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Summary

When sample, X = x, is observed from intractable c.d.f. Fθ, or a Black-Box with input

θ, an Approximate Bayesian Computation (ABC) method provides approximate posterior,

πϵ. θ
∗ is included in the support of πϵ when the Matching distance ρ(S(x∗), S(x)) ≤ ϵ;x∗

is a sample drawn from Fθ∗ , θ
∗ is obtained from prior π, S is a summary statistic, ϵ >

0. ABC concerns include: the use of only one sample, x∗, for each θ∗; the choices of

S, ρ and ϵ; πϵ(θ
∗), which is determined by arbitrary kernel, K(x,x∗; ϵ), creating visual

πϵ-artifacts. The concerns are accommodated with the introduced Fiducial(F)-ABC for

all (θ∗ drawn): M x∗ are drawn from Fθ∗ ; a universal S is used, the empirical measure

indexed by sets which activate its sufficiency for exchangeable observations-vectors and

have been neglected; a strong, probability distance ρ is used, inherently connected with S

and Matching; light is thrown to ϵ’s nature and value; πϵ is obtained from the proportions

of x∗ matching x. F-ABC for all posterior is closer to Bayesian philosophy, which does

not use θ∗-exclusions. Under few, mild assumptions, πϵ converges to the posterior, π(θ|x),

when ϵ ↓ 0, and rates of concentration of T (Fθ∗) to T (Fθ) are obtained when n ↑ ∞;T is

a functional. Satisfactory F-ABC for all θ∗ drawn posteriors are depicted for parametric

and data generating models, including Tukey’s (a, b, g, h)-model, a 5-parameter normal

mixture and a time series model. Various advantages of the F-ABC for all are presented

over coarsened posteriors for observations in Rd, d ≥ 1.
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1 Introduction

In Bayesian inference, central theme is the posterior model, π(θ∗|x), of stochastic pa-

rameter Θ given the observed sample X = x; θ∗(∈ Θ) is observed from the Θ-prior, π. An

Approximate Bayesian Computation (ABC) method provides an approximate posterior for

Θ when the sample’s likelihood (the model) is intractable. Rubin (1984) described the first

ABC method for x with cumulative distribution function (c.d.f.) Fθ : one sample x∗ is

drawn for each of several θ∗-values and the θ∗ for which x∗ and x “match” within ϵ(> 0)

constitute Θ’s approximate posterior, with weights πϵ(θ
∗). Since then, tools from model-

based approaches are most often used to find “nearly sufficient” statistics for Matching

x∗ with x, surprisingly neglecting the empirical measure, µX, indexed by Borel sets which

are the ammunition to activate the sufficiency of µX for exchangeable observations in

Rd, d ≥ 1. The use of Borel sets will dictate the corresponding matching distance to be

used, as explained in section 3.

The basic ABC-rejection algorithm (Tavaré et al. 1997, Pritchard et al., 1999) includes

θ∗ in the support of the approximate posterior πϵ, when for tolerance level ϵ either

ρ(X∗,x) ≤ ϵ, or (1)

ρ(S(X∗), S(x)) ≤ ϵ; (2)

ρ is generic matching distance, S is a summary statistic.

ABC concerns are presented, which are accommodated with the Fiducial(F)-ABC for

all θ∗ drawn1 introduced herein: M(> 1) x∗-samples are observed for each θ∗ and their

proportion matching x is used to obtain πϵ(θ
∗), making the approach more fiducial (trust-

worthy) than ABC, where M = 1. F-ABC is algorithmic and can be used also for data

from a Black-Box with input θ, without resort to tools dictated by parametric models,

1In brief, F-ABC for all.
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adhering to the philosophy in Breiman (2001, Abstract) “If our goal as a field is to use

data to solve problems, then we need to move away from exclusive dependence on data

models and adopt a more diverse set of tools.”

ABC Concerns

Robert (2017) provided a survey on recent ABC results, identifying three approximations

causing concerns:

i) ABC degrades the data precision down to ϵ, replacing the event X = x with (1),

ii) ABC substitutes for the likelihood a non-parametric approximation,

iii) ABC summarizes x by an almost always insufficient S(x).

There are additional concerns and open questions in ABC:

a) The dimension and form of S, when the statistical nature of θ is unknown.

b) The choice of ρ, that is inherently related with S and Matching.

c) The choice of ϵ-value, ϵ’s missing sampling interpretation and components and its de-

pendence on the sample size n and the distance of Fθ and Fθ∗ .

d) The “hard” inclusion-exclusion of θ∗ in the support of πϵ using one sample x∗ from Fθ∗ .

e) The θ∗-weight K(x−x∗

ϵ
) used in πϵ, which often creates a K-dependent visual artifact2.

f) The numerous, not easily verifiable, strong assumptions used in asymptotics.

Potential logical inconsistencies in ABC are not clarified:

g) Is non-selected θ∗ included in the support of πϵ when it belongs in the convex hull of

the selected?

h) For discrete Θ and with θ∗ drawn e.g. twice, is θ∗ included in the support of πϵ if only

one of the simulated x∗
1,x

∗
2 matches x?

Affirmative answers to g), h) contradict the ABC-Algorithm in (1) and (2).

Concern iii) (Robert, 2017) confirms what was naturally expected: a plateau is finally

2Examples of smooth histograms’ artifacts appear in Figure 1.
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reached with the insistence on tools from the model-based approach, namely that a suffi-

cient statistic is a set of estimates, S, providing information about θ, even when θ’s sta-

tistical nature is unknown, Fθ is intractable and Neyman’s Factorisation Criterion (NFC)

cannot be used. Identifying S without NFC is like looking for a needle in a haystack. The

implications of iii), since Rubin’s ABC outset in 1984, confirm Breiman (2001): “This

commitment (to data models) has led to irrelevant theory, questionable conclusions, and

has kept statisticians from working on a large range of interesting current problems.”

Coarsened Approximate Posteriors and Additional Concerns

Concerns iii) and a) motivated recently new research directions in ABC, extending its

scope but remaining model-centered: I) it is assumed the underlying data model depends

in reality on parameter η ∈ H and belongs to FH, a larger class of models than FΘ =

{Fθ∗ , θ
∗ ∈ Θ}, and II) the search for sufficient summary is bypassed in favor of the empirical

distribution,

µ̂n = n−1

n∑
i=1

δXi
; (3)

δx∗ is Dirac distribution with mass on x∗(∈ Rd),X = {X1, . . . , Xn} (Miller and Dunson,

2019, Bernton et al., 2019). Note that, if δx∗ is Dirac distribution in the sense of Schwartz

(1951), it is not an ordinary function since it is defined either as limit of functions or by

its integral, and, e.g., δ2x is not defined (Schwartz, 1954). If δXi
were a Dirac measure,

according to Dudley (1984, 10.3.1, Theorem), µ̂n should be evaluated at the Borel sets, Bd,

in Rd, to activate its sufficiency and have a statistical interpretation, but it is not. Thus,

I) and II) led to a robust, coarsened (c) posterior (Miller and Dunson, 2019, Bernton et

al., 2019). However, robust approximate posteriors for FH may be sub-optimal for FΘ,

and the role of π(θ) in the H-posterior is not clear, since it is not necessary that Θ ⊂ H.

Also, FH-robust posteriors are not comparable with ABC posteriors for FΘ, as happens

with the mean and the median of observations. The latter is confirmed indirectly by

5



the authors, with adjective “coarsened” preceding “posterior”. Statements by these same

authors follow, creating additional concerns.

Miller and Dunson (2019) write: “The main disadvantage of c-posteriors is that some-

times are less concentrated than one would like ...”3 (in section 1), adding also that

ρ-distances on densities, as relative entropy, Hellinger distance and various divergences

“may be undefined for empirical distributions” (in section 3). Both statements and the

definition of µ̂n in (3), reinforce raising the question: what information µ̂n carries for θ, Fθ

and the underlying probability, Pθ, in Rd, d > 1?

A partial, indirect answer appeared in Bernton et al. (2019, Introduction, 2nd para-

graph), “We propose here to instead view data sets as empirical distributions 4 and to rely

on the Wasserstein (Wp) distance between synthetic and observed data sets.”, obtaining

the WABC c-posterior and “hoping5 to avoid the loss of information incurred by the use

of summary statistics” (section 1.3, first paragraph); p > 0. In section 3.2 the authors

write: “ ... the WABC distribution with a fixed ϵ does not converge to a Dirac mass,

contrarily to the standard posterior. As argued in Miller and Dunson (2018), this can have

some benefit in case of model misspecification: the WABC posterior is less sensitive to

perturbations of the data-generating process than the standard posterior.” This statement

reconfirms the coarsening of the WABC posterior and its difference from the posterior. In

the last paragraph of section 3.3, it is added: “In high dimensions, the rate of convergence

of the Wasserstein distance between empirical measures6 is known to be slow (Talagrand,

1994).” and “Detailed analysis of WABC’s dependence on dimension is an interesting av-

enue of future research.”7 In section 3, 2nd paragraph, it is written “We remark that the

3Confirms sub-optimality of c-posteriors.
4Thus, µ̂n is the data, X, which is sufficient only in R.
5Confirms potential loss of information with WABC.
6The relation between empirical distribution and empirical measure was not provided.
7Confirms lack of large sample optimality results for WABC in high dimension.
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assumptions underlying our results are typically hard to check in practice, ...”. According

to the authors, WABC is a c-posterior, thus we conclude, it shares its disadvantages.

Bernton et al. (2019) refer also to Fournier and Guillin (2015) and Weed and Bach

(2017), for the upper bounds on the risk, EWp(µ̂n, Pθ), and for concentration inequalities

when Pθ is defined either in Rd or on a compact metric space; µ̂n denotes in these papers the

empirical measure indexed by sets. However, these elegant and deep mathematical results

are not favorable to the use of (µ̂n,Wp) in ABC. The obtained bounds depend on p, d for

the concentration inequalities and, in addition, to coefficient(s) from moment conditions for

the risk bounds, but also on their relative orderings. In Weed and Bach (2017, Proposition

20), the Dvoretzky-Kiefer-Wolfowitz-Massart (D-K-W-M) rate, e−2nϵ2 , remains valid for

the probability that W p
p (µ̂n, Pθ) is larger than ϵ augmented by its expectation; ϵ > 0.

Compactness of Pθ’s support and the moment conditions needed do not appear in Miller

and Dunson (2019, assumptions in Theorem 5.3 and Corollaries 5.4 and 5.5) and in Bernton

et al. (2019, Assumptions 1 and 2). However, similar or stronger results already hold with

weaker assumptions for the empirical c.d.f., F̂X, and the empirical measure, µX, due to

Glivenko-Cantelli Theorem and Large Deviations’ inequalities.

Fiducial-ABC and Results

It is crystal clear that when θ’s statistical nature is unknown, information about θ is

obtained only from Fθ and Pθ, which become the parameters of interest. Main drawback of

µ̂n in (3) is the inadequate information it provides for Fθ and Pθ unlike F̂X and µX which

are both evaluated on Borel sets and have statistical interpretations. This information is

valuable when matching x and x∗. Consequently, πϵ’s coarsening near θ is also due to the

reduced discriminating information, combined with the use of weak W -distance in (1) and

(2).

The concerns led us to search for an alternative approach to ABC. i) and ii) seem
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unavoidable with intractable or unavailable continuous models. The previous paragraphs

motivated the use of {F̂X(x), x ∈ R} and {µX(A), A ∈ Bd}, since the latter is sufficient for

i.i.d. and exchangeable data in Rd, d ≥ 1; see, e.g., Dudley (1984) and Lauritzen (2007).

To match x with x∗, the Kolmogorov distance dK(F̂x, F̂x∗) is used when d = 1, and the

Total Variation distance, TV, can be used when d > 1. Thus, (F̂X, dK) and (µX, TV ) are

natural candidates for (S, ρ), relaxing iii), a), b). However, for d > 1, as explained in

section 3, Wolfowitz’s half-spaces, V , which separate probabilities and are invariant under

affine transformations and Vapnik-Cervonenkis subclass of Borel sets, Bd, provide strong

distance, ρ̃, used in applications. V separates probabilities since probability measures in

(Rd,Bd) are equal (“match”) if and only if they coincide on V . ρ̃(µX, µX∗) measures the

maximum “information loss” on the separating sets, V . It is also seen in section 5.1, that for

a Dirichlet prior, DP (α,G), on the models Fθ and Pθ, θ ∈ Θ, F̂X and µX are, respectively,

approximate posterior means when α ̸= 0, and posterior means when α = 0, one of the

desired properties for Summary statistics in ABC (Fernhead and Prangle, 2012).

The Conditional Calibration framework (Rubin, 2019) and an observation in several

models lead to Fiducial (F)-ABC matching with M x∗ drawn from Fθ∗ , making the ABC

approach more trustworthy; usually, 50 ≤ M ≤ 200. The matching support proportions of

x∗’s within the ϵ-tolerance, pmatch(θ
∗), provide πϵ(θ

∗), θ∗ ∈ Θ. pmatch(θ
∗) estimates the x∗-

matching support probability, α, of event (2) that provides ϵ’s sampling interpretation and

value; 0 ≤ α ≤ 1. The motivating observation was that for several Fθ∗-models, pmatch(θ
∗)

converges to 1 as θ∗ converges to θ. The use of pmatch(θ
∗), reduces ϵ’s “0-1” influence in the

θ∗-selection, and allows to avoid the use of a kernel, thus providing a remedy for c)-e) and g),

h). When M = 1, F-ABC is nonparametric ABC. The θ̂Match maximizing pmatch(s), s ∈ Θ,

is the Maximum Matching Support Probability Estimate (MMSPE, Yatracos, 2020). Its

uniform rate of convergence in probability to θ for observations in Rd, d ≥ 1, confirms the

high concentration of the F-ABC for all approximate posterior around θ, as observed in
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Examples.

In simulations from a normal model, nonparametric F-ABC used only for the selected

θ∗ in ABC with dK , competes well against parametric ABC with a kernel, and improves

most frequently the concentration of the ABC posterior. F-ABC for all posteriors are

then depicted for the means of a bivariate normal with dependent components and for

each parameter in Tukey’s (a, b, g, h)-model, a 5-parameters normal mixture, a time series

model and a quantile model. The “F-ABC for all” frequency histograms of posteriors are

obtained using pmatch(θ
∗) for all θ∗ drawn, and θ is most often in the modal neighborhood

of θ̂Match.

For the X∗-matching support probability, α, with ρ = dK and real observations, an

upper bound ϵn,B on ϵ = ϵn is determined; 0 < α < 1. ϵn,B has two additive components:

A) the observed or acceptable discrepancy between Fθ and the Fθ∗-models, and B) a

component determined by a confidence related to α. From section 5.2 and for observations

in R, the ϵ-value used in the Examples is in the interval [n−.5, 3n−.5] with the coefficient

in the upper bound, “3”, possibly increased when θ ∈ Rk, k ≥ 6; ϵ can be also determined

via α and the x∗-Sampler used (section 4.1). An interval for ϵ can also be obtained for

observations in Rd, d > 1, with an extension of Proposition 5.1 using either ρ̃(µX, µX∗)

or its approximation and, respectively, Vapnik-Cervonenkis inequality and concentration

inequalities with dK . Under exchangeability on Fθ(y), the ABC and F-ABC posteriors with

dK-matching converge to π(θ|x) when ϵ converges to zero; n is fixed. For a continuous

linear functional T on the space of c.d.fs, Bayesian consistency is established and the

rate of concentration of T (Fθ∗) around T (Fθ) depends on ϵn, the rate of concentration in

probability of F̂X around Fθ, and T ’s modulus of continuity (section 6).

ϵn,B’s components and the motivation for pmatch(θ
∗) in Propositions 5.1, 5.2 are presented

for i.i.d. samples but hold also under weak-dependence, as well as for exchangeable samples,
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when a D-K-W-M type upper bound or a Large Deviations bound for empirical processes

hold and is not necessarily exponential, e.g. the bound in linear time series by Chen and

Wu (2018). The assumptions used for consistency and the concentration in Propositions

6.1 and 6.2 are mild and fewer than the assumptions in the ABC and c-ABC literature,

relaxing f).

Related ABC Work

Lintusaari et al (2017) and Fearnhead (2018) provide accessible introductions to ABC

presenting, respectively, recent developments and results on asymptotics. Tanaka et al.

(2006, p. 1517 and Figure 4) indicate ϵ’s choice is crucial for the sampler acceptance rates

and the posterior densities. Fearnhead and Prangle (2012) show how to construct summary

S to be used in (2), “which will enable inference about certain parameters of interest to

be as accurate as possible” (in Summary). Biau et al. (2015), analyze ABC as a k-nearest

neighbor method. Frazier et al. (2018) provide asymptotic theory for a posterior. Vihola

and Franks (2020) suggest a balanced ϵ from a range of tolerances via Bayesian MCMC.

Chaudhuri et al. (2020) propose a fast and easy-to-use ABC method based on empirical

likelihood, a natural summary statistics. These authors use an algorithmic approach based

on an information projection argument, refreshingly without kernel approximation of the

summary statistic likelihood.

2 Nonparametric Fiducial ABC for all θ∗

Let (Y , CY) denote space Y with σ-field CY . X is a sample of size n, obtained from the

unknown θ-model with c.d.f. Fθ and density fθ (or f(·|θ)) with respect to measure µ on

(X , CX ); θ ∈ Θ. X is usually subset of Rd with the Borel σ-field, Bd, d ≥ 1. Let π(θ) be

the assumed prior of Θ with respect to measure ν on (Θ, CΘ), with unknown posterior
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π(θ|X = x); θ ∈ Θ. X∗ is a sample of size n obtained from the sampler with model Fθ∗ .

S(X) is a summary for X, ρ measures the distance between S(X) and S(X∗). S(X) can

be thought of as estimate of T (Fθ); T is generic functional of Fθ. Θ is metrized with dΘ

and generic d̃ and dK are distances for c.d.fs. θ-identifiability is assumed, i.e., Fθ1 = Fθ2

implies θ1 = θ2. For A ∈ CY , IA(u) = 1 if u ∈ A and zero otherwise.

Definition 2.1 For tolerance ϵ,X and S, the X∗-matching support probability α for θ∗ is

P [ρ(S(X∗), S(X)) ≤ ϵ] = α, 0 ≤ α ≤ 1, ϵ > 0. (4)

For Θ∗ = {θ∗1, . . . , θ∗N}, the matching support probability is

inf{αi; i = 1, . . . , N}; (5)

αi is obtained from (4) for θ∗ = θ∗i , i = 1, . . . , N. The observed X = x can be used in (4).

The probability in (4) is not under one probability model as in confidence band calcu-

lations since X and X∗ follow Fθ and Fθ∗ , respectively. When X = x, ϵ is the α-quantile

of ρ(S(X∗), S(x)) under Fθ∗ and seeing density f(x|θ∗) as “small probability” for small ϵ,

π(θ∗|x) ∝ π(θ∗)f(x|θ∗) ∝ π(θ∗)Pθ∗ [ρ(X
∗,x) ≤ ϵ]. (6)

A nonparametric estimate of this “small probability” is introduced in (7) with S(x), S(x∗)

instead of x,x∗. The α-value is omitted from the F-ABC notation, since it is determined

along with ϵ in (4) .

F-ABC Algorithm

Obtain sample X = x of size n from Fθ, select ϵ = ϵn > 0 and α = αn from [0, 1].

1) Sample i.i.d. θ∗1, . . . , θ
∗
N∗ from Θ according to π(θ).

2) Repeat for each θ∗i , i = 1, . . . , N∗ :
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a) Sample X∗
j with size n from Fθ∗i

, j = 1, . . . ,M.

b) Compute the matching support proportion, pmatch(θ
∗
i ), for the observed x∗

1, . . . ,x
∗
M :

pmatch(θ
∗
i ) := pmatch(θ

∗
i ,x) =

Card({x∗
i : ρ(S(x

∗
i ), S(x)) ≤ ϵn, i = 1, . . . ,M})

M
. (7)

c) θ∗-selection criterion: the F-ABC filter. 8 Include θ∗i in the domain of π(θ|x) when

pmatch(θ
∗
i ) ≥ αn. (8)

3) The selected θ∗ in 2) c) are

Θ∗
n = {θ∗sel,i; i = 1, . . . , N}, N ≤ N∗. (9)

Use {(θ∗sel,i, pmatch(θ
∗
sel,i)); i = 1, . . . , N} to construct the F-ABC posterior for the selected.

If 2 c) is not used, Θ∗
n = {θ∗1, . . . , θN∗}, and pmatch(θ

∗
i ), i = 1, . . . , N∗, are the weights in

the F-ABC posterior for all θ∗, with

πϵ(θ
∗
i ) =

pmatch(θ
∗
i )∑N∗

j=1 pmatch(θ∗j )
, i = 1, . . . , N∗. (10)

In simulations, frequency histograms are presented for πϵ.

Definition 2.2 The matching support proportion for Θ∗
n in (9) is min{pmatch(θ

∗
sel,i); i =

1, . . . , N}.

Remark 2.1 An approach to compare parametric ABC with F-ABC: Observe that when

M = 1 in 2)a) and αn = 1 in (8), ρ2-F-ABC is ρ2-ABC. To compare parametric ρ1-ABC

with ρ2-F-ABC, start with ρ2-ABC, use M additional x∗-samples for the selected θ∗ to

obtain pmatch(θ
∗) for all (M +1) x∗-drawn, and proceed with 3) to construct the ρ2-F-ABC

posterior for the selected θ∗. When either αn = 0 in (8), or 2)c) is not used, all θ∗ are

selected for the posterior with their corresponding weights, pmatch(θ
∗), used to obtain F-ABC

for all.

8Optional. Not used in F-ABC for all θ∗. It is intended for users desiring to restrict more than ABC

the approximate posterior.
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Let

Bϵn = {x∗ : ρ(S(x∗), S(x)) ≤ ϵn}. (11)

Then, the F-ABC posterior of θ is

πf-abc(θ|Bϵn) =
π(θ) ·

∫
Y IBϵn

(y)f(y|θ)µ(dy)∫
Θ
π(s)

∫
Y IBϵn

(y)f(y|s)µ(dy) ν(ds)
,=

π(θ) · P (n)
θ (Bϵn)∫

Θ
π(s) · P (n)

s (Bϵn)ν(ds)
. (12)

and for H ∈ CΘ, its F-ABC probability is

Πf-abc(H|Bϵn) =

∫
H

πf-abc(θ|Bϵn)ν(dθ) =

∫
Θ
π(θ) · P (n)

θ (H ∩Bϵn)ν(dθ)∫
Θ
π(s) · P (n)

s (Bϵn)ν(ds)
. (13)

For ABC, πabc and Πabc are used instead.

4) Determination of ϵn, αn : Sample several θ∗-values either from π(θ) or from a dis-

cretization ofΘ if it is known. Use one of them as base-value, θ∗b , and obtain x generated by

θ∗b . Select, e.g., m θ∗ at increasing standardized distance from θ∗b taking into consideration

its nature (if known) and obtain M X∗-samples from each one of them and θ∗b ; 5 ≤ m ≤ 10.

Calculate ρ(S(X∗
i ), S(x)), i = 1, . . . ,M, and their empirical quantiles for each one of the

selected θ∗ and θ∗b . For example, if θ∗ is location parameter use θ∗i = θ∗b ± σi; if θ
∗ is scale

parameter, θ∗i = ciθ
∗
b , ci ∈ [1− δ1, 1 + δ2];σi > 0, 0 < δ1 < 1, 0 < δ2 < 2, i = 1, . . . ,m. Cre-

ate a table similar to Table 1 in section 4.1. After examination of the empirical quantiles,

decide on the ϵn to be used. Alternatively, using the results in section 5.2 for the proposed

F-ABC and real observations, ϵn is used from [n−.5, 3n−.5] for θ ∈ Rk, k ≤ 5.

3 Sufficient Summary and Matching Distance

Matching with sufficient summary, S, is preferred since π(θ|x) = π(θ|S(x)). Information

for θ could be obtained via Fθ and Pθ which are unavailable. Thus, their sample counter-

parts, i.e. the empirical c.d.f., F̂X, and the empirical measure, µX, indexed by sets, are

the tools to be used as summaries.
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Definition 3.1 For any n-size sample, Y = {Y1, . . . , Yn} = 9(Y1, . . . , Yn), of random vec-

tors in Rd, nF̂Y(y) denotes the number of Yi’s with all their components smaller or equal

to the corresponding components of y. F̂Y is the empirical c.d.f. of Y.

The empirical measure, µY, of Y is

µY(A) =
1

n

n∑
i=1

IA(Yi), A ∈ Bd; (14)

IA(y) = 1 if y ∈ A and 0 otherwise, Bd are the Borel sets in Rd.

When X = (X1, . . . , Xn) ∈ Rn, F̂X is sufficient being equivalent to the order statistic.

When X ∈ Rnxd, d > 1, µX in (14) evaluated on sets in Bb is sufficient when X1, . . . , Xn are

either i.i.d (Dudley, 1984, Theorem 10.1.3, p. 95) or exchangeable (de Finetti, 1931, and

Hewitt and Savage, 1955, at least for compact sets in Rd). The results for exchangeable

data appear in an accessible manner in Lauritzen (2007). Choices of distances for matching

F̂X with F̂X∗ and µX with µX∗ , are naturally the Kolmogorov distance, dK , and the Total

Variation distance, TV, respectively.

Definition 3.2 For distribution functions F,G in Rd, with induced probabilities PF and

PG in (Rd,Bb), the Kolmogorov and Total Variation distances are, respectively,

dK(F,G) = sup{|F (y)−G(y)|; y ∈ Rd}, (15)

TV (PF , PG) = sup{|PF (A)− PG(A)|;A ∈ Bd}, (16)

Bd are the Borel sets in Rd, d ≥ 1.

For good matching ofX andX∗ using F̂X, F̂X∗ and dK , it is also required that dK(F̂X, F̂X∗)

approximates well dK(Fθ, Fθ∗) with high probability. This holds for dK since

|dK(Fθ, Fθ∗)− dK(F̂X, F̂X∗)| ≤ dK(F̂X, Fθ) + dK(F̂X∗ , Fθ∗), (17)

9Abuse of notation: the order in Y does not matter.
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due to Glivenko-Cantelli Theorem and Concentration Inequalities, like D-K-W-M, which

make the upper bound in (17) converge to 0 in probability.

Inequality (17) holds also using instead µX, µX∗ and TV, but the upper bound does

not always converge to 0 in probability since Bd is not necessarily a V-C (Vapnik and

Cervonenkis, 1971) class of sets. However, often, TV (Pθ, Pθ∗) is approximated as close

as is wished for any θ, θ∗, by ρV C(Pθ, Pθ∗), with the supremum in (16) taken over a V -

C-subclass of Bd. Examples of such families of models can be found in Yatracos (1988),

and include in particular those satisfying the Hoeffding-Wolfowitz condition on the sign

changes for the densities’ differences. ρV C(µX, µX∗) is used for matching and the size of its

difference from TV (Pθ, Pθ) converges to zero in Probability.

In the applications herein we use a V-C class for a supremum-type distance ρ̃ as in (16),

with the Matching property that ρ̃(P,Q) = 0 implies TV (P,Q) = 0. Such class, V , exists

in Rd, consists of the half-spaces and the distance, ρ̃, was introduced by Wolfowitz (1954)

and was used also by Beran and Millar (1986, p. 431) who present its properties: a) if

P (A) = Q(A) for each A ∈ V , then P,Q agree also on Bd (Cramer and Wold, 1936), and

b) V is a V-C class of index (d + 1) (e.g., Dudley, 1978). From a), V is a class separating

probabilities. The advantage with ρ̃ is that it can be approximated by dK , as seen in (24).

Let < ·, · > and || · || be, respectively, the inner-product and the Euclidean norm in Rd,

Ud is the unit sphere in Rd,

Ud = {u = (u1, . . . , ud) ∈ Rd : ||u|| = 1}. (18)

Definition 3.3 In (Rd,Bd), the half-space, A(a, t), is

A(a, t) = {y ∈ Rd :< a, y >≤ t}, t ∈ R, a ∈ Ud. (19)

The class of half-spaces, V , is

V = {A(a, t) : a ∈ Ud, t ∈ R}. (20)
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Definition 3.4 For probability measures P,Q in (Rd,Bd) and half-spaces V , Wolfowitz’s

half-spaces distance is,

ρ̃(P,Q) = sup{|P (A)−Q(A)|;A ∈ V} = sup
a∈Ud

sup
t∈R

|P (A(a, t))−Q(A(a, t))|. (21)

Observe that for A = A(a, t) in (14), from (19)

IA(a,t)(Xi) = 1 ⇐⇒ < a,Xi >≤ t,

and using the notation

a ·X = (< a,X1 >, . . . , < a,Xn >) ∈ Rn, (22)

it follows that

µX(A(a, t)) =
Card(< a,Xi >≤ t, i = 1, . . . , n)

n
= F̂a·X(t), (23)

Since for X ∈ Rd, d > 1, µX is used for ϵ-matching X with X∗,

ρ̃(µX, µX∗) = sup
a∈Ud

sup
t∈R

|µX(A(a, t))− µX∗(A(a, t))| = sup
a∈Ud

dK(F̂a·X, F̂a·X∗). (24)

In practice, ρ̃(µX, µX∗) is approximated by

ρ̃n(µX, µX∗) = max
a∈{a1,...,akn}⊂Ud

sup
t∈R

|µX(A(a, t))−µX∗(A(a, t))| = max
a∈{a1,...,akn}⊂Ud

dK(F̂a·X, F̂a·X∗).

(25)

where a1, . . . , akn are either a discretization of Ud or i.i.d. uniform in Ud, independent of X

and X∗. Beran and Millar (1986) showed already that if a1, . . . , akn are i.i.d. uniform on

Ud and kn ↑ ∞ as n ↑ ∞, then limn→∞ ρ̃n(P,Q) = ρ̃(P,Q) with probability 1. Note that

the last equalities in (24) and (25) relate ρ̃ over all half-spaces with dK-distance over all

1-dimensional projections of X,X∗. In the F-ABC Algorithm, with d > 1, X will match

X∗ when the last term in (25) is less than or equal to ϵn.
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4 Implementation

In simulations, w.l.o.g. uniform prior, π(θ), is used over Θ, or over its discretization Θ∗.

Frequency histograms for the F-ABC for all posteriors are presented, obtained using (10).

In section 4.1, a method to select ϵn is presented using simulations. In section 4.2,

simulation comparisons are provided for ABC and F-ABC. The histograms are smoothed

with the by default R-kernel in Figures 2 and 3. In Table 3, F-ABC for selected θ∗

improves the concentration (MSE) of parametric ABC unlike Table 2. However, the F-

ABC improvement holds in 48 out of 50 repetitions of the experiment.

In the remaining applications, preliminary approximate posteriors are obtained on Θ

that is subsequently restricted where pmatch(θ
∗) are positive; see, e.g. section 4.6. In

section 4.3, Figure 5, ABC and F-ABC for all θ∗ posteriors of means are obtained for

a bivariate normal vector of correlated variables. In sections 4.4-4.7 posteriors are ob-

tained for intractable models: Tukey’s (a, b, g, h)-model, a normal mixture with parameters

(p, µ1, σ1, µ2, σ2), an autoregressive AR(1) model and a Quantile model.

4.1 ϵn and matching support probability α in practice

The goal is to implement the selection of ϵn and αn in 4) of section 2 when ρ = dK .

As illustration, Table 1 is provided for a sample of n = 100 normal random variables

with mean θ and variance 1. With the notation in 4) of section 2, θ∗b = θ = 0 and x is

obtained. M = 500 samples10 are obtained for each θ∗b and θ∗ = .5, (.5), 4 and dK-distances

are calculated; .5 corresponds to .5 standard deviation of the assumed location model. If

ϵ = .63 is used, with coordinates (θ∗ = 1.5, Quantile = 95th) in Table 1, it is expected

that θ∗ in the range (−1.5, 1.5) are selected and the observed matching support probability

10M = 500 > 200 to increase table’s accuracy, with execution time less than 15 seconds.
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(Definition 2.2) will be (at least) .95. The dependence of ϵ and ϵn,B in the distance between

Fθ and Fθ∗ is observed in Table 1. The form of the obtained marginal posterior can lead to

ϵ’s fine tuning. The form of θ∗ used to compare with θ∗b will depend on the nature of the

parameter. When θ∗b is scale parameter, θ∗ = c · θ∗b , e.g. with c ∈ (0, 3]. Alternatively, the

upper bound ϵn,B for ϵn in section 5.2 can also be used and led us to choose in examples

with real observations ϵ in [n−.5, 3n−.5].

Empirical Quantiles of Kolmogorov distances between F̂x and F̂x∗

θ∗ MIN 25th 50th 60th 65th 70th 75th 80th 85th 90th 95th MAX

0 0.04 0.07 0.09 0.1 0.1 0.11 0.11 0.12 0.12 0.13 0.14 0.19

0.5 0.12 0.2 0.23 0.24 0.25 0.25 0.26 0.27 0.28 0.29 0.3 0.39

1 0.25 0.38 0.41 0.42 0.42 0.43 0.44 0.44 0.45 0.46 0.48 0.55

1.5 0.47 0.55 0.57 0.58 0.59 0.59 0.6 0.61 0.61 0.62 0.63 0.69

2 0.6 0.68 0.71 0.71 0.72 0.72 0.73 0.73 0.74 0.75 0.76 0.79

2.5 0.72 0.8 0.82 0.83 0.83 0.83 0.84 0.84 0.85 0.86 0.87 0.91

3 0.82 0.89 0.9 0.91 0.91 0.91 0.92 0.92 0.92 0.93 0.93 0.95

3.5 0.89 0.94 0.95 0.96 0.96 0.96 0.96 0.96 0.97 0.97 0.97 0.99

4 0.94 0.97 0.98 0.98 0.98 0.99 0.99 0.99 0.99 0.99 1 1

Table 1: Potential ϵn-values the Quantiles, for matching support α, 0 < α < 1.

4.2 Comparison of parametric ABC with F-ABC

In simulations, we compare parametric ABC with F-ABC for all and F-ABC for the

selected θ∗, neglecting 2)c) of the F-ABC Algorithm. Remark 2.1 is followed. More pre-

cisely, we start ABC with dK and ϵ and for the selected θ∗i we draw M additional x∗ to

compute pmatch(θ
∗
i ). The F-ABC posterior for these selected θ∗ is obtained. The process

is repeated for the non-selected θ∗ in ABC and the F-ABC for all θ∗ drawn posterior is
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obtained. Details follow.

An ABC example is used from Tavaré (2019, # 2, “A Normal example”, p. 35).

X1, . . . , Xn are i.i.d. normal random variables, N (θ, σ2 = 1), denoted by X. The prior

for θ is uniform U(a, b) with a → −∞ and b → ∞. Attention is restricted to the sample

mean, X̄n, since it is sufficient statistic. For fixed a, b the posterior π(θ|X̄n) is N (θ, σ
2

n
)

truncated in (a, b). For the ABC-simulations and a given ϵ∗ it is assumed the observed

x̄n = 0, θ∗ is observed from U(a, b) and is selected when ρ(x̄∗
n, x̄n = 0) = |x̄∗

n| ≤ ϵ∗; | · | is

absolute value. A flat, “0-1”, kernel is used to select θ∗.

For nonparametric ABC with dK , F̂x is used and ϵ is such that the number of selected

θ∗ from U(−1, 1) does not differ much from that of the parametric ABC. The number of

drawn θ∗ is large, N∗ = 1, 000, such that the number of θ∗ selected (N in Figures 2 and

3) is also large enough for determining the approximate posterior. Sample X∗
i is obtained

from N (θ∗i , 1) and θ∗i is selected if dK(F̂x, F̂x∗
i
) ≤ ϵ, i = 1, . . . , N∗. For F-ABC, M = 200

X∗-samples of size n are drawn for each selected θ∗, but also for non-selected θ∗.

We used n = 200, θ = 0, a = −1, b = 1; ϵ∗ = .15, ϵ = .12 are both in [n−.5, 3n−.5].

In Tables 2 and 3, simulation results are presented where the MSE of each method

dominates the other. In Figures 2 and 3, frequency histograms are presented for ABC

and F-ABC, and the corresponding density plots with Gaussian kernel. For the F-ABC

approximate posteriors, the bandwidth was set at 0.05. Nonparametric F-ABC for selected

θ∗ is satisfactory compared with parametric ABC. We prefer F-ABC for all θ∗.

In several simulations, very frequently, the concentration (MSE) of the nonparametric

F-ABC for the selected θ∗ improves that of parametric ABC. To compare the MSE im-

provement with F-ABC for selected θ∗, 1000 MSE comparisons are made and the total

number of times F-ABC improves ABC is recorded. The parameters are ϵ = .12, ϵ∗ =

.15, n = 100, θ = 0, a = −1, b = 1, N∗ = 100,M = 100. The process is repeated 50 times
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out of which 48 times F-ABC for selected θ∗ improves the MSE of parametric ABC.

Concentration: Non Parametric ABC, F-ABC selected/drawn-Parametric ABC

Nonparametric , ϵ = .12 Parametric, ϵ∗ = .15

Parameter ABC F-ABC selected θ∗ F-ABC all drawn θ∗ ABC

Mean θ∗select - 0.0916 -0.0865 -0.0859 -0.0117

Variance θ∗select 0.0182 0.0105 0.0274 0.0107

MSE θ∗select 0.0266 0.018 0.0348 0.0108

Table 2: Mean, Variance and MSE of θ∗select

Concentration: Non Parametric ABC, F-ABC selected/drawn-Parametric ABC

Nonparametric , ϵ = .12 Parametric, ϵ∗ = .15

Parameter ABC F-ABC selected θ∗ F-ABC all drawn θ8 ABC

Mean θ∗select -0.00198 -0.00185 -0.00617 0.0112

Variance θ∗select 0.0187 0.0111 0.0242 0.0138

MSE θ∗select 0.0187 0.0111 0.0243 0.0139

Table 3: Mean, Variance and MSE of θ∗select

4.3 ABC and F-ABC for all θ∗ in R2 with ρ̃-distance via dK

Nonparametric ABC and F-ABC for all are implemented for the means of a bivariate

normal with dependent components and X = (X1, . . . , Xn). dK is used for X∗-matching

over 1-dimensional projections of X and X∗, in order to approximate Wolfowitz’s half-

spaces distance, ρ̃(µX, µX∗), by ρ̃n(µX, µX∗), as explained in section 3. Bivariate posteriors

are depicted in Figure 4.

Using the notation in section 3, for a, y ∈ R2, < a, y > is the inner product of y and a,
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|| · || is Euclidean distance in R2, a ·X = (< a,X1 >, . . . , < a,Xn >) ∈ Rn,

ρ̃n(µX, µX∗) = max
a∈{a1,...,akn}⊂U2

dK(F̂a·X, F̂a·X∗);

a1, . . . , akn are are i.i.d. uniform random vectors in U2 = {u = (u1, u2) ∈ R2 : ||u|| = 1},

independent of X and X∗. Direction a used in ρ̃n may have form (cos(ϕ), sin(ϕ)), with ϕ

uniform in [0, π). In practice, ϕ is obtained from a discretization of [0, π). ρ̃n approximates

ρ̃ in (24) when kn ↑ ∞, but a moderately large kn = k is adequate.

A sample x of size n = 50 is observed from a bivariate normal with means θ = (0, 2),

variances 1 and covariance .5. Assume the parameter space for θ is Θ = [−1, 2]x[−2, 3] ⊂

R2. Instead of drawing θ∗ randomly from Θ, a discretization Θ∗ of Θ is used in order

to observe the weights pmatch(θ∗) along Θ. Using 15 equidistant θ∗1 and θ∗2, respectively, in

[−1, 2] and [−2, 3], obtain θ∗ = (θ∗1, θ
∗
2) in Θ∗, N = card(Θ∗) = 225. Following Remark 2.1,

to obtain ρ̃n-ABC and ρ̃n-F-ABC posteriors, one sample X∗ is drawn initially for each θ∗

in Θ∗. k = 50 a-directions are used in ρ̃n, ϵ = .33 in [n−.5, 3n−.5] and 21 X∗ match X, thus

selecting 21 θ∗ from Θ∗. With F-ABC for all θ∗ ∈ Θ∗, without using 2c) in the F-ABC

Algorithm, M = 200 independent copies of X∗ are obtained for each θ∗ ∈ Θ∗. For the

same 50 a-directions and the M + 1 matchings, pmatch(θ
∗) in (7) is calculated for ρ = ρ̃n

and ϵ = .33.

In Figure 4, the nonparametric ABC-posterior density (in green) and the F-ABC for

all θ∗ posterior histogram and density appear, created with R-functions persp, hist3D

and persp3D, respectively. Comparison of the ABC and F-ABC densities indicates higher

concentration in the latter near the means (0, 2). In ABC (all green), the density’s shape

and the 0-values in the z-axis are due to the bivariate normal kernel used by default in

R-function kde2d needed in persp. In F-ABC for all, no kernel is used in the histogram (in

the middle). The matching proportions, pmatch(θ
∗), provide the z-values in Figure 4.
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4.4 F-ABC for all with Tukey’s (a, b, g, h)-model

Tukey’s g-and-h model (see, e.g., Tukey, 1977) accommodates non-Gaussian data. The

parameters, including location and scale are: g(∈ R) controlling skewness, h(≥ 0) con-

trolling tail heaviness, a(∈ R) for location and b(> 0) for scale. Standard normal r.vs

Z1, . . . , Zn are used to generate X = (X1, . . . , Xn),

Xi = a+ b
egZi − 1

g
e.5hZ

2
i , i = 1, . . . , n. (26)

The observed sample X = x consists of n = 20000 i.i.d. r.vs11 obtained from (26) with

a = 3, b = 4, g = 3.5, h = 2.5. Parameter spaces are Θa = [2.5, 3.5],Θb = [3.5, 4.5],Θg =

[3, 4],Θh = [2, 3], and each interval is divided in 10 equal sub-intervals with the 11 end-

points used to obtain for Θ = ΘaxΘbxΘgxΘh discretization Θ∗ with cardinality N =

114. M = 50 samples of size n are obtained using each element of Θ∗ with ϵ = .01 in

[n−.5, 3n−.5]. Smooth histograms for the posterior of each parameter are in Figure 5, and

the corresponding histograms with weights the matching support proportions are in Figure

6.

The process was repeated with enlarged Θb = [3.2, 4.8] and discretization Θ∗ with

cardinality N = 214 and M = 100. The maximum value of the weight pmatch(θ
∗) is .94,

achieved at θ∗ = (3, 4.08, 3.5, 2.5). Smooth histograms for the posterior of each parameter

are in Figure 7, and the corresponding histograms with weights the matching support

proportions in Figure 8.

4.5 F-ABC for all with a 5-parameters Normal mixture

The observed X = x, is realization of n = 5000 independent r.vs from a Normal mixture

with two components, means µ1 = 1, µ2 = 6, standard deviations σ1 = 1, σ2 = 1.5 and

11The sample size increased in the remaining applications for more accurate posteriors.
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weights, respectively, p = p1 = .3, p2 = 1−p = .7. Parameter space Θp = [0, 1] is divided in

20 equal sub-intervals with the 21 end-points in its discretization and Θµ1 = [.5, 1.5],Θµ2 =

[5.5, 6.5],Θσ1 = [.5, 1.5],Θσ2 = [1, 2] are divided each in 10 equal sub-intervals with the 11

end-points used to obtain forΘ = ΘpxΘµ1xΘσ1xΘµ2xΘσ2 discretizationΘ∗ with cardinality

N = 21x114. M = 50 samples of size n are obtained for each element of Θ∗ and ϵ = .03

in [n−.5, 3n−.5]. The F-ABC for all marginal densities are in Figure 9, using notation for

the means m1,m2 and for the standard deviations s1, s2. The corresponding frequency

histograms with weights the matching support proportions, pmatch(θ
∗), are in Figure 10.

4.6 F-ABC for all with an AR(1) model

X is observed from an autoregressive AR(1) model, with X1 having a normal distribution

with mean 0 and variance σ2 = b2/(1− a2), and

Xt = aXt−1 + bZt, −1 < a < 1, b > 0; (27)

Zt is standard normal independent ofXt−1, t > 1. Xt has the same distribution asX1, t > 1.

Parameters a, b are not identifiable due to the form of the variance. The vector (Xt, Xt−1)

has stationary normal distribution with mean (0, 0), and covariance matrix Σ(θ), θ = (a, b),

with variances b2/(1 − a)2, and covariance ab2/(1 − a)2, and a, b are identifiable; see e.g.

Bernton et al. (2019).

Model parameters a = 0.5, b = 1 are used to obtain n = 1000 X’s from (27). In prelim-

inary application of F-ABC for all, with ϵ = .08 in [n−.5, 3n−.5], the assumed parameter

spaces Θa = [−.99, .99] and Θb = [0.5, 2], are divided each in 14 equal sub-intervals with

the 15 end-points in each discretization to obtain for Θ = ΘaxΘb discretization Θ∗ with

cardinality N = 152. n = 999 matching observations are obtained from a bivariate normal

with means 0 and covariance Σ(θ∗) for each θ∗ ∈ Θ∗. The number of repeated samples for

each θ∗ is M = 200 and the number of projection directions used is k = 60. The posterior
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of (a, b) is concentrated in a neighborhood of (0.5, 1).

For a more accurate posterior of (a, b), n = 5000 and ϵ = 0.03 (in [n−.5, 3n−.5]) are

used, and the parameter spaces are restricted to Θa = [0, .99) and Θb = [0.5, 1.5]. For

Θ = ΘaxΘb, the discretization Θ∗ has cardinality N = 252. The maximum value of the

weight pmatch(θ
∗) is .84 and is achieved at θ∗ = (0.52, .98) and θ∗∗ = (0.54, .98). In Figure

11, the F-ABC for all bivariate frequency histogram and its smooth histogram are depicted,

and the corresponding marginals are in Figure 12. Bernton et al. (2019) use for matching

bivariate observations (x2k−1, x2k), k ≥ 1, and there is no indication for the mode of the

approximate posterior.

4.7 F-ABC for all with a Quantile model

Observations Xt are obtained from a data-generating model borrowed from stochastic

volatility models (Kim et al., 1998),

Xt = bϵte
.5ηt , (28)

with the unobserved ηt ∼ N(0, a2), ϵt ∼ N(0, 1). The parameter of interest is θ = (a, b).

The model parameters used to obtain X are a = .8, b = .65. For more accurate posterior

of (a, b), we restricted the parameter space to Θa = Θb = [.5, 1.5], divided Θa in 20

equal sub-intervals and Θb in 120 equal sub-intervals including the end-points in each

discretization to obtain for Θ = ΘaxΘb discretization Θ∗ with cardinality N = 21x121.

We used M = 400, n = 10000 and ϵ = 0.01 in [n−.5, 3n−.5]. The maximum value of the

weight pmatch(θ
∗) is .22 and was achieved at θ∗ = (0.75, .64). The F-ABC for all posterior

marginals appear in Figure 13.
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5 The Matching tools: F̂X, µX, dK, ρ̃, ρ̃n, ϵ, α and pmatch(θ
∗)

5.1 Pertinent properties of F̂X, µX, dK , ρ̃

(F̂X, dK) and (µX, ρ̃) satisfy desired properties for summary statistics in ABC (Fearnhead

and Prangle, 2012, Frazier et al., 2018) with binding function b(θ), respectively, Fθ and the

induced probability, Pθ. Assume a Dirichlet prior, DP (α,G), for Fθ, θ ∈ Θ, then, see e.g.

Walker et al.(1999),

E(Fθ|X) =
n

n+ α
F̂X +

α

n+ α
G.

Thus, for large n or when α = 0, E(Fθ|X) is practically F̂X, and the same holds for µn

and Pθ. Also, e.g., Fθ1 = Fθ2 implies θ1 = θ2 due to identifiability, and if T is continuous

with respect to dK and a metric dΘ on Θ, it is expected that T (F̂X) as estimate of T (Fθ)

will inherit convergence properties of F̂X to Fθ. Similar results hold for µX and Pθ, with

µX indexed by the class of half-spaces which is Vapnik-Cervonenkis class of index (d+ 1),

and Wolfowitz’s half spaces distance ρ̃.

dK(F̂x∗ , F̂x) is not continuous function at x since it cannot be smaller than 1
n
for all x∗

at Euclidean distance δ > 0 from x. This makes dK different from other ρ-distances used

in ABC, (1), (2); see, e.g. Bernton et al. (2019, p. 39, proof of Proposition 3.1).

Lemma 5.1 For any observed samples of size n, x∗ ̸= xσ(1:n) ∈ Rd, d ≥ 1,

dK(F̂x, F̂x∗) ≥ 1

n
; (29)

xσ(1:n) denotes a vector, permutation of the x components. Thus,

dK(F̂x, F̂x∗) = 0 ⇐⇒ x∗ = xσ(1:n). (30)
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5.2 On ϵn, α and dK , ρ̃, ρ̃n

For matching support probability α in (4), the F-ABC tolerance ϵn satisfies

P [dK(F̂X∗ , F̂X) > ϵn] = 1− α, 0 ≤ α ≤ 1. (31)

An upper bound, ϵn,B, on ϵn is obtained by equating in (31) an upper probability bound,

U(n, ϵn,B), with 1−α; see Lemma 7.1. Conditionally onX = x, ϵn,B(x) is similarly obtained

under Fθ∗ . The obtained bounds hold for observations in R. Similar results for ϵn,B hold

with observations in Rd, d > 1, using either F̂X or µX and are obtained as described after

the Proof of Proposition 5.1, in Remark 7.1.

Proposition 5.1 Let X be a sample of n random variables from cumulative distribution

Fθ, with θ unknown, let X∗ be a simulated n-size sample from a sampler used for θ∗ and

let α be the matching support probability for the tolerance ϵn in (31); 0 ≤ α < 1.

a) The upper bound for ϵn is

ϵn,B(θ, θ
∗) = dK(Fθ, Fθ∗) +

√
2

n
ln

4

1− α
≥

√
2

n
ln 4. (32)

b) Conditionally on X = x, the upper bound for ϵn is

ϵn,B(x, θ
∗) = dK(F̂x, Fθ∗) +

√
1

2n
ln

2

1− α
≥ δn(x, θ

∗) +

√
1

2n
ln 2. (33)

In practice, min{ϵn,B(θ, θ∗), 1} and min{ϵn,B(x, θ∗), 1} are used.

(32) and (33) provide a structure for ϵn,B. We preferred to use the lower bound in

(32) since both summands do not depend on x. This has led us to adopt after numerous

simulations with observations in R, ϵn in [n−.5, 3n−.5],modulo potential adjustments for the

dimension of θ; note that 2 ln 4 in (32) is in [1, 3]. ϵn can be also determined via simulations;

see Table 1, section 4.1, but it can be time consuming.
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5.3 Motivation for pmatch(θ
∗)

F-ABC is a nonparametric extension of ABC methods, with main differences already

pesented in the Introduction. The use of pmatch(θ
∗) was motivated from the observation in

several models that for the estimate S(X) of T (Fθ) and d̃, ρ generic distances:

when dΘ(θ
∗
1, θ) ≤ dΘ(θ

∗
2, θ) ⇒ d̃(Fθ∗1

, Fθ) ≤ d̃(Fθ∗2
, Fθ) (34)

⇒ ∀ ϵ > 0, Pθ∗2
[ρ(S(X∗), T (Fθ)) ≤ ϵ] ≤ Pθ∗1

[ρ(S(X∗), T (Fθ)) ≤ ϵ]. (35)

The implications in (34) and (35) hold often, e.g. for the normal model, with mean θ

and variance 1, dΘ = ρ = |.|, d̃ = dK , S(X) = X̄n, T (Fθ) = θ.

In F-ABC in particular, with d̃ = ρ = dK , T (Fθ) = Fθ, S(X
∗) = F̂X∗ , (35) will also

hold, at least for large n, when Fθ is replaced by F̂X. Then, for families of c.d.fs in R

with densities fθ such that fθ∗1 (x) − fθ∗2 (x) changes sign once, the upper bound in (35)

increases to 1 with n if θ∗1,n gets closer to θ (Yatracos, 2020, Propositions 7.2, 7.4 and

Remark 7.2). The same holds in general, as Proposition 5.2 confirms when taking limits

in (36) as n ↑ ∞. The lower bound in (36) is also lower bound on the Probabilities in (35).

Thus, it is expected the F-ABC posteriors concentrate near θ.

Proposition 5.2 For n i.i.d. random vectors in Rd with c.d.f. Fθ∗ and n large:

Pθ∗ [dK(FX∗ , F̂X) ≤ ϵn] ≥ 1− C∗
1(d) · exp{−n · C∗

2(d) · (ϵn − dK(Fθ∗ , Fθ))
2}; (36)

C∗
1(d), C∗

2(d) are positive constants.

pmatch(θ
∗) is also useful in the approximation of

E[h(Θ)|X = x] =

∫
Θ

h(θ)π(θ|x)dθ; (37)
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Θ ⊂ Rk. In F-ABC, (37) is approximated using Θ∗
n in (9) which includes all θ∗ drawn with

F-ABC for all, ∫
Θ

h(θ)π(θ|x)dθ ≈
N∗∑
i=1

h(θ∗i )pmatch(θ
∗
i ). (38)

6 Asymptotics

Under few, mild assumptions, results are obtained for Kolmogorov distance, dK , when

X ∈ Rnxd, which hold also for the stronger distance, ρ̃, in (24).

In ABC, one question of interest is whether πabc(θ|Bϵ) converges to π(θ|x) when x stays

fixed and ϵ = δm ↓ 0 as m increases.

Proposition 6.1 Use the notation in section 2, for ABC and F-ABC with S(X) = F̂X, ρ =

dK , n fixed and Bϵn in (11). Under the exchangeability assumption, i.e. f(y|θ) = f(yσ(1:n)|θ)

for any permutation yσ(1:n) of y, and with ϵn replaced by δm ↓ 0 as m increases,

lim
m→∞

πu(θ|Bδm) = π(θ|x), u = abc, f -abc. (39)

For continuous X, (Y , CY) is Rnxd with the Borel sets, B, and Θ takes values in Rk, k ≤ d.

Another question of interest for ABC is whether the posterior πabc(θ|Bϵn) will place

increasing probability mass around θ as n increases to infinity (Fearnhead, 2018), i.e.

Bayesian consistency. Posterior concentration is proved for ABC and F-ABC, initially for

fixed size ζ-neighborhood when T (Fθ) is the quantity of interest; T is a functional, ζ > 0.

Proposition 6.2 Use the notation in section 2 and let FΘ = {Fθ, θ ∈ Θ} be subset of a

metric space (F , dF) of c.d.fs. Assume

a) dF(F̂X, Fθ) ≤ o(kn)
kn

, kn ↑ ∞ and P
(n)
θ -probability ↑ 1, as n increases, and
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b) T is a continuous functional on F with values in a metric space (T , dT ).

Then, for ABC and F-ABC, S(X) = F̂X, ρ = dF and for any ζ > 0,

lim
n→∞

Πu[θ
∗ : dT (T (Fθ∗), T (Fθ)) ≤ ζ|Bϵn ] = 1, u = abc, f -abc; (40)

Bϵn = {x∗ : dF(F̂ (x∗), F̂ (x)) ≤ ϵn}, ϵn ↓ 0 as n ↑ ∞. (41)

Remark 6.1 In Proposition 6.2, assumption a) holds for i.i.d samples with dF = dK and

kn =
√
n. Different kn can be obtained under dependence via Large Deviations bounds.

Special case of interest in b) when T (Fθ) = θ and dT = dΘ, the metric on Θ.

To confirm Bayesian consistency for shrinking dT -neighborhoods of T (Fθ), let w be the

modulus of continuity of T, i.e.

w(ϵ̃) = sup{dT (T (Fθ), T (Fη)) : dF(Fθ, Fη) ≤ ϵ̃; θ ∈ Θ, η ∈ Θ}, ϵ̃ > 0. (42)

Consistency was established for ζ-dT -neighborhood of T (Fθ) when (56) holds, i.e. when

ϵn ≤ ϵ̃− 2o(kn)

kn
,

thus it holds for the smallest ϵ̃-value,

ϵ̃ = ϵn +
2o(kn)

kn
(43)

and since for ζn-dT -neighborhood of T (Fθ)

ζn = w(ϵ̃)

it follows that

ζn = w(ϵn +
2o(kn)

kn
) ≥ w(

2o(kn)

kn
). (44)

Lemma 6.1 Under the assumptions of Proposition 6.2, the shortest dT -shrinking neigh-

borhood of T (Fθ) for which Bayesian consistency holds has radius w(ϵn+
2o(kn)
kn

) ≥ w(2o(kn)
kn

).
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Remark 6.2 The rate of posterior concentration around T (Fθ) depends, as expected, on

the rate in probability, k−1
n , of the dF -concentration of T (F̂X) around T (Fθ) which is not

under the user’s control, the tolerance ϵn and the modulus of continuity, w, of T. Similar

conclusions in a different set-up have been obtained by Frazier et al. (2018).
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7 Appendix

Proof of Lemma 5.1: The smaller dK-distance between F̂x and F̂x∗ occurs when x,x∗

differ by a small δ > 0 in one coordinate of one observation and their distance is 1
n
. 2

Lemma 7.1 Let X = x,X∗ = x∗ and let U(n, ϵ) be positive function defined for positive

integers n and ϵ > 0, 0 ≤ α ≤ 1, such that

1− α = P [dK(F̂x, F̂x∗) > ϵ] ≤ U(n, ϵ). (45)

Let ϵB : U(n, ϵB) = 1− α. Then ϵB ≥ ϵ.

Proof of Lemma 7.1: Since U(n, ϵB) = 1− α,

P [dK(F̂x, F̂x∗) > ϵB] ≤ U(n, ϵB) = 1− α = P [dK(F̂x, F̂x∗) > ϵ]

which implies ϵB ≥ ϵ. 2

Theorem 7.1 (Dvoretzky, Kiefer and Wolfowitz, 1956, and Massart, 1990, providing the

tight constant) Let F̂Y denote the empirical c.d.f of the size n sample Y of i.i.d. random

variables obtained from cumulative distribution F. Then, for any ϵ > 0,

P [dK(F̂Y, F ) > ϵ] ≤ UDKWM = 2e−2nϵ2 (46)
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Proof of Proposition 5.1: a)

P [dK(F̂X∗ , F̂X) > ϵn] ≤ P [dK(F̂X∗ , Fθ∗) + dK(Fθ∗ , Fθ) + dK(Fθ, F̂X) > ϵn]

≤ P [dK(F̂X∗ , Fθ∗) >
ϵn − dK(Fθ∗ , Fθ)

2
] + P [dK(F̂X, Fθ) >

ϵn − dK(Fθ∗ , Fθ)

2
]

≤ 4 exp{−n

2
(ϵn − dK(Fθ∗ , Fθ))

2}

The right side of the last inequality, obtained from (46), is made equal to 1− α,

4 exp{−n

2
(ϵn,B − dK(Fθ∗ , Fθ))

2} = 1− a ⇐⇒ ϵn,B = dK(Fθ∗ , Fθ) +

√
2

n
ln

4

1− α
.

b) P [dK(F̂X∗ , F̂x) > ϵn] ≤ P [dK(F̂X∗ , Fθ∗)+dK(Fθ∗ , F̂x) > ϵn] ≤ 2 exp {−2n(ϵn − dK(Fθ∗ , F̂x))
2}

obtaining with matching support probability α,

ϵn,B(x) = dK(Fθ∗ , F̂x) +

√
1

2n
ln

2

1− α
. 2

Generalizations of (46) in Rd have been obtained, at least, by Kiefer and Wolfowitz

(1958), Kiefer (1961) and Devroye (1977); d > 1. The differences in upper bound U in (46)

are in the multiplicative constant, in the exponent of the exponential and on the sample

size for which the exponential bound holds which may also depend on ϵ. The constants

used are not determined except for Devroye (1977).

For example, following the Proof in Proposition 5.1 b), conditionally on X = x :

i) Using Kiefer and Wolfowitz (1958), with the upper bound in (46) UKW = C1(d)e
−C2(d)nϵ2 ,

ϵn,B(x, θ
∗) = dK(F̂x, Fθ∗) +

√
1

nC2(d)
ln

C1(d)

1− α
.

ii) Using Kiefer (1961), with the upper bound in (46) UK = C3(b, d)e
−(2−b)nϵ2 , for every

b ∈ (0, 2),

ϵn,B(x, θ
∗) = dK(F̂x, Fθ∗) +

√
1

n(2− b)
ln

C3(b, d)

1− α
.

iii) Using Devroye (1977), with the upper bound in (46) UDe = 2e2(2n)de−2nϵ2 valid for

nϵ2 ≥ d2,

ϵn,B(x, θ
∗) = dK(F̂x, Fθ∗) +

√
1

2n
[ln

2

1− α
+ 2 + d ln(2n)].
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Remark 7.1 A lower bound for ϵn,B as those in Proposition 5.1 can be obtained, for

ρ̃n(µX, µX∗) in (25) using kn and one of UKW , UK , UDe, and for ρ̃(µX, µX∗) using Vapnik-

Cervonenkis inequality. In the latter, the lower bound has form Cd

√
logn
n

, and can be used

to provide an interval for ϵn.

Proof of Proposition 5.2: Follows along the first three lines in the proof of Proposi-

tion 5.1 a), with the exponential upper bound obtained using the UKW in i) (Kiefer and

Wolfowitz, 1958), with C∗
1(d), C

∗
2(d) the adjustments of C1(d), C2(d). 2

Proof of Proposition 6.1: The arguments used for ABC hold for F-ABC.

a) Y discrete: The ABC posterior with ρ = dK in (12) is

πabc(θ|Bδm) =
π(θ) ·

∫
Y IBδm

(y∗)f(y∗|θ)µ(dy∗)∫
Θ
π(s)

∫
Y IBδm

(y∗)f(y∗|s)µ(dy∗) ν(ds)
.

With integral denoting sum, it is enough to prove that the integral in the numerator of

πabc(θ|Bδm) is proportional to f(x|θ).

For A ∈ CY , let

Qθ(A) =

∫
A

f(y∗|θ)µ(dy∗), A ∈ A.

Qθ is a probability measure on CY .

Since n and x are fixed, for δk ≥ 1
n
> δk+1

Bδ1 ⊇ Bδ2 ⊇ . . . ⊇ Bδk (47)

and from Lemma 5.1 for m > k,Bδm = {xσ(1:n)}. Therefore,

lim
m→∞

Bδm = ∩∞
m=1Bδm = {xσ(1:n)} (48)

and

lim
m→∞

∫
Y
IBδm

(y∗)f(y∗|θ)µ(dy∗) = lim
m→∞

Qθ(Bδm) = Qθ(∩∞
m=1Bδm) = f(x|θ)µ({xσ(1:n)}),

(49)
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with the last equality due to exchangeability of f(x|θ).

b) Y continuous: Then, the right side of (49) vanishes, since µ({xσ(1:n)}) = 0. A different

approach is used, via the notion of regular conditional probability.

When Y is a Euclidean space Rnxd with Borel σ-field, Bd, and Θ takes values in Rk, k ≤ d,

the integral in the numerator of πabc(θ|Bδm),∫
Y
IBδm

(y∗)f(y∗|θ)µ(dy∗)

is a regular conditional probability, P [X∗ ∈ B|Θ = θ], B = Bδm (Breiman, 1992, Chapter

4, p. 79, Theorem 4.34), i.e., with θ fixed, it is a probability for B ∈ Bd and with fixed B

it is a version of the conditional density, θ ∈ Θ. Thus, for fixed θ, from (48),

lim
m→∞

P [X∗ ∈ Bδm|Θ = θ] = P [{xσ(1:n)}|Θ = θ]

and due to exchangeability is proportional to f(x|θ) a.s. . 2

Proof of Proposition 6.2: The arguments used for ABC hold for F-ABC.

For the probability in (40), using (13) for ABC with

H = {θ∗ : dT (T (Fθ∗), T (Fθ)) ≤ ζ}, (50)

Πabc(H|Bϵn) =

∫
Θ
IH(θ

∗)π(θ∗) ·
∫
Y IBϵn

(y∗)f(y∗|θ∗)µ(dy∗)ν(dθ∗)∫
Θ
π(s)

∫
Y IBϵn

(y∗)f(y∗|s)µ(dy∗) ν(ds)
=

∫
Θ
π(θ∗) · P (n)

θ∗ (H ∩Bϵn)ν(dθ)∫
Θ
π(s) · P (n)

s (Bϵn)ν(ds)
.

(51)

P
(n)
θ∗ (H ∩ Bϵn) in the numerators of (51) will be bounded below using continuity of T and

triangular inequality.

Since T is continuous, for ζ > 0 there is ϵ̃ > 0 such that if

dF(Fθ∗ , Fθ) ≤ ϵ̃ then dT (T (Fθ∗), T (Fθ)) ≤ ζ,

and then from (41), (50)

P
(n)
θ∗ (H ∩Bϵn) ≥ P

(n)
θ∗ [{dF(Fθ∗ , Fθ) ≤ ϵ̃} ∩Bϵn ] . (52)
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Since

dF(Fθ∗ , Fθ) ≤ dF(Fθ∗ , F̂x∗) + dF(F̂x∗ , F̂x) + dF(F̂x, Fθ) (53)

if

dF(Fθ∗ , F̂x∗) + dF(F̂x∗ , F̂x) + dF(F̂x, Fθ) ≤ ϵ̃ then dF(Fθ∗ , Fθ) ≤ ϵ̃

and therefore, for the right side of (52)

P
(n)
θ∗ [{dF(Fθ∗ , Fθ) ≤ ϵ̃} ∩Bϵn) ≥ P

(n)
θ∗ [{dF(Fθ∗ , F̂x∗) + dF(F̂x∗ , F̂x) + dF(F̂x, Fθ) ≤ ϵ̃} ∩Bϵn ].

(54)

From the assumptions,

dF(Fθ∗ , F̂X∗) ≤ o(kn)

kn
and dF(Fθ, F̂X) ≤

o(kn)

kn

with P
(n)
θ∗ and P

(n)
θ probabilities converging to one, respectively, and assuming x∗,x are in

these subsets the right side of (54)

P
(n)
θ∗ [{dF(Fθ∗ , F̂x∗)+dF(F̂x∗ , F̂x)+dF(F̂x, Fθ) ≤ ϵ̃}∩Bϵn) ≥ P

(n)
θ∗ [{dF(F̂x∗ , F̂x) ≤ ϵ̃−2

o(kn)

kn
}∩Bϵn ].

(55)

For ϵn ↓ 0 as n increases, eventually

ϵn ≤ ϵ̃− 2o(kn)

kn
, (56)

and the right side of (55)

P
(n)
θ∗ [{dF(F̂x∗ , F̂x) ≤ ϵ̃− 2

o(kn)

kn
} ∩Bϵn ] = P

(n)
θ∗ [Bϵn ]. (57)

(40) follows from (52), (54)-(57) since, when taking the limit in (51) as n increases to

infinity, for large n numerator and denominator coincide. 2.
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[31] Schwartz, L. (1951) Théorie des distributions. 1-2, Hermann.

37



[32] Tanaka, M.M., Francis, A. R., Luciani, F. and Sisson, S. A. (2006) Using Approx-

imate Bayesian Computation to Estimate Tuberculosis Transmission Parameters

From Genotype Data. Genetics, 173, 1511–1520.
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Figure 2: ABC and F-ABC posterior densities and histograms for the mean θ of a normal

with variance 1, and the unknown mean θ = 0, #1. Observe in the last histogram the

higher concentration of FABC for all around θ = 0
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Figure 3: ABC and F-ABC posterior densities and histograms for the mean θ of a normal

with variance 1, and the unknown mean θ = 0, #2. Observe in the last histogram the

higher concentration of FABC for all around θ = 0.
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Figure 5: F-ABC for all θ∗ drawn in Tukey’s (a,b,g,h)-model with parameters a = 3,
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b = 4, g = 3.5, h = 2.5. Finer dicretization Θ∗, with enlarged Θb.46



a

apar

F
re

q
u

e
n

c
y

2.85 2.95 3.05 3.15

0
5

0
0

0
1

5
0

0
0

b

bpar
F

re
q

u
e

n
c
y

3.5 4.0 4.5

0
4

0
0

0
8

0
0

0
1

2
0

0
0

g

gpar

F
re

q
u

e
n

c
y

3.2 3.4 3.6 3.8

0
2

0
0

0
4

0
0

0
6

0
0

0
8

0
0

0

h

hpar

F
re

q
u

e
n

c
y

2.2 2.4 2.6 2.8

0
2

0
0

0
4

0
0

0
6

0
0

0

Figure 8: F-ABC for all θ∗ drawn in Tukey’s (a,b,g,h)-model with parameters a = 3,

b = 4, g = 3.5, h = 2.5. Finer dicretization Θ∗, with enlarged Θb.47



0.1 0.2 0.3 0.4 0.5

0
1

2
3

4
5

6
p

N = 14274   Bandwidth = 0.05

M
a

rg
in

a
l 
D

e
n

s
it
y

0.5 1.0 1.5

0
.0

0
.5

1
.0

1
.5

m1

N = 14273   Bandwidth = 0.1

M
a

rg
in

a
l 
D

e
n

s
it
y

0.5 1.0 1.5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

1
.4

s1

N = 14273   Bandwidth = 0.1

M
a

rg
in

a
l 
D

e
n

s
it
y

5.4 5.6 5.8 6.0 6.2 6.4 6.6

0
.0

0
.5

1
.0

1
.5

2
.0

m2

N = 14274   Bandwidth = 0.1

M
a

rg
in

a
l 
D

e
n

s
it
y

1.0 1.4 1.8 2.2

0
.0

0
.5

1
.0

1
.5

2
.0

s2

N = 14274   Bandwidth = 0.1

M
a

rg
in

a
l 
D

e
n

s
it
y

Figure 9: F-ABC for all θ∗ drawn in a Normal mixture with parameters p = .3,

µ1 = m1 = 1, σ1 = s1 = 1, µ2 = m2 = 6, σ2 = s2 = 1.5.48
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Figure 10: F-ABC for all θ∗ drawn in a Normal mixture with parameters, p = .3,

µ1 = m1 = 1, σ1 = s1 = 1, µ2 = m2 = 6, σ2 = s2 = 1.5.49
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Figure 11: F-ABC for all θ∗ drawn in a Time series AR(1) model, θ1=a=.5, θ2=b=1
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Figure 12: F-ABC for all θ∗ drawn in a Time series AR(1) model, a=.5, b=1

51



0.4 0.6 0.8 1.0

0
1

2
3

a

N = 1312   Bandwidth = 0.04762

M
ar

gi
na

l D
en

sit
y

0.60 0.64 0.68

0
5

15
25

b

N = 1313   Bandwidth = 0.008264

M
ar

gi
na

l D
en

sit
y

a

apar

Fr
eq

ue
nc

y

0.6 0.7 0.8 0.9 1.0

0
50

15
0

25
0

b

bpar

Fr
eq

ue
nc

y

0.62 0.64 0.66 0.68

0
10

0
30

0

Figure 13: F-ABC for all θ∗ drawn in a Quantile model, a=.8, b=.65
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