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Abstract
In linear regression of Y on X(∈ Rp) with parameters 𝛽(∈ Rp+1), statistical
inference is unreliable when observations are obtained from gross-error model,
Fϵ,G = (1−ϵ)F +ϵG, instead of the assumed probability F;G is gross-error proba-
bility, 0< ϵ< 1. Residual’s influence index (RINFIN) at (x, y) is introduced, with
components measuring also the local influence of x in the residual and large value
flagging a bad leverage case (from G), thus causing unmasking. Large sample
properties of RINFIN are presented to confirm significance of the findings, but
often the large difference in the RINFIN scores of the data is indicative. RINFIN
is successful with microarray data, simulated, high dimensional data and classic
regression data sets. RINFIN’s performance improves as p increases and can be
used in multiple response linear regression.
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1 INTRODUCTION

Tukey [29, p. 60] wrote: “Procedures of diagnosis, and
procedures to extract indications rather than extract con-
clusions, will have to play a large part in the future of
data analyses and graphical techniques offer great possi-
bilities in both areas.” This philosophy is widely adopted
nowadays in Data Science, realizes ASA’s hope for a
“post-P-value era” [31] and motivates this work.

Data cleaning should precede statistical analysis. In
linear regression of Y on X and parameters 𝛽, it is often
erroneously assumed that the data follow probability F
instead of the gross-error model F𝜖,G = (1− 𝜖)F + 𝜖G [19];
G is gross-error probability, 0<𝜖 < 1, Y ∈ R, X ∈ Rp,
𝛽 ∈ Rp+1. A case (x, y) with x far away from the bulk of F’s
factor space is called “leverage” case [25] and influences

the statistical analysis. In particular, a “bad” leverage case
(x, y) from G forces the regression hyperplane determined
by F (the F-regression) and the associated F-residuals to
change drastically when x becomes more remote. The goal
of this work is to provide a simple and easy to implement
procedure extracting indications for flagging bad leverage
cases (from G) in least squares (L2) regression, without the
use of P-values and hypothesis testing that lead to a hard
“yes–no”-decision.

A tool indicating the influence of (x, y) in the value of a
statistical functional, T(F), is T’s influence function, IF(x,
y; T, F) [13]. In linear L2-regression, the empirical influ-
ence function of a non-robustified estimator, 𝛽i, of 𝛽 i mea-
sures the change of 𝛽i when (x, y) is added in the sample,
but suffers from the masking effect that is due to neighbor-
ing cases of (x, y) in the sample. For example, from (10),
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in simple, linear L2-regression with sample (x1, y1), … ,
(xn, yn), the empirical influence function of the slope at (x,
y) has form C ⋅ r ⋅ (x − xn); r is the residual of (x, y), C is
independent of x, y. If (x, y) is one of few, neighboring bad
leverage cases in the sample, the difference (x − xn) will
have large absolute value whereas r may be near zero, thus|r ⋅ (x − xn)| may take a moderate value masking (x, y). To
the contrary, from (12), the x-derivative of the slope’s influ-
ence function measures local influence of (x, y) (see (7))
and separates the factors of the influence function, obtain-
ing instead the sum of C ⋅ 𝛽(x − xn) and C ⋅ r, which has
large absolute value even when x is masked and r is near
0; 𝛽 is the L2-estimate of the slope. The index, RINFIN,
introduced to flag bad leverage cases in multiple, linear
L2-regression, depends on the x-partial derivatives of the
influence functions of regression coefficients and shares
the advantage of the factors’ separation in 𝛽i’s influence
function, i = 0, … , p. The same holds for L2-regression
with diagonal matrix of weights, W , independent of x, r.

The x-partial derivatives of regression coefficients’
influence functions appear naturally in changes of regres-
sion residuals for small x-perturbations under models F
and F𝜖,x,y; see Section 4.2. The so-obtained (population)
L2-RINFIN is1

RINFIN(x, y; 𝜖, 𝛽) = 𝜖 ⋅
p∑

i=1

(
IFi +

𝜕IF0

𝜕xi
+

p∑
𝑗=1

x𝑗
𝜕IF𝑗

𝜕xi

)2

;

(1)
IFj denotes the influence function of the jth regression
coefficient, j = 0, 1, … , p. Note that RINFIN uses also the
information in the influence functions. For simple linear
regression,

RINFIN(x, y; 𝜖, 𝛽)

= 𝜖 ⋅
{

2r2(x, y)(x − EX) − 𝛽[(x − EX)2 + Var(X)]
Var(X)

}2

,

(2)

with L2-residual (r2), slope (𝛽), mean (EX), and variance
(Var X) all under F.

RINFINABS is obtained by replacing in the sum in (1)
the squares by absolute values. Using G’s averages, (x, y),
RINFIN(x, y; 𝜖, 𝛽) is calculated. Asymptotic properties of
RINFIN(x, y; 𝜖, 𝛽n) are also presented; 𝛽n is 𝛽’s L2-estimate.

In practice, sample RINFIN score, RINFIN(x, y;
1∕n, 𝛽n), is obtained for every (x, y) in the sample. Large
RINFIN scores provide indications for bad leverage cases.
Since the percentage of G-cases in F𝜖,x,y is expected to
be 10% or less, potential bad leverage cases in the sam-
ple are those (x, y) with the 10% larger RINFIN scores,

1Alternatively, the sum next to 𝜖 in (1) is divided by p.

and especially those with the same ordering in RIN-
FINABS scores. The spacings of ordered RINFIN scores
are also informative. The 10% threshold value can be
replaced by another value. Once a case is flagged, it can
be grouped with neighboring cases and using their aver-
age, (x, y), and the group’s proportion in the sample,
𝜖, RINFIN scores can be re-calculated as described in
Appendix C. Comparison of the findings with the order-
ing of the scores obtained with other indices, or with
results of methods that extract conclusions using sta-
tistical significance are informative. Proposition 5 can
also be used to determine significance of the RINFIN
scores.

When n is smaller than p, sample RINFIN values are
calculated sequentially, for the y-response and sub-vectors
of x-covariates with dimension q<n;p is multiple of q. For
each case, the total of its p

q
sample RINFIN values is its RIN-

FIN score. RINFIN can also be used with multiple response
linear regression, adding for (x, y) the sample RINFIN
scores for each response. The RINFIN approach can be
used for LASSO and ridge regression with the influence
functions derived in Ollerer et al. [24].

RINFIN provides satisfactory results with high dimen-
sional data. It is successful with the microarray data used
in Zhao et al. [37, 38] for which n = 120 and p = 1500.
In simulations with gross-error normal mixtures F, G and
fixed sample size n, the misclassification proportion of
G-cases using RINFIN(x, y; 1∕n, 𝛽n) decreases to zero as p
increases, p<n. The blessing of high dimensionality is due
to the “separation” of the mixtures’ components measured,
for example, by their Hellinger’s distance, as p increases
([34, 35], Section 8, Proposition 8.1). RINFIN also identifies
bad leverage cases in classic regression data sets.

Due to the flood of Big Data, new influence measures
have been recently introduced. In Genton and Ruiz-Gazen
[11], an observation is influential “whenever a change in
its value leads to a radical change in the estimate” and the
hair-plot is used for visual identification. Local and global
influence measures are proposed using partial derivative of
the estimate. She and Owen [28] have as goals outlier iden-
tification and robust coefficient estimation, both achieved
using a non-convex sparsity criterion. Zhao et al. [37] pro-
pose a high dimensional influence measure (HIM) based
on marginal correlations between the response and the
individual covariates and the leave-one-out observation
idea [32]. For a particular regression model, Zhao et al. [38]
propose a novel procedure, for multiple influential point
detection (MIP).

Robustness tools have been used extensively in out-
lier detection. The influence function has been used by
Campbell [4] in discriminant analysis and subsequent
results appeared, among others, in Boente et al. [3].
Rousseeuw and van Zomeren [26] used standardized least
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trimmed squares residuals against robust distance to clas-
sify observations in regression. Hubert et al. [21] present
a survey of high breakdown robust methods to detect
outlying observations. The influence of observations and
of model assumptions in estimates’ values and identifica-
tion of outliers have been also studied by several authors,
among others by Cook [7], Belsley et al. [2], Cook and
Weisberg [9], Hawkins [17], Huber [20], Velleman and
Welsch [30], Welsch [33], Hawkins et al. [18], Carroll and
Ruppert [5], Hampel [15], Cook [8], Hampel et al. [16],
Lawrance [22], and Hadi and Simonoff [12].

In Section 2, RINFIN applications are presented. In
Section 3, the derivative of the influence function is intro-
duced for measuring local influence of (x, y); it is the main
tool to obtain RINFIN scores. In Section 4, local influence
of (x, y) in L2-regression residual is studied, RINFIN and
RINFINABS are defined and asymptotic properties of RIN-
FIN’s estimate are obtained. In Appendix A, -matrix is
introduced to obtain a simple and insightful form for RIN-
FIN when the X-covariates are uncorrelated. Proofs follow
in Appendix B. Directions for the use of RINFIN with data
are in Appendix C.

2 RINFIN IN ACTION

2.1 RINFIN and simulations, p<n

Data (X, Y ) from probability F follow a linear regression
model with p parameters, 𝛽 = (1.5, 0.5, 0, 1, 0, 0, 1.5, 0,
0, 0, 1, 0, … , 0); when p< 11, 𝛽’s first p coordinates are
used. X is obtained from p-dimensional normal distribu-
tion,  (0,𝚺), with 𝚺’s entries Σi,j = 0.5|j−i|, 1≤ i, j≤ p, as
in Alfons et al. [1, p. 11]. For gross-error model, F𝜖,G, the
proportion 𝜖 is 10%. For each contaminated X (from G) the
first [𝛾 ⋅ p] coordinates are independent, normal with mean
𝜇 and variance 1; 0<𝛾 ≤ 1, [x] denotes the integer part of x.
Various values for 𝛾 , p, and 𝜇 are used and p is smaller than
the sample size n. The regression errors are independent,
standard normal random variables. Each of the N = 100
simulated samples has size n = 100. Cases 1–10 are con-
taminated and compared with those having the 10 larger
sample RINFIN scores for calculating the misclassification
proportion.

In Table 1, the misclassification proportion decreases
as p increases except for an anomaly when p = 90 due
to its proximity to p = n = 100, for which L2-regression
breaks down. By increasing n to 150 cases this anomaly
disappears, for example, for 𝜇 = 1 the misclassification
proportion is 0.105.

In Table 2, for fixed contamination proportion in the
first [𝛾 ⋅ p] x-coordinates, the RINFIN misclassification
proportion decreases as p increases. The anomaly is still

T A B L E 1 Average misclassification proportion with
RINFIN’s orderings

Complete contamination (𝜸 = 1)

p 𝝁 = 0.5 𝝁 = 1 𝝁 = 1.5 𝝁 = 2

10 0.857 0.624 0.320 0.117

30 0.802 0.394 0.079 0.003

50 0.775 0.254 0.016 0.000

70 0.728 0.162 0.000 0.000

90 0.740 0.208 0.009 0.000

observed when p= 90. The blessing of high dimensionality
is observed in both Tables 1 and 2.

2.2 RINFIN and real, high dimensional
data, p>n

RINFIN is used for the microarray data in Zhao et al. [38],
obtained from Chiang et al. [6] and previously analyzed by
Zhao et al. [37]: 120 twelve-week-old male offspring were
selected for tissue harvesting from the eyes. The microar-
ray contains over 30,000 different probe sets. Probe gene
TR32 is used as the response and the covariates are 1500
genes mostly correlated with it.

Since n = 120< p = 1500, RINFIN values are cal-
culated for the response TR32 and each group of 100
x-covariates partitioning the microarray data, with coor-
dinates 100(j− 1)+ 1, … , 100j, 1≤ j≤ 15. For each of the
120 cases, the total of its 15 RINFIN values is its score. In
Table 3, cases with the higher 16 RINFIN scores are pro-
vided; more than 10% of the cases are presented in order to
get an idea of the spacings in the successive scores.

Indications for leverage cases from G in the gross-error
model are given for cases 80, 95, 32, 120, and 59, after
which the spacings’ in the RINFIN scores are reduced. In
Table 4, the highest 16 RINFINABS-scores are provided.
Cases 80, 95, 32, 120, and 59 have still the same order as in
Table 3, but the order of the remaining cases changes.

Cases 80, 95, 32, 120, and 59 are also supported by
diagnostics HIM and MIP which are based, respectively,
on analyses of correlations and covariances, whereas RIN-
FIN is based on perturbations of residuals. According to
Leng [23], diagnostic HIM [37] identifies 15 influential
cases,

80, 95, 120, 32, 75, 70, 107, 28, 59, 38, 67, 27, 17, 51, 98

and diagnostic MIP [38] identifies 7 influential cases,

80, 95, 120, 32, 75, 28, 59.
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T A B L E 2 Average misclassification proportion with RINFIN’s ordering

Partially contaminated data in the first 𝜸 ⋅ p X-coordinates

p
𝝁 = 1,
𝜸 = 0.2

𝝁 = 1,
𝜸 = 0.4

𝝁 = 1,
𝜸 = 0.6

𝝁 = 1.5,
𝜸 = 0.2

𝝁 = 1.5,
𝜸 = 0.4

𝝁 = 1.5,
𝜸 = 0.6

10 0.859 0.834 0.747 0.811 0.695 0.550

30 0.822 0.753 0.599 0.719 0.516 0.296

50 0.804 0.676 0.506 0.663 0.364 0.164

70 0.787 0.612 0.416 0.598 0.250 0.089

90 0.784 0.605 0.435 0.611 0.294 0.116

T A B L E 3 Cases with the higher RINFIN scores

Microarray data

Case 80 95 32 120 59 64 85 112

RINFIN 824,471 146,639 40,295 24,749 14,802 12,849 12,582 11,683

Case 38 40 24 117 27 28 84 90

RINFIN 11,680 10,973 10,476 8478 7516 6214 5689 5536

T A B L E 4 Most influential cases with RINFINABS

Microarray data

Case 80 95 32 120 59 85 38 112

RINFINABS 1744.5 797.4 488.1 379.4 319.3 285.6 282.1 273.6

Case 64 24 40 27 117 6 84 28

RINFINABS 261.8 259.4 254.4 228.7 226 193.5 191.9 191.4

RINFIN and RINFINABS both identify case 28 in
Tables 3 and 4, at the top 12% of the 120 RINFIN scores.
Case 75 is identified by both RINFINs as the case with the
21st larger RINFIN score, at the top 17.5% of the RINFIN
scores. RINFIN values of case 75 were not in the top 10
RINFIN values in any of the 15 groups partitioning the
microarray data. RINFIN values of case 28 were ranked 9th
in the group of 1–100 coordinates and 10th in the group of
101–200 coordinates. The total square distances of cases 75
and 28 from the means of the p = 1500 coordinates were at
the 80th quantile of all the distances. However, their max-
imum square distances over all coordinates were between
the 40th and 50th quantiles of all cases. RINFIN targets bad
leverage cases and 28 and 75 do not fall in this category.

2.3 RINFINABS and classic, regression
data sets

The top 6–8 RINFINABS scores are obtained using (35),
with sum of absolute values instead of RINFIN’s sum of
squares, for 6 known data sets; those without references
are in Rousseeuw and Leroy [25].

T A B L E 5 Data: Kootenay River (p = 1, n = 13)

Case 4 7 2 12 6 1

RINFINABS 8.906 0.106 0.052 0.044 0.030 0.015

In the Kootenay River data, case 4 is remote and
has large RINFINABS score compared with the rest (see
Table 5).

In the Hertzsprung–Russel star data, cases 11, 20, 30,
34 correspond to giant stars, that is, remote, x-neighboring
cases. RINFINABS scores for each case, as well as for
groups G1 = {11, 20, 30, 34}, G2 = {7, 14} of x-neighboring
cases, support that {11, 20, 30, 34} are bad leverage cases
(see Table 6).

In the Hadi and Simonoff [12] data, cases 1–3, 4,
17 are more distant from the origin than the remain-
ing cases. RINFINABS scores obtained for each case and
after grouping indicate cases 1–3 are bad leverage cases.
Hadi and Simonoff [12] identify these as true outliers
(see Table 7).

In the education data, case 50 (Alaska) is far from the
origin and its RINFINABS score compared with those of
the rest indicates bad leverage (see Table 8).
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T A B L E 6 Data: Hertzsprung–Russel stars (p = 1, n = 47)

Case RINFINABS Group RINFINABS Group RINFINABS

34 0.545 11, 20, 30,3 4 26.555 11, 20, 30, 34 39.654

30 0.387 14 0.276 7, 14 0.447

20 0.272 36 0.131 17 0.159

14 0.198 4 0.131 36 0.149

7 0.191 2 0.131 4 0.143

11 0.162 17 0.125 2 0.143

T A B L E 7 Data: Hadi–Simonoff (p = 2, n = 25)

Case RINFINABS Group RINFINABS

22 0.677 1, 2, 3 1.074

4 0.572 4 0.645

17 0.527 17 0.620

12 0.527 22 0.607

25 0.374 12 0.464

1 0.351 13 0.399

2 0.346 25 0.328

3 0.340 24 0.298

T A B L E 8 Data: education (p = 3, n = 50)

Case 50 33 7 44 29 5

RINFINABS 1.20 0.486 0.476 0.402 0.336 0.304

T A B L E 9 Data: salinity (p = 3, n = 28)

Case 16 15 5 3 9 4

RINFINABS 2.216 0.418 0.327 0.307 0.293 0.288

In the salinity data, Carroll and Ruppert [5] indicate
that remote case 16 and the other influential case 3 are
masking case 5. RINFINABS scores support the findings
for case 16 but not case’s 5 masking (see Table 9).

In the modified wood data, cases 4, 6, 8, 19 are
neighboring and remote in each x-coordinate. RINFINABS
scores obtained for each case and with cases 4, 6, 8, 19 as
group support these are bad leverage cases (see Table 10).

3 LOCAL INFLUENCE AND THE
DERIVATIVE OF THE INFLUENCE
FUNCTION

To study local perturbation of the residual, r, which pro-
vides RINFIN, the derivative of r’s influence function is
used. Hampel [13] introduced the influence function, IF(x;

T A B L E 10 Data: modified wood (p = 5, n = 20)

Case RINFINABS Group RINFINABS

19 1.579 4, 6, 8, 19 34.729

8 1.532 11 1.710

6 1.452 7 1.460

4 1.332 12 1.390

12 1.324 10 1.084

11 1.161 16 0.785

7 1.158 1 0.779

10 1.075 17 0.738

T, F), of a functional T with real values, to measure the
influence of x in the value of T for the gross-error model,
(1− 𝜖)F + 𝜖Δx:

IF(x;T,F) = lim
𝜖→0

T[(1 − 𝜖)F + 𝜖Δx] − T(F)
𝜖

, (3)

when this limit exists; x(∈ Rp), F is a probability, Δx is the
probability with all its mass at x, 0<𝜖 < 1. T(F) is usually
a parameter of model F, for example, the expected value of
a random variable X from F with T(F) = EF(X).

IF(x; T, F) determines the “bias” in the value of T at F
when using instead (1− 𝜖)F + 𝜖Δx:

T[(1 − 𝜖)F + 𝜖Δx] − T(F) = 𝜖IF(x;T,F) + o(𝜖)
≈ 𝜖IF(x;T,F), (4)

“≈” is used since

lim
𝜖→0

T[(1 − 𝜖)F + 𝜖Δx] − T(F)
𝜖IF(x;T,F)

= 1.

Hampel [14, p. 389] introduced also local-shift-
sensitivity,

𝜆∗ = sup
x≠y

|IF(x;T,F) − IF(y;T,F)|||x − y|| , (5)

as “a measure for the worst (approximate) effect of wig-
gling the observations”; ||⋅|| is a Euclidean distance in Rp.
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Local-shift-sensitivity was never fully exploited. One rea-
son is that, in reality, it is a “global” measure as supremum
over all x, y. Thus, 𝜆* cannot be used to study the bias in
the value of T at (1− 𝜖)F + 𝜖Δx for x’s small perturbation,
from x to x+h, and ||h|| small, that is

T[(1 − 𝜖)F + 𝜖Δx+h] − T[(1 − 𝜖)F + 𝜖Δx]. (6)

Local influence (6) of x in T[(1− 𝜖)F + 𝜖Δx] is measured
by the partial derivatives of the influence function, as the
next lemma indicates for x ∈ R and is confirmed for the
residuals in Proposition 2 with x ∈ Rp.

Lemma 1. Assume that F is defined on the real line and
that (6) is evaluated at neighboring points x, x + h, x ∈ R,
h ∈ R, |h| small. Then,

lim
h→0

lim
𝜖→0

T[(1 − 𝜖)F + 𝜖Δx+h] − T[(1 − 𝜖)F + 𝜖Δx]
𝜖h

= dIF(x;T,F)
dx

= IF′(x;T,F), (7)

when the limit exists.

Remark 1. Under mild conditions, the limits in (7) can be
interchanged without affecting the limit, for example, for
any function g for which the derivative g′ exists and

T(F) = ∫ g(y)dF(y).

IF′(x; T, F) is used to approximate local influence (6)
for small 𝜖, |h|:

T[(1 − 𝜖)F + 𝜖Δx+h] − T[(1 − 𝜖)F + 𝜖Δx] ≈ 𝜖hIF′(x;T,F).
(8)

(8) is the main tool used to approximate L2-residuals of
gross-error models and determine RINFIN. When (8) is
used, the influence function’s derivative is always evalu-
ated at F.

Example 1. Consider a simple, linear regression model,
Y = 𝛽0 + 𝛽1X + e, with error e having mean zero and finite
second moment, F is the joint distribution of (X , Y ).

The influence functions for the L2-parameters 𝛽0(F),
𝛽1(F), obtained at F are

IF(x, y; 𝛽0(F),F) = [y − 𝛽0(F) − 𝛽1(F)x]
EX2 − xEX

Var(X)

= r(x, y;F)EX2 − xEX
Var(X)

, (9)

IF(x, y; 𝛽1(F),F) = [y − 𝛽0(F) − 𝛽1(F)x]
x − EX
Var(X)

= r(x, y;F)x − EX
Var(X)

; (10)

EU and Var(U) denote, respectively, U’s mean and vari-
ance. The x(-partial)-derivatives of (9), (10) are

IF′
x,0 =

𝜕IF(x, y; 𝛽0(F),F)
𝜕x

= −𝛽1(F)
EX2 − xEX

Var(X)

− r(x, y;F) EX
Var(X)

, (11)

IF′
x,1 =

𝜕IF(x, y; 𝛽1(F),F)
𝜕x

= −𝛽1(F)
x − EX
Var(X)

− r(x, y;F) 1
Var(X)

. (12)

Observe in (9) and (10) the multiplicative effects of r with
(x −EX) and EX2 − xEX and their conversions to additive
effects in (11) and (12).

Remark 2. The y-derivatives of L2-influence functions
(9) and (10) are, respectively, (EX2 − xEX)/Var(X) and
(x − EX)/Var(X), do not provide information for r(x, y; F)
and their sample versions are maximized at the extreme
x-values in the sample.

4 RESIDUALS, INFLUENCE,
LEVERAGE CASES AND RINFIN

4.1 Influence functions in regression

Let (X, Y ) follow probability model F,

Y = 𝛽0 + 𝛽1X1 + · · · + 𝛽pXp + e; (13)

X = (X1, … , Xp)T is the covariates’ vector, Y is the
response, 𝛽 = (𝛽0, … , 𝛽p)T = (𝛽0(F), … , 𝛽p(F))T .

4.1.1 The assumptions

(1) The error, e, has mean zero and finite second
moment.

(2) Case (x, y) is mixed with cases from model F with
probability 𝜖 (model F𝜖,x,y).

The L2-regression coefficients 𝛽 are obtained minimiz-
ing Ee2; E denotes expected value.

RINFIN has a simple form providing insight when an
additional assumption is used:

(3) X1, … , Xp are uncorrelated random variables.

(3) is not necessary to use RINFIN in practice; see
(34) and Remark 5.
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4.1.2 Notation

The jth regression coefficient obtained by L2-minimization
at model F𝜖,u,v is denoted by 𝛽 j(F𝜖,u,v), j = 0, 1, … , p, and
their vector by 𝛽(F𝜖,u,v).

Denote the L2- residuals for model F𝜖,u,v at (x, y) by

r(x, y;F𝜖,u,v) = y − 𝛽0(F𝜖,u,v) −
p∑

𝑗=1
𝛽𝑗(F𝜖,u,v)x𝑗 ; (14)

r is also used to denote r(x, y; F).
Add h in the ith component of x, with h ∈ R, |h| small,

to obtain
xi,h = x + (0, … , h, … , 0), (15)

such that (xi,h, y), (x, y+ h) are small perturbations of (x,
y).

The influence function of 𝛽 j is evaluated at (x, y) for F,
thus use

IF𝑗 = IF(x, y; 𝛽𝑗,F), IF′
v,𝑗 =

𝜕IF(x, y; 𝛽𝑗,F)
𝜕v

,

v = y, xi, i = 1, … , p, (16)

that is, in words, IF′
v,𝑗 is the derivative of IFj with respect

to v, j = 0, 1, … , p.

4.1.3 Influence functions

Influence functions of L2-regression coefficients at F are
solutions of the system:

IF0 + IF1EX1 + · · · + IFpEXp = r(x, y;F), (17)

IF0EXi + · · · + IF𝑗EXiX𝑗 + · · · + IFpEXiXp = xir(x, y;F),
i = 1, … , p. (18)

Equations (17) and (18) are obtained by interchanging in
the normal equations,

𝜕EH(Y − 𝛽0 − 𝛽1X1 − · · · − 𝛽pXp)2

𝜕𝛽i
= 0, i = 0, 1, … , p,

(19)
the expected value with the partial derivatives and, after
evaluation at the models H = F and H = (1− 𝜖)F + 𝜖Δ(x,y),
subtracting the equations for the ith partial derivative for
both models, dividing by 𝜖 and taking the limit as 𝜖 con-
verges to zero.

The influence functions in (17) and (18) are now
provided when, in addition, (3) holds. With an addi-
tional assumption on the error, e, influence functions of

L1-regression coefficients have also been obtained ([36],
Proposition 3.2).

Proposition 1. For regression model (13) with assump-
tions (1)–(3) and notation (16), the influence functions
of L2-regression coefficients at (x, y) for model F are:

IF0 = r

[
1 − p +

p∑
𝑗=1

EX2
𝑗 − x𝑗EX𝑗

𝜎2
𝑗

]
, IF𝑗 = r

x𝑗 − EX𝑗

𝜎2
𝑗

,

𝑗 = 1, … , p; (20)

r = r(x, y;F), 𝜎2
𝑗

is the variance of Xj, j = 1, … , p.

4.2 Perturbations of L2-residuals
for models F and F𝛜,x,y

The goal is to compare small (x, y)-residual changes in L2
regressions for F𝜖,x,y and F:

i. when (xi,h, y) replaces (x, y) in the 𝜖-mixture, that is,
under F𝜖,x,y and F𝜖,xi,h,y, r(xi,h, y;F𝜖,xi,h,y) − r(x, y;F𝜖,x,y),
and

ii. when (x, y+ h) replaces (x, y) in the 𝜖-mixture, that
is, under F𝜖,x,y and F𝜖,x,y+h, r(x, y+ h;F𝜖,x,y+h)− r(x, y;
F𝜖,x,y).

A lemma follows that is used repeatedly to calculate
residuals’ differences (i) and (ii).

Lemma 2. For regression model (13), (1), (2) and 𝜖, |h|
both small it holds:

𝛽𝑗(F𝜖,x,y) ≈ 𝛽𝑗(F) + 𝜖IF𝑗 , 𝛽𝑗(F𝜖,xi,h,y) ≈ 𝛽𝑗(F𝜖,x,y)

+ 𝜖h
𝜕IF(x, y; 𝛽𝑗,F)

𝜕xi
, 0 ≤ 𝑗 ≤ p. (21)

Proposition 2. For regression model (13) with (1), (2),
xi,h the perturbation of x (see (15)) and for 𝜖 and |h| both
small:

a. the difference of (x, y)-residuals at F𝜖,xi,h,y and F𝜖,x,y is:

r(xi,h, y;F𝜖,xi,h,y) − r(x, y;F𝜖,x,y) + 𝛽ih

≈ −𝜖h

[
IFi +

𝜕IF0

𝜕xi
+

p∑
𝑗=1

x𝑗
𝜕IF𝑗

𝜕xi

]
, i = 1, … , p,

(22)

b. the difference of (x, y)-residuals at F𝜖,x,y+h and F𝜖,x,y is:

r(x, y + h;F𝜖,x,y+h) − r(x, y;F𝜖,x,y) − h

≈ −𝜖h

[
𝜕IF0

𝜕y
+

p∑
𝑗=1

x𝑗
𝜕IF𝑗

𝜕y

]
. (23)
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Remark 3. The right side of (22) involves influence func-
tions and their derivatives. An index using it to detect
bad leverage is less affected by masking than diagnostics
based solely on influence functions, as explained in the
Introduction.

Corollary 1. Under the assumptions of Proposition 2 and
(3), with r = r(x, y; F):

(a1)

r(xi,h, y;F𝜖,xi,h,y) − r(x, y;F𝜖,x,y) + 𝛽ih

≈ −𝜖h

{
2 r(xi − EXi)

𝜎2
i

− 𝛽i

[
1 +

p∑
𝑗=1

(x𝑗 − EX𝑗)2

𝜎2
𝑗

]}
.

(24)

(a2) If , in addition, |xi| is large,

r(xi,h, y;F𝜖,xi,h,y) − r(x, y;F𝜖,x,y) ≈ 𝜖h ⋅ 3𝛽i
(xi − EXi)2

𝜎2
i

, (25)

(b)
r(x, y + h;F𝜖,x,y+h) − r(x, y;F𝜖,x,y) − h

≈ −𝜖h

[
1 +

p∑
𝑗=1

(x𝑗 − EX𝑗)2

𝜎2
𝑗

]
. (26)

4.3 Residual’s influence index,
RINFIN(x, y; 𝝐, 𝜷)

Local influence of (x, y) is determined using the distance
of residuals’ partial derivatives at (x, y) for model F and
gross-error model F𝜖,x,y. The larger this distance is, the
larger the local influence of (x, y) is.

4.3.1 Local x-influence on L2-residuals

For (xi,h, y) and (x, y) both under model F,

r(xi,h, y;F) − r(x, y;F)
h

+ 𝛽i = 0, i = 1, … , p. (27)

For gross-error models F𝜖,x,y, F𝜖,xi,h,y, the difference in
partial derivatives of residuals is obtained from (22) for
small 𝜖,

lim
h→0

r(xi,h, y;F𝜖,xi,h,y) − r(x, y;F𝜖,x,y)
h

+ 𝛽i

≈ −𝜖

[
IFi +

𝜕IF0

𝜕xi
+

p∑
𝑗=1

x𝑗
𝜕IF𝑗

𝜕xi

]
, i = 1, … , p.

(28)

From (27) and (28), the right side of (28) measures
influence of x’s ith coordinate in the residual’s derivative
and provides the motivation for defining influence.

Definition 1. For gross-error model F𝜖,x,y,

a. the influence of x’s ith coordinate in the L2-residual is

INF(i) = 𝜖 ⋅
||||||IFi +

𝜕IF0

𝜕xi
+

p∑
𝑗=1

x𝑗
𝜕IF𝑗

𝜕xi

|||||| , i = 1, … , p.

(29)
b. The L2-RINFIN is

RINFIN(x, y; 𝜖, 𝛽) = 𝜖 ⋅
p∑

i=1

(
IFi +

𝜕IF0

𝜕xi
+

p∑
𝑗=1

x𝑗
𝜕IF𝑗

𝜕xi

)2

.

(30)

Remark 4. Replacing in (30) the squares by absolute
values, RINFINABS(x, y; 𝜖, 𝛽) is obtained, which is
used to complement RINFIN’s ordering as described in
Section 2.2. The sum next to 𝜖 in (30) can be divided by p,
both for RINFIN and RINFINABS.

The equations’ system (17) and (18) can be written in
matrix notation

̃ ⋅ IF = q(x, y; 𝛽); (31)

̃ is the symmetric matrix of EXi, EXiXj and 1, 1≤ i, j≤ p,
IF is the vector of 𝛽-influence functions and

q = (r(x, y;F), x1r(x, y;F), … , xpr(x, y;F))T .

Using the notation,

∗ = (e∗ij) = ̃−1
, 0 ≤ i, 𝑗 ≤ p, (32)

it is shown in Lemma B.2 for regression model (13) under
(1), (2), (x, y) ∈ Rp+1, that

INF[i] = 𝜖 ⋅
||||||2r

[
e∗i0 +

p∑
k=1

e∗ikxk

]

−𝛽i

(
e∗00 + 2

p∑
𝑗=1

x𝑗e∗𝑗0 + xT∗x

)|||||| , i = 1, … , p,

(33)

and (30) is written

RINFIN(x, y; 𝜖, 𝛽) = 𝜖 ⋅
p∑

i=1

{
2r

[
e∗i0 +

p∑
k=1

e∗ikxk

]

−𝛽i

(
e∗00 + 2

p∑
𝑗=1

x𝑗e∗𝑗0 + xT∗x

)}2

. (34)
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Remark 5. To calculate the RINFIN value (34) of (xi, yi),
the rest of the sample is used to estimate 𝛽, ̃ , ∗, i =
1, … ,n. If one |𝛽i| is near zero, the effect of “bad leverage”
remains in another term in (34).

Assuming in addition (3) and using (B2), a more
accessible and insightful form of RINFIN is obtained.

RINFIN(x, y; 𝜖, 𝛽) = 𝜖 ⋅
p∑

i=1

{
2

r(x, y;F)(xi − EXi)
𝜎2

i

−𝛽i

[
1 +

p∑
𝑗=1

(x𝑗 − EX𝑗)2

𝜎2
𝑗

]}2

. (35)

Proposition 3. Under (1)–(3), with G unit mass at (x,
y), 𝜖 = 1/n,

lim|xi|→∞
RINFIN(x, y; 𝜖, 𝛽) = ∞. (36)

4.3.2 Local y-influence on L2-residuals

For (x, y+ h) and (x, y) both under model F,

r(x, y + h;F) − r(x, y;F)
h

= 1, i = 1, … , p. (37)

Proposition 4. For models F, F𝜖,x,y, F𝜖,x,y+h, 𝜖 small and L2
regression under (1) − (3):

lim
h→0

r(x, y + h;F𝜖,x,y+h) − r(x, y;F𝜖,x,y)
h

− 1 ≈ −𝜖

[
1 +

p∑
𝑗=1

(x𝑗 − EX𝑗)2

𝜎2
𝑗

]
. (38)

Remark 6. From (38), the y-influence index is

p∑
𝑗=1

(x𝑗 − EX𝑗)2

𝜎2
𝑗

; (39)

it is maximized for cases in the extremes of the
x-coordinates. Thus, RINFIN is restricted to the influence
of factor space cases.

4.4 Large sample properties
of RINFIN(x, y; 𝝐, 𝜷n)

Consistency of RINFIN(x, y; 𝜖, 𝛽n) and its asymptotic distri-
bution follow from properties of the least squares estimate
𝛽n. For Proposition 5 the notation is changed: X(∈ Rp+1)
has 1 as first coordinate, ̃ is EXXT and x(∈ Rp) still
denotes a factor space vector.

Proposition 5. 2 Let (X, Y ), (X1, Y 1), … , (Xn, Y n) be inde-
pendent, identically distributed random vectors with form
XT = (1, X1, … , Xp) ∈ Rp+1, Y ∈ R,

Y = XT𝛽 + 𝜖. (40)

Let 𝛽n be the least squares estimate of 𝛽.

a. Assume that (i) Rank ̃ = Rank EXXT = p+ 1, (ii)
EX𝜖 = 0, (iii) E𝜖2 < ∞.

Then, for every (x, y) ∈ Rp+1, RINFIN(x, y; 𝜖, 𝛽n) is con-
sistent estimate for RINFIN(x, y; 𝜖, 𝛽), 𝜖 > 0.

b. Assume in addition to (i) and (ii) in (a): (iv) E𝜖4 < ∞
and E||X||42 < ∞; ||u||2 denotes the Euclidean L2 norm
of vector u. (v) For at least one 𝛽-coordinate, for example,
the ith:

gi =
𝜕RINFIN(x, y; 𝜖, 𝛽)

𝜕𝛽i
≠ 0. (41)

Then, RINFIN(x, y; 𝜖, 𝛽n) is asymptotically normal:√
n[RINFIN(x, y; 𝜖, 𝛽n) − RINFIN(x, y; 𝜖, 𝛽)]


→ N(0, gTVg); (42)

V = ̃−1
E(XiXT

i 𝜖
2
i )̃−1

is the covariance matrix of the
asymptotic normal distribution of 𝛽n and g has coordi-
nates gi in (41), i = 0, 1, … , p.

Remark 7. RINFIN’s advantage, that is, making additive
the effects of x and r, remains for L2-regression with diag-
onal weight matrix, W , independent of x, r; Proposition 5
still holds with known V (W) in (42). When W depends
on x, r, the decomposition of the influence function in
Dollinger and Staudte [10, Theorem 3, Equation (2)] indi-
cates that RINFIN’s advantage may not hold, depending on
the form of the weights.
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n’s cofactors are obtained and used to determine in closed
form the influence functions of L2-regression coefficients.

Under assumption (3), the coefficients in the system
of Equations (17) and (18) form n-matrix; n is the covari-
ates’ dimension. As an illustration, for real numbers a, b,
c, A, B, C,

3 =

⎛⎜⎜⎜⎜⎜⎝

1 a b c
a A ab ac
b ba B bc
c ca cb C

⎞⎟⎟⎟⎟⎟⎠
.

For 3, the corresponding linear regression model with
uncorrelated covariates X1, X2, X3 provides a = EX1,
b = EX2, c = EX3 and A = EX2

1, B = EX2
2, C = EX2

3.

Definition A.1. The n-matrix3 with real entries has
form:

n =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 a1 a2 … an

a1 A1 a1a2 … a1an

a2 a2a1 A2 … a2an

…
an ana1 ana2 … An

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (A1)

Notation: n,−k denotes the matrix obtained from n by
deleting its kth column and kth row, 2≤ k ≤ n + 1.

Property of n-matrix: Deleting the kth row and the kth
column of n-matrix, the obtained matrix n,−k is n−1
matrix formed by {1, a1, … , an}− {ak−1}, 2≤ k≤n+ 1.

The cofactors of n-matrix are needed to solve the
system of Equations (17) and (18).

Proposition A.1.
a. The determinant of n-matrix (A1) is

|n| = Πn
m=1(Am − a2

m). (A2)

b. Let Ci+1, j+1 be the cofactor of element (i + 1, j + 1) in n,

then:

Ci+1,𝑗+1 = 0, if i > 0, 𝑗 > 0, i ≠ 𝑗,

C1,𝑗+1 = −a𝑗Πk≠𝑗(Ak − a2
k).

Ci+1,1 = −aiΠ𝑗≠i(A𝑗 − a2
𝑗 ), if i > 0,

C1,1 = |n| + n∑
k=1

a2
k|n,−k|.

Proof for Proposition A.1.

a. Induction is used.
For n = 1, the determinant is A1 − a2

1.

3 for Eleni.

For n = 2, the determinant is

(A1A2 − a2
1a2

2) − a1 ⋅ (a1A2 − a1a2
2) + a2 ⋅ (a2

1a2 − A1a2)
= A1A2 − a2

1A2 + a2
1a2

2 − A1a2
2

= A2(A1 − a2
1) − a2

2(A1 − a2
1) = (A1 − a2

1)(A2 − a2
2).

Assume that (A2) holds also for n. It is enough to show
(A2) holds for

n+1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 a1 a2 … an an+1

a1 A1 a1a2 … a1an a1an+1

a2 a2a1 A2 … a2an a2an+1

…
an ana1 ana2 … An anan+1

an+1 an+1a1 an+1a2 … an+1an An+1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

|n+1| is obtained using line (n+ 1) and its cofactors
Cn+1, 1, … , Cn+1, n+1:

|n+1| = an+1Cn+1,1 + an+1a1Cn+1,2 + · · ·
+ an+1anCn+1,n + An+1Cn+1,n+1. (A3)

Observe that for 2≤ j≤n, cofactor Cn+1, j is obtained
from a matrix where the last column is a multiple of its
first column by an+1, thus,

Cn+1,𝑗 = 0, 𝑗 = 2, … ,n. (A4)

For the matrix in cofactor Cn+1, 1, observe that in its last
column an+1 is common factor and if taken out of the
determinant the remaining column is the vector gener-
ating n, that is, {1, a1, … , an}. With n− 1 successive
interchanges to the left, this column becomes first and
n appears. Thus,

Cn+1,1 = (−1)n+2(−1)n−1 ⋅ an+1|n| = −an+1|n|.
(A5)

In cofactor Cn+1, n+1, the determinant is that of n,

Cn+1,n+1 = (−1)2(n+1)|n| = |n|. (A6)

From (A3)–(A6) it follows that

|n+1| = −a2
n+1|n| + An+1|n| = Πn+1

m=1(Am − a2
m).

b. We now work with n. For i > 0, j > 0, i ≠ j, after
deleting row (j + 1) the remaining of column (j + 1) in
the cofactor is a multiple of column 1, thus |Ci+1,j+1|
vanishes.



12 YATRACOS

For C1,j+1, using column j+ 1 to calculate n, it holds:

a𝑗C1,𝑗+1 + A𝑗C𝑗+1,𝑗+1 = |n| ⇒ a𝑗C1,𝑗+1

= −a2
𝑗Πk≠𝑗(Ak − a2

k) ⇒ C1,𝑗+1 = −a𝑗Πk≠𝑗(Ak − a2
k).

For Ci+1,1, i> 0, after deletion of row (i+ 1) in n the
remaining of column (i+ 1) in the cofactor’s matrix
is multiple of ai and the basic vector creating n,−i.

Column 1 of n is also deleted and for column (i+ 1)
in the cofactor’s matrix to become first column (i− 1)
exchanges of columns are needed. Thus,

Ci+1,1 = (−1)i+2 ⋅ ai ⋅ (−1)i−1Πk≠i(Ak − a2
k)

= −ai ⋅ Πk≠i(Ak − a2
k).

For C1,1 we express |n| as sum of cofactors along the
first row of n,

C1,1 + a1C1,2 + · · · + anC1,n = |n|
⇒ C1,1 = Πn

k=1(Ak − a2
k) + a2

1Πk≠1(Ak − a2
k)

+ · · · + a2
nΠk≠n(Ak − a2

k).

APPENDIX B. PROOFS

Proof of Lemma 1. Equality (7) is obtained by adding
and subtracting T(F) in the numerator of its left side and
by taking first the limit with respect to 𝜖.

Proof of Proposition 1. For system of Equations (17),
(18) and matrix p with a𝑗 = EX𝑗 , A𝑗 = EX2

𝑗 , 𝑗 = 1, … , p,
from Proposition A.1 with r = r(x, y; F),

IF𝑗 =
C1,𝑗+1r + C𝑗+1,𝑗+1rx𝑗|p| = r

−EX𝑗Πk≠𝑗𝜎2
k + x𝑗Πk≠𝑗𝜎2

k

Πp
k=1𝜎

2
k

= r
x𝑗 − EX𝑗

𝜎2
𝑗

, 𝑗 = 1, … , p.

IF0 =
C1,1r +

∑p
𝑗=1C1,𝑗+1rx𝑗|p|

= r
Πp

k=1𝜎
2
𝑗
+
∑p

𝑗=1(EX𝑗)2Πk≠𝑗𝜎2
k −

∑p
𝑗=1x𝑗EX𝑗Πk≠𝑗𝜎2

k

Πp
k=1𝜎

2
k

= r

[
1 +

p∑
𝑗=1

EX2
𝑗 − 𝜎2

𝑗
− x𝑗EX𝑗

𝜎2
𝑗

]

= r

[
1 − p +

p∑
𝑗=1

EX2
𝑗 − x𝑗EX𝑗

𝜎2
𝑗

]
.

Lemma B.1. For the influence functions (20) with r = r(x,
y; F) it holds:

(a)

IF0 +
p∑

𝑗=1
x𝑗IF𝑗 = r

[
1 +

p∑
𝑗=1

(x𝑗 − EX𝑗)2

𝜎2
𝑗

]
, (B1)

(b)

IFi + IF′
xi,0

+
p∑

𝑗=1
x𝑗IF′

xi,𝑗
= 2 r ⋅ (xi − EXi)

𝜎2
i

− 𝛽i

[
1 +

p∑
𝑗=1

(x𝑗 − EX𝑗)2

𝜎2
𝑗

]
. (B2)

≈ −3𝛽i
(xi − EXi)2

𝜎2
i

, if |xi − EXi| is very large, (B3)

(c)

IF′
y,0 +

p∑
𝑗=1

x𝑗IF′
y,𝑗 = 1 +

p∑
𝑗=1

(x𝑗 − EX𝑗)2

𝜎2
𝑗

. (B4)

Proof of Lemma B.1.
a. From (20),

IF0 +
p∑

𝑗=1
x𝑗IF𝑗 = r

[
1 − p +

p∑
𝑗=1

EX2
𝑗 − x𝑗EX𝑗

𝜎2
𝑗

]

+
p∑

𝑗=1
x𝑗

r(x𝑗 − EX𝑗)
𝜎2
𝑗

= r

[
1 − p +

p∑
𝑗=1

EX2
𝑗 − 2x𝑗EX𝑗 + x2

𝑗

𝜎2
𝑗

]

= r

[
1 +

p∑
𝑗=1

(x𝑗 − EX𝑗)2

𝜎2
𝑗

]
.

b. Proof is provided for i = 1. Since

IF0 = r

[
1 − p +

p∑
𝑗=1

EX2
𝑗 − x𝑗EX𝑗

𝜎2
𝑗

]
,

IF𝑗 = r
x𝑗 − EX𝑗

𝜎2
𝑗

, 𝑗 = 1, … , p,

IF′
x1,0

= −𝛽1

[
1 − p +

p∑
𝑗=1

EX2
𝑗 − x𝑗EX𝑗

𝜎2
𝑗

]
− r EX1

𝜎2
1

IF′
x1,1

= −𝛽1
x1 − EX1

𝜎2
1

+ r
𝜎2

1
⇒ x1IF′

x1,1

= −𝛽1
x2

1 − x1EX1

𝜎2
1

+ r x1

𝜎2
1

IF′
x1,𝑗

= −𝛽1
x𝑗 − EX𝑗

𝜎2
𝑗

⇒ x𝑗IF′
x1,𝑗

= −𝛽1
x2
𝑗
− x𝑗EX𝑗

𝜎2
𝑗

, 𝑗 ≠ 1.
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Thus,

x1IF′
x1,1

+ x2IF′
x1,2

+ · · · + xpIF′
x1,p

= r x1

𝜎2
1
− 𝛽1

p∑
𝑗=1

x2
𝑗
− x𝑗EX𝑗

𝜎2
𝑗

⇒ IF1 + IF′
x1,0

+ x1IF′
x1,1

+ x2IF′
x1,2

+ · · · + xpIF′
x1,p

= 2 r(x1 − EX1)
𝜎2

1
− 𝛽1

[
1 − p +

p∑
𝑗=1

x2
𝑗
− 2x𝑗EX𝑗 + EX2

𝑗

𝜎2
𝑗

]

= 2 r(x1 − EX1)
𝜎2

1
− 𝛽1

[
1 +

p∑
𝑗=1

(x𝑗 − EX𝑗)2

𝜎2
𝑗

]
.

Since

r(x1 − EX1) = y(x1 − EX1) − 𝛽1x1(x1 − EX1)

− (x1 − EX1)
p∑

𝑗=2
𝛽𝑗x𝑗

= y(x1 − EX1) − 𝛽1(x1 − EX1)2 − 𝛽1(x1 − EX1)EX1

− (x1 − EX1)
p∑

𝑗=2
𝛽𝑗x𝑗 ,

if |x1 −EX1| is very large dominating all the other terms,
then

IF1 + IF′
x1,0

+ x1IF′
x1,1

+ x2IF′
x1,2

+ · · · + xpIF′
x1,p

≈ −3𝛽1
(x1 − EX1)2

𝜎2
1

.

c. From (20),

IF′
y,0 = 1 − p +

p∑
𝑗=1

EX2
𝑗 − x𝑗EX𝑗

𝜎2
𝑗

, IF′
y,𝑗 =

x𝑗 − EX𝑗

𝜎2
𝑗

,

𝑗 = 1, … , p.

Thus,

IF′
y,0 +

p∑
𝑗=1

x𝑗IF′
y,𝑗 = 1 − p

+
p∑

𝑗=1

EX2
𝑗 − x𝑗EX𝑗 + x2

𝑗
− x𝑗EX𝑗

𝜎2
𝑗

= 1 +
p∑

𝑗=1

(x𝑗 − EX𝑗)2

𝜎2
𝑗

.

Proof of Lemma 2. Use approximations (4) and (8).

Proof of Proposition 2.

a. Is provided for i = 1 using repeatedly Lemma 2:

r(x1,h, y;F𝜖,x1,h,y) = y − 𝛽0(F𝜖,x1,h,y)

− 𝛽1(F𝜖,x1,h,y)(x1 + h) − · · · − 𝛽p(F𝜖,x1,h,y)xp

≈ y − {𝛽0(F𝜖,x,y) + 𝜖hIF′
x1,0}

− {𝛽1(F𝜖,x,y) + 𝜖hIF′
x1,1}(x1 + h)

− · · · − {𝛽p(F𝜖,x,y) + 𝜖hIF′
x1,p}xp

= r(x, y;F𝜖,x,y) − 𝛽1(F𝜖,x,y)h
− 𝜖h[IF′

x1,0
+ x1IF′

x1,1
+ x2IF′

x1,2
+ · · · + xpIF′

x1,p]

− 𝜖h2IF′
x1,1

= r(x, y;F𝜖,x,y) − 𝛽1h
− 𝜖h[IF1 + IF′

x1,0
+ x1IF′

x1,1
+ x2IF′

x1,2
+ · · · + xpIF′

x1,p]

− 𝜖h2IF′
x1,1

.

b. Lemma 2 is also used.

r(x, y + h;F𝜖,x,y+h) = y + h − 𝛽0(F𝜖,x,y+h)
− 𝛽1(F𝜖,x,y+h)x1 − · · · − 𝛽p(F𝜖,x,y+h)xp

≈ y + h − {𝛽0(F𝜖,x,y) + 𝜖hIF′
y,0}

− {𝛽1(F𝜖,x,y) + 𝜖hIF′
y,1}x1

− · · · − {𝛽p(F𝜖,x,y) + 𝜖hIF′
y,p}xp

= r(x, y;F𝜖,x,y) + h − 𝜖h

[
IF′

y,0 +
p∑

𝑗=1
x𝑗IF′

y,𝑗

]
.

Proof of Corollary 1.

(a1) The right side of (24) follows from (B2).
(a2) If |xi| is large and |h| is small, 𝛽 ih and 𝜖h2IF′

xi,i
are

of smaller order than the remaining terms and
(B3) implies (25).

(b) The right side of (26) follows from (B4).
Proof of Proposition 3.

lim|xi|→∞
RINFIN(x, y; 𝜖,L2) ≥ 𝜖⋅

lim|xi|→∞

{
2

r(x, y)(xi − EXi)
𝜎2

i

− 𝛽i

[
1 +

p∑
𝑗=1

(x𝑗 − EX𝑗)2

𝜎2
𝑗

]}2

≈ 𝜖 ⋅ lim|xi|→∞
32𝛽2

i
(xi − EXi)4

𝜎4
i

= ∞;

the last approximation follows from (B3).

Proof of Proposition 4. Follows from (26) dividing both
its sides by h and taking the limit with h converging to zero.

Lemma B.2. For regression model (13) under (1), (2),
(x, y) ∈ Rp+1,

INF[i] = 𝜖 ⋅
||||||2r

[
e∗i0 +

p∑
k=1

e∗ikxk

]

−𝛽i

(
e∗00 + 2

p∑
𝑗=1

x𝑗e∗𝑗0 + xT∗x

)|||||| , i = 1, … , p.

(B5)
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Proof of Lemma B.2. From (31),

IF = ∗ ⋅ q, ∗ = (e∗ij) = ̃−1
, 0 ≤ i, 𝑗 ≤ p. (B6)

The influence function of 𝛽 j has form

IF𝑗 =
p∑

k=0
e∗jkqk(x, y; 𝛽) = re∗𝑗0 + r

p∑
k=1

e∗jkxk, 𝑗 = 0, 1, … , p.

(B7)
For j = 0, 1, … , p, i = 1, … , p

𝜕IF𝑗

𝜕xi
= e∗𝑗0

𝜕r
𝜕xi

+
p∑

k=1
e∗jk

𝜕 (xk ⋅ r)
𝜕xi

= −𝛽i

(
e∗𝑗0 +

p∑
k=1

e∗jkxk

)
+ re∗ji,

p∑
𝑗=1

x𝑗
𝜕IF𝑗

𝜕xi
= −𝛽i

p∑
𝑗=1

x𝑗e∗𝑗0 − 𝛽i

p∑
𝑗=1

x𝑗
p∑

k=1
e∗jkxk + r

p∑
𝑗=1

x𝑗e∗ji

𝜖 ⋅

[
IFi +

𝜕IF0

𝜕xi
+

p∑
𝑗=1

x𝑗
𝜕IF𝑗

𝜕xi

]

= 𝜖 ⋅

[
re∗i0 + r

p∑
k=1

e∗ikxk − 𝛽i

(
e∗00 +

p∑
k=1

e∗0kxk

)

+ re∗0i − 𝛽i

p∑
𝑗=1

x𝑗e∗𝑗0

−𝛽i

p∑
𝑗=1

x𝑗
p∑

k=1
e∗jkxk + r

p∑
𝑗=1

x𝑗e∗ji

]

= 𝜖 ⋅

{
2r

[
e∗i0 +

p∑
k=1

e∗ikxk

]

−𝛽i

(
e∗00 + 2

p∑
𝑗=1

x𝑗e∗𝑗0 +
p∑

𝑗=1

p∑
k=1

x𝑗e∗jkxk

)}
.

Proof of Proposition 5. (a) Conditions (i)–(iii) imply that
the least squares estimate 𝛽n is consistent estimate of 𝛽.
From (30) and (B5), RINFIN(x, y; 𝜖, 𝛽) is continuous func-
tion of 𝛽 and therefore RINFIN(x, y; 𝜖, 𝛽n) is consistent esti-
mate of RINFIN(x, y;𝜖, 𝛽). (b) Conditions (i), (ii), and (iv)
imply that 𝛽n has asymptotically multivariate normal dis-
tribution with covariance matrix ̃−1

E(XiXT
i 𝜖

2
i )̃−1

. From
(30) and (B5), RINFIN(x, y; 𝜖, 𝛽) has continuous first par-
tial derivatives at 𝛽 which are not all zero from (v). Thus,
RINFIN(x, y; 𝜖, 𝛽) has nonzero differential at 𝛽. The result
follows from Serfling [27, Corollary in section 3.3, p. 124].

APPENDIX C. USING RINFIN WITH DATA

The data

Dn = {(x1, y1), … , (xn, yn)}, Dn,−m = Dn − {(xm, ym)},
m = 1, … ,n.

We describe first how to calculate the RINFIN score of
(xm, ym) with (35) and 𝜖 = 1/n:
a. Use Dn,−m to obtain L2-estimates 𝛽 and r̂2(xm, ym).
b. Estimate EXi and 𝜎2

i , respectively, by the sample aver-
age and sample variance x-data’s ith coordinate in
Dn,−m, i = 1, … , p.

c. Use 𝛽’s ith coordinate and replace xi with xm’s ith coor-
dinate, i = 1, … , p.

If a group G of k remote x-neighboring cases exists,

G = {(xi1 , yi1), … , (xik , yik )} ⊂ Dn,

Dn may follow a gross-error model. Let g be the average of
the elements in G and use, instead of Dn, new data

(Dn − G) ∪ {g}.

Calculate RINFIN scores following (a)–(c). For the RIN-
FIN score of g use 𝜖 = k/n; in the remaining (n− k) cases
weights are 1/n.

With J groups, G1, … , GJ , of remote x-neighboring
cases, Gk ∩ Gl = ∅, k ≠ l, obtain averages g1, … , gJ , and use
data set (

Dn −
J⋃

𝑗=1
G𝑗

)
∪ {g1, … , gJ}.

Proceed with (a)–(c). For the RINFIN score of g𝑗 use
𝜖j = kj/n, kj is the cardinality of Gj, j = 1, … , J; in the
remaining cases the weights are 1/n.

To calculate the RINFIN score of (xm,ym) with (34),
Dn,−m is used to estimate ̃ with the corresponding sample
averages and inverting it to obtain the corresponding esti-
mate of ∗ (see (32)) without the mth case, m = 1, … , n.
The 𝛽’s are also estimated. The approach can be repeated
with J groups, G1,… ,GJ , of remote x-neighboring cases, as
described above; J ≥ 1.


