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Abstract

We revisit ’t Hooft anomalies in (1+1)d non-spin quantum field theory, starting from
the consistency and locality conditions, and find that consistent U(1) and gravitational
anomalies cannot always be canceled by properly quantized (2+1)d classical Chern-
Simons actions. On the one hand, we prove that certain exotic anomalies can only be
realized by non-reflection-positive or non-compact theories; on the other hand, with-
out insisting on reflection-positivity, the exotic anomalies present a caveat to the inflow
paradigm. For the mixed U(1) gravitational anomaly, we propose an inflow mechanism
involving a mixed U(1)×SO(2) classical Chern-Simons action with a boundary condition
that matches the SO(2) gauge field with the (1+1)d spin connection. Furthermore, we
show that this mixed anomaly gives rise to an isotopy anomaly of U(1) topological defect
lines. The isotopy anomaly can be canceled by an extrinsic curvature improvement term,
but at the cost of creating a periodicity anomaly. We survey the holomorphic bc ghost
system which realizes all the exotic consistent anomalies, and end with comments on a
subtlety regarding the anomalies of finite subgroups of U(1).
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1 Introduction

An ’t Hooft anomaly is a controlled breaking of symmetries in quantum field theory (QFT).
Let Φ collectively denote the background gauge fields and metric, and Λ collectively denote
diffeomorphisms and background gauge transformations. Under Λ, the partition function on
Φ transforms as

Z[ΦΛ] = Z[Φ] eiα[Φ,Λ] . (1.1)

The anomalous phase α[Φ,Λ] is a functional that must satisfy the consistency and locality
conditions. Consistency — or finite Wess-Zumino consistency [1] — of an ’t Hooft anomaly
requires the background gauge transformation (1.1) to respect the group multiplication law,
which amounts to the commutativity of the diagram

Z[Φ]

Λ1

Z[ΦΛ1]

Λ2

Z[ΦΛ2Λ1]
Λ2Λ1

(1.2)

The anomalous phases generated by the two routes can only differ by 2πZ. Locality of an ’t
Hooft anomaly is expected because anomaly is a short distance effect, i.e. it originates in the
ultraviolet. The consistency and locality conditions led to the old cohomological classification
of perturbative anomalies – the ’t Hooft anomaly of a semi-simple Lie algebra G in D space-
time dimensions is classified by the Lie algebra cohomology HD+1(G,R) through the descent
equations [2–13].

A more modern perspective on ’t Hooft anomalies is the inflow paradigm: a D-dimensional
anomalous QFT should be viewed as the boundary theory of a (D+ 1)-dimensional bulk clas-
sical action, also called a symmetry protected topological phase or an invertible field theory,
such that the coupled system exhibits no anomaly [14–28]. From this perspective, the classi-
fication of boundary ’t Hooft anomalies amounts to the classification of bulk classical actions.
One recent triumph has been the classification of reflection-positive invertible topological field
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theories in D+ 1 spacetime dimensions by cobordism groups [20,25,28].1

For a discrete internal symmetry group G in a (1+1)d non-spin QFT, the inflow paradigm
suggests that the ’t Hooft anomalies have the same H3(G,U(1)) classification as the (2+1)d
Dijkgraaf-Witten theories [29]. The same classification can also be deduced from a purely
(1+1)d perspective [30, 31].2 According to the inflow paradigm, the chiral central charge
c− ≡ c − c̄ of a (1+1)d non-spin CFT must be a multiple of eight, because only then can the
gravitational anomaly be canceled by a properly quantized (2+1)d gravitational Chern-Simons
action. Similarly, the level k− ≡ k− k̄ of a U(1) internal symmetry in a non-spin CFT must be
an even integer for the U(1) anomaly to be canceled by a (2+1)d U(1) Chern-Simons.

The above quantization conditions are violated by the holomorphic bc ghost system. Recall
that b and c are left-moving anti-commuting free fields with weights λ and 1− λ. For integer
λ, the holomorphic bc ghost system is a non-spin CFT, but has c− = 1− 3(2λ− 1)2 ∈ 2Z and
k− = 1, suggesting that the gravitational and U(1) anomalies cannot be canceled by inflow of
familiar Chern-Simons actions. On the other hand, as will be seen in Section 2, the consistency
and locality conditions lead to weaker quantization conditions c− ∈ 2Z and k− ∈ Z that are
precisely satisfied by the holomorphic bc ghost system.

The bc ghost system has a U(1) ghost number symmetry that exhibits a mixed gravitational
anomaly: On any Riemann surface, it is conserved up to a background charge proportional to
the Euler characteristic. In [32], it was pointed out that the mixed gravitational anomaly, albeit
consistent, cannot be canceled by the inflow of a relativistic classical action if the boundary
(1+1)d spin connection is to be matched with the bulk (2+1)d spin connection. However, a
non-relativistic inflow is possible using the renowned Wen-Zee topological term [33, 34]. In
this paper, we propose a relativistic inflow that matches the boundary (1+1)d spin connection
with a bulk SO(2) gauge field.

Another slightly bizarre feature of the mixed gravitational anomaly is the non-existence
of an improved stress tensor with covariant anomalous conservation. Recall that a consis-
tent anomaly requires the current to be defined via the variation of background fields, and
the resulting anomalous conservation equations are generally not gauge-covariant. By adding
Bardeen-Zumino currents [35], the consistent current can often be improved to a covariant
one, i.e. with covariant anomalous conservation equations, but the covariant currents are no
longer equal to the variation of background fields, and do not satisfy the Wess-Zumino consis-
tency condition. For the mixed gravitational anomaly at hand, we show that this improvement
is not possible, and only the consistent anomaly exists.

The rest of this paper is organized as follows. Section 1.1 introduces the consistency and
locality conditions. Section 2 concerns pure anomalies, by first reviewing the anomaly descent
and inflow of perturbative pure anomalies, and then examining the finite Wess-Zumino con-
dition for their global versions. Section 3 explores the mixed U(1)-gravitational anomaly as
well as its connection to the isotopy anomaly and periodicity anomaly of topological defect
lines. Section 4 surveys the holomorphic bc ghost system, and finds it to realize every exotic
consistent anomaly discussed in this paper. Section 5 discusses a key subtlety regarding the
anomalies of finite subgroups of U(1). Section 6 ends with concluding remarks. Appendix A
reviews the Bardeen-Zumino counter-terms for pure gravitational anomaly, and constructs its
counterpart for the mixed anomaly. Appendix B proves that the consistent mixed gravitational
anomaly does not have a covariant counterpart.

1Reflection-positivity of a QFT in Euclidean spacetime is equivalent to the unitarity of time evolutions in
Lorentzian spacetime. However, in this paper we always call this property reflection-positivity, to avoid confu-
sion of QFT unitarity with the unitarity of symmetry representations.

2The (1+1)d classification is achieved by the pentagon identity, which arises as the consistency condition for
the fusion category of symmetry defect lines, or equivalently from the finite Wess-Zumino consistency condition
applied to patch-wise background gauge transformations.
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1.1 Consistency and locality

’t Hooft anomalies satisfy two conditions: (finite Wess-Zumino) consistency and locality. Con-
sistency amounts to the commutativity of the diagram (1.2) up to 2πZ phase differences.

Condition 1.1 (Consistency). For two arbitrary background diffeomorphism/gauge transforma-
tions Λ1 and Λ2, the anomalous phases satisfy

α[Φ,Λ2Λ1]−α[ΦΛ1 ,Λ2]−α[Φ,Λ1] ∈ 2πZ . (1.3)

Locality amounts to the following two properties:

1. Under general background diffeomorphism/gauge transformations Λ, the anomalous
phase α[Φ,Λ] is a local functional of Φ.

2. Under infinitesimal background diffeomorphism/gauge transformations Λ, the anoma-
lous phase α[Φ,Λ] is a local functional of Φ and Λ, and vanishes when Φ = 0. For the
gravitational background, Φ= 0 means that the spin connection (or Levi-Civita connec-
tion) vanishes, with no further constraint on the vielbein.

An argument for the second locality property can be made as follows. For continuous sym-
metries, the divergence of the Noether current Jµ should vanish in correlation functions up to
contact terms,




∇µJµ(x) · · ·
�

�

�

�

Φ=0
= contact terms . (1.4)

Had the second locality property been false, this contact structure would be violated by the
anomalous Ward identities. The first locality property can be viewed as an extension of the
second locality property to large background diffeomorphism/gauge transformations. The
two locality properties above can be stated in more precise terms by the following locality
condition.

Condition 1.2 (Locality). Let G be the space of all background differomorphism/gauge transfor-
mations, with connected components Gn for n = 0, 1, 2, · · · , and with G0 containing the trivial
transformation. The anomalous phase α[Φ,Λ] takes the form

α[Φ,Λ] =
∑

i

κi(n)Ai[Φ,Λ] + θ (n) , (1.5)

where Ai[Φ,Λ] is a basis of independent local functionals that vanish in the trivial background
Φ= 0, and θ (0) = 0.

2 Pure anomalies

This section first reviews the perturbative pure gravitational and U(1) anomalies in non-spin
QFT, and then examines the finite Wess-Zumino (fWZ) consistency condition for global anoma-
lies. We derive a weaker quantization condition on the anomaly coefficients than that of inflow.
A comparison can be found in Table 1.

2.1 Perturbative pure anomalies

We begin by reviewing the well-known perturbative pure anomalies. Consider a (1+1)d non-
spin QFT with U(1) internal symmetry coupled to a background metric gµν and a background
U(1) gauge field A. We parameterize the background metric by the zweibein ea

µ and write
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gµν = ea
µeb
νδab. We use µ,ν, . . . to denote spacetime indices, and a, b, . . . to denote frame in-

dices. Under diffeomorphisms (ξ), local frame rotations (θ), and U(1) gauge transformations
(λ) the background zweibein and the background U(1) gauge field transform as

δea = −θ a
beb +Lξea , δA= dλ+LξA , (2.1)

where Lξ denotes the Lie-derivative.
The effective action W [e, A] = − log Z[e, A] is a complex-valued functional of the back-

ground fields, and is in general non-local. The infinitesimal part of the anomalous phase is a
local functional linear in the gauge parameters,

α[e, A,θ ,ξ,λ] =Aθ [e, A,θ] +Aξ[e, A,ξ] +Aλ[e, A,λ] . (2.2)

The effective action shifts by

W [e+δe, A+δA] =W [e, A]− i
�

Aθ [e, A,θ] +Aξ[e, A,ξ] +Aλ[e, A,λ]
�

. (2.3)

The anomalous phases Aθ , Aξ and Aλ are constrained by the Wess-Zumino consistency con-
dition [36]

δχ1
Aχ2
−δχ2

Aχ1
=A[χ2,χ1] , for χ = θ , ξ , λ . (2.4)

Descent equations

A large class of solutions to the Wess-Zumino consistency condition are obtained by the descent
equations

I(4) = dI(3) , δI(3) = dI(2) , A= 2π

∫

M2

I(2) , (2.5)

where I(3) and I(4) are formal 3- and 4-forms. The 4-form anomaly polynomial responsible
for the pure gravitational and U(1) anomalies is

I(4) = 1
(2π)2

hκR2

48
tr (R∧ R) +

κF2

2
F ∧ F

i

, (2.6)

where Rab =
1
2 eµa eνbRµνρσd xρd xσ and F = dA. The descent 3-form is

I(3) = 1
(2π)2

�κR2

48
CS(ω) +

κF2

2
A∧ F

�

, (2.7)

and the anomalous phases are

Aθ =
κR2

96π

∫

M2

θ abRba , Aξ = 0 , Aλ =
κF2

4π

∫

M2

λ F . (2.8)

Inflow mechanism

An anomaly that solves the descent equations has a natural bulk classical action. Consider

Sbulk =
ikR2

192π

∫

M3

CS(ω) +
ikF2

4π

∫

M3

CS(A) , (2.9)

5

https://scipost.org
https://scipost.org/SciPostPhys.10.5.119


SciPost Phys. 10, 119 (2021)

which, to be well-defined, must have quantized levels3

kR2

8
, kF2 ∈ 2Z . (2.11)

If M3 is a three-manifold with boundary ∂M3 =M2, then the classical action on M3 con-
tributes the following amount of anomaly to the (1+1)d non-spin QFT on M2,

∆κR2 = −
1
2

kR2 , ∆κF2 = −kF2 . (2.12)

For the coupled system to be free of anomalies, the quantization conditions (2.11) on the
Chern-Simons levels kR2 and kF2 translate to

1
8
κR2 ,

1
2
κF2 ∈ Z . (2.13)

Bardeen-Zumino counter-term

The Bardeen-Zumino counter-term provides a trade-off between the frame rotation anomaly
and the diffeomorphism anomaly [37]. The conventional choice eliminates the former in favor
of the latter. The counter-term is constructed from the zwiebein ea

µ, with the explicit form
given in (A.1). The modified effective action is

W ′[e, A]≡W [e, A] + SBZ[e] , (2.14)

such that under local frame rotations,

δθSBZ = iAθ . (2.15)

Hence, the new effective action W ′[e, A] transforms as

W ′[e+δe, A+δA] =W ′[e, A]− i
�

Aλ[e, A,λ] +A′ξ[e, A,ξ]
�

, (2.16)

with a nonzero anomalous phase A′
ξ
[e, A,ξ] under diffeomorphism,

A′ξ = iδξSBZ =
κR2

96π

∫

M2

∂µξ
νdΓµν . (2.17)

Anomalous conservation and covariant improvement

The anomalous phases (2.8) imply the anomalous conservation equations

〈∇µTµν(x)〉= −
2πi
p

g

δA′
ξ
[e, A,ξ]

δξν
=

iκR2

48
1
p

g
gνλ∂µ

�p
gερσ∂ρΓ

µ
λσ

�

,

〈∇µJµ(x)〉= −
2π
p

g
δAλ[e, A,λ]
δλ(x)

= −
κF2

4
εµνFµν .

(2.18)

3On a closed manifold M3, the Chern-Simons action (2.9) is required to be invariant under background diffeo-
morphism and U(1) gauge transformations. One way to manifest the invariance property is to rewrite the action
as

S =
ikR2

192π

∫

M4

tr R∧ R+
ikF2

4π

∫

M4

F ∧ F , (2.10)

where M4 is a four manifold such that ∂M4 =M3. For (2.10) to be independent of the choice of M4, the levels
kR2 and kF2 must be quantized as in (2.11).
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Note that the first equation is not covariant. In technical terms, these are consistent anoma-
lies and not covariant anomalies [35]. To arrive at the latter, the stress tensor Tµν must be
improved by

T µν = Tµν −
iκR2

48
∇λ

�

Γ (µλσε
ν)σ − Γλ(µσεν)σ − Γ (µν)σελσ

�

, (2.19)

The anomalous conservation equation for the improved stress tensor T µν takes the covariant
form

〈∇µT µν(x)〉=
iκR2

48
∇µ(Rµνρσερσ) . (2.20)

Operator product in CFT

On flat space, the two-point functions of the stress tensor Tµν and the conserved current Jµ
are constrained by conformal symmetry to be

〈Tzz(z, z̄)Tzz(0)〉=
c

2z4
, 〈Tz̄z̄(z, z̄)Tz̄z̄(0)〉=

c̄
2z̄4

, (2.21)

and

〈Jz(z, z̄)Jz(0)〉=
k
z2

, 〈Jz̄(z, z̄)Jz̄(0)〉=
k̄
z̄2

. (2.22)

The remaining components

〈Tzz(z, z̄)Tzz̄(0)〉 , 〈Tz̄z̄(z, z̄)Tzz̄(0)〉 , 〈Tzz(z, z̄)Tz̄z̄(0)〉 , 〈Tzz̄(z, z̄)Tzz̄(0)〉 , 〈Jz(z, z̄)Jz̄(0)〉

are contact terms with coefficients related to the anomalies. The above two point functions
can be obtained from the Ward identities implied by the anomalous conservation equations
(3.14), giving

c− ≡ c − c̄ = κR2 , k− ≡ k− k̄ = κF2 . (2.23)

The discussion of the 〈T J〉 two-point functions is deferred to Section 3.1.

2.2 Global gravitational anomaly

Let us now examine the pure anomaly of large diffeomorphisms.4 Since we do not assume
time-reversal symmetry, orientation-reversing operations such as reflections are excluded. For
concreteness, consider a (1+1)d non-spin CFT on a torus with complex moduli τ and a flat
metric

ds2 = |d x1 +τd x2|2 , xµ ∼= xµ + 2πZ . (2.24)

The orientation-preserving large diffeomorphisms that respect the periodicity of the coordi-
nates xµ are

�

x1

x2

�

→
�

x ′1

x ′2

�

=

�

a −b
−c d

��

x1

x2

�

for ad − bc = 1 and a, b, c, d ∈ Z , (2.25)

and form the mapping class group SL(2,Z). It is generated by

S =

�

0 1
−1 0

�

, T =

�

1 −1
0 1

�

, (2.26)

4Essentially the same analysis as this subsection was done in [38] and generalized to arbitrary genera, using the
language of conformal field theory as analytic geometric on the universal moduli space of Riemann surfaces [39].
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which satisfy the relations
S4 = 1, (ST )3 = S2 . (2.27)

The form of the metric (2.24) is preserved, modulo Weyl transformations, by SL(2,Z), with
the complex moduli τ and the complex coordinate w= x1 +τx2 transformed as

τ→ τ′ =
aτ+ b
cτ+ d

, w→ w′ = x ′1 +τ′x ′2 =
w

cτ+ d
. (2.28)

Torus partition function

Suppose the partition function on a flat torus does not vanish identically over all moduli.5

Under SL(2,Z), the only possible dependence on the flat background geometry that is com-
patible with locality is through the volume integral

∫

d2 x
p

g. However, an anomalous phase
proportional to the volume violates the fWZ consistency condition 1.1, with Λ1 an SL(2,Z)
transformation, and Λ2 a Weyl transformation. Hence, the torus partition function must be
invariant under SL(2,Z) up to τ-independent anomalous phases6

Z
�

aτ+ b
cτ+ d

,
aτ̄+ b
cτ̄+ d

�

= Z(τ, τ̄) eiθ (a,b,c,d) . (2.30)

By the fWZ consistency condition 1.1, the general phases θ (a, b, c, d) are determined from the
phases θS and θT of the S and T generators, i.e.

Z
�

−
1
τ

,−
1
τ̄

�

= Z(τ, τ̄) eiθS , Z (τ+ 1, τ̄+ 1) = Z(τ, τ̄) eiθT . (2.31)

The chiral central charge is related to the T anomalous phase by 2πc− = −24θT . Under the
relations (2.27), fWZ constrains7

2θS ∈ 2πZ , θS + 3θT ∈ 2πZ . (2.33)

There are two scenarios:

(i) θS , 3θT ∈ 2πZ ⇒ Z(τ, τ̄) = Z(−1/τ,−1/τ̄) , c− ∈ 8Z ,

(ii) θS , 3θT ∈ 2π
�

Z+
1
2

�

⇒ Z(τ, τ̄) = −Z(−1/τ,−1/τ̄) , c− ∈ 8Z+ 4 .
(2.34)

In scenario (ii), Z(τ = i, τ̄ = −i) on the square torus must either blow up or vanish. The
former means that the spectrum exhibits Hagedorn growth, which violates our expectation
of QFT in finite volume.8 The latter violates reflection-positivity. See Figure 1. Hence, a
reflection-positive CFT must fall into scenario (i).9

5The usual reason for a partition function to vanish identically is the existence of anti-commuting zero modes.
6On the flat torus (in Cartesian coordinates (2.24)) where the Christoffel symbols all vanish, no local integral

term can contribute. Therefore, the fWZ consistency condition 1.1 modulo phase redefinitions defines the first
group cohomology with U(1) coefficients. This subsection is essentially an exercise computing

H1(PSL(2,Z), U(1)) = Z6 , H1(SL(2,Z),U(1)) = Z12 . (2.29)

7Note that the anomalous phases form a representations of PSL(2,Z), defined by the relations

S2 = (ST )3 = 1 . (2.32)

This is physically expected because S2 is charge conjugation, and acts trivially on a torus with no operator insertions.
8See [40] for a discussion. In the following we always assume that the torus partition function (for non-compact

CFTs normalized by the volume) does not blow up.
9Many non-reflection-positive CFTs such as the c < 0 minimal models still have positive torus partition functions.

They must also fall into scenario (i).
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S

Figure 1: The square torus τ = i, τ̄ = −1 is symmetric under 90 degree rotations
(modular S) and reflections. The partition function on the square torus transforms
with a phase θS under the former, and must be positive in a reflection-positive theory
due to the later.

More generally, an ST n transformation produces a phase factor

ei(θS+nθT ) =



















1 c− ∈ 24Z ,

ω±n c− ∈ 24Z± 8 ,

−(−)n c− ∈ 24Z+ 12 ,

−(−ω)±n c− ∈ 24Z± 4 ,

(2.35)

whereω= e
2
3πi . An immediate consequence is that the partition function Z(τ, τ̄)must vanish

at the S-invariant point τ= i and/or the ST -invariant point τ=ω whenever c− 6∈ 24Z. More
specifically, the vanishing points in the standard fundamental domain are

τ=











ω c− ∈ 24Z± 8 ,

i c− ∈ 24Z+ 12 .

i, ω c− ∈ 24Z± 4 .

(2.36)

As a check, the chiral half of the (E8)1 WZW model has c− = 8, and its torus partition function
Z(τ) = J(τ)

1
3 indeed vanishes at τ=ω.

Torus one-point function

One can derive similar conditions by looking at the torus one-point function

G(τ, τ̄) = 〈Oh,h̄(w, w̄)〉T2
τ

(2.37)

of a local operator Oh,h̄ that has definite holomorphic and anti-holomorphic weights h and h̄
but is not required to be a primary. By translational invariance, the torus one-point function
does not depend on the coordinate w of the operator insertion. Under S, it transforms as

〈Oh,h̄(w, w̄)〉T2
τ
= e−iθS 〈Oh,h̄(w, w̄)〉T2

−1/τ
= e−iθSτ−hτ̄−

eh〈O′
h,h̄
(w/τ, w̄/τ̄)〉T2

−1/τ
. (2.38)

Under T , there is no conformal factor. In summary,

G
�

−
1
τ

,−
1
τ̄

�

= eiθSτhτ̄h̄ G(τ, τ̄) , G(τ+ 1, τ̄+ 1) = eiθT G(τ, τ̄) . (2.39)

The anomalous phases θS and θT satisfy the quantization conditions

2θS ∈ 2π
�

Z+
`

2

�

, θS + 3θT ∈ 2πZ , (2.40)
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where `= h− h̄ is the spin of the operator O.
In a given theory, the torus one-point functions for different operators can have different θS ,

but they must have the same θT , which is related to the chiral central charge by 2πc− = −24θT .
A CFT with a non-vanishing torus one-point function of an operator operator Oh,h̄ of odd spin
necessary contains anti-commuting fields, i.e. ghosts if the QFT is non-spin. This is because
Oh,h̄ must appear in the OPE of some real operator Oh′,h̄′ with itself,

Oh′,h̄′(z1, z̄1)Oh′,h̄′(z2, z̄2) 3 C(z1 − z2)
h−2h′(z̄1 − z̄2)

h̄−2h̄′Oh,h̄

�

z1 + z2

2
,
z̄1 + z̄2

2

�

. (2.41)

Exchanging z1 and z2 produces a sign since

(−)h−h̄−2(h′−h̄′) = −1 . (2.42)

For the OPE coefficient C to be non-zero, the operator Oh′,h̄′ must therefore be anti-commuting
(Grass-
mann-valued) to produce a compensating sign.

• If the torus one-point function for at least one operator of even spin does not vanish
identically over all torus moduli, then we recover the previous condition (2.34), hence
c− ∈ 4Z.

• If the torus one-point functions for at least one operator of odd spin does not vanish iden-
tically over all torus moduli — which can only happen in the presence of anti-commuting
fields, i.e. ghosts if the CFT is non-spin — then (2.40) leads to c− ∈ 4Z+ 2.

Quantization of the chiral central charge

The preceding results can be summarized as follows.

Lesson 2.1. The chiral central charge of a non-spin CFT satisfies c− ∈ 2Z if at least one torus
one-point function does not vanish identically over all moduli of the torus. If the torus partition
function itself does not vanish identically, then c− ∈ 4Z. If the partition function is positive on the
square torus (true if reflection-positive), then c− ∈ 8Z.10

Note that a (2+1)d bulk gravitational Chern-Simons action can cancel the global gravita-
tional anomaly if c− ∈ 8Z, which is guaranteed for reflection-positive CFTs. If not reflection-
positive and c− 6∈ 8Z, then the global gravitational anomaly is consistent but more exotic. The
holomorphic bc ghost system realizes c− ∈ −2+ 24Z.

2.3 Global U(1) anomaly

Consider a (1+1)d non-spin QFT with U(1) global symmetry on a genus-g Riemann surface
Σ. Let Ci for i = 1, · · · , 2g be a basis of non-contractable cycles on the Riemann surface Σ,
with intersection matrix Ω. The winding numbers of the gauge transformation λ are

~m[λ] =
1

2π

∫

~C
dλ . (2.43)

The locality condition 1.2 dictates that the anomalous phase takes the form

α[A,λ] = −
κ( ~m[λ])

4π

∫

Σ

dλA+
∑

i

κ′i( ~m[λ])

2π

∫

Σ

fi(λ) F + θ ( ~m[λ]) , (2.44)

10The condition c− ∈ 2Z was also found in the classification of (2+1)d non-spin invertible topological orders
by BF categories [41]. There is no known non-spin invertible topological order that realizes the minimal chiral
central charge c− = ±2. We thank Xiao-Gang Wen for pointing this out to us.
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where fi is a basis of periodic functions,

fi(λ+ 2π) = fi(λ) , (2.45)

and κ, κ′i , θ are functions that satisfy

κ(0) = κF2 , θ (0) = 0 . (2.46)

Let us focus on background gauge orbits that are flat, so that κ′i does not appear. Con-
sider two large background gauge transformations λ1 and λ2 with nontrivial windings. For
shorthand, we write

~m1 ≡ ~m[λ1] , ~m2 ≡ ~m[λ2] , ~m12 ≡ ~m[λ1 +λ2] = ~m1 + ~m2 . (2.47)

The fWZ consistency condition 1.1 requires that
�

−
κ( ~m12)

4π

∫

Σ

d(λ1 +λ2)A+ θ ( ~m12)

�

−
�

κ( ~m2)
4π

∫

Σ

dλ2(A+ dλ2) + θ ( ~m2)

�

−
�

κ( ~m1)
4π

∫

Σ

dλ1 A+ θ ( ~m1)

�

≡ 0 mod 2π .

(2.48)

The above can be reorganized into

[−πκ( ~m2) ~m1 ·Ω · ~m2 + θ ( ~m12)− θ ( ~m1)− θ ( ~m2)]−
�

κ( ~m12)− κ( ~m1)
4π

∫

Σ

dλ1 A

�

−
�

κ( ~m12)− κ( ~m2)
4π

∫

Σ

dλ2 A

�

≡ 0 mod 2π ,

(2.49)

where we used
1

4π2

∫

Σ

dλ1dλ2 = ~m1 ·Ω · ~m2 . (2.50)

Because A is an arbitrary flat connection and λ1, λ2 are independent and arbitrary, the coeffi-
cients in second and third brackets must separately vanish. Hence,

κ( ~m[λ]) = κ(0) = κF2 (2.51)

is a constant.
We left with

−πκF2 ~m1 ·Ω · ~m2 + θ ( ~m12)− θ ( ~m1)− θ ( ~m2)≡ 0 mod 2π . (2.52)

For concreteness, let Σ be a torus, and choose a basis of cycles Ci with intersection matrix

Ω=

�

0 1
−1 0

�

. (2.53)

With
~m1 = (1,0) ~m2 = (−1, 0) , (2.54)

and separately
~m1 = (0,1) , ~m2 = (0,−1) , (2.55)

together with (2.46), we find

θ (1,0) + θ (−1, 0)≡ θ (0,1) + θ (0,−1)≡ 0 mod 2π . (2.56)
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With
~m1 = (m− 1, n) , ~m2 = (1,0) , (2.57)

and separately
~m1 = (m, n− 1) , ~m2 = (0,1) , (2.58)

we find recurrence relations on θ (m, n) for (m, n) in the first quadrant,

θ (m, n)≡ θ (m− 1, n) + θ (1, 0)−πκF2 n mod 2π ,

θ (m, n)≡ θ (m, n− 1) + θ (0,1) +πκF2 m mod 2π .
(2.59)

Similarly, there are recurrence relations for (m, n) in the three other quadrants. The solution
in all quadrants is

θ (m, n) = θ (1,0)m+ θ (0,1)n−πκF2 mn . (2.60)

Plugging this solution back into (2.52), we find the quantization condition

κF2 ∈ Z . (2.61)

The quantization condition (2.61) is weaker than the quantization condition (2.13) expected
from the inflow of (2+1)d bulk U(1) Chern-Simons.

Mixing with the modular transforms

Let Pm,n denote a background U(1) gauge transformation with winding numbers (m, n). From
the fWZ consistency condition 1.1 for the relations

P1,0 S = S P0,1 , T P1,0 = P1,1 T , (2.62)

one deduces
θ (1, 0) = θ (0,1) = πκF2 . (2.63)

Quantization of the level

In CFT, the anomaly coefficient and the level are related by κF2 = k−.

Lesson 2.2. The level k− of a U(1) current algebra in a non-spin CFT must satisfy k− ∈ Z if the
flavored torus partition function does not vanish identically over all moduli of the torus and all
flat gauge backgrounds.

Note that a (2+1)d bulk U(1) Chern-Simons action can cancel the anomaly if k− is even.
The holomorphic bc ghost system realizes k− = 1.

3 Mixed U(1)-gravitational anomaly

This section examines the mixed U(1)-gravitational anomaly a (1+1)d non-spin QFT. In the
first part of this section, we characterize the mixed gravitational anomaly by descent and in-
flow, examine the possibility of a covariant improvement, and study the imprint of the anomaly
on local operator products in CFT. In the second part, we study the mixed gravitational anomaly
from the perspective of topological defects, and show that the mixed gravitational anomaly
gives rise to an isotopy anomaly.

3.1 Perturbative mixed U(1)-gravitational anomaly

In the following, A and F denote the U(1) connection and field strength, and ω denotes the
spin connection, with R its field strength. We use a, b, . . . to denote frame indices.
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Descent equations

The mixed gravitational anomaly is described by the anomaly polynomial,

I(4) =
κFR

(2π)2
F ∧

�

εabRba

�

. (3.1)

The descent 3-form is11

I(3) = 1
(2π)2

�κFR

2
A∧ εabRba +

κFR

2
F ∧ εabωba + sd

�

A∧ εabωba

�

�

, (3.2)

where the ambiguity s is related to the freedom of adding the Bardeen counter-term

SB = −
is′

2π

∫

A∧
�

εabωba

�

. (3.3)

Its addition to the action shifts the ambiguity s to s+ s′. The anomalous phases are

Aλ =
1

2π

�κFR

2
− s
�

∫

M2

λεabRba , Aθ =
1

2π

�κFR

2
+ s
�

∫

M2

θ abεbaF , Aξ = 0 . (3.4)

Inflow mechanism

Can the mixed gravitational anomaly of a (1+1)d non-spin QFT be canceled by coupling to a
(2+1)d classical action? When the (2+1)d spacetime is a product manifoldM3 =M2×[0,∞),
one could consider the (2+1)d classical action of the renowned Wen-Zee topological term
[33, 34] relevant for the Hall viscosity in non-relativistic quantum Hall systems (see [42–44]
for the connection)

ikFR

16π

∫

M2×[0,∞)
εabωab ∧ F , (3.5)

where M2 is the spatial manifold, and the anomaly coefficient kFR is also called the spin vec-
tor.12 The above inflow action explicitly breaks (2+1)d Lorentz invariance, and thus requires
non-relativistic geometry to generalize to non-product manifolds.

We propose a slightly different inflow mechanism that preserves (2+1)d Lorentz invari-
ance. Consider the mixed Chern-Simons term

ikFR

4π

∫

M3

A∧ FR , (3.6)

where M3 is a three-dimensional manifold whose boundary is M2, and FR = dAR is the field
strength of a background SO(2) gauge field on M3. The matching condition at ∂M3 =M2
is such that the normal component of AR vanishes, and the tangent components of AR are
identified with the boundary (1+1)d spin connection by

AR

�

�

M2
=

1
ζ
εabωba , (3.7)

with a proportionality constant ζ to be fixed by flux quantization. The flux of εabωba can be
computed as

∫

M2

εabRba = −
∫

M2

d2 x
p

gR= −4πχ . (3.8)

11The descent equation I(4) = dI(3) is insensitive to the addition of exact terms (total derivatives).
12We thank Xiao-Gang Wen and Juven Wang for bringing our attention to [33] and [34].
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Depending on whether the theory is defined only on orientable Riemann surfaces, for instance
when there is no time-reversal symmetry, or on general Riemann surfaces, the Euler charac-
teristic is quantized as χ ∈ 2Z or χ ∈ Z, respectively. Hence, flux quantization determines

ζ=

¨

4 M2 orientable ,

2 M2 general .
(3.9)

To cancel the mixed gravitational anomaly of the (1+1)d QFT, the Chern-Simons level is chosen
to be

kFR = 2ζκFR . (3.10)

The quantization condition for the Chern-Simons level is

kFR ∈ 2Z (3.11)

translates to a quantization condition on the mixed gravitational anomaly coefficient

κFR ∈

¨

1
4Z M2 orientable ,
1
2Z M2 general .

(3.12)

We will see in Section 4 that the holomorphic bc ghost system realizes κFR ∈
1
4 +

1
2Z. It is in

principle possible to derive a quantization condition on κFR from fWZ alone without the need
of inflow. However, to probe κFR requires considering curved Riemann surfaces and is beyond
the scope of this paper.

Bardeen-Zumino counter-terms

By adding a mixed Bardeen-Zumino counter-term Smixed
BZ which we construct in Appendix A.2,

the anomalous phase Aθ under frame rotations can be completely canceled, while generating
an extra contribution to the anomalous phase A′

ξ
under diffeomorphisms. In summary, the

new anomalous phases are

A′θ =Aθ + iδθSmixed
BZ = 0 ,

A′ξ = iδξS
mixed
BZ =

1
2π

�κFR

2
+ s
�

∫

M2

∂µξ
νd(εµνA) ,

A′λ =Aλ + iδλSmixed
BZ =

1
2π

∫

M2

λ
h

κFRε
abRba −

�κFR

2
+ s
�

d(ενµΓ
µ
ν)
i

.

(3.13)

Anomalous conservation and covariant improvement

The anomalous phases (3.13) give the non-covariant anomalous conservation equations for
the consistent currents,

〈∇µTµν(x)〉= −
2πi
p

g

δA′
ξ
[e, A,ξ]

δξν
= i
�κFR

2
+ s
� 1
p

g
gνλ∂µ

�p
gερσ∂ρ(ε

µ
λAσ)

�

,

〈∇µJµ(x)〉= −
2π
p

g

δA′
λ
[e, A,λ]

δλ(x)
= κFRR+

�κFR

2
+ s
�

∇ρ(ερσενµΓµνσ) .

(3.14)

The conservation of U(1) can be covariantized by improving the consistent current Jµ with
Bardeen-Zumino currents, which are terms that depend only on the background fields and
vanish when Aµ = 0 and gµν = δµν. More precisely, the improved current is

J µ = Jµ − (
κFR

2
+ s)εµνερσΓ

σ
ρν , (3.15)
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which has a covariant form of the anomalous conservation equation

〈∇µJµ(x)〉= −
κF2

4
εµνFµν +κFRR . (3.16)

However, by an explicit computation in Appendix B, we show that no covariant improvement
of the stress tensor exists.

Operator product in CFT

In flat space CFT, the two-point functions between the U(1) current Jµ and the stress tensor
Tµν must take the form

〈Tzz(z)Jz(0)〉=
α

z3
, 〈Tz̄z̄(z̄)Jz̄(0)〉=

ᾱ

z̄3
, (3.17)

which imply the commutation relations13

[Lm, Jn] = −nJm+n +
m(m+ 1)

2
αδm+n , [ L̄m, J̄n] = −nJ̄m+n +

m(m+ 1)
2

ᾱδm+n . (3.18)

One also has the contact terms

〈Tzz(z, z̄)Jz̄(0)〉= 2πβ∂ δ(2)(z, z̄) , 〈Tz̄z̄(z, z̄)Jz(0)〉= 2πβ̄∂̄ δ(2)(z, z̄) ,

〈Tzz̄(z, z̄)Jz̄(0)〉= 2πγ∂̄ δ(2)(z, z̄) , 〈Tzz̄(z, z̄)Jz(0)〉= 2πγ̄∂ δ(2)(z, z̄) .
(3.19)

Matching the above with the anomalous Ward identities implied by the anomalous conser-
vation equations (3.14), we arrive at the relations

α+ 2β = 4(
κFR

2
− s) , ᾱ+ 2β̄ = 4(

κFR

2
− s) , γ+ γ̄= −2(

κFR

2
− s) ,

β + γ= −(
κFR

2
+ s) , β̄ + γ̄= −(

κFR

2
+ s) ,

α+ 2γ̄= 2(
κFR

2
+ s) , ᾱ+ 2γ= 2(

κFR

2
+ s) .

(3.20)

In particular,
α+ ᾱ= 4κFR (3.21)

is insensitive to the coefficient s of the Bardeen counter-term.
When α or ᾱ is nonzero, the operator Jz or Jz̄ is not a Virasoro primary operator, respec-

tively. In a compact reflection-positive CFT, an operator must be either primary or descendent
(see for example [40]). Therefore, there must exist an operator O of dimension (h, h̄) = (0, 0)
such that L−1O = Jz or L̄−1O = Jz̄ . However, in a compact reflection-positive CFT, the only
dimension zero operator is the identity which is annihilated by the Virasoro generators L−1
and L̄−1. We have learned the following.

Lesson 3.1. A (1+1)d CFT with mixed U(1)-gravitational anomaly cannot be compact and
reflection-positive.

13In particular, [L0, J0] = α. In the vertex operator algebra (VOA) language, [L1, J(0)] 6= 0 means that the VOA
is “not of strong CFT type”. For a strongly rational holomorphic VOA (which requires it to be of strong CFT type),
it was proven by [45] that the central charge must be a multiple of 8.
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C D C′

Figure 2: Deforming a symmetry defect line from the curve C across the domain D
to the new curve C′.

3.2 Topological defects and isotopy anomaly

An invertible topological defect line (TDL) can be constructed from a covariant current Jµ that
is conserved up to covariant anomalies,

Lη(C) = : exp

�

iη

∮

C
ds nµJ µ

�

: , (3.22)

where nµ is the normal vector to the curve C. The defect is topological up to an isotopy
anomaly: When the curve C is deformed across a domain D, as shown in Figure 2, the defect
Lη is modified by a phase factor determined by the divergence theorem,

: exp

�

iη

∮

∂D
ds nµJ µ

�

: = : exp

�

iη

∫

D
d2 x
p

g∇µJ µ

�

: = exp

�

iηκFR

∫

D
d2 x
p

gR

�

. (3.23)

The isotopy anomaly generalizes the mixed gravitational anomaly to discrete groups and non-
invertible topological defects [46]. For discrete groups, there is no analog of Lesson 3.1. In
particular, an anomalous Z2 symmetry defect line in compact reflection-positive CFTs has iso-
topy anomaly. Note that a defect line defined using the consistent current Jµ is not topological.
Even on flat space, its anomalous conservation depends on the choice of coordinate system.
The consistent and covariant currents agree only in Cartesian coordinates on flat space.

Isotopy anomaly as contact term

On flat space, the isotopy anomaly can be detected by the contact terms in the OPE between
the stress tensor and the symmetry defect Lη. Using the two-point functions (3.17) and (3.19),
we find

〈Tzz(z, z̄)Lη〉= η
�

:

∮

C

� α

(z −w)3
dw− 2πβ∂zδ

(2)(z −w, z̄ − w̄)dw̄
�

Lη :

�

= −iπ(α+ 2β)η∂ 2
z θ (z ∈ D)〈Lη〉 ,

(3.24)

where we have assumed that TDL Lη is located on the boundary of a compact region D, i.e.
C = ∂ D. Similarly, we also have

〈Tz̄z̄(z, z̄)Lη〉= −iπ(ᾱ+ 2β̄)α∂ 2
z̄ θ (z ∈ D)〈Lη〉 ,

〈Tzz̄(z, z̄)Lη〉= −2πi(γ+ γ̄)α∂z∂z̄θ (z ∈ D)〈Lη〉 .
(3.25)
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3.3 Periodicity anomaly

On flat space, for every each η ∈ Z, the defect Lη commutes with all local operators and is
therefore identified with the trivial line, reflecting the periodicity of U(1). On curved space,
this family of lines differ by their isotopy anomaly, and the periodicity of U(1) is ruined.14 A
remedy is to modify the topological defect by a local improvement term15

eLη(C) = Lη(C)exp

�

−iηκFR

∮

C
ds K

�

, (3.26)

such that the isotopy anomaly is precisely canceled via the Gauss-Bonnet theorem. However,
only when κFR ∈

Z
2 does this fully restore the periodicity of U(1). Otherwise, the distinction

between eLη=0 and eLη=1 can be detected by the loop expectation value on the plane,16

〈 eLη(C)〉R2 = exp [−4πiηκFR] . (3.28)

The phase signals a periodicity anomaly, analogous to the orientation reversal anomaly
of a Z2 symmetry defect line [46]. There, if one insists on cancelling the isotopy anomaly
of the anomalous Z2 symmetry defect line, then orientation reversal (which represents the
group inverse operation) turns the Z2 symmetry defect line into one with a different extrinsic
curvature improvement term. Here, the action of η→ η+ 1 changes the extrinsic curvature
improvement term. If the quantization condition κFR ∈

Z
4 in (3.12) obtained from inflow

considerations is universally true, then the anomalous phase in (3.26) is at most a sign.
Let us compare the merits of Lη and eLη. If the mixed gravitational anomaly is such that

κFR ∈
Z
2 , then eLη implements the same U(1) symmetry action as Lη (without periodicity

anomaly) on flat space, and is free of isotopy anomaly on curved manifolds, unlike Lη. Hence
eLη is in all respects better than Lη. However, if κFR 6∈

Z
2 , then we are faced with a dilemma.

Lesson 3.2. If the mixed gravitational anomaly is such that κFR 6∈
Z
2 , then

1. The topological defect line Lη has no periodicity anomaly on flat space, but has isotopy
anomaly on curved background.

2. The topological defect line eLη has periodicity anomaly on flat space, but is free from isotopy
anomaly on curved background.

4 Holomorphic bc ghost system

The anomalies of the previous sections will now find life in a specific theory — the holomorphic
bc ghost system, which is a CFT of anti-commuting complex free fields b and c, with weights

hb = λ , hc = 1− λ (4.1)

and OPE

b(z)c(0)∼
1
z

. (4.2)

14In particular, a point of localized curvature can carry an arbitrary real amount of charge.
15In [46], this term was called an extrinsic curvature “counter-term” by the present authors. However, from a

purely (1+1)d point of view, it is more appropriately regarded as an improvement term for a defect operator.
16The loop expectation value of a TDL L on the plane was denoted by R(L) in [46]. If C is the unit circle on flat

space, then
∮

C
ds K = 4π . (3.27)
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The stress tensor and the U(1) current for the ghost number symmetry that assigns charges
±1 to c and b are

Tzz = (1− λ) : (∂ b)c : −λ : b∂ c : , Jz =: bc : . (4.3)

The anomalies coefficients, computed from the T T , j j, and T j OPEs, are

c− = κR2 = 1− 3(2λ− 1)2 , k− = κF2 = 1 , κFR =
2λ− 1

4
. (4.4)

To be a non-spin CFT, the spins of b and c must be integers, hence

λ ∈ Z . (4.5)

The U(1) anomaly coefficient κ2
F is not an even integer, so it cannot be canceled by a bulk

(2+1)d U(1) Chern-Simons. Likewise, the gravitational anomaly coefficient κR2 ∈ 8Z−2 is an
even integer but not a multiple of eight. Hence, the gravitational anomaly cannot be canceled
by a bulk (2+1)d gravitational Chern-Simons. They do, however, satisfy and saturate the
quantization conditions derived form the finite Wess-Zumino consistency conditions.

Torus one-point function of the ghost number current

Let us consider the holomorphic bc ghost system on a flat torus with complex moduli τ, with
periodic boundary conditions around both the space and Euclidean time cycles. The torus
partition function vanishes due to the zero modes of the b and c fields. Consider instead the
torus one-point function of the current Jz ,

G(τ, τ̄) = 〈Jz(0)〉T2
τ
= η(τ)2. (4.6)

Under modular S and T transformations, the anomalous phases are

θS =
3π
2

, θT =
π

6
, (4.7)

which satisfy the quantization condition (2.40) for `= 1.

Flavored torus partition function

Consider a flat torus with metric17

ds2 = (dσ1)2 + (dσ2)2 , σ1 ∼= σ1 + 2πZ , σ2 ∼= σ2 + 2πZ , (4.8)

where τ= τ1+ iτ2 is the complex moduli, and let us compute the partition function of the bc
system on this torus with constant background gauge field

A= A1dσ1 + A2dσ2 . (4.9)

A natural thing to evaluate is the trace

ZH(τ, z) = Tr
�

qL0−
c

24 e2πi(z− 1
2 )J0
�

=
θ1(τ|z)
η(τ)

, (4.10)

where the chemical potential z is related to the constant background gauge field A by

z = −iτ2(A1 + iA2) . (4.11)

17This is a different coordinate system from (2.24).
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However, ZH(τ, z) does not satisfy the transformation law (1.1). The resolution is an extra term
B that comes from carefully taking the Legendre transformation that relates the Lagrangian to
the Hamiltonian [47,48], resulting in

Z(τ, τ̄, z, z̄) = ZH(τ, z) eπB(τ,τ̄,z,z̄) . (4.12)

The function B a quadratic function in z and z̄ (by nature of the Legendre transform), that
vanishes when A1 = 0, and transforms under SL(2,Z) as

B
�

aτ+ b
cτ+ d

,
aτ̄+ b
cτ̄+ d

,
z

cτ+ d
,

z̄
cτ̄+ d

�

= B(τ, τ̄, z, z̄)−
icz2

cτ+ d
, (4.13)

so that the flavored partition function Z(τ, τ̄, z, z̄) is invariant under SL(2,Z) up to anomalous
phases. It is fixed to be

B(τ, τ̄, z, z̄) =
z(z − z̄)

2τ2
. (4.14)

Under the modular S and T transformations, the flavored partition function transforms as

Z(τ+ 1, τ̄+ 1, z, z̄) = e
πi
6 Z(τ, τ̄, z, z̄) ,

Z
�

−
1
τ

,−
1
τ̄

,
z
τ

,
z̄
τ

�

= e
3πi
2 Z(τ, τ̄, z, z̄) ,

(4.15)

which agrees with the anomalous phases (4.7). Under a large gauge transformation

A→ A+ dλ, λ= m
�

σ1 −
τ1

τ2
σ2

�

+ n
σ2

τ2
, (4.16)

the flavored partition function transforms as

Z(τ, τ̄, A+ dλ) = Z(τ, τ̄, A)exp [−πi(mτ2A2 − (n−mτ1)A1)− (mn+m+ n)πi]

= Z(τ, τ̄, A)exp

�

−
i

4π

∫

dλA− (mn+m+ n)πi

�

,
(4.17)

which also agrees with (2.44) with κF2 = 1.

5 On the “embedding” of anomalies of finite subgroups

For a U(1) internal symmetry (quantized such that the local operators span integer charges),
the quantization of the pure anomaly coefficient κF2 ∈ Z as opposed to κF2 ∈ 2Z makes the
mapping of the anomaly to discrete subgroups subtle and confusing. When κF2 ∈ 2Z, the ZN
subgroup of the U(1) has anomaly

κF2

2
mod N ∈ H3(ZN ,U(1)) . (5.1)

However, when κF2 ∈ 2Z+ 1, the anomaly of the ZN subgroup does not fall into the classifi-
cation by the above group cohomology.

In order to resolve this puzzle, we need to first discuss certain subtleties pertaining to the
winding number of background gauge transformations. Consider the winding number asso-
ciated to a non-contractible cycle of the spacetime manifold, parametrized by the coordinate
x ∼= x + 2π. The formula (2.43) for the winding number can be rewritten as

m[g] =
1

2πi

∫ 2π

0

g(x)−1 g ′(x)d x , (5.2)
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where g(x) = eiλ(x) is a G-valued function, and g ′(x) is the x-derivative of g(x). For simplic-
ity, we only explicitly write out the x-dependence. When g(x) has discontinuities, both the
integrand g(x)−1 g ′(x) and the winding number are ill-defined. [new:] With this in mind, let
us now discuss background ZN and U(1) gauge transformations.

• ZN : For a nontrivial background ZN gauge transformation, g(x) always has disconti-
nuities, so the winding number is ill-defined. Consider the example of a background Z3
gauge transformation on a torus given by18

g(x) =



















1 0≤ x < x1 ,

e
2πi
3 x1 ≤ x < x2 ,

e
4πi
3 x2 ≤ x < x3 ,

1 x3 ≤ x < 2π ,

(5.3)

where x ∼= x+2π is the coordinate parametrizing the spatial circle, and the Z3 elements
are represented by {1, e

2πi
3 , e

4πi
3 }. While it is already clear that the integral (5.2) does

not have a well-defined evaluation on (5.3), this problem can be elucidated further. We
can rewrite (5.3) as g(x) = eiλ(x) where

λ(n1,n2,n3)(x) = 2π
��

1
3
+ n1

�

θ (x − x1) +
�

1
3
+ n2

�

θ (x − x2)

+
�

1
3
+ n3

�

θ (x − x3)
�

,
(5.4)

with ni ∈ Z arbitrary. If we evaluate the winding number using (2.43), we find that the
background gauge transformation (5.4) has non-unique winding number n1+n2+n3+1
depending on the choice of (n1, n2, n3).

• U(1) : For U(1), the winding number integral (5.2) is only well-defined for continuous
background gauge transformations. For a piecewise continuous background U(1) gauge
transformation such as (5.3), it is possible to render the winding number integral well-
defined by deforming the discontinuity, but as we presently explain, the deformation
requires extra information. One can always find a one-parameter continuous family of
continuous functions Fg = {gξ(x) |ξ ∈ [0,
∞)} that converge to the piecewise continuous function g(x) in the ξ→∞ limit. The
winding number is the same for all the functions in the family Fg , since the winding
number integral is invariant under continuous deformations. But there can be families
with different winding numbers that converge to the same piecewise continuous function
g(x). Hence, instead of defining the background U(1) gauge transformation by merely
the function g(x), we must define it by a pair (g,Fg) up to an equivalence relation:
(g,Fg)∼= (g,F ′g) if Fg and F ′g are homotopic.19 In particular, the winding number of g
alone is ambiguous, and becomes well-defined only if we specify the pair (g,Fg). Let us
illustrate this point in the example (5.3), which can be regarded as a background U(1)
gauge transformation. Consider the family

Fg,(n1,n2,n3) =
�

gξ,(n1,n2,n3)(x) = exp
�

iλξ,(n1,n2,n3)(x)
�

|ξ ∈ [0,∞)
	

,

λξ,(n1,n2,n3)(x) = 2π
3
∑

i=1

�

1
3
+ ni

�

(2π− x i)ξxξ

(2π− x i)ξxξ + (2π− x)ξxξi
,

(5.5)

where ni ∈ Z. Since in the ξ → ∞ limit, λξ,(n1,n2,n3)(x) converges to (5.4), the pair
(g,Fg,(n1,n2,n3)) has winding number n1 + n2 + n3 + 1.

18The background Z3 gauge transformation acts on a charge q scalar field φ(x) by φ(x)→ g(x)qφ(x).
19If g(x) is continuous, Fg could be simply chosen to be {gξ(x) = g(x) |ξ ∈ [0,∞)}.

20

https://scipost.org
https://scipost.org/SciPostPhys.10.5.119


SciPost Phys. 10, 119 (2021)

Having understood the subtle issues concerning the winding number, let us discuss the
“embedding" of background ZN gauge transformations into background U(1) gauge transfor-
mations. Given a function gZN

: M2 → ZN , there is a corresponding piecewise continuous
function gU(1) = ι◦ gZN

: M2→ U(1) induced by the embedding ι : ZN ,→ U(1). As explained,
one must further supplement gU(1) with a choice of family FgU(1)

. In fact, some choices may
be in conflict with the fusion rule of the ZN symmetry defect lines, as we presently illustrate.
Let us go back to our previous example of the background Z3 gauge transformation (5.3).
Applying it on the trivial background (the trivial bundle with trivial transition functions) gives
a background Z3 gauge field configuration that corresponds to three identical and parallel Z3
symmetry defect lines wrapping the temporal circle of the torus.20 Suppose we embed it as a
background U(1) gauge transformation, by choosing a family Fg,(n1,n2,n3) given by (5.5). If we
take the fusion limit x2, x3→ x1, the background U(1) gauge transformation (g,Fg,(n1,n2,n3))
is trivial only if the winding number n1 + n2 + n3 + 1 is zero, in contrast to the fact that three
identical ZN symmetry defect lines, without embedding in U(1), fuse to the trivial line. In
particular, when the anomaly coefficient κF2 is odd, the pure U(1) anomaly of (g,Fg,(n1,n2,n3))
is sensitive to the winding number, which is simply not captured within the structure of back-
ground Z3 gauge transformations.

6 Concluding remarks

Starting with the finite Wess-Zumino consistency condition (1.3), we derived quantization
conditions on the pure gravitational and U(1) anomaly coefficients κR2 and κF2 in (1+1)d
non-spin quantum field theory. The quantization conditions turned out to be weaker than
those predicted by the inflow of properly quantized classical Chern-Simons actions. We also
examined the mixed U(1)-gravitational anomaly, proposed an inflow mechanism, and from
inflow derived a quantization condition on κFR. It may be possible to derive a quantization
condition on κFR from the finite Wess-Zumino consistency alone without invoking inflow, but
this requires going beyond the flat torus background to e.g. a genus-two Riemann surface,
and is beyond the scope of this paper. The quantization conditions are summarized in Ta-
ble 1. A survey of the holomorphic bc ghost system found the theory to realize the minimal
quantization condition for all three anomalies.

Table 1: Quantization of anomaly coefficients predicted by inflow of classical Chern-
Simons actions versus the finite Wess-Zumino consistency condition (1.3).

Inflow fWZ
κR2 = c− 8Z 2Z
κF2 = k− 2Z Z
κFR

1
4Z ?

We called an anomaly exotic if the corresponding anomaly coefficient

κR2 6∈ 8Z , κF2 6∈ 2Z , κFR 6= 0 , (6.1)

and proved that certain exotic anomalies cannot be realized in any compact reflection-positive
non-spin conformal field theory. The lack of reflective-positivity is no reason to dismiss these
exotic anomalies.21 Besides the central role Faddeev-Popov ghosts play in gauge theories, ghost

20There is a one-to-one correspondence between the background ZN gauge field configurations and the config-
urations of ZN symmetry defect lines [30,31].

21Lattice models at criticality need not be reflection-positive. Non-reflection-positive CFTs are known to be

21

https://scipost.org
https://scipost.org/SciPostPhys.10.5.119


SciPost Phys. 10, 119 (2021)

fields also appear in interesting holographic contexts, including a purported holographic dual
of dS4 higher spin gravity [52–54], and supergroup gauge theories [55–57].

The mixed gravitational anomaly discussed in Section 3 has a natural even D-dimensional
generalization, described by an anomalous phase Aλ that involves the D-dimensional Euler
form ED,

Aλ = κFR

∫

MD

λ ED, ED =
1

(2π)
D
2

εa1,··· ,aD Ra1a2
∧ · · · ∧ RaD−1aD

, (6.2)

where we ignored the ambiguity from the Bardeen counter-terms. An inflow mechanism of
this anomaly involves a mixed classical Chern-Simons action of a background U(1) gauge field
and a background SO(D) gauge field that matches with the D-dimensional spin-connection by
a boundary matching condition analogous to (3.7).22 On product manifolds MD×[0, 1)with a
distinguished time direction, a higher-dimensional generalization of the Wen-Zee topological
term [33, 34] can also provide the inflow. Further study of the higher-dimensional mixed
gravitational anomaly is left for future work.
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A Bardeen-Zumino counter-terms

In this appendix, we review the pure Bardeen-Zumino counter-term of [37], and construct a
mixed Bardeen-Zumino counter-term for the mixed U(1)-gravitational anomaly of Section 3.

A.1 Pure gravitational

Let us treat the vielbein ea
µ as a matrix and denote it by E. The two-dimensional pure Bardeen-

Zumino term is

SBZ = −
i

2π

∫

M2

∫ 1

0

d t
κR2

48
tr (HdΓt) = −

i
2π

∫

M2

∫ 1

0

dτ
κR2

48
tr (Hdωτ) , (A.1)

where the H is
E = eH , (A.2)

and the Γt and the ωt are defined by

Γt = E tΓ E−t + E t dE−t = E−1+tωE1−t + E−1+t dE1−t =ωτ , (A.3)

where τ= 1− t. The matrix valued Christoffel one-form Γ and spin connection ω are defined
by

Γµν ≡ Γµνρd xρ , ωa
b ≡ωa

bµd xµ . (A.4)

important landmarks in RG space that in fact influence reflection-positive RG flows [49,50]. Quantum field theory
realizing non-integer “O(N)” symmetry is necessarily non-reflection-positive [51].

22This inflow mechanism suggests that the classification of anomalies in non-reflection-positive quantum field
theory requires unstable homotopy theory. We thank the anonymous referee for this comment.
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In the matrix notation, diffeomorphisms and local frame rotations act on the viebein E, Christof-
fel one-form Γ , and spin connection ω as

δξE = (Lξ + TΛ)E , δξΓ = (Lξ + TΛ)Γ ,

TΛE ≡ EΛ , TΛΓ ≡ dΛ+ [Γ ,Λ] ,

δθ E = −θ E , δθω= dθ + [ω,θ] ,
(A.5)

where Lξ is the Lie derivative.23 The gauge parameter Λ is related to the diffeomorphism
parameter ξ by

Λρµ = ∂µξ
ρ. (A.7)

The Γt transforms under TΛ as

TΛΓt = dΛt + [Γt ,Λt]≡ TΛt
Γt , Λt ≡ E tΛE−t + E t(TΛE−t) . (A.8)

We also have the identities
∂Λt

∂ t
= [H,Λt]− TΛH ,

∂ Γt
∂ t
= −dH + [H, Γt] .

(A.9)

Using the above, we compute the diffeomorprhism variation of the Bardeen-Zumino action to
be

δξSBZ = −
i

2π

∫

M2

κR2

48
tr (ΛdΓ ) . (A.10)

By a similar computation, we find

δθSBZ =
i

2π

∫

M2

κR2

48
tr (θdω) . (A.11)

Hence, adding the Bardeen-Zumino counter-term SBZ to the effective action W [e, A], we cancel
the pure frame rotation anomaly, i.e. Aθ in (2.8), while introducing a pure diffeomorphism
anomaly (2.17).

A.2 Mixed gravitational

We introduce a mixed Bardeen-Zumino action

Smixed
BZ = −

i
2π

∫ 1

0

d t

∫

M2

�κFR

2
+ s
�

tr (Hd(EtA)) . (A.12)

The matrix Et is defined by
Et = E tEE−t , (A.13)

where the matrix E is the (1+1)d Levi-Civita tensor εµν. Note that the matrix E ≡ E1 is the
Levi-Civita symbol εa

b with local Lorentz indices. The Et transforms under TΛ as

TΛEt = [Et ,Λt] . (A.14)

23An useful identity between the Lie derivative Lξ, exterior derivative d and interior product ιξ is

Lξ = dιξ + ιξd. (A.6)
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We also have identity
∂ Et

∂ t
= HE tEE−t − E tEE−t H = [H,Et] . (A.15)

Using the above, we obtain the diffeomorprhism variation of the mixed Bardeen-Zumino action
to be

δξS
mixed
BZ = −

i
2π

∫

M2

�κFR

2
+ s
�

tr (Λd(EA)) . (A.16)

Similarly, we have the variation of the mixed Bardeen-Zumino term under local frame rota-
tions,

δθSmixed
BZ =

i
2π

∫

M2

�κFR

2
+ s
�

tr (θE )dA . (A.17)

To derive the variation of the mixed Bardeen-Zumino term under the background U(1) gauge
transformation, let us first rewrite the mixed Bardeen-Zumino term by integrating out the
auxiliary variable t in (A.12) as

Smixed
BZ = −

i
2π

∫

M2

�κFR

2
+ s
�

tr (ωE − ΓE)A. (A.18)

Under background U(1) gauge transformations, the mixed Bardeen-Zumino term becomes

δλSmixed
BZ = −

i
2π

∫

M2

�κFR

2
+ s
�

λtr (E dω− d(ΓE)) . (A.19)

B No covariant stress tensor for mixed anomaly

Let us examine the possibility of improving the stress tensor such that the mixed gravitational
anomaly becomes covariant. The most general improvement terms linear in derivatives and
linear in A come in two forms, ∂ A and ΓA. For the first form, it is clear that there are two
possibilities

∂ (µAν) , gµν∂ σAσ . (B.1)

For the second form, if A takes a µ,ν index, then we have

gρσΓµρσAν , gµρΓσρσAν , (B.2)

and if A takes a dummy index that is contracted, then we have

gµρΓ νρσAσ , gµρ gνσΓ τρσAτ , gµνΓρρσAσ , gµνgρσΓ τρσAτ . (B.3)

Hence, the most general improvement takes the form

Y µν2 = c1Γ
(µν)ρAρ + c2Γ

ρµνAρ + c3Γ
(µρσgρσAν) + c4 gρσΓ

ρσ(µAν)

+ c5 gµνΓσσρAρ + c6 gµνgσλΓ
ρσλAρ + c7 g(µρ gν)σ∂ρAσ + c8 gµνgρσ∂ρAσ .

(B.4)

The only possible covariant form of the conservation equation is

〈∇µT µν(x)〉 ⊃ ∇µFµν . (B.5)

Using the MathGR package [58], it is straightforward to evaluate ∇µY µν2 , ∇µFµν and the
consistent mixed gravitational anomaly in ∇µTµν in conformal gauge. The results can be
decomposed with respect to a basis (with the overall conformal factor e−4w stripped off)

(A∂ )w∂νw , Aν∂
2w , (A∂ )∂νw , ∂νw(∂ A) ,

(∂νAρ)∂ρw , ∂ν(∂ A) , ∂ρw∂ρAν , ∂ 2Aν ,
(B.6)
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where ∂ A= ∂ρAρ and A∂ = Aρ∂ρ. In this basis, the eight terms in ∇µY µν2 can be represented
by a coefficient matrix























2 −1 −1 −2 0 1
2 −1 1

2
4 0 −2 −2 −2 1 0 0
0 0 0 0 0 0 0 0
−2 1 1 1 0 0 1 0
−2 0 1 0 1 0 0 0
0 1 0 1 −1 0 1 0
−4 0 2 0 2 0 0 0
0 0 0 0 0 0 0 0























. (B.7)

The covariant anomaly ∇µFµν is represented by
�

0 0 0 0 −2 1 2 −1
�

, (B.8)

and the consistent anomaly in ∇µTµν is represented by
�

0 0 0 0 0 −1 0 1
�

. (B.9)

No combination of (B.8) with the rows of (B.7) produces (B.9). Hence, no covariant stress
tensor exists.
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