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Summary

In a Data-Generating Experiment, the observed sample, x, has intractable or unavail-

able c.d.f., Fθ, and θ’s statistical nature is unknown; θ is element of metric space (Θ, dΘ).

Matching estimates of θ are introduced, learning from the “best” x-matches with samples

X∗ from Fθ∗ , θ
∗ ∈ Θ. Under mild conditions, these nonparametric estimates are uniformly

consistent and the upper bounds on their rates of convergence in probability have the same

rate and depend on the Kolmogorov entropies of an increasing sequence of sets covering Θ.

When Θ ⊆ Rm and the observations are i.i.d. the upper bounds can be,
√
logn√
n

when m is

known, and
√
mn·logn√

n
when m is unknown; m ≥ 1,mn ↑ ∞ at a desired rate. Upper bounds

can also be obtained for dependent observations. These rates hold for observations in Rd,

complementing recent results obtained for real, i.i.d. observations, under stronger assump-

tions and using weak probability distances; d ≥ 1. In simulations, the Matching estimates

are successful for the mixture of 2 normals and for Tukey’s (a, b, g, h) and the (a, b, g, k)

models. Computers’ evolution will allow for more and faster comparisons, resulting in

improved Matching estimates for universal use in Machine Learning.

Some key words: Data Generating Experiment; Intractable models; Kolmogorov en-

tropy; Learning with Matching; Maximum Matching Support Probability Estimate; Mini-

mum Matching Distance Estimates; Nonparametric Estimation
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1 Introduction

The evolution of Statistics to Data Science with the positive influence of Computer

Science and Big Data, motivates the search for new tools when the sample of size n,

X(∈ Rnxd), is generated from M(θ), e.g., a quantile function or a sampler or a “black-box”,

M, with input θ ∈ Θ;X is indexed by θ,X(θ). In this Data-Generating Experiment (DGE),

the goal is statistical inference for θ, with unknown statistical nature in the intractable or

unavailable cumulative distribution function (c.d.f.), Fθ, of each observation in X(θ). The

approach is nonparametric, extending the use of Minimum Distance estimation method

for intractable or unavailable underlying c.d.fs, and introducing the Maximum Matching

Support Probability estimates.

Matching and Fiducial Calibration ideas in Cochran and Rubin (1973) and in Rubin

(1973, 1984, 2019) motivate finding the best match for the observed x(θ), learning from

generated X∗(θ∗) for several θ∗, hence discovering the “best” parameter θ̂∗ among them

matching θ. Matching Estimation is model-free. The luxury of having M allows using

Nrep repeated X∗(θ∗) for each θ∗ ∈ Θ. Since models for the Data are never accurate,

Matching Comparisons as Learning Tool for θ can have universal use. Matching estimation

will improve with the evolution of computing capabilities allowing for more and faster

comparisons, thus making it a useful tool in Machine Learning.

The Matching measure is a generic d̃-distance between empirical distributions F̂x(θ) and

F̂X∗(θ∗), Two estimates are presented:

a) θ̂MMDE is the Minimum Matching Distance Estimate (MMDE),

θ̂MMDE = arg{min
θ∗∈Θ

d̃(F̂X∗(θ∗), F̂x)}, (1)

extending the classical Minimum Distance Estimation method (e.g., Wolfowitz, 1957) used

when {Fθ∗ ; θ
∗ ∈ Θ} are tractable.

b) For ϵ > 0, we measure for each θ∗ ∈ Θ the proportion of the Nrep X∗(θ∗) for which

d̃(F̂X∗(θ∗), F̂x) ≤ ϵ, (2)

and the Maximum Matching Support Probability Estimate, θ̂MMSPE, is obtained.
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Motivation for MMSPE is that for several models, as θ∗ approaches θ the higher its

Matching Support Probability is, increasing to 1 (Propositions 7.2, 7.4, Remark 7.2 and

Yatracos, 2020, Proposition 5.2). MMSPE is a relative of noisy Approximate Bayesian

Computation (ABC) MLE (Dean et. al., 2014, Yildirim et al. 2015) and is more distant

from Maximum Probability Estimator (Weiss and Wolfowitz, 1967, 1974); see Remark 7.4.

In practice, the Matching estimates are obtained using a discretization, Θ∗, of Θ. Under

mild conditions on the metric space (Θ, dΘ), on the underlying family of c.d.fs {Fθ∗ , θ
∗ ∈ Θ}

which is either unavailable or intractable, and with d̃ the Kolmogorov distance, dK , it is

shown that the Matching Estimate, θ̃, is uniformly consistent for θ; θ̃ denotes either θ̂MMDE

or θ̂MMSPE. The convergence rate for θ̃ to θ is obtained via that of the unavailable Fθ̃ to

Fθ. The upper bounds on the dK-rate of convergence of Fθ̃ to Fθ coincide, as well as those

on the dΘ-rate of θ̃ to θ and depend on the Kolmogorov entropy of metric space space

(Θ, dΘ)
1, or those of increasing sets Θk covering Θ, e.g. when Θ is Rm, with m either

known or unknown;k ↑ ∞,m ≥ 1. The rates are presented for i.i.d. Fθ vectors in Rd and can

be similarly obtained under mixing conditions and dependence when there is exponential

bound on P [dK(F̂X, Fθ) > ϵ] similar to the Dvoretzky-Kiefer-Wolfowitz-Massart bound in

(43); d ≥ 1, ϵ > 0. The rates may change under dependence, as for example in Time Series

where different probability bounds hold (see, e.g., Chen and Wu, 2018).

When Θ is a Euclidean space of unknown dimension, m, the uniform upper dΘ-rate

in Probability for θ̂MMDE and θ̂MMSPE, has often order at most
√
mn logn√

n
with mn ↑ ∞

at any desired rate; see Example 7.1. Note that the MLE and other model-based estima-

tion methods cannot be used with DGE and comparison with these Matching Estimates

is meaningless. Both Matching Estimation methods apply for any T (X) estimate of θ,

replacing in (1) and (2) F̂x by T (x) and F̂X∗(θ) by T (X∗(θ∗)); d̃ is generic distance.

In Examples 6.1-6.3, matching distances and support probabilities are plotted over Θ(⊆

Rm,m = 1, 2) for several parametric models and have extremes near the true parameters.

Thus, preliminary applications of the methods with a discretization over Θ will indicate a

compact, K, where θ lives, and then a finer discretization forK is used to reduce estimation

1The Kolmogorov entropy of metric space (Θ, dΘ) is log2 N(a), with N(a) the minimum number of

balls of radius a needed to cover Θ.
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bias. Choosing a large K may be preferred than choosing various starting points when

looking for a global maximum, as in MLE. In Examples 6.4-6.6, averages of M = 50

Matching Estimates are used successfully with the mixture of two normal densities and

with the intractable Tukey’s (a, b, g, h) and the (a, b, g, k)-models (respectively in Tukey,

1977, and Haynes et al., 1997).

Dean et al. (2014) prove consistency and asymptotic normality of ABC based maximum

likelihood estimates. Yildirim et al. (2015) use sequential Monte Carlo to provide consis-

tent and asymptotically normal estimates for parameters in hidden Markov Models with

intractable likelihoods. Kajihara et. al. (2018) estimate parameters for simulator-based

statistical models with intractable likelihood using recursive application of kernel ABC and

show consistency.

Bernton et al. (2019a, b) and Briol et al. (2020) use the empirical distribution, µ̂n(x) =

n−1
∑n

i=1 δXi
(x), to provide estimates for θ; δx∗(x) is the Dirac function with mass 1 at

x = x∗(∈ Rd),X = (X1, . . . , Xn). µ̂n is sufficient only for real observations and is neither

the empirical c.d.f., F̂X, nor the empirical measure, µn, that are indexed by Borel sets, Bd,

in Rd, d ≥ 1. Main drawback of µ̂n is the inadequate information it provides for Fθ and the

induced probability Pθ and so for θ, since it is evaluated at singletons, vanishes except for

the sample (where it takes value 1
n
) and, most important, unlike F̂X and µn, µ̂n does not

use the information in the sample about Pθ on Bd which determines Fθ and Pθ; d ≥ 1. This

information is valuable when matching x and x∗, since probabilities P and Q in (Rd,Bd)

are equal (i.e. P and Q “match”) if and only if P (A) = Q(A) for every A ∈ Bb.

Bernton et al. (2019a, b) provide Minimum Wasserstein distance estimates for in-

tractable models, with their rates of convergence and asymptotic distributions for real

observations only (2019a, section 3.3, last paragraph, 2019b, section 2, line 4). Briol et al.

(2020) use µ̂n, which is not a probability, after embedding it with kernel, k, in a space of

probability measures/c.d.fs, Pk, and use a divergence measure, the Maximum Mean Dis-

crepancy (MMD). The subjective choice of k is a serious concern since it shapes arbitrarily

the meager information in µ̂n about Fθ that is used in MMD. This is confirmed also by the

authors in Section 4. Theoretical results hold for i.i.d. observations; see section 3.1.
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In Bernton et al. (2019a, last paragraph of section 3,) it is added: “In high dimensions,

the rate of convergence of the Wasserstein distance between empirical measures is known to

be slow (Talagrand, 1994).” and “ Detailed analysis of WABC’s dependence on dimension

is an interesting avenue of future research.” The statements hold for their counterpart

in Bernton et al. (2019b), with focus on estimation, but also Briol et al. (2020) with

high dimensional observations, because of the use of µ̂n. In addition, unlike the proposed

Matching Estimation methods, the dimension of Θ needs to be known.

It is unavoidable, that several assumptions are required for µ̂n to convey information

for θ, among which that µ̂n, even though it is neither density, nor c.d.f., nor probability,

converges to Pθ in either probability or almost surely with respect to the weak Wasserstein

distance, e.g., see Assumptions 1 and 2 (Bernton et al., 2019a), Assumption 2.1 (Bernton

et al., 2019b). Also, that c.d.fs {Fθ∗ , θ
∗ ∈ Θ} are subset of Pk and Assumption 1 on MMD

which implies the bounds on Theorem 1 and Lemma 1 (Briol et al., 2019). These assump-

tions naturally hold with i.i.d. and dependent observations for the empirical c.d.f., F̂X,

and the empirical measure, µX, due to Glivenko-Cantelli Theorem and Large Deviations’

inequalities.

In sections 2-5, the Matching estimation methods are briefly introduced, applications

appear in section 6 and theoretical results with proofs are in sections 7 and 8.

2 From Statistical Experiments to Data-Generating

Experiments (DGE)

A Statistical Experiment, (X ,A,P), consists of sample space X with σ-field A, the

parameter space Θ with distance dΘ, and probability measures P = {Pθ∗ ; θ
∗ ∈ Θ}; see

e.g. Le Cam (1986), Le Cam and Yang(2000). X ∈ X is observed from Pθ and the aim is

to estimate θ and study properties of the estimate.

Instead of P one can use the corresponding c.d.fs FΘ = {Fθ∗ , θ
∗ ∈ Θ} with generic

distance d̃ used also for functionals T (Fθ∗), θ
∗ ∈ Θ, and assume identifiability i.e. Fθ1 = Fθ2
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implies θ1 = θ2.

Definition 2.1 A Data-Generating Experiment (DGE) consists of (X ,MX ,Θ,MΘ), with

sample and parameter spaces, respectively, X and Θ, Samplers MΘ,MX , respectively,

for random Θ and for X given Θ = θ∗. Underlying structure includes σ-fields AX ,AΘ,

prior π for Θ, c.d.f. Fθ for generated X given Θ = θ, non-available or intractable c.d.fs

FΘ = {Fθ∗ , θ
∗ ∈ Θ} with distance d̃, θ-identifiability and distance dΘ on Θ.

- X = X(θ) ∈ X is observed and the aim is to estimate θ.

- The user can select θ∗ ∈ Θ to draw one or more X∗(θ∗) via MX (θ
∗).

DGE examples include those where data is obtained via either a Quantile function, or

a Sampler, or a “Black-Box”.

In the sequel, d̃ is replaced for c.d.fs by the Kolmogorov distance, dK .

Definition 2.2 For any two distribution functions F,G in Rd, d ≥ 1, their Kolmogorov

distance

dK(F,G) = sup{|F (y)−G(y)|; y ∈ Rd}. (3)

3 The Minimum Distance Method for Statistical Ex-

periments

Wolfowitz introduced Minimum Distance Estimates (MDEs) in a series of papers in the

50’s (e.g. 1957) using dK and with the empirical c.d.f., F̂X, of sample X representing data,

D, that is “matched” with a c.d.f. from a pool of c.d.fs.

Definition 3.1 For any n-size sample Y = (Y1, . . . , Yn) of random vectors in Rd, nF̂Y(y)

denotes the number of Yi’s with all their components smaller or equal to the corresponding

components of y. F̂Y is the empirical c.d.f. of Y.

For a Statistical Experiment with X having c.d.f Fθ ∈ FΘ, X = X(θ), θ̂MDE satisfies

dK(Fθ̂MDE
, F̂X(θ)) ≤ inf

θ∗∈Θ
dK(Fθ∗ , F̂X(θ)) + γn, (4)
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with the user’s choice of γn ↓ 0 as n ↑ ∞, when γn = 0 cannot be used.

The infimum in (4) may not be achievable and by including γn > 0, θ̃MDE is element of

Θ̃n = {θ̃1, . . . , θ̃mn , . . .} (5)

satisfying (4). Thus, dK(F̂θ̂MDE
, F̂X(θ)) is kept small for θ̂MDE ∈ Θ̃n.

Tools for proving consistency and the uniform convergence rate kn√
n
of Fθ̂MDE

to Fθ are:

dK(Fθ̂MDE
, Fθ) ≤ dK(Fθ̂MDE

, F̂X(θ)) + dK(F̂X(θ), Fθ) ≤ 2 · dK(F̂X(θ), Fθ) + γn, (6)

the Dvoretzky, Kiefer, Wolfowitz (DKW) (1956) inequality for dK(F̂X(θ), Fθ) and controlled

γn ≤ kn√
n
, kn = o(

√
n) increasing as slowly as we wish with n to infinity.

The MDE method can be used for any functional T (Fθ) for which consistent esti-

mate Tn exists with respect to distance d̃, by replacing in (4) dK , F̂X, Fθ∗ , respectively,

by d̃, Tn, T (Fθ∗), to obtain estimate T (Fθ̂MDE
) with the form of the functional; see, e.g.,

Yatracos, 2019, Lemma 3.1.

4 The Minimum Matching Distance Method

In observational studies, Rubin (1973) matched data D with data D∗ from a big data

reservoir to reduce bias, using a mean matching method and nearest available pair-matching

methods. In a DGE, D = X = X(θ) is available generated by unknown θ to be estimated,

and D∗ = X∗(θ∗) become available via MX , θ
∗ ∈ Θ. D and D∗ are replaced for matching,

respectively, by F̂X(θ), F̂X∗(θ∗).

Definition 4.1 The Minimum Matching Distance Estimate (MMDE), θ̂MMDE, satisfies

dK(F̂X∗(θ̂MMDE), F̂X(θ)) ≤ inf
θ∗∈Θ

dK(F̂X∗(θ∗), F̂X(θ)) + γn, (7)

with γn = 0 or γn ↓ 0 as n ↑ ∞.

θ̂MMDE is not necessarily unique. γn appears in the upper rate of convergence of Fθ̂MMDE

to Fθ and has rate smaller than the other additive components.
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(D) Discretizations of (Θ, dΘ): Θ’s finite dΘ-discretization, Θ
∗
n, is used in (7) instead

of Θ, Θ∗
n ↑ Θ, Card(Θ∗

n) = Nn. θ
∗
ap,n(s) is the element of Θ∗

n closest to s. When (Θ, dΘ) is

totally bounded, Θ∗
n consists of the Nn = N(an) centers of the smallest number of dΘ-balls

of radius an covering Θ; an > 0, an ↓ 0 as n ↑ ∞. log2N(a), a > 0, is Kolmogorov’s entropy

of (Θ, dΘ). In the sequel, log2N(a) and lnN(a) are used interchangeably.

The convergence rate for θ̂MMDE to θ is obtained via that of Fθ̂MMDE
to Fθ. The parallel,

matching inequality to (6) is

dK(Fθ̂MMDE
, Fθ) ≤ dK(Fθ̂MMDE

, F̂X∗(θ̂MMDE)) + dK(F̂X∗(θ̂MMDE), F̂X(θ)) + dK(F̂X(θ), Fθ). (8)

In a nutshell, dK(F̂X(θ), Fθ) decreases to 0 in Probability, bounded above by kn√
n
, kn =

o(
√
n), with kn ↑ ∞ with n as slowly as we wish. dK(Fθ̂MMDE

, F̂X∗(θ̂MMDE)) is bounded above

in Probability by
√
lnNn√
n

by Lemma 8.1 with θ̂MMDE one of Nn selected θ∗ ∈ Θ∗
n,

lnNn

n
↓

0, Nn ↑ ∞ as n ↑ ∞. The “matching term”, dK(F̂X∗(θ̂MMDE), F̂X(θ)), is bounded above in

Probability by a multiple of γn + kn√
n
+ dK(Fθ, Fθ∗ap,n(θ)) and depends on θ; kn as above.

Under mild assumptions, an upper bound in Probability is obtained for dΘ(θ̂MMDE, θ).

Details are in Proposition 7.1 and Corollary 7.1.

Remark 4.1 The advantage of having Sampler, MX , allows using Nrep(fixed) samples

X∗(θ∗) for each θ∗ ∈ Θ∗
n. θ̂MMDE minimizes all the distances and gives much weight to one

sample. The Mean Matching dK-distances, one for each θ∗ ∈ Θ∗
n, are also compared and

their minimum provides θ̂MMMDE, the Minimum Mean Matching Distance estimate(s).

Remark 4.2 MMDE applies for any estimate, Tn(X), of T (θ) with generic distance d̃,

replacing in (7) F̂X(θ) by Tn(X(θ)) and F̂X∗(θ) by Tn(X
∗(θ∗)).

5 The MaximumMatching Support Probability Method

Definition 5.1 For θ∗ ∈ Θ, Nrep samples X∗
1(θ

∗), . . . ,X∗
Nrep

(θ∗) are drawn via MX (θ
∗)

and for ϵ > 0 those supporting ϵ-matching with X(θ) = x are:

Aϵ(θ
∗) = {X∗

j(θ
∗) : dK(F̂X∗

j (θ
∗), F̂x(θ)) ≤ ϵ, j = 1, . . . , Nrep}. (9)
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The ϵ-Matching Support Proportion for θ∗ is:

pϵ,match(θ
∗) =

Card[Aϵ(θ
∗)]

Nrep

> 0. (10)

The Maximum ϵ-Matching Support Probability Estimate (MMSPE) is

θ̂MMSPE = arg{max
θ∗∈Θ

pϵ,match(θ
∗)}. (11)

Observe that:

a) for large Nrep and n,

pϵ,match(θ
∗) estimates Pθ∗ [X

∗(θ∗) : dK(F̂X∗(θ∗), Fθ) ≤ ϵ], (12)

b) for all s ∈ Θ and for all n by construction,

pϵ,match(θ̂MMSPE) ≥ pϵ,match(θ
∗
ap,n(s)). (13)

Remark 5.1 θ̂MMSPE depends crucially on ϵ and the cardinality of discretization, Θ∗
n,

that replaces Θ in (11). When Aϵ(θ
∗) is empty, ϵ is increased. When the histogram of

the matching support probabilities, pϵ,match(θ
∗), θ∗ ∈ Θ∗

n, is nearly flat on a large neighbor-

hood, ϵ is decreased. A finer discretization is needed when the smooth histogram forms an

open palm. When Θ ⊆ Rm,m ≥ 2, the size of discretization depends on the difficulty in

estimating each θ’s coordinate. This holds also for θ̂MMDE.

Observe that when Nrep X∗(θ∗) are drawn for each θ∗ ∈ Θ∗
n and the upper bound in

(7) is used as ϵ in (10), θ̂MMSPE is MMDE as element of arg{maxθ∗∈Θ̃pϵ,match(θ
∗)}, with

upper bound on the convergence rate as in Proposition 7.1.

For other values of ϵ, the convergence rate for θ̂MMSPE to θ is obtained via that of

Fθ̂MMSPE
to Fθ. Inequalities to determine the rate for Fθ̂MMSPE

, with pϵ,match(θ̂MMSPE)

involved, are:

dK(Fθ̂MMSPE
, Fθ) ≤ dK(Fθ̂MMSPE

, F̂X∗(θ̂MMSPE)) + dK(F̂X∗(θ̂MMSPE), Fθ)

≤ dK(Fθ̂MMSPE
, F̂X∗(θ̂MMSPE)) + dK(F̂X∗(θ̂MMSPE), F̂X(θ)) + dK(F̂X(θ), Fθ). (14)

The first and the last term in upper bound (14) have uniform upper bounds in Probability

with order, respectively,
√
lnNn√
n

and kn√
n
, kn = o(

√
n), as explained in the paragraph after

(8); choose kn ∼
√
lnNn. The middle “matching term” is bounded by ϵ in (9).
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Lemma 5.1 For the Maximum ϵ-Matching Support Probability estimate, θ̂MMSPE, in (11),

Θ = Θ∗
n with cardinality Nn,

dK(Fθ̂MMSPE
, Fθ) ≤ C · [ϵ+

√
ln Nn√
n

] ≤ C ·max{ϵ,
√
ln Nn√
n

}, C > 0. (15)

From (15) the question arises, whether uniformly in θ the order of ϵ can be at most
√
lnNn√
n

, with pϵ,match(θ̂MMSPE) ↑ 1 as n ↑ ∞. From (13), it seems clear the latter holds when

there is θ∗ ∈ Θ∗
n such that dK(Fθ∗ , Fθ) < ϵ. In simulations with i.i.d. r.vs., small ϵ > 0,

n,Nn, Nrep moderately large, pϵ,match(θ̂MMSPE) is at least .70 for Normal, Cauchy, Weibull,

Uniform, Poisson models with one parameter unknown and θ̂MMSPE is near θ, competing

well with MMDE. The results are confirmed in Propositions 7.2, 7.4 for the probabilities

and in Propositions 7.3, 7.5 for the upper bounds on the convergence rates.

Remark 5.2 When any of θ̂MMDE, θ̂MMMDE, θ̂MMSPE takes more than one values, the

average is reported as the corresponding estimate.

6 Applications

For tractable, parametric models, observe in Examples 6.1-6.3, Figures 1-3, the “path”

towards the unknown parameter(s), as the mean matching distances of Nrep X∗(θ∗), θ∗ ∈

Θ∗
n, are getting smaller and the matching support probabilities are getting larger, confirmed

by the results in Section 7; see Propositions 7.2, 7.4 and Remark 7.2. Preliminary Matching

Estimation with distant θ∗ over Rm will provide a path to determine the large compact,

K, where θ lives. Alternatively, increasing compacts covering Rd can be used and K is

determined concurrently with the Matching estimates.

In all the MMSPE applications, the choice of ϵ is crucial. To determine ϵ one may use

Empirical Quantiles of Kolmogorov distance between F̂X and F̂X∗ (Yatracos, 2020, Section

3.1, Table 1). In the Examples, ϵ = .13 is used which is the 90th Empirical quantile for the

Kolmogorov distance of F̂X(0) and F̂X∗(0) from a normal distribution with mean zero and

variance 1. Alternatively, ϵ can be chosen by trial with a satisfactory matching support

probability and avoiding very many MMSEP candidates, starting with ϵ-value between n−.5
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and 3n−.5. When more than one elements of discretization Θ∗
n satisfy a method’s criterion,

the reported estimate is their average. Standard deviations of estimates for intractable

models appear in Examples 6.4-6.6.

Example 6.1 The observed X consists of n = 100 i.i.d. r.vs from the exponential and

Poisson models, each with parameter 5 , and from normal model with mean 5 and assumed

known standard deviation σ = 1. It is assumed the unknown θ (i.e. 5) is in the compact

[3, 8], divided in 49 equal sub-intervals with their end-points elements of discretization Θ∗
n

with cardinality N = 50. Nrep = 100 samples of size n are obtained using each element

of Θ∗
n and the value ϵ = .13 is used for MMSPE. Estimates appear in Table 1 and, most

important, plots with paths pointing to the parameters are in Figure 1.

MATCHING ESTIMATES

Model MMDE MMMDE MMSPE pϵ,match

Exponential 5.11 4.53 5.14 0.75

Poisson 5.48 5.45 5.35 0.95

Normal 4.84 4.94 4.94 0.88

Table 1: Matching Estimation for one parameter with value 5

Example 6.2 The observed X consists of n = 100 i.i.d. r.vs from the Weibull, Cauchy and

the normal models, with both parameters equal to 5. For Matching estimation it is assumed

known that these parameters are equal and only the discretization of [3, 8] is used. The rest

is as in Example 6.1. Results appear in Table 2 and plots pointing to the parameters are

in Figure 2.

Example 6.3 The observed X consists of n = 100 i.i.d. r.vs from the Normal model

with mean µ = 5 and standard deviation σ = 2. It is assumed for θ = (µ, σ) that Θ =

[3, 8]x[.5, 4.5], discretized by dividing each interval in 49 equal sub-intervals with their end-

points forming the discretization Θ∗
n with cardinality N = 2, 500. Nrep = 100 samples of

size n are obtained using each element of Θ∗
n and ϵ = .13 is used. Estimates appear in

Table 3 and the plot pointing to the parameters is in Figure 3.
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MATCHING ESTIMATES

Model MMDE MMMDE MMSPE pϵ,match

Weibull 5.14 5.14 5.14 0.85

Cauchy 4.79 4.94 4.84 0.92

Normal 5.16 4.94 4.84 0.75

Table 2: Matching Estimation for two equal parameters with value 5

MATCHING ESTIMATES FOR THE NORMAL MODEL

Parameters MMDE MMMDE MMSPE, pϵ,match = .9

µ 5 5.04 4.94

σ 2.1 2.05 2.13

Table 3: Matching Estimation for parameter θ = (5, 2)

Examples 6.4-6.6 present Matching estimates for Tukey’s g-and-h model (Tukey, 1977),

the g-k model (Haynes et al., 1997) and the mixtures of two normal distributions. The

estimation is repeated M = 50 times and MMDE, MMMDE and MMSEP denote the av-

erages accompanied by their estimated standard deviation in (·), all in Tables 4-6. Density

plots for the M = 50 estimates of each parameter are in Figures 4-6.

Example 6.4 The observed X consists of n = 200 i.i.d. r.vs, X1, . . . , Xn, from Tukey’s

g-and-h model (see, e.g., Tukey, 1977), which accommodates data with non-Gaussian dis-

tribution, with g real-valued controlling skewness, non-negative h controlling tail heaviness

and with location and scale parameters a ∈ R, b > 0. Standard normal Z1, . . . , Zn are used,

a = 3, b = 4, g = 3.5, h = 2.5 and

Xi = a+ b
egZi − 1

g
e.5hZ

2
i , i = 1, . . . , n. (16)

Parameter spaces Θg,Θh,Θa,Θb are each the interval [2, 5], divided in 10 equal sub-intervals

with the 11 end-points used to obtain for Θ = ΘaxΘbxΘgxΘh discretization Θ∗
n with car-

dinality N = 114. Nrep = 100 samples of size n are obtained using each element of Θ∗
n

for Matching Estimation with ϵ = .13. The process is repeated M = 50 times and the

average Matching estimates and their estimated standard deviations are in Table 4. The

distributions of the M = 50 obtained estimates for each of g, h, a, b are in Figure 4.
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MEAN MATCHING ESTIMATES FOR TUKEY’S g-and-h MODEL

Parameters MMDE & SD MMMDE & SD MMSPE & SD

a = 3 2.98 (.03) 3.04 (.04) 3.03 (.04)

b = 4 3.91 (.08) 4.06 (.12) 3.77 (.09)

g = 3.5 3.42 (.08) 3.52 (.09) 3.52 (0.07)

h = 2.5 2.72 (.05) 2.57 (.07) 2.93 (0.05)

Table 4: Matching Estimates with independent observations, n=200.

Example 6.5 The observed X consists of n = 50 dependent r.vs, X1, . . . , Xn, from g-and-

k model (Haynes et al., 1997), with g real-valued controlling skewness, k > −.5 controlling

kurtosis and with location and scale parameters a ∈ R, b > 0. The g-and-k distributions

accommodate distributions with more negative kurtosis than the normal distribution and

some bimodal distributions (Rayner and MacGillivray, 2002, p. 58). Standard normal

Z1, . . . , Zn are used and

Xi = a+ b[1 + c · 1− e−gZi

1 + e−gZi
](1 + Z2

i )
kZi, i = 1, . . . , n; (17)

c is a parameter used to make the sample correspond to a density; usually c = .8. The

normal variables used have covariance .5 and are obtained, using R, as one vector of size

n from a multivariate normal. The parameters in (17) are: a = 3, b = 4, g = 3.5, h = 2.5;

c = .8. Parameter spaces Θg,Θk,Θa,Θb, the discretization of Θ and ϵ are as in Example

6.4 and Matching Estimation follows. The process is repeated M = 50 times and the

average Matching estimates and their estimated standard deviations are in Table 5. The

distributions of the M = 50 obtained estimates for each of g, k, a, b are in Figure 5.

Example 6.6 The observed X consists of n = 200 independent r.vs, from a Normal mix-

ture with two components, means µ1 = 1, µ2 = 6, standard deviations σ1 = 1, σ2 = 1.5 and

weights, respectively, p = p1 = .3, p2 = 1 − p = .7. Parameter spaces Θp = [0, 1],Θµ1 =

[.5, 3.5],Θµ2 = [3.5, 6.5],Θσ1 = Θσ2 = [.5, 2], are divided each in 10 equal sub-intervals with

the 11 end-points used to obtain for Θ = ΘpxΘµ1xΘσ1xΘµ2xΘσ2 discretization Θ∗
n with

cardinality N = 115. Nrep = 100 samples of size n are obtained using each element of
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MEAN MATCHING ESTIMATES FOR g-and-k MODEL

Parameters MMDE & SD MMMDE & SD MMSPE & SD

a = 3 2.96 (.07) 3.31 (.15) 3.09 (.1)

b = 4 3.66 (.07) 3.81 (.14) 3.98 (.09)

g = 3.5 3.35 (.05 ) 3.54 (.12) 3.36 (.1)

k = 2.5 2.98 (.06) 3.08 (.12) 2.78 (.08)

Table 5: Matching Estimates with dependent observations, n=50.

Θ∗
n for Matching Estimation with ϵ = .13. The process is repeated M = 50 times and the

average Matching estimates and their estimated standard deviations are in Table 6. The

distributions of the M = 50 obtained estimates for each of p, µ1, σ1, µ2, σ2, are in Figure 6,

using for the means m1,m2 and for the standard deviations s1, s2.

MEAN MATCHING ESTIMATES FOR pN(µ1, σ1) + (1− p)N(µ2, σ2)

Parameters MMDE & SD MMMDE & SD MMSPE & SD

p = .3 .31 (.002) .32 (.006) .34 (.002)

µ1 = 1 1.06 (.03) 1.14 (.04) 1.26 (.016)

σ1 = 1 1.11 (.03) 1.15 (.05) 1.33 (.006)

µ2 = 6 6 (.02) 6.06 (.03) 6.12 (.02)

σ2 = 1.5 1.51 (0.02) 1.43 (.03) 1.41 (.02)

Table 6: Matching Estimates with independent observations, n=200.

Example 6.7 Rates of convergence of Matching etimates are obtained for Θ ⊆ Rm, with

m either known or unknown, under the assumptions and with the results in Section 7.

Example 7.1 is presented for θ̂MMDE but holds also for θ̂MMSPE, since the upper bounds on

the rates of convergence coincide; see (19).
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7 Rates of Convergence for Matching Estimates

7.1 Assumptions and Results

Notation: an has order bn, an ∼ bn : for large n, C1bn ≤ an ≤ C2bn, 0 < C1 ≤ C2;

an ≈ bn ⇐⇒ limn→∞
an
bn

= 1.

Assumptions used in MMDE and MMSPE

(A1) Continuity of Fθ: ∀ θ, θn ∈ Θ, limn→∞ dΘ(θn, θ) = 0 → limn→∞ dK(Fθn , Fθ) = 0.

(A2) Dimension of Θ : there are an → 0 such that lnN(an)
n

→ 0, N(an) ↑ ∞ as n ↑ ∞.

(A3) From Fθ to θ : w is continuous, increasing function defined on R+ with w(0) = 0 and

dK(Fθ1 , Fθ2) ∼ w(dΘ(θ1, θ2)), ∀ θ1, θ2 ∈ Θ, (18)

or for small neighborhoods of Fθ1 .

(A1) holds for most parametric models in Rd. (A2) holds for sets Θ = [−L
2
, L
2
]m, L > 0,

with an ∼ n−k, k > 0, but also for families of functions, e.g. densities in a compact in

Rd that have p mixed partial derivatives and the p-th derivative satisfying a Lipschitz

condition with parameter, e.g. α ∈ (0, 1). Observe that (A3) implies (A1). (A3) holds for

several parametric families in R with bounded densities, at least locally using the mean

value theorem. (A3) provides the upper bound on the error rate for θ from the error rate

for Fθ.

In a nutshell, uniform consistency of Fθ̂MMDE
, Fθ̂MMSPE

to Fθ and upper bounds on the

dK-rates of convergence in Probability are initially established when (Θ, dΘ) is totally

bounded or is the union of increasing totally bounded sets. Under (A1), (A2) and with

notation an, N(an), θ
∗
ap,n(θ) in (D), section 4, the upper bound in Probability, ϵ∗n, for the

matching estimate Fθ̃, θ̃ = θ̂MMDE, θ̂MMSPE, of Fθ is

dK(Fθ̃, Fθ) ≤ ϵ∗n ∼ max{sup
s∈Θ

dK(Fθ∗ap,n(s), Fs),

√
lnN(an)√

n
};

see (22), (34), (40). When, in addition (A3) holds,

ϵ∗n ∼
√

lnN(an)√
n

∼ w(an); (19)
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see (23), (35), (41). The upper bound on the dΘ-rate for θ̂MMDE, θ̂MMSPE to θ depends

on the relation between dK(Fθ1 , Fθ2) and dΘ(θ1, θ2) determined by (A3). The results are

obtained for i.i.d. vectors in Rd and it is indicated how the results are extended under

dependence, e.g. see Remark 7.1.

7.2 Upper bound on the rates of convergence for MMDE

The reader can observe in Proposition 7.1 a)-c) the passage of the rates, from the data

to the parameters, via the empirical c.d.fs and the intractable or unavailable c.d.fs.

Proposition 7.1 In a DGE, let X = (X1, . . . , Xn) consist of i.i.d. r.vs with c.d.f. Fθ ∈

FΘ. Assume that (Θ, dΘ) is totally bounded with discretization Θ∗
n and associated notation

an, N(an), θ
∗
ap,n(θ) in (D), section 4. X∗(θ∗) are drawn via MX (θ

∗) for θ∗ ∈ Θ∗
n. Obtain

θ̂MMDE in (7) with Θ = Θ∗
n.

a) For any ϵn > 0, an ↓ 0,

P [dK(Fθ̂MMDE
, Fθ) > ϵn] ≤ 6 ·N(an) · exp{−

n

18
(ϵn − dK(Fθ∗ap,n(θ), Fθ)− γn)

2}. (20)

When

ϵn = ϵn(θ) = dK(Fθ∗ap,n(θ), Fθ) + 6

√
lnN(an)√

n
+ γn, (21)

the upper bound in (20) is 6
N(an)

and converges to zero as n increases to infinity.

b) Under assumptions (A1), (A2), ϵn in (21) decreases to zero in probability:

b1) The uniform upper dK-rate of convergence, ϵ∗n, for Fθ̂MMDE
to Fθ is:

ϵ∗n ∼ max{sup
s∈Θ

dK(Fθ∗ap,n(s), Fs),

√
lnN(an)√

n
}. (22)

b2) Using the upper bound of (18) in (A3), the uniform upper rate of convergence for

dK(F̂θ̂MMDE
, Fθ) in Probability to zero is:

ϵ∗n ∼
√

lnN(an)√
n

∼ w(an). (23)

b3) Under (A3), from ϵ∗n in (23) the uniform upper rate of convergence for dΘ(θ̂MMDE, θ)

in Probability to zero is w−1(ϵ∗n).
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c) Under (A2), (A3), with an = w−1(n−1/2), an upper rate in b2) is un =
√
lnN(w−1(n−1/2))/

√
n

and in b3) is w−1(un).

Similar results hold when Θ is union of increasing sequence of totally bounded sets.

Corollary 7.1 Under the assumptions of Proposition 7.1, with Θ = ∪∞
k=1Θk, Θk ⊆ Θk+1,

Θk dΘ-totally bounded, Nk(a) the smallest number of dΘ-balls of radius a covering Θk, for

every θ ∈ Θk the uniform upper dK-rate of convergence, ϵ∗n, for Fθ̂MMDE
to Fθ is:

ϵ∗n ∼
√

lnNk(an)√
n

∼ w(an). (24)

For each θ ∈ Θ, eventually in n, upper rates of convergence for dK(Fθ̂MMDE
, Fθ) and

dΘ(θ̂MMDE, θ) are as in Proposition 7.1, b3), c) with k = k(n) ↑ ∞ as n ↑ ∞.

Remark 7.1 The MMDE rates of convergence in Proposition 7.1 and Corollary 7.1 hold

with observations in Rd, d > 1, using Lemma 8.1 with probability bound (43) UKW in

Remark 8.1. Similar rates hold under dependence, with the upper bound in (43) and there-

fore (20)-(22) all including mixing coefficient ϕ (Roussas and Yatracos, 1997, page 339,

equations (8),(30)-(33)). The rates change, e.g. in Linear Time Series, using an upper

probability bound in Chen and Wu (2018, p. 3, equation (8)): for z ≥
√
n log(n)

P [sup
t∈R

|
n∑

i=1

I(Xi ≤ t)− F (t)| > z] ≤ C1
n

zqβ logr0(z)
,

β is dependence parameter, with larger β indicating weaker dependence, q, r0 are parameters

measuring tail heaviness, q > 1 and r0 > 1; I is indicator function, C1 constant. The upper

probability bound is sharp.

Example 7.1 Upper rates of convergence of θ̂MMDE are obtained under the assumptions

of Proposition 7.1, with Θ ⊆ Rm,m ≥ 1, dΘ the sup-norm, w(a) = a, a ≥ 0. The same

rates hold also for θ̂MMSPE.

a) When θ ∈ (−L/2, L/2)m, L ≥ 1,m known, for an > 0 used in the discretization of the

parameter space,

NL(an) = (
L

an
)m. (25)
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The upper rate of convergence in probability for dK(Fθ̂MMDE
, Fθ), θ ∈ [−L/2, L/2]m, is

ϵ∗n ∼ m1/2(lnL− ln an)
1/2

n1/2
∼ an (26)

and with an = 1√
n
the rate of convergence is

m1/2 (lnL+ .5 lnn)1/2

n1/2
∼

√
lnn√
n

.

Since dK(Fθ1 , Fθ2) ∼ dΘ(θ1, θ2) for all θ1, θ2 ∈ Θ,

dΘ(θ̂MMDE, θ) ≤ C ·
√
lnn√
n

, C > 0.

b) When θ ∈ Rm = ∪∞
n=1(

Ln

2
, Ln

2
)m,m known and an > 0, there is n∗ such that θ ∈

(−Ln∗
2
, Ln∗

2
)m. Then , for n ≥ n∗, from (26), the upper rate of convergence in probability

for dK(Fθ̂MMDE
, Fθ) is

ϵ∗n ∼ m1/2(lnLn − ln an)
1/2

n1/2
∼ an. (27)

When an = 1√
n
and Ln ≤

√
n, for each θ ∈ Rm, eventually in n,

dΘ(θ̂MMDE, θ) ∼ dK(Fθ̂MMDE
, Fθ) ≤ C ·

√
lnn√
n

, C > 0.

In a Statistical Experiment, with θ ∈ Rm and Fθ known but possibly inaccurate, the order

of convergence in probability of an estimate to θ is often kn√
n
, kn = o(

√
n) with kn ↑ ∞ as

desired with n.

c) When m is unknown in a) and b), it is replaced by mn in (26) and (27) and the rate for

the upper bound is
√
mn·lnn√

n
, with mn increasing to infinity as slow as desired.

7.3 Upper bound on the rates of convergence for MMSPE

The confirmation that pϵ,match(θ̂MMSPE) ↑ 1 as n ↑ ∞, follows for real observations,

under conditions holding for models used in Example 6.1 and several other parametric

families, namely that dK(Fs, Fθ) = ∆(> 0) is achieved at single xs,θ ∈ R, where the

difference of densities fs(x)−fθ(x) changes sign. Tools in the proof are limiting distributions

of Kolmogorov-Smirnov type statistics for one and two samples under the Alternative

(Raghavachari, 1973). By Glivenko-Cantelli theorem, w.l.o.g. F̂x(θ) is replaced by Fθ in
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the middle matching term of (14), suggested also by the inequality preceding (14), and the

result for one sample is used.

Proposition 7.2 In a DGE, let FΘ be a family of continuous c.d.fs in R and for s ̸= θ,

∆(s, θ) = dK(Fs, Fθ), (28)

K1 = {x : Fs(x)− Fθ(x) = ∆(s, θ)}, K2 = {x : Fs(x)− Fθ(x) = −∆(s, θ)}. (29)

(A4) One of K1, K2 in (29) is singleton and the other empty, w.l.o.g.

K1 = {xs,θ}, K2 = ∅. (30)

Assume (A1) holds and fix θ ∈ Θ, ϵ > 0. Then, for large n there is s∗ ∈ Θ, such that

∆(s∗, θ) ≤ ϵ− k∗
n√
n
, k∗

n = o(
√
n), k∗

n ↑ ∞ with n. (31)

If X∗(s∗) is a vector of n i.i.d. Fs∗ observations obtained via MX (s
∗),

Ps∗ [dK(F̂X∗(s∗), Fθ) ≤ ϵ] ≥ Φ(2 · k∗
n)) ↑ 1, as n ↑ ∞; (32)

Φ is the c.d.f. of standard normal. The lower bound in (32) is independent of θ, therefore

it holds uniformly in θ.

Upper bounds follow on the rate of convergence of estimates for real observations and

Θ ⊆ R.

Proposition 7.3 In a DGE with the assumptions (A1) and (A4) in Proposition 7.2, let

the observed X(θ) = (X1, . . . , Xn) consist of i.i.d. r.vs with unknown c.d.f. Fθ ∈ FΘ,

Θ ⊆ R, dΘ = | · |.

a) Assume (Θ, | · |) is totally bounded, w.l.o.g. (−L
2
, L
2
), with discretization Θ∗

n and

notation an, N(an), θ
∗
ap,n(s) in (D), section 4. For every θ∗ ∈ Θ∗

n, Nrep X∗(θ∗) are drawn

via MX (θ
∗).

Obtain θ̂MMSPE in (11) with Θ = Θ∗
n and in (9)

ϵ = ϵn = sup
s∈Θ

dK(Fθ∗ap,n(s), Fs) +

√
lnN(an)√

n
. (33)
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a1) The rate of the uniform upper bound in (15) is:

ϵ̃∗n ∼ max{sup
s∈Θ

dK(Fθ∗ap,n(s), Fs),

√
lnN(an)√

n
}. (34)

a2) Under (A3), with an ↓ 0 as n ↑ ∞, ϵ̃∗n converges to zero,

ϵ̃∗n ∼
√
− ln an√

n
∼ w(an). (35)

For s∗ = θ∗ap,n(θ), n large, (32) holds, and the uniform upper rate of of convergence for

dK(Fθ̂MMSPE
, Fθ) in Probability to 0 is ϵ̃∗n in (35).

a3) Under (A3), the uniform upper rate of convergence for |θ̂MMSPE − θ| in Probability to

0 is w−1(ϵ̃∗n), with ϵ̃∗n in (35).

b) Assume (A3) holds and Θ = R = ∪∞
n=1(−

k(n)
2
, k(n)

2
). Then, eventually in n, the upper

rate of convergence in probability for dK(Fθ̂MMSPEE
, Fθ),

ϵ̃∗n ∼
√

ln k(n)− ln an√
n

∼ w(an), (36)

and for dΘ(θ̂MMSPEE, θ) is w−1(ϵ̃∗n).

c) Assume (A3) holds and an = w−1(n−1/2). Then, an upper rate in a2) is un =√
− ln(w−1(n−1/2))/

√
n and in a3) is w−1(un). In b) the upper rates are, respectively,

ũn = max(
√
ln k(n),

√
− ln(w−1(n−1/2)))/

√
n and w−1(ũn).

Proposition 7.2 is extended for i.i.d. observations in Rd.

Proposition 7.4 For θ ∈ Θ,Θ∗
n discretization of Θ, θ∗ap,n(θ) the element of Θ∗

n closest to

θ and n i.i.d. random vectors in Rd with c.d.f. Fθ∗ap,n(θ), n large:

Pθ∗ap,n(θ)[dK(F̂X∗(θ∗ap,n(θ)), Fθ) ≤ ϵn] ≥ 1−C1(d) ·exp{−C2(d) ·n · [ϵn− sup
s∈Θ

dK(Fθ∗ap,n(s), Fs)]
2};

(37)

C1(d), C2(d) are positive constants.

Lower bound (37) is uniform in θ and increases to 1 as n increases to infinity when

n · [ϵn − sup
s∈Θ

dK(Fθ∗ap,n(s), Fs)]
2 ↑ ∞ with n. (38)
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Remark 7.2 (A3) with (31), (32), (37) and (38) confirm that when s∗ approaches θ

pϵ,match(s
∗) increases, as seen in Figures 1 and 2. Preliminary simulations indicate a large

compact where θ lives.

Proposition 7.3 is extended for i.i.d. observations in Rd. Similar results hold under

mixing conditions, as for MMDE, and when Θ is union of increasing sequence of totally

bounded sets, as in Corollary 7.1.

Proposition 7.5 In a DGE, let the observed X(θ) = (X1, . . . , Xn) consist of i.i.d. random

vectors in Rd with unknown c.d.f. Fθ ∈ FΘ. Assume that (Θ, dΘ) is totally bounded with

discretization Θ∗
n and notation an, N(an), θ

∗
ap,n(s) in (D), section 4. Nrep X

∗(θ∗) are drawn

via MX (θ
∗) for every θ∗ ∈ Θ∗

n.

Obtain θ̂MMSPE in (11) with Θ = Θ∗
n and in (9)

ϵ = ϵn = sup
s∈Θ

dK(Fθ∗ap,n(s), Fs) +

√
logN(an)√

n
. (39)

a) The rate of the uniform upper bound in (15) is:

ϵ̃∗n ∼ max{sup
s∈Θ

dK(Fθ∗ap,n(s), Fs),

√
lnN(an)√

n
}. (40)

b) Under (A2), (A3), ϵ̃∗n converges to zero with Probability increasing to 1 uniformly in

θ ∈ Θ,

ϵ̃∗n ∼
√

lnN(an)√
n

∼ w(an). (41)

c) Under (A2), (A3), the uniform upper rate of convergence for dΘ(θ̂MMSPE, θ) in Proba-

bility to zero is w−1(ϵ∗n), with ϵ∗n in (41).

d) Under (A2), (A3), with an = w−1(n−1/2), an upper rate in b) is un =
√

lnN(w−1(n−1/2))/
√
n

and in c) is w−1(un).

Remark 7.3 pϵ,match(θ
∗) in (10) has been introduced in F-ABC (Yatracos, 2020), an al-

ternative to ABC with Nrep X∗(θ∗) drawn for each θ∗ to reduce the variation effect of a

single X∗(θ∗) in the selection of θ∗. pϵ,match(θ
∗) is used in the approximate posterior of θ if

θ∗ is selected.
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Remark 7.4 MMSPE is a relative of ABC MLE (Dean et. al., 2014, Yildirim et. al.

2015) where an ϵ-neighborhood like that in (9) is used, but in ABC MLE an approximate

likelihood is maximized, constructed assuming a Hidden Markov Model. MMSPE is less

related with Maximum Probability Estimator (MPE) Zn (Weiss and Wolfowitz, 1967).

The reason for calling Zn MPE is that if θ can be estimated with increasing accuracy as n

increases, then MPE maximizes the asymptotic value of the expected 0−1 gain at each point

in Θ among a class of decision rules (Weiss, 1983, p. 268). With f(x|θ) the conditional

density of X given θ, MPE Zn is d maximizing∫
{θ:dΘ(d,θ)≤ϵ/

√
n}
f(x|θ)dθ, (42)

(Weiss and Wolfowitz, 1974, p. 15), which is expected to be an average of f(x|θ) in a

θ-neighborhood of the MLE: (42) is not a probability, it is defined via a neighborhood in Θ

and does not have the frequentist interpretation (10) of pϵ,match(θ
∗) for a particular θ∗.

Remark 7.5 Rates (23), (24), (35), (36) and (41) have the form of the upper convergence

rate in estimation of a density and a regression type function via Kolmogorov entropy,

logN(an), of the corresponding space of functions that is an-discretized and w(an) = an

(see, e.g., Yatracos, 1983, 1989, 2019).

8 Appendix

Proposition 8.1 (Dvoretzky, Kiefer and Wolfowitz, 1956, and Massart, 1990, providing

the tight constant) Let F̂Y denote the empirical c.d.f of the size n sample Y of i.i.d. random

variables obtained from cumulative distribution F. Then, for any ϵ > 0,

P [dK(F̂Y, F ) > ϵ] ≤ UDKWM = 2e−2nϵ2 (43)

Lemma 8.1 Let X be a sample of i.i.d. Fθ r.vs, with θ ∈ Θ = Θ∗
n = {θ∗1, . . . , θ∗Nn

}. For

any ζ > 0 it holds for θ̂MMDE in (7),

P [dK(Fθ̂MMDE
, F̂X∗(θ̂MMDE)) > ζ] ≤ 2 ·Nn · e−2nζ2 . (44)
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When ζ =
√
lnNn√
n

, the upper bound in (44) is 2
Nn

and converges to zero as Nn increases to

infinity with n.

Proof of Lemma 8.1:

P [dK(Fθ̂MMDE
, F̂X∗(θ̂MMDE)) > ζ] =

Nn∑
i=1

P [dK(Fθ̂MMDE
, F̂X∗(θ̂MMDE)) > ζ & θ̂MMDE = θ∗i ]

≤
Nn∑
i=1

P
(n)
θ∗i

[dK(Fθ∗i
, F̂X∗(θ∗i )

) > ζ] ≤ 2 ·Nn · e−2nζ2 ,

with the last inequality by Proposition 8.1. When ζ =
√
lnNn√
n

the upper bound is 2
Nn

.

2

Remark 8.1 Extensions of Proposition 8.1 in Rd, d > 1, appeared at least by Kiefer and

Wolfowitz (1958), Kiefer (1961) and Devroye (1977) with corresponding upper bounds U

in (43): UKW = C1(d)e
−C2(d)nϵ2 , UK = C3(b, d)e

−(2−b)nϵ2 for every b ∈ (0, 2), and UDe =

2e2(2n)de−2nϵ2 valid for nϵ2 ≥ d2. Thus, Lemma 8.1 holds in Rd at least when using UKW

and different constants.

Proof of Lemma 5.1: The first and the last term in upper bound (14) have uniform

upper bounds in Probability with order, respectively,
√
lnNn√
n

(from Lemma 8.1) and kn√
n
, kn =

o(
√
n) from (43); choose kn ∼

√
lnNn. 2

Proof of Proposition 7.1: a) From (7), with Θ∗
n instead of Θ, the “matching term”

dK(F̂X∗(θ̂MMDE), F̂X(θ)) ≤ inf
θ∗∈Θ∗

n

dK(F̂X∗(θ∗), F̂X(θ)) + γn ≤ dK(F̂X∗(θ∗ap,n(θ)), F̂X(θ)) + γn

≤ dK(F̂X∗(θ∗ap,n(θ)), Fθ∗ap,n(θ)) + dK(Fθ∗ap,n(θ), Fθ) + dK(Fθ, F̂X(θ)) + γn. (45)

From (8) and (45),

dK(Fθ̂MMDE
, Fθ)

≤ dK(Fθ̂MMDE
, F̂X∗(θ̂MMDE))+dK(F̂X∗(θ∗ap,n(θ)), Fθ∗ap,n(θ))+dK(Fθ∗ap,n(θ), Fθ)+2dK(Fθ, F̂X(θ))+γn.

(46)

Using (46), Lemma 8.1, the Dvoretzky-Kiefer-Wilfowitz-Massart inequality (43) and

ϵ̃ = ϵn − dK(Fθ∗ap,n(θ), Fθ)− γn, (47)



25

P [dK(Fθ̂MMDE
, Fθ) > ϵn]

≤ P [dK(Fθ̂MMDE
, F̂X∗(θ̂MMDE))+dK(F̂X∗(θ∗ap,n(θ)), Fθ∗ap,n(θ))+dK(Fθ∗ap,n(θ), Fθ)+2·dK(Fθ, F̂X(θ))+γn > ϵn]

= P [dK(Fθ̂MMDE
, F̂X∗(θ̂MMDE)) + dK(F̂X∗(θ∗ap,n(θ)), Fθ∗ap,n(θ)) + 2 · dK(Fθ, F̂X(θ)) > ϵ̃]

≤ P [dK(Fθ̂MMDE
, F̂X∗(θ̂MMDE)) >

ϵ̃

3
]+P [dK(F̂X∗(θ∗ap,n(θ)), Fθ∗

ap,n(θ)
) >

ϵ̃

3
]+P [dK(Fθ, F̂X(θ)) >

ϵ̃

6
]

≤ 2·N(an)·e−2nϵ̃2/9+2·e−2nϵ̃2/9+2·e−2nϵ̃2/36 = 2·[N(an)+1]e−2nϵ̃2/9+2·e−nϵ̃2/18 ≤ [2N(an)+4]e−nϵ̃2/18

≤ 6 ·N(an) · e−nϵ̃2/18. (48)

From (21) and (47),

ϵ̃ = ϵn − dK(Fθ∗ap,n(θ), Fθ)− γn = 6

√
lnN(an)√

n

and upper bound (48) becomes.

6 ·N(an) · e−nϵ̃2/18 = 6 ·N(an) · e−2 lnN(an) =
6

N(an)
.

b1) (22) follows from (21) since γn can be of smaller order than the other terms.

b2) Since dΘ(θ
∗
ap,n(s), s) ≤ an and w is increasing, from (21)

ϵn ≤ C · w(an) + 6

√
lnN(an)√

n
+ γn, 1 ≤ C, (49)

and the uniform upper rate of convergence (23) follows ignoring γn.

b3) Follows from (23) and the properties of w.

c) For b2), un follows from (49) with an = w−1(n−1/2) and (A3) implies the rate for

b3). 2

Proof of Corollary 7.1: (24) follows from (23). Let k = k(n) ↑ ∞ as n ↑ ∞. Then,

for each θ ∈ Θ there is k∗ = k(n∗) : θ ∈ Θk(n) for n ≥ n∗. Then for θ (24) holds, with

k = k(n), n ≥ n∗. Rates follow taking an = w−1(n−1/2) as in Proposition 7.1, b3), c),

replacing N by Nk. 2

Proof of Proposition 7.2: Under (A4) and a result in Raghavachari (1973, Theorem

2, p. 68, or Serfling, 1980, p. 112), for the given θ, any other s ∈ Θ and X∗(s) i.i.d sample

of size m from Fs, δ ∈ R,

lim
m→∞

Ps[
√
m(dK(F̂X∗(s), Fθ)−∆(s, θ) ≤ δ] = Φ(

δ√
Fs(xs,θ)(1− Fs(xs,θ)

). (50)
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When δ > 0,

Φ(
δ√

Fs(xs,θ)(1− Fs(xs,θ)
) ≥ Φ(2 · δ). (51)

From (50), for the given ϵ, θ and large m,

Ps[dK(F̂X∗(s), Fθ) ≤ ϵ] ≈ Φ(

√
m(ϵ−∆(s, θ))√

Fs(xs,θ)(1− Fs(xs,θ)
), (52)

with “≈” denoting asymptotic equality.

From (A1), for large n there is s∗ ∈ Θ :

∆(s∗, θ) ≤ ϵ− k∗
n√
n
, k∗

n = o(
√
n), k∗

n ↑ ∞ with n. (53)

For s = s∗,m = n in (52) and from (51),

Ps∗ [dK(F̂X∗(s∗), Fθ) ≤ ϵ] ≈ Φ(

√
n · (ϵ−∆(s∗, θ))√

Fs∗(xs∗,θ)(1− Fs∗(xs∗,θ))
≥ Φ(2·

√
n·(ϵ−∆(s∗, θ)) ≥ Φ(2·k∗

n). 2.

(54)

Proof of Proposition 7.3: a1) ϵ̃
∗
n follows from (15), with ϵ = ϵn in (33), Nn = N(an).

a2) Since an ↓ 0 as n ↑ ∞, from (A1) and (A3), ϵ̃∗n decreases to zero as n increases and (35)

follows from (25) with d = 1. For θ∗ap,n(θ),

∆(θ∗ap,n(θ), θ) ≤ sup
s∈Θ

dK(Fθ∗ap,n(s), Fs) ≤ ϵn −
.5 ·

√
lnN(an)√
n

,

with the last inequality due to (33). Then, for large n, (53) (same with (31)) holds with

s∗ = θ∗ap,n(θ) and k∗
n = .5 ·

√
lnN(an). Hence, from (54) for large n,

Pθ∗ap,n(θ)[dK(F̂X∗(θ∗ap,n(θ)), Fθ) ≤ ϵn] ≥ Φ(2·
√
n·(ϵn−∆(θ∗ap,n(θ), θ)) ≥ Φ(2·k∗

n) ↑ 1 with n ↑ ∞.

Convergence in Probability for θ̂MMSPE follows from its construction and (12), (13).

a3) Follows from (A2), (A3), (35) and the properties of w.

b) When Θ = R = ∪∞
n=1(−

k(n)
2
, k(n)

2
), there is n∗ such that θ ∈ (−k(n∗)

2
, k(n

∗)
2

) and for

n ≥ n∗, from (25), the upper rate of convergence in probability for dK(Fθ̂MMSPEE
, Fθ)

ϵ∗n ∼ (ln k(n)− ln an)
1/2

n1/2
∼ w(an).

c) Replace an = w−1(n−1/2) in (35) and (36) to obtain the upper rates un and ũn for

dK(Fθ̂MMSPE
, Fθ). Their images for w−1 are upper rates for |θ̂MMSPE − θ|. 2
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Proof of Proposition 7.4: Since

dK(F̂X∗(θ∗ap,n(θ)), Fθ) ≤ dK(F̂X∗(θ∗ap,n(θ)), Fθ∗ap,n(θ)) + dK(Fθ∗ap,n(θ), Fθ)

≤ dK(F̂X∗(θ∗ap,n(θ)), Fθ∗ap,n(θ)) + sup
s∈Θ

dK(Fθ∗ap,n(s), Fs),

P [dK(F̂X∗(θ∗ap,n(θ)), Fθ) > ϵn] ≤ P [dK(F̂X∗(θ∗ap,n(θ)), Fθ∗ap,n(θ)) + sup
s∈Θ

dK(Fθ∗ap,n(s), Fs) > ϵ]

= P [dK(F̂X∗(θ∗ap,n(θ)), Fθ∗ap,n(θ)) > ϵn − sup
s∈Θ

dK(Fθ∗ap,n(s), Fs)]

≤ C1(d) · exp{−C2(d) · n · [ϵn − sup
s∈Θ

dK(Fθ∗ap,n(s), Fs)]
2},

with the last inequality obtained using UKW in the upper bound (43) as suggested in

Remark 8.1. (37) and (38) follow. 2

Proof of Proposition 7.5: a) ϵ̃∗n follows from (15), with ϵ = ϵn in (39), Nn = N(an).

b) Follows from assumptions (A2), (A3), (37), (38) The result for θ̂MMSPE follows from its

construction and (12), (13).

c) Follows from (A2), (A3), (41) and the properties of w.

d) For b), un follows from (41) with an = w−1(n−1/2) and (A3) implies the rate for c). 2

References

[1] Bernton, E. , Jacob, P. E., Gerber, M. and Robert, C. P. (2019a) Approxi-

mate Bayesian computation with the Wasserstein distance.JRSS B, 81, 235-269.

arXiv:1905.03747v1

[2] Bernton, E. , Jacob, P. E., Gerbery, M. and Robert, C. P. (2019b) On parameter

estimation with the Wasserstein distance. Information and Inference: A Journal

of the IMA (2019) Page 1 of 23. Information and Inference: A Journal of the IMA

8, 657-676.

[3] Briol, F.-X., Barp, A., Duncan, A. B. and Girolami, M. (2019) Statistical Infer-

ence for Generative Models with MaximumMean Discrepancy. arXiv:1906.05944v1

[stat.ME] 13 Jun 2019



28

[4] Chen, L. and Wu, W. B. (2018) Concentration inequalities for empirical processes

of linear time series. J. Machine Learning Research 18, 1-46.

[5] Cochran, W. G. and Rubin, D. B. (1973) Controlling Bias in Observational Studies:

A Review, Sankhya,Ser. A, 35, 417-446.

[6] Dean, T. A., Singh, S. S., Jasra, A, and Peters, G. W. (2014) Parameter estima-

tion for hidden Markov models with intractable Likelihoods. Scandinavian J. of

Statistics, 41, 970-987.

[7] Devroye, L. P. (1977) A Uniform Bound for the Deviation of Empirical Distribution

Functions. J. Multiv. Anal. 7, 594-597.

[8] Dvoretzky, A., Kiefer, J. and and Wolfowitz, J. (1956) Asymptotic minimax char-

acter of the sample distribution function and of the classical multinomial estimator.

Ann. Math. Stat. 27, 642-669.

[9] Haynes M.A., MacGillivray H.L., and Mengersen K.L. (1997) Robustness of rank-

ing and selection rules using generalized g-and-k distributions. J. Statist. Plan.

and Infer. 65, 45-66.

[10] Jasra, A., Singh, S. S., Martin, J. S. and McCoy, E. (2012). Filtering via Approx-

imate Bayesian Computation. Stat. Comput. 22, 1223-1237.

[11] Kajihara, T. , Kanagawa, M., Yamazaki, K. and Fukumizu, K. (2018) Kernel

Recursive ABC: Point Estimation with Intractable Likelihood. arXiv:1802.08404v2

[12] Kiefer, J. (1961) On Large Deviations of the Empiric D. F. of Vector Chance

Variables and a Law of the Iterated logarithm. Pacific J. of Mathematics 11, 649-

660

[13] Kiefer, J. and Wolfowitz, J. (1958) On the deviations of the empiric distribution

function of vector chance variables. Trans. Amer. Math. Soc. 87, 173-186

[14] Le Cam, L. M. and Yang, G. L. (2000) Asymptotics in Statistics: Some Basic

Concepts. Springer-Verlag, New York.



29

[15] Le Cam, L. M. (1986) Asymptotic Methods in Statistical Decision Theory. Springer-

Verlag, New York.

[16] Massart, P. (1990) The tight constant in the Dvoretzky-Kiefer-Wolfowitz inequal-

ity. Ann. Prob. 18, 1269-1283

[17] Peacock, J. A. (1983) Two-dimensional goodness-of-fit testing in astronomy.

Monthly Notices Royal Astronomy Society 202, 615–627.

[18] Polonik, W. (1999) Concentration and goodness-of-fit in higher dimen-

sions:(asymptotically) distribution-free methods. Ann. Statist., 27, 1210–1229.

[19] Raghavachari, M. (1973) Limiting distributions of Kolmogorov-Smirnov type

statistics under the Alternative. Ann. Stat. 1, 67-73.

[20] Ramberg, J. S., Tadikamalla, P. R., Dudewicz, E. J. and Mykytka, E. F. (1979) A

probability distribution and its uses in fitting data. Technometrics 21, 201–214.

[21] Rayner, G. D. and MacGillivray, H. L. (2002 ) Numerical maximum likelihood

estimation for the g-and-k and generalized g-and-h distributions. Statistics and

Computing 12, 57-75.

[22] Roussas, G. G.and Yatracos, Y. G. (1997) Minimum distance estimates with rates

under ϕ-mixing. Festschrift for Lucien Le Cam: Research Papers in Probability and

Statistics, p. 337-345. Editors: D. Pollard, E. Torgersen, G. L. Yang. Springer, New

York.

[23] Rubin, D. B. (2019) Conditional Calibration and the Sage Statistician. Survey

Methodology 45, 187-198.

[24] Rubin, D. B. (1984) Bayesianly Justifiable and Relevant Frequency Calculations

for the Applied Statistician. Ann. Statist. 12, pp. 213-244.

[25] Rubin, D. B. (1973). Matching to remove bias in observational studies. Biometrics

29, 159-183. Correction (1974) 30, 728.



30

[26] Tukey, J. W. (1977) Modern techniques in data analysis. NSF-sponsored regional

research conference at Southeastern Massachusetts University, North Dartmouth,

MA.

[27] Weiss, L. (1983) Small-Sample Properties of Maximum Probability Estimators.

Stoch. Proc. and Appl. 14, 267-277.

[28] Weiss, L. and Wolfowitz, J. (1974 ) Maximum Probability Estimators and Related

Topics. Lecture Notes in Mathematics, Vol. 424, Springer-Verlag.

[29] Weiss, L. and Wolfowitz, J. (1967) Maximum probability estimators. Ann. Inst.

Stat. Math. 19, Article 193.

[30] Wolfowitz, J. (1957) The Minimum Distance Method. Ann. Math. Statist. 28 ,

75-88.

[31] Yatracos, Y. G. (2020) Fiducial Matching for the Approximate Posterior: F-ABC.

Submitted for publication.

[32] Yatracos, Y. G. (2019) Plug-in L2-upper error bounds in deconvolution, for a

mixing density estimate in Rd and for its derivatives, via the L1-error for the

mixture. Statistics 53, 1251-1268.

[33] Yatracos, Y. G. (1989) A regression type problem. Ann. Statist. 17, 1597-1607.

[34] Yatracos, Y. G. (1985) Rates of convergence of minimum distance estimators and

Kolmogorov’s entropy. Ann. Statist. 13, 768-774.

[35] Yildirim, S., Singh, S. S., Dean, T. and Jasra, A. (2015) Parameter Estimation

in Hidden Markov Models With Intractable Likelihoods Using Sequential Monte

Carlo J. Comp. Graph. Stat. 24, 846-865.



31

3 4 5 6 7 8

0
.
1

2
0

.
1

8
0

.
2

4

MINIMUM MEAN MATCHING d_K DISTANCE

PARAMETER VALUES

M
E

A
N

 
d

_
K

3 4 5 6 7 8

0
.
0

0
.
4

MATCHING SUPPORT PROBABILITIES

PARAMETER VALUES

S
U

P
P

O
R

T
 
P

R
O

B
S

3 4 5 6 7 8

0
.
1

0
.
3

MINIMUM MEAN MATCHING d_K DISTANCE

PARAMETER VALUES

M
E

A
N

 
d

_
K

3 4 5 6 7 8

0
.
0

0
.
4

0
.
8

MATCHING SUPPORT PROBABILITIES

PARAMETER VALUES

S
U

P
P

O
R

T
 
P

R
O

B
S

3 4 5 6 7 8

0
.
2

0
.
6

MINIMUM MEAN MATCHING d_K DISTANCE

PARAMETER VALUES

M
E

A
N

 
d

_
K

3 4 5 6 7 8

0
.
0

0
.
4

0
.
8

MATCHING SUPPORT PROBABILITIES

PARAMETER VALUES

S
U

P
P

O
R

T
 
P

R
O

B
S

Figure 1: Row-wise, Exponential, Poisson with parameters 5, Normal mean 5, known

σ = 1. Plots along Θ with extremes pointing to the parameters.
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Figure 2: Row-wise, Weibull, Cauchy, Normal Both Parameters 5. Plots along Θ with

extremes pointing to the parameters.
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Figure 3: Parameter space Θ = [3, 8]x[0.5, 4.5], Model Parameter θ = (µ = 5, σ = 2). Plot

along Θ with extremes pointing to the parameters.
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Figure 4: Density plots for the 50 estimates of Tukey’s g-and-h model with independent

samples, n = 200. The parameters are a = 3, b = 4, g = 3.5, h = 2.5.
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Figure 5: Density plots for 50 estimates of g-and-k model with dependent samples, n = 50.

The parameters are a = 3, b = 4, g = 3.5, k = 2.5
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Figure 6: Density plots for the 50 estimates of the normal mixture with independent

samples, n = 200; the parameters are p=.3, µ1=m1=1, σ1=s1=1, µ2=m2=6, σ2=s2=1.5.


