CJ for the theories of interest.

Free hypermultiplet. The flavor central charge of a single free hypermultiplet can be

determined by (6.23) and (F.23), giving

CJ =
5

2
. (6.24)

E-string theories. The CJ of the E8 flavor group of E-string theories is

CJ = 60N2 + 90N. (6.25)

For rank one, CJ = 150.

7 Semidefinite programming

We proceed by employing the linear functional method [15] to exploit the crossing symmetry

constraint (3.3) (setting ε = k = 2), as well as the non-negativity of the coefficients in the

superconformal block expansion (4.1), where X is summed over the multiplets (4.2) allowed

by selection rules. To keep the discussion simple, we only display formulae for U(1) flavor

symmetry. Also recall from that G(u, v;w) has an expansion in w−1 as shown in (3.1).

Putting these together, we have

G(u, v;w) =

(
u2

v2w

)2

G(v, u;w−1),

G(u, v;w) =
∑
X
λ2
XAX (u, v;w),

G(u, v;w) = G0(u, v) +G1(u, v)w−1 +G2(u, v)w−2,

(7.1)
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where each superconformal block AX (u, v;w) also has an expansion in w−1 that terminates

at quadratic order,15

AX (u, v;w) = ÃX0 (u, v) + ÃX1 (u, v)w−1 + ÃX2 (u, v)w−2. (7.2)

The precise formulae for these superconformal blocks are detailed in section 4.

As explained in the final paragraph of section 3, the superconformal Ward identi-

ties imply that the independent constraints from crossing symmetry are contained in the

equation

v4G2(u, v) = u4G0(v, u). (7.3)

Putting things together compactly, the constraints we need to analyze are16

0 =
∑

X∈I∪{D[0]}

λ2
XKX (u, v), KX (u, v) ≡ v4ÃX2 (u, v)− u4ÃX0 (v, u),

λ2
D[0] = 1, λ2

X ≥ 0 for X ∈ I,
(7.4)

where I, the putative spectrum of superconformal multiplets with the identity multiplet

excluded, contains a subset of

L[0]∆,`, B[2]`, B[0]`, D[4], D[2]. (7.5)

It is a subset because there are further restrictions on the set of X over which we sum:

• With abelian flavor symmetry, there is a further selection rule that requires ` + JR
to be even.

• With non-abelian flavor symmetry, the selection rule allows symmetric representa-

tions in adj× adj for `+ JR even and anti-symmetric ones for `+ JR odd.

• D[0] only appears in the trivial representation of the flavor group.

• D[2] can only appear in the adjoint representation of the flavor group since these

multiplets contain flavor currents (hence D[2] are absent for abelian flavor).

• In interacting theories with a unique stress tensor, B[0]0 only exists in the trivial

representation, and B[0]` for ` > 0 do not exist since these multiplets contain higher

spin conserved currents.17,18

Our goal is to put bounds on the central charges CT and CJ , which are inversely

proportional to λ2
B[0]0

and λ2
D[2] via (6.3) and (6.23). We presently explain how to put a

universal lower bound on CT , or equivalently an upper bound on λ2
B[0]0

, using the linear

15Notice that ÃXi (u, v) are different from the AXi (u, v) defined in (4.6), which are the coefficients in the

expansion of superconformal blocks AX (u, v;w) in Legendre polynomials rather than in monomials in w−1.
16Recall from (5.5) that when the flavor group is non-abelian, the normalization is λ2

D[0],i = dim(GF )δi,1.
17Later when we mention “interacting theories”, we always assume that the stress tensor is unique.
18We thank the JHEP referee for pointing out a mistake in our draft, where we wrongly assumed that even

in free theories, B[0]` for all ` can only transform in the trivial or adjoint representation of the flavor group.
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functional method. Simple modifications of the following setup allow us to further bound

theories to within a finite region in the C−1
T − C

−1
J plane.

Consider the space of linear functionals on functions of u, v. Suppose we can find a

linear functional α that satisfies

α[KD[0]] = −1, α[KX ] ≥ 0 for X ∈ I, (7.6)

then these constraints combined with the constraints (7.4) imply an upper bound on λ2
D[2],

λ2
D[2] =

λ2
D[2]∑

X∈I λ
2
Xα[KX ]

≤ 1

α[KD[2]]
. (7.7)

The optimal upper bound is obtained by maximizing α[KD[2]] within the space of linear

functionals satisfying (7.6). The resulting functional is referred to as the extremal func-

tional, which we denote by αE [20]. Thus the linear functional method turns the problem

of putting an upper bound on λ2
D[2] to a problem in semidefinite programming.

There is a unique four-point function saturating (7.7), called the extremal four-point

function [20, 23]. This four-point function satisfies

0 =
∑

X∈I\{D[2]}

λ2
X αE [KX ], (7.8)

which, given (7.6), means that the long multiplets that can contribute to this extremal

four-point function must have ∆, ` at which αE [KL[0]∆,` ] vanishes.

In practice, we can only perform the above minimization procedure within a finite-

dimensional subspace of linear functionals, with the constraints (7.6) imposed on a finite

number of multiplets. We achieve the latter by restricting to multiplets with spins no

larger than a certain maximum `max, and estimate how the bound weakens with increasing

`max. Empirically we find that the amount of weakening is roughly inversely proportional

to `max, and so we can estimate the errors by extrapolations. This issue is examined further

in appendix G. As for truncating the linear functionals, a convenient subspace is given by

the following. Define variables z, z̄ by

u = zz̄, v = (1− z)(1− z̄), (7.9)

such that crossing u ↔ v amounts to (z, z̄) ↔ (1 − z, 1 − z̄). Consider the expansion of

linear functionals in the basis of taking derivatives with respect to ∂z and ∂z̄ and evaluating

at the crossing symmetric point z = z̄ = 1
2 . Our subspace is simply the truncation of these

derivatives to having total degree no larger than Λ, namely,

α =
Λ∑

m,n=0

αm,n∂
m
z ∂

n
z̄ |z=z̄= 1

2
. (7.10)

Bosonic conformal blocks and their derivatives evaluated at the crossing symmetric

point are computed by utilizing the recursive representation [82], the diagonal limit [19, 83],

and a recursion relation on transverse derivatives [19] that follows from the conformal

Casimir equation. The computations are described in appendix A. We use the SDPB

package [31] to perform the semidefinite programming procedure. Details on the numerical

implementations are discussed in appendix G.
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8 Results

8.1 Free hypermultiplet: a check

In the semidefinite programming approach to constraining superconformal field theories,

free theories differ from interacting theories by the presence of multiplets that contain

higher spin conserved currents, B[0]` with ` > 0. This means that the functional α acted

on these multiplets must also be non-negative, leading to weaker constraints than the

interacting case.

A single free hypermultiplet has SU(2) flavor symmetry. In particular, the SO(4) that

rotates the four real scalars is the combination of the flavor SU(2) and R-symmetry SU(2)R.

The superconformal primaries of the D[2] multiplets are scalar bilinears, and their four-

point function can be computed explicitly by Wick contractions. We refer the reader to

appendix F.2 for the explicit form of this four-point function and its decomposition into

superconformal blocks. An important property is the absence of B[0]` in the 5 representa-

tion, an additional condition that we impose in the bootstrap analysis. We also note that

the long multiplets appearing in the 1 channel have lowest scaling dimension ∆ = 8, and

in the 5 channel have lowest ∆ = 10.

Assuming SU(2) flavor symmetry and the existence of higher spin conserved currents

in the trivial 1 or adjoint 3 representation, figure 1 shows the universal lower bounds on

CT and CJ at various derivative orders Λ, as well as extrapolations to Λ → ∞ using the

quadratic ansatz

minCT/J = a+
b

Λ
+

c

Λ2
, b < 0, Λ ≥ 24, 28, 32. (8.1)

We see that both minCT and minCJ tend towards the values for a single free hypermul-

tiplet. The left side of figure 2 shows the extremal functional optimizing the lower bound

on CJ acted on the contribution of the spin-zero long multiplet to the crossing equation,

αE [KL[0]∆,0 ], in the 1 and 5 channels of the SU(2) flavor. We can read off the low-lying

spectrum of long multiplets from the zeroes.19 The right side of figure 2 shows how the

lowest ∆ in each channel varies with increasing Λ and tends towards ∆ = 8 and ∆ = 10.

Also shown are extrapolations to infinite Λ using the ansatz

∆L[0]
gap = a+ b exp

c

Λ
, Λ ≥ 24. (8.2)

Due to the oscillatory behavior of the data points, we perform separate extrapolations for

Λ ∈ 4Z and Λ ∈ 4Z + 2, for both minCT/J and ∆
L[0]
gap . These results suggest that a free

hypermultiplet saturates the lower bounds on both CT and CJ .

8.2 E-string theories

Let us now turn our attention to the E-string theories. We first present universal lower

bounds on CT and CJ for theories whose flavor group contains E8 as a subgroup. Figure 3

shows the bounds on CT and CJ at different derivative orders Λ, and extrapolations to

infinite Λ using the quadratic ansatz (8.1).

19The results are almost identical to those using the extremal functional obtained by minimizing CT ,

α
B[0]0
E [KL[0]∆,0 ].
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Figure 1. The lower bounds on CT and CJ at different derivative orders Λ, assuming SU(2)

flavor group and allowing higher spin conserved currents in the trivial or adjoint representation.

Also shown are the values for a free hypermultiplet, CT = 84
5 and CJ = 5

2 . Also shown are the

extrapolations to Λ→∞ using the ansatz (8.2), for Λ ∈ 4Z and Λ ∈ 4Z + 2, separately.
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Figure 2. Left: the extremal functional optimizing the lower bound on CJ acted on the contribution

of the spin-zero long multiplet to the crossing equation, αE [KL[0]∆,0 ], in the 1 and 5 channels of the

SU(2) flavor, plotted in logarithmic scale. Increasing derivative orders Λ = 24, 26, . . . , 48 are shown

from green to red. Right: the gap (lowest scaling dimension) in the spectrum of long multiplets in

each channel at different Λ. Also shown are the extrapolations to Λ → ∞ using the ansatz (8.1),

for Λ ∈ 4Z and Λ ∈ 4Z + 2, separately.
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Figure 3. The lower bounds on CT and CJ at different derivative orders Λ for interacting theories

with E8 flavor group. Also shown are the extrapolations to infinite derivative order using the

quadratic ansatz (8.1), as well as the values in the rank-one E-string theory.

min CT min CJ

Λ = 48 3.78× 103 1.30× 102

Extrapolations

Λ ≥ 24 5.71× 103 1.56× 102

Λ ≥ 28 5.35× 103 1.52× 102

Λ ≥ 32 4.98× 103 1.51× 102

Rank-one E-string 38136
5 ≈ 7.63× 103 150

Table 2. The lower bounds on CT and CJ for interacting theories with E8 flavor symmetry.

Presented are the bounds at the highest derivative order computed (Λ = 48), as well as the extrap-

olations to infinite Λ using the quadratic ansatz (8.1).

Table 2 summarizes the results of the extrapolations, as well as the CT and CJ values

in the rank-one E-string theory. Notice that the extrapolated lower bound on CJ sits close

to the rank-one E-string value, while that on CT is still some distance away. The former

observation motivates Conjecture 1 stated in the introduction.

To supply further evidence for Conjecture 1, we perform a full survey of the range of

allowed (CJ , CT ). Figure 4 shows the allowed region in the C−1
T −C

−1
J plane for derivative

orders Λ = 24, 28, . . . , 40. Notice that the point of minimal CJ has a value of CT that

sits close to the value of CT in the rank-one E-string theory. To quantify this observation

more precisely, we show in figure 5 how the value of CT at min CJ tends to the rank-

one E-string value with increasing derivative order. The value appears to be rather stable

between derivative orders 24 and 48, and although it is somewhat smaller than the rank-one

E-string value, a closer examination shows a trend of potential convergence to the rank-one

E-string at higher derivative orders.20

While our data do not permit a reliable extrapolation of the entire allowed region to

infinite derivative order, we comment on some of the features. First, given any two unitary

20The deviation of CT at min CJ from the rank-one E-string value (∼ 7%) is larger than the estimated

error due to the truncation on spins (. 2%). See appendix G.
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Figure 4. The allowed region in the C−1T − C−1J plane for interacting theories with E8 flavor

group, at derivative orders Λ = 24, 28, . . . , 40, shown from green to red. Also plotted are the points

corresponding to the E-string theories.

solutions to crossing, G1(u, v;w) and G2(u, v;w), we can construct a family of unitary

solutions αG1(u, v;w) + (1 − α)G2(u, v;w) for 0 ≤ α ≤ 1 that populate the line segment

between the two points corresponding to G1(u, v;w) and G2(u, v;w) on the C−1
T − C−1

J

plane. This means that the allowed region is convex.21 Second, there seem to be two

kinks, one corresponding to the rank-one E-string theory, and another with a CJ value

close to that of the rank-one E-string, but with a smaller CT .22 A third feature is that the

lower boundary appears to approach the locus of points corresponding to the higher rank

E-string theories. We discuss the last feature more in section 9.

21Unitary solutions to crossing that populate the boundary of the allowed region can be explicitly con-

structed using the extremal functional method.
22We do not know what to make of the proximity of CJ at min CT to the rank-one E-string value, as

shown in figure 6, or are aware of any candidate theory that sits at this second kink; one logical possibility

is that min CT changes trend at very high derivative orders and becomes saturated by the rank-one E-string

theory.
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Figure 5. Left: the upper and lowers bounds on the inverse of the central charge C−1T when

the value of the flavor central charge CJ is set close to saturating the lower bound, CJ = (1 +

10−4) minCJ , at different derivative orders Λ, for interacting theories with E8 flavor group. Also

shown is the value for the rank-one E-string theory. Right: the same plot zoomed in on high

derivative orders, showing a trend that the value of CT at min CJ potential approaches the rank-

one E-string value as Λ→∞.
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Figure 6. The upper and lowers bounds on the inverse of the flavor central charge C−1J when the

value of the central charge CT is set close to saturating the lower bound, CT = (1 + 10−4) minCT ,

at different derivative orders Λ, for interacting theories with E8 flavor group. Also shown is the

value for the rank-one E-string theory.

A further check of Conjecture 1 is the following. The Higgs branch of the rank-one E-

string theory is the one-instanton moduli space of the flavor group E8, which is isomorphic

to the minimal nilpotent orbit of E8 [45, 84, 85]. The minimal nilpotent orbit can be defined

by quadratic polynomial equations in the complexified e8 Lie algebra. More explicitly, for

r ∈ e8, the defining equation for the minimal nilpotent orbit is

(r⊗ r)
∣∣
1⊕3875 = 0. (8.3)

The Higgs branch chiral ring is isomorphic to the coordinate ring of the Higgs

branch [84, 86–88]. The latter admits a description as the polynomial ring generated by

the E8 moment maps (the superconformal primaries of the D[2] multiplets), quotient by

the Joseph ideal generated by the superconformal primaries of the D[4] multiplets in the

representations 1 and 3875 [84, 85]. In other words, in the rank-one E-string theory, the

D[4] multiplets in the representations 1 and 3875 do not appear in the OPE of two D[2]
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Representation αE [KD[4]]bb

1 1.1× 101

3875 5.7× 102

27000 1.1× 10−11

Table 3. The extremal functional optimizing the lower bound on CJ for interacting theories with

E8 flavor group, at derivative order Λ = 48, acted on the contributions of the D[4] multiplets to

the crossing equation in each channel.

Rep of E8 Extrapolated ∆
L[0]
gap

1 7.0

3875 6.7

27000 8.2

Table 4. The estimated gaps in the scaling dimensions of long multiplets transforming in the 1,

3875, 27000 of E8 in the OPEs of flavor current multiplets, in the rank-one E-string theory.

multiplets, while those in the 27000 do.23 In accordance with this expectation, table 3

shows the extremal functional optimizing the lower bound on CJ acted on the contributions

of the D[4] multiplets to the crossing equation in each channel.

Assuming that Conjecture 1 is true, we can determine various physical properties of the

rank-one E-string theory, such as the spectrum of long multiplets. The left side of figure 7

shows the extremal functional acted on the contribution of the spin-zero long multiplet to

the crossing equation, namely, αE [KL[0]∆,0(u, v)], in the 1, 3875, 27000 channels of E8.

The right side shows how the lowest ∆ in each channel varies with increasing derivative

order Λ, as well as an extrapolation to infinite Λ using the ansatz (8.2), for Λ ∈ 4Z and

Λ ∈ 4Z + 2, separately. The results motivate the next conjecture.

Conjecture 2 In the D[2] × D[2] OPEs of flavor current multiplets in the rank-one E-

string theory, the lightest long multiplet transforms in the 3875 of E8. The estimated gaps

in the scaling dimensions of long multiplets in the 1, 3875, 27000 in D[2]×D[2] are given

in table 4.

9 Outlook

Based on our observations on figure 4, we put forward an optimistic conjecture.

Conjecture 3 The E-string theories of all ranks sit at the boundary of the space of unitary

solutions to crossing.

As a piece of supporting evidence, figure 8 shows the lower bound on CJ assuming the

value of CT = 151956
5 in the rank-two E-string theory, where we see that the extrapolated

CJ sits close to the rank-two E-string value CJ = 420. There is actually more we can do.

23We thank Yifan Wang for explaining this fact to us.
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Figure 7. Left: the extremal functional optimizing the lower bound on CJ , acted on the contri-

bution of the spin-zero long multiplet to the crossing equation, αE [KL[0]∆,0(u, v)], in the 1, 3875,

27000 channels of E8, plotted in logarithmic scale. Increasing derivative orders Λ = 24, 26, . . . , 48

are shown from green to red. Right: the gap (lowest scaling dimension) in each channel at different

Λ, and an extrapolation to Λ→∞ using the ansatz (8.2), for Λ ∈ 4Z and Λ ∈ 4Z + 2, separately.

For N > 1, the E-string theories have a larger flavor group E8 × SU(2), and the SU(2)

flavor central charge is given by

CJ =
5

2

(
16N3 + 6N2 − 21N − 1

)
. (9.1)

This additional input may be necessary to put the higher-rank E-string theories on the

boundary of the space of unitary solutions to crossing.
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Figure 8. The lower bounds on CJ at different derivative orders Λ, for interacting theories with

E8 flavor group and assuming CT = 151956
5 , which is the value in the rank-two E-string theory. Also

shown is an extrapolation to infinite derivative order using the quadratic ansatz (8.1) with Λ ≥ 24.

If Conjecture 3 is true, then the conformal bootstrap can potentially solve the E-string

theories of arbitrary rank N . We can then consider the large N regime, and study the dual

M-theory on AdS7 × S4/Z2 beyond the supergravity limit. On the M-theory side, the low

energy excitations consist of a supergravity multiplet in the eleven-dimensional bulk and

an N = 1 E8 vector multiplet supported on a ten-dimensional locus, AdS7×S3 that is fixed

by Z2. With enough computational power, we can collect information about the non-BPS

spectra in the E-string theories of large N , filter out the operators dual to multi-particle

excitations of the bulk supergravity and E8 vector multiplets, and determine for instance

the scaling dimension of the operator that corresponds to the first M-brane excitation.24

The scaling dimension of this operator should behave as

∆ = aN b (9.2)

to leading order at large N . The knowledge of a and b would be an important step towards

understanding the quantum nature of M-branes.

We are also exploring other flavor groups. For instance, the Sp(4)R R-symmetry in

N = (2, 0) theories breaks up into R-symmetry and flavor symmetry parts, Sp(2)R × Sp(2),

when interpreted as N = (1, 0) theories. For the AN−1 theory, which is the infrared fixed

point of the world-volume theory on a stack of N M5 branes, the central charge and flavor

central charge are

CT = 84(4N3 − 3N − 1), CJ =
5

2
(4N3 − 3N − 1). (9.3)

Other N = (1, 0) theories include the large class of theories constructed in F-theory [52–55],

whose CT and CJ can be computed by using the anomaly polynomials given in [59, 61].

Finally, a particularly interesting example is a conjectural theory that has SU(3) flavor

symmetry, and whose Higgs branch is given by the one-instanton moduli space of SU(3),

24Such an operator is analogous to the Konishi operator in N = 4 SYM, whose dimension to leading

order at large N is 2g
1/2
YMN

1/4 at strong coupling [89, 90] and 3g2
YMN/4π

2 at weak coupling [91].
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recently proposed in [62]. It has central charge and flavor central charge

CT =
19488

5
, CJ =

195

2
. (9.4)

This theory does not seem to appear in the F-theoretic “classification” of N = (1, 0)

theories [52–55].25 The conformal bootstrap can provide evidence for the existence or

non-existence of this theory.

The system of equations studied in this paper has straightforward generalizations to

superconformal field theories in lower spacetime dimensions, N = 1 in five and N = 3 in

three dimensions, which have SU(2)R R-symmetry [92]. The CT of such theories can be

computed by taking the second derivative of the squashed three- or five-sphere partition

function with respect to the squashing parameter [93–104].26 In five dimensions, there is

another distinguished class of superconformal field theories — Seiberg’s En theories [47, 48].

If an analog of Conjecture 3 is true for these theories, then we can study the type I’ string

theory on a fibration of AdS6 over S4 [105]. In three dimensions, the Chern-Simons-Matter

theories provide many examples of N = 3 superconformal field theories [106–108]. It would

be interesting if the conformal bootstrap predicts new N = 3 theories that do not admit

Chern-Simons-Matter constructions.
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A Bosonic conformal blocks

This appendix reviews properties of bosonic conformal blocks for the four-point function

of scalar primaries with scaling dimensions ∆1,∆2,∆3,∆4 in d = 2ε+ 2 spacetime dimen-

sions. The conformal blocks depend on the external scaling dimensions only through the
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differences ∆12 ≡ ∆1 − ∆2 and ∆34 ≡ ∆3 − ∆4, and will be denoted by G∆12,∆34

∆,` . In

section A.1, we keep ∆12 and ∆34 arbitrary since blocks with nonzero ∆34 will be needed

in appendix C, but for later sections we set ∆12 = ∆34 = 0. For notationally simplicity,

we abbrevaite

G0,0
∆,` → G∆,`. (A.1)

The standard conformal cross ratios u, v are defined in terms of the positions of oper-

ators as

u =
x2

12x
2
34

x2
13x

2
24

, v =
x2

14x
2
23

x2
13x

2
24

, x2
12 = (x1 − x2)2. (A.2)

We also introduce the variables z, z̄ and χ, χ̄ as alternative ways to parameterize the cross

ratios,27

u = zz̄ =
χχ̄

(1 + χ)(1 + χ̄)
, v = (1− z)(1− z̄) =

1

(1 + χ)(1 + χ̄)
. (A.3)

Radial coordinates r and η, defined as [109]

r(η + i
√

1− η2) =
z

(1 +
√

1− z)2
, r(η − i

√
1− η2) =

z̄

(1 +
√

1− z̄)2
, (A.4)

will be the variables in which we expand the conformal block in the recursive representation.

A.1 Expansion in Jack polynomials

The conformal block can be expanded in Jack polynomials [110],

G∆12,∆34

∆,` (z, z̄) =
∑
m,n≥0

rmn(∆12,∆34,∆, `)P
(ε)
1
2

(∆+`)+m, 1
2

(∆−`)+n(z, z̄), (A.5)

where the expansion coefficients rmn are given by

rmn =

(
1

2
(∆ + `−∆12)

)
m

(
1

2
(∆ + `+ ∆34)

)
m

×
(

1

2
(∆− `−∆12)− ε

)
n

(
1

2
(∆− `+ ∆34)− ε

)
n

r̂mn,

(A.6)

and r̂mn are defined recursively via

(m(m+ ∆ + `− 1) + n(n+ ∆− `− 2ε− 1))r̂mn

=
`+m− n− 1 + 2ε

`+m− n− 1 + ε
r̂m−1,n +

`+m− n+ 1

`+m− n+ 1 + ε
r̂m,n−1,

(A.7)

with the initial condition r00 = 1.

Jack polynomials can be defined in terms of Gegenbauer polynomials

P
(ε)
λ1,λ2

(z, z̄) =
(λ1 − λ2)!

(2ε)λ1−λ2

(zz̄)
1
2

(λ1+λ2)C
(ε)
λ1−λ2

(
z + z̄

2(zz̄)1/2

)
, (A.8)

27The reader should be careful when comparing with [72], as we have swapped what they called z and χ.
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ni ∆i `i range of k

k 1− `− k `+ k k = 1, 2, . . .

2k 1 + ε− k ` k = 1, 2, . . .

k 1 + `+ 2ε− k `− k k = 1, 2, . . . , `

Table 5. Three families of degenerate primaries that can appear in the OPE of two scalars, labeled

by their scaling dimension ∆i, spin `i, and level ni of the first null descendant.

which satisfy the orthogonality condition∫ 1

−1
C(ε)
m (x)C(ε)

n (x)(1− x2)ε−1/2dx = δm,n
21−2επΓ(m+ 2ε)

m!(m+ ε)Γ(ε)2
. (A.9)

Jack polynomials are eigenfunctions of the differential operator ∆ε defined in (3.6), with

eigenvalues

∆εP
(ε)
λ1,λ2

(z, z̄) = E(ε)
λ1,λ2

P
(ε)
λ1,λ2

(z, z̄), E(ε)
λ1,λ2

= (λ1 + 1 + ε)ε−1(λ2 + 1)ε−1. (A.10)

They also satisfy the relations

(zz̄)nP
(ε)
λ1,λ2

(z, z̄) = P
(ε)
λ1+n,λ2+n(z, z̄),

(z + z̄)P
(ε)
λ1,λ2

(z, z̄) =
λ1 − λ2 + 2ε

λ1 − λ2 + ε
P

(ε)
λ1+1,λ2

(z, z̄) +
λ1 − λ2

λ1 − λ2 + ε
P

(ε)
λ1,λ2+1(z, z̄),

P
(ε)
λ1,λ2

(z, z̄) = P
(ε)
λ2−ε,λ1+ε(z, z̄).

(A.11)

A.2 Recursive representation

From now on we only consider the conformal blocks for the four-point function of identical

scalar primaries, and set ∆12 = ∆34 = 0.

When the scaling dimension of the internal primary is taken to values where a descen-

dant becomes null, the conformal block encounters a simple pole whose residue is again

another conformal block. This fact was first used in [111, 112] to write down a recursion

formula for Virasoro blocks. The generalization to higher dimensions was obtained in [82],

where the authors found that when the external operators are scalars, the degenerate pri-

maries come in three classes, as we list in table 5. Then the conformal blocks admit the

following recursive representation

G∆,`(r, η) = (−)`(4r)∆h∆,`(r, η),

h∆,`(r, η) = h̃`(r, η) +
3∑
i=1

∑
k

ci(k)

∆−∆i(k)
rni(k)h∆i(k)+ni(k),`i(k)(r, η),

h̃`(r, η) =
`!

(2ε)`

(−1)`C
(ε)
` (η)

(1− r2)ε(1 + r2 + 2rη)
1
2 (1 + r2 − 2rη)

1
2

,

(A.12)
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where C
(ε)
` (η) is the Gegenbauer polynomial. The coefficients ci(k) for the three types of

degenerate weights are

c1(k) =− 4kk(−1)k

(k!)2

(`+ 2ε)k(
1
2(1− k))k(

1
2(1− k))k

(`+ ε)k
,

c2(k) =− 42kk(−1)k

(k!)2

(ε− k)2k

(`+ ε− k)2k(`+ ε+ 1− k)2k

×
(

1

2
(1− k + `+ ε)

)
k

(
1

2
(1− k + `+ ε)

)
k

×
(

1

2
(1− k + `+ ε)

)
k

(
1

2
(1− k + `+ ε)

)
k

,

c3(k) =− 4kk(−1)k

(k!)2

(`+ 1− k)k(
1
2(1− k))k(

1
2(1− k))k

(`+ ε+ 1− k)k
.

(A.13)

The virtue of this recursive representation is not only its computational efficiency.

Firstly, the expansion in r converges better than the z expansion, as r = 3 − 2
√

2 ≈ 0.17

at the crossing symmetric point. Secondly, to a fixed order in r, the truncated conformal

block with the (4r)∆ prefactor stripped off is a rational function of ∆, whose poles are

at values of ∆ below the unitarity bound. This latter fact is crucial because semidefinite

programming is much more efficient when the inputs are polynomials (for the sake of

imposing non-negativity, we can strip off manifestly positive factors from the truncated

conformal block); in fact, the SDPB package [31] only allows polynomial input.

For the purpose of computing derivatives of conformal blocks evaluated at the crossing

symmetric point, we find it most efficient to — instead of implementing the above recursion

relation — expand closed form expressions for conformal blocks in the diagonal limit z̄ → z

to a fixed order in r (η = 1 on the diagonal), take the diagonal derivatives at the crossing

symmetric point, and then apply a further recursion relation to obtain the transverse

derivatives [19]. The closed form expressions and the recursion on transverse derivatives

are reviewed in the next two sections.

A.3 Diagonal limit

When all external scalars have the same scaling dimension, the conformal blocks admit

closed form expressions in the diagonal limit z̄ → z, defined via a recursion relation [19]

(`+ d− 3)(2∆ + 2− d)G∆,`(z, z)

= (d− 2)(∆ + `− 1)G∆,`−2(z, z) +
2− z

2z
(2`+ d− 4)(∆− d+ 2)G∆+1,`−1(z, z)

− ∆(2`+ d− 4)(∆ + 2− d)(∆ + 3− d)(∆− `− d+ 4)2

16(∆ + 1− d
2)(∆− d

2 + 2)(`−∆ + d− 5)(`−∆ + d− 3)
G∆+2,`−2(z, z),

(A.14)

starting with seeds

G∆,0(z, z) =

(
z2

1− z

)∆
2

3F2

(
∆
2 ,

∆
2 ,

∆
2 − ε;

∆+1
2 ,∆− ε; z2

4(z − 1)

)
,

G∆,1(z, z) =
2− z

2z

(
z2

1− z

)∆+1
2

3F2

(
∆+1

2 , ∆+1
2 , ∆+1

2 − ε; ∆
2 + 1,∆− ε; z2

4(z − 1)

)
.

(A.15)
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A.4 Recursion on transverse derivatives

Define

z =
1 + a+

√
b

2
, z̄ =

1 + a−
√
b

2
, (A.16)

and denote ∂ma ∂
n
b G∆,`|a=b=0 by hm,n. Given the diagonal limit of the conformal block, we

can compute hm,0 for all m ≥ 0. The transverse derivatives can then be obtained by the

following recursion relation [19],

2(d+ 2n− 3)hm,n

= 2m(d+ 2n− 3)[−hm−1,n + (m− 1)hm−2,n + (m− 1)(m− 2)hm−3,n]

− hm+2,n−1 + (d−m− 4n+ 4)hm+1,n−1

+ [2C∆,` + 2d(m+ n− 1) +m2 + 8mn− 9m+ 4n2 − 6n+ 2]hm,n−1

+m[d(m− 2n+ 1) +m2 + 12mn− 15m+ 12n2 − 30n+ 20]hm−1,n−1

+ (n− 1)[hm+2,n−2 − (d− 3m− 4n+ 4)hm+1,n−2].

(A.17)

B Superconformal Ward identities

The superconformal Ward identities read [72]

(∂χ + ε∂w)G(u, v;w)
∣∣∣
w→χ

= (∂χ̄ + ε∂w)G(u, v;w)
∣∣∣
w→χ̄

= 0, (B.1)

where the variables χ and χ̄ are related to u and v by

u =
χχ̄

(1 + χ)(1 + χ̄)
, v =

1

(1 + χ)(1 + χ̄)
. (B.2)

We presently show in the case of k = 2 that the second equation in (3.7) follows

from the first as a consequence of the first superconformal Ward identity in (B.1), which

explicitly reads

χ2∂χG0(u, v) + χ∂χG1(u, v) + ∂χG2(u, v) = εG1(u, v) +
2ε

χ
G2(u, v). (B.3)

It can be rewritten as

∂χ(χχ̄)−εG1(u, v) = −χ−ε+1χ̄−ε∂χG0(u, v)− χε−1χ̄ε∂χ(χχ̄)−2εG2(u, v). (B.4)

Applying u↔ v or equivalently (χ, χ̄)↔ (χ−1, χ̄−1), the above equation becomes

∂χ(χχ̄)εG1(v, u) = −χε−1χ̄ε∂χG0(v, u)− χ−ε+1χ̄−ε∂χ(χχ̄)2εG2(v, u). (B.5)

The difference of the two equations gives

∂χ
[
(χχ̄)−εG1(u, v)− (χχ̄)εG1(v, u)

]
= −χ−ε+1χ̄−ε∂χ

[
G0(u, v)− (χχ̄)2εG2(v, u)

]
− χε−1χ̄ε∂χ

[
(χχ̄)−2εG2(u, v)−G0(v, u)

]
.

(B.6)
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Similarly, with χ replaced by χ̄, we have

∂χ̄
[
(χχ̄)−εG1(u, v)− (χχ̄)εG1(v, u)

]
= −χ−εχ̄−ε+1∂χ̄

[
G0(u, v)− (χχ̄)2εG2(v, u)

]
− χεχ̄ε−1∂χ̄

[
(χχ̄)−2εG2(u, v)−G0(v, u)

]
.

(B.7)

From (B.6) and (B.7), we see that the first and third equations of (3.7) imply the second

equation of (3.7) up to a constant. This constant can be fixed by considering the case of

u = v.

Let us define K(u, v) = v2εG0(u, v) − u2εG2(v, u). The compatibility between (B.6)

and (B.7) gives the identity

∂χ̄
[
χ−ε+1χ̄−ε∂χv

−2εK(u, v)− χε−1χ̄ε∂χu
−2εK(v, u)

]
= ∂χ

[
χ−εχ̄−ε+1∂χ̄v

−2εK(u, v)− χεχ̄ε−1∂χ̄u
−2εK(v, u)

]
,

(B.8)

which is important when we want to identity the independent constraints from the crossing

equation.

C Crossing equation for b(u, v)

Specializing to ε = k = 2, let us substitute the solution (3.5) into the superconformal Ward

identity into the crossing equation (3.3),

D2(1− z − zw−1)(1− z̄ − z̄w−1) [zz̄b(z, z̄)− (1− z)(1− z̄)b(1− z, 1− z̄)] = 0. (C.1)

Defining H(z, z̄) = zz̄b(z, z̄)− (1−z)(1−z̄)b(1−z, 1−z̄), the above equation is equivalent to

D2H(z, z̄) = 0, D2(z + z̄)H(z, z̄) = 0, D2zz̄H(z, z̄) = 0. (C.2)

The general solution to the first equation is28

H(z, z̄) =
∑
n

anP
(2)
n,0(z, z̄). (C.3)

We also have

D2zz̄H =
∑
n

an(n+ 3)P
(2)
n,0(z, z̄), D2(z + z̄)H =

∑
n

annP
(2)
n−1,0(z, z̄). (C.4)

Using the fact that P
(2)
n,0(z, z̄)’s are orthogonal polynomials for non-negative integers n, one

can argue that (C.2) has no non-trivial solution if we restrict to such n. However, the

orthogonality condition fails if we allow n to take negative integer values, and indeed (C.2)

has an unique solution

H(z, z̄) =
1

(z − z̄)3
. (C.5)

28There may appear to be another class of solutions P
(2)
−2,n+2(z, z̄), but they are related to P

(2)
n,0(z, z̄)

by (A.11).
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Therefore, the original crossing equation is equivalent to

zz̄b(z, z̄)− (1− z)(1− z̄)b(1− z, 1− z̄) =
c

(z − z̄)3
, (C.6)

where c is an unphysical constant. For example, the generalized free field solution (F.2)

corresponds to (up to the unphysical term)

bgff(u, v) =
1

3
u−1(1 + u−3 + v−3), (C.7)

which solves (C.6) with c = 0.

A function b(u, v) that gives rise to a physical four-point function G(u, v;w) (via (3.5))

also admits a decomposition into blocks with non-negative coefficients. The blocks bX (u, v)

for the superconformal multiplets (4.2) can be expressed (up to the unphysical term on the

r.h.s. of (C.6)) in terms of bosonic conformal blocks with ∆12 = 0 and ∆34 = −2,

bL[0]∆,`(u, v) =

(
1

2
(∆ + `)

)
−1

(
1

2
(∆− `)− 2

)
−1

u−5G0,−2
∆+2,`(u, v),

bB[2]`(u, v) =
2(`+ 4)

(`+ 1)
(`+ 5)−1 u

−5G0,−2
`+9,`+1(u, v),

bB[0]`(u, v) = − 1

`+ 1
u−5G0,−2

`+6,`(u, v),

bD[4](u, v) = 2u−5G0,−2
8,0 (u, v),

bD[2](u, v) = −2

3
u−5G0,−2

5,−1(u, v),

bD[0](u, v) =
1

3
u−4,

(C.8)

where the unphysical G0,−2
5,−1(u, v) is formally defined by its expansion into Jack polynomials.

Explicitly, bD[2](u, v) can be written as

bD[2](u, v) =− 4(z + z̄ − zz̄)

z3z̄3(z − z̄)2
+

4(log z − log z̄)

zz̄(z − z̄)3

+
4z̄2(z̄ − 3z + 3z2 − z3z̄) log(1− z)− 4z2(z − 3z̄ + 3z̄2 − zz̄3) log(1− z̄)

z4z̄4(z − z̄)3
,

(C.9)

which has a branch point at the origin of the z-plane, and the monodromy around it is

bD[2](u, v)
∣∣∣
(z,z̄)→(e2πiz,e−2πiz̄)

= bD[2](u, v) +
16iπ

zz̄(z − z̄)3
. (C.10)

This monodromy can be absorbed into a shift of the constant c,

c→ c+ 32iπn. (C.11)

We can therefore restrict to the zeroth sheet, where bD[2](u, v) along with other bX (u, v) are

all real functions in z, z̄. Moreover, on this sheet, bX (u, v) are regular as z̄ → z, whereas

the term on the right hand side of (C.6) is not. Hence, the constant c must vanish for a

solution to (C.6) to also admit an expansion into blocks.
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D Relating central charges to OPE coefficients

D.1 CT to λ2
B[0]0

Conformal symmetry fixes the three-point function of the stress tensor with two identical

scalars O to be of the form [76]

〈Tµν(x1)O(x2)O(x3)〉 =
COOT

xd12x
2∆−d
23 xd13

tµν(X23), (D.1)

where the conformal structure tµν is given by

tµν(X) =
XµXν

X2
− 1

d
δµν , Xµ

23 =
xµ21

x2
21

− xµ31

x2
31

, X2
23 =

x2
23

x2
21x

2
31

. (D.2)

The OPE coefficient COOT is fixed by the conformal Ward identity to be [17, 113]

COOT = − d∆

(d− 1)V
Ŝd−1

, V
Ŝd−1 =

2π
d
2

Γ
(
d
2

) . (D.3)

For later use, we note that the tensor structures Iµν(x), Xµ, Iµν,σρ and tµν , defined

in (6.2) and (D.2), satisfy the identities

Iµν,αβ(x)Iαβ,σρ(x) =
1

2
(δµσδνρ + δµρδνσ)− 1

d
δµνδσρ,

Iµα(x13)Xα
23 =

x2
23

x2
12

Xµ
21,

Iµν,σρ(x13)tσρ(X23) = tσρ(X12).

(D.4)

From the three-point function (D.1), and using the identities (D.4), we can deduce

that the OPE of two identical scalars contains

O(x1)O(x2) ∼ 1

x2∆
12

+
COOT
CT

V 2
Ŝd−1

x2∆−d
12

tµν(x12)Tµν(x2). (D.5)

Now, consider the four-point function of four identical scalars O, which reduces to a sum

over three-point functions by taking the OPE (D.5) of the operators O(x1) and O(x2).

Using the formula (D.1) for the three-point function, we obtain

〈O(x1)O(x2)O(x3)O(x4)〉

∼ 1

x2∆
12 x

2∆
34

[
1 +

C2
OOT
CT

1

x−d12

tµν(x12)
V 2

Ŝd−1

xd23x
−d
34 x

d
24

tµν(X34)

]

=
1

x2∆
12 x

2∆
34

[
1 +

C2
OOT
CT

V 2
Ŝd−1

x−d12 x
d
23x
−d
34 x

d
24

(
(x2

12x
2
24 + x2

14x
2
23 − x2

13x
2
24 − x2

12x
2
23)2

4x2
12x

2
34x

2
23x

2
24

− 1

d

)]
,

(D.6)

which can be written in terms of the cross ratios u and v as

〈O(x1)O(x2)O(x3)O(x4)〉 ∼ 1

x2∆
12 x

2∆
34

[
1 +

C2
OOT
CT

V 2
Ŝd−1

u−
d
2 v

d
2

(
(u+ v − 1)2

4uv
− 1

d

)]
. (D.7)
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Comparing (D.7) with the conformal block expansion, we determine the coefficient that

sits in front of the bosonic stress-tensor block Gd,2(u, v),

〈O(x1)O(x2)O(x3)O(x4)〉 ⊃ G0,0(u, v) +
d

(d− 1)

∆2

CT
Gd,2(u, v). (D.8)

The bosonic conformal block Gd,2(u, v) sits inside the B[0]0 superconformal block with the

coefficient given in (4.17). We thus obtain the relation (6.3) between the OPE coefficient

λB[0]0 and the central charge CT .

D.2 CJ to λ2
D[2]

Consider the three-point function of one flavor current with two scalars transforming in

representation R of the flavor group. Conformal symmetry fixes this three-point function

to be29 〈
Jaµ(x1)Oi(x2)Oj(x3)

〉
= gik(T aR)jk

1

V
Ŝd−1

Xµ
23

xd−2
13 xd−2

12 x2∆−d+2
23

, (D.10)

where i, j are the indices for representation R, T aR are the generators of the flavor group

in the representation R, and the two point functions of the scalars are normalized as〈
Oi(x1)Oj(x2)

〉
= gij/x2∆

12 . We are particularly interested in external scalars that trans-

form in the adjoint representation, in which case (T a)bc = fabc.

From the three-point function (D.10), and using the identities (D.4), we obtain the

OPE of two scalars in the adjoint representation,

Oa(x1)Ob(x2) ∼ δab

x2∆
12

− fabc
V

Ŝd−1

CJ

xµ12

x2∆−d+2
12

Jcµ(x2). (D.11)

Now consider the four-point function of four scalars Oa. Using the OPE (D.11) and the

three-point function (D.10), we find〈
Oa(x1)Ob(x2)Oc(x3)Od(x4)

〉
∼ 1

x2∆
12 x

2∆
34

[
δabδcd +

fabef ecd

CJ

x12X34

x−d+2
12 xd−2

24 xd−2
23 x−d+2

34

]

=
1

x2∆
12 x

2∆
34

[
dim(GF )P abcd1 +

ψ2h∨P abcdadj

2CJ

xd−2
12 xd−2

34

xd24x
d
23

(
(x2

12 − x2
13)x2

24 − (x2
12 − x2

14)x2
23

)]
(D.12)

which can be expressed in terms of the cross ratios u and v as〈
Oa(x1)Ob(x2)Oc(x3)Od(x4)

〉
∼ 1

x2∆
12 x

2∆
34

[
dim(GF )P abcd1 +

ψ2h∨P abcdadj

2CJ

u
d
2
−1

v
d
2

(u+ v − 1)

]
.

(D.13)

29Acting the charge (6.19) on the scalar Oj(0) gives

QaOj(0) = (T aR)jkOk(0), (D.9)

which fixes the overall coefficient of the three-point function (D.10).
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By comparing (D.13) with the conformal block expansion, we can determine the coefficient

sitting in front of the bosonic conformal block Gd−1,1(u, v) of the flavor current,〈
Oa(x1)Ob(x2)Oc(x3)Od(x4)

〉
⊃dim(GF )P abcd1 G0,0(u, v)− ψ2h∨

CJ
P abcdadj Gd−1,1(u, v). (D.14)

The bosonic conformal block Gd−1,1(u, v) sits inside the D[2] superconformal block with the

coefficient given in (4.19). We thus obtain the relation (6.23) between the OPE coefficient

λD[2] and the flavor central charge CJ .

E The central charge CT of the three-derivative fermion

The CT of a free three-derivative Weyl fermion was recently computed in [68] as the second

derivative of the partition function on S1 × H5 with respect to the S1 radius. In this

appendix, we verify their answer by explicitly constructing the stress tensor for a three-

derivative Dirac fermion, and computing its two-point function. The CT of a Weyl fermion

is simply half that of a Dirac fermion. Since the three-derivative Dirac fermion exists in

arbitrary d spacetime dimensions, we keep d = 2ε + 2 general. The two-point function of

a free Dirac fermion with scaling dimension ∆ψ is〈
ψ(x1)ψ̄(x2)

〉
=
6x12

x
2∆ψ+1
12

, (E.1)

where 6x = xµΓµ, and Γµ are 2bεc+1×2bεc+1 matrices obeying the Clifford algebra {Γµ,Γν} =

2δµν11. For a three-derivative fermion, ∆ψ = ε− 1
2 .

Our approach is to work in flat space, write down the most general symmetric trace-

less spin-two primary operator of scaling dimension d, imposed current conservation, and

identify the stress tensor by demanding that it has the correct OPE with the fundamental

fermion [35],

Tµν(x)ψ(0) ∼−
∆ψ

(d− 1)V
Ŝd−1

δµνx
2 − dxµxν
|x|d+2

ψ(0) +
d

2V
Ŝd−1

x(µx
ρΓρν)ψ(0)

|x|d+2
+ · · · . (E.2)

Let us first list all the symmetric traceless spin-two operators of scaling dimension d con-

structed as fermion bilinears,

T 1
µν = ψ̄ 6∂∂µ∂νψ −

1

d
δµνψ̄ 6∂∂2ψ, T 2

µν = ∂(µψ̄ 6∂∂ν)ψ −
1

d
δµν∂ρψ̄ 6∂∂ρψ,

T 3
µν = ∂µ∂νψ̄ 6∂ψ −

1

d
δµν∂

2ψ̄ 6∂ψ, T 4
µν = ψ̄Γ(µ∂ν)∂

2ψ − 1

d
δµνψ̄ 6∂∂2ψ,

T 5
µν = ∂ρψ̄Γ(µ∂ν)∂ρψ −

1

d
δµν∂ρψ̄ 6∂∂ρψ, T 6

µν = ∂2ψ̄Γ(µ∂ν)ψ −
1

d
δµν∂

2ψ̄ 6∂ψ,

T 7
µν = ∂(µψ̄Γν)∂

2ψ − 1

d
δµν∂ρψ̄Γρ∂

2ψ, T 8
µν = ∂ρ∂(µψ̄Γν)∂ρψ −

1

d
δµν∂ρ∂σψ̄Γσ∂ρψ,

T 9
µν = ∂2∂(µψ̄Γν)ψ −

1

d
δµν∂

2∂ρψ̄Γρψ, T 10
µν = ∂ρψ̄Γρ∂µ∂νψ −

1

d
δµν∂ρψ̄Γρ∂

2ψ,

T 11
µν = ∂(µ∂ρψ̄Γρ∂ν)ψ −

1

d
δµν∂σ∂ρψ̄Γρ∂σψ, T 12

µν = ∂µ∂ν∂ρψ̄Γρψ −
1

d
δµν∂

2∂ρψ̄Γρψ,

T 13
µν = ∂ρψ̄∂σ∂(µΓν)ρσψ, T 14

µν = ∂ρ∂(µψ̄∂σΓν)ρσψ,

(E.3)
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Eleven linearly independent combinations out of the fourteen T iµν are descendants (total

derivatives),

T 1
µν + T 2

µν , T 2
µν + T 3

µν , T 4
µν + T 5

µν , T 5
µν + T 6

µν , T 7
µν + T 8

µν ,

T 8
µν + T 9

µν , T 10
µν + T 11

µν , T 11
µν + T 12

µν , T 5
µν + T 8

µν , T 2
µν + T 11

µν , T 13
µν + T 14

µν .
(E.4)

Hence there are three linearly independent combinations of T iµν that are primary operators,

which by conformal symmetry must have vanishing two-point function with all the descen-

dant operators (E.4). To find the correct linear combinations, we consider the two-point

functions involving all fourteen T iµν , 〈
T iµν(x)T jρσ(0)

〉
. (E.5)

We outline the intermediate steps for this computation. First, we compute the four-point

functions,

〈
: ψ̄(x1)Γµψ(x2) :: ψ̄(x3)Γνψ(x4) :

〉
= 2bεc+1

(
2x14,(µx23,ν) − δµν(x14 · x23)

)
x2ε

23x
2ε
14

,

〈
: ψ̄(x1)Γµψ(x2) :: ψ̄(x3)Γνρσψ(x4) :

〉
= 2bεc+1 6δµ[νx14,ρx23,σ]

x2ε
23x

2ε
14

,

〈
: ψ̄(x1)Γν1ρ1σ1ψ(x2) :: ψ̄(x3)Γν2ρ2σ2ψ(x4) :

〉
=

Tr (Γν1ρ1σ1 6x23Γν2ρ2σ2 6x14)

x2ε
23x

2ε
14

.

(E.6)

Then the two-point functions (E.5) can be obtained by taking derivatives on (E.6), followed

by the limit x1, x2 → x and x3, x4 → 0. For i, j = 13, 14, it is convenient to define

Kν1ν2 =
∂4

∂x1,ρ1∂x2,σ1∂x3,ρ2∂x4,σ2

Tr (Γν1ρ1σ1 6x23Γν2ρ2σ2 6x14)

x2ε
23x

2ε
14

= 2bεc+1 ×

{
8ε2δν1ν2

[
−3ε

x23 · x14

x2ε+2
23 x2ε+2

14

+ 2(ε+ 1)2 (x23 · x14)3

x2ε+4
23 x2ε+4

14

− 2
(x23 · x14)

x2ε+2
23 x2ε+2

14

]
+ 2(∂1)(ν1

(∂2)ν2)

[
2(ε− 1)

x2ε
23x

2ε
14

− 4ε2
(x23 · x14)2

x2ε+2
23 x2ε+2

14

]
− 4ε

[
(∂2)ν1(∂2)ν2

x23 · x14

x2ε
23x

2ε+2
14

+ (∂1)ν1(∂1)ν2

x23 · x14

x2ε+2
23 x2ε

14

]}
.

(E.7)

Then we have〈
T 13
µ1ν1

T 13
µ2ν2

〉
= (∂2)(µ1

(∂1)(µ2
Kν2)ν1),

〈
T 13
µ1ν1

T 14
µ2ν2

〉
= (∂2)(µ1

(∂2)(µ2
Kν2)ν1),〈

T 14
µ1ν1

T 13
µ2ν2

〉
= (∂1)(µ1

(∂1)(µ2
Kν2)ν1),

〈
T 14
µ1ν1

T 14
µ2ν2

〉
= (∂1)(µ1

(∂2)(µ2
Kν2)ν1).

(E.8)

The two-point functions (E.5) allow us to identity the three-dimensional space of pri-

mary operators as the space orthogonal to the descendants. In unitary theories, a primary

operator with scaling dimension saturating the unitarity bound must be conserved, but

this is false in non-unitary theories. Indeed, using the explicit two-point functions (E.5),

we find that there are two conserved spin-two primaries and one non-conserved spin-two

– 37 –



J
H
E
P
0
8
(
2
0
1
7
)
1
2
8

primary. The stress tensor is a particular linear combination of the two conserved spin-two

primaries that satisfies the Tµνψ OPE (E.2). A consequence of this OPE is that in the

large x2 limit,

xµ1x
ν
2

〈
Tµν(x1)ψ̄(x2) 6x1ψ(0)

〉
=

2bεc+1
(
∆ψ − d

4

)
(x1 · x2)2

V
Ŝd−1x

d
1x

2∆ψ+1
2

+
2bεc+1d

4V
Ŝd−1x

d−2
1 x

2∆ψ−1
2

+O(x
−2∆ψ

2 ).
(E.9)

To find the stress tensor, we compute the three-point functions

xµ1x
ν
2

〈
T iµν(x1)ψ̄(x2) 6x1ψ(0)

〉
, (E.10)

and identify the correct linear combination of conserved primaries to match with (E.9).

This computation can be done by taking derivatives on the three-point functions〈
: ψ̄(x4)Γµψ(x1) : ψ̄(x2) 6x3ψ(0)

〉
= −2bεc+1x4,µ(x2 · x3)− x3,µ(x2 · x4) + x2,µ(x3 · x4)

x2ε
2 x

2ε
4

+O(x−2ε
2 ),

〈
: ψ̄(x4)Γµνρψ(x1) : ψ̄(x2) 6x3ψ(0)

〉
= 2bεc+1

6x2,[µx3,νx4,ρ]

x2ε
2 x

2ε
4

+O(x−2ε
2 ),

(E.11)

followed by the limit x3, x4 → x1. For example, we have

xµ1x
ν
2

〈
T 13
µν(x1)ψ̄(x2) 6x1ψ(0)

〉
= 0 +O(x−2ε+1

2 ),

xµ1x
ν
2

〈
T 14
µν(x1)ψ̄(x2) 6x1ψ(0)

〉
= 0 +O(x−2ε+1

2 ).
(E.12)

In four spacetime dimensions, the stress tensor Tµν , the spin-two conserved primary

T̃µν orthogonal to Tµν , and the spin-two non-conserved primary Θµν orthogonal to both

Tµν and T̃µν are

Tµν =
1

48π2

(
− 2T 1

µν − T 2
µν + 7T 3

µν + 3T 4
µν + 9T 5

µν + 9T 6
µν − 9T 7

µν

− 9T 8
µν − 3T 9

µν − 7T 10
µν + T 11

µν + 2T 12
µν + 3T 13

µν − 3T 14
µν

)
,

T̃µν = 5T 1
µν + 2T 2

µν − 17T 3
µν − 7T 4

µν − 22T 5
µν − 21T 6

µν + 21T 7
µν

+ 22T 8
µν + 7T 9

µν + 17T 10
µν − 2T 11

µν − 5T 12
µν − 8T 13

µν + 8T 14
µν ,

Θµν = 2T 1
µν − 3T 2

µν − 5T 3
µν − 2T 4

µν − 9T 5
µν − 7T 6

µν + 7T 7
µν

+ 9T 8
µν + 2T 9

µν + 5T 10
µν + 3T 11

µν − 2T 12
µν − 3T 13

µν + 3T 14
µν .

(E.13)

In six spacetime dimensions, they are

Tµν =
1

80π3

(
− 2T 1

µν − 4T 2
µν + 8T 3

µν + 5T 4
µν + 10T 5

µν + 10T 6
µν − 10T 7

µν

− 10T 8
µν − 5T 9

µν − 8T 10
µν + 4T 11

µν + 2T 12
µν + 5T 13

µν − 5T 14
µν

)
,

T̃µν = 2T 1
µν + 2T 2

µν − 6T 3
µν − 3T 4

µν − 8T 5
µν − 6T 6

µν + 6T 7
µν

+ 8T 8
µν + 3T 9

µν + 6T 10
µν − 2T 11

µν − 2T 12
µν − 5T 13

µν + 5T 14
µν ,

Θµν = 8T 1
µν − 5T 2

µν − 13T 3
µν − 8T 4

µν − 25T 5
µν − 17T 6

µν + 17T 7
µν

+ 25T 8
µν + 8T 9

µν + 13T 10
µν + 5T 11

µν − 8T 12
µν − 15T 13

µν + 15T 14
µν .

(E.14)
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We can read off the central charge CT from the two-point function (6.1) of the stress tensor

Tµν . In four spacetime dimensions, we find

CT = −8

3
(4d three-derivative Dirac fermion). (E.15)

In six spacetime dimensions, we find

CT = −144

5
(6d three-derivative Dirac fermion). (E.16)

These values are in agreement with [68, 114, 115].

F Analytic examples of solutions to crossing

We write down two analytic solutions to the superconformal crossing equation (3.3), using

first generalized free fields (mean field theory) and second a free hypermultiplet. Since

these solutions exist in arbitrary spacetime dimensions, we keep d = 2ε+ 2 general.

F.1 Generalized free fields

The four-point function of generalized free fields is the sum over factorized two-point func-

tions in the three channels (mean field theory),

〈O(X1, Y1)O(X2, Y2)O(X3, Y3)O(X4, Y4)〉 =

(
(Y1 · Y2)(Y3 · Y4)

x2ε
12x

2ε
34

)k
Ggff(u, v;w), (F.1)

where Ggff(u, v;w) is given by

Ggff(u, v;w) = 1 +

(
(1 + w)uε

w

)k
+

(
uε

wvε

)k
. (F.2)

It satisfies the crossing equations (3.3) and (3.4) by construction. Let us focus on k = 2,

and decompose Ggff(u, v;w) into su(2)R harmonics,

Ggff(u, v;w) =

[
1 +

1

3

(
u2ε +

u2ε

v2ε

)]
+

1

2

[
u2ε − u2ε

v2ε

]
P1(1 + 2

w )

+
1

6

[
u2ε +

u2ε

v2ε

]
P2(1 + 2

w ).

(F.3)

The factors multiplying PJR(1 + 2
w ) can be decomposed into bosonic conformal blocks,

u2ε +
u2ε

v2ε
=

∑
` even, `≥0

∞∑
n=0

Pn,`G`+4ε+2n,`(u, v),

u2ε − u2ε

v2ε
=

∑
` odd, `≥1

∞∑
n=0

Pn,`G`+4ε+2n,`(u, v),

(F.4)
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where the coefficients Pn,` are given in [116]

Pn,` =
(`+ ε)ε

(ε)ε
(F.5)

×
2(−1)`(ε)2

n(2ε)2
n+`

Γ(`+ 1)Γ(n+ 1)(`+ ε+ 1)n(2ε+ n− 1)n(4ε+ 2n+ `− 1)`(3ε+ n+ `− 1)n
.

Ggff(u, v;w) can also be decomposed into superconformal blocks,

Ggff(u, v;w) = 1 + λ2
D[4]AD[4] +

∑
` odd, `≥1

λ2
B[2]`
AB[2]`

+
∑

` even, `≥0

∞∑
n=0

λ2
L[0]`+4ε+2n,`

AL[0]`+4ε+2n,`
,

(F.6)

where the OPE coefficients are given by

λ2
D[4] =

P0,0

6
=

1

3
, λ2

B[2]`
=

`+ 1

8(`+ 2ε)
P0,`+1,

λ2
L[0]`+4ε+2n,`

=
(n+ 1)(n+ L+ ε+ 1)

16(n+ ε)(n+ L+ 2ε)
Pn+1,`.

(F.7)

We note that the decomposition of the generalized free field solution is void of any conserved

current.

F.2 Free hypermultiplet

A free hypermultiplet consists of a pair of complex scalars transforming in the fundamental

representation of su(2)R, and a fermion singlet. The fermion could be Dirac, Majorana, or

Weyl depending on the number of spacetime dimensions; in six dimensions, it is a Weyl

fermion. Let us denote the complex scalar doublet by φA, and φ̄A its complex conjugate

φ̄A = (φA)∗. They are normalized by the two-point function

〈
φA1(x1)φ̄A2(x2)

〉
=
δA2
A1

x2ε
12

. (F.8)

The superconformal primaries of a D[2] superconformal multiplet have scaling dimen-

sion 2ε, and can be constructed as scalar bilinears

φ̄A(σa) B
A φB, (F.9)

where A,B = 1, 2, a = 1, 2, 3, and (σa) B
A are the Pauli matrices. To keep track of su(2)R,

we can contract the scalars with auxiliary variables Y A, and consider the four-point function

of O ≡ iφAφ̄BY AYB,30

〈O(x1, Y1)O(x2, Y2)O(x3, Y3)O(x4, Y4)〉 =

(
(Y1 · Y2)(Y3 · Y4)

x2ε
12x

2ε
34

)2

Ghyper(u, v, w), (F.10)

30The indices can be raised and lowered by YA = εABY
B and Y A = YBε

BA.
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where Ghyper(u, v, w) is given by

Ghyper(u, v, w) = Ggff(u, v, w) +Gextra(u, v, w),

Gextra(u, v, w) = − 2

w

(u
v

)ε
+ 2

(
1 +

1

w

)
uε +

2

w

(
1 +

1

w

)(
u2

v

)ε
.

(F.11)

A single free hypermultiplet has SU(2) flavor symmetry.31 We can construct a triplet

of D[2] superconformal primaries,

O1 =
i

2
(O+ −O−), O3 = −1

2
(O+ +O−), O2 ≡ O = iφAφ̄

BY AYB, (F.12)

where O+ = φAφBY
AY B and O− = φ̄Aφ̄BYAYB. The SU(2) flavor symmetry can be made

manifest by introducing new auxiliary variables ỸA, and defining

O(x, Y, Ỹ ) = i(σa)Ȧ
ḂỸ ȦỸḂOa(x, Y ). (F.13)

One can write

O(x, Y, Ỹ ) = (φȦAỸ
ȦY A)2, (F.14)

where φA and φ̄A are expressed in terms of φȦA as32

φA =
1√
2

(φ1A + iφ2A), φ̄A =
1√
2

(−φ2A − iφ1A). (F.15)

It is now straightforward to compute the four-point function,

〈O(x1, Y1, Ỹ1)O(x2, Y2, Ỹ2)O(x3, Y3, Ỹ3)O(x4, Y4, Ỹ4)〉

=
(Y1 · Y2)2(Y3 · Y4)2(Ỹ1 · Ỹ2)2(Ỹ3 · Ỹ4)2

x4ε
12x

4ε
34

Ghyper(u, v, w, w̃),
(F.16)

where w̃ is defined the same way as w, and Ghyper(u, v, w, w̃) is given by

Ghyper(u, v, w, w̃) = 4 + 4

(
(1 + w)(1 + w̃)uε

ww̃

)2

+ 4

(
uε

ww̃vε

)2

+
16

ww̃

(u
v

)ε
+ 16

(1+w)(1 + w̃)

ww̃
uε + 16

(1+w)(1 + w̃)

w2w̃2

(
u2

v

)ε
.

(F.17)

31The two complex scalars, regarded as four real scalars, can be rotated by an SO(4) action which is a

direct sum of the SU(2)R R-symmetry and the SU(2) flavor symmetry. The Weyl spinor in six dimensions

admits a quaternionic structure, and also transforms as a doublet under the SU(2) flavor symmetry.
32The scalar φȦA satisfies the reality condition (φȦA)∗ = φȦA.
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The four-point function Ghyper(u, v, w, w̃) can be further decomposed into Legendre poly-

nomials,

Ghyper(u, v, w, w̃)

= 4

{
P0(1 + 2

w̃ )P0(1 + 2
w )

[
1 +

1

9

(
u2ε +

(u
v

)2ε
)

+
1

9

(
9uε + 9

(u
v

)ε
+

(
u2

v

)ε)]
+ P1(1 + 2

w̃ )P1(1 + 2
w )

[
1

4

(
u2ε +

(u
v

)2ε
)

+
(
uε +

(u
v

)ε)]
+ P2(1 + 2

w̃ )P2(1 + 2
w )

[
1

36

(
u2ε +

(u
v

)2ε
)

+
1

9

(
u2

v

)ε]}
+ 4

{
P0(1 + 2

w̃ )P1(1 + 2
w )

[
1

6

(
u2ε −

(u
v

)2ε
)

+
(
uε −

(u
v

)ε)]
+ P0(1 + 2

w̃ )P2(1 + 2
w )

[
1

18

(
u2ε +

(u
v

)2ε
)
− 1

9

(
u2

v

)ε]
+ P1(1 + 2

w̃ )P2(1 + 2
w )

[
1

12

(
u2ε −

(u
v

)2ε
)]

+ (w ↔ w̃)

}
.

(F.18)

If we define

Ghyper(u, v, w, w̃) = Ga1a2a3a4
hyper (u, v, w)Y1,a1Y2,a2Y3,a3Y4,a4 , (F.19)

where Ya ≡ i(σa)Ȧ
ḂỸ ȦỸḂ, then Ga1a2a3a4

hyper (u, v, w) admits a superconformal block decom-

position,33

Ga1a2a3a4
hyper (u, v, w) =

∑
i∈{1,3,5}

P a1a2a3a4
i λ2

X ,iAX (u, v, w). (F.22)

33The SU(2) projection matrices are

P abcd1 =
1

3
δabδcd, P abcd3 =

1

2
(δadδbc − δacδbd), P abcd5 =

1

2
(δadδbc + δacδbd)− 1

3
δabδcd, (F.20)

which are related to Legendre polynomials by

P a1a2a3a4
1 Y1,a1Y2,a2Y3,a3Y4,a4 =

4

3
(Ỹ1 · Ỹ2)2(Ỹ3 · Ỹ4)2P0(1 + 2

w̃
),

P a1a2a3a4
3 Y1,a1Y2,a2Y3,a3Y4,a4 = −2(Ỹ1 · Ỹ2)2(Ỹ3 · Ỹ4)2P1(1 + 2

w̃
),

P a1a2a3a4
5 Y1,a1Y2,a2Y3,a3Y4,a4 =

2

3
(Ỹ1 · Ỹ2)2(Ỹ3 · Ỹ4)2P2(1 + 2

w̃
).

(F.21)
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In six dimensions, the low-lying nonzero OPE coefficients are

1 : λ2
D[0],1 = 3, λ2

B[0]0,1
= 6, λ2

B[0]2,1
=

60

7
, λ2

B[0]4,1
=

35

11
,

λ2
B[2]1,1

=
8

3
, λ2

B[2]3,1
=

62

13
, λ2

B[2]5,1
=

256

85
,

λ2
L[0]8,0,1

= 1, λ2
L[0]10,0,1

=
4

15
, λ2

L[0]10,2,1
=

265

66
, · · · ,

3 : λ2
D[2],3 = 4, λ2

B[0]1,3
=

32

5
, λ2

B[0]3,3
=

80

21
, λ2

B[0]5,3
=

448

429
,

λ2
B[2]0,3

= 1, λ2
B[2]2,3

=
50

11
, λ2

B[2]4,3
=

490

117
,

λ2
L[0]9,1,3

=
16

7
, λ2

L[0]11,1,3
=

10

9
, λ2

L[0]11,3,3
=

500

117
, · · · ,

5 : λ2
D[4],5 = 1, λ2

B[2]1,5
=

32

9
, λ2

L[0]10,0,5
=

64

105
, λ2

L[0]10,2,5
=

10

3
, · · · .

(F.23)

An observation on the above decomposition is the absence of B[0]`,5, which are allowed

in general free theories. This property of the hypermultiplet can be explained as follows.

In order to satisfy the relation between ∆ and `, the superconformal primary of a B[0]`
multiplet must take the form of a scalar bilinear. Since a scalar transforms in 2, scalar

bilinears can only transform in 1 and 3.

G Details on numerics

We comment on the parameter settings in the practical implementation of the linear func-

tional method. The most relevant parameters include the derivative order Λ, the truncation

on spins `max, and the order nr to which the r expansion of the superconformal blocks (see

appendix A.2) are truncated. For fixed Λ, we in principle need to extrapolate to infinite nr
and `max to obtain rigorous bounds. However, in practice, we find that if we set nr ≥ 2Λ,

then the bounds are stable to within numerical precision against further increases in nr.

The numerical bounds in this paper are obtained using `max = 64, nr = 80 for Λ ≤ 40 and

nr = 96 for 40 < Λ ≤ 48. The relevant parameter settings for the SDPB package are

precision = 1024,

initialMatrixScalePrimal = initialMatrixScaleDual = 1e20,

dualityGapThreshold = 1e-10.

(G.1)

In the past, the weakening of the bounds with increasing `max has been handled by

imposing non-negativity conditions on functionals acted on a few blocks of very high spin

(such as ` = 1000, 1001 in [18]), in addition to blocks below some `max.34 We find that

34In the case of bootstrapping conformal field theories in two spacetime dimensions with an infinite

dimensional chiral algebra, it was found that the bounds are stable against increasing `max to within

numerical precision, as soon as `max exceeds some threshold, say 2Λ [37, 40, 41, 44]. Some comments on

the issue of spin stabilization in higher spacetime dimensions can be found in [26].
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Figure 9. Left: the lower bounds on CJ for interacting theories with E8 flavor group, at derivative

order Λ = 24 and across a range of spin truncations `max. Also shown is an extrapolation to

`max →∞ using the quadratic ansatz (G.2). Right: the relative errors between `max = 64 and the

extrapolations to `max →∞, at different Λ.

this approach does not make our bounds stable against increasing `max. But numerical

extrapolations to infinite `max require data with a large range of `max for each derivative

order, which is computationally intensive and impractical.35 Our strategy is to use `max =

64, and estimate the errors by performing the extrapolations to infinite `max in simpler

cases. We shall consider E8 flavor in the absence of higher spin conserved currents. The

left side of figure 9 shows the extrapolations for the lower bound on CJ at derivative order

Λ = 24, and the right side shows the relative error between `max = 64 and extrapolations

to `max →∞ using the quadratic ansatz

minCT = a+
b

`max
+

c

`2max

, 48 ≤ `max ≤ 96, (G.2)

obtained at various derivative orders. We see that the relative error decreases to below

0.5% as we go to high enough derivative orders.

In light of the slight discrepancy between the value of CT at min CJ and the rank-one

E-string, as shown in figure 5, we estimate its error due to spin truncation. Figure 10 shows

the upper and lower bounds on CT , when the value of the flavor central charge CJ is set

close to saturating the lower bound, CJ = (1+10−4) minCJ , at derivative order Λ = 24, 32

and across a range of spin truncations `max. The data appears less regular than that for

min CJ , and extrapolations using the ansatz (G.2) do not look reliable, but we estimate

that the error due to truncating spins to `max = 64 is less than 2% for Λ ≥ 24. Similar to

min CJ , this error decreases with increasing derivative order.

35When the flavor group has a large crossing matrix, to run jobs at very high derivative order Λ and very

high spin truncation `max, the required RAM for running SDPB exceeds the limitations of the machines we

have at hand.
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Figure 10. The upper and lower bounds on the inverse central charge C−1T when the value of the

flavor central charge CJ is set close to saturating the lower bound, CJ = (1 + 10−4) minCJ , for

interacting theories with E8 flavor group, at derivative orders Λ = 24, 32 and across a range of spin

truncations `max.
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